WO2020067606A1 - 나트륨 이차전지 모듈 - Google Patents

나트륨 이차전지 모듈 Download PDF

Info

Publication number
WO2020067606A1
WO2020067606A1 PCT/KR2018/015106 KR2018015106W WO2020067606A1 WO 2020067606 A1 WO2020067606 A1 WO 2020067606A1 KR 2018015106 W KR2018015106 W KR 2018015106W WO 2020067606 A1 WO2020067606 A1 WO 2020067606A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
case
battery module
separator
stacks
Prior art date
Application number
PCT/KR2018/015106
Other languages
English (en)
French (fr)
Inventor
정기영
양충모
김현우
박윤철
손소리
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to DE112018008036.6T priority Critical patent/DE112018008036T5/de
Priority to JP2021515447A priority patent/JP7194818B2/ja
Priority to US17/278,795 priority patent/US11901538B2/en
Priority to CN201880097936.7A priority patent/CN112753123B/zh
Publication of WO2020067606A1 publication Critical patent/WO2020067606A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0463Cells or batteries with horizontal or inclined electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6562Gases with free flow by convection only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/216Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for button or coin cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a sodium secondary battery module.
  • Sodium-Nickel Chloride (Na-NiCl2) batteries are attracting attention as secondary batteries for ESS due to their excellent performance for major characteristics required by the ESS market for power storage such as high stability, long life, and high energy density.
  • This secondary charge is called a unit cell, and since the electrical energy produced by one unit cell is very limited, it is inevitable to form a module having a stack structure in which a plurality of unit cells are stacked.
  • the present invention provides a sodium secondary battery module capable of securing stability through temperature control and a wiring structure that implements automatic electrical connection to an array of unit stacks while providing an integrated surface pressure structure for a plurality of unit stacks. The purpose.
  • the object of the present invention is not limited to this, and even if not explicitly stated, the object or effect that can be grasped from the solution means or embodiments of the subject described below will be included therein.
  • the sodium secondary battery module includes a unit cell in which a solid electrolyte in a flat plate shape and a positive electrode component and a negative electrode component disposed in both surfaces of the solid electrolyte are sealed with an upper cap and a lower cap.
  • Unit stack consisting of a plurality of stacked; A separator which is interposed between each unit stack in a state where a plurality of the unit stacks are arranged in columns and rows to separate spaces between the unit stacks; And a case accommodating a plurality of the unit stack and the separator.
  • the separator has a plurality of ventilation holes and a plurality of ventilation slits, and the plurality of ventilation holes and the plurality of ventilation slits can partially connect the space between the separated unit stacks.
  • the separators are arranged in an orthogonal number to have a lattice-like arrangement, and the ventilation slits may overlap and overlap each other at positions orthogonal to each separator.
  • the separator may be made of an insulating material.
  • the separator may include a line heater on a surface facing the unit stack.
  • the case has an inner space, a lower case accommodating a plurality of the unit stack and the separator therein, an upper case covering the lower case and applying surface pressure to each of the plurality of unit stacks, the lower case and the upper K It may be fastened with a through structure to include a surface pressure adjusting unit for maintaining and adjusting the surface pressure of the unit stack.
  • the upper case may be provided with a balancing plate on a surface facing the unit stack to equalize the surface pressure applied to each of the plurality of unit stacks.
  • the case may further include a blower fan mounted in a through hole formed on one surface of the lower case to cause forced convection inside the lower case.
  • the surface pressure adjusting part is provided with a fastening bolt inserted into a fastening hole formed in the upper case and a fastening hole formed in a protruding portion of the lower case, and a fastening nut screwed to the fastening bolt in a lower part of the lower case.
  • An elastic body interposed between the fastening bolt and the upper case.
  • a wiring unit provided in the case and the separator to electrically connect a plurality of the unit stacks may be further included.
  • the wiring part may be provided by being bonded or coated to the case and the separator.
  • the sodium secondary battery module includes a unit cell in which a solid electrolyte in a flat plate shape and a positive electrode component and a negative electrode component disposed in both surfaces of the solid electrolyte are sealed with an upper cap and a lower cap.
  • a unit stack consisting of a plurality of layers;
  • a stacking guide interposed in a space between the unit stacks in a state where a plurality of the unit stacks are spaced apart and arranged in columns and rows to support the unit stacks; And a case accommodating the unit stack and the stacking guide.
  • the stacking guide has a columnar structure extending from the bottom of the case toward the top, and a plurality of first guides provided on the inner wall of the case and a plurality of agents provided inside the case on the inner wall.
  • Can include 2 guides.
  • the plurality of second guides may include rod heaters therein.
  • sodium secondary that can secure stability through a wiring structure and temperature management that implements automatic electrical connection to the arranged unit stacks
  • a battery module can be provided.
  • FIG. 1 is a cross-sectional view schematically showing a sodium secondary battery module according to an exemplary embodiment of the present invention.
  • FIG. 2 is an enlarged view schematically showing a unit stack and a unit cell constituting the sodium secondary battery module of FIG. 1.
  • FIG. 3 is a plan view schematically showing the sodium secondary battery module of FIG. 1;
  • 4A and 4B are side views and perspective views schematically showing a separator.
  • FIG. 5 is a side view schematically showing a modification of the separator.
  • 6A and 6B are conceptual views schematically showing a state in which a unit stack is connected to a wiring part.
  • FIG. 7A and 7B are perspective views schematically showing wiring and connectors of a wiring part.
  • FIGS. 8 and 9 are plan views schematically showing a sodium secondary battery module according to an exemplary embodiment of the present invention, respectively.
  • FIG. 1 is a cross-sectional view schematically showing a sodium secondary battery module according to an exemplary embodiment of the present invention
  • FIG. 2 is an enlarged view schematically showing a unit stack and a unit cell constituting the sodium secondary battery module of FIG. 1
  • FIG. 3 Is a plan view schematically showing the sodium secondary battery module of FIG. 1.
  • 4A and 4B are side views and perspective views schematically showing a separator
  • FIG. 5 is a side view schematically showing a modification of the separator
  • FIGS. 6A and 6B are conceptual views schematically showing a state in which a unit stack is connected to a wiring part.
  • 7A and 7B are perspective views schematically showing wirings and connectors of a wiring unit.
  • the sodium secondary battery module 10 may include a unit stack 20.
  • a plurality of unit stacks 20 may be provided.
  • the unit stack 20 may be formed by stacking a plurality of unit cells 1 vertically in a height direction.
  • the unit cell 1 is a flat plate-type sodium secondary battery, which is a substantially flat plate-shaped solid electrolyte 2 and a flat plate-shaped anode component 3 and a cathode component 4 disposed on both sides of the solid electrolyte 2, respectively. ) May have a structure in which the upper cap 5 and the lower cap 6 are sealed.
  • a plurality of unit stacks 20 may be arranged in columns and rows.
  • the 9 unit stacks 20 are illustrated as being 3 ⁇ 3, that is, arranged in 3 columns and 3 rows, but the arrangement of the unit stacks 20 is not limited thereto.
  • the number and arrangement of unit stacks 20 may be variously changed depending on the capacity of the sodium secondary battery module 10.
  • the number of stacks of unit cells 1 constituting the unit stack 20 may be the same for each unit stack 20.
  • the sodium secondary battery module 10 may include a separator 30.
  • the separator 30 may be interposed between each unit stack 20 in a state where a plurality of unit stacks 20 are arranged in columns and rows.
  • the separator 30 has a structure for isolating each unit stack 20 and can separate spaces between the unit stacks 20.
  • the separator 30 may be composed of a plate structure having a substantially rectangular shape.
  • a plurality of separators 30 may be arranged orthogonally in order to have a lattice-like arrangement structure.
  • the separator 30 is illustrated as being arranged in a substantially '#' shape so that each unit stack 20 can be separated. It is not.
  • the separator 30 may protect the unit stack 20 including the unit cell 1 and other unit stacks 20 adjacent to the unit cell 1 when the temperature rapidly increases due to damage or malfunction of the unit cell 1 It can be made of insulating material. That is, by separating and separating each unit stack 20 with a separator 30, heat shock, physical shock, etc. can be blocked and protected from being directly applied to other normal unit stacks 20.
  • the local temperature rise is prevented from spreading throughout the sodium secondary battery module 10 to protect the sodium secondary battery module 10 and prevent damage caused by explosion and fire due to temperature rise. have.
  • the separator 30 may include a plurality of ventilation holes 31 and a plurality of ventilation slits 32.
  • the plurality of ventilation holes 31 and the plurality of ventilation slits 32 may partially connect the space between the separated unit stacks 20.
  • the plurality of ventilation holes 31 may be disposed at positions facing each unit stack 20.
  • the plurality of ventilation slits 32 may be disposed at positions where each separator 30 is orthogonal to each other, and at the positions where these separators 30 are orthogonal, the ventilation slits 32 of each separator 30 cross each other and overlap each other. Can be.
  • the plurality of ventilation holes 31 and the plurality of ventilation slits 32 can prevent the internal flow of flow due to forced convection, which will be described later, to prevent weakening of the temperature management function. That is, the separator 30 protects the unit stack 20 from a sudden temperature rise, and allows the internal flow flow by forced convection to be smoothly performed, thereby ensuring air permeability for temperature management.
  • the separator may be provided with a line heater (line heater) on the surface facing the unit stack.
  • the line heater may include an electric heater that generates heat through an electric heating wire through which current flows.
  • a heater (not shown) is disposed outside the case 40 to be described later and operated, with the unit disposed inside the least affected by the heater.
  • the sodium secondary battery module 10 can be rapidly heated up to the battery operating temperature.
  • the line heater performing the auxiliary heating function may be selectively provided on the surface facing the unit stack disposed in the central region of the separator.
  • the sodium secondary battery module 10 may include a case 40.
  • the case 40 may accommodate and fix the plurality of unit stacks 20 and the separator 30.
  • the case 40 may include a lower case 41, an upper case 42, and a surface pressure adjusting part 43.
  • the lower case 41 has an internal space and can accommodate a plurality of unit stacks 20 and separators 30 therein.
  • the lower case 41 may have a substantially rectangular box-shaped structure with an open top.
  • a guide plate 41a for guiding the position where the unit stack 20 is placed may be provided on the inner bottom surface of the lower case 41.
  • the guide plate 41a may be disposed corresponding to the arrangement position of the plurality of unit stacks 20.
  • the guide plate 41a may be made of a material having non-conductivity and elasticity.
  • the lower outer surface of the lower case 41 may be provided with a protrusion 41b to which the surface pressure adjusting unit 43 to be described later is fastened.
  • the upper case 42 may be coupled to the lower case 41 in a structure that covers the inner space of the lower case 41.
  • the upper case 42 may be placed on the lower case 41 to apply surface pressure to each of the plurality of unit stacks 20.
  • the upper case 42 may include a balancing plate 42a on a surface facing the unit stack 20 for equalizing the surface pressure applied to each of the plurality of unit stacks 20.
  • the balancing plate 42a is interposed between the upper case 42 and the unit stack 20, and the surface pressure from the upper case 42 is uniform across the unit stack 20 due to the height difference between each unit stack 20. It can solve the problems that can not be applied.
  • the balancing plate 42a may be made of a material having non-conductivity and elasticity.
  • the lower case 41 and the upper case 42 may be made of the same material, for example, metal.
  • the material of the lower case 41 and the upper case 42 is not limited to this, and it can be made of a solid material other than metal so as to apply a surface pressure to the plurality of unit stacks 20.
  • the surface pressure adjusting part 43 is fastened to a structure penetrating the lower case 41 and the upper case 42 to maintain and adjust the surface pressure of the unit stack 20.
  • the surface pressure adjusting part 43 is a fastening bolt inserted in the fastening hole 42c formed in the upper case 42 from the upper case 42 and the fastening hole 41c formed in the protruding part 41b of the lower case 41.
  • the fastening bolt 43a may be integrally inserted through the fastening hole 42c of the upper case 42 and the fastening hole 41c of the lower case 41 from the upper part of the upper case 42, and the fastening nut ( 43b) is screwed to the end of the fastening bolt 43a protruding to the lower portion of the lower case 41 to fasten the upper case 42 and the lower case 41.
  • the elastic body 43c is disposed between the head of the fastening bolt 43a and the upper case 42, and the upper case 42 is united by generating elastic force as the fastening bolt 43a and the fastening nut 43b are tightened. It is possible to press the stack 20.
  • the elastic body 43c may be, for example, an elastic spring.
  • the operator can adjust and maintain the surface pressure of the unit stack 20 by adjusting the elastic force of the elastic body 43c through tightening or loosening the fastening bolt 43a and the fastening nut 43b.
  • the case 40 may be equipped with a blower fan 44 for internal temperature management.
  • the blowing fan 44 may be mounted on the outside of the corresponding surface in the form of covering the through hole 41d formed on one surface of the lower case 41.
  • the blowing fan 44 may cause forced convection inside the lower case 41.
  • the blower fan 44 may perform forced convection to perform temperature management through the internal flow.
  • the blower fan 44 discharges the heated air inside the case 40 to the outside through the through hole 41d, or allows the outside air to flow into the sodium secondary battery module 10. Temperature management can be performed.
  • the flow of the internal flow may not be blocked or smooth by the separator 30 installed to separate the space between the plurality of unit stacks 20 inside the case 40, but in the present invention, the plurality formed in the separator 30 Since it has a structure that partially connects the space between the vent holes 31 and the plurality of vent slits 32 and the separated unit stack 20, it is possible to secure air permeability, so that forced convection capacity does not decrease and smooth internal flow flow Can keep.
  • the sodium secondary battery module 10 may include a wiring unit 50.
  • the wiring unit 50 is provided in the case 40 and the separator 30 to electrically connect the plurality of unit stacks 20.
  • the wiring unit 50 may be provided by being bonded or coated on the surface of the case 40 and the separator 30.
  • the wiring part 50 is provided to the upper case 42 when the wiring 51 provided on the inner surfaces of the lower case 41 and the upper case 42 and the upper case 42 and the lower case 41 are joined. It may include a connector 52 for connecting the wiring 51 and the wiring 51 provided in the lower case 41.
  • the wiring 51 may be exposed through the balancing plate 42a on the surface of the upper case 42, and the upper case 42 is disposed on the top of the unit stack 20 when the unit stack 20 is pressed.
  • the unit cell 1 can be connected.
  • the wiring 51 may extend to the bottom surface along the sidewall of the lower case 41 to be exposed through the guide plate 41a or a part may be exposed through the guide plate 41a at the bottom, and the unit stack As the 20 is placed on the guide plate 41a, it can be connected to the unit cell 1 disposed at the bottom of the unit stack 20.
  • the wiring 51 may be provided in a structure extending along the height direction of the separator 30 from the surface of the separator 30.
  • the connector 52 may be provided in correspondence to a position where the upper case 42 and the lower case 41 are joined to each other and the position of the separator 30, respectively.
  • the separator 30 is provided at a position where the separator 30 is placed on the bottom surface of the lower case 41 and at a position in contact with the separator 30 on the surface of the upper case 42 to be provided in a structure in which the separator 30 is respectively engaged. You can.
  • the wiring unit 50 has a wiring structure that connects the unit cell 1 disposed at the top of the unit stack 20 to the unit cell 1 disposed at the bottom of the other adjacent unit stack 20. You can. Accordingly, the plurality of unit stacks 20 may be connected in series by the wiring unit 50.
  • 8 and 9 are plan views schematically showing a sodium secondary battery module according to an exemplary embodiment of the present invention, respectively.
  • the plate-type sodium secondary battery module 10 according to the embodiment disclosed in FIGS. 8 and 9 has substantially the same configuration and structure as the sodium secondary battery module 10 according to the embodiment disclosed in FIGS. 1 to 7. .
  • the separator 30 is omitted and has a stacking guide 70 instead, the stacking guide 70 will be mainly described below.
  • the stacking guide 70 may be interposed in a space between the unit stacks 20 in a state where the plurality of unit stacks 20 are spaced apart from each other and arranged in columns and rows.
  • the stacking guide 70 may separate and support the unit stack 20 placed in the case 40. That is, the stacking guide 70 may serve to support the plurality of unit stacks 20 until the upper case 42 is covered after the plurality of unit stacks 20 are disposed in the lower case 41. For example, it is possible to prevent the position of the unit stack 20 from being displaced by an external impact, or to come into contact with or fall over another adjacent unit stack 20. Also, the stacking guide 70 may serve to guide the position where the unit stack 20 is placed.
  • the stacking guide 70 may have a columnar structure extending from the bottom of the case 40 toward the top side of the case 40 along with the unit stack 20.
  • the stacking guide 70 may have a polygonal shape such as a triangle or a square in cross section.
  • a semi-circular, circular-shaped structure as shown in FIG.
  • the stacking guide 70 may be provided in a structure spaced apart from each unit stack 20 at a predetermined distance, as shown in FIG. 8. Also, as shown in FIG. 9, a structure in contact with each unit stack 20 may also be provided.
  • the stacking guide 70 may be made of a non-conductive material.
  • the stacking guide 70 includes a plurality of first guides 71 provided on the inner wall of the case 40 and a plurality of second guides 72 provided on the inside of the case 40 on the inner wall. You can.
  • the plurality of first guides 71 and the second guides 72 may also be spaced apart from each other and arranged in columns and rows.
  • the plurality of stacking guides 70 are arranged to be spaced apart, so that the internal flow flow by forced convection can be smoothly performed through the space between the stacking guides 70 to ensure air permeability for temperature management.
  • the plurality of second guides 72 may include a rod heater 61 therein.
  • the rod heater may include an electric heater that generates heat through an electric heating wire through which current flows.
  • the rod heater 61 like the line heater 60 provided in the separator 30, heats up the unit stack 20 disposed inside the heater (not shown) having the least influence on the outside of the case 40. It can perform the auxiliary heating function for. Therefore, the sodium secondary battery module 10 can be rapidly heated up to the battery operating temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명의 예시적 실시예에 따른 나트륨 이차전지 모듈은, 평판 형태의 고체전해질 및 상기 고체전해질의 양면에 각각 배치되는 평판 형태의 양극부품과 음극부품을 상부캡과 하부캡으로 밀봉한 유닛 셀이 다수개 적층되어 이루어지는 유닛 스택; 다수개의 상기 유닛 스택이 열과 행으로 배열된 상태에서 각 유닛 스택 사이에 개재되어 상기 유닛 스택간의 공간을 분리하는 세퍼레이터; 및 다수개의 상기 유닛 스택과 상기 세퍼레이터를 수용하는 케이스;를 포함할 수 있다.

Description

나트륨 이차전지 모듈
본 발명은 나트륨 이차전지 모듈에 관한 것이다.
나트륨-염화니켈(Na-NiCl2) 전지는 고안정성, 장수명, 고에너지 밀도 등 전력저장용 ESS시장이 요구하는 주요 특성에 대한 우수한 성능으로 인해 ESS용 이차전지로 주목받고 있다.
이러한 이차전치를 유닛 셀이라고 하며, 1개의 유닛 셀이 생산하는 전기 에너지는 매우 제한적이기 때문에, 유닛 셀을 여러개 쌓아 놓은 형태인 스택 구조의 모듈 형성이 불가피하다.
모듈설계를 위해서는 유닛 셀을 직렬연결하기 위해 수직방향으로 적층하여 유닛 스택을 만들어야 하는데, 유닛 셀의 기계적 접합 능력과 적층된 유닛 셀 간의 전기적 접촉유지를 포함하여 구조적 안정성 확보를 위한 적절한 면압 구조를 갖추어야 한다. 또한, 제작된 유닛 스택들을 전기적으로 연결하여 원하는 전기적 출력을 확보하기 위한 배선연결 기술이 필요하다. 또한, 전지의 작동온도를 유지하는 것과 동시에 오작동시의 온도관리 기술 등이 필요하다.
본 발명은 다수의 유닛 스택에 대한 통합적인 면압 구조를 제공하면서 배열된 유닛 스택에 대한 자동적인 전기적 연결을 구현하는 배선구조와 온도관리를 통해 안정성을 확보할 수 있는 나트륨 이차전지 모듈을 제공하는 것을 목적으로 한다.
다만, 본 발명의 목적은 이에만 제한되는 것은 아니며, 명시적으로 언급하지 않더라도 아래에서 설명하는 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 이에 포함된다고 할 것이다.
본 발명의 예시적 실시예에 따른 나트륨 이차전지 모듈은, 평판 형태의 고체전해질 및 상기 고체전해질의 양면에 각각 배치되는 평판 형태의 양극부품과 음극부품을 상부캡과 하부캡으로 밀봉한 유닛 셀이 다수개 적층되어 이루어지는 유닛 스택; 다수개의 상기 유닛 스택이 열과 행으로 배열된 상태에서 각 유닛 스택 사이에 개재되어 상기 유닛 스택간의 공간을 분리하는 세퍼레이터; 및 다수개의 상기 유닛 스택과 상기 세퍼레이터를 수용하는 케이스;를 포함할 수 있다.
상기 세퍼레이터는 다수의 통기 구멍과 다수의 통기 슬릿을 구비하고, 상기 다수의 통기 구멍과 다수의 통기 슬릿은 상기 분리된 유닛 스택간의 공간을 부분적으로 연결시킬 수 있다.
상기 세퍼레이터는 격자형상의 배치구조를 갖도록 다수개가 직교하여 배열되며, 각 세퍼레이터가 상호 직교하는 위치에 상기 통기 슬릿이 상호 교차하여 중첩될 수 있다.
상기 세퍼레이터는 단열재로 이루어질 수 있다.
상기 세퍼레이터는 상기 유닛 스택과 마주하는 표면에 라인 히터(line heater)를 구비할 수 있다.
상기 케이스는 내부 공간을 가지며 다수개의 상기 유닛 스택과 상기 세퍼레이터를 내부에 수용하는 하부 케이스와, 상기 하부 케이스를 덮어 다수의 상기 유닛 스택 각각에 면압을 가하는 상부 케이스와, 상기 하부 케이스와 상부 케이를 관통하는 구조로 체결되어 상기 유닛 스택의 면압을 유지 및 조절하는 면압조절부를 포함할 수 있다.
상기 상부 케이스는 다수의 상기 유닛 스택 각각에 가해지는 면압의 균일화를 위해 상기 유닛 스택과 마주하는 면에 밸런싱판을 구비할 수 있다.
상기 케이스는 상기 하부 케이스의 일면에 형성된 관통홀에 장착되어 상기 하부 케이스 내부에 강제대류를 일으키는 송풍팬을 더 포함할 수 있다.
상기 면압조절부는 상기 상부 케이스의 상부에서 상기 상부 케이스에 형성된 체결홀과 상기 하부 케이스의 돌출부에 형성된 체결홀에 삽입되는 체결볼트와, 상기 하부 케이스의 하부에서 상기 체결볼트에 나사결합되는 체결너트와, 상기 체결볼트와 상기 상부 케이스 사이에 개재되는 탄성체를 포함할 수 있다.
상기 케이스와 상기 세퍼레이터에 구비되어 다수의 상기 유닛 스택을 전기적으로 연결시키는 배선부를 더 포함할 수 있다.
상기 배선부는 상기 케이스와 상기 세퍼레이터에 접합되거나 코팅되어 제공될 수 있다.
본 발명의 예시적 실시예에 따른 나트륨 이차전지 모듈은, 평판 형태의 고체전해질 및 상기 고체전해질의 양면에 각각 배치되는 평판 형태의 양극부품과 음극부품을 상부캡과 하부캡으로 밀봉한 유닛 셀이 복수개 적층되어 이루어지는 유닛 스택; 복수개의 상기 유닛 스택이 이격되어 열과 행으로 배열된 상태에서 상기 유닛 스택 사이의 공간에 개재되어 상기 유닛 스택을 지지하는 스태킹 가이드; 및 상기 유닛 스택과 상기 스태킹 가이드를 수용하는 케이스;를 포함할 수 있다.
상기 스태킹 가이드는 상기 케이스의 하부에서 상부를 향해 연장되는 기둥 형태의 구조를 가지며, 상기 케이스의 내측벽에 제공되는 복수의 제1 가이드와 상기 내측벽에서 상기 케이스의 안쪽 내부에 제공되는 복수의 제2 가이드를 포함할 수 있다.
상기 복수의 제2 가이드는 내부에 봉 히터를 구비할 수 있다.
본 발명의 일 실시 형태에 따르면, 다수의 유닛 스택에 대한 통합적인 면압 구조를 제공하면서 배열된 유닛 스택에 대한 자동적인 전기적 연결을 구현하는 배선구조와 온도관리를 통해 안정성을 확보할 수 있는 나트륨 이차전지 모듈이 제공될 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 본 발명의 예시적 실시예에 따른 나트륨 이차전지 모듈을 개략적으로 도시하는 단면도.
도 2는 도 1의 나트륨 이차전지 모듈을 이루는 유닛 스택와 유닛 셀을 개략적으로 나타내는 확대도.
도 3은 도 1의 나트륨 이차전지 모듈을 개략적으로 도시하는 평면도.
도 4a 및 도 4b는 세퍼레이터를 개략적으로 도시하는 측면도 및 사시도.
도 5는 세퍼레이터의 변형예를 개략적으로 도시하는 측면도.
도 6a 및 도 6b는 유닛 스택이 배선부로 연결된 상태를 개략적으로 나타내는 개념도.
도 7a 및 도 7b는 배선부의 배선과 커넥터를 개략적으로 나타내는 사시도.
도 8 및 도 9는 각각 본 발명의 예시적 실시예에 따른 나트륨 이차전지 모듈을 개략적으로 도시하는 평면도.
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 '연결'되어 있다고 할 때, 이는 '직접적으로 연결'되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 '간접적으로 연결'되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 '포함'한다는 것은, 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
도 1 내지 도 7을 참조하여 본 발명의 예시적 실시예에 따른 평판형 나트륨 이차전지 모듈을 설명한다.
도 1은 본 발명의 예시적 실시예에 따른 나트륨 이차전지 모듈을 개략적으로 도시하는 단면도이고, 도 2는 도 1의 나트륨 이차전지 모듈을 이루는 유닛 스택와 유닛 셀을 개략적으로 나타내는 확대도이며, 도 3은 도 1의 나트륨 이차전지 모듈을 개략적으로 도시하는 평면도이다. 도 4a 및 도 4b는 세퍼레이터를 개략적으로 도시하는 측면도 및 사시도이고, 도 5는 세퍼레이터의 변형예를 개략적으로 도시하는 측면도이며, 도 6a 및 도 6b는 유닛 스택이 배선부로 연결된 상태를 개략적으로 나타내는 개념도이며, 도 7a 및 도 7b는 배선부의 배선과 커넥터를 개략적으로 나타내는 사시도이다.
도면을 참조하면, 본 발명의 예시적 실시예에 따른 나트륨 이차전지 모듈(10)은 유닛 스택(20)을 포함할 수 있다. 유닛 스택(20)은 복수개로 제공될 수 있다.
유닛 스택(20)은 복수의 유닛 셀(1)이 수직하게 높이방향으로 적층되어 이루어질 수 있다. 유닛 셀(1)은 납작한 평판형 나트륨 이차전지로서, 대략 동그란 평판 형태의 고체전해질(2)과 이러한 고체전해질(2)의 양면에 각각 배치되는 평판 형태의 양극부품(3) 및 음극부품(4)을 상부캡(5)과 하부캡(6)으로 밀봉한 구조를 가질 수 있다.
유닛 스택(20)은 복수개가 열과 행으로 배열될 수 있다. 본 실시예에서는 9개의 유닛 스택(20)이 3×3, 즉 3개의 열과 3개의 행으로 배열된 것으로 예시하고 있으나 유닛 스택(20)의 배열이 이에 한정되는 것은 아니다. 예를 들어, 유닛 스택(20)의 개수와 배열은 나트륨 이차전지 모듈(10)의 용량에 따라서 다양하게 변경될 수 있다.
유닛 스택(20)을 이루는 유닛 셀(1)의 적층 개수는 각 유닛 스택(20)마다 서로 동일할 수 있다.
도면을 참조하면, 본 발명의 예시적 실시예에 따른 나트륨 이차전지 모듈(10)은 세퍼레이터(30)를 포함할 수 있다.
세퍼레이터(30)는 복수개의 유닛 스택(20)이 열과 행으로 배열된 상태에서 각 유닛 스택(20) 사이에 개재될 수 있다. 세퍼레이터(30)는 각각의 유닛 스택(20)을 격리시키는 구조로 유닛 스택(20)간의 공간을 분리할 수 있다.
일 실시예에서, 세퍼레이터(30)는 대략 직사각형상을 갖는 플레이트 구조물로 구성될 수 있다. 세퍼레이터(30)는 격자형상의 배치구조를 갖도록 복수개가 직교하여 배열될 수 있다.
본 실시예에서는 복수의 유닛 스택(20)이 3×3로 배열됨에 따라서 각 유닛 스택(20)을 분리시킬 수 있도록 세퍼레이터(30)가 대략 '#' 형상으로 배열된 것으로 예시하고 있으나 이에 한정하는 것은 아니다.
유닛 셀(1)의 파손 또는 오동작으로 인해 급격하게 온도가 상승하는 경우 해당 유닛 셀(1)을 포함하는 유닛 스택(20)과 인접한 다른 유닛 스택(20)들을 보호할 수 있도록 세퍼레이터(30)는 단열재로 이루어질 수 있다. 즉, 각 유닛 스택(20)들을 세퍼레이터(30)로 분리하여 격리시킴으로써 열 충격, 물리적 충격등이 다른 정상적인 유닛 스택(20)들에 직접적으로 가해지는 것을 차단하여 보호할 수 있다.
따라서, 비상 시 국부적인 온도상승이 나트륨 이차전지 모듈(10) 전체로 퍼져나가는 것을 방지하여 나트륨 이차전지 모듈(10)을 보호하고, 온도 상승으로 인한 폭발 및 화재 발생에 따른 피해 발생을 방지할 수 있다.
일 실시예에서, 세퍼레이터(30)는 복수의 통기 구멍(31)과 복수의 통기 슬릿(32)을 구비할 수 있다.
복수의 통기 구멍(31)과 복수의 통기 슬릿(32)은 분리된 유닛 스택(20)간의 공간을 부분적으로 연결시킬 수 있다.
복수의 통기 구멍(31)은 각 유닛 스택(20)과 마주하는 위치에 배치될 수 있다. 복수의 통기 슬릿(32)은 각 세퍼레이터(30)가 상호 직교하는 위치에 배치될 수 있으며, 이러한 세퍼레이터(30)들이 직교하는 위치에서 각 세퍼레이터(30)의 통기 슬릿(32)은 상호 교차하여 중첩될 수 있다.
복수의 통기 구멍(31)과 복수의 통기 슬릿(32)은 추후 설명하는 강제대류에 의한 내부 유동 흐름을 막아 온도관리 기능을 약화시키는 것을 방지할 수 있다. 즉, 세퍼레이터(30)는 급격한 온도상승으로부터 유닛 스택(20)을 보호하는 한편, 강제대류에 의한 내부 유동 흐름이 원활히 이루어지도록 하여 온도관리를 위한 통기성을 확보할 수 있도록 한다.
도 5를 참조하면, 세퍼레이터는 유닛 스택과 마주하는 표면에 라인 히터(line heater)를 구비할 수 있다. 예를 들어, 라인 히터는 전류가 흐르는 전열선을 통해 열을 발생시키는 전열 히터를 포함할 수 있다.
전지를 냉각 상태에서 가동시키기 위해서는 전지 작동온도까지 가열하는 것이 필요하며, 추후 설명하는 케이스(40) 외곽에 히터(미도시)를 배치하고 작동을 시키는데, 히터의 영향이 가장 적은 안쪽에 배치된 유닛 스택을 라인 히터를 통해 별도로 승온시킴으로써 나트륨 이차전지 모듈(10)을 전지 작동온도까지 빠르게 승온시킬 수 있다.
이와 같이, 보조 히팅 기능을 수행하는 라인 히터는 세퍼레이터 중 중앙 영역에 배치되는 유닛 스택과 마주하는 표면에 선택적으로 제공될 수 있다.
도면을 참조하면, 본 발명의 예시적 실시예에 따른 나트륨 이차전지 모듈(10)은 케이스(40)를 포함할 수 있다.
케이스(40)는 복수개의 유닛 스택(20)과 세퍼레이터(30)를 수용하여 지지 및 고정시킬 수 있다. 케이스(40)는 하부 케이스(41), 상부 케이스(42), 면압조절부(43)를 포함할 수 있다.
하부 케이스(41)는 내부 공간을 가지며 복수개의 유닛 스택(20)과 세퍼레이터(30)를 내부에 수용할 수 있다. 하부 케이스(41)는 상부가 개방된 대략 사각형상의 박스형 구조를 가질 수 있다.
하부 케이스(41)의 내부 바닥면에는 유닛 스택(20)이 놓이는 위치를 안내하는 가이드판(41a)이 제공될 수 있다. 가이드판(41a)은 복수의 유닛 스택(20)의 배열 위치에 대응하여 배치될 수 있다. 가이드판(41a)은 비전도성 및 탄성을 갖는 재질로 이루어질 수 있다.
하부 케이스(41)의 하부 외측면에는 추후 설명하는 면압조절부(43)가 체결되는 돌출부(41b)를 구비할 수 있다.
상부 케이스(42)는 하부 케이스(41)의 내부 공간을 덮는 구조로 하부 케이스(41) 상에 결합될 수 있다. 상부 케이스(42)는 하부 케이스(41) 상에 놓여 복수의 유닛 스택(20) 각각에 면압을 가할 수 있다.
상부 케이스(42)는 복수의 유닛 스택(20) 각각에 가해지는 면압의 균일화를 위해 유닛 스택(20)과 마주하는 면에 밸런싱판(balancing plate)(42a)을 구비할 수 있다. 밸런싱판(42a)은 상부 케이스(42)와 유닛 스택(20) 사이에 개재되며, 각 유닛 스택(20)간의 높이 차이에 의해서 상부 케이스(42)로부터의 면압이 유닛 스택(20) 전체에 균일하게 가해지지 못하는 문제를 해결할 수 있다. 밸런싱판(42a)은 비전도성 및 탄성을 갖는 재질로 이루어질 수 있다.
하부 케이스(41)와 상부 케이스(42)는 동일한 재질로 이루어질 수 있으며, 예컨대 금속 재질로 이루어질 수 있다. 다만 하부 케이스(41)와 상부 케이스(42)의 재질이 이에 한정되는 것은 아니며, 복수의 유닛 스택(20)에 면압을 가할 수 있도록 금속 이외 다른 견고한 재질로 이루어질 수 있음은 물론이다.
면압조절부(43)는 하부 케이스(41)와 상부 케이스(42)를 관통하는 구조로 체결되어 유닛 스택(20)의 면압을 유지 및 조절할 수 있다.
면압조절부(43)는 상부 케이스(42)의 상부에서 상부 케이스(42)에 형성된 체결홀(42c)과 하부 케이스(41)의 돌출부(41b)에 형성된 체결홀(41c)에 삽입되는 체결볼트(43a)와, 하부 케이스(41)의 하부에서 체결볼트(43a)에 나사결합되는 체결너트(43b)와, 체결볼트(43a)와 상부 케이스(42) 사이에 개재되는 탄성체(43c)를 포함할 수 있다.
체결볼트(43a)는 상부 케이스(42)의 상부에서 상부 케이스(42)의 체결홀(42c)과 하부 케이스(41)의 체결홀(41c)을 일체로 관통하여 삽입될 수 있으며, 체결너트(43b)는 하부 케이스(41)의 하부로 돌출된 체결볼트(43a)의 단부에 나사결합되어 상부 케이스(42)와 하부 케이스(41)를 체결시킬 수 있다.
탄성체(43c)는 체결볼트(43a)의 머리와 상부 케이스(42) 사이에 배치되며, 체결볼트(43a)와 체결너트(43b)가 조여짐에 따라서 탄성력을 발생시켜 상부 케이스(42)가 유닛 스택(20)을 가압하도록 할 수 있다. 탄성체(43c)는, 예를 들어 탄성스프링일 수 있다.
작업자는 체결볼트(43a)와 체결너트(43b)를 조이거나 푸는 것을 통해서 탄성체(43c)의 탄성력을 조절하여 유닛 스택(20)의 면압을 조절 및 유지할 수 있다.
일 실시예에서, 케이스(40)에는 내부의 온도관리를 위한 송풍팬(44)이 장착될 수 있다. 송풍팬(44)은 하부 케이스(41)의 일면에 형성된 관통홀(41d)을 덮는 형태로 해당 일면의 외측에 장착될 수 있다.
송풍팬(44)은 하부 케이스(41) 내부에 강제대류를 일으킬 수 있다. 예를 들어, 충방전 동작에 따라서 케이스(40) 내부의 온도가 상승하는 등의 온도변화가 발생하는 경우, 송풍팬(44)은 강제대류를 일으켜 내부 유동 흐름을 통한 온도관리를 수행할 수 있다. 예를 들어, 송풍팬(44)은 케이스(40) 내부의 가열된 공기를 관통홀(41d)을 통해 외부로 방출하거나, 외부의 공기가 내부로 유입되도록 하여 나트륨 이차전지 모듈(10)에 대한 온도관리를 수행할 수 있다.
특히, 케이스(40) 내부에서 복수의 유닛 스택(20)간의 공간을 분리하도록 설치된 세퍼레이터(30)에 의해 내부 유동 흐름이 막히거나 원활하지 않을 수 있겠으나, 본 발명에서는 세퍼레이터(30)에 형성된 복수의 통기 구멍(31)과 복수의 통기 슬릿(32)이 분리된 유닛 스택(20)간의 공간을 부분적으로 연결시키는 구조를 가지기 때문에 통기성을 확보할 수 있어서 강제대류 능력이 감소하지 않고 원활한 내부 유동 흐름을 유지시킬 수 있다.
도면을 참조하면, 본 발명의 예시적 실시예에 따른 나트륨 이차전지 모듈(10)은 배선부(50)를 포함할 수 있다.
배선부(50)는 케이스(40)와 세퍼레이터(30)에 구비되어 복수의 유닛 스택(20)을 전기적으로 연결시킬 수 있다. 배선부(50)는 케이스(40)와 세퍼레이터(30)의 표면에 접합되거나 코팅되어 제공될 수 있다.
배선부(50)는 하부 케이스(41)와 상부 케이스(42)의 내측 표면에 제공되는 배선(51)과, 상부 케이스(42)와 하부 케이스(41)가 접합시 상부 케이스(42)에 제공되는 배선(51)과 하부 케이스(41)에 제공되는 배선(51)을 접속시키는 커넥터(52)를 포함할 수 있다.
배선(51)은 상부 케이스(42)의 표면에서 밸런싱판(42a)을 관통하여 노출될 수 있으며, 상부 케이스(42)가 유닛 스택(20)을 가압 시 유닛 스택(20)의 최상부에 배치되는 유닛 셀(1)과 접속할 수 있다.
또한, 배선(51)은 하부 케이스(41)의 측벽을 따라서 바닥면까지 연장되어 가이드판(41a)을 관통하여 노출되거나 일부가 바닥에서 가이드판(41a)을 관통하여 노출될 수 있으며, 유닛 스택(20)이 가이드판(41a)에 놓여짐에 따라서 유닛 스택(20)의 최하부에 배치되는 유닛 셀(1)과 접속할 수 있다.
또한, 배선(51)은 세퍼레이터(30)의 표면에서 세퍼레이터(30)의 높이방향을 따라서 연장되는 구조로 제공될 수 있다.
커넥터(52)는 상부 케이스(42)와 하부 케이스(41)가 상호 접합하는 위치 및 세퍼레이터(30)의 위치에 대응하여 각각 제공될 수 있다. 예를 들어, 하부 케이스(41)의 상부 내측면과 상부 케이스(42)의 가장자리 내측면에 제공되어 상부 케이스(42)가 하부 케이스(41) 상에 놓여지는 경우 상호 결속되는 구조로 제공될 수 있다. 또한, 하부 케이스(41)의 바닥면 중 세퍼레이터(30)가 놓이는 위치와 상부 케이스(42)의 표면 중 세퍼레이터(30)와 접하는 위치에 각각 제공되어 세퍼레이터(30)와 각각 결속되는 구조로 제공될 수 있다.
도면에서와 같이 배선부(50)는 유닛 스택(20)의 최상부에 배치된 유닛 셀(1)을 인접한 다른 유닛 스택(20)의 최하부에 배치된 유닛 셀(1)과 접속시키는 배선구조를 가질 수 있다. 따라서, 복수의 유닛 스택(20)은 배선부(50)에 의해 직렬연결될 수 있다.
이와 같이, 본 실시예에서는 미리 배선부(50)가 케이스(40)와 세퍼레이터(30)의 표면에 접합 또는 코팅을 통해 설치된 상태에서, 복수의 유닛 스택(20)을 배치시키고 상부 케이스(42)를 하부 케이스(41) 상에 접합시키는 것으로 간단히 복수의 유닛 스택(20)이 자동적으로 연결되도록 하는 배선구조를 구현할 수 있다. 따라서, 종래의 와이어를 사용하여 납땜을 통해 연결시키는 방식에서 단락/합선 등이 발생하는 문제를 해결할 수 있고, 모듈 제조 공정 시간을 단축시킬 수 있는 효과가 있다.
도 8 및 도 9를 참조하여 본 발명의 예시적 실시예에 따른 평판형 나트륨 이차전지 모듈을 설명한다. 도 8 및 도 9는 각각 본 발명의 예시적 실시예에 따른 나트륨 이차전지 모듈을 개략적으로 도시하는 평면도이다.
도 8 및 도 9에서 개시하는 실시예에 따른 평판형 나트륨 이차전지 모듈(10)은 도 1 내지 도 7에서 개시하는 실시예에 따른 나트륨 이차전지 모듈(10)과 구성 및 구조가 실질적으로 동일하다. 다만, 세퍼레이터(30)가 생략되고 대신에 스태킹 가이드(70)를 구비하는 점에서 차이가 있으므로 이하에서는 스태킹 가이드(70)를 위주로 설명한다.
도면을 참조하면, 스태킹 가이드(70)는 복수개의 유닛 스택(20)이 서로 이격되어 열과 행으로 배열된 상태에서 유닛 스택(20) 사이의 공간에 개재될 수 있다.
스태킹 가이드(70)는 케이스(40) 내에 놓이는 유닛 스택(20)을 분리하여 지지할 수 있다. 즉, 스태킹 가이드(70)는 하부 케이스(41) 내에 복수의 유닛 스택(20)을 배치한 후 상부 케이스(42)를 덮을때까지 복수의 유닛 스택(20)을 지지하는 역할을 할 수 있다. 예를 들어, 외부 충격에 의해 유닛 스택(20)의 위치가 어긋나거나, 인접한 다른 유닛 스택(20)과 접촉하거나, 넘어지는 것을 방지할 수 있다. 또한, 스태킹 가이드(70)는 유닛 스택(20)이 놓이는 위치를 안내하는 역할을 할 수도 있다.
일 실시예에서, 스태킹 가이드(70)는 유닛 스택(20)과 나란히 케이스(40)의 하부에서 상부를 향해 연장되는 기둥 형태의 구조를 가질 수 있다.
도 8에서와 같이, 스태킹 가이드(70)는 단면이 삼각형, 사각형 등의 다각형상을 가질 수 있다. 또한, 도 9에서와 같이 단면이 반원, 원형상인 구조를 가지는 것도 가능하다.
스태킹 가이드(70)는 도 8에서와 같이 각 유닛 스택(20)과 소정 간격으로 이격되는 구조로 제공될 수 있다. 또한, 도 9에서와 같이 각 유닛 스택(20)과 접촉하는 구조로도 제공될 수 있다.
일 실시예에서, 스테킹 가이드(70)는 비전도성 재질로 이루어질 수 있다.
스태킹 가이드(70)는 케이스(40)의 내측벽에 제공되는 복수의 제1 가이드(71)와, 내측벽에서 케이스(40)의 안쪽 내부에 제공되는 복수의 제2 가이드(72)를 포함할 수 있다.
복수의 유닛 스택(20)이 이격되어 열과 행으로 배열됨에 따라 복수의 제1 가이드(71)와 제2 가이드(72)도 서로 이격되어 열과 행으로 배열될 수 있다. 이와 같이, 복수의 스태킹 가이드(70)가 이격되어 배열됨으로써 스태킹 가이드(70) 사이의 공간을 통해 강제대류에 의한 내부 유동 흐름이 원활히 이루어지도록 하여 온도관리를 위한 통기성을 확보할 수 있다.
한편, 복수의 제2 가이드(72)는 내부에 봉 히터(61)를 구비할 수 있다. 봉 히터는 전류가 흐르는 전열선을 통해 열을 발생시키는 전열 히터를 포함할 수 있다.
봉 히터(61)는 세퍼레이터(30)에 제공되는 라인 히터(60)와 마찬가지로 케이스(40) 외곽에 배치되는 히터(미도시)의 영향이 가장 적은 안쪽에 배치된 유닛 스택(20)을 승온시키기 위한 보조 히팅 기능을 수행할 수 있다. 따라서, 나트륨 이차전지 모듈(10)을 전지 작동온도까지 빠르게 승온시킬 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예에는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (14)

  1. 평판 형태의 고체전해질 및 상기 고체전해질의 양면에 각각 배치되는 평판 형태의 양극부품과 음극부품을 상부캡과 하부캡으로 밀봉한 유닛 셀이 다수개 적층되어 이루어지는 유닛 스택;
    다수개의 상기 유닛 스택이 열과 행으로 배열된 상태에서 각 유닛 스택 사이에 개재되어 상기 유닛 스택간의 공간을 분리하는 세퍼레이터; 및
    다수개의 상기 유닛 스택과 상기 세퍼레이터를 수용하는 케이스;
    를 포함하는 나트륨 이차전지 모듈.
  2. 제1항에 있어서,
    상기 세퍼레이터는 다수의 통기 구멍과 다수의 통기 슬릿을 구비하고,
    상기 다수의 통기 구멍과 다수의 통기 슬릿은 상기 분리된 유닛 스택간의 공간을 부분적으로 연결시키는 것을 특징으로 하는 전지 모듈.
  3. 제2항에 있어서,
    상기 세퍼레이터는 격자형상의 배치구조를 갖도록 다수개가 직교하여 배열되며, 각 세퍼레이터가 상호 직교하는 위치에 상기 통기 슬릿이 상호 교차하여 중첩되는 것을 특징으로 하는 전지 모듈.
  4. 제1항에 있어서,
    상기 세퍼레이터는 단열재로 이루어지는 것을 특징으로 하는 전지 모듈.
  5. 제1항에 있어서,
    상기 세퍼레이터는 상기 유닛 스택과 마주하는 표면에 라인 히터(line heater)를 구비하는 것을 특징으로 하는 전지 모듈.
  6. 제1항에 있어서,
    상기 케이스는 내부 공간을 가지며 다수개의 상기 유닛 스택과 상기 세퍼레이터를 내부에 수용하는 하부 케이스와, 상기 하부 케이스를 덮어 다수의 상기 유닛 스택 각각에 면압을 가하는 상부 케이스와, 상기 하부 케이스와 상부 케이를 관통하는 구조로 체결되어 상기 유닛 스택의 면압을 유지 및 조절하는 면압조절부를 포함하는 것을 특징으로 하는 전지 모듈.
  7. 제6항에 있어서,
    상기 상부 케이스는 다수의 상기 유닛 스택 각각에 가해지는 면압의 균일화를 위해 상기 유닛 스택과 마주하는 면에 밸런싱판을 구비하는 것을 특징으로 하는 전지 모듈.
  8. 제6항에 있어서,
    상기 케이스는 상기 하부 케이스의 일면에 형성된 관통홀에 장착되어 상기 하부 케이스 내부에 강제대류를 일으키는 송풍팬을 더 포함하는 것을 특징으로 하는 전지 모듈.
  9. 제6항에 있어서,
    상기 면압조절부는 상기 상부 케이스의 상부에서 상기 상부 케이스에 형성된 체결홀과 상기 하부 케이스의 돌출부에 형성된 체결홀에 삽입되는 체결볼트와, 상기 하부 케이스의 하부에서 상기 체결볼트에 나사결합되는 체결너트와, 상기 체결볼트와 상기 상부 케이스 사이에 개재되는 탄성체를 포함하는 것을 특징으로 하는 전지 모듈.
  10. 제1항에 있어서,
    상기 케이스와 상기 세퍼레이터에 구비되어 다수의 상기 유닛 스택을 전기적으로 연결시키는 배선부를 더 포함하는 것을 특징으로 하는 전지 모듈.
  11. 제10항에 있어서,
    상기 배선부는 상기 케이스와 상기 세퍼레이터에 접합되거나 코팅되어 제공되는 것을 특징으로 하는 전지 모듈.
  12. 평판 형태의 고체전해질 및 상기 고체전해질의 양면에 각각 배치되는 평판 형태의 양극부품과 음극부품을 상부캡과 하부캡으로 밀봉한 유닛 셀이 다수개 적층되어 이루어지는 유닛 스택;
    다수개의 상기 유닛 스택이 이격되어 열과 행으로 배열된 상태에서 상기 유닛 스택 사이의 공간에 개재되어 상기 유닛 스택을 지지하는 스태킹 가이드; 및
    상기 유닛 스택과 상기 스태킹 가이드를 수용하는 케이스;
    를 포함하는 나트륨 이차전지 모듈.
  13. 제12항에 있어서,
    상기 스태킹 가이드는 상기 케이스의 하부에서 상부를 향해 연장되는 기둥 형태의 구조를 가지며,
    상기 케이스의 내측벽에 제공되는 복수의 제1 가이드와 상기 내측벽에서 상기 케이스의 안쪽 내부에 제공되는 복수의 제2 가이드를 포함하는 것을 특징으로 하는 나트륨 이차전지 모듈.
  14. 제13항에 있어서,
    상기 복수의 제2 가이드는 내부에 봉 히터를 구비하는 것을 특징으로 하는 나트륨 이차전지 모듈.
PCT/KR2018/015106 2018-09-27 2018-11-30 나트륨 이차전지 모듈 WO2020067606A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112018008036.6T DE112018008036T5 (de) 2018-09-27 2018-11-30 Natrium-Sekundärbatteriemodul
JP2021515447A JP7194818B2 (ja) 2018-09-27 2018-11-30 ナトリウム二次電池モジュール
US17/278,795 US11901538B2 (en) 2018-09-27 2018-11-30 Sodium secondary battery module
CN201880097936.7A CN112753123B (zh) 2018-09-27 2018-11-30 钠二次电池模组

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0114667 2018-09-27
KR20180114667 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020067606A1 true WO2020067606A1 (ko) 2020-04-02

Family

ID=69952920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015106 WO2020067606A1 (ko) 2018-09-27 2018-11-30 나트륨 이차전지 모듈

Country Status (6)

Country Link
US (1) US11901538B2 (ko)
JP (1) JP7194818B2 (ko)
KR (1) KR102156826B1 (ko)
CN (1) CN112753123B (ko)
DE (1) DE112018008036T5 (ko)
WO (1) WO2020067606A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112838311A (zh) * 2020-12-31 2021-05-25 颍上县翔安新能源科技有限公司 一种具有保护结构的锂电池外壳
CN114843679A (zh) * 2022-04-07 2022-08-02 东莞市沃泰通新能源有限公司 一种耐高温钠离子圆柱型电池
EP4113723A1 (en) * 2021-06-28 2023-01-04 Hyundai Motor Company Battery module including coin cells and method of manufacturing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113346172B (zh) * 2021-06-01 2023-11-21 国网浙江省电力有限公司台州供电公司 基于弹性元件弹出式固定的氟离子电池固定外壳及其固定方法
KR20240039326A (ko) * 2022-09-19 2024-03-26 주식회사 엘지에너지솔루션 구조 붕괴가 방지되는 가변 결합부를 구비한 배터리 팩
DE102022130280A1 (de) 2022-11-16 2024-05-16 Schaeffler Technologies AG & Co. KG Anordnung zur Kühlung eines Batteriezellstapels für ein Fahrzeug und Anordnung zum Verspannen eines Batteriezellstapels für ein Fahrzeug sowie Batteriezellstapel mit einer solchen Anordnung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018752A (ja) * 2005-07-05 2007-01-25 Gs Yuasa Corporation:Kk 組電池
KR20100016371A (ko) * 2007-04-19 2010-02-12 쏘씨에떼 드 베이뀔르 엘렉트리끄 구조적 매트릭스로 코팅된 열처리 모듈을 포함하는 전기 배터리
JP2012248374A (ja) * 2011-05-26 2012-12-13 Hitachi Ltd 電池モジュール
JP2014192094A (ja) * 2013-03-28 2014-10-06 Mitsubishi Electric Corp 蓄電池モジュール及び蓄電池モジュールの製造方法
KR101823873B1 (ko) * 2011-03-09 2018-01-31 아퀴온 에너지 인코포레이티드 무금속 수성 전해질 에너지 저장장치

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409787A (en) * 1993-02-17 1995-04-25 Electrosource, Inc. Battery plate compression cage assembly
JPH06333591A (ja) * 1993-05-19 1994-12-02 Sanyo Electric Co Ltd 高電圧燃料電池システム
US5393617A (en) * 1993-10-08 1995-02-28 Electro Energy, Inc. Bipolar electrochmeical battery of stacked wafer cells
US5670272A (en) * 1994-03-31 1997-09-23 Valence Technology, Inc. Battery packaging for flat cell batteries having a compressing material for the cell stack
JPH1040952A (ja) 1996-07-22 1998-02-13 Hitachi Ltd 高温ナトリウム二次電池モジュールおよびそれを用いた電池システム
JPH10294128A (ja) 1997-02-24 1998-11-04 Hitachi Ltd 高温ナトリウム二次電池モジュ−ルおよび電池システム
JP3349491B2 (ja) 2000-02-16 2002-11-25 三菱重工業株式会社 ナトリウム二次電池の運転開始時における運転方法
JP2002260724A (ja) * 2001-03-02 2002-09-13 Hitachi Ltd 高温ナトリウム二次電池モジュール
JP2003068356A (ja) 2001-08-27 2003-03-07 Hitachi Ltd ナトリウム二次電池とその電池集合体およびモジュール
JP4415570B2 (ja) * 2003-06-03 2010-02-17 トヨタ自動車株式会社 集合電池
JP4764618B2 (ja) * 2003-10-02 2011-09-07 赤 嶺 辰 実 電池用パック
JP2005149775A (ja) * 2003-11-12 2005-06-09 Hitachi Ltd ナトリウム二次電池モジュール
JP4200088B2 (ja) 2003-12-17 2008-12-24 本田技研工業株式会社 燃料電池及び燃料電池スタック
JP4218569B2 (ja) 2004-03-30 2009-02-04 株式会社エクォス・リサーチ セパレータ及びそれを用いた燃料電池
JP2006196230A (ja) * 2005-01-11 2006-07-27 Densei Lambda Kk 電池パック
KR100696631B1 (ko) * 2005-08-11 2007-03-19 삼성에스디아이 주식회사 이차 전지 모듈
JP2007220576A (ja) 2006-02-20 2007-08-30 Hitachi Maxell Ltd 電池パック
KR100897179B1 (ko) * 2006-04-24 2009-05-14 주식회사 엘지화학 중대형 전지모듈 제조용 프레임 부재
JP5183171B2 (ja) * 2007-11-28 2013-04-17 三洋電機株式会社 バッテリシステム
JP5111099B2 (ja) * 2007-12-28 2012-12-26 シャープ株式会社 電池パック
DE102010005017A1 (de) * 2010-01-19 2011-07-21 Li-Tec Battery GmbH, 01917 Elektroenergieeinheit und Distanzstück
US20120021260A1 (en) 2010-01-29 2012-01-26 Panasonic Corporation Battery module
JP5489797B2 (ja) 2010-03-17 2014-05-14 三菱重工業株式会社 電池システム
JP5624865B2 (ja) 2010-12-06 2014-11-12 日本特殊陶業株式会社 排気ガス加熱装置
CN102054952B (zh) * 2010-12-11 2013-04-17 徐荣辉 钠硫电池专用保温箱
US8298701B2 (en) 2011-03-09 2012-10-30 Aquion Energy Inc. Aqueous electrolyte energy storage device
WO2012164723A1 (ja) * 2011-06-02 2012-12-06 トヨタ自動車株式会社 全固体電池の製造方法
KR101897822B1 (ko) * 2011-12-02 2018-09-13 삼성에스디아이 주식회사 배터리 팩
KR101492019B1 (ko) * 2012-08-17 2015-02-11 주식회사 엘지화학 벤팅 유도부를 포함하는 전지모듈
JP2014216299A (ja) * 2013-04-30 2014-11-17 パナソニック株式会社 ナトリウムイオン二次電池
KR101550891B1 (ko) 2013-12-26 2015-09-08 재단법인 포항산업과학연구원 나트륨 유황 전지 모듈
CN103840232B (zh) * 2014-03-21 2015-11-04 国网上海市电力公司 一种钠硫电池模块保温箱温度场控制方法
JP6123746B2 (ja) * 2014-07-11 2017-05-10 株式会社デンソー 組電池
CN204375813U (zh) * 2014-12-26 2015-06-03 山东精工电子科技有限公司 圆柱锂离子电池免点焊电池壳
CN104716285A (zh) * 2015-03-22 2015-06-17 顾志强 一种可加热电池箱
JP6460066B2 (ja) * 2016-08-25 2019-01-30 トヨタ自動車株式会社 電池パック
JP6897124B2 (ja) 2017-01-31 2021-06-30 株式会社豊田自動織機 蓄電モジュール
JP6645999B2 (ja) * 2017-03-21 2020-02-14 株式会社東芝 二次電池、電池パック、及び車両
CN206639869U (zh) * 2017-03-28 2017-11-14 常州联德电子有限公司 一种适用于中高温的固体氧化物燃料电池电堆加压装置
CN108574073A (zh) * 2018-06-11 2018-09-25 美创兴国际有限公司 一种高能量密度液冷电池模组
KR101949931B1 (ko) 2018-08-07 2019-03-12 주식회사 유뱃 복수의 셀 영역들이 구비된 전기화학 에너지 소자 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018752A (ja) * 2005-07-05 2007-01-25 Gs Yuasa Corporation:Kk 組電池
KR20100016371A (ko) * 2007-04-19 2010-02-12 쏘씨에떼 드 베이뀔르 엘렉트리끄 구조적 매트릭스로 코팅된 열처리 모듈을 포함하는 전기 배터리
KR101823873B1 (ko) * 2011-03-09 2018-01-31 아퀴온 에너지 인코포레이티드 무금속 수성 전해질 에너지 저장장치
JP2012248374A (ja) * 2011-05-26 2012-12-13 Hitachi Ltd 電池モジュール
JP2014192094A (ja) * 2013-03-28 2014-10-06 Mitsubishi Electric Corp 蓄電池モジュール及び蓄電池モジュールの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112838311A (zh) * 2020-12-31 2021-05-25 颍上县翔安新能源科技有限公司 一种具有保护结构的锂电池外壳
EP4113723A1 (en) * 2021-06-28 2023-01-04 Hyundai Motor Company Battery module including coin cells and method of manufacturing same
CN114843679A (zh) * 2022-04-07 2022-08-02 东莞市沃泰通新能源有限公司 一种耐高温钠离子圆柱型电池
CN114843679B (zh) * 2022-04-07 2023-04-07 东莞市朗泰通科技股份有限公司 一种耐高温钠离子圆柱型电池

Also Published As

Publication number Publication date
KR102156826B1 (ko) 2020-09-16
CN112753123B (zh) 2023-04-18
DE112018008036T5 (de) 2021-06-02
CN112753123A (zh) 2021-05-04
JP2022500833A (ja) 2022-01-04
US20220029223A1 (en) 2022-01-27
KR20200035806A (ko) 2020-04-06
US11901538B2 (en) 2024-02-13
JP7194818B2 (ja) 2022-12-22

Similar Documents

Publication Publication Date Title
WO2020067606A1 (ko) 나트륨 이차전지 모듈
WO2018174451A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2019132291A1 (ko) 공간 활용성과 안전성이 향상된 원통형 전지셀 조립체 및 이를 포함하는 배터리 모듈
WO2014073808A1 (ko) 버스 바 어셈블리를 포함하는 전지모듈 및 이를 포함하는 전지팩
WO2012023754A1 (ko) 전압 검출 어셈블리 및 이를 포함하는 전지모듈
WO2013019008A2 (ko) 안전성이 향상된 전지모듈
WO2016068551A1 (ko) 단위 전지 팩
WO2017014449A1 (ko) 단자 플레이트 및 bms가 직접 연결된 구조의 전지모듈
WO2021125469A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2020075966A1 (ko) 버스바 프레임 조립 방법
WO2017217641A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2017146379A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2019022388A1 (ko) 배터리 모듈
WO2020138847A1 (ko) 에너지 밀도가 향상된 구조를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차
WO2017188533A1 (ko) 멤브레인을 갖는 이차 전지
WO2018080242A1 (ko) 배터리 팩
WO2014185735A1 (ko) 배터리 팩 전장실 및 이를 포함하는 배터리 패키지
WO2021071120A1 (ko) 쇼트 방지 및 충격 보호 구조가 강화된 배터리 팩
WO2021182779A1 (ko) 버스바를 구비한 배터리 모듈, 배터리 팩, 및 자동차
WO2014185732A1 (ko) 배터리 패키지
WO2018221828A1 (ko) 배터리 팩
WO2021071052A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2018160012A2 (ko) 카트리지 및 이를 포함하는 배터리 모듈
WO2020204248A1 (ko) 가스배기 및 방열 기능을 가진 전지셀 어셈블리
WO2017030312A1 (ko) 셀 리드 연결 장치 및 이를 포함하는 배터리 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515447

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18935159

Country of ref document: EP

Kind code of ref document: A1