WO2020071688A1 - 박막형 초음파 지문센서의 제조방법 및 그 센서 - Google Patents

박막형 초음파 지문센서의 제조방법 및 그 센서

Info

Publication number
WO2020071688A1
WO2020071688A1 PCT/KR2019/012571 KR2019012571W WO2020071688A1 WO 2020071688 A1 WO2020071688 A1 WO 2020071688A1 KR 2019012571 W KR2019012571 W KR 2019012571W WO 2020071688 A1 WO2020071688 A1 WO 2020071688A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
electrode pattern
fingerprint sensor
piezoelectric film
manufacturing
Prior art date
Application number
PCT/KR2019/012571
Other languages
English (en)
French (fr)
Inventor
김영규
박경옥
이승진
Original Assignee
(주)비티비엘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190081842A external-priority patent/KR102138665B1/ko
Application filed by (주)비티비엘 filed Critical (주)비티비엘
Publication of WO2020071688A1 publication Critical patent/WO2020071688A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure

Definitions

  • the present invention relates to a method of manufacturing a thin film type ultrasonic fingerprint sensor and a sensor thereof, and more specifically, an ultrasonic sensor is manufactured as a thin film, and thus can be used in electronic devices for fingerprint recognition security in a compact manner. It relates to a method of manufacturing a thin film type ultrasonic fingerprint sensor that can be applied to a substrate and a sensor.
  • the ultrasonic sensor can be used with an ultrasonic transmitter to transmit ultrasonic waves through an ultrasonic transmission medium or media and towards an object to be detected, the transmitter being operatively connected to an ultrasonic sensor configured to detect portions of ultrasonic waves reflected from the object.
  • ultrasonic pulses can be generated by starting and stopping the transmitter for a very short interval of time, and at each material interface encountered by the ultrasonic pulses, a portion of the ultrasonic pulses Reflected, for example, in relation to an ultrasound fingerprint imager, ultrasound can move up and down on a platen where a human finger can be placed to obtain a fingerprint image, and after passing through the platen, some parts of the ultrasound skin contact the platen On the one hand, for example Other parts of the wave are in contact with the air, e.g., bones between adjacent ridges of the fingerprint and can be reflected back to the ultrasonic sensor at different intensities, and the reflected signals associated with the fingers are processed to represent the signal strength of the reflected signal. Can be converted to a value.
  • the ultrasonic sensor can be used as a fingerprint sensor or other type of biometric sensor.
  • the ultrasonic sensor transmits ultrasonic waves
  • the ultrasonic wave is a device that senses an object by receiving a signal that is reflected back to the object
  • an ultrasonic sensor can be largely composed of an ultrasonic transmission / reception unit, a driving unit, and mechanical parts
  • the ultrasonic transmission / reception unit receives an AC voltage from the driving unit, transmits ultrasonic waves, receives a signal that returns in response to the transmitted ultrasonic waves, and transmits the transmitted signal to the driving unit, wherein the main components of the ultrasonic transmission / reception unit are a case, a piezoelectric element, and a piezoelectric element.
  • the alternating current When the alternating current is energized, crystals constituting the piezoelectric material repeat compression and expansion, resulting in a reverse piezoelectric effect in which mechanical vibration occurs.
  • the piezoelectric element When an external force is applied to the piezoelectric element to cause contraction and expansion, the piezoelectric element The positive (+) charge on one side and the negative (-) charge on the other side generate current, and the ultrasonic sensor
  • an alternating current is applied to the piezoelectric element from the outside, and the contraction and expansion of the piezoelectric element are repeated, and the vibration generated by this is transmitted to the case, and the vibration of the case generates small waves in the air to generate ultrasonic waves. The transmission process is repeated.
  • the step of preparing a ceramic sintered body in the form of a piezoelectric sheet sintered according to incomplete sintering conditions In the direction of the first surface of the ceramic sintered body, the first surface side is cut in parallel in the first direction at predetermined intervals at a depth at which a residual region remains on the second surface side, and in the direction of the second surface of the ceramic sintered body A step in which a ceramic workpiece is formed by cutting in parallel in a second direction perpendicular to the first direction at predetermined intervals at a depth at which the remaining area remains at; Sintering the ceramic workpiece according to pre-specified complete sintering conditions; A step in which an insulating material is filled in a groove formed in the ceramic workpiece by cutting processing; And polishing the ultrasonic sensor to remove residual areas present on the first surface side and the second surface side so that the piezoelectric rods are arrayed and exposed in the direction of the first surface and the direction of the second surface, respectively.
  • the ultrasonic fingerprint sensor is manufactured as a thin film and can be employed in an electronic device for fingerprint recognition security in a compact manner.
  • the ultrasonic fingerprint sensor since it can have flexibility, it can be applied to a flexible substrate. It is to provide a method for manufacturing a sensor.
  • the ultrasonic fingerprint sensor is manufactured as a thin film and can be employed in an electronic device for fingerprint recognition security, and in particular, it can have flexibility, so that it can be applied to a flexible substrate. It is to provide a sensor.
  • the present invention includes forming an auxiliary substrate on a laminated substrate (S1), and providing an electrode pattern layer on top of the auxiliary substrate (S2), and of the electrode pattern layer.
  • Step (S3) of stacking a piezoelectric film on top step (S4) of layering a mask layer on top of the piezoelectric film, and bonding the piezoelectric film with an ultrasonic electrode pattern film (S5) and the auxiliary substrate And separating the electrode pattern layer (S5).
  • the masking layer may be a process of matching some or all of the piezoelectric film pattern to be combined with the electrode pattern layer.
  • the piezoelectric film may be formed into a columnar shape, a wall shape, or a mixed shape thereof.
  • the piezoelectric film is a barium titanate compound, PZT (PbZrTiO 3 ) compound, PST (Pb (Sc, Ta) O 3 compound, (Pb, Sm) TiO 3 compound or PMN ( Pb (MgNb) O 3 -PT (PbTiO 3 ) It may be one containing a compound.
  • the piezoelectric film in step S4 may be sintered.
  • the ultrasonic electrode pattern film may include a counter electrode pattern film.
  • the filling film may be interposed between the piezoelectric film and the counter electrode pattern film during bonding in step S5.
  • the filling film may include a bonding hole.
  • the step of separating the auxiliary substrate and the electrode pattern layer may further include a polishing process.
  • the polishing may be made up to the interface between the laminated substrate and the auxiliary substrate.
  • a process of laminating a protective film may be added.
  • the present invention provides a thin-film ultrasonic fingerprint sensor, characterized in that manufactured by the above-described manufacturing method, in order to solve the second technical problem described above.
  • the ultrasonic fingerprint sensor is manufactured as a thin film and can be compactly employed in electronic devices for fingerprint recognition security, and can be particularly flexible and applied to a flexible substrate. There is an effect that can be done.
  • Figure 1 shows a cross-section of the layers that are laminated in order to the manufacturing method according to the invention, the process is progressed by winding several pictures down,
  • FIG. 2 and 3 is a perspective view showing a piezoelectric film pattern of the present invention
  • Figure 2 is a columnar
  • Figure 3 is a representation of a wall-type piezoelectric film
  • FIG. 4 is a cross-sectional view showing the shape of bonding the piezoelectric film and the ultrasonic electrode pattern film according to the present invention with a filling film therebetween.
  • FIG. 5 is a view showing a cross section after bonding between the piezoelectric film and the ultrasonic electrode pattern film of FIG. 4,
  • FIG. 6 is a diagram schematically showing the shape of laminating and bonding opposing pattern disks provided with a plurality of ultrasonic electrode pattern films to a laminated disk capable of patterning a plurality of laminated boards of the present invention
  • FIG. 7 is a cross-sectional view showing a shape laminating the protective film of the present invention on a sensor electrode.
  • FIG. 1 is a view showing a cross-section of the layers laminated in order to the manufacturing method according to the present invention
  • Figures 2 and 3 are perspective views showing the piezoelectric film pattern of the present invention
  • Figure 2 is a columnar shape
  • Figure 3 Is a representation of a wall-type piezoelectric film
  • FIG. 4 is a cross-sectional view showing a shape of bonding the piezoelectric film according to the present invention and a filling film therebetween when bonding the ultrasonic electrode pattern film
  • FIG. 5 is a piezoelectric film of FIG. 4 And the cross-section after bonding with the ultrasonic electrode pattern film
  • FIG. 6 shows an arrangement of counter pattern disks having a plurality of ultrasonic electrode pattern films on a laminated disk capable of patterning a plurality of laminated substrates of the present invention ( aligning) is a diagram schematically showing the shape of laminating and bonding
  • FIG. 7 is a diagram showing a cross-section of the shape of laminating the protective film of the present invention on a sensor electrode.
  • the method of manufacturing a thin film type ultrasonic fingerprint sensor comprises the steps of forming the auxiliary substrate 200 on the laminated substrate 100 (S1), and having an electrode pattern layer 300 on top of the auxiliary substrate 200.
  • Step (S2) the step of stacking the piezoelectric film 400 on top of the electrode pattern layer (S3), and the step of layering the mask layer 500 on top of the piezoelectric film to pattern the piezoelectric film 400 ( S4), bonding the piezoelectric film with the ultrasonic electrode pattern film 600 (S5) and separating the auxiliary substrate 200 and the electrode pattern layer 300 (S5).
  • the step S1 is a process of forming the auxiliary substrate 200 on the laminated substrate 100, and the laminated substrate 100 can form and laminate the auxiliary substrate, and can be easily separated from the fingerprint sensor after the process. It is not particularly limited as far as possible, but considering the workability, a silicon wafer (Si Wafer), a glass wafer (Glass Wafer) or a ceramic substrate (Ceramic substrate) may be used.
  • the auxiliary substrate 200 is not particularly limited as long as it is a material capable of laminating a material by a coating or vapor deposition method in order to detach the laminated substrate 100 from the fingerprint sensor after manufacture, but there is no influence of subsequent processes. Silicon oxide (SiO 2 ) having properties can be used.
  • the auxiliary substrate 200 serves to be divided when the laminated substrate 100 is removed after the process is completed, and the separation is performed by a strong acid such as hydrofluoric acid (HF) or CNC polishing by a polishing process, dry etching (RIE). Can be removed through.
  • a strong acid such as hydrofluoric acid (HF) or CNC polishing by a polishing process, dry etching (RIE).
  • step S2 is a process of providing the electrode pattern layer 300 on top of the auxiliary substrate 200, and the electrode pattern layer may be stacked by a chemical vapor deposition method such as sputtering.
  • the lamination may use a mask. Patterning can be performed by placing a masking with an opening between the target and the auxiliary substrate in a shape corresponding to the shape of the designed electrode pattern layer to be deposited into the opening,
  • the electrode pattern layer 300 patterned by masking is formed on the upper portion of the auxiliary substrate 200, and a columnar piezoelectric film and a wall piezoelectric film 400 are formed on the electrode pattern layer according to a sensing method of a fingerprint sensor. Because it can be stacked, it plays the role and function of the electrode terminal, and the difference between the columnar and the wall type can be understood as the difference in the resolution of the fingerprint recognition.
  • the precision improves. Since the precision decreases when the number of piezoelectric elements in the wall type is small, it is necessary to adjust the precision according to the application used, and only the column type, the wall type, or It would be to pattern the piezoelectric film 400 of the mixed type.
  • the above-described masking is a process of partially or wholly matching the electrode pattern layer with the piezoelectric film pattern.
  • the piezoelectric film has a columnar shape or a wall shape, it is entirely matched to a shape corresponding to its end, or even if it is a columnar shape, a wall shape or a wall shape. Even if it can be replaced with a columnar shape, it can be partially matched to variously adopt the sensing method of the fingerprint sensor.
  • the masking is patterned in advance with a photoresist to be photolithographic, developed by exposure to form a shape corresponding to the electrode pattern, and then the electrode pattern layer is exposed to the patterned portion through wet or dry etching. It can be formed, and then remove the photoresist layer to prepare an electrode pattern layer.
  • the electrode pattern layer 300 may be formed after removing the laminated substrate and the auxiliary substrate.
  • the electrode pattern layer is formed of platinum on the entire surface of the auxiliary substrate irrespective of the electrode wiring, such as platinum. Needless to say, it can be laminated to a thickness designed with a conductive metal material such as silver, copper, titanium, aluminum, nickel, or alloys thereof.
  • Such electrode patterning is beneficial for precise shaping of a fine pattern, and after applying photoresist (PR) and curing, irradiating functional light such as ultraviolet light to a photomask having a pattern corresponding to the fine pattern
  • PR photoresist
  • irradiating functional light such as ultraviolet light
  • the light is transmitted only through the provided pattern, and only the part corresponding to the pattern is exposed, and then a part other than the pattern is removed by the development process to realize the fine pattern on the substrate.
  • this masking is a screen mask process in which the electrode pattern layer is directly patterned by a printing method, as well as patterning by a printing method such as screen printing similar to taping, and the electrode pattern layer is formed by stacking electrode materials with exposed portions of the pattern. It can be formed, for example, by forming a cured paste by mixing a current-carrying metal powder with a binder in a pattern form, and then forming and curing the paste.
  • the average particle size of the powder may be 0.1 to 10 ⁇ m.
  • the powder may be prepared as a paste or a solution mixed with a solvent or a binder. Since the solvent or binder in the solution phase is an organic substance, it may be helpful in filling the piezoelectric material powder because it is evaporated or oxidized and removed by heat applied during drying or curing.
  • the solvent or binder is not limited as long as the piezoelectric material powder can be uniformly and densely mixed.
  • step S3 is a process of stacking the piezoelectric film 400 on top of the electrode pattern layer, and the piezoelectric film 400 is stacked on top of the electrode pattern layer.
  • the process of patterning the piezoelectric film 400 by laminating the mask layer 500 on the top of the film is also described.
  • the piezoelectric film 400 may be formed into a columnar or wall-shaped piezoelectric film 400 by masking during lamination or by etching later.
  • the masking may be performed similarly to the masking of the electrode pattern layer seen above, which is a process of partially or fully matching the electrode pattern layer and the piezoelectric film pattern, and corresponds to the end portion when the piezoelectric film is columnar or wall-shaped.
  • the sensing method of the fingerprint sensor can be variously adopted by matching all of them in shape, or partially coinciding to be replaced with a columnar wall or a wall column.
  • step S3 is also applied with a photoresist pre-patterned PR layer 500 so as to be photolithographic, and exposing the PR layer to a shape corresponding to the shape of the patterned piezoelectric film for molding,
  • a photoresist pre-patterned PR layer 500 so as to be photolithographic, and exposing the PR layer to a shape corresponding to the shape of the patterned piezoelectric film for molding.
  • an opening is formed, and the molded piezoelectric film 400 can be formed through wet or dry etching through the opening.
  • Patterning may be performed by wet etching or dry etching. It does not specifically limit one method as much as possible, but it is preferable not to cause defects such as physical property deformation or distortion during the manufacturing process.
  • a photolithography process may be employed for precise molding of the fine pattern by etching, for example, after applying a photoresist (PR, photoresist) to the upper portion of the substrate for curing, and then coping with the fine pattern
  • a photoresist PR, photoresist
  • functional light such as ultraviolet light is irradiated on a photomask having a pattern
  • light is transmitted only through the provided pattern, and only a portion corresponding to the pattern is exposed.
  • the PR layer 500 ′ of the pattern can be implemented on the substrate, and such a method can be used as it is to form the pattern of the electrode pattern layer 300 as described above.
  • the masking in step S3 is similar to the screen mask process of directly patterning the piezoelectric film in a printing method, as well as patterning in a printing method similar to that of screen printing similar to taping, and stacking electrode materials with exposed portions of the pattern to form an electrode pattern layer. It can be molded, wherein the material of the piezoelectric film, the density of the powder is important, and the average particle size of the powder can be 0.1 to 10 ⁇ m, and the powder can be prepared as a paste or a solution mixture mixed with a solvent or a binder. In addition, since the paste or solution solvent or binder is an organic substance, it may be helpful in filling the piezoelectric material powder because it is evaporated or oxidized and removed by heat applied during drying or curing.
  • the solvent or binder is not limited as long as the piezoelectric material powder can be uniformly and densely mixed.
  • the material of the piezoelectric film is a barium titanate compound, PZT (PbZrTiO 3 ) compound, PST (Pb (Sc, Ta) O 3 compound, (Pb, Sm) TiO 3 compound or PMN (Pb (MgNb) O) It is a ceramic containing a 3 -PT (PbTiO 3 ) -based compound, and has a material characteristic that changes shape through sintering.
  • the piezoelectric film material is sintered to a dense density as a target, placed in a vacuum chamber of 10 -8 to 10 -1 MPa, and inside the chamber in a plasma state under an inert gas (eg, Ar (argon) gas injection) environment.
  • an inert gas eg, Ar (argon) gas injection
  • Chemical vapor deposition eg sputtering is performed by creating an atmosphere.
  • crystallization may be performed, such as pyrazine, imidazolium, benzimidazolium, and pyrrololidinium halide.
  • Systemic ionic liquids include isopropyl alcohol, methanol, ethanol, propanol, butanol, pentanol, diacetone alcohol, phenol, acetone, acetonitrile, methyl cellosolve, ethyl cellosolve, or butyl cellosolve
  • CN alkyl / allyl chain having cyanide
  • the piezoelectric film may be patterned by a sputtering process by masking the material of the piezoelectric film with a target.
  • step S5 is a process of bonding the piezoelectric film with the ultrasonic electrode pattern film 600.
  • the electrode terminal can be energized by the piezoelectric film. It is a forming process.
  • the ultrasonic electrode pattern film 600 is an ultrasonic sensor electrode pattern provided in an FPC (flexible printed circuit) or electronic device (not shown) for loading an ultrasonic fingerprint recognition module for security, and the pattern of the piezoelectric film 400 A counter electrode pattern film 400 ', which is connected and can conduct current through piezoelectric, is provided.
  • the opposite pattern disk (5000) provided with a plurality of ultrasonic electrode pattern films (600) in a stacked disk (1000) capable of patterning multiple stacked substrates (100) After aligning () aligning and bonding the piezoelectric film 400 and the counter electrode pattern film 400 ′ at a time, it can be mass-produced as a plurality of individual products by a cutting method such as dicing.
  • Such bonding may be performed by flip chip bumping by soldering or by connecting a current-carrying terminal of the fingerprint sensor with a solder ball.
  • an empty space must be generated between the ultrasonic electrode pattern film 600 and the ultrasonic recognition sensor module 700, so that an ultrasonic sensor is generated. Since the sensor may be damaged by the empty space when it is repeatedly touched, it can be prevented by filling the empty space through the filling film 800.
  • the filling film 800 is aligned therebetween, and at this time, a bonding hole (at the point where the piezoelectric film and the counter electrode pattern film are bonded to the filling film) 810) can be used to smooth the bonding, and the material of the filling film is a high bonsai material and must have elasticity to exert elasticity by bending the FPC, so it is necessary to have an elasticity equal to or higher than that of the FPC.
  • an organic polymer resin is preferred, and a rubber material which is natural or synthetic rubber is also preferable.
  • crystallizers examples include pyrazine, imidazolium, benzimidazolium, and pyrrolidinium halide-based ionic liquids (solvents are isopropyl alcohol, methanol, ethanol, Propanol, butanol, pentanol, diacetone alcohol, phenol, acetone, acetonitrile, methyl cellosolve, ethyl cellosolve, or butyl cellosolve, etc.) or cyanide (CN) groups are introduced at both ends.
  • An alkyl / allyl chain or a compound having two pyridine functional groups can be added and used.
  • step S6 is a process of separating the auxiliary substrate 200 and the electrode pattern layer 300.
  • the ultrasonic recognition sensor module 700 can be manufactured, and separation for this is dependent on the material of the auxiliary substrate. You can do it differently.
  • the electrode pattern layer may be exposed by dryly removing the laminated substrate 100 and the auxiliary substrate 200 through CMP polishing by a polishing process.
  • defects may occur due to polishing to the electrode pattern layer in accordance with the polishing conditions of the dicing polishing described above, so that only the laminated substrate is polished and the auxiliary substrate is removed by dry etching (RIE) method, resulting in damage to the electrode pattern layer. It can prevent the defects caused.
  • RIE dry etching
  • the polishing is preferably made up to the interface between the laminated substrate 100 and the auxiliary substrate 200, but it is preferable that the thickness of the laminated substrate is maintained at a thickness of 1 to 10 ⁇ m below the auxiliary substrate without being damaged by the auxiliary substrate. , If less than 1 ⁇ m may damage the auxiliary substrate during polishing, on the contrary, when it exceeds 10 ⁇ m, the number of dry etching may increase.
  • the auxiliary substrate is a polymer polymer
  • it can be dissolved by heating or carbonized to separate it by gasification.
  • the melting point is composed of a limited material lower than the laminated substrate 100, and separated by heating. can do.
  • a process of stacking the protective film 900 may be added to the above-described step S6, where the protective film protects the ultrasonic sensor 700 or the electrode 300 and is repeatedly repeated when applied to the FPC. It can provide flexibility to prevent damage by.
  • the material of the protective film 900 is similar to the filling film 800 as described above, and it is necessary to have elasticity as a high bonsai material and exhibit elasticity by bending of the FPC, so it is necessary to have an elasticity equal to or higher than that of the FPC.
  • an organic polymer resin is preferred, and a rubber material that is natural or synthetic rubber is also preferable.
  • the protective film 900 may be provided with a plurality of projections 910 in the direction in which the sensor, through which Even if each piezoelectric film vibrates repeatedly, it can stably support, prevent damage to the piezoelectric film, and the spacing between the protrusions may be 10 to 100 ⁇ m. It can be weak, so noise filtering can be difficult (FRR (False Rejection Ratio) problem). Conversely, if it exceeds 1000 ⁇ m, the vibration amplitude frequency is high.
  • FRR False Rejection Ratio
  • the ultrasonic fingerprint sensor as a thin film according to the above-described manufacturing method, it can be employed in electronic devices for compact fingerprint recognition security, and can realize a thin film type ultrasonic fingerprint sensor that can be applied to a flexible substrate because it can have flexibility. You can.
  • ultrasonic waves are generated by the currents applied to the counter electrode layer 400 ', the piezoelectric film 400, and the electrode pattern layer 300 of the ultrasonic electrode pattern layer 600, and the ultrasonic waves are irradiated to the contacted finger.
  • the fingerprint authentication unit (not shown) that acquires the reflected signal, it is possible to confirm whether the user is the same user, thereby securing security.
  • the contact of the finger causes the piezoelectric film itself to contract, expand, or vibrate, and generates ultrasonic waves of a specific frequency, and the ultrasonic waves are scanned (transmitted; Tx) and reflected by a human finger in a specific direction (reception; Rx) is read to compare the fingerprint information of a specific person registered and its value to determine the identity of a specific fingerprint, and a plurality of the piezoelectric films 300 are configured to form an ultrasonic sensor, for example, the size of a finger tip.
  • Hundreds to thousands of unit piezoelectric cells can be arranged in a corresponding area of several to several tens of millimeters, so that the number of unit piezoelectric cells can be arranged according to the accuracy and precision of fingerprint identification.
  • Laminated substrate 100, auxiliary substrate 200, electrode pattern layer 300, piezoelectric film 400, mask layer 500, ultrasonic electrode pattern film 600 laminated substrate 100, auxiliary substrate 200, electrode pattern layer 300, piezoelectric film 400, mask layer 500, ultrasonic electrode pattern film 600.
  • the present invention can be applied to an electronic device for fingerprint recognition security by manufacturing the ultrasonic sensor in a thin film, and can be applied to a flexible substrate because it can have flexibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

본 발명은 박막형 초음파 지문센서의 제조방법 및 그 센서를 개시한다. 본 발명에 따르는 박막형 초음파 지문센서의 제조방법 및 그 센서는 적층기판에 보조기판을 형성하는 단계(S1)와, 상기 보조기판의 상부로 전극패턴층을 구비하는 단계(S2)와, 상기 전극패턴층의 상부로 압전막을 적층하는 단계(S3)와, 상기 압전막의 상부로 마스크층을 적층하여 압전막을 패터닝하는 단계(S4)와, 상기 압전막을 초음파전극패턴막과 본딩하는 단계(S5) 및 상기 보조기판과 전극패턴층을 분리하는 단계(S5)를 포함하는데, 이에 의할 때, 초음파센서를 박막으로 제조하여 컴팩트하게 지문인식 보안을 위한 전자기기에 채용할 수 있으며, 특히 유연성을 가질 수 있어 플렉서블 기판에 적용할 수 있다.

Description

박막형 초음파 지문센서의 제조방법 및 그 센서
본 발명은 박막형 초음파 지문센서의 제조방법 및 그 센서에 관한 것으로, 더욱 상세하게는 초음파센서를 박막으로 제조하여 컴팩트하게 지문인식 보안을 위한 전자기기에 채용할 수 있으며, 특히 유연성을 가질 수 있어 플렉서블 기판에 적용할 수 있는 박막형 초음파 지문센서의 제조방법 및 그 센서에 관한 것이다.
초음파센서는, 초음파 전달 매체 또는 매체들을 통해 그리고 검출될 대상을 향해 초음파를 전송하기 위해 초음파 송신기가 사용될 수 있고, 이러한 송신기는 대상으로부터 반사되는 초음파의 부분들을 검출하도록 구성된 초음파센서와 동작 가능하게 연결될 수 있다 예를 들어, 초음파 지문 영상기들에서, 매우 짧은 간격의 시간 동안 송신기를 시작 및 중단함으로써 초음파 펄스가 발생될 수 있으며, 초음파 펄스에 의해 마주치게 되는 각각의 재료 계면에서, 초음파 펄스의 일부가 반사되는데, 예컨데, 초음파 지문 영상기와 관련하여, 지문 이미지를 얻기 위해 사람의 손가락이 놓일 수 있는 압판의 여기저기를 초음파가 이동할 수 있고, 압판을 거쳐간 후, 초음파의 어떤 부분들은 압판과 접촉하는 피부, 예를 들어 지문 능선들과 접하게 되는 한편, 초음파의 다른 부분들은 공기, 예를 들어 지문의 인접한 능선들 사이의 골들과 접하며 서로 다른 세기들로 다시 초음파 센서 쪽으로 반사될 수 있으며, 손가락과 연관된 반사 신호들은 처리되어 반사 신호의 신호 강도를 나타내는 디지털 값으로 변환될 수 있다.
분산된 영역에 걸쳐 이러한 다수의 반사 신호들이 모이면, 이러한 신호들의 디지털 값들이 예를 들어, 디지털 값들을 이미지로 변환함으로써 분산된 영역에 걸친 신호 강도의 그래픽 디스플레이를 제시하는 데 사용될 수 있으며, 이로써 지문의 이미지를 제시할 수 있어서, 초음파센서는 지문 센서 또는 다른 타입의 생체인식 센서로서 사용될 수 있다.
즉, 초음파센서는 초음파를 송출하고, 송출된 초음파가 물체에 반사되어 되돌아오는 신호를 수신하여 물체를 감지하는 장치로서, 이러한 초음파센서는 크게 초음파송수신부, 구동부 및 기구부품으로 구성될 수 있으며, 초음파 송수신부는 구동부로부터 교류전압을 인가받아 초음파를 송신하고, 송신된 초음파에 대응하여 되돌아오는 신호를 수신하여 구동부에 전달하는데, 여기서, 초음파 송수신부의 주요구성 부품은 케이스와 압전소자이고, 압전소자에 교류전류가 통전되면, 압전물질을 이루는 결정들이 압축과 팽창을 반복하여 기계적인 진동이 발생하는 역압전효과가 발생하는데, 예를 들어, 압전소자에 외력이 가해져 수축과 팽창이 반복되면, 압전소자의 한쪽에는 양(+)전하가, 다른 쪽에는 음(-)전하가 생겨 전류가 발생하게 되며, 초음파센서에서 초음파를 송신하는 경우, 외부로부터 교류 전류가 압전소자에 가해져서, 압전소자의 수축과 팽창이 반복되고, 이에 의해 발생하는 진동은 케이스에 전달되고, 케이스의 진동이 공기 중의 소밀파를 발생시켜 초음파를 송신하는 과정을 반복하게 된다.
반대의 경우로, 초음파센서에서 초음파를 수신하는 경우, 공기 중의 소밀파가 케이스의 진동판에 전달되어 케이스의 변위가 발생하며, 이 변위에 의한 압전소자의 수축 및 팽창에 의해 교류 전류가 발생하게 된다.
대한민국등록특허공보 제1850127호에서는 불완전 소결 조건에 따라 소결된 압전 시트 형태의 세라믹 소결체가 마련되는 단계; 상기 세라믹 소결체의 제1 표면의 방향에서 제2 표면 측에 잔존 영역이 남는 깊이로 미리 지정된 간격마다 제1 방향으로 평행하게 절삭 가공되고, 상기 세라믹 소결체의 제2표면의 방향에서 상기 제1 표면 측에 잔존 영역이 남는 깊이로 미리 지정된 간격마다 제1 방향에 수직한 제2 방향으로 평행하게 절삭 가공되어 세라믹 가공체가 형성되는 단계; 상기 세라믹 가공체가 미리 지정된 완전 소결조건에 따라 소결 처리되는 단계; 절삭 가공에 의해 상기 세라믹 가공체에 형성된 홈에 절연재가 전충되는 단계; 및 제1 표면의 방향과 제2 표면의 방향에서 압전 로드가 각각 어레이 형태로 배열되어 노출되도록 제1 표면 측과 제2 표면 측에 각각 존재하는 잔존 영역이 제거되도록 연마 처리되는 단계로 초음파센서를 제조하는 기술을 공개하고 있으나, 압전로드를 절삭하는 시간이 많이 들어 제조효율이 낮고 절삭에 의하여 압전로드의 품질이 감소될 우려가 있다.
따라서, 본 발명이 해결하고자 하는 첫번째 기술적 과제는 초음파 지문센서를 박막으로 제조하여 컴팩트하게 지문인식 보안을 위한 전자기기에 채용할 수 있으며, 특히 유연성을 가질 수 있어 플렉서블 기판에 적용할 수 있는 박막형 초음파센서의 제조방법을 제공하는 것이다.
아울러, 본 발명이 해결하고자 하는 두번째 기술적 과제는 초음파 지문센서를 박막으로 제조하여 컴팩트하게 지문인식 보안을 위한 전자기기에 채용할 수 있으며, 특히 유연성을 가질 수 있어 플렉서블 기판에 적용할 수 있는 박막형 초음파센서를 제공하는 것이다.
본 발명은 상술한 첫번째 기술적 과제를 해결하기 위하여, 적층기판에 보조기판을 형성하는 단계(S1)와, 상기 보조기판의 상부로 전극패턴층을 구비하는 단계(S2)와, 상기 전극패턴층의 상부로 압전막을 적층하는 단계(S3)와, 상기 압전막의 상부로 마스크층을 적층하여 압전막을 패터닝하는 단계(S4)와, 상기 압전막을 초음파전극패턴막과 본딩하는 단계(S5) 및 상기 보조기판과 전극패턴층을 분리하는 단계(S5)를 포함하는 것을 특징으로 하는 박막형 초음파 지문센서의 제조방법을 제공한다.
본 발명의 일실시예에 의하면, 상기 마스킹층은 압전막 패턴 일부 또는 전부를 전극패턴층과 결합되도록 일치화시키는 공정인 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 압전막은 기둥형, 벽형 또는 이들의 혼합형으로 성형되는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 압전막은 바륨티탄산계 화합물, PZT(PbZrTiO 3)계 화합물, PST(Pb(Sc, Ta)O 3계 화합물, (Pb, Sm)TiO 3계 화합물 또는 PMN(Pb(MgNb)O 3-PT(PbTiO 3)계 화합물을 포함하는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 S4단계의 압전막은 소결된 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 초음파전극패턴막은 대향전극패턴막을 포함하는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 S5단계의 본딩 시에 압전막과 대향전극패턴막과의 사이에 채움필름을 개재시킨 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 채움필름은 본딩홀을 포함하는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 보조기판과 전극패턴층을 분리하는 단계에는 연마 공정을 더 포함하는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 연마는 적층기판과 보조기판의 경계면까지 이루어지는 것일 수 있다.
본 발명의 다른 실시예에 의하면, 상기 S6단계에는 보호필름을 적층하는 공정이 추가되는 것일 수 있다.
한편, 본 발명은 상술한 두번째 기술적 과제를 해결하기 위하여, 상술한 제조방법에 의하여 제조되는 것을 특징으로 하는 박막형 초음파 지문센서를 제공한다.
본 발명에 따르는 박막형 초음파 지문센서의 제조방법 및 그 센서에 의하면, 초음파 지문센서를 박막으로 제조하여 컴팩트하게 지문인식 보안을 위한 전자기기에 채용할 수 있으며, 특히 유연성을 가질 수 있어 플렉서블 기판에 적용할 수 있는 효과가 있다.
도 1은 본 발명에 따르는 제조방법을 순서대로 적층되는 층들의 단면들을 나타낸 것으로, 여러 그림들이 아래로 감으로써 공정이 진행되는 것이고,
도 2, 3은 본 발명의 압전막 패턴을 사시적으로 나타낸 그림으로, 도 2는 기둥형을, 도 3은 벽형 압전막을 표현한 것이며,
도 4는 본 발명에 따르는 압전막과 초음파전극패턴막을 본딩할 때 그 사이에 채움필름을 개재시켜 본딩하는 형상을 단면적으로 나타낸 그림이고,
도 5는 도 4의 압전막과 초음파전극패턴막과의 본딩 후 단면을 다시 나타낸 그림이며,
도 6은 본 발명의 적층기판을 다수개 패터닝할 수 있는 적층원판에, 다수개의 초음파전극패턴막을 구비한 대향패턴원판을 정렬하여(aligning) 합지하고, 본딩하는 형상을 모식적으로 나타낸 그림이고,
도 7은 본 발명의 보호필름을 센서 전극에 합지한(laminating) 형상을 단면적으로 나타낸 그림이다.
이하 본 발명을 상세하게 설명한다.
다만, 본 발명에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다.
또한, 본 발명에서 사용되는 기술적 용어는 본 발명에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 하며, 본 발명에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이며, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 하고, 본 발명에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하며, 본 발명에서, "구성된다" 또는 "포함한다" 등의 용어는 발명에 기재된 여러 구성 요소들, 또는 여러 단계를 반드시 모두 포함하는 것으로 해석되지 않아야 하고, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 하며, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
도 1은 본 발명에 따르는 제조방법을 순서대로 적층되는 층들의 단면을 나타낸 도면이고, 도 2, 3은 본 발명의 압전막 패턴을 사시적으로 나타낸 그림으로, 도 2는 기둥형을, 도 3은 벽형 압전막을 표현한 것이며, 도 4는 본 발명에 따르는 압전막과 초음파전극패턴막을 본딩할 때 그 사이에 채움필름을 개재시켜 본딩하는 형상을 단면적으로 나타낸 그림이고, 도 5는 도 4의 압전막과 초음파전극패턴막과의 본딩 후 단면을 다시 나타낸 그림이며, 도 6은 본 발명의 적층기판을 다수개 패터닝할 수 있는 적층원판에, 다수개의 초음파전극패턴막을 구비한 대향패턴원판을 정렬하여(aligning) 합지하고, 본딩하는 형상을 모식적으로 나타낸 그림이고, 도 7은 본 발명의 보호필름을 센서 전극에 합지한(laminating) 형상을 단면적으로 나타낸 그림인데, 이를 참고한다.
본 발명에 따르는 박막형 초음파 지문센서의 제조방법은 적층기판(100)에 보조기판(200)을 형성하는 단계(S1)와, 상기 보조기판(200)의 상부로 전극패턴층(300)을 구비하는 단계(S2)와, 상기 전극패턴층의 상부로 압전막(400)을 적층하는 단계(S3)와, 상기 압전막의 상부로 마스크층(500)을 적층하여 압전막(400)을 패터닝하는 단계(S4)와, 상기 압전막을 초음파전극패턴막(600)과 본딩하는 단계(S5) 및 상기 보조기판(200)과 전극패턴층(300)을 분리하는 단계(S5)를 포함하는 것을 특징으로 한다.
먼저, 상기 S1단계는 적층기판(100)에 보조기판(200)을 형성하는 공정으로, 상기 적층기판(100)은 보조기판을 형성시키고 적층할 수 있으며, 공정 후에 지문센서로 부터 용이하게 분리될 수 있는 한 특별하게 한정하여 사용할 것은 아니나, 작업성을 고려하여 실리콘웨이퍼(Si Wafer), 글라스웨이퍼(Glass Wafer) 또는 세라믹기판(Ceramic substrate) 등을 사용할 수 있다.
또한, 상기 보조기판(200)은 적층기판(100)을 지문센서 제조후에 그로부터 이탈시키기 위하여 재질을 코팅이나 증착방법으로 적층할 수 있는 재료인 한 특별하게 한정할 것은 아니나, 이후 공정의 영향이 없는 특성을 가진 산화규소(SiO 2)를 사용할 수 있다.
상기 보조기판(200)은 공정이 종료된 이후에 적층기판(100)을 제거할 때 분되는 역할을 수행하고, 분리는 불산(HF)같은 강산이나 폴리싱 공정에 의한 CNC연마, 건식에칭(RIE)를 통하여 제거될 수 있다.
다음으로 S2단계는 상기 보조기판(200)의 상부로 전극패턴층(300)을 구비하는 공정으로, 스퍼터와 같은 화학기상방법으로 전극패턴층을 적층할 수 있다.
이러한 적층은 마스크를 이용할 수 있는데, 설계된 전극패턴층의 형상에 대응되는 형상으로 개구를 가진 마스크(masking)를 타겟과 보조기판과의 사이에 배치하여 개구로 증착되게 하여 패터닝을 수행할 수 있으며, 상기 보조기판(200)의 상부로 마스킹에 의하여 패턴된 전극패턴층(300)을 성형하게 되는데, 상기 전극패턴층의 상부로 지문센서의 센싱 방식에 따라 기둥형 압전막, 벽형 압전막(400)가 적층될 수 있어, 전극단자 역할과 기능을 수행하게 되며 기둥형과 벽형의 차이는 지문인식의 정밀도(resolution) 차이로 이해할 수 있는데, 기둥형으로 압전체 소자의 개수가 증가하면 정밀도가 향상되고, 벽형으로 압전체 소자의 개수가 적으면 정밀도가 감소하게 되므로, 사용되는 어플리케이션에 따라서 정밀도를 조절할 필요가 있으며 기둥형만, 벽형만 또는 이들의 혼합형으로 압전막(400)을 패터닝할 수 있다 할 것이다.
여기서, 상술한 마스킹은 전극패턴층을 압전막 패턴과 일부 또는 전부 일치화시키는 공정으로, 압전막이 기둥형이나 벽형인 경우에 그 단부에 대응되는 형상으로 전부 일치화시키거나 기둥형이라도 벽형으로 또는 벽형이라도 기둥형으로 교체되도록 일부 일치화시켜서 지문센서의 센싱 방식을 다양하게 채용할 수 있다.
이러한 마스킹은 포토리소크래피에 의하도록 포토레지스(photoresist)로 미리 패터닝하고, 노광하여 현상시켜 전극패턴에 대응되는 형상을 형성한 후, 그 패턴된 노출부로 습식이나 건식에칭을 통하여 전극패턴층이 형성할 수 있으며, 이후에 포토레지스트 층을 제거하여 전극패턴층을 제조할 수 있다.
이러한 전극패턴층(300)은 적층기판과 보조기판을 제거한 이후에 형성되어도 무방하며, 이 경우에는 전극패턴층은 전극배선형성과는 무관하게 보조기판 전체면에 전극층으로 스퍼트와 같은 방법으로 백금, 은, 구리, 티타늄, 알루미늄, 니켈 또는 이들의 합금 등 통전 금속재으로 설계된 두께로 적층할 수 있음은 물론이다.
이러한 전극패터닝은 미세패턴의 정밀한 성형에 유익하며, 포토레지스트(PR, photoresist)를 도포하여 경화시킨 후, 미세패턴에 대응되는 패턴을 구비한 포토마스크(photomask)에 자외선과 같은 기능성 광을 조사하면 구비된 패턴으로만 광이 투과되어 패턴에 대응되는 부분만 노광이 되며, 이후에 현상공정으로 패턴 이외에 부분을 제거하여 미세패턴을 기판상 구현할 수 있게 된다.
또한, 이러한 마스킹은 직접 전극패턴층을 인쇄방식으로 패터닝하는 스크린마스크 공정은 물론, 테이핑과 유사하게 스크린프린팅과 같은 인쇄방식으로 패터닝하고, 그 패턴의 노출부로 전극재료를 적층하여 전극패턴층이 성형할 수 있는데, 예들어 통전금속재 분말을 바인더와 혼합한 페이스트를 패턴 형태로 스크린프린팅(screen printing method)하여 성형하고 경화하여 형성할 수 있다.
또한, 상기 전극패턴층의 재료가 분말형태인 경우에는 분말의 평균입도를 0.1 내지 10㎛로 할 수 있는데, 이 분말을 용매, 바인더에 혼합한 페이스트 또는 용액상으로 준비할 수 있으며, 상기 페이스트상이나 용액상 용매나 바인더는 유기물이므로 건조나 경화시 가해지는 열에 의하여 증발되거나 산화되어 제거되므로 압전재 분말의 충진에 도움이 될 수 있다.
상기 용매나 바인더는 압전재 분말을 균일하고 밀도 높게 혼합할 수 있는 한 그 종류를 한정할 것은 아니다.
다음으로, S3단계는 상기 전극패턴층의 상부로 압전막(400)을 적층하는 공정으로, 상기 전극패턴층의 상부로 압전막(400)을 적층하게 되며, 이 S3단계에서 S4단계의 상기 압전막의 상부로 마스크층(500)을 적층하여 압전막(400)을 패터닝하는 공정도 같이 설명한다.
이러한 압전막(400)은 적층시에 마스킹에 의하여 또는 후에 에칭에 의하여 기둥형이나 벽형 압전막(400)으로 성형될 수 있다.
여기서의 마스킹도 앞서 본 전극패턴층의 마스킹과 유사하게 수행될 수 있는데, 상기 전극패턴층과 압전막 패턴을 일부 또는 전부 일치화시키는 공정이며, 압전막이 기둥형이나 벽형인 경우에 그 단부에 대응되는 형상으로 전부 일치화시키거나 기둥형이라도 벽형으로 또는 벽형이라도 기둥형으로 교체되도록 일부 일치화시켜서 지문센서의 센싱 방식을 다양하게 채용할 수 있다.
상기 S3단계의 마스킹 공정도 포토리소크래피에 의하도록 포토레지스(photoresist)로 미리 패터닝한 PR층(500)을 도포하고, PR층을 성형을 위해 패턴된 압전막의 형상에 대응되는 형상으로 노광, 현상시켜 패턴된 PR층(500')을 형성하여 개구를 만들고, 개구를 통한 습식이나 건식에칭을 통하여 성형된 압전막(400)을 성형할 수 있는데, 습식에칭이나 건식에칭에 의하여 패터닝을 수행할 수 있는 한 방식을 특별하게 한정할 것은 아니나, 제조공정중 물성 변형이나 뒤틀림 같은 불량을 유발하지 아니하는 것이 바람직하다.
이러한 에칭에 의한 미세패턴의 정밀한 성형을 위하여 포토리소그래피(photolithography) 공정을 채용할 수 있으며, 예를 들어, 상기 기판의 상부에 포토레지스트(PR, photoresist)를 도포하여 경화시킨 후, 미세패턴에 대응되는 패턴을 구비한 포토마스크(photomask)에 자외선과 같은 기능성 광을 조사하면 구비된 패턴으로만 광이 투과되어 패턴에 대응되는 부분만 노광이 되고, 이후에 현상공정으로 패턴 이외에 부분을 제거하여 미세패턴의 PR층(500')을 기판상 구현할 수 있게 되며, 이러한 방법은 앞서 본 전극패턴층(300)의 패턴 성형에 그대로 이용될 수 있다.
또한, S3단계의 마스킹도 마찬가지로 직접 압전막을 인쇄방식으로 패터닝하는 스크린마스크 공정은 물론, 테이핑과 유사하게 스크린프린팅과 같은 인쇄방식으로 패터닝하고, 그 패턴의 노출부로 전극재료를 적층하여 전극패턴층이 성형할 수 있고, 여기서, 상기 압전막의 재료는 그 분말의 밀도가 중요한데, 분말의 평균입도를 0.1 내지 10㎛로 할 수 있는데, 이 분말을 용매, 바인더에 혼합한 페이스트 또는 용액상으로 준비할 수 있으며, 상기 페이스트상이나 용액상 용매나 바인더는 유기물이므로 건조나 경화시 가해지는 열에 의하여 증발되거나 산화되어 제거되므로 압전재 분말의 충진에 도움이 될 수 있다.
상기 용매나 바인더는 압전재 분말을 균일하고 밀도 높게 혼합할 수 있는 한 그 종류를 한정할 것은 아니다.
또한, 상기 압전막의 재료는 바륨티탄산계 화합물, PZT(PbZrTiO 3)계 화합물, PST(Pb(Sc, Ta)O 3계 화합물, (Pb, Sm)TiO 3계 화합물 또는 PMN(Pb(MgNb)O 3-PT(PbTiO 3)계 화합물을 포함하는 세락믹으로, 소결을 거치며 형태가 변하는 재료 특징을 가진다.
이러한 압전막 재료를 조밀한 밀도로 소결하여 타켓으로 하여, 10 -8 ~ 10 -1 MPa의 진공 챔버에 배치하고 비활성기체(예를 들어, Ar(아르곤) 기체 주입) 환경하에 플라즈마 상태로 챔버 내부 분위기를 조성하여 화학적 증착(예를 들어 스퍼터링)을 수행한다.
이러한 소결시 분말들의 조밀도를 향상시키기 위한 추가 공정으로, 결정화제 처리를 할 수 있는데, 피라진(pyrazine), 이미다졸리움(Imidazolium), 벤지미다졸리움(benzimidazolium), 피롤리디늄할라이드(pyrrolidinium halide) 계 이온성 액체(용매는 이소프로필알코올, 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올, 디아세톤 알코올, 페놀, 아세톤, 아세토니트릴, 메틸셀로솔브, 에틸셀로솔브 또는 부틸셀로솔브 등을 사용할 수 있다) 또는 양끝단에 시아나이드(CN)기가 도입된 알킬/알릴 체인, 또는 피리딘작용기가 두개인 화합물을 첨가하여 사용할 수 있다.
또한, 상기 압전막의 재료를 타켓으로 마스킹에 의한 스퍼터(sputter) 공정으로 압전막을 패턴닝할 수 있다.
다음으로, S5단계는 상기 압전막을 초음파전극패턴막(600)과 본딩하는 공정으로, 상기 초음파전극패턴막(600)의 압전막 패턴과 결합하여 압전막에 의한 전류를 통전할 수 있도록 전극단자를 형성하는 공정이다.
상기 초음파전극패턴막(600)은 보안을 위한 초음파 지문인식 모듈을 적재할 FPC(flexible printed circuit)나 전자기기(미도시)에 구비된 초음파센서 전극패턴으로서, 상기 압전막(400)의 패턴과 연결되어 압전에 의한 전류를 통전할 수 있는 대향전극패턴막(400')을 구비하고 있다.
이러한 대면 부착은 단품으로 수행하면 양산성이 저하되므로, 적층기판(100)을 다수개 패터닝할 수 있는 적층원판(1000)에, 다수개의 초음파전극패턴막(600)을 구비한 대향패턴원판(5000)을 정렬하여(aligning) 일거에 압전막(400)과 대향전극패턴막(400')을 본딩한 후에 다이싱과 같은 절단방법으로 다수개의 단품으로 양산적으로 제조할 수 있다.
이러한 본딩은 솔더링으로 플립칩팩키지(flip chip bump) 방식으로 연결하거나 솔더볼(solder ball)로 지문센서의 전류 통전 단자를 연결할 수 있다.
또한, 상기 상기 압전막(400)과 대향전극패턴막(400')이 본딩되면 초음파전극패턴막(600)과 초음파인식센서모듈(700)과의 사이에는 빈공간이 발생될 수밖에 없어 초음파센서가 반복적으로 터치되는 경우에 그 빈공간에 의하여 센서가 손상될 수 있으므로, 이 빈공간을 채움필름(800)을 통하여 채움으로써 이를 방지할 수 있다.
즉, 상기 압전막(400)과 대향전극패턴막(400')을 본딩하기 전에 채움필름(800)을 그 사이에 정렬시키며 이때 채움필름에는 압전막과 대향전극패턴막이 본딩되는 지점에 본딩홀(810)을 타공시켜 본딩을 원활하게 할 수 있으며 채움필름의 재질은 고분재 재료로서 탄성력을 갖추어 FPC의 벤딩에 의하여 탄성력을 발휘할 수 있어야 하므로, FPC와 동등 또는 그 이상의 탄성력을 가질 필요가 있으며, 이러한 것으로는 유기 고분자 수지가 좋으며, 천연 또는 합성고무인 러버재(rubber)도 바람직하다.
아울러, 본딩시 압전막과 대향전극(400, 400')과의 계면에서 컨택저항 증가에 의한 수발신 초음파 감도 저하를 방지하기 위하여 그 계면에서 압전막의 조밀도를 향상시킬 필요가 있으며, 이때 결정화제를 압전막에 도포하여 계면의 조밀도를 향상시킬 수 있다.
이러한 결정화제로는 앞서 본 대로, 피라진(pyrazine), 이미다졸리움(Imidazolium), 벤지미다졸리움(benzimidazolium), 피롤리디늄할라이드(pyrrolidinium halide) 계 이온성 액체(용매는 이소프로필알코올, 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올, 디아세톤 알코올, 페놀, 아세톤, 아세토니트릴, 메틸셀로솔브, 에틸셀로솔브 또는 부틸셀로솔브 등을 사용할 수 있다) 또는 양끝단에 시아나이드(CN)기가 도입된 알킬/알릴 체인, 또는 피리딘작용기가 두개인 화합물을 첨가하여 사용할 수 있다.
다음으로 S6단계는 상기 보조기판(200)과 전극패턴층(300)을 분리하는 공정인데, 분리함으로써 초음파인식센서모듈(700)을 제조할 수 있으며, 이를 위한 분리는 상기 보조기판의 재질에 따라 방식을 달리할 수 있다.
예를 들면, 상술한 산화규소에 의한 층의 경우에는 불산에 의한 습식에칭으로 분리가 가능하나, 이러한 환경에서는 다층 적층된 재료들의 물성이 변하여 전체적인 센서의 품질에 악영향을 미칠 수 있으므로, 이러한 방식을 수행하는 경우라도 제한적이고 엄격한 공정조건이어야 하며, 더 바람직하게는 폴리싱 공정에 의한 CMP연마를 통하여 적층기판(100), 보조기판(200)을 건식으로 제거하여 전극패턴층을 노출시킬 수 있다.
이 경우에 상술한 다이싱 연마의 연마조건에 따라서 전극패턴층까지 연마되어 불량이 발생될 수 있으므로, 적층기판까지만 연마하고 보조기판은 건식에칭(RIE) 방법에 의하여 제거함으로써 전극패턴층의 손상으로 인한 불량을 예방할 수 있다.
상기 연마는 적층기판(100)과 보조기판(200)의 경계면까지 이루어지는 것이 바람직하나, 보조기판에 손상되지 아니하도로고 보조기판 아래로 적층기판의 두께가 1~10㎛가 유지되도록 하는 것이 바람직하며, 만일 1㎛ 미만이면 연마시 보조기판을 손상시킬 수 있고, 반대로, 10㎛를 초과하면 건식에칭의 공수가 증가할 수 있다.
또한, 만일 예를 들어 보조기판이 폴리머 고분자인 경우에는 가열로서 녹이거나, 탄화시켜 기체화로 분리할 수 있으며, 금속재인 경우에는 용융점이 적층기판(100) 보다 낮은 한정된 재료로 구성하여, 가열함으로써 분리할 수 있다.
한편, 상술한 S6단계에는 보호필름(900)을 적층하는 공정이 추가될 수 있는데, 상기 보호필름은 초음파센서(700)나 전극(300)을 보호하고 FPC에 적용된 경우에는 반복되는 벤딩(bending)에 의한 손상을 방지하는 유연성을 제공할 수 있다.
이러한 보호필름(900) 재질은 앞서 본 채움필름(800)과 유사하게, 고분재 재료로서 탄성력을 갖추어 FPC의 벤딩에 의하여 탄성력을 발휘할 수 있어야 하므로, FPC와 동등 또는 그 이상의 탄성력을 가질 필요가 있으며, 이러한 것으로는 유기 고분자 수지가 좋으며, 천연 또는 합성고무인 러버재(rubber)도 바람직하다.
또한, 상기 보호필름(900)은 다수개의 돌기부(910)을 센서가 있는 방향으로 구비할 수 있으며, 이를 통하여 각각의 압전막이 반복적으로 진동하더라도 안정적으로 지지할 수 있고, 압전막의 손상을 방지할 수 있고, 돌기부들간 간격은 10 내지 100㎛일 수 있는데, 만일 10㎛ 미만이면 진동 폭 주파수가 작아지므로 검출신호가 약할 수 있어 노이즈 필터링이 어려울 수 있고(FRR(거짓 거절 비율) 문제), 반대로 1000㎛를 초과하면 진동 진폭 주파수가 높아 센싱하는데 잡음으로 인식하여 FRR(거짓 거절 비율) 문제가 있을 수 있다.
한편, 상술한 제조방법에 의하여 초음파 지문센서를 박막으로 제조하여 컴팩트하게 지문인식 보안을 위한 전자기기에 채용할 수 있으며, 특히 유연성을 가질 수 있어 플렉서블 기판에 적용할 수 있는 박막형 초음파 지문센서를 구현할 수 있다.
따라서, 상기 초음파전극패턴막(600)의 대향전극층(400'), 압전막(400), 전극패턴층(300)에 인가된 전류에 의하여 초음파가 발생되며, 이 초음파가 접촉된 손가락에 조사후 반사된 신호를 취득한 지문인증부(미도시)에 의하여 기등록된 지문 패턴과 비교하여 동일 사용자인지를 확인할 수 있어, 보안성을 확보하게 된다.
즉 손가락의 접촉에 의하여 압전막 자체가 수축과 팽창 또는 진동을 일으키며 특정 주파수의 초음파를 발생시키게 되고, 이 초음파가 특정방향, 예컨대 사람의 손가락에 주사(송신; Tx)되고 반사되는 주파수(수신; Rx)를 읽어서 등록된 특정인의 지문정보와 그 값을 비교함으로써 특정 지문의 동일성을 판별할 수 있게 되며, 상기 압전막(300)을 복수개로 하여 초음파센서를 구성하는데, 예를 들어 손가락 첨두 크기에 대응하는 수 내지 수십㎜의 면적내에 수백 내지 수천개의 단위압전셀을 배치할 수 있어서, 지문판별의 정확도, 정밀도에 따라 단위압전셀의 갯수를 배치할 수 있다.
<부호의 설명>
적층기판 100, 보조기판 200, 전극패턴층 300, 압전막 400, 마스크층 500, 초음파전극패턴막 600.
본 발명은 초음파센서를 박막으로 제조하여 컴팩트하게 지문인식 보안을 위한 전자기기에 채용할 수 있으며, 특히 유연성을 가질 수 있어 플렉서블 기판에 적용할 수 있다.

Claims (12)

  1. 적층기판에 보조기판을 형성하는 단계(S1);
    상기 보조기판의 상부로 전극패턴층을 구비하는 단계(S2);
    상기 전극패턴층의 상부로 압전막을 적층하는 단계(S3);
    상기 압전막의 상부로 마스크층을 적층하여 압전막을 패터닝하는 단계(S4);
    상기 압전막을 초음파전극패턴막과 본딩하는 단계(S5); 및
    상기 보조기판과 전극패턴층을 분리하는 단계(S5);를 포함하는 것을 특징으로 하는 박막형 초음파 지문센서의 제조방법.
  2. 제 1 항에 있어서,
    상기 마스킹층은 압전막 패턴 일부 또는 전부를 전극패턴층과 결합되도록 일치화시키는 공정인 것을 특징으로 하는 박막형 초음파 지문센서의 제조방법.
  3. 제 1 항에 있어서,
    상기 압전막은 기둥형, 벽형 또는 이들의 혼합형으로 성형되는 것을 특징으로 하는 박막형 초음파 지문센서의 제조방법.
  4. 제 3 항에 있어서,
    상기 압전막은 바륨티탄산계 화합물, PZT(PbZrTiO 3)계 화합물, PST(Pb(Sc, Ta)O 3계 화합물, (Pb, Sm)TiO 3계 화합물 또는 PMN(Pb(MgNb)O 3-PT(PbTiO 3)계 화합물을 포함하는 것을 특징으로 하는 박막형 초음파 지문센서의 제조방법.
  5. 제 1 항에 있어서,
    상기 S4단계의 압전막은 소결된 것을 특징으로 하는 박막형 초음파 지문센서의 제조방법.
  6. 제 1 항에 있어서,
    상기 초음파전극패턴막은 대향전극패턴막을 포함하는 것을 특징으로 하는 박막형 초음파 지문센서의 제조방법.
  7. 제 1 항에 있어서,
    상기 S5단계의 본딩 시에 압전막과 대향전극패턴막과의 사이에 채움필름을 개재시킨 것을 특징으로 하는 박막형 초음파 지문센서의 제조방법.
  8. 제 7 항에 있어서,
    상기 채움필름은 본딩홀을 포함하는 것을 특징으로 하는 박막형 초음파 지문센서의 제조방법.
  9. 제 1 항에 있어서,
    상기 보조기판과 전극패턴층을 분리하는 단계에는 연마 공정을 더 포함하는 것을 특징으로 하는 박막형 초음파 지문센서의 제조방법.
  10. 제 9 항에 있어서,
    상기 연마는 적층기판과 보조기판의 경계면까지 이루어지는 것을 특징으로 하는 박막형 초음파 지문센서의 제조방법.
  11. 제 1 항에 있어서,
    상기 S6단계에는 보호필름을 적층하는 공정이 추가되는 것을 특징으로 하는 박막형 초음파 지문센서의 제조방법.
  12. 제 1 내지 11 항 중 어느 한 항에 의하여 제조된 것을 특징으로 하는 박막형 초음파 지문센서.
PCT/KR2019/012571 2018-10-05 2019-09-27 박막형 초음파 지문센서의 제조방법 및 그 센서 WO2020071688A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180118632 2018-10-05
KR10-2018-0118632 2018-10-05
KR1020190081842A KR102138665B1 (ko) 2018-10-05 2019-07-08 박막형 초음파 지문센서의 제조방법 및 그 센서
KR10-2019-0081842 2019-07-08

Publications (1)

Publication Number Publication Date
WO2020071688A1 true WO2020071688A1 (ko) 2020-04-09

Family

ID=70055604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012571 WO2020071688A1 (ko) 2018-10-05 2019-09-27 박막형 초음파 지문센서의 제조방법 및 그 센서

Country Status (1)

Country Link
WO (1) WO2020071688A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110072033A (ko) * 2009-12-22 2011-06-29 한국과학기술원 플렉서블 소자 제조방법 및 이에 의하여 제조된 플렉서블 소자, 플렉서블 압전소자 및 커패시터 소자 제조방법 및 이에 의하여 제조된 플렉서블 압전소자 및 커패시터 소자
JP2014063825A (ja) * 2012-09-20 2014-04-10 Hitachi Metals Ltd 圧電体薄膜付き基板の製造方法、及び圧電体薄膜素子の製造方法
KR20160054832A (ko) * 2014-11-07 2016-05-17 한국기계연구원 유연소재가 적용된 압전 박막소자의 제작 방법 및 이를 이용한 압전 박막소자
KR101858731B1 (ko) * 2017-08-22 2018-05-16 주식회사 베프스 압전 센서의 제조방법
KR20180061826A (ko) * 2016-11-30 2018-06-08 주식회사 베프스 생체정보 인식 장치, 시스템 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110072033A (ko) * 2009-12-22 2011-06-29 한국과학기술원 플렉서블 소자 제조방법 및 이에 의하여 제조된 플렉서블 소자, 플렉서블 압전소자 및 커패시터 소자 제조방법 및 이에 의하여 제조된 플렉서블 압전소자 및 커패시터 소자
JP2014063825A (ja) * 2012-09-20 2014-04-10 Hitachi Metals Ltd 圧電体薄膜付き基板の製造方法、及び圧電体薄膜素子の製造方法
KR20160054832A (ko) * 2014-11-07 2016-05-17 한국기계연구원 유연소재가 적용된 압전 박막소자의 제작 방법 및 이를 이용한 압전 박막소자
KR20180061826A (ko) * 2016-11-30 2018-06-08 주식회사 베프스 생체정보 인식 장치, 시스템 및 방법
KR101858731B1 (ko) * 2017-08-22 2018-05-16 주식회사 베프스 압전 센서의 제조방법

Similar Documents

Publication Publication Date Title
US5058250A (en) Manufacture of electrical transducer devices, particularly infrared detector arrays
EP2518999B1 (en) Imaging device
JPS62213399A (ja) 圧電磁器
JPWO2003007379A1 (ja) 電子回路部品
JP2007513504A (ja) 圧電デバイスおよびそれを製造する方法
JP2003018695A (ja) 圧電型電気音響変換器およびその製造方法
US20020084456A1 (en) Multilayered wiring board and production method thereof
WO2020071688A1 (ko) 박막형 초음파 지문센서의 제조방법 및 그 센서
WO2018169298A1 (ko) 초음파 지문 센서 및 그 제조 방법
KR20200039542A (ko) 박막형 초음파 지문센서의 제조방법 및 그 센서
WO2020040376A1 (en) Method of manufacturing ultrasonic sensors
WO2018169301A1 (ko) 초음파 지문 센서 및 그 제조 방법
JP2584124B2 (ja) 焦電型赤外線検出器およびその製造方法
JPH06125180A (ja) キャパシタ内蔵多層配線基板
WO2017078335A1 (ko) 압력 센서 및 이를 구비하는 복합 소자
JP2009054832A (ja) 積層パターン形成方法とその形成装置、積層体、電子回路部品及び多層回路基板の製造方法
EP1428271A2 (en) Piezoelectric multilayer transducer
WO2019027204A1 (ko) 액추에이터 코일 구조체 및 그 제조방법
JP2011155043A (ja) 配線基板
KR101210052B1 (ko) 카메라 모듈 및 이를 구비하는 휴대용 단말기
JPH05267743A (ja) 積層型圧電アクチュエータの製造方法
CN216531503U (zh) 一种摄像模组及电子设备
JP2001110662A (ja) インダクタ内蔵積層部品及びその製造方法
JPH114080A (ja) 多層配線基板
JPH11195554A (ja) 積層型セラミック電子デバイス及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19869806

Country of ref document: EP

Kind code of ref document: A1