CN103840232B - 一种钠硫电池模块保温箱温度场控制方法 - Google Patents

一种钠硫电池模块保温箱温度场控制方法 Download PDF

Info

Publication number
CN103840232B
CN103840232B CN201410106679.2A CN201410106679A CN103840232B CN 103840232 B CN103840232 B CN 103840232B CN 201410106679 A CN201410106679 A CN 201410106679A CN 103840232 B CN103840232 B CN 103840232B
Authority
CN
China
Prior art keywords
temperature
sodium
cell module
preservation box
sulfur cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410106679.2A
Other languages
English (en)
Other versions
CN103840232A (zh
Inventor
张宇
刘宇
杨建平
方陈
刘隽
孙贤书
王佳斌
徐敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Shanghai Electric Power Co Ltd
East China Power Test and Research Institute Co Ltd
Original Assignee
State Grid Shanghai Electric Power Co Ltd
Shanghai Electric Sodium Sulfur Energy Storage Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Shanghai Electric Power Co Ltd, Shanghai Electric Sodium Sulfur Energy Storage Technology Co Ltd filed Critical State Grid Shanghai Electric Power Co Ltd
Priority to CN201410106679.2A priority Critical patent/CN103840232B/zh
Publication of CN103840232A publication Critical patent/CN103840232A/zh
Application granted granted Critical
Publication of CN103840232B publication Critical patent/CN103840232B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了化学储能领域的一种钠硫电池模块保温箱温度场控制方法,由底板、两块侧壁、两块端壁和箱盖围成的钠硫电池模块保温箱内用长绝热板和短绝热板分隔成呈二行二列矩阵排列的四个保温室,再在底板、两块侧壁、两块端壁上分布一共十二块加热板,每个保温室使用一块底部加热板和一块独用侧加热板,通过短绝热板相邻的两个保温室共用一块公用侧加热板,通过长绝热板相邻的两个保温室共用一块端部加热板,以底板顶面边缘上温度最大值的点为温度最大值点,以长绝热板顶边和短绝热板顶边的交点为温度最小值点,并通过在300~350℃调整十二块所述加热板的温度,使钠硫电池模块保温箱内温度最大值点和温度最小值点的温度差在30℃以内。

Description

一种钠硫电池模块保温箱温度场控制方法
技术领域
本发明涉及化学储能领域的一种钠硫电池模块保温箱温度场控制方法。
背景技术
钠硫电池的工作温度在300℃-350℃之间,在实际应用中要求安装钠硫电池的钠硫电池模块保温箱内的温度场要均衡,钠硫电池模块保温箱温度最大值点和温度最小值点之间的温差要保证在30℃以内。通常尺寸较小的钠硫电池模块保温箱比较容易达到温度场与温度差的要求,但是对于25kW的钠硫电池模块保温箱,其长约2m,宽约1.5m,高约1.2m,尺寸很大,要想达到较好的温度场与温度差的效果,普通的方法很难达到。
发明内容
本发明的目的是为了克服现有技术的不足,提供一种钠硫电池模块保温箱温度场控制方法,其能够保证钠硫电池模块保温箱内任意两点间的温度差都控制在30C以内,使钠硫电池模块保温箱内的温度场适合于钠硫电池的工作,尤其适合用于25KW的钠硫电池模块保温箱。
实现上述目的的一种技术方案是:一种钠硫电池模块保温箱温度场控制方法,包括下列步骤:
加热板布置步骤:在钠硫电池模块保温箱的底板、两块相对平行设置的侧壁、两块相对平行设置的端壁上一共设置十二块加热板,即在所述底板上布置呈二行二列矩阵排布的四块底部加热板、在两块所述侧壁上的各一块公用侧加热板,以及对称位于所述公用侧加热板两侧的独用侧加热板、在两块所述端壁上的各一块端部加热板;
绝热板布置步骤:在所述钠硫电池模块保温箱内布置与两块所述侧壁平行的长绝热板,以及与两块所述端壁平行的短绝热板,且所述长绝热板与所述短绝热板呈十字交叉排列,将所述钠硫电池模块保温箱等分为四个保温室,且每个所述保温室使用一块底部加热板和一块独用侧加热板,且两个通过所述短绝热板相邻的保温室共同使用一块公用侧加热板,两个通过所述长绝热板相邻的保温室共同使用一块端部加热板;
加热步骤:将十二块所述的加热板加热至300~350℃;
测温步骤:测量所述底板顶面边缘上各点的温度,确定其中最大值所在的点为钠硫电池模块保温箱内温度最大值点,以所述长绝热板热和所述短绝热板顶边的交点为钠硫电池模块保温箱内的温度最小值点;
保温步骤:在300~350℃调整十二块所述加热板的温度,使钠硫电池模块保温箱内温度最大值点和温度最小值点的温度差在30℃以内。
再进一步的,当钠硫电池模块保温箱内温度最大值点与温度最小值点之间的温度差超过阈值温度时,调高温度最大值点所在保温室不使用的公用侧加热板表面的温度。
再进一步的,当钠硫电池模块保温箱内温度最大值点与温度最小值点之间的温度差超过阈值温度时,调低温度最大值点所在保温室所使用的端部加热板表面的温度。
进一步的,所述钠硫电池模块保温箱内任意一个保温室所使用的底部加热板表面的温度在定时内下降了20℃或以上,判定该底部加热板损坏,调高该保温室所使用的独用侧加热板表面的温度,控制该保温室的温度不再下降。
进一步的,所述钠硫电池模块保温箱内任意一个保温室所使用的独用侧加热板表面的温度在定时内下降了20℃或以上,判定该独用侧加热板损坏,调高该保温室所使用的底部加热板表面的温度,控制该保温室的温度不再下降。
进一步的,所述钠硫电池模块保温箱内任意一块端部加热表面的温度在定时内下降了20℃或以上,判定该端部加热板损坏,并调高使用该端部加热板的两个保温室的底部加热板和/或独用侧加热板表面的温度,控制该两个保温室的温度不再下降。
进一步的,所述钠硫电池模块保温箱内任意一块公用侧加热板表面的温度在定时内下降了20℃或以上,判定该公用侧加热板损坏,并调高使用该公用侧加热板的两个保温室的底部加热板和/或独用侧加热板表面的温度,控制该两个保温室的温度不再下降。
进一步的,各块所述加热板表面的温度是通过对应位于各块所述加热板周围的测温热电偶进行测量的,所述温度最大值点的位置和温度是通过位于所述底板顶面边缘的极大值热电偶进行测量的,所述温度最小值点的温度是通过位于所述长绝热板顶边和所述短绝热板顶边的交点的极小值热电偶进行测量的。
再进一步的,各块加热板的温度是通过对应于位于各块所述加热板上的温度控制电路进行控制的。
采用了本发明的一种钠硫电池模块保温箱温度场控制方法的技术方案,即由底板、两块侧壁、两块端壁和箱盖围成的钠硫电池模块保温箱内用长绝热板和短绝热板分隔成呈二行二列矩阵排列的四个保温室,再在底板、两块侧壁、两块端壁上分布一共十二块加热板,每个保温室使用一块底部加热板和一块独用侧加热板,通过短绝热板相邻的两个保温室共用一块公用侧加热板,通过长绝热板相邻的两个保温室共用一块端部加热板,以底板顶面边缘上温度最大值的点为温度最大值点,以长绝热板顶边和短绝热板顶边的交点为温度最小值点,并通过在300~350℃调整十二块所述加热板的温度,使钠硫电池模块保温箱内温度最大值点和温度最小值点的温度差在30℃以内的技术方案。其技术效果是:其能够保证钠硫电池模块保温箱内任意两点间的温度差都控制在30C以内,使钠硫电池模块保温箱内的温度场适合于钠硫电池的工作,尤其适合用于25KW的钠硫电池模块保温箱。
附图说明
图1为使用本发明的一种钠硫电池模块保温箱温度场控制方法的钠硫电池模块保温箱立体透视图。
图2为使用本发明的一种钠硫电池模块保温箱温度场控制方法的钠硫电池模块保温箱的箱盖仰视图。
图3为使用本发明的一种钠硫电池模块保温箱温度场控制方法中加热板的展开排布示意图。
图4为使用本发明的一种钠硫电池模块保温箱温度场控制方法的钠硫电池模块保温箱的BMS系统安装图。
图5为使用本发明的一种钠硫电池模块保温箱温度场控制方法的钠硫电池模块保温箱立体图。
图6为本发明的一种钠硫电池模块保温箱温度场控制方法中加热板、温度控制电路、测温热电偶、极大值热电偶、极小值热电偶连接图。
图7为本发明的一种钠硫电池模块保温箱温度场控制方法的流程图。
具体实施方式
请参阅图1至图7,本发明的发明人为了能更好地对本发明的技术方案进行理解,下面通过具体地实施例,并结合附图进行详细地说明:
请参阅图1至图7,本发明的一种钠硫电池模块保温箱温度场控制方法用于25kW钠硫电池模块的钠硫电池模块保温箱。使用该方法的钠硫电池模块保温箱由底板1、前侧壁3、后侧壁2、左端壁4和右端壁5和箱盖6围成。
绝热板布置步骤:在钠硫电池模块保温箱内设置与前侧壁2或后侧壁3平行的长绝热板7,以及与左端壁4或右端壁5平行的短绝热板8。长绝热板7和短绝热板8呈十字交叉排列,将钠硫电池模块保温箱内的空间等分为呈二行二列矩阵排列的四个保温室,即左后保温室100、左前保温室200、右后保温室300和右前保温室400。
加热板布置步骤:在钠硫电池模块保温箱的底板1、前侧壁3、后侧壁2、左端壁4和右端壁5上一共分布十二块加热板,每块加热板都配备有一个独立的温度控制电路,该十二个温度控制电路同时连接一个BMS系统9(电池管理系统),该BMS系统9通过远程主机(图中未显示)进行控制。箱盖6上不设置加热板。
请参阅图1至图7,钠硫电池模块保温箱内的十二块加热板包括,钠硫电池模块保温箱的底板1的四块底部加热板,即左后底部加热板11、左前底部加热板12、右后底部加热板13、右前底部加热板14。左后底部加热板11、左前底部加热板12、右后底部加热板13、右前底部加热板14对应位于左后保温室100、左前保温室200、右后保温室300和右前保温室400内。
前侧壁3和后侧壁2上各设置一块公用侧加热板,以及位于公用侧加热板两侧的独用侧加热板。即后侧壁2上的左后独用加热板21、后公用加热板22以及右后独用加热板23,前侧壁3上的左前独用加热板31、前公用加热板32以及右前独用加热板33。
前端壁4和右端壁5的中部各自设置一块端部加热板,即左端壁4的中部设有左加热板41,右端壁5的中部设有右加热板51。
因此,左后保温室100分配得到左后底部加热板11、左后独用加热板21、半块后公用加热板22和半块左加热板41。左前保温室200分配得到左前底部加热板12、左前独用加热板31、半块前公用加热板32和半块左加热板41。右后保温室300分配得到右后底部加热板13、右后独用加热板23、半块后公用加热板22和半块右加热板51。右前保温室400分配得到右前底部加热板14、右前独用加热板33、半块前公用加热板32和半块右加热板51。或者说通过短绝热板8相邻的两个保温室共同使用一块公用侧加热板,通过长绝热板7相邻的两个保温室共同使用一块端部加热板。
同时,在在钠硫电池模块保温箱内设置极大值热电偶和极小值热电偶,以找出钠硫电池模块保温箱内温度最大值点和温度最小值点的位置和温度,其中钠硫电池模块保温箱内温度最大值点一般出现在底板1顶面的边缘,因此极大值热电偶设置于底板1边缘上。钠硫电池模块保温箱内温度最小值点出现在长绝热板7的顶边上,或者短绝热板8的顶边上,因此极小值热电偶分布于长绝热板7的顶边上,或者短绝热板8的顶边上,由于长绝热板7和短绝热板8的绝热性能,在绝大多数情况下,钠硫电池模块保温箱内温度最小值点都位于长绝热板7和短绝热板8的顶边的交点上。即图1中的O点上。各块加热板的周围分布有若干测温热电偶,用于测量各块加热板表面的温度。所述测温热电偶、极大值热电偶以及极小值热电偶都与BMS系统9连接。
加热步骤:即通过钠硫电池模块保温箱的十二块加热板,将钠硫电池模块保温箱的温度升高到300~350℃之间,此时钠硫电池模块保温箱的各块加热板表面的温度都在300~350℃之间。即先通过各块加热板周围的测温热电偶,检测该加热板表面的温度,再将测得的温度信息,反馈给BMS系统9,再由BMS系统9通过所述加热板的温度控制电路,对该加热板表面的温度进行调节。
测温步骤:钠硫电池模块保温箱的BMS系统9比较所有极大值热电偶测量的温度值,取其中的最大值的点为钠硫电池模块保温箱内的温度最大值点,并认定该极大值热电偶所测量的温度为钠硫电池模块保温箱内的最高温度,比较所有极小值热电偶测量的温度值,取其中的最小值所在的点为钠硫电池模块保温箱的温度最小值点,并认定该极小值热电偶所测量的温度为钠硫电池模块保温箱内的最低温度。
下面以温度最大值点位于左后保温室100内的情况来对保温步骤进行举例说明。
钠硫电池模块保温箱的温度最大值点位于左后保温室100内,温度最小值点位于长绝热板7和短绝热板8的顶边的交点,即O点上。当BMS系统9通过极大值热电偶以及极小值热电偶检测到钠硫电池模块保温箱的温度最大值点与温度最小值点的温度差超过阈值温度时,该阈值温度一般在27~29℃时,则BMS系统9继续通过左后底部加热板11和/或左后独用加热板21的温度控制电路,以及左后底部加热板11和/或左后独用加热板21周围的测温热电偶,降低左后底部加热板11和/或左后独用加热板21表面的温度,从而降低位于左后保温室100的温度最大值点的温度。这样操作的原因在于左后底部加热板11和左后独用加热板21距离温度最大值点距离较近,而距离温度最小值点距离较远,左后底部加热板11和左后独用加热板21表面的温度降低后,可以有效降低温度最大值点的温度,而不至于造成温度最小值点温度的持续降低,同时对其它保温室的影响也较小。在实际使用过程中,左后底部加热板11和左后独用加热板21降温的顺序并没有强制的规定。
BMS系统9继续定时比较钠硫电池模块保温箱的温度最大值点与温度最小值点的温度差,若温度最大值点与温度最小值点的温度差继续扩大,由于在钠硫电池模块保温箱中,前公用加热板22和温度最小值点的距离是最小的,因此,为了提高温度最小值点的温度,又不造成温度最大值点温度的升高,BMS系统9通过前公用加热板32的温度控制电路,以及前公用加热板32周围的测温热电偶,升高前公用加热板32表面的温度,从而使温度最小值点温度升高。
在BMS系统9通过前公用加热板32的温度控制电路,增大前公用加热板32表面的温度的同时,还可以通过左加热板41和右加热板51的温度控制电路,以及左加热板41和右加热板51周围的测温热电偶,降低左加热板41和右加热板51表面的温度,以降低前公用加热板32表面的温度升高对于左前保温室200和右前保温室400温度的影响,同时还能进一步降低位于左后保温室100内温度最大值点的温度。
若位于左后保温室100内的左后底部加热板11周围的测温热电偶检测到左后底部加热板11表面的温度在定时内,比如2小时内下降了20℃或以上,判定左后底部加热板11损坏,并向BMS系统9发出表示左后底部加热板11损坏的信号,BMS系统9通过左后独用加热板21的温度控制电路以及左后独用加热板21周围的测温热电偶,提高左后独用加热板21表面的温度,控制左后保温室100的温度不再下降,或将左后保温室100内的温度恢复到左后底部加热板11损坏前的温度。若左后保温室100内的温度继续下降,BMS系统9通过左加热板41的温度控制电路,以及左加热板41周围的测温电路,调高左加热板41表面的温度,控制左后保温室100的温度不再下降,或将左后保温室100内的温度恢复到左后底部加热板11损坏前的温度。同时,BMS系统9还可通过左前底部加热板12的温度控制电路以及左前底部加热板12周围的测温热电偶,或者左前独用加热板31的温度控制电路及左前独用加热板31周围的测温热电偶,调低左前底部加热板12或者左前独用加热板31表面的温度,减少左加热板41表面温度上升对于左前保温室200的影响。BMS系统9通过后公用加热板22的温度控制电路及后公用加热板22周围的测温热电偶,调高后公用加热板22表面的温度,控制左后保温室100的温度不再下降,或将左后保温室100内的温度恢复到左后底部加热板11损坏前的温度。同时,BMS系统9还可右后底部加热板13的温度控制电路以及右后底部加热板13周围的测温热电偶,或者右后独用加热板23的温度控制电路及右后独用加热板23周围的测温热电偶,调低右后底部加热板13或者右后独用加热板23表面的温度,减少后公用加热板22表面温度上升对于右后保温室300的影响。
若位于左后保温室100内的左后独用加热板21周围的测温热电偶检测到左后独用加热板21表面的温度在定时内,比如2小时内下降了20℃或以上,判定左后独用加热板21损坏,并向BMS系统9发出表示左后独用加热板21损坏的信号,BMS系统9通过左后底部加热板11的温度控制电路以及左后底部加热板11周围的测温热电偶,提高左后底部加热板11表面的温度,控制左后保温室100的温度不再下降,或将左后保温室100内的温度恢复到左后独用加热板21损坏前的温度。若左后保温室100内的温度继续下降,BMS系统9通过左加热板41的温度控制电路,调高左加热板41表面的温度,控制左后保温室100的温度不再下降,或将左后保温室100内的温度恢复到左后独用加热板21损坏前的温度。同时,BMS系统9还可通过左前底部加热板12的温度控制电路以及左前底部加热板12周围的测温热电偶,或者左前独用加热板31的温度控制电路以及左前独用加热板31周围的测温热电偶,调低左前底部加热板12或者左前独用加热板31表面的温度,减少左加热板41表面温度上升对于左前保温室200的影响。BMS系统9通过后公用加热板22的温度控制电路及后公用加热板22周围的测温热电偶,调高后公用加热板22表面的温度,控制左后保温室100的温度不再下降,或将左后保温室100内的温度恢复到左后独用加热板21损坏前的温度。同时,BMS系统9还可右后底部加热板13的温度控制电路以及右后底部加热板13周围的测温热电偶,或者右后独用加热板23的温度控制电路及右后独用加热板23周围的测温热电偶,调低右后底部加热板13或者右后独用加热板23表面的温度,减少后公用加热板22表面温度上升对于右后保温室300的影响。
若位于左加热板41周围的测温热电偶检测到左加热板41表面的温度在定时内,比如2小时内下降了20℃或以上,则判定左加热板41损坏,并向BMS系统9发出表示左加热板41损坏的信号,BMS系统9通过左后独用加热板21的温度控制电路和左后独用加热板21周围的测温热电偶,以及左前独用加热板31的温度控制电路和左前独用加热板31周围的测温热电偶,提高左后独用加热板21表面的温度和左前独用加热板31表面的温度,控制左后保温室100和左前保温室200的温度不再下降,或将左后保温室100和左前保温室200的温度恢复到左加热板41损坏前的温度。BMS系统9通过左后底部加热板11的温度控制电路和左后底部加热板11周围的测温热电偶,以及左前底部加热板12的温度控制电路和左前底部加热板12周围的测温热电偶,提高左后底部加热板11表面的温度和左前底部加热板12表面的温度,控制左后保温室100和左前保温室200的温度不再下降,或将左后保温室100和左前保温室200的温度恢复到左加热板41损坏前的温度。
若位于后公用加热板22周围的测温热电偶检测到后公用加热板22表面的温度在定时内,比如2小时内下降了20℃或以上,则判定后公用加热板22损坏,并向BMS系统9发出表示后公用加热板22损坏的信号,BMS系统9通过左后独用加热板21的温度控制电路和左后独用加热板21周围的测温热电偶,以及右后独用加热板23的温度控制电路和右后独用加热板23周围的测温热电偶,提高左后独用加热板21表面的温度和右后独用加热板23表面的温度,控制左后保温室100和右后保温室300的温度不再下降,或将左后保温室100和右后保温室300的温度恢复到后公用加热板22损坏前的温度。BMS系统9通过左后底部加热板11的温度控制电路和左后底部加热板11周围的测温热电偶,以及右后底部加热板13的温度控制电路和右后底部加热板13周围的测温热电偶,提高左后底部加热板11表面的温度和右后底部加热板13表面的温度,控制左后保温室100和右后保温室300的温度不再下降,或将左后保温室100和右后保温室300的温度恢复到后公用加热板22损坏前的温度。
这样,钠硫电池模块中任意一块加热板损坏,钠硫电池模块仍然能正常运行。钠硫电池模块运行过程中,十二块加热板的温度均应控制在300~350℃之间。实施例中仅对左后保温室100内有加热板损坏的情况进行了说明。
本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围内,对以上所述实施例的变化、变型都将落在本发明的权利要求书范围内。

Claims (10)

1.一种钠硫电池模块保温箱温度场控制方法,包括下列步骤:
加热板布置步骤:在钠硫电池模块保温箱的底板、两块相对平行设置的侧壁、两块相对平行设置的端壁上一共设置十二块加热板,即在所述底板上布置呈二行二列矩阵排布的四块底部加热板、在两块所述侧壁上的各一块公用侧加热板,以及对称位于所述公用侧加热板两侧的独用侧加热板、在两块所述端壁上的各一块端部加热板;
绝热板布置步骤:在所述钠硫电池模块保温箱内布置与两块所述侧壁平行的长绝热板,以及与两块所述端壁平行的短绝热板,且所述长绝热板与所述短绝热板呈十字交叉排列,将所述钠硫电池模块保温箱等分为四个保温室,且每个所述保温室使用一块底部加热板和一块独用侧加热板,且两个通过所述短绝热板相邻的保温室共同使用一块公用侧加热板,两个通过所述长绝热板相邻的保温室共同使用一块端部加热板;
加热步骤:将十二块所述的加热板加热至300~350℃;
测温步骤:测量所述底板顶面边缘上各点的温度,确定其中最大值所在的点为钠硫电池模块保温箱内温度最大值点,以所述长绝热板热和所述短绝热板顶边的交点为钠硫电池模块保温箱内的温度最小值点;
保温步骤:在300~350℃调整十二块所述加热板的温度,使钠硫电池模块保温箱内温度最大值点和温度最小值点的温度差在30℃以内。
2.根据权利要求1所述的一种钠硫电池模块保温箱温度场控制方法,其特征在于:当钠硫电池模块保温箱内温度最大值点与温度最小值点之间的温度差超过阈值温度时,调低温度最大值点所在的保温室的底部加热板和/或独用侧加热板表面的温度。
3.根据权利要求2所述的一种钠硫电池模块保温箱温度场控制方法,其特征在于:当钠硫电池模块保温箱内温度最大值点与温度最小值点之间的温度差超过阈值温度时,调高温度最大值点所在保温室不使用的公用侧加热板表面的温度。
4.根据权利要求2或3所述的一种钠硫电池模块保温箱温度场控制方法,其特征在于:当钠硫电池模块保温箱内温度最大值点与温度最小值点之间的温度差超过阈值温度时,调低温度最大值点所在保温室所使用的端部加热板表面的温度。
5.根据权利要求1所述的一种钠硫电池模块保温箱温度场控制方法,其特征在于:所述钠硫电池模块保温箱内任意一个保温室所使用的底部加热板表面的温度在定时内下降了20℃以上,判定该底部加热板损坏,调高该保温室所使用的独用侧加热板表面的温度,控制该保温室的温度不再下降。
6.根据权利要求1所述的一种钠硫电池模块保温箱温度场控制方法,其特征在于:所述钠硫电池模块保温箱内任意一个保温室所使用的独用侧加热板表面的温度在定时内下降了20℃以上,判定该独用侧加热板损坏,调高该保温室所使用的底部加热板表面的温度,控制该保温室的温度不再下降。
7.根据权利要求1所述的一种钠硫电池模块保温箱温度场控制方法,其特征在于:所述钠硫电池模块保温箱内任意一块端部加热表面的温度在定时内下降了20℃以上,判定该端部加热板损坏,并调高使用该端部加热板的两个保温室的底部加热板和/或独用侧加热板表面的温度,控制该两个保温室的温度不再下降。
8.根据权利要求1所述的一种钠硫电池模块保温箱温度场控制方法,其特征在于:所述钠硫电池模块保温箱内任意一块公用侧加热板表面的温度在定时内下降了20℃以上,判定该公用侧加热板损坏,并调高使用该公用侧加热板的两个保温室的底部加热板和/或独用侧加热板表面的温度,控制该两个保温室的温度不再下降。
9.根据权利要求1所述的一种钠硫电池模块保温箱温度场控制方法,其特征在于:各块所述加热板表面的温度是通过对应位于各块所述加热板周围的测温热电偶进行测量的,所述温度最大值点的位置和温度是通过位于所述底板顶面边缘的极大值热电偶进行测量的,所述温度最小值点的温度是通过位于所述长绝热板顶边和所述短绝热板顶边的交点的极小值热电偶进行测量的。
10.根据权利要求1所述的一种钠硫电池模块保温箱温度场控制方法,其特征在于:各块加热板的温度是通过对应于位于各块所述加热板上,并连接BMS系统的温度控制电路进行控制的。
CN201410106679.2A 2014-03-21 2014-03-21 一种钠硫电池模块保温箱温度场控制方法 Active CN103840232B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410106679.2A CN103840232B (zh) 2014-03-21 2014-03-21 一种钠硫电池模块保温箱温度场控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410106679.2A CN103840232B (zh) 2014-03-21 2014-03-21 一种钠硫电池模块保温箱温度场控制方法

Publications (2)

Publication Number Publication Date
CN103840232A CN103840232A (zh) 2014-06-04
CN103840232B true CN103840232B (zh) 2015-11-04

Family

ID=50803506

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410106679.2A Active CN103840232B (zh) 2014-03-21 2014-03-21 一种钠硫电池模块保温箱温度场控制方法

Country Status (1)

Country Link
CN (1) CN103840232B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105630035A (zh) * 2015-12-21 2016-06-01 国网上海市电力公司 一种钠硫电池模块专用保温箱温场控制系统检测方法
CN106058385B (zh) * 2016-08-17 2018-07-13 上海电气钠硫储能技术有限公司 一种钠硫电池保温箱加热部件功率计算方法
KR102312926B1 (ko) 2017-10-19 2021-10-14 주식회사 엘지화학 병렬연결 구조의 배터리 팩의 히터 제어 시스템
DE112018008036T5 (de) 2018-09-27 2021-06-02 Research Institute Of Industrial Science & Technology Natrium-Sekundärbatteriemodul

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102054952A (zh) * 2010-12-11 2011-05-11 徐荣辉 钠硫电池专用保温箱
CN103117422A (zh) * 2013-03-07 2013-05-22 上海电气钠硫储能技术有限公司 一种钠硫电池模块保温箱

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052764A (ja) * 1999-08-06 2001-02-23 Furukawa Electric Co Ltd:The モジュール型二次電池
JP4030331B2 (ja) * 2002-03-28 2008-01-09 日本碍子株式会社 ナトリウム−硫黄電池の制御装置
JP2003317799A (ja) * 2002-04-24 2003-11-07 Nippon Telegr & Teleph Corp <Ntt> ナトリウム硫黄電池モジュールおよびその温度制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102054952A (zh) * 2010-12-11 2011-05-11 徐荣辉 钠硫电池专用保温箱
CN103117422A (zh) * 2013-03-07 2013-05-22 上海电气钠硫储能技术有限公司 一种钠硫电池模块保温箱

Also Published As

Publication number Publication date
CN103840232A (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
CN103840232B (zh) 一种钠硫电池模块保温箱温度场控制方法
CN108027761B (zh) 用于热点内插的热传感器放置
CN204514839U (zh) 用于测量样品热传递性能的设备
CN103840231B (zh) 一种钠硫电池模块保温箱温度场控制系统
CN104111269A (zh) 一种用于高温大热流环境的热流传感器标定装置
WO2017099987A1 (en) Accurate hotspot detection through temperature sensors
CN105183103A (zh) 一种服务器机箱
Hamann A measurement-based method for improving data center energy efficiency
CN103840230B (zh) 一种钠硫电池模块保温箱
CN204578953U (zh) 一种可散热和隔热的车载音响导航箱体
CN205985874U (zh) 一种电气自动化控制的散热式电气柜
CN209979700U (zh) 一种功率器件或模块老化温控夹具
TWI697150B (zh) 陣列式燃料電池系統之控制裝置與方法
CN107300571B (zh) 一种建筑墙体传热系数检测装置及建筑墙体传热系数检测方法
US20150295288A1 (en) Cooling element and battery system
CN107771372A (zh) 包括多晶片功率模块的系统、用于控制多晶片功率模块的操作的方法、用于控制多晶片功率模块的操作的装置
CN115413209B (zh) 一种集成于机电设备的控制装置的散热方法
CN206340844U (zh) 一种具有红外观察温升功能的配电柜
CN105322456A (zh) 一种散热效率高的大电流开关柜
CN205383900U (zh) 片式耐高温承烧板
CN103872390B (zh) 一种钠硫电池模块
CN204425867U (zh) 一种自动温控机箱
US20120173036A1 (en) Thermal Cycling and Gradient Management in Three-Dimensional Stacked Architectures
CN206196232U (zh) 一种用于水冷电气柜的辅助散热装置
CN202083216U (zh) 用于箱式加热炉温场热电偶非线性修正系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200902

Address after: 200122 Shanghai City, Pudong New Area source deep road, No. 1122

Co-patentee after: EAST CHINA ELECTRIC POWER RESEARCH INSTITUTE Co.,Ltd.

Patentee after: STATE GRID SHANGHAI MUNICIPAL ELECTRIC POWER Co.

Address before: 200122 Shanghai City, Pudong New Area source deep road, No. 1122

Co-patentee before: SHANGHAI ELECTRIC SODIUM SULFUR ENERGY STORAGE TECHNOLOGY Co.,Ltd.

Patentee before: STATE GRID SHANGHAI MUNICIPAL ELECTRIC POWER Co.

TR01 Transfer of patent right