WO2020066798A1 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
WO2020066798A1
WO2020066798A1 PCT/JP2019/036599 JP2019036599W WO2020066798A1 WO 2020066798 A1 WO2020066798 A1 WO 2020066798A1 JP 2019036599 W JP2019036599 W JP 2019036599W WO 2020066798 A1 WO2020066798 A1 WO 2020066798A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
signal
wireless signal
control device
processing unit
Prior art date
Application number
PCT/JP2019/036599
Other languages
English (en)
French (fr)
Inventor
宜夫 梅垣
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020066798A1 publication Critical patent/WO2020066798A1/ja
Priority to US17/208,217 priority Critical patent/US11458928B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/20Means to switch the anti-theft system on or off
    • B60R25/24Means to switch the anti-theft system on or off using electronic identifiers containing a code not memorised by the user
    • B60R25/245Means to switch the anti-theft system on or off using electronic identifiers containing a code not memorised by the user where the antenna reception area plays a role
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C9/00309Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/01Fittings or systems for preventing or indicating unauthorised use or theft of vehicles operating on vehicle systems or fittings, e.g. on doors, seats or windscreens
    • B60R25/02Fittings or systems for preventing or indicating unauthorised use or theft of vehicles operating on vehicle systems or fittings, e.g. on doors, seats or windscreens operating on the steering mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/20Means to switch the anti-theft system on or off
    • B60R25/24Means to switch the anti-theft system on or off using electronic identifiers containing a code not memorised by the user
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/40Features of the power supply for the anti-theft system, e.g. anti-theft batteries, back-up power supply or means to save battery power
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B49/00Electric permutation locks; Circuits therefor ; Mechanical aspects of electronic locks; Mechanical keys therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3822Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving specially adapted for use in vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/12Detection or prevention of fraud
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C9/00309Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks
    • G07C2009/00341Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks keyless data carrier having more than one limited data transmission ranges
    • G07C2009/00349Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks keyless data carrier having more than one limited data transmission ranges and the lock having only one limited data transmission range
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C9/00309Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks
    • G07C2009/00412Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks the transmitted data signal being encrypted
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C2009/00753Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys
    • G07C2009/00769Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C2209/00Indexing scheme relating to groups G07C9/00 - G07C9/38
    • G07C2209/60Indexing scheme relating to groups G07C9/00174 - G07C9/00944
    • G07C2209/63Comprising locating means for detecting the position of the data carrier, i.e. within the vehicle or within a certain distance from the vehicle

Definitions

  • the present disclosure relates to a vehicle control device.
  • a vehicle control device that performs wireless communication with a portable device carried by a user of the vehicle to realize a smart entry function or a remote keyless entry function may be used as a vehicle control device mounted on the vehicle.
  • the smart entry function means a function of unlocking a vehicle door when the portable device enters a wireless communication area near the vehicle.
  • the remote keyless entry means a function of locking or unlocking a door of a vehicle in response to an operation of a switch provided in the portable device.
  • such a vehicle control device is called an in-vehicle device, and is capable of receiving a signal in an RF band (for example, 300 MHz to 400 MHz) transmitted from a portable device, and an LF band (for example, 30 kHz) for the portable device. (Up to 300 kHz).
  • the vehicle control device is configured as a computer including a CPU, a ROM, and a RAM.
  • the transmitting portable device is connected to the vehicle user based on information such as an ID included in the signal. In some cases, authentication is performed as to whether the device is a legitimate portable device carried by the user (see Patent Document 1).
  • the reference value for determining whether the transmission source of the wireless signal is the portable device for example, the reference value range of the time width of L (High) or L (Low) of the signal is relatively loose. May be set.
  • the vehicle control device can receive various external noises, that is, signals in the RF band output from devices different from a regular portable device.
  • the external noise examples include a signal transmitted from a portable device for another vehicle control device, a radio communication signal between equipment installed in each parking space in a parking lot and a management device, and various radio towers. Wireless radio waves output from the Internet.
  • the reference value for performing the authentication may be set relatively loosely, and the external noise may be determined to be a signal output from the portable device. In this case, based on the ID or the like included in the wireless signal, authentication is performed to determine whether or not the signal transmission source is a legitimate portable device for the vehicle, but the authentication fails because of external noise. Will be done.
  • there is a problem that useless authentication for external noise is performed, and the power consumption of the CPU that executes such authentication is unnecessarily increased.
  • the restored CPU performs the authentication process and communicates with other vehicle control devices. Periodic communication is started via the network in the vehicle, and the power consumption of the CPUs of other vehicle control devices as well as the corresponding vehicle control device increases.
  • wireless communication is performed with a portable device mounted on a vehicle and carried by a user of the vehicle, and at least a part of functions of the vehicle is controlled according to an instruction from the portable device.
  • a vehicle control device is provided. The vehicle control device determines whether a received wireless signal that is a wireless signal received by an antenna mounted on the vehicle is a regular wireless signal that is a wireless signal transmitted from the portable device.
  • a first processing unit that executes a first process including a process, and a second process that includes authentication of the portable device when the received wireless signal is determined to be the regular wireless signal by the execution of the first process.
  • a second processing unit that executes a process and does not execute the second process when it is determined that the received wireless signal is not the normal wireless signal, wherein the first processing unit executes the first process
  • the power consumption when performing the second process is smaller than the power consumption when performing the second process by the second processing unit.
  • the vehicle control device of this embodiment when it is determined that the received wireless signal is not a regular wireless signal by performing the determination process included in the first process, the second process including the authentication of the portable device is not performed,
  • the power consumption when executing the first process is smaller than the power consumption when executing the second process, the configuration that always executes the second process instead of the first process, and the first process
  • the power consumption of the vehicle control device can be reduced as compared with a configuration in which the second process is always executed. For this reason, even if the vehicle control device is mounted on the vehicle and the power is supplied from the battery, it is possible to prevent the battery from running down.
  • the present disclosure can be realized in various forms other than the vehicle control device.
  • a vehicle equipped with a vehicle control device, a vehicle electronic key system, a portable device authentication device, a vehicle control method, a portable device authentication method, a computer program for implementing these devices and methods, and a storage storing such a computer program It can be realized in the form of a medium or the like.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a vehicle equipped with a vehicle control device according to an embodiment of the present disclosure, and a vehicle system including the vehicle control device.
  • FIG. 2 is a block diagram illustrating a detailed configuration of the vehicle system according to the first embodiment.
  • FIG. 3 is a flowchart illustrating a procedure of an RF signal reception corresponding process according to the first embodiment;
  • FIG. 4 is a flowchart illustrating a procedure of a normal wireless signal determination process;
  • FIG. 5 is an explanatory diagram illustrating an example of encoding by the bi-phase FSK method.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a vehicle equipped with a vehicle control device according to an embodiment of the present disclosure, and a vehicle system including the vehicle control device.
  • FIG. 2 is a block diagram illustrating a detailed configuration of the vehicle system according to the first embodiment.
  • FIG. 3 is a flowchart illustrating a procedure of an RF signal reception corresponding process according
  • FIG. 6 is a block diagram showing a detailed configuration of the vehicle system according to the second embodiment.
  • FIG. 7 is a flowchart illustrating a procedure of an RF signal reception corresponding process according to the second embodiment;
  • FIG. 8 is a flowchart illustrating the procedure of the normal radio signal second determination process according to the second embodiment.
  • the remote keyless entry means that when the user of the vehicle 100 operates a push switch (not shown) of the portable device 200, opening / closing, unlocking, locking, and the like of the door of the vehicle 100 are performed according to the operation.
  • a smart entry may be realized instead of the remote keyless entry or in addition to the remote keyless entry.
  • the smart entry means that the door of the vehicle 100 is unlocked when the user of the vehicle 100 carries the portable device 200 and enters a wireless communication area near the vehicle 100, or the user operates the portable device 200. This means starting the vehicle 100 by operating a predetermined switch while sitting in the driver's seat while carrying the vehicle.
  • the vehicle control device 10 is also called an on-vehicle device.
  • the vehicle system 500 includes the portable device 200 capable of wireless communication with each other and the vehicle control device 10.
  • the portable device 200 is used by being carried by a user as an electronic key for the vehicle 100.
  • the portable device 200 includes a configuration for transmitting a signal in an RF band (for example, 300 MHz to 400 MHz) (hereinafter, referred to as an “RF signal”) in addition to the above-described push switch (not shown), and an LF band (30 kHz to 300 kHz). ) (Hereinafter, referred to as “LF signal”).
  • RF signal for example, 300 MHz to 400 MHz
  • LF signal a configuration for transmitting an RF signal
  • an antenna, an amplification circuit, a modulation circuit, a control IC (Integrated Circuit), or the like is applicable.
  • the portable device 200 and the vehicle control device 10 employ a bi-phase FSK (Frequency Shift Keying) method as a modulation and coding method in RF band wireless communication.
  • a bi-phase FSK (Frequency Shift Keying) method As shown in FIG. 5, in the encoding process of the bi-phase FSK system, data “1” is represented by H (High) or L (Low) in the entire code 1 bit period, and data “0” is represented by the code L and H are switched and displayed at a period almost half of one bit period (hereinafter, referred to as a “half bit period”).
  • the times t1 to t11 for each half bit period are shown together with the coded signal to facilitate understanding.
  • the encoded signal indicates data "1"
  • the encoded signal indicates data "0"
  • the encoded signal indicates data "0"
  • L or H that switches in a half bit cycle is a short bit
  • L or H that switches in a code 1 bit cycle is a long bit
  • two consecutive short bits are “0”.
  • bi-phase FSK encoding when data “1” is continuous, long bits of the preceding “1” and long bits of the subsequent “1” are used so that boundaries between bits become clear. With this, H and L are switched.
  • a digital signal as shown in FIG. 5 is output as an analog signal with its frequency switched between long bits and short bits.
  • the modulation scheme of the bi-phase FSK scheme can be said to be a modulation scheme corresponding to the encoding scheme of the bi-phase FSK scheme.
  • the control IC for transmitting the RF signal of the portable device 200 performs an encryption process on the data to be transmitted.
  • a configuration for receiving the above-mentioned LF signal for example, an antenna, an amplification circuit, an encoding circuit, a control IC, or the like is applicable.
  • the vehicle control device 10 includes an ASIC (Application Specific Integrated Circuit) 11, a CPU (Central Processing Unit) 12, a memory 13, and a CAN (Controller Area Network) communication unit ECU (communication unit) 14. Electronic ⁇ Control ⁇ Unit).
  • ASIC Application Specific Integrated Circuit
  • CPU Central Processing Unit
  • memory 13 a memory
  • CAN Controller Area Network
  • ECU Electronic ⁇ Control ⁇ Unit
  • the vehicle control device 10 is connected to the RF receiving unit 20 and the LF transmitting unit 30, and performs wireless communication in the RF band and the LF band with the portable device 200.
  • the RF receiver 20 includes an RF antenna 21 and an RF receiving circuit 22.
  • the RF receiving circuit 22 amplifies and encodes the RF signal received by the RF antenna 21 and outputs a digital signal.
  • the encoding process by the RF receiving circuit 22 is performed by the above-described bi-phase FSK method.
  • the LF transmitting section 30 includes a plurality of LF antennas 31 and an LF transmitting circuit 32.
  • LF antennas 31 are installed at a plurality of positions in vehicle 100. Specifically, it is installed in the driver's seat door, the passenger's seat door, the left and right doors of the rear seat, the rear gate, and also in the vehicle interior.
  • the LF transmission circuit 32 modulates and amplifies the digital signal output from the vehicle control device 10 and transmits an LF band radio wave via the LF antenna 31.
  • FIGS. 1 and 2 illustrate a body ECU 61 and an engine ECU 62 as other ECUs.
  • the body ECU 61 controls unlocking and locking of a door of the vehicle 100, lighting states of various lamps such as a hazard lamp, and the like.
  • Engine ECU 62 controls driving of the engine of vehicle 100.
  • the ASIC 11 functions as the first processing unit 111.
  • the first processing unit 111 performs a first process in an RF signal reception corresponding process described later. Details of the RF signal reception handling process and the first process will be described later.
  • the CPU 12 functions as the second processing unit 121 and the LF signal transmission control unit 122 by executing a control program stored in the memory 13 in advance.
  • the second processing unit 121 executes a second process in an RF signal reception corresponding process described later. Details of the second processing will be described later.
  • the LF signal transmission control unit controls transmission of the LF signal. Specifically, transmission timing of the LF signal, transmission period, generation of transmission data, and the like are performed.
  • the memory 13 includes a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the above-mentioned control program is stored in the ROM.
  • a vehicle-related information storage unit 131 is provided. Vehicle-related information is stored in the vehicle-related information storage unit 131 in advance.
  • the vehicle-related information is information related to the vehicle 100, and includes an identifier that can distinguish the vehicle 100 from other vehicles in the present embodiment. Note that, in addition to the identifier, any other information related to the vehicle, such as information indicating a vehicle manufacturer, information indicating an engine model number, and information indicating an identifier that can discriminate a user, is included in the vehicle-related information. May be.
  • the CAN communication unit 14 controls communication via the CAN 50. Thereby, the vehicle control device 10 can exchange data with another ECU. For example, it is possible to instruct the body ECU 61 to blink a hazard lamp.
  • the vehicle control device 10, the RF receiver 20, the LF transmitter 30, the body ECU 61, and the engine ECU 62 are supplied with power from a battery 70 mounted on the vehicle 100, respectively.
  • the vehicle control device 10, the RF receiving unit 20, and the LF transmitting unit 30 are supplied with power from the battery 70 even when the vehicle 100 is parked.
  • the vehicle control device 10 can receive the RF signal and transmit the LF signal even while the vehicle 100 is parked.
  • the operation mode of the CPU 12 is selectively switched to any one of the sleep mode and the normal mode.
  • the sleep mode is an operation mode in which only a very small amount of processing such as switching operation modes can be executed, and power consumption is extremely low.
  • the normal mode is an operation mode in which the CPU 12 can execute all the processes that can be executed, and consumes more power than the sleep mode. While the vehicle 100 is parked, the operation mode of the CPU 12 is a sleep mode.
  • the vehicle control device 10 having the above-described configuration executes an RF signal reception corresponding process described later.
  • the RF signal corresponding processing is to determine whether the received RF signal is a wireless signal transmitted from the portable device (hereinafter, referred to as “regular wireless signal”), and to determine whether the received RF signal is for the vehicle 100.
  • the RF signal reception corresponding processing shown in FIG. 3 is started when the vehicle 100 enters a parking state.
  • the parking state means a state in which the user gets off the vehicle 100 with the portable device 200 after the ignition of the vehicle 100 is switched from on to off, and the door is locked.
  • the fact that the user got off with the portable device 200 can be determined, for example, by transmitting LF signals from all the LF antennas 31 and not receiving an RF signal within a predetermined time thereafter.
  • step S110 determines whether an RF signal has been received via the RF receiving unit 20 (step S110). When it is determined that the RF signal is not received (step S110: NO), step S110 is executed again. That is, the first processing unit 111 waits until receiving the RF signal.
  • the case where the RF signal is received includes a case where the user approaches the portable device 200 with the portable device 200 and presses a push button of the portable device 200, and a case where external noise in the RF band is received.
  • Examples of such extraneous noise include, for example, a signal transmitted from a portable device for another vehicle control device, a wireless communication signal between equipment installed in each parking space in a parking lot, and a management device, Radio waves output from various radio towers, electromagnetic waves output from fluorescent lamps and broken neon signs, and the like are applicable.
  • step S110 When it is determined that the RF signal has been received (step S110: YES), the first processing unit 111 executes a normal wireless signal determination process (step S115), and based on the result of the normal wireless signal determination process, the first processing unit 111 receives the RF signal. It is determined whether the RF signal is a regular wireless signal (step S120). In the present embodiment, steps S115 and S120 correspond to the first processing and the determination processing in the present disclosure.
  • the first processing unit 111 determines whether the time lengths of the short bits and the long bits sampled from the received RF signal are both within a predetermined time range. Is determined (step S205). As the sampled short bits and long bits, for example, all the short bits and long bits received within a predetermined time from the start of receiving the RF signal may be used. Further, for example, a predetermined number of short bits and long bits received at an arbitrary timing may be used. As shown in FIG. 5, the normal radio signal is output after adjusting the long bit time length TL and the short bit time length TS to values within a predetermined time range.
  • the long bit time length TL may be 0.7 microseconds and the short bit time length TS may be 0.35 microseconds.
  • the time length of a long bit or a short bit may be out of a predetermined time range.
  • the time length of a long bit or a short bit may be out of a predetermined time range depending on the surrounding communication environment such as the size and type of a shield.
  • the predetermined time range is set as a range in which a value obtained by increasing or decreasing the design value of the time length of the long bit and the short bit by a predetermined ratio is the limit value. In the present embodiment, the predetermined ratio is 30%.
  • a relatively large value of 30% is set as the predetermined ratio in order to correctly determine that the signal is a normal wireless signal.
  • the above-mentioned predetermined ratio is not limited to 30%, but may be an arbitrary ratio of 0% or more.
  • step S205 When it is determined that the time lengths of the short bits and the long bits are both within the predetermined time range (step S205: YES), it is determined whether the number of short bits sandwiched between two adjacent long bits is an even number. Is determined (step S210). In the signal obtained by the bi-phase FSK encoding process, the number of short bits sandwiched between two adjacent long bits is an even number. For example, as shown in FIG. 5, short bits sandwiched between a long bit “1” at times t2 to t4 and a long bit “1” at times t8 to t10 adjacent to the long bits are (a) to (a). (D).
  • the number of short bits between two adjacent long bits is an even number in a digital signal obtained by encoding.
  • external noise is generally not modulated by the bi-phase FSK method, a digital signal obtained by encoding such a signal does not have two types of bits, a long bit and a short bit, or has no neighboring bits. In many cases, the number of short bits sandwiched between two matching long bits becomes an odd number. However, a long bit and a short bit exist in the external noise by chance, and the number of short bits sandwiched between two adjacent long bits may become an even number.
  • step S210 the determination in step S210 is performed for all two adjacent long bits existing within a range of 9 bits in total.
  • 9 bits mean long bits, that is, bits for 9 cycles when counted in a code 1 bit cycle.
  • Step S210 may be performed not only for 9 bits but also for all adjacent long bits existing within an arbitrary bit width range.
  • the first processing unit 111 determines that the number of short bits within a predetermined bit width range It is determined whether or not there is a determination bit (step S215).
  • the RF signal transmitted from the portable device 200 is transmitted including a determination bit for each predetermined bit width.
  • the determination bit is a bit set to specify that the RF signal is an RF signal output from the portable device, and is set for each predetermined bit width.
  • a predetermined number of consecutive “1” s is employed as the determination bit.
  • the predetermined number is 5, but is not limited to 5 and may be an arbitrary number of 2 or more.
  • the predetermined bit width is 64 bits (64 periods) in a code 1 bit period, but is not limited to 64 bits and may be an arbitrary bit width larger than a predetermined number of consecutive “1” s. Is also good.
  • step S215 When it is determined that the determination bit exists within the predetermined bit width range (step S215: YES), the first processing unit 111 determines that the received RF signal is a regular wireless signal (step S220).
  • step S205 determines that at least one of the time lengths of the short bit and the long bit is not within the predetermined time range.
  • step S210 determines that the number of short bits is not an even number (step S210: NO)
  • step S215 determines that there is no determination bit within the predetermined bit width range.
  • the first processing unit 111 determines that the received RF signal is not a regular wireless signal (step S225). After the execution of step S225 and the above-described step S220, the above-described step S120 shown in FIG. 3 is executed.
  • Step S205 corresponds to the second sub-determination process in the present disclosure.
  • Step S210 corresponds to the first sub-determination process in the present disclosure, and step S215 corresponds to the third sub-determination process in the present disclosure.
  • step S120 when it is determined in step S120 that the received RF signal is not a regular wireless signal (step S120: NO), the process returns to step S110.
  • step S120: YES when it is determined that the received RF signal is a regular wireless signal (step S120: YES), the mode switching function unit (not shown) of the CPU 12 changes the operation mode of the CPU 12 from the sleep mode to the normal mode. Switching is performed (step S125).
  • the vehicle control device 10 starts regular communication with the other ECUs 61 and 62 via the CAN 50. As a result, the power consumption of the CPU 12 rapidly increases, and the power consumption of the other ECUs 61, 62 and the like also rapidly increases, so that the power consumption of the entire vehicle 100 rapidly increases.
  • the second processing is performed by the second processing unit 121.
  • the second process includes a process including authentication (step S135 described later) as to whether or not the portable device that is the source of the received RF signal is the portable device 200 that is the portable device for the vehicle 100. Do.
  • the power consumption of the CPU 12 when executing such authentication is high. Therefore, the power consumption of the entire vehicle control device 10 in the second process is greater than the power consumption of the entire vehicle control device 10 in the first process.
  • step S120: NO the second process is not performed, and the process returns to step S110. Therefore, the power consumption of the battery 70 can be reduced as compared with the configuration in which the second processing is executed when a signal that is not a regular wireless signal is received.
  • the second processing unit 121 decodes the received data (Step S130).
  • the second processing unit 121 performs an authentication process based on the decrypted received data (Step S135).
  • the vehicle-related information included in the received RF signal is compared with the vehicle-related information stored in the vehicle-related information storage unit 131, and when they match, it is determined that the authentication is successful. If the two do not match, it is determined that the authentication has failed.
  • the vehicle-related information included in the received data does not completely match the vehicle-related information stored in the vehicle-related information storage unit 131, as long as the difference between the two is within a predetermined range. It may be determined that the authentication has succeeded, and that the authentication fails if the value exceeds the range.
  • the second processing unit 121 determines whether the authentication has been successful based on the result of the authentication processing in step S135 (step S140). If it is determined that the authentication has not been successful (step S140: NO), the process returns to step S110. On the other hand, when it is determined that the authentication is successful (step S140: YES), the second processing unit 121 determines whether the value of the rolling counter is normal (step S145).
  • the portable device 200 increments the rolling counter by one each time a push switch (not shown) is pressed, and transmits the value of the counter to the vehicle control device 10 in an RF signal. In the vehicle control device 10, the second processing unit 121 also has a rolling counter, and increases the counter value each time an RF signal is received from the portable device 200.
  • the value of the rolling counter included in the RF signal transmitted by the portable device 200 and the value of the rolling counter included in the second processing unit 121 are as follows. Should match. Therefore, in step S145, the second processing unit 121 determines whether or not the rolling counter value included in the received RF signal matches the value of the rolling counter that the second processing unit 121 has. The value is determined to be normal, and if they do not match, it is determined that the value of the rolling counter is not normal. The case where the rolling counter values do not match is, for example, a case where a failure occurs in the configuration for transmitting the RF signal in the portable device 200.
  • step S145: NO If it is determined that the value of the rolling counter is not normal (step S145: NO), the process returns to step S110.
  • step S145: YES the second processing unit 121 specifies the control content specified in the RF signal (step S150).
  • the control content specified in the RF signal that is, the control content instructed to the vehicle control device 10 by operating the push switch included in the portable device 200. For example, the unlocking of all doors, the opening of the rear seat door, the opening of the back hatch, and the like are applicable.
  • the second processing unit 121 notifies that the operation of the user has been received (step S155). Specifically, the second processing unit 121 transmits a command to the body ECU 61 to perform a so-called answer-back operation of blinking a hazard lamp, thereby notifying the user that the operation has been accepted. . Instead of blinking the hazard lamp, or in addition to blinking the hazard lamp, a predetermined sound may be output from a speaker or a phone to notify that the user operation has been accepted.
  • the second processing unit 121 performs the control specified in step S150 (step S160). For example, when unlocking of the door of the driver's seat is specified, a command is transmitted to the body ECU 61 to unlock all the doors. After performing step S160, the process returns to step S110.
  • the second including the authentication of the portable device 200 Since the processing is not executed, and the power consumption of the vehicle control device 10 when executing the first processing is smaller than the power consumption of the vehicle control apparatus 10 when executing the second processing, the first processing is executed.
  • the power consumption of the vehicle control device 10 can be reduced as compared with a configuration in which the second process is always executed and a configuration in which the first process and the second process are always executed. For this reason, even if power is supplied to the vehicle control device 10 from the battery 70, it is possible to suppress occurrence of a dead battery.
  • the vehicle-related information included in the received RF signal is compared with the vehicle-related information stored in the vehicle-related information storage unit 131, and if there is a difference exceeding a predetermined range, the portable device 200 Is determined to be unsuccessful, and if there is no difference exceeding the expected range, the authentication of the portable device 200 is determined to be successful. Therefore, the authentication of the portable device 200 can be performed with high accuracy.
  • the power consumption of the first processing unit 111 is easier than that of the second processing unit 121. Can be reduced.
  • the received RF signal is encoded by a bi-phase FSK scheme which is a predetermined encoding scheme corresponding to a modulation scheme in the portable device 200, and in the normal radio signal determination processing, the received RF signal is In the case where the number of short bits sandwiched between two adjacent long bits is an even number, the RF signal is determined to be a regular radio signal, and if the number of short bits is odd, the received RF signal is not a regular radio signal. Therefore, it is possible to accurately determine whether or not the received RF signal is a regular wireless signal, that is, whether or not the received wireless signal is a wireless signal transmitted from a portable device.
  • the “portable device” is not limited to the portable device 200 but means any device that has the same function as the portable device 200 and is used as an electronic key for another vehicle.
  • the RF signal is determined to be a regular wireless signal, and at least one of the determination processes of steps S205, S210, and S215 is performed. If it is determined to be NO in the above, it is determined that the RF signal is not a regular wireless signal, so that it is possible to accurately determine whether the received RF signal is a regular wireless signal.
  • step S205 If it is determined in step S205 that at least one of the time length of the short bit and the long bit is not within the predetermined time range, the received RF signal is determined not to be a regular wireless signal, and the regular wireless signal determination process ends. .
  • the step S210 with a relatively large processing load is not executed, the power consumption by the ASIC 11 can be reduced as compared with the configuration in which the step S210 is always executed regardless of the time length of the short bit and the long bit.
  • the time required for the normal radio signal determination processing can be reduced.
  • the portable device 200 and the vehicle control device 10 employ the bi-phase FSK method as the modulation and coding method in the wireless communication in the RF band, the portable device 200 and the vehicle control device 10 receive the signal in step S210 of the normal wireless signal determination process. It is possible to accurately determine whether or not the RF signal is a regular wireless signal.
  • the vehicle control device 10a according to the second embodiment illustrated in FIG. 6 differs from the vehicle control device 10 according to the first embodiment illustrated in FIG. 2 in including a first processing unit 130 instead of the first processing unit 111.
  • Other configurations of the vehicle control device 10a according to the second embodiment are the same as those of the vehicle control device 10 according to the first embodiment. Therefore, the same components are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the first processing unit 130 performs a first process.
  • the first process is a process of determining whether or not the received RF signal is a regular wireless signal, as in the first process in the first embodiment.
  • the procedure of the first process of the second embodiment is slightly different from the procedure of the first process of the first embodiment.
  • the first processing unit 130 includes a first determination unit 112 and a second determination unit 123.
  • the ASIC 11 functions as a first determination unit 112 instead of the first processing unit 111.
  • the CPU 12 also functions as a second determination unit 123 in addition to the above-described second processing unit 121 and LF signal transmission control unit 122. The processing performed by the first determination unit 112 and the second determination unit 123 will be described later.
  • the normal mode of the CPU 12 includes a low-speed mode and a high-speed mode.
  • the low-speed mode is the same as the high-speed mode in that the CPU 12 can execute all executable functions. However, it differs from the high-speed mode in that the CPU 12 operates at a lower frequency. In the low-speed mode, the power consumption of the CPU 12 is smaller than in the high-speed mode.
  • the RF signal reception handling process of the second embodiment shown in FIG. 7 is different from the first embodiment shown in FIG. 3 in that step S125a is executed instead of step S125, and steps S127, S128, and S129 are added and executed. This is different from the RF signal reception corresponding processing of the embodiment.
  • Other procedures in the RF signal reception corresponding processing of the second embodiment are the same as those of the RF signal reception corresponding processing of the first embodiment. Therefore, the same steps are denoted by the same reference numerals and detailed description thereof will be omitted. I do.
  • the process of step S115 is referred to as “normal radio signal first determination process”. This is to distinguish it from a normal radio signal second determination process described later, and the process is the same as the normal radio signal determination process of the first embodiment.
  • the first determination unit 112 performs the normal radio signal first determination process.
  • step S120 If it is determined in step S120 that the RF signal is a regular wireless signal (step S120: YES), the mode switching function unit (not shown) of the CPU 12 switches the operation mode of the CPU 12 from the sleep mode to the low-speed mode (step S125a). ).
  • the normal radio signal second determination process is a process of determining whether or not the received RF signal is a normal radio signal, similarly to the normal radio signal first determination process.
  • the second determination unit 123 determines whether the number of short bits sandwiched between all two adjacent long bits within a range of a total of 300 bits is an even number. (Step S310). Then, when it is determined that the number of short bits sandwiched between two adjacent long bits is an even number (step S310: YES), the second determination unit 123 determines that the received RF signal is a regular radio signal. Is determined (step S315). On the other hand, when it is determined that the number of short bits sandwiched between any two adjacent long bits is not an even number (step S310: NO), the second determination unit 123 determines that the received RF signal is It is determined that the signal is not a regular wireless signal (step S320).
  • the normal radio signal second determination process differs from step S210 of the normal radio signal first determination process only in that the data amount to be determined is large.
  • the determination target is all two adjacent long bits existing within the range of a total of 9 bits.
  • the determination target is a total of 300 bits as described above. All two long bits that are adjacent within the range of bits. Instead of the range of 300 bits in total, a range of any bit larger than 9 bits may be used.
  • the range of a total of 9 bits in step S210 corresponds to the first bit width in the present disclosure. Further, the range of a total of 300 bits in step S310 corresponds to the second bit width in the present disclosure.
  • the circuit size of the first determination unit 112, that is, the ASIC 11, can be made relatively small.
  • the determination accuracy is relatively low.
  • the second determination unit 123 that is, the CPU 12
  • the power consumption of the CPU 12 when executing steps S127 and S128 is smaller than the power consumption of the CPU 12 when executing the second process including the authentication process (step S135).
  • the second determination unit 123 determines whether or not the received RF signal is a normal wireless signal based on the result of the normal wireless signal second determination process (Ste S128). If it is determined that the signal is a regular wireless signal (step S128: YES), the mode switching function unit (not shown) of the CPU 12 switches the operation mode of the CPU 12 from the low-speed mode to the high-speed mode (step S129). After the operation mode of the CPU 12 is switched to the low-speed mode, the processing after step S130 described above, that is, the second processing is executed. Therefore, in the second embodiment, the second processing is executed in a situation where the operation mode of the CPU 12 is the high-speed mode.
  • step S128 If it is determined in step S128 that the signal is not a regular wireless signal (step S128: NO), the process returns to step S110. Therefore, in this case, the second process is not executed.
  • steps S115, S120, S127, and S128 correspond to a first process in the present disclosure.
  • the vehicle control device 10a according to the second embodiment described above has the same effects as the vehicle control device 10 according to the first embodiment.
  • the first determination unit 112 that is, the determination process performed every 9 bits by the ASIC 11
  • the second determination unit 123 that is, the determination process performed every 300 bits in the low-speed mode by the CPU 12 are performed. Therefore, the determination can be performed with higher accuracy than a configuration in which only the determination process performed by the ASIC 11 is performed every 9 bits in total. Further, the processing load on the ASIC 11 can be reduced and the circuit size of the ASIC 11 can be prevented from becoming extremely large as compared with a configuration in which the determination processing is executed by the ASIC 11 every 300 bits in total.
  • the portable device 200 is an electronic key for the vehicle 100 used by being carried by a user, but the present disclosure is not limited to this.
  • any device capable of wireless communication may be used as the portable device 200.
  • a mobile phone device such as a so-called smartphone may be used as the mobile device 200.
  • an application program for functioning as an electronic key for the vehicle 100 and an application for executing the processing of the present disclosure are previously installed in the mobile phone device, and these applications are activated and executed. By doing so, the mobile phone device may be operated as the mobile device 200.
  • step S135) the vehicle-related information included in the received RF signal is compared with the vehicle-related information stored in the vehicle-related information storage unit 131, and The authentication of the portable device 200 is determined to be unsuccessful when there is a difference exceeding a predetermined range, and the authentication of the portable device 200 is determined to be successful when there is no difference exceeding the scheduled range.
  • a common secret key is set in advance for the portable device 200 and the vehicle control devices 10 and 10a, respectively, and the portable device 200 encrypts transmission data using the secret key. Then, the vehicle control devices 10 and 10a may determine that the authentication is successful when the received data can be decrypted with the secret key, and determine that the authentication has failed when the decryption cannot be performed.
  • the CPU 12 may be configured to function also as a function unit that executes the first process, and the first process may be executed in the low-speed mode. Further, in this configuration, a procedure of “switching the operation mode of the CPU 12 from the sleep mode to the low-speed mode” is added between step S110 and step S115. Then, in step S125, the operation mode of the CPU 12 is switched from the low speed mode to the high speed mode. Also in such a configuration, the power consumption of the vehicle control device 10 when performing the first process can be made smaller than the power consumption of the vehicle control device 10 when performing the second process.
  • the operation mode of the CPU 12 when executing steps S127 and S128 is the low-speed mode, but may be the high-speed mode.
  • the operation mode of the CPU 12 may be switched from the sleep mode to the high-speed mode, and step S129 may be omitted.
  • the received RF signal is not a regular wireless signal
  • the operation mode of the CPU 12 remains in the sleep mode, and the regular wireless signal second determination process is not performed. The amount of power can be reduced.
  • the normal radio signal determination process of the first embodiment and the normal radio signal first determination process of the second embodiment include three determination processes of steps S205, S210, and S215. One or two determination processes may be omitted. Further, the order of these three determination processes may be changed. Further, if the determination result of all of steps S205, S210, and S215 is YES, step S220 is executed. If any of the determination processing of steps S205, S210, and S215 is NO, step S220 is performed. Although S225 has been executed, the present disclosure is not limited to this. For example, if the determination result of any of these steps S205, S210, and S215 is YES, step S220 is executed. If the determination of all of these steps S205, S210, and S215 is NO, Step S225 may be performed. Further, in each embodiment, another process may be added to the first process and executed.
  • step S155 the notification that the user operation has been received may be omitted.
  • the history of the user operation may be stored in the memory 13 instead of notifying that the user operation has been received.
  • a parity check of the received data may be additionally executed. In such a configuration, portable device 200 transmits an RF signal with a parity bit added for each predetermined bit width.
  • the portable device 200 and the vehicle control device 10 employ the bi-phase FSK method as the modulation and coding method in wireless communication in the RF band, but the present disclosure is limited to this. Not done.
  • An arbitrary coding scheme in which 0 is represented by two consecutive short bits and 1 is represented by one long bit, and an arbitrary modulation scheme corresponding to the encoding scheme may be adopted.
  • CMI Code / Mark / Inversion / code
  • CMI Code / Mark / Inversion / code
  • a part of the configuration realized by hardware may be replaced by software, and conversely, a part of the configuration realized by software may be replaced by hardware.
  • the LF signal transmission control unit may be realized by an integrated circuit, a discrete circuit, or a module combining those circuits.
  • the software (computer program) can be provided in a form stored in a computer-readable recording medium.
  • the “computer-readable recording medium” is not limited to a portable recording medium such as a flexible disk or a CD-ROM, but may be fixed to an internal storage device in the computer such as various RAMs or ROMs or a computer such as a hard disk. It also includes the external storage device that is used. That is, the “computer-readable recording medium” has a broad meaning including any recording medium that can fix data packets, not temporarily.
  • the present disclosure is not limited to the above embodiments, and can be implemented with various configurations without departing from the spirit of the present disclosure.
  • the technical features in each embodiment corresponding to the technical features in the form described in the summary of the invention may be used to solve some or all of the above-described problems, or to provide one of the above-described effects. In order to achieve a part or all, replacement or combination can be appropriately performed. Unless the technical features are described as essential in the present specification, they can be deleted as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Lock And Its Accessories (AREA)
  • Transceivers (AREA)
  • Communication Control (AREA)
  • Selective Calling Equipment (AREA)

Abstract

車両制御装置(10;10a)は、車両(100)に搭載されているアンテナ(21)により受信された受信無線信号が、携帯機(200)から送信された正規無線信号であるか否かを判定する判定処理を含む第1処理を実行する第1処理部(111;130)と、第1処理の実行により受信無線信号が正規無線信号であると判定された場合に携帯機の認証を含む第2処理を実行し、受信無線信号が正規無線信号でないと判定された場合に第2処理を実行しない第2処理部(121)と、を備える。第1処理部が第1処理を実行する際の消費電力量は、第2処理部が第2処理を実行する際の消費電力量よりも少ない。

Description

車両制御装置 関連出願の相互参照
 本出願は、2018年9月25日に出願された日本出願番号2018-178671号に基づくもので、ここにその記載内容を援用する。
 本開示は、車両制御装置に関する。
 車両に搭載される車両制御装置として、車両のユーザが携帯する携帯機と無線通信をおこなって、スマートエントリ機能やリモートキーレスエントリ機能を実現する車両制御装置が用いられることがある。スマートエントリ機能とは、携帯機が車両近傍の無線通信可能な領域に入ったときに車両のドアを開錠等する機能を意味する。また、リモートキーレスエントリとは、携帯機が備えるスイッチの操作に応じて車両のドアの施錠または開錠等を行う機能を意味する。一般に、このような車両制御装置は車載機と呼ばれ、携帯機から送信されるRF帯(例えば、300MHz~400MHz)の信号を受信可能に、また、携帯機に対してLF帯(例えば、30kHz~300kHz)の信号を送信可能に構成される。車両制御装置は、CPU、ROM、RAMを備えたコンピュータとして構成され、携帯機からRF帯の信号を受信すると、かかる信号に含まれるID等の情報に基づき、送信元の携帯機が車両のユーザが携帯する正規の携帯機であるか否かの認証を行うことがある(特許文献1を参照)。
特開2015-45183号公報
 車両制御装置と携帯機との間には様々な種類の遮蔽物が存在し得るため、携帯機から出力されるRF帯の無線信号であっても、その特性が変化し得る。このため、無線信号の送信元が携帯機であるか否かの判定を行うための基準値、例えば、信号のL(High)またはL(Low)の時間幅の基準値範囲は、比較的緩く設定されることがある。ここで、車両は様々な場所に駐車され得るため、車両制御装置は、様々な外来ノイズ、すなわち正規の携帯機とは異なる機器から出力されるRF帯の信号を受信し得る。外来ノイズとしては、例えば、他の車両制御装置用の携帯機から送信される信号や、駐車場における各駐車スペースに設置された設備と管理装置との間の無線通信の信号や、各種電波塔から出力される無線電波などが該当する。上述のように認証を行うための基準値が比較的緩く設定されていることもあり、外来ノイズを携帯機から出力された信号であると判定してしまう場合がある。この場合、無線信号に含まれるID等に基づき、信号の送信元が該当車両用の正規の携帯機であるか否かの認証が行われることになるが、外来ノイズであるために認証は失敗することとなる。このように、従来においては、外来ノイズを対象とした無駄な認証が行われ、かかる認証を実行するCPUの消費電力量がいたずらに増大するという問題があった。また、駐車中にCPUがスリープモードで待機しており、認証を行う際にスリープモードから通常モードへと復帰する構成においては、復帰したCPUが、認証処理を行うと共に、他の車両制御装置と車両内のネットワークを介して定期的な通信を開始し、該当の車両制御装置のみならず他の車両制御装置のCPUの消費電力量も増大することとなる。
 このように、従来においては、無線信号を受信した場合にCPUの消費電力が増大するために、車両制御装置に給電するバッテリの充電量が低下してバッテリから給電できない状態であるいわゆる「バッテリ上がり」が生じるおそれがあった。このような問題は、CPUではなくASICなどの集積回路により認証を実行する構成においても共通する。このため、無線信号を受信した場合の車両制御装置の処理に起因する電力消費によってバッテリ上がりが生じることを抑制可能な技術が望まれている。
 本開示は、以下の形態として実現することが可能である。
 本開示の一形態によれば、車両に搭載され、前記車両のユーザに携帯される携帯機と無線通信を行い、前記携帯機からの指示に応じて前記車両の機能の少なくとも一部を制御する車両制御装置が提供される。この車両制御装置は、前記車両に搭載されているアンテナにより受信された無線信号である受信無線信号が、前記携帯機から送信された無線信号である正規無線信号であるか否かを判定する判定処理を含む第1処理を実行する第1処理部と、前記第1処理の実行により、前記受信無線信号が前記正規無線信号であると判定された場合に、前記携帯機の認証を含む第2処理を実行し、前記受信無線信号が前記正規無線信号でないと判定された場合に、前記第2処理を実行しない第2処理部と、を備え、前記第1処理部が前記第1処理を実行する際の消費電力量は、前記第2処理部が前記第2処理を実行する際の消費電力量よりも少ない。
 この形態の車両制御装置によれば、第1処理に含まれる判定処理の実行により受信無線信号が正規無線信号でないと判定された場合に、携帯機の認証を含む第2処理を実行せず、また、第1処理を実行する際の消費電力量は第2処理を実行する際の消費電力量よりも少ないので、第1処理に代えて常に第2処理を実行する構成、および第1処理と第2処理とを常に実行する構成に比べて、車両制御装置の消費電力量を抑えることができる。このため、車両制御装置を車両に搭載してバッテリから給電しても、バッテリ上がりが生じることを抑制できる。
 本開示は、車両制御装置以外の種々の形態で実現することも可能である。例えば、車両制御装置を搭載する車両、車両電子キーシステム、携帯機認証装置、車両制御方法、携帯機の認証方法、これらの装置や方法を実現するためのコンピュータプログラム、かかるコンピュータプログラムを記憶した記憶媒体等の形態で実現することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の一実施形態としての車両制御装置を搭載した車両と、車両制御装置を含む車両システムの概略構成を示すブロック図であり、 図2は、第1実施形態の車両システムの詳細構成を示すブロック図であり、 図3は、第1実施形態のRF信号受信対応処理の手順を示すフローチャートであり、 図4は、正規無線信号判定処理の手順を示すフローチャートであり、 図5は、バイフェーズFSK方式による符号化の一例を示す説明図であり、 図6は、第2実施形態の車両システムの詳細構成を示すブロック図であり、 図7は、第2実施形態のRF信号受信対応処理の手順を示すフローチャートであり、 図8は、第2実施形態の正規無線信号第2判定処理の手順を示すフローチャートである。
A.第1実施形態:
A1.装置構成:
 図1に示すように、本実施形態の車両制御装置10は、車両システム500の一部として車両100に搭載されて用いられる。車両システム500は、リモートキーレスエントリを実現する。リモートキーレスエントリとは、車両100のユーザが携帯機200の図示しないプッシュスイッチを操作すると、かかる操作に応じて車両100のドアの開閉、開錠、施錠等が行われることを意味する。なお、リモートキーレスエントリに代えて、または、リモートキーレスエントリに加えて、スマートエントリを実現してもよい。スマートエントリとは、車両100のユーザが携帯機200を携帯して車両100の近傍の無線通信可能な領域に進入したときに車両100のドアの開錠が行われたり、ユーザが携帯機200を携帯した状態で運転席に座って所定のスイッチを操作することにより、車両100を始動させたりすることを意味する。なお、車両制御装置10は、車載機とも呼ばれる。
 車両システム500は、互いに無線通信可能な携帯機200と、車両制御装置10とを備える。携帯機200は、車両100用の電子キーとしてユーザに携帯されて用いられる。携帯機200は、上述の図示しないプッシュスイッチに加えて、RF帯(例えば、300MHz~400MHz)の信号(以下、「RF信号」と呼ぶ)を送信するための構成と、LF帯(30kHz~300kHz)の信号(以下、「LF信号」と呼ぶ)を受信するための構成とを備える。RF信号を送信するための構成としては、例えば、アンテナ、増幅回路、変調回路、制御用IC(Integrated Circuit)などが該当する。
 本実施形態において、携帯機200および車両制御装置10では、RF帯の無線通信における変調および符号化の方式として、バイフェーズFSK(Frequency Shift Keying)方式が採用されている。図5に示すように、バイフェーズFSK方式の符号化処理では、データ「1」は、符号1ビット周期のすべてがH(High)またはL(Low)で表され、データ「0」は、符号1ビット周期のほぼ半分の周期(以下、「半ビット周期」と呼ぶ)でLとHとが切り替わって表される。図5では、理解を助けるため、半ビット周期ごとの時刻t1~t11を符号化信号と共に表している。例えば、時刻t2~t4では、符号化信号はデータ「1」を示し、時刻t4~t6では、符号化信号はデータ「0」を表している。このように、バイフェーズFSK方式の符号化では、半ビット周期で切り替わるLまたはHを短ビットとし、符号1ビット周期で切り替わるLまたはHを長ビットとすると、連続する2つの短ビットで「0」を表し、単一の長ビットで「1」を表す符号化方式といえる。なお、バイフェーズFSK方式の符号化では、各ビットの境界が明確になるように、データ「1」が連続する場合には、先の「1」の長ビットと後の「1」の長ビットとで、HとLとが切り替わる。また、データ「0」が連続する場合には、先の「0」の後半の短ビットと後の「0」の前半の短ビットとで、HとLとが切り替わる。また、バイフェーズFSK方式の変調処理では、図5に示すようなデジタル信号が、長ビットと短ビットとで周波数が切り替えられてアナログ信号として出力される。換言すると、バイフェーズFSK方式の変調方式は、バイフェーズFSK方式の符号化方式に対応する変調方式といえる。携帯機200のRF信号を送信するための制御用ICは、送信するデータの暗号化処理を行う。
 上述のLF信号を受信するための構成としては、例えば、アンテナ、増幅回路、符号化回路、制御用ICなどが該当する。
 図2に示すように、車両制御装置10は、ASIC(Application Specific Integrated Circuit)11と、CPU(Central Processing Unit)12と、メモリ13と、CAN(Controller Area Network)通信部14とを備えるECU(Electronic Control Unit)により構成されている。
 車両制御装置10は、RF受信部20とLF送信部30とに接続され、携帯機200との間においてRF帯およびLF帯の無線通信を行う。
 RF受信部20は、RFアンテナ21と、RF受信回路22とを備える。RF受信回路22は、RFアンテナ21により受信されたRF信号の増幅、および符号化を行い、デジタル信号として出力する。RF受信回路22による符号化処理は、上述のバイフェーズFSK方式により行われる。
 LF送信部30は、複数のLFアンテナ31と、LF送信回路32とを備える。図1に示すように、LFアンテナ31は、車両100における複数の位置に設置されている。具体的には、運転席のドア、助手席のドア、後部座席の左右のドア、リアゲートにそれぞれ設置されるとともに、車室内にも設置される。LF送信回路32は、車両制御装置10から出力されたデジタル信号の変調および増幅を行い、LFアンテナ31を介してLF帯の電波を送信する。
 また、車両制御装置10は、CAN50に接続され、CAN50に接続された他のECUとの間で通信を行う。図1および図2には、他のECUとして、ボデーECU61と、エンジンECU62とが例示されている。ボデーECU61は、車両100のドアの開錠および施錠、ハザードランプなどの各種ランプの点灯状態などを制御する。エンジンECU62は、車両100のエンジンの駆動を制御する。
 ASIC11は、第1処理部111として機能する。第1処理部111は、後述のRF信号受信対応処理において、第1処理を実行する。RF信号受信対応処理および第1処理の詳細については、後述する。
 CPU12は、メモリ13に予め記憶されている制御プログラムを実行することにより、第2処理部121およびLF信号送信制御部122として機能する。第2処理部121は、後述のRF信号受信対応処理において、第2処理を実行する。第2処理の詳細については、後述する。LF信号送信制御部は、LF信号の送信を制御する。具体的には、LF信号の送信タイミング、送信期間、および送信データの生成などをおこなう。
 メモリ13は、ROM(Read Only Memory)と、RAM(Random Access Memory)とを含む。ROMには、上述の制御プログラムが記憶されている。また、ROMには、車両関連情報記憶部131が設けられている。車両関連情報記憶部131には、車両関連情報が予め記憶されている。車両関連情報とは、車両100に関連する情報であり、本実施形態では、車両100を他の車両と弁別可能な識別子を含む。なお、かかる識別子に加えて、車両の製造会社を示す情報、エンジンの型番を示す情報、およびユーザを弁別可能な識別子を示す情報など、車両に関する他の任意の情報が、車両関連情報に含まれていてもよい。
 CAN通信部14は、CAN50を介した通信を制御する。これにより、車両制御装置10は、他のECUとデータのやりとりをおこなうことができる。例えば、ボデーECU61に対してハザードランプの点滅を指示することができる。
 上述した車両制御装置10、RF受信部20、LF送信部30、ボデーECU61、エンジンECU62は、それぞれ車両100に搭載されているバッテリ70から給電される。これらのうち、車両制御装置10、RF受信部20、およびLF送信部30は、車両100の駐車中においても、バッテリ70から給電される。これにより、車両制御装置10は、車両100の駐車中においても、RF信号の受信およびLF信号の送信をおこなうことができる。本実施形態において、CPU12の動作モードは、スリープモードと通常モードとのうちのいずれかのモードに選択的に切り替えられる。スリープモードとは、動作モードの切り替えなどの極僅かな処理のみを実行できる動作モードであり、消費電力は非常に少ない。これに対して、通常モードは、CPU12が実行可能な処理をすべて実行できる動作モードであり、消費電力はスリープモードに比べて多い。車両100の駐車中においては、CPU12の動作モードは、スリープモードとなる。
 上述の構成を有する車両制御装置10は、後述するRF信号受信対応処理を実行する。RF信号対応処理とは、受信されたRF信号が携帯機から送信された無線信号(以下、「正規無線信号」と呼ぶ)であるか否かの判定、受信されたRF信号が車両100用の携帯機である携帯機200から送信された無線信号であるか否かの認証、および認証が成功した場合に無線信号の示す制御内容に応じた処理を実現するための処理を意味する。車両制御装置10によってRF受信対応処理が実行されることにより、正規無線信号とは異なるRF帯の外来ノイズを受信した場合の車両制御装置10の消費電力を低く抑えることができ、これにより、バッテリ上がりが生じることを抑制できる。
A2.RF信号受信対応処理:
 図3に示すRF信号受信対応処理は、車両100が駐車状態になると開始される。駐車状態とは、車両100のイグニッションがオンからオフに切り替わった後、ユーザが携帯機200を持って車両100から降り、ドアが施錠された状態を意味する。ユーザが携帯機200を持って降車したことは、例えば、すべてのLFアンテナ31からLF信号を送信し、その後所定時間内にRF信号を受信しないことで判定できる。
 第1処理部111は、RF受信部20を介してRF信号を受信したか否かを判定する(ステップS110)。RF信号を受信しないと判定された場合(ステップS110:NO)、再びステップS110を実行する。すなわち、第1処理部111は、RF信号を受信するまで待機する。RF信号を受信する場合としては、ユーザが携帯機200を持って携帯機200に近づき、携帯機200のプッシュボタンを押下した場合の他、RF帯の外来ノイズを受信する場合が該当する。このような外来ノイズとしては、例えば、他の車両制御装置用の携帯機から送信される信号や、駐車場における各駐車スペースに設置された設備と管理装置との間の無線通信の信号や、各種電波塔から出力される無線電波や、蛍光灯や故障したネオンサインから出力される電磁波などが該当する。
 RF信号を受信したと判定された場合(ステップS110:YES)、第1処理部111は、正規無線信号判定処理を実行し(ステップS115)、正規無線信号判定処理の結果に基づき、受信されたRF信号が正規無線信号であるか否かを判定する(ステップS120)。本実施形態では、ステップS115およびS120は、本開示における第1処理および判定処理に相当する。
 図4に示すように、正規無線信号判定処理では、第1処理部111は、受信するRF信号のうちからサンプリングした短ビットと長ビットの時間長さが、いずれも所定時間範囲であるか否かを判定する(ステップS205)。サンプリングした短ビットと長ビットとしては、例えば、RF信号の受信開始から所定時間内に受信したすべての短ビットおよび長ビットを用いてもよい。また、例えば、任意のタイミングで受信した所定数の短ビットおよび長ビットを用いてもよい。図5に示すように、正規無線信号は、長ビットの時間長さTLと、短ビットの時間長さTSとは、それぞれ所定時間範囲内の値となるように調整されて出力されている。例えば、長ビットの時間長さTLは、0.7マイクロ秒であり、短ビットの時間長さTSは0.35マイクロ秒であってもよい。これに対して、外来ノイズの場合には、長ビットまたは短ビットの時間長さが所定時間範囲から外れる場合がある。また、正規無線信号であっても、遮蔽物の大きさや種類などの周囲の通信環境によっては、長ビットまたは短ビットの時間長さが所定時間範囲から外れる場合がある。本実施形態では、所定時間範囲として、長ビットおよび短ビットの時間長さの設計値に対して所定割合だけ増減させた値を限界値とする範囲として設定されている。本実施形態では、所定割合は30%である。車両100と携帯機200との間には様々な遮蔽物が存在することが想定され、正規無線信号であっても長ビットおよび短ビットの時間長さが設計値から大きく外れる可能性がある。このため、正規無線信号であることを正しく判定するため、所定割合として30%という比較的大きな値が設定されている。なお、上述の所定割合は、30%に限らず、0%以上の任意の割合としてもよい。
 短ビットと長ビットの時間長さがいずれも所定時間範囲であると判定された場合(ステップS205:YES)、隣り合う2つの長ビットで挟まれた短ビットの数が偶数であるか否かを判定する(ステップS210)。バイフェーズFSK方式の符号化処理で得られる信号では、隣り合う2つの長ビットで挟まれた短ビットの数は偶数となる。例えば、図5に示すように、時刻t2~t4の長ビット「1」と、かかる長ビットと隣り合う時刻t8~t10の長ビット「1」とに挟まれた短ビットは、(a)~(d)の4つである。正規無線信号は、バイフェーズFSK方式で変調されているため、符号化して得られたデジタル信号において、隣り合う2つの長ビットで挟まれた短ビットの数は偶数となる。これに対して、外来ノイズでは、一般にバイフェーズFSK方式で変調されていないため、かかる信号を符号化して得られるデジタル信号では、そもそも長ビットと短ビットの2種類のビットが無い、或いは、隣り合う2つの長ビットで挟まれた短ビットの数が奇数になる場合が多い。ただし、偶然にも外来ノイズに長ビットと短ビットとが存在し、隣り合う2つの長ビットで挟まれた短ビットの数が偶数になる可能性もある。ステップS210の判定は、本実施形態では、合計9ビットの範囲内に存在する隣り合うすべての2つの長ビットを対象として行われる。ここでの9ビットは、長ビットすなわち符号1ビット周期でカウントした場合の9周期分のビットを意味する。なお、9ビットに限らず、任意のビット幅の範囲内に存在する隣り合うすべての長ビットを対象として、ステップS210が行われてもよい。
 図4に示すように、隣り合う2つの長ビットで挟まれた短ビットの数が偶数であると判定された場合(ステップS210:YES)、第1処理部111は、所定のビット幅範囲内に判定用ビットが存在するか否かを判定する(ステップS215)。携帯機200から送信されるRF信号には、所定のビット幅ごとに判定用ビットを含めて送信される。判定用ビットとは、RF信号が携帯機から出力されたRF信号であると特定するために設定されるビットであり、所定のビット幅ごとに設定される。本実施形態では、判定用ビットとして、所定数連続する「1」が採用されている。所定数は、5であるが、5に限らず2以上の任意の数としてもよい。また、本実施形態では、所定ビット幅は、符号1ビット周期で64ビット(64周期)であるが、64ビットに限らず、「1」が連続する所定数よりも大きな任意のビット幅にしてもよい。
 所定のビット幅範囲内に判定用ビットが存在すると判定された場合(ステップS215:YES)、第1処理部111は、受信されたRF信号は正規無線信号であると判定する(ステップS220)。
 他方、上述のステップS205において短ビットと長ビットの時間長さの少なくとも一方が所定時間範囲でないと判定された場合(ステップS205:NO)、上述のステップS210において隣り合う2つの長ビットで挟まれた短ビットの数が偶数でないと判定された場合(ステップS210:NO)、および上述のステップS215において所定のビット幅範囲内に判定用ビットが存在しないと判定された場合(ステップS220:NO)のいずれかの場合、第1処理部111は、受信されたRF信号は正規無線信号でないと判定する(ステップS225)。ステップS225および上述のステップS220の実行後、図3に示す上述のステップS120が実行される。
 上記ステップS205は、本開示における第2副判定処理に相当する。また、ステップS210は本開示における第1副判定処理に、ステップS215は本開示における第3副判定処理に、それぞれ相当する。
 図3に示すように、ステップS120において、受信されたRF信号が正規無線信号でないと判定された場合(ステップS120:NO)、上述のステップS110に戻る。これに対して、受信されたRF信号が正規無線信号であると判定された場合(ステップS120:YES)、CPU12の有する図示しないモード切り替え機能部は、CPU12の動作モードをスリープモードから通常モードに切り替える(ステップS125)。なお、CPU12が通常モードに切り替わると、車両制御装置10は、CAN50を介して他のECU61、62等と定期的な通信を開始する。これにより、CPU12の消費電力量が急激に増加すると共に、他のECU61、62等の消費電力量が急激に増加するため、車両100全体としての消費電力量が急激に増加することとなる。
 ステップS125の実行後、第2処理部121によって第2処理が実行される。後述するように、第2処理は、受信したRF信号の送信元の携帯機が、車両100用の携帯機である携帯機200であるか否かの認証(後述のステップS135)を含む処理を行う。かかる認証を実行する際のCPU12の消費電力量は高い。このため、第2処理による車両制御装置10全体での消費電力量は、上述の第1処理による車両制御装置10全体での消費電力量よりも多い。上述の第1処理では、正規無線信号でないと判定された場合(ステップS120:NO)、第2処理は実行されず、ステップS110に戻る。したがって、正規無線信号でない信号を受信した場合に第2処理を実行する構成に比べて、バッテリ70の消費電力量を抑えることができる。
 第2処理では、まず、第2処理部121は、受信データを復号化する(ステップS130)。第2処理部121は、復号化された受信データに基づき認証処理を実行する(ステップS135)。本実施形態では、受信されたRF信号に含まれる車両関連情報と、車両関連情報記憶部131に記憶されている車両関連情報とを比較して、両者が一致する場合に認証成功と判定し、両者が一致しない場合に認証失敗と判定する。なお、受信データ内に含まれる車両関連情報と、車両関連情報記憶部131に記憶されている車両関連情報とが完全に一致しなくても、両者の差異が予め定められた範囲内であれば認証成功と判定し、かかる範囲を超えた場合に認証失敗と判定してもよい。
 第2処理部121は、ステップS135の認証処理の結果に基づき、認証が成功したか否かを判定する(ステップS140)。認証が成功しなかったと判定された場合(ステップS140:NO)、上述のステップS110に戻る。これに対して、認証が成功したと判定された場合(ステップS140:YES)、第2処理部121は、ローリングカウンタの値が正常であるか否かを判定する(ステップS145)。携帯機200は、図示しないプッシュスイッチが押下されるたびに、ローリングカウンタを1ずつ増加させ、かかるカウンタの値をRF信号に含めて車両制御装置10に送信する。車両制御装置10において、第2処理部121もローリングカウンタを有しており、携帯機200からRF信号を受信するたびに、かかるカウンタ値を増加させる。携帯機200と車両制御装置10との間のRF通信に不具合がなければ、携帯機200が送信するRF信号に含まれるローリングカウンタの値と、第2処理部121が有するローリングカウンタの値とは一致するはずである。したがって、ステップS145では、第2処理部121は、受信したRF信号に含まれているローリングカウンタ値が、自身が有するローリングカウンタの値と一致するか否かを判定し、一致する場合にローリングカウンタ値は正常であると判定し、一致しない場合にローリングカウンタの値は正常ではないと判定する。ローリングカウンタ値が一致しない場合とは、例えば、携帯機200において、RF信号を送信するための構成に不具合が発生した場合などが想定される。
 ローリングカウンタの値が正常でないと判定された場合(ステップS145:NO)、上述のステップS110に戻る。これに対して、ローリングカウンタの値が正常であると判定された場合(ステップS145:YES)、第2処理部121は、RF信号において指定されている制御内容を特定する(ステップS150)。RF信号において指定されている制御内容とは、すなわち、携帯機200が備えるプッシュスイッチの操作により車両制御装置10に指示した制御内容を意味する。例えば、すべてのドアの開錠、後部座席のドアを開くこと、バックハッチを開くこと、などが該当する。
 第2処理部121は、ユーザの操作を受け付けた旨を通知する(ステップS155)。具体的には、第2処理部121は、ボデーECU61に対して指令を送信して、ハザードランプを点滅させる、いわゆるアンサーバック動作を行うことにより、ユーザに対して操作を受け付けた旨を通知する。なお、ハザードランプを点滅させることに代えて、または、ハザードランプを点滅させることに加えて、所定音をスピーカやフォーンから出力させることにより、ユーザの操作を受け付けた旨を通知してもよい。
 第2処理部121は、ステップS150で特定された制御を実施する(ステップS160)。例えば、運転席のドアの開錠が特定された場合には、ボデーECU61に対して指令を送信して、すべてのドアの開錠を実施する。ステップS160の実行後、上述のステップS110に戻る。
 以上説明した第1実施形態の車両制御装置10によれば、第1処理により受信されたRF信号が正規無線信号でないと判定された場合に、携帯機200の認証(ステップS135)を含む第2処理を実行せず、また、第1処理を実行する際の車両制御装置10の消費電力量は第2処理を実行する際の車両制御装置10の消費電力量よりも少ないので、第1処理に代えて常に第2処理を実行する構成、および第1処理と第2処理とを常に実行する構成に比べて、車両制御装置10の消費電力量を抑えることができる。このため、車両制御装置10に対してバッテリ70から給電しても、バッテリ上がりが生じることを抑制できる。
 また、受信されたRF信号に含まれる車両関連情報と、車両関連情報記憶部131に記憶されている車両関連情報とを比較して、予め定められた範囲を超える差異がある場合に携帯機200の認証を失敗と判定し、該予定められた範囲を超える差異が無い場合に携帯機200の認証を成功と判定するので、携帯機200の認証を精度良くおこなうことができる。
 また、第1処理部111はASIC11により構成され、第2処理部121はCPU12により構成されているので、第1処理部111の消費電力量を、第2処理部121の消費電力量よりも容易に少なくできる。
 また、受信されたRF信号は、携帯機200における変調方式に対応する予め定められた符号化方式であるバイフェーズFSK方式により符号化され、且つ、正規無線信号判定処理では、受信されたRF信号において隣り合う2つの長ビットで挟まれた短ビットの数が、偶数の場合にかかるRF信号は正規無線信号であると判定され、奇数の場合に受信されたRF信号は正規無線信号でないと判定される処理を含むので、受信されたRF信号が正規無線信号であるか否か、すなわち、受信した無線信号が携帯機から送信された無線信号であるか否かを精度良く判定できる。ここでいう「携帯機」とは、携帯機200に限らず、携帯機200と同様な機能を有し、他の車両用の電子キーとして用いられる任意の装置を意味する。
 また、ステップS205とS210とS215のすべての判定処理において、YESと判定された場合に、RF信号は正規無線信号であると判定し、ステップS205とS210とS215のうちのなくとも1つの判定処理においてNOと判定された場合に、かかるRF信号は正規無線信号でないと判定するので、受信されたRF信号が正規無線信号であるか否かを精度よく判定できる。
 また、ステップS205において短ビットと長ビットの時間長さの少なくとも一方が所定時間範囲でないと判定された場合、受信されたRF信号は正規無線信号でないと判定されて正規無線信号判定処理は終了する。この場合、比較的処理負荷の大きなステップS210が実行されないので、短ビットと長ビットの時間長さに関わらずに必ずステップS210を実行する構成に比べて、ASIC11による消費電力量を抑制でき、また、正規無線信号判定処理に要する時間を短縮できる。
 また、携帯機200および車両制御装置10では、RF帯での無線通信における変調および符号化の方式として、バイフェーズFSK方式が採用されているので、正規無線信号判定処理のステップS210において、受信されたRF信号が正規無線信号であるか否かを精度よく判定できる。
B.第2実施形態:
 図6に示す第2実施形態の車両制御装置10aは、第1処理部111に代えて、第1処理部130を備える点において、図2に示す第1実施形態の車両制御装置10と異なる。第2実施形態の車両制御装置10aのその他の構成は、第1実施形態の車両制御装置10と同じであるので、同一の構成要素には同一の符号を付し、その詳細な説明を省略する。第1処理部130は、第1処理を実行する。第1処理は、第1実施形態における第1処理と同様に、受信されたRF信号が正規無線信号であるか否かを判定する処理である。但し、後述するように、第2実施形態の第1処理の手順は、第1実施形態の第1処理の手順とは若干異なる。
 第2実施形態において、第1処理部130は、第1判定部112と、第2判定部123とを備える。第2実施形態において、ASIC11は、第1処理部111に代えて第1判定部112として機能する。また、CPU12は、上述の第2処理部121およびLF信号送信制御部122に加えて、第2判定部123としても機能する。第1判定部112および第2判定部123が実行する処理内容については、後述する。第2実施形態では、CPU12の通常モードには、低速モードと高速モードとが含まれている。低速モードは、CPU12は、実行可能なすべての機能を実行できる点で、高速モードと同じである。但し、CPU12がより低い周波数で動作する点で、高速モードと異なる。低速モードでは、高速モードに比べてCPU12の消費電力量は少ない。
 図7に示す第2実施形態のRF信号受信対応処理は、ステップS125に代えてステップS125aを実行する点と、ステップS127、S128およびS129を追加して実行する点において、図3に示す第1実施形態のRF信号受信対応処理と異なる。第2実施形態のRF信号受信対応処理におけるその他の手順は、第1実施形態のRF信号受信対応処理と同じであるので、同一の手順には同一の符号を付し、その詳細な説明を省略する。なお、第2実施形態では、ステップS115の処理を、第1実施形態とは異なり、「正規無線信号第1判定処理」と呼ぶ。これは、後述の正規無線信号第2判定処理と区別するためであり、その処理は、第1実施形態の正規無線信号判定処理と同じである。第1判定部112は、この正規無線信号第1判定処理を実行する。
 ステップS120において、RF信号が正規無線信号であると判定された場合(ステップS120:YES)、CPU12の有する図示しないモード切り替え機能部は、CPU12の動作モードをスリープモードから低速モードに切り替える(ステップS125a)。
 CPU12の動作モードが低速モードに切り替わった後、第2判定部123は、正規無線信号第2判定処理を実行する(ステップS127)。正規無線信号第2判定処理は、正規無線信号第1判定処理と同様に、受信されたRF信号が正規無線信号であるか否かを判定する処理である。
 図8に示すように、第2判定部123は、合計300ビットの範囲内に存在する隣り合うすべての2つの長ビットで挟まれた短ビットの数がいずれも偶数であるか否かを判定する(ステップS310)。そして、隣り合う2つの長ビットで挟まれた短ビットの数が偶数であると判定された場合(ステップS310:YES)、第2判定部123は、受信されたRF信号は正規無線信号であると判定する(ステップS315)。これに対して、いずれかの隣り合う2つの長ビットで挟まれた短ビットの数が偶数でないと判定された場合(ステップS310:NO)、第2判定部123は、受信されたRF信号は正規無線信号でないと判定する(ステップS320)。このように、正規無線信号第2判定処理は、判定対象のデータ量が多い点においてのみ、正規無線信号第1判定処理のステップS210と異なる。ステップS210では、判定対象は、合計9ビットの範囲内に存在する隣り合うすべての2つの長ビットであったが、上述のように、正規無線信号第2判定処理では、判定対象は、合計300ビットの範囲内に存在する隣り合うすべての2つの長ビットである。なお、合計300ビットの範囲に代えて、9ビットよりも大きな任意のビットの範囲としてもよい。ステップS210における合計9ビットの範囲は、本開示における第1のビット幅に相当する。また、ステップS310における合計300ビットの範囲は、本開示における第2のビット幅に相当する。
 ステップS210における判定対象データ量は比較的少ないため、第1判定部112、すなわちASIC11の回路規模を比較的小さく構成できる。他方、判定対象データ量が比較的少ないため、判定精度は比較的低くなる。これに対して、第2判定部123、すなわちCPU12は、構成を大きく変更することなく多量のデータを対象とした処理を行える。そして、このような多量のデータを対象として判定を行うことにより、判定精度を比較的高くできる。このように、第2実施形態では、判定精度を向上させつつ、ASIC11の回路規模が大きくなることを抑制できる。なお、ステップS127およびS128を実行する際のCPU12の消費電力量は、認証処理(ステップS135)を含む第2処理を実行する際のCPU12の消費電力量よりも少ない。
 図7に示すように、ステップS127の実行後、第2判定部123は、正規無線信号第2判定処理の結果に基づき、受信されたRF信号が正規無線信号であるか否かを判定する(ステップS128)。正規無線信号であると判定された場合(ステップS128:YES)、CPU12の有する図示しないモード切り替え機能部は、CPU12の動作モードを低速モードから高速モードに切り替える(ステップS129)。CPU12の動作モードが低速モードに切り替わった後、上述のステップS130以降の処理、すなわち第2処理が実行される。したがって、第2実施形態では、第2処理は、CPU12の動作モードが高速モードである状況で実行される。
 上述のステップS128において正規無線信号でないと判定された場合(ステップS128:NO)、上述のステップS110に戻る。したがって、この場合、第2処理は実行されないこととなる。第2実施形態においては、ステップS115、S120、S127およびS128は、本開示における第1処理に相当する。
 以上説明した第2実施形態の車両制御装置10aは、第1実施形態の車両制御装置10と同様な効果を有する。加えて、第1判定部112、すなわちASIC11により実行される合計9ビットごとの判定処理と、第2判定部123、すなわちCPU12により低速モードにて実行される合計300ビットごとの判定処理とが実行されるので、合計9ビットごとにASIC11により実行される判定処理のみが実行される構成に比べて、精度良く判定することができる。また、合計300ビットごとにASIC11により判定処理が実行される構成に比べて、ASIC11の処理負担を減らすことができ、ASIC11の回路規模が非常に大きくなることを抑制できる。
C.他の実施形態:
 (C1)各実施形態において、携帯機200は、ユーザに携帯して用いられる車両100用の電子キーであったが、本開示はこれに限定されない。例えば、無線通信が可能な任意のデバイスを携帯機200として用いてもよい。具体的には、いわゆるスマートフォンなどの携帯電話装置を、携帯機200として用いてもよい。この構成においては、予め携帯電話装置に、車両100用の電子キーとして機能するためのアプリケーションプログラム、および本開示の処理を実行するためのアプリケーションをインストールしておき、これらのアプリケーションを起動させて実行することにより、携帯電話装置を携帯機200として動作させてもよい。
 (C2)各実施形態において、認証処理(ステップS135)では、受信されたRF信号に含まれる車両関連情報と、車両関連情報記憶部131に記憶されている車両関連情報とを比較して、予め定められた範囲を超える差異がある場合に携帯機200の認証を失敗と判定し、該予定められた範囲を超える差異が無い場合に携帯機200の認証を成功と判定していたが本開示はこれに限定されない。例えば、予め携帯機200と車両制御装置10,10aとにそれぞれ共通の秘密鍵を設定しておき、携帯機200は、かかる秘密鍵を用いて送信データを暗号化する。そして、車両制御装置10,10aでは、受信されたデータを秘密鍵により復号化できた場合に認証成功と判定し、復号化できない場合に認証失敗と判定するようにしてもよい。
 (C3)各実施形態では、第1処理の少なくとも一部はASIC11により実行されていたが、これに代えて、第1処理のすべてをCPU12により実行されてもよい。例えば、第1実施形態では、CPU12が第1処理を実行する機能部としても機能するように構成し、低速モードにて第1処理が実行されてもよい。また、この構成では、ステップS110とステップS115との間に、「CPU12の動作モードをスリープモードから低速モードに切り替える」との手順を追加する。そして、ステップS125において、CPU12の動作モードを、低速モードから高速モードに切り替える。このような構成においても、第1処理を実行する際の車両制御装置10の消費電力量を、第2処理を実行する際の車両制御装置10の消費電力量よりも少なくできる。
 (C4)第2実施形態では、ステップS127およびS128を実行する際のCPU12の動作モードは低速モードであったが、高速モードとしてもよい。かかる構成においては、ステップS125aにおいて、CPU12の動作モードをスリープモードから高速モードに切り替え、ステップS129を省略するようにしてもよい。かかる構成においても、受信されたRF信号が正規無線信号でない場合には、CPU12の動作モードはスリープモードのままであって、正規無線信号第2判定処理は実行されないので、車両制御装置10aの消費電力量を抑えることができる。
 (C5)第1実施形態の正規無線信号判定処理および第2実施形態の正規無線信号第1判定処理は、ステップS205、S210、およびS215の3つの判定処理が含まれていたが、これらのうちの1つまたは2つの判定処理を省略してもよい。また、これらの3つの判定処理の順序を入れ替えてもよい。また、これらのステップS205、S210、S215のすべて判定処理においてYESの判定結果の場合にステップS220が実行され、これらのステップS205、S210、S215のいずれかの判定処理においてNOの判定の場合にステップS225が実行されていたが、本開示はこれに限定されない。例えば、これらのステップS205、S210、S215のいずれかの判定処理においてYESの判定結果の場合にステップS220が実行され、これらのステップS205、S210、S215のすべての判定処理においてNOの判定の場合にステップS225が実行されてもよい。また、各実施形態において、第1処理に他の処理を追加して実行してもよい。
 (C6)各実施形態において、第2処理(ステップS130~S160)における少なくとも1つの手順を省略する、或いは、他の手順に代替してもよい。例えば、ステップS155において、ユーザ操作を受けた旨の通知を省略してもよい。或いは、ユーザ操作を受けた旨の通知を実行することに代えて、ユーザ操作の履歴をメモリ13に記憶させてもよい。また、例えば、受信したデータのパリティチェックを追加して実行してもよい。かかる構成においては、携帯機200では、所定のビット幅ごとにパリティビットを付加してRF信号を送信する。
 (C7)各実施形態において、携帯機200および車両制御装置10では、RF帯での無線通信における変調および符号化の方式として、バイフェーズFSK方式が採用されていたが、本開示はこれに限定されない。連続する2つの短ビットにより0を表し1つの長ビットにより1を表す任意の符号化方式と、かかる符号化方式に対応する任意の変調方式とが採用されてもよい。例えば、CMI(Code Mark Inversion code)が符号化方式として採用されてもよい。
 (C8)各実施形態において、ハードウェアによって実現されていた構成の一部をソフトウェアに置き換えるようにしてもよく、逆に、ソフトウェアによって実現されていた構成の一部をハードウェアに置き換えるようにしてもよい。例えば、LF信号送信制御部を、集積回路、ディスクリート回路、またはそれらの回路を組み合わせたモジュールにより実現してもよい。また、本開示の機能の一部または全部がソフトウェアで実現される場合には、そのソフトウェア(コンピュータプログラム)は、コンピュータ読み取り可能な記録媒体に格納された形で提供することができる。「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスクやCD-ROMのような携帯型の記録媒体に限らず、各種のRAMやROM等のコンピュータ内の内部記憶装置や、ハードディスク等のコンピュータに固定されている外部記憶装置も含んでいる。すなわち、「コンピュータ読み取り可能な記録媒体」とは、データパケットを一時的ではなく固定可能な任意の記録媒体を含む広い意味を有している。
 本開示は、上述の各実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した形態中の技術的特徴に対応する各実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。

Claims (4)

  1.  車両(100)に搭載され、前記車両のユーザに携帯される携帯機(200)と無線通信を行い、前記携帯機からの指示に応じて前記車両の機能の少なくとも一部を制御する車両制御装置(10;10a)であって、
     前記車両に搭載されているアンテナ(21)により受信された無線信号である受信無線信号が、前記携帯機から送信された無線信号である正規無線信号であるか否かを判定する判定処理を含む第1処理を実行する第1処理部(111;130)と、
     前記第1処理の実行により、前記受信無線信号が前記正規無線信号であると判定された場合に、前記携帯機の認証を含む第2処理を実行し、前記受信無線信号が前記正規無線信号でないと判定された場合に、前記第2処理を実行しない第2処理部(121)と、
     を備え、
     前記第1処理部が前記第1処理を実行する際の消費電力量は、前記第2処理部が前記第2処理を実行する際の消費電力量よりも少ない、
     車両制御装置。
  2.  請求項1に記載の車両制御装置において、
     前記車両に関する車両関連情報を予め記憶する車両関連情報記憶部(131)をさらに備え、
     前記認証は、前記受信無線信号に含まれる前記車両関連情報と、前記車両関連情報記憶部に記憶されている前記車両関連情報とを比較して、予め定められた範囲を超える差異がある場合に前記携帯機の認証を失敗と判断し、該予め定められた範囲を超える差異が無い場合に前記携帯機の認証を成功と判断する処理を含む、車両制御装置。
  3.  請求項1または請求項2に記載の車両制御装置において、
     前記第1処理部は、ASIC(Application Specific Integrated Circuit)(11)により構成され、
     前記第2処理部は、CPU(Central Processing Unit)(12)により構成されている、車両制御装置。
  4.  請求項1または請求項2に記載の車両制御装置において、
     ASIC(Application Specific Integrated Circuit)(11)と、CPU(Central Processing Unit)(12)と、を備え、
     前記第1処理部(130)は、前記ASICおよび前記CPUにより構成され、
     前記第2処理部は、前記CPUにより構成され、
     前記第1処理は、
      予め定められた第1のビット幅毎に前記ASICにより実行される前記判定処理と、
      予め定められた第2のビット幅であって、前記第1のビット幅よりも大きな第2のビット幅毎に前記CPUにより低速モードにて実行される前記判定処理と、
    を含み、
     前記第2処理は、前記受信無線信号の示すデータを用いて前記CPUにより前記低速モードよりも消費電力量が少ない高速モードにて実行される前記認証と、
     を含む、車両制御装置。
PCT/JP2019/036599 2018-09-25 2019-09-18 車両制御装置 WO2020066798A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/208,217 US11458928B2 (en) 2018-09-25 2021-03-22 Vehicle control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-178671 2018-09-25
JP2018178671A JP7176323B2 (ja) 2018-09-25 2018-09-25 車両制御装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/208,217 Continuation US11458928B2 (en) 2018-09-25 2021-03-22 Vehicle control apparatus

Publications (1)

Publication Number Publication Date
WO2020066798A1 true WO2020066798A1 (ja) 2020-04-02

Family

ID=69950620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036599 WO2020066798A1 (ja) 2018-09-25 2019-09-18 車両制御装置

Country Status (3)

Country Link
US (1) US11458928B2 (ja)
JP (1) JP7176323B2 (ja)
WO (1) WO2020066798A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0944229A (ja) * 1995-05-24 1997-02-14 Hitachi Ltd 電子制御装置
JP2004308135A (ja) * 2003-04-02 2004-11-04 Denso Corp 車載機器遠隔操作システム
JP2015510186A (ja) * 2012-02-04 2015-04-02 グローバル スーパーコンピューティング コーポレーション 低メモリアクセス動きベクトル導出
WO2017020165A1 (zh) * 2015-07-31 2017-02-09 吴国盛 自适应芯片和配置方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143961A (en) 1981-03-02 1982-09-06 Hitachi Ltd Branching and inserting device for voice packet
US20080164984A1 (en) * 2004-12-17 2008-07-10 Eliezer Sheffer Security System for Vehicles, Trucks and Shipping Containers
JP4568638B2 (ja) 2005-04-26 2010-10-27 本田技研工業株式会社 車両用電子キーシステム
JP6111935B2 (ja) 2013-08-28 2017-04-12 株式会社デンソー 車両システム、車載装置、及び携帯機
JP6324578B1 (ja) 2017-04-11 2018-05-16 三菱電機株式会社 出庫支援システム
JP6799509B2 (ja) * 2017-07-21 2020-12-16 クラリオン株式会社 関連付けシステム、関連付け方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0944229A (ja) * 1995-05-24 1997-02-14 Hitachi Ltd 電子制御装置
JP2004308135A (ja) * 2003-04-02 2004-11-04 Denso Corp 車載機器遠隔操作システム
JP2015510186A (ja) * 2012-02-04 2015-04-02 グローバル スーパーコンピューティング コーポレーション 低メモリアクセス動きベクトル導出
WO2017020165A1 (zh) * 2015-07-31 2017-02-09 吴国盛 自适应芯片和配置方法

Also Published As

Publication number Publication date
JP2020053744A (ja) 2020-04-02
US11458928B2 (en) 2022-10-04
US20210206348A1 (en) 2021-07-08
JP7176323B2 (ja) 2022-11-22

Similar Documents

Publication Publication Date Title
US20140215567A1 (en) Communication system and communication device
US9940763B2 (en) On-vehicle apparatus control system, on-vehicle control device, and portable machine
JP2004150124A (ja) 車両の遠隔制御装置
WO2017098726A1 (ja) 車載器、携帯機、及び車両用無線通信システム
US9889819B2 (en) Smart key system
JP2018107653A (ja) 車両用認証システム
CN112384918A (zh) 被动进入被动启动(peps)系统中的安全通信
JP2017203314A (ja) 無線通信システム
JP6693208B2 (ja) スマートキーシステム
WO2017098721A1 (ja) 車載器、携帯機、及び車両用無線通信システム
WO2020066798A1 (ja) 車両制御装置
WO2020066799A1 (ja) 車両制御装置
JP7156000B2 (ja) 車載装置
JP7127502B2 (ja) 送信制御装置、車両システム、送信制御方法、及び制御プログラム
CN109147097A (zh) 汽车无钥匙认证系统
JP5393718B2 (ja) 電子キー装置
US9628244B2 (en) Communications system, on-vehicle electronic device and communication method
JP5758757B2 (ja) 電子キーシステム
WO2020090507A1 (ja) 通信装置
JP2017122374A (ja) 認証システム、及び携帯機
WO2015056407A1 (ja) 送受信システム
CN111586817B (zh) 控制方法、装置、汽车及存储介质
US20050268088A1 (en) Vehicle control system, and in-vehicle control apparatus and mobile device used therefor
WO2018066244A1 (ja) 携帯機、車載器、及び車両用無線通信システム
JPH11336395A (ja) 車載機器遠隔制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865961

Country of ref document: EP

Kind code of ref document: A1