WO2020066429A1 - 光学素子および光偏向装置 - Google Patents

光学素子および光偏向装置 Download PDF

Info

Publication number
WO2020066429A1
WO2020066429A1 PCT/JP2019/033565 JP2019033565W WO2020066429A1 WO 2020066429 A1 WO2020066429 A1 WO 2020066429A1 JP 2019033565 W JP2019033565 W JP 2019033565W WO 2020066429 A1 WO2020066429 A1 WO 2020066429A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically anisotropic
anisotropic layer
light
optical element
optical
Prior art date
Application number
PCT/JP2019/033565
Other languages
English (en)
French (fr)
Inventor
佐藤 寛
齊藤 之人
克己 篠田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=69951838&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020066429(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020548216A priority Critical patent/JP7191970B2/ja
Priority to CN202310296589.3A priority patent/CN116184549A/zh
Priority to CN201980063397.XA priority patent/CN112771420B/zh
Publication of WO2020066429A1 publication Critical patent/WO2020066429A1/ja
Priority to US17/212,351 priority patent/US20210208316A1/en
Priority to JP2022195917A priority patent/JP7397954B2/ja
Priority to JP2023203783A priority patent/JP2024028817A/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0257Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1833Diffraction gratings comprising birefringent materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13718Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a change of the texture state of a cholesteric liquid crystal
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1838Diffraction gratings for use with ultraviolet radiation or X-rays

Definitions

  • the present disclosure relates to an optical element and an optical deflecting device including the optical element.
  • Polarized light is used in many optical devices or systems, and the development of optical elements for controlling the reflection, collection, and divergence of polarized light is underway.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2014-16632 (hereinafter referred to as Patent Document 1) and Japanese Patent Application Laid-Open No. 2010-525394 (hereinafter referred to as Patent Document 2) disclose pattern alignment of a liquid crystal compound having optical anisotropy. Discloses a polarization diffraction element formed by the method.
  • Patent Document 3 discloses a geometric having optical anisotropy having a local optical axis direction that changes nonlinearly in at least one dimension along a surface.
  • a polarization conversion system using a phase element is disclosed.
  • the pattern orientation of the liquid crystal compound is used.
  • Patent Literatures 1 and 2 do not disclose a technique in which a light diffraction angle is emitted in different directions depending on an incident position, and there is no such description.
  • a layer having an optical anisotropy having a local optical axis direction that changes non-linearly in one dimension as in Patent Document 3 the degree of diffraction differs depending on the incident position. It became clear by the study of the inventors. In such an element, when light is incident and emitted at different incident angles depending on the region, the in-plane diffraction efficiency differs depending on the region, and a region where the diffraction efficiency is reduced sometimes occurs.
  • a plurality of optically anisotropic layers having an in-plane alignment pattern in which the direction of the optical axis derived from the liquid crystal compound has been changed while continuously rotating along at least one direction in the plane is provided in the thickness direction,
  • the optically anisotropic layer has regions having different lengths until the direction of the optical axis rotates 180 ° in the one direction,
  • At least one of the plurality of optically anisotropic layers is a bright line derived from the direction of the optical axis in a cross-sectional image obtained by observing a cross section cut in the thickness direction along the one direction with a scanning electron microscope.
  • a plurality of pairs of dark lines along the one direction, and the pair of bright and dark lines has a region inclined at different inclination angles with respect to a normal to the interface of the optically anisotropic layer.
  • the optical element according to ⁇ 1> wherein the inclination angle of the pair of the line and the dark line and the inclination angle of the pair of the bright line and the dark line in the other inclined optically anisotropic layer are different from each other.
  • the above-described cross-sectional image includes two layers of the tilted optically anisotropic layer, and in the cross-sectional image, the two layers of the tilted optically anisotropic layer are in at least a part of the opposing region, and the light in one of the tilted optically anisotropic layers is bright.
  • optical element according to any one of ⁇ 1> and ⁇ 2>, wherein a pair of a line and a dark line and a pair of the bright line and the dark line in the other inclined optically anisotropic layer have different inclination directions with respect to the normal line.
  • Two inclined optically anisotropic layers are provided, and in the cross-sectional image, the two inclined optically anisotropic layers are at least partially opposed to each other, and the light in one of the inclined optically anisotropic layers is clear.
  • ⁇ 5> The optical element according to any one of ⁇ 1> to ⁇ 4>, wherein the inclined optically anisotropic layer has a region in which the optical axis is twisted in the thickness direction.
  • ⁇ 6> The optical element according to any one of ⁇ 1> to ⁇ 5>, having a function of diffracting and transmitting incident light.
  • ⁇ 7> The optical element according to any one of ⁇ 1> to ⁇ 5>, wherein the liquid crystal compound is cholesterically aligned in the tilted optically anisotropic layer.
  • ⁇ 8> The optical element according to ⁇ 7>, having a function of diffracting and reflecting incident light.
  • the in-plane orientation pattern of the optically anisotropic layer is a pattern in which the length until the direction of the optical axis rotates 180 ° in the one direction gradually changes in the one direction ⁇ 1.
  • the in-plane alignment pattern of the optically anisotropic layer is a pattern having the one direction radially from the inside to the outside.
  • ⁇ 11> The in-plane orientation pattern of the optically anisotropic layer has a region in which the length of the optical axis in the one direction until the direction of the optical axis is rotated by 180 ° is 10 ⁇ m or less, from ⁇ 1> to ⁇ 10>.
  • the optical element according to any one of the above. ⁇ 12> a light deflecting element for deflecting and emitting incident light, a driving unit for driving the light deflecting element, and the light deflecting element of any one of ⁇ 1> to ⁇ 11>,
  • An optical deflecting device comprising the optical element according to any one of the above.
  • the in-plane diffraction efficiency can be averaged, and the average diffraction efficiency can be improved.
  • FIG. 2 is a plan view schematically illustrating an orientation pattern of an optical axis on a part of the surface of the optical element according to the first embodiment.
  • FIG. 2 is a schematic view of a cross-sectional image of the optical element shown in FIG. 1 obtained by a scanning microscope.
  • FIG. 2 is a diagram schematically illustrating a liquid crystal alignment pattern in a thickness direction (z direction) and a horizontal direction (x direction) of the optical element illustrated in FIG. 1. It is a conceptual diagram which shows the effect
  • FIG. 9 is a schematic diagram of a cross-sectional image of the optical element according to the second embodiment obtained by a scanning microscope.
  • FIG. 9 is a schematic diagram of a cross-sectional image of the optical element according to the second embodiment obtained by a scanning microscope.
  • FIG. 14 is a schematic diagram of a cross-sectional image of the optical element according to the third embodiment obtained by a scanning microscope. It is a figure which shows typically the cross section of the optical element of 4th Embodiment. It is a top view which shows typically the orientation pattern of the optical axis in the surface of the optical element of a design change example.
  • FIG. 2 is a diagram conceptually illustrating an example of an exposure apparatus that forms an alignment pattern by exposing an alignment film.
  • FIG. 2 is a diagram illustrating a schematic configuration of an example of a light deflecting device.
  • FIG. 4 is a diagram illustrating a layer configuration of an optical element of Comparative Example 1.
  • FIG. 3 is a diagram illustrating a layer configuration of the optical element according to the first embodiment.
  • FIG. 7 is a diagram illustrating a layer configuration of an optical element according to a second embodiment.
  • FIG. 9 is a diagram illustrating a layer configuration of an optical element according to a third embodiment.
  • FIG. 9 is a diagram illustrating a layer configuration of an optical element according to a fourth embodiment.
  • FIG. 14 is a diagram illustrating a layer configuration of an optical element according to a fifth embodiment. It is a conceptual diagram which shows the measuring method of transmitted light intensity.
  • 21 is a diagram illustrating a layer configuration of an optical element of Comparative Example 11.
  • FIG. FIG. 14 is a diagram illustrating a layer configuration of an optical element of Example 11; It is a conceptual diagram which shows the measuring method of reflected light intensity.
  • FIG. 1 is a plan view schematically showing a part of the surface of the optical element 1 according to the first embodiment
  • FIG. 2 is a cross-sectional view of the optical element 1 observed with a scanning electron microscope (SEM). It is a schematic diagram of the cross-sectional image obtained by.
  • SEM scanning electron microscope
  • the optical element 1 includes two optically anisotropic layers 10 and 20 stacked in the thickness direction.
  • Each of the optically anisotropic layers 10 and 20 is a cured layer of a composition containing a liquid crystal compound.
  • the optical element 1 may have a configuration in which a support and an alignment film are provided and an optically anisotropic layer is provided on the alignment film.
  • the optical element of the present disclosure may include a plurality of optically anisotropic layers in the thickness direction, and is not limited to a two-layer structure, and may include three or more layers.
  • the optically anisotropic layers 10 and 20 have an in-plane alignment pattern in which the direction of the optical axis 30A derived from the liquid crystal compound changes while continuously rotating along at least one direction A in the plane (in-plane liquid crystal alignment pattern).
  • FIG. 1 schematically shows an in-plane alignment pattern of the optical axis 30A derived from the liquid crystal compound on the surface of the optically anisotropic layer 20.
  • the optical axis 30A derived from the liquid crystal compound is the long axis direction (slow axis) of the rod-shaped liquid crystal compound when it is a rod-shaped liquid crystal compound, and perpendicular to the disk surface when it is a disc-shaped liquid crystal compound.
  • Direction (fast axis) the optical axis 30A derived from the liquid crystal compound is also referred to as the optical axis 30A of the liquid crystal compound or simply the optical axis 30A.
  • the in-plane orientation pattern in which the direction of the optical axis 30A changes while continuously rotating in one direction A refers to the optical axis 30A of a liquid crystal compound arranged along one direction A (hereinafter also referred to as axis A). And the angle between the axis A and the axis A differ depending on the position in the direction of the axis A.
  • the angle between the optical axis 30A and the axis A along the axis A gradually increases from ⁇ to ⁇ + 180 ° or ⁇ 180 °. It is a pattern that is oriented and fixed to change.
  • the optically anisotropic layer as shown in FIG.
  • a local region (unit region) in which the optical axis of the liquid crystal compound is parallel to the plane of the optically anisotropic layer and the direction of the optical axis is constant.
  • an in-plane alignment pattern arranged such that the direction of the optical axis continuously changes in one direction among a plurality of local regions arranged in one direction is referred to as a horizontal rotation alignment pattern.
  • the angle between the optical axis 30A and the axis A gradually changes may mean that the direction of the optical axis changes by a predetermined angle between unit regions, or at a constant angular interval. Instead, it may change at non-uniform angular intervals, or may change continuously.
  • the angle difference between the optical axes 30A between the unit regions adjacent to each other in the x direction is preferably 45 ° or less, more preferably 15 ° or less, and further preferably a smaller angle.
  • the length (distance) by which the optical axis 30 ⁇ / b> A of the liquid crystal compound 30 rotates 180 ° is defined as the length of one cycle in the horizontal rotation alignment.
  • the length of one cycle in the horizontal rotation alignment pattern is the distance from the angle ⁇ between the optical axis 30A of the liquid crystal compound 30 and the axis A to ⁇ + 180 °.
  • the length 1 of one cycle is also referred to as “one cycle ⁇ ” or simply “period ⁇ ”.
  • the optically anisotropic layers 10 and 20 in the optical element 1 include regions in which the length 1 of one period is different from each other in the direction of the axis A.
  • the liquid crystal alignment pattern has a period that is gradually shortened from right to left on the paper surface.
  • the optical element according to the present disclosure only needs to have two or more regions in which the length of one period is different from each other. .
  • a liquid crystal alignment pattern in which the length of one cycle gradually changes is preferable as shown in this example.
  • the period ⁇ includes a region of 10 ⁇ m or less.
  • the length of one period in the opposing regions may be shifted between the plurality of optically anisotropic layers, but it is preferable that the lengths match within a range of ⁇ 10%.
  • a plurality of optically anisotropic layers are formed in the order of forming the second optically anisotropic layer by coating or the like.
  • the periods can be matched.
  • the optical element 1 having the optically anisotropic layer when interposed between two polarizers orthogonal to the orientation pattern of the optical axis, when observed with an optical microscope, a bright portion 42 is obtained. And the dark portion 44 are observed alternately.
  • the period of the light and dark that is, the period of the light portion or the period of the dark portion is half the period ⁇ of the horizontal rotation alignment pattern of the optical axis.
  • the first optically anisotropic layer 10 is a tilted optically anisotropic layer.
  • the first optically anisotropic layer is also referred to as a tilted optically anisotropic layer 10.
  • the inclined optically anisotropic layer refers to a cross-sectional image (hereinafter, referred to as a cross-sectional SEM image) obtained by observing a cross section cut in a thickness direction along one direction with a scanning electron microscope (SEM: Scanning Electron Microscope).
  • the bright line and the dark line derived from the direction of the optical axis are bright and dark lines observed according to the orientation state of the liquid crystal compound in the thickness direction of the optically anisotropic layer.
  • FIG. 2 is a schematic diagram of a cross-sectional image when a cross section cut in the thickness direction along one direction in which the optical axis rotates is observed by SEM.
  • a plurality of pairs of bright lines and dark lines that are obliquely inclined with respect to the normal line n of the interface of the inclined optically anisotropic layer 10 are alternately present.
  • the inclination of the interface between the light and dark lines with respect to the normal n differs depending on the position in the x direction.
  • the inclination angle gradually increases in the x axis direction ( ⁇ 1 ⁇ 2 ⁇ 3 ).
  • the inclination angle of the light-dark line is defined as an acute angle smaller than 90 ° among angles formed by the light-dark line and the normal line n.
  • the tilted optically anisotropic layer 10 has, for example, a twist orientation in the thickness direction in addition to the horizontal rotation orientation, so that a bright and dark line is observed in the above-described cross-sectional image.
  • FIG. 3 schematically shows a liquid crystal alignment pattern in a cross section of the optical element 1 shown in FIG. 1 and FIG.
  • the liquid crystal compound is a rod-shaped liquid crystal compound 30.
  • bright and dark lines observed when the cross section is observed by SEM are superimposed.
  • the tilted optically anisotropic layer 10 has a liquid crystal alignment in which a rod-shaped liquid crystal compound 30 (hereinafter simply referred to as a liquid crystal compound 30) is horizontally rotated in the x direction and twisted in the thickness direction. Has a pattern.
  • a rod-shaped liquid crystal compound 30 hereinafter simply referred to as a liquid crystal compound 30
  • the optical axis is twisted in the thickness direction means that the direction of the optical axes arranged in the thickness direction from one surface of the optically anisotropic layer 10 to the other surface is relatively changed. It is oriented in a twisted direction and fixed. Twistability includes right-hand twisting and left-hand twisting, and may be applied according to the direction in which diffraction is desired.
  • the twist of the optical axis in the thickness direction is less than one rotation, that is, the twist angle is less than 360 °.
  • the optical axis of the liquid crystal compound 30 is rotated by approximately 140 ° from one surface side to the other surface side in the thickness direction (z direction).
  • the twist angle of the liquid crystal compound 30 in the thickness direction is preferably about 10 ° to 200 °, and more preferably about 45 ° to 180 °. In the case of the cholesteric orientation described later, the twist angle is 360 ° or more and the film has selective reflectivity for reflecting a specific circularly polarized light in a specific wavelength range.
  • the “twisted orientation” in the present specification does not include the cholesteric orientation, and the optically anisotropic layer having the twisted orientation does not have selective reflection.
  • the cross-sectional image a plurality of light and dark lines are alternately present also in the second optically anisotropic layer 20, but the light and dark lines of the second optically anisotropic layer 20 indicate the interface of the optically anisotropic layer 20. And has no inclination.
  • the direction of the optical axis in the thickness direction is uniform.
  • the period ⁇ A1 , ⁇ A2 ... Of the horizontal rotational orientation in the first optically anisotropic layer 10 and the horizontal rotational orientation in the second optically anisotropic layer 20.
  • the optical element 1 diffracts the incident light and transmits it.
  • incident light L in of predetermined circular polarization when incident light L in of predetermined circular polarization is incident, the incident light L in receives refracting power by the optically anisotropic layer 20 and emits light in a bent direction.
  • the refractive power depends on the period of the horizontal rotation orientation, and the smaller the period, the larger the diffraction angle is obtained.
  • the incident light L in of the predetermined circularly polarized light enters the regions of the optically anisotropic layers 10 and 20 where the periods of the horizontal rotational orientation are different at the same incident angle, the output light L out1 in the region where the period is relatively large. Also in the region where the period is relatively small, the diffraction angle of the outgoing light L out2 is large.
  • the optically anisotropic layer having the horizontal rotation orientation pattern functions as a transmission type diffraction element
  • the retardation Re is preferably from 0.4 ⁇ to 0.6 ⁇ , more preferably from 0.45 ⁇ to 0.55 ⁇ , and particularly preferably from 0.5 ⁇ .
  • the [Delta] n lambda birefringence of the optically anisotropic layer at a wavelength lambda, d is the thickness of the optical anisotropic layer.
  • the retardation Re for 940 nm light may be in the range of 282 nm to 658 nm, and particularly preferably 470 nm.
  • the optically anisotropic layer has a retardation of approximately ⁇ / 2
  • a phase difference of ⁇ / 2 is given to the incident light, and the incident light having a predetermined circularly polarized light is converted into a circularly polarized light in the opposite direction.
  • the optical anisotropic layer 11 having a horizontal rotational orientation pattern, showing conceptually the effect of the optically anisotropic layer 11 in the case of using the right-handed circularly polarized light P R of the wavelength ⁇ as the incident light L1 .
  • the incident light L1 of the right circularly polarized light having the wavelength ⁇ is incident on the optically anisotropic layer 11, the incident light L1 which is the right circularly polarized light PR passes through the optically anisotropic layer 11 to have a position of ⁇ / 2.
  • phase difference is converted given to left-handed circularly polarized light P L.
  • the absolute phase of the incident light L1 is changed by the optical axis 30A of the liquid crystal compound 30 in each unit region (local region) in the horizontal rotation alignment pattern.
  • the axis A of the optically anisotropic layer 11 on which the incident light is incident Is different depending on the direction of the optical axis 30A of the liquid crystal compound 30 at the position of.
  • the region indicated by the broken line in FIG. 4 schematically shows how the amount of change in the absolute phase Q differs depending on the x coordinate.
  • an equiphase plane E having an absolute phase having an angle with respect to the plane of the optically anisotropic layer 11 is formed due to the shift of the absolute phase Q when passing through the optically anisotropic layer 11. .
  • a bending force is applied to the incident light L1 incident from the normal direction in a direction perpendicular to the equal phase plane E, and the traveling direction of the incident light L1 changes. That is, the incident light L1 that is the right circularly polarized light PR becomes the left circularly polarized light PL after passing through the optically anisotropic layer 11, and is emitted as the outgoing light L2 that travels at a predetermined angle to the normal direction. The light is emitted from the anisotropic layer 11.
  • the wavelength ⁇ of the light that causes the optically anisotropic layer 11 to cause a diffractive action may be in a range from ultraviolet to visible light, infrared light, or even at an electromagnetic wave level.
  • the diffraction angle increases as the wavelength of the incident light increases, and the diffraction angle decreases as the wavelength of the incident light decreases. Therefore, the period may be set according to the target wavelength and the desired diffraction angle.
  • the first and second optically anisotropic layers 10 and 20 have regions in each plane where the period of the horizontal rotational orientation pattern is different. Thus, light with different emission angles can be emitted.
  • the layer is not twisted in the thickness direction as in the second optically anisotropic layer 20, the diffraction efficiency for light incident in the normal direction is high, but the diffraction efficiency for light incident obliquely is low. is there.
  • the tilted optically anisotropic layer 10 the diffraction efficiency with respect to obliquely incident light can be improved.
  • the optical element 1 has a laminated structure of two or more optically anisotropic layers, of which at least one layer is a tilted optically anisotropic layer. Diffraction efficiency can be improved, and the intensity difference of the emitted light can be suppressed, and the output intensity can be averaged.
  • the optically anisotropic layer has a two-layer structure in this example, but may have three or more layers.
  • the tilted optically anisotropic layer may be a single layer, but more preferably two or more layers.
  • FIGS. 5 and 6 show examples of a configuration including two inclined optically anisotropic layers as the optical elements 2 and 3 of the second and third embodiments.
  • 5 and 6 are schematic diagrams of cross-sectional images of the respective optical elements 2 and 3.
  • the cross-sectional image is an SEM image obtained by observing a cross section cut in the thickness direction along one direction horizontally orientated similarly to the above.
  • the two gradient optically anisotropic layers have, in the cross-sectional image, the inclination directions of the opposing regions of the two layers with respect to the normal line n of the bright and dark lines in one of the gradient optically anisotropic layers 10.
  • the direction of inclination of the light / dark line with respect to the normal line n in the other inclined optically anisotropic layer 22 may be different.
  • the difference in the inclination direction with respect to the normal line n means that the inclination direction of the light-dark line of one inclined optically anisotropic layer 10 with respect to the normal line n is on the negative side of the x-axis (left side in the drawing), while the other inclination direction is different.
  • the direction of inclination of the light-dark line of the optically anisotropic layer 22 with respect to the normal line n is on the positive side of the x-axis (right side of the paper).
  • the facing region in which the directions of inclination of the light and dark lines are different from each other may be the entire region or a part thereof.
  • the opposing regions of the two tilted optically anisotropic layers are the same xy regions that overlap when viewed from the thickness direction.
  • the two gradient optically anisotropic layers have the inclination of the opposing region of the two layers with respect to the normal line n of the interface between the bright and dark lines in one of the gradient optically anisotropic layers 10.
  • the direction may be the same as the direction of inclination with respect to the normal line n of the interface between the light and dark lines in the other inclined optically anisotropic layer 24.
  • the inclination angle ⁇ n of the light and dark line in one inclined optically anisotropic layer 10 in the facing region and the inclination angle ⁇ n of the light and dark line in the other inclined optically anisotropic layer 24 are different from each other.
  • the facing region in which the light and dark lines have the same inclination direction may be the entire region or a part thereof.
  • the tilt of the light-dark line with respect to the normal is changed. be able to.
  • the difference in the twist pitch means that the optical axes have different thicknesses until they are twisted to the same twist angle.
  • the two tilted optically anisotropic layers provided in one optical element may simultaneously include opposing regions having the same inclination direction and opposing regions having different inclination directions.
  • the optical element functioning as a transmission-type diffraction element has been described.
  • the optical element according to the present disclosure may function as a reflection-type diffraction element.
  • FIG. 7 shows a cross-sectional view of an optical element 5 according to the fourth embodiment that functions as a reflective diffraction element.
  • FIG. 7 schematically shows light and dark lines in a cross-sectional SEM image.
  • the optical element 5 includes two inclined optically anisotropic layers 12 and 14.
  • the two inclined optically anisotropic layers 12 and 14 are both horizontally rotationally oriented and cholesterically oriented in the thickness direction.
  • the two tilted optically anisotropic layers 12 and 14 have the directions of rotation of the optical axes in the horizontal rotation orientation opposite to each other, and the directions of rotation of the cholesteric orientation are also opposite.
  • the tilted optically anisotropic layers 12 and 14 have a cholesteric orientation, they selectively reflect only light of a specific selected wavelength region of specific circularly polarized light.
  • the center wavelength of the light that is selectively reflected is determined by the helical pitch and the film thickness of the cholesteric, and which circularly polarized light is reflected is determined by the rotation direction of the helix.
  • liquid crystal alignment pattern has horizontal rotation alignment and cholesteric alignment
  • light-dark lines having a tilt in the normal direction as in the above-described embodiment and different tilt angles are observed. (See FIG. 7).
  • the optical element 5 Since the orientation pattern of the optical axis 30A in the in-plane direction of the tilted optically anisotropic layers 12 and 14 has the horizontal rotation orientation as in the above-described embodiment, the same effect as that of the optical element 1 is produced. That is, an effect of changing the absolute phase of the incident light to bend it in a predetermined direction is achieved. Therefore, the optical element 5 has both the function of bending the incident light in a direction different from the incident direction and the function of the cholesteric orientation, and reflects the light at an angle in a predetermined direction with respect to the reflection direction of the specular reflection. . Further, in the in-plane direction, since there are regions having different periods of the horizontal rotational orientation, light can be reflected at different reflection angles with respect to the same incident angle. In addition, it is possible to improve the average diffraction efficiency when the light is incident while changing the incident angle depending on the region, and it is possible to suppress the difference in the intensity of the reflected light.
  • the optically anisotropic layer has an in-plane alignment pattern in which one period is gradually shortened from the center in one axis direction to one end and the other end in the plane.
  • FIG. 8 is a schematic plan view of an optically anisotropic layer of an optical element according to a design change example.
  • the in-plane alignment pattern is indicated by the optical axis 30A of the liquid crystal compound.
  • the optically anisotropic layer a region in which the direction of the optical axis is the same is provided concentrically, and one direction in which the direction of the optical axis 30 ⁇ / b> A changes while rotating continuously is from the center of the optically anisotropic layer 15. It has an in-plane orientation pattern provided radially.
  • the direction of the optical axis 30 ⁇ / b > A is determined in a number of directions outward from the center of the optically anisotropic layer 15, for example, the direction indicated by arrow A 1 , the direction indicated by arrow A 2 , and the arrow A 3. It changes while rotating continuously along the direction shown by.
  • the rotation directions of the optical axes rotating along the respective axial directions are rotationally symmetric with respect to the center.
  • the light-dark period (ie, dark period or light period) on the concentric periodic alignment surface is half the period ⁇ of the horizontal rotation alignment pattern. Since the period is gradually shortened toward the outside, the difference between the diameter of the concentric circle and the diameter of the adjacent concentric circle decreases as the diameter of the concentric circle increases.
  • the absolute phase of the circularly polarized light incident on the optically anisotropic layer 15 having the in-plane alignment pattern changes in each of the local regions where the direction of the optical axis of the liquid crystal compound 30 is different.
  • the amount of change in the absolute phase differs depending on the direction of the optical axis of the liquid crystal compound 30 on which the circularly polarized light is incident.
  • the angle of refraction of light with respect to the incident direction becomes larger as the one period in the liquid crystal alignment pattern becomes shorter. Therefore, by gradually shortening one period ⁇ ⁇ ⁇ ⁇ in the in-plane alignment pattern from the center of the optically anisotropic layer 15 toward the outside in one direction in which the optical axis continuously rotates, the optical anisotropy can be obtained.
  • the focusing or diverging power of light by the layer 15 can be further improved.
  • the optical axis is not gradually changed in one direction 1 in one direction in which the optical axis is continuously rotated. In a continuously rotating one direction, a configuration having an area in which one period ⁇ ⁇ ⁇ is partially different is also available.
  • the liquid crystal composition containing the liquid crystal compound for forming the optically anisotropic layer contains, in addition to the liquid crystal compound, other components such as a leveling agent, an alignment controlling agent, a polymerization initiator and an alignment auxiliary. Is also good.
  • An optically anisotropic layer in which a predetermined liquid crystal alignment pattern is fixed, comprising a cured layer of the liquid crystal composition formed by forming an alignment film on the support, applying and curing the liquid crystal composition on the alignment film. can be obtained.
  • rod-shaped liquid crystal compound examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, Phenyldioxane, tolan and alkenylcyclohexylbenzonitrile are preferably used. Not only low molecular liquid crystal molecules as described above but also high molecular liquid crystal molecules can be used.
  • the alignment of the rod-shaped liquid crystal compound is fixed by polymerization.
  • the polymerizable rod-shaped liquid crystal compound Makromol. ⁇ Chem. 190, 2255 (1989), Advanced Materials 5: 107 (1993), U.S. Pat. Nos. 4,683,327, 5,622,648, 5,770,107, International Publication No. 95/22586, Nos. 95/24455, 97/00600, 98/23580, 98/52905, JP-A-1-272551, JP-A-6-16616, JP-A-7-110469, and JP-A-11-80081. And the compounds described in JP-A-2001-328973. Further, as the rod-shaped liquid crystal compound, for example, those described in JP-T-11-513019 and JP-A-2007-279688 can also be preferably used.
  • discotic liquid crystal compound for example, those described in JP-A-2007-108732 and JP-A-2010-244038 can be preferably used.
  • any known materials can be used.
  • a chiral agent is added.
  • the chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase.
  • the chiral agent has a different helix direction or helix pitch depending on the compound, and may be selected according to the purpose.
  • the chiral agent is not particularly limited, and is a known compound (eg, Liquid Crystal Device Handbook, Chapter 3, Section 4-3, TN (twisted nematic), chiral agent for STN (Super Twisted Nematic), page 199, Japan Society for the Promotion of Science) 142th Committee, 1989), isosorbide, isomannide derivatives, and the like.
  • the chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent.
  • the axially or planarly asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, a repeating unit derived from the polymerizable liquid crystal compound and a derivative derived from the chiral agent by a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound.
  • the polymerizable group of the polymerizable chiral agent is preferably the same type of group as the polymerizable group of the polymerizable liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and preferably an ethylenically unsaturated polymerizable group. More preferred. Further, the chiral agent may be a liquid crystal compound.
  • the chiral agent has a photoisomerizable group
  • a pattern having a desired reflection wavelength corresponding to the emission wavelength can be formed by irradiating a photomask such as active light after coating and orientation.
  • the photoisomerizable group is preferably an isomerization site, an azo group, an azoxy group, or a cinnamoyl group of a compound exhibiting photochromic properties.
  • JP-A-2002-80478 JP-A-2002-80851, JP-A-2002-179668, JP-A-2002-179669, JP-A-2002-179670, Compounds described in 179681, JP-A-2002-179682, JP-A-2002-338575, JP-A-2002-338668, JP-A-2003-313189, and JP-A-2003-313292. Can be used.
  • organic solvent As a solvent for the liquid crystal composition, an organic solvent is preferably used.
  • organic solvents include amides (eg, N, N-dimethylformamide), sulfoxides (eg, dimethylsulfoxide), heterocyclic compounds (eg, pyridine), hydrocarbons (eg, benzene, hexane), alkyl halides (eg, , Chloroform, dichloromethane), esters (eg, methyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone, cyclohexanone), and ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination.
  • the optically anisotropic layer can be formed, for example, by applying a multi-layer liquid crystal composition on an alignment film.
  • the multi-layer coating means that a liquid crystal composition is coated on an alignment film, heated, cooled, and then cured by ultraviolet rays to form a first liquid crystal fixing layer. It is to repeat the steps of repeatedly applying the coating on the chemical layer, applying the same, heating, cooling, and then performing ultraviolet curing.
  • the support supports the optically anisotropic layer or the optically anisotropic layer and the alignment film.
  • the support is not an essential component of the optical element. It may be used when forming the optically anisotropic layer, and then be peeled off.
  • a transparent support is preferable, and a polyacrylic resin film such as polymethyl methacrylate, a cellulosic resin film such as cellulose triacetate, a cycloolefin polymer film (for example, trade name “ARTON”, manufactured by JSR Co., ("Zeonor", manufactured by Zeon Corporation), polyethylene terephthalate (PET), polycarbonate, polyvinyl chloride, and the like.
  • the support is not limited to a flexible film, and may be a non-flexible substrate such as a glass substrate.
  • the thickness of the support is not particularly limited, and the thickness capable of holding the alignment film and the optically anisotropic layer may be appropriately set according to the use of the optical element, the material for forming the support, and the like.
  • the thickness of the support is preferably 1 to 1000 ⁇ m, more preferably 3 to 250 ⁇ m, and still more preferably 5 to 150 ⁇ m.
  • the alignment film is provided to align the liquid crystal compound in a predetermined liquid crystal alignment pattern when forming the optically anisotropic layer.
  • a rubbing treatment film made of an organic compound such as a polymer, an oblique deposition film of an inorganic compound, a film having microgrooves, and a Langmuir film of an organic compound such as ⁇ -tricosanoic acid, dioctadecylmethylammonium chloride and methyl stearylate examples thereof include a film obtained by accumulating LB (Langmuir-Blodgett) films by a blowt method.
  • the alignment film by the rubbing treatment can be formed by rubbing the surface of the polymer layer several times with paper or cloth in a certain direction.
  • the material used for the alignment film include polyimide, polyvinyl alcohol, a polymer having a polymerizable group described in JP-A-9-152509, JP-A-2005-97377, JP-A-2005-99228, and Preferred examples include materials used for forming an alignment film and the like described in JP-A-2005-128503.
  • a so-called photo-alignment film in which a photo-alignable material is irradiated with polarized or non-polarized light to form an alignment film, is suitably used. That is, in the optical element of the present disclosure, a photo-alignment film formed by applying a photo-alignment material on a support is preferably used as the alignment film. Irradiation of polarized light can be performed on the photo-alignment film in a vertical or oblique direction, and irradiation of non-polarized light can be performed on the photo-alignment film in an oblique direction.
  • photo-alignment material used for the photo-alignment film for example, JP-A-2006-285197, JP-A-2007-76839, JP-A-2007-138138, JP-A-2007-94071, and JP-A-2007-94071 JP-A-121721, JP-A-2007-140465, JP-A-2007-156439, JP-A-2007-133184, JP-A-2009-109831, JP-A-3883884, and JP-A-4151746.
  • Azo compounds aromatic ester compounds described in JP-A-2002-229039, maleimide and / or alkenyl-substituted nadimide compounds having photo-alignable units described in JP-A-2002-265541 and JP-A-2002-317013 , Patent No. 4205195 And photocrosslinkable silane derivatives described in JP-A-4205198, and photocrosslinkable polyimides, photocrosslinkable polyamides and photocrosslinkable resins described in JP-T-2003-520878, JP-T-2004-529220 and JP-A-4162850.
  • esters and JP-A-9-118717, JP-A-10-506420, JP-A-2003-505561, WO 2010/150748, JP-A-2013-177561, and JP-A-2014-12823.
  • Compounds which can be photodimerized, especially cinnamate compounds, chalcone compounds, coumarin compounds, and the like described in JP-A No. 2000-163, are exemplified as preferred examples.
  • azo compounds, photocrosslinkable polyimides, photocrosslinkable polyamides, photocrosslinkable esters, cinnamate compounds, and chalcone compounds are preferably used.
  • the thickness of the alignment film is preferably 0.01 to 5 ⁇ m, more preferably 0.05 to 2 ⁇ m.
  • the method for forming the alignment film is not limited, and various known methods depending on the material for forming the alignment film can be used. As an example, there is a method in which an alignment film is applied to the surface of a support and dried, and then the alignment film is exposed to laser light to form an alignment pattern.
  • FIG. 9 conceptually shows an example of an exposure apparatus that forms an alignment pattern by exposing an alignment film.
  • the exposure apparatus includes a laser light source 81 for emitting laser light, a beam expander 82 for expanding the beam diameter of the laser light L emitted from the laser light source 81, and a ⁇ / 2 plate disposed on the optical path of the laser light L. 83 and a drive stage 86 on which a lens 84 and an alignment film 90 are provided.
  • the ⁇ / 2 plate 83 is attached to a rotary mount (not shown) and functions as a variable polarization rotator.
  • the beam diameter of the laser light L emitted from the laser light source 81 is enlarged by a beam expander 82, adjusted to an arbitrary polarization direction by rotation of a ⁇ / 2 plate 83, and focused on a photo-alignment film by a lens 84.
  • the drive stage 86 is driven to scan and expose the photo-alignment film for patterning. Thus, a patterned alignment film having a desired pattern can be formed.
  • the alignment film is provided as a preferred embodiment, and is not an essential component.
  • a method of rubbing the support, a method of processing the support with a laser beam or the like, and forming an orientation pattern on the support to form an optically anisotropic layer having a horizontal rotational orientation pattern may also be used. Is possible.
  • optical element In each of the above-described optical elements, a configuration has been described that basically assumes single-wavelength incident light. However, a configuration that provides the same effect with respect to multiple-wavelength incident light may be employed. If the optical element has a structure in which optically anisotropic layers each having a liquid crystal alignment pattern corresponding to each wavelength are laminated, incident light of multiple wavelengths can be used.
  • FIG. 10 shows a schematic configuration diagram of an example of the light deflecting device of one embodiment.
  • the light deflecting device 130 includes a condenser lens 131, a ⁇ / 4 plate 111, a light deflecting element 132, and an optical element 120 according to one embodiment of the present invention from the upstream side in the traveling direction of light (light beam). .
  • upstream and downstream are defined as upstream and downstream in the traveling direction of light.
  • the condensing lens 131 is a known condensing lens, and is provided so that light (light beam) from a light source (not shown) is slightly condensed and enters the light deflecting element 132.
  • the condenser lens 131 is provided as a preferred embodiment, and is not an essential component. However, by providing the condensing lens 131, the light (light beam) emitted from the light deflecting device 130 can be converted into appropriate parallel light to improve the straightness.
  • all known condenser elements capable of condensing light (light beam) can be used.
  • the ⁇ / 4 plate 111 is a known ⁇ / 4 plate (1 / phase plate) that converts linearly polarized light emitted from the light source to circularly polarized light.
  • the ⁇ / 4 plate 111 a known one can be used without limitation. Therefore, the ⁇ / 4 plate 111 may be derived from a polymer or from a liquid crystal.
  • the ⁇ / 4 plate 111 may be disposed between the MEMS (Micro Electro Mechanical System) deflection element 132 and the optical element 120. However, it is preferable that the ⁇ / 4 plate 111 be provided upstream of the MEMS light deflecting element 132 from the viewpoint that the size of the ⁇ / 4 plate 111 can be reduced.
  • the ⁇ / 4 plate 111 need not be provided.
  • the light deflection element 132 is a MEMS light deflection element that scans light two-dimensionally.
  • MEMS light deflecting element there is no particular limitation on the MEMS light deflecting element, and the MEMS light deflecting element described in JP-A-2012-208352, the MEMS light deflecting element described in JP-A-2014-134462, and JP-A-2015-2015 A known MEMS optical deflection element (MEMS (light)) that deflects (deflects and scans) light by swinging a mirror (mirror) using a piezoelectric actuator or the like, such as a MEMS optical deflection element described in 22064 A scanner, a MEMS optical deflector, a MEMS mirror, or a DMD (Digital Micromirror Device) can be used as appropriate.
  • MEMS optical deflection element described in 22064 A scanner, a MEMS optical deflector, a MEMS mirror, or a DMD (Digital Micromirror Device) can be used
  • a drive device 134 for rotating the mirror is connected to the light deflection element 132.
  • the driving device 134 a known device may be used according to the configuration of the MEMS light deflection element 132 and the like.
  • the optical element 120 has an optically anisotropic layer having an in-plane liquid crystal alignment pattern in which the optical axis is horizontally rotated and oriented along an axis provided radially from the center and whose period becomes smaller toward the outside as shown in FIG. Are provided in two layers. As shown in FIG. 10, the period becomes smaller ( ⁇ 1 > ⁇ 2 > ⁇ 3 > ⁇ 4 ...) Toward the outside as compared with the period 1 1 of the central region of the optical element 120.
  • one optically anisotropic layer 121 is a tilted optically anisotropic layer, and the other optically anisotropic layer 122 has no twist in the thickness direction and has a uniform pattern in the thickness direction. It is an anisotropic layer.
  • the optical element 120 is arranged such that the center coincides with the center of deflection of the light deflecting element 132.
  • the inclination of the light-dark line with respect to the normal is larger toward the center and smaller toward the outside.
  • the light deflector 130 slightly condenses P-polarized light emitted from a light source (not shown) on the emission surface 120 b of the optical element 120 by the condenser lens 131, and then by the ⁇ / 4 plate 111. For example, it is converted into right circularly polarized light.
  • the light converted into circularly polarized light by the ⁇ / 4 plate 111 is deflected by the MEMS light deflector 132 and is incident on the incident surface 120 a of the optical element 120.
  • the light incident on the optical element 120 is diffracted and emitted from the emission surface 120b of the optical element 120, that is, from the light deflector 130.
  • the center of the optical element 120 is arranged so as to coincide with the center of deflection of the light deflecting element 132, the light scanned by the light deflecting element 132 is shifted with respect to one surface of the optical element 120 as the distance from the center of the one surface increases. It is incident at a large angle of incidence.
  • the period of the horizontal rotational orientation is configured to become shorter as it goes away from the center, and the bending force becomes stronger toward the outside. Therefore, the optical element 120 hardly generates a bending force with respect to the vertically incident light, transmits the light as it is, and emits the light with a large bending toward the outside of the optical element 120.
  • the scan angle ⁇ max of the light deflector 132 is caused to be incident on the optical element 120 as polarized light having a bending force applied outward from the center by the horizontal rotational orientation of the optically anisotropic layers 121 and 122 as incident light. A larger scan angle ⁇ maxout can be obtained.
  • the incident angle of light incident on the incident surface 120a of the optical element 120 is ⁇ 1
  • the refractive index of the medium on the incident side is n1
  • the exit angle of light exiting from the exit surface 120b of the optical element 120 is ⁇ 2
  • the refractive index of the medium is n2
  • the wavelength of light is ⁇
  • the pitch of the periodic structure of the liquid crystal diffraction element is ⁇
  • the diffraction order is m
  • the angle of the light emitted from the optical element 120 can be changed.
  • the angle at which the light is finally emitted into the air can be up to an absolute value of about 80 °, so that the emission angle can be increased to a very large angle.
  • the period of the horizontal rotation alignment pattern in the optically anisotropic layer of the optical element 120 in the plane light can be continuously emitted in an arbitrary direction.
  • the optical deflecting device of the present disclosure makes it possible to perform optical scanning at a scan angle wider than the scan angle (view angle) of the optical deflecting element.
  • FIG. 10 shows a state where the scan angle in the x direction is widened, the scan angle can be widened in the y direction by the same principle since the horizontal rotation orientation pattern is provided radially. Therefore, by scanning the deflection light (scanning light) from the light deflecting element 132 by diffracting the light by the optical element 120, it is possible to greatly expand the scanning range that can be two-dimensionally scanned by the light deflecting element 132. Become.
  • the tilted optically anisotropic layer 121 By providing the tilted optically anisotropic layer 121, it is possible to improve the diffraction efficiency of the outer peripheral portion of the element where the incident angle is large, suppress the difference in the diffraction efficiency depending on the incident position and the incident angle, and reduce the variation in the light amount of the emitted light. Can be suppressed. Further, by providing two or more optically anisotropic layers, the average diffraction efficiency can be improved.
  • the optical element 120 not only the optical element 120 but also an optically anisotropic material having a horizontal rotation alignment pattern whose period in the x-axis direction gradually decreases from one to the other as shown in FIG.
  • An optical element having a conductive layer may be used.
  • the element in the x-axis direction, the element has a horizontal rotation alignment pattern in which the period gradually decreases from the center of the element toward the outside, and the rotation directions of the optical axes of the horizontal rotation alignment patterns on both sides of the center are opposite.
  • An optical element having an optically anisotropic layer may be used.
  • Comparative Example 1 An optical element including the non-tilted optically anisotropic layer 211 in which the light and dark lines are not inclined in the cross-sectional SEM image as the first optically anisotropic layer was produced as Comparative Example 1 (see FIG. 11).
  • ⁇ Preparation of optical element> On a glass substrate, the following coating liquid for forming an alignment film was applied by spin coating. The support on which the coating film of the coating liquid for forming an alignment film was formed was dried on a hot plate at 60 ° C. for 60 seconds to form an alignment film.
  • the alignment film While arbitrarily changing the polarization direction of the condensed laser light shown in FIG. 9, the alignment film is exposed by using an exposure apparatus that scans and patterns the optical alignment film to form an alignment film P- having an alignment pattern. 1 was formed.
  • the exposure apparatus a laser that emits laser light having a wavelength (325 nm) was used. Note that a concentric orientation pattern was used, and one cycle of the orientation pattern was gradually shortened from the center outward.
  • composition A-1 was prepared as a liquid crystal composition for forming an optically anisotropic layer.
  • the first optically anisotropic layer was formed by applying the composition A-1 on the alignment film P-1 in multiple layers. First, a first layer of the composition A-1 is coated on the alignment film, heated and cooled, and then ultraviolet-cured to form a liquid crystal fixing layer. Then, the second and subsequent layers are overcoated with the liquid crystal fixing layer. Coating was performed, and heating and cooling, followed by ultraviolet curing, were repeated.
  • the first layer is prepared by applying the following composition A-1 onto the alignment film P-1, heating the coating film to 70 ° C. on a hot plate, and then cooling it to 25 ° C.
  • the coating was irradiated with ultraviolet rays having a wavelength of 365 nm at an irradiation amount of 300 mJ / cm 2 using a high-pressure mercury lamp to fix the orientation of the liquid crystal compound.
  • the thickness of the first liquid crystal layer was 0.2 ⁇ m.
  • the complex refractive index ⁇ n of the cured layer of the liquid crystal composition A1 is determined by coating the liquid crystal composition A1 on a separately provided support having an alignment film for retardation measurement, and the director of the liquid crystal compound is horizontal to the substrate.
  • the liquid crystal fixing layer (cured layer) obtained by fixing by irradiating ultraviolet rays was measured for retardation Re ( ⁇ ) and film thickness.
  • the retardation Re ( ⁇ ) was measured at a target wavelength using a Woollam spectroscopic ellipsometer, and the film thickness was measured using an SEM.
  • is the wavelength of the incident light. In the following, the wavelength ⁇ of the incident light is 940 nm.
  • a concentric periodic alignment surface means an in-plane alignment pattern in which the axes of horizontal rotational alignment are radially arranged from the center. In the horizontal rotation orientation pattern of the first optically anisotropic layer, one period is very large at the center (the reciprocal of the period can be regarded as 0), and is 9.0 ⁇ m at a distance of 1.0 mm from the center.
  • the distance was 4.5 ⁇ m at a distance of 2.5 mm from the center, and 3.0 ⁇ m at a distance of 4.0 mm from the center, and the period became shorter outward.
  • the twist angle in the thickness direction of the first optically anisotropic layer was 0 °.
  • measurements such as “ ⁇ n 940 ⁇ thickness” were performed in the same manner.
  • a light-dark line extending in a direction perpendicular to the lower interface (interface with the glass substrate) of the optically anisotropic layer, that is, along the normal line was observed. In the repeated pattern of the light and dark lines, it was observed that the period became shorter from the center toward the outside.
  • the first optically anisotropic layer includes two optically anisotropic layers, and the first optically anisotropic layer is a tilted optically anisotropic layer 212 in which a light-dark line is inclined to a normal to an interface in a cross-sectional SEM image, and a second optically anisotropic layer is formed.
  • An optical element in which the anisotropic layer was the non-tilted optically anisotropic layer 211 was produced as Example 1 (see FIG. 12).
  • composition A-2 was prepared as a liquid crystal composition for forming an optically anisotropic layer.
  • Composition A-2 Liquid crystal compound L-1 100.00 parts by mass Chiral agent A 0.21 parts by mass Polymerization initiator (Irgacure (registered trademark) 907, manufactured by BASF) 3.00 parts by mass Photosensitizer (KAYACURE DETX-S, manufactured by Nippon Kayaku) 1.00 parts by mass Leveling agent T-1 0.08 parts by mass Methyl ethyl ketone 2840.00 parts by mass ⁇ ⁇
  • a first optically anisotropic layer was formed on the alignment film P-1 in the same manner as in Comparative Example 1 except that the composition A-2 was used.
  • the second optically anisotropic layer of Example 1 was the same as the first optically anisotropic layer of Comparative Example 1, and was the same as the first optically anisotropic layer of Comparative Example 1 using composition A-1. Then, a second optically anisotropic layer was formed on the first optically anisotropic layer, and an optical element of Example 1 was produced.
  • the horizontal rotation orientation pattern of the first optically anisotropic layer one period is very large at the center (the reciprocal of the period can be regarded as 0), and is 9.0 ⁇ m at a distance of 1.0 mm from the center. The distance was 4.5 ⁇ m at a distance of 2.5 mm from the center, and 3.0 ⁇ m at a distance of 4.0 mm from the center, and the period became shorter outward.
  • the second optically anisotropic layer is formed by coating on the first optically anisotropic layer, its period is the same as the period of the first optically anisotropic layer. Also in the following description, the other layers formed by coating on the first optically anisotropic layer have the same period.
  • the twist angle in the thickness direction of the first optically anisotropic layer was 140 ° right twist.
  • the twist angle in the thickness direction of the second optically anisotropic layer was 0 °. In the cross-sectional image by SEM, bright and dark lines oblique to the normal line of the interface under the optically anisotropic layer (the interface with the glass substrate) were observed in the first optically anisotropic layer, and the second optically anisotropic layer was observed.
  • Example 2 An optical system comprising two optically anisotropic layers, wherein the first optically anisotropic layer is a non-tilted optically anisotropic layer 211 and the second optically anisotropic layer is a tilted optically anisotropic layer 212.
  • the device was manufactured as Example 2 (see FIG. 13). That is, the second embodiment has a configuration in which the first optically anisotropic layer and the second optically anisotropic layer of the first embodiment are reversed.
  • Optical element of Example 2 in the same manner as in Example 1 except that a first optically anisotropic layer was formed using composition A-1 and a second optically anisotropic layer was formed using composition A-2. was prepared.
  • the liquid crystal finally has a ⁇ n 940 ⁇ thickness (Re (940)) of 470 nm, and has a concentric period as shown in FIG. It was confirmed with a polarizing microscope that the film had a proper alignment surface.
  • one period is very large at the center (the reciprocal of the period can be regarded as 0), and is 9.0 ⁇ m at a distance of 1.0 mm from the center. The distance was 4.5 ⁇ m at a distance of 2.5 mm from the center, and 3.0 ⁇ m at a distance of 4.0 mm from the center, and the period became shorter outward.
  • the twist angle in the thickness direction of the first optically anisotropic layer was 0 °.
  • the twist angle in the thickness direction of the second optically anisotropic layer was 140 ° right twist.
  • the first optically anisotropic layer bright and dark lines extending in the normal direction of the interface below the optically anisotropic layer (the interface with the glass substrate) were observed, and the second optically anisotropic layer was observed. In, light and dark lines oblique to the normal were observed.
  • the inclination angle of the second optically anisotropic layer with respect to the normal line of the light-dark line became smaller from the center toward the outside. In the pattern of the light and dark lines, it was observed that both the first optically anisotropic layer and the second optically anisotropic layer became shorter from the center toward the outer side.
  • Comparative Example 2 As Comparative Example 2, an optical element including, as the first optically anisotropic layer, the inclined optically anisotropic layer 212 in which the light and dark lines in the cross-sectional SEM image was inclined with respect to the normal to the interface was produced.
  • the first optically anisotropic layer of Comparative Example 2 was the same as the first optically anisotropic layer of Example 1, and was the same as the first optically anisotropic layer of Example 1 using composition A-2.
  • a first optically anisotropic layer was formed on the alignment film P-1 to produce an optical element of Comparative Example 2. That is, the optical element of Comparative Example 2 has a configuration including only one tilted optically anisotropic layer as the optically anisotropic layer.
  • the horizontal rotation orientation pattern of the first optically anisotropic layer one period is very large at the center (the reciprocal of the period can be regarded as 0), and is 9.0 ⁇ m at a distance of 1.0 mm from the center. The distance was 4.5 ⁇ m at a distance of 2.5 mm from the center, and 3.0 ⁇ m at a distance of 4.0 mm from the center, and the period became shorter outward.
  • the twist angle in the thickness direction of the first optically anisotropic layer was 140 ° right twist.
  • Example 3 A gradient optically anisotropic layer having two optically anisotropic layers, wherein the first optically anisotropic layer and the second optically anisotropic layer have a bright and dark line inclined to a normal to an interface in a cross-sectional SEM image Optical elements 213 and 214 were produced as Example 3 (see FIG. 14).
  • the directions of inclination of the light and dark lines in the cross-sectional SEM image were the same, and the inclination angles were different.
  • composition A-3 was prepared as a liquid crystal composition for forming the first optically anisotropic layer.
  • a first optically anisotropic layer was formed on the alignment film P-1 in the same manner as in Example 1 except that the composition A-3 was used.
  • composition A-4 was prepared as a liquid crystal composition for forming an optically anisotropic layer.
  • a second optically anisotropic layer was formed on the first optically anisotropic layer in the same manner as in Example 1 except that the composition A-4 was used, whereby an optical element of Example 3 was produced.
  • the horizontal rotation orientation pattern of the first optically anisotropic layer one period is very large at the center (the reciprocal of the period can be regarded as 0), and is 9.0 ⁇ m at a distance of 1.0 mm from the center. The distance was 4.5 ⁇ m at a distance of 2.5 mm from the center, and 3.0 ⁇ m at a distance of 4.0 mm from the center, and the period became shorter outward.
  • the twist angle in the thickness direction of the first optically anisotropic layer was right-hand twist of 160 °.
  • the twist angle in the thickness direction of the second optically anisotropic layer was 20 ° to the right.
  • the directions of twist of the first optically anisotropic layer and the second optically anisotropic layer were the same. Further, in the cross-sectional image by SEM, bright and dark lines obliquely oblique to the normal to the interface under the optically anisotropic layer were observed in both the first optically anisotropic layer and the second optically anisotropic layer.
  • the inclination angle of the light-dark line with respect to the normal line decreases from the center to the outside, and the inclination directions of the first optical anisotropic layer and the second optical anisotropic layer from the normal line are the same. Met. In the pattern of the light and dark lines, it was observed that both the first optically anisotropic layer and the second optically anisotropic layer shortened the period from the center toward the outside.
  • Example 4 A gradient optically anisotropic layer having two optically anisotropic layers, wherein the first optically anisotropic layer and the second optically anisotropic layer have a bright and dark line inclined to a normal to an interface in a cross-sectional SEM image Optical elements 215 and 216 were produced as Example 4 (see FIG. 15). In the first optically anisotropic layer and the second optically anisotropic layer, the directions of inclination of light and dark lines in the cross-sectional SEM image were made different.
  • composition A-5 was prepared as a liquid crystal composition for forming an optically anisotropic layer.
  • a first optically anisotropic layer was formed on the alignment film P-1 in the same manner as in Example 1 except that the composition A-5 was used.
  • composition A-6 was prepared as a liquid crystal composition for forming an optically anisotropic layer.
  • a second optically anisotropic layer was formed on the first optically anisotropic layer in the same manner as in Example 1 except that the composition A-6 was used, whereby an optical element of Example 4 was produced.
  • the horizontal rotation orientation pattern of the first optically anisotropic layer one period is very large at the center (the reciprocal of the period can be regarded as 0), and is 9.0 ⁇ m at a distance of 1.0 mm from the center. The distance was 4.5 ⁇ m at a distance of 2.5 mm from the center, and 3.0 ⁇ m at a distance of 4.0 mm from the center, and the period became shorter outward.
  • the twist angle in the thickness direction of the first optically anisotropic layer was right-hand twist of 80 °.
  • the twist angle in the thickness direction of the second optically anisotropic layer was left twist of 80 °.
  • the directions of twist of the first optically anisotropic layer and the second optically anisotropic layer were opposite. Further, in the cross-sectional image by SEM, it was observed that both the first optically anisotropic layer and the second optically anisotropic layer had light and dark lines obliquely inclined with respect to the normal to the interface below the optically anisotropic layer. .
  • the inclination angle of the light-dark line with respect to the normal line decreases from the center to the outside, and the inclination directions of the light-dark line of the first optically anisotropic layer and the second optically anisotropic layer from the normal line are reversed. there were.
  • both the first optically anisotropic layer and the second optically anisotropic layer shortened the period from the center toward the outside.
  • Example 5 A tilted optically anisotropic layer 217 having three optically anisotropic layers, wherein the first optically anisotropic layer and the third optically anisotropic layer have light-dark lines inclined to the normal to the interface in the cross-sectional SEM image; 218, in which the second optically anisotropic layer 219 disposed between the first and third optically anisotropic layers is a non-tilted optically anisotropic layer, was fabricated as Example 5 (FIG. 16). reference). The directions of the inclination of the light and dark lines in the cross-sectional SEM image were different between the first optically anisotropic layer and the third optically anisotropic layer.
  • composition A-7 was prepared as a liquid crystal composition for forming an optically anisotropic layer.
  • Composition A-7 Liquid crystal compound L-1 100.00 parts by mass Chiral agent A 0.19 parts by mass Polymerization initiator (Irgacure (registered trademark) 907, manufactured by BASF) 3.00 parts by mass Photosensitizer (KAYACURE DETX-S, manufactured by Nippon Kayaku) 1.00 parts by mass Leveling agent T-1 0.08 parts by mass Methyl ethyl ketone 2840.00 parts by mass ⁇ ⁇
  • a first optically anisotropic layer was formed on the alignment film P-1 in the same manner as in Example 1 except that the composition A-7 was used.
  • a second optically anisotropic layer was formed on the first optically anisotropic layer in the same manner as in the first optically anisotropic layer of Comparative Example 1 except that the composition A-1 was used and the film thickness was changed. Formed.
  • composition A-8 was prepared as a liquid crystal composition for forming an optically anisotropic layer.
  • a third optically anisotropic layer was formed on the second optically anisotropic layer in the same manner as in Example 1 except that the composition A-8 was used, and an optical element of Example 5 was produced.
  • Re (940) was 564 nm. Further, it was confirmed by a polarizing microscope that the film had a concentric periodic alignment surface as shown in FIG. In the horizontal rotation orientation pattern of the first optically anisotropic layer, one period is very large at the center (the reciprocal of the period can be regarded as 0), and is 9.0 ⁇ m at a distance of 1.0 mm from the center.
  • the distance was 4.5 ⁇ m at a distance of 2.5 mm from the center, and 3.0 ⁇ m at a distance of 4.0 mm from the center, and the period became shorter outward.
  • the twist angle in the thickness direction of the first optically anisotropic layer was 130 ° to the right.
  • the twist angle in the thickness direction of the second optically anisotropic layer was 0 °, and the twist angle in the thickness direction of the third optically anisotropic layer was 130 ° left twist.
  • the directions of twist of the first optically anisotropic layer and the third optically anisotropic layer were opposite.
  • the optical elements of Comparative Example 1 and Examples 1 to 5 function as transmissive diffraction elements. For each optical element, the angle of the transmitted diffracted light with respect to the normal direction of the optical element when light was incident was measured, and the light intensity increase rate with respect to the element of Comparative Example 1 was evaluated.
  • the specific measuring method is as follows.
  • a laser beam is incident on a predetermined position on the surface of the optical element at a predetermined incident angle, the transmitted light is projected on a screen arranged at a distance of 30 cm in the normal direction of the optical element, and an image taken by an infrared camera is used. The angle of the transmitted diffraction light was calculated.
  • a laser diode having a wavelength of 940 nm was used as a light source.
  • the laser light having a wavelength of 940 nm emitted from the laser light source 251 was transmitted through the linear polarizer 252 and the ⁇ / 4 plate 254 to obtain right circularly polarized light Li.
  • This light Li was incident on a predetermined position on the surface of the optical element S at a predetermined incident angle.
  • the light intensity of the transmitted diffracted light Ld diffracted by the optical element S was measured by the photodetector 256.
  • the ratio of the light intensity of the diffracted light Ld to the light intensity of the light Li was determined, and the relative light intensity value of the diffracted light Ld with respect to the incident light was determined. Further, the relative light intensity value was similarly obtained by changing the incident angle.
  • the light intensity increase rate of the example relative to Comparative Example 1 was evaluated based on the following criteria using the average value of the relative light intensity values for different incident angles.
  • Light intensity increase rate is 20% or more
  • Examples 1 to 3 have an average diffraction efficiency higher than that of Comparative Example 1 in the range of an incident angle of 10 to 30 °, and Examples 4 and 5 in the range of an incident angle of ⁇ 30 to + 30 °.
  • the diffraction efficiency was able to be increased over a wider incident angle range by combining the optically anisotropic layers having the opposite light-dark line inclination in the cross-sectional SEM image. Note that the optical element of Comparative Example 2 including only one tilted optically anisotropic layer did not provide the effect of increasing the average diffraction efficiency.
  • Comparative Example 11 An optical element having a first optically anisotropic layer 221 having a horizontal rotation alignment pattern whose period gradually changes and having a cholesteric alignment in the thickness direction was manufactured as Comparative Example 11 (see FIG. 18).
  • FIG. 18 schematically illustrates a part of the cholesteric orientation in the thickness direction.
  • composition C-1 was prepared as a liquid crystal composition for forming an optically anisotropic layer.
  • This composition C-1 is a liquid crystal composition having a selective reflection center wavelength of 940 nm and forming a cholesteric liquid crystal layer reflecting right circularly polarized light.
  • a first optically anisotropic layer was formed on the alignment film P-1 in the same manner as in Example 1 except that the film thickness was changed using the composition C-1, and an optical element of Comparative Example 11 was produced. .
  • the cholesteric liquid crystal phase had eight pitches and had a concentric periodic alignment surface as shown in FIG. Was confirmed with a polarizing microscope.
  • one period is very large at the center (the reciprocal of the period can be regarded as 0), and is 9.0 ⁇ m at a distance of 1.0 mm from the center.
  • the distance was 4.5 ⁇ m at a distance of 2.5 mm from the center, and 3.0 ⁇ m at a distance of 4.0 mm from the center, and the period became shorter outward.
  • the bright and dark lines in the first optically anisotropic layer were obliquely inclined with respect to the normal to the interface below the optically anisotropic layer.
  • the inclination angle of the light and dark lines was increased from the center toward the outside.
  • the pattern of the light and dark lines of the first optically anisotropic layer it was observed that the period became shorter from the center to the outer side.
  • Example 11 As Example 11, an optical element having a first optically anisotropic layer 222 and a second optically anisotropic layer 223 having a horizontal rotation alignment pattern in which the period gradually changes and having a cholesteric alignment in the thickness direction was manufactured. (See FIG. 19). In FIG. 19, a part of the cholesteric orientation is schematically illustrated in the thickness direction.
  • composition C-1 Using composition C-1, a first optically anisotropic layer was formed on alignment film P-1 in the same manner as in Comparative Example 11.
  • the cholesteric liquid crystal phase had eight pitches and periodic concentric (radial) orientation as shown in FIG. It was confirmed with a polarizing microscope that it had become the surface.
  • one period is very large at the center (the reciprocal of the period can be regarded as 0), and is 9.0 ⁇ m at a distance of 1.0 mm from the center. The distance was 4.5 ⁇ m at a distance of 2.5 mm from the center, and 3.0 ⁇ m at a distance of 4.0 mm from the center, and the period became shorter outward.
  • composition C-2 was prepared as a liquid crystal composition for forming the second optically anisotropic layer.
  • This composition C-2 is a liquid crystal composition having a selective reflection center wavelength of 940 nm and forming a cholesteric liquid crystal layer that reflects left circularly polarized light.
  • Liquid crystal compound L-1 100.00 parts by mass Chiral agent B 4.42 parts by mass Polymerization initiator (Irgacure (registered trademark) 907, manufactured by BASF) 3.00 parts by mass Photosensitizer (KAYACURE DETX-S, manufactured by Nippon Kayaku) 1.00 parts by mass Leveling agent T-1 0.08 parts by mass Methyl ethyl ketone 2840.00 parts by mass ⁇ ⁇
  • the cholesteric liquid crystal phase had eight pitches and had a concentric periodic alignment surface as shown in FIG. Was confirmed with a polarizing microscope.
  • one period is very large at the center (the reciprocal of the period can be regarded as 0), and is 9.0 ⁇ m at a distance of 1.0 mm from the center.
  • the distance was 4.5 ⁇ m at a distance of 2.5 mm from the center, and 3.0 ⁇ m at a distance of 4.0 mm from the center, and the period became shorter outward.
  • the first optically anisotropic layer and the second optically anisotropic layer were bonded together to produce an optical element of Example 11.
  • they were bonded so that the continuous rotation directions of the optical axes in the liquid crystal alignment pattern were different from each other.
  • the optical elements of Comparative Example 11 and Example 11 function as reflection type diffraction elements. For each element, the angle of reflected diffracted light with respect to the normal direction of the optical element when light was incident was measured, and the light intensity increase rate was evaluated.
  • the specific measuring method is as follows.
  • Laser light is incident on a predetermined position on the surface of the optical element at a predetermined incident angle, the reflected light is projected on a screen arranged at a distance of 30 cm in the normal direction of the optical element, and the reflected diffraction light is obtained from an image taken by an infrared camera.
  • a laser diode having a wavelength of 940 nm was used as a light source.
  • laser light having a wavelength of 940 nm emitted from a laser light source 251 was transmitted through a linear polarizer 252 to obtain linearly polarized light Lir.
  • This light Lir was incident on a predetermined position on the surface of the optical element S at a predetermined incident angle.
  • the light intensity of the reflected diffracted light Ldr diffracted by the optical element S was measured by the photodetector 256.
  • the ratio of the light intensity of the diffracted light Ldr to the light intensity of the light Lir was determined, and the relative light intensity value of the diffracted light Ldr with respect to the incident light was determined. Further, the relative light intensity value was similarly obtained by changing the incident angle.
  • the light intensity increase rate of the example with respect to the comparative example was evaluated based on the following criteria.
  • Light intensity increase rate is 20% or more
  • Example 11 higher average diffraction efficiency than Comparative Example 11 was obtained in the range of the incident angle of 10 to 30 °.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

光学素子および光偏光装置は、液晶化合物に由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化した面内配向パターンを有する光学異方性層を厚さ方向に複数備え、光学異方性層は、一方向において光学軸の向きが180°回転するまでの長さが互いに異なる領域を有し、複数の光学異方性層の少なくとも1層は、一方向に沿って厚さ方向に切断した断面を走査型電子顕微鏡で観察した断面像において、光学軸の向きに由来した明線および暗線の対が一方向に沿って複数あり、明線および暗線の対が光学異方性層の界面の法線に対して互いに異なる傾き角度で傾いた領域を有する傾斜光学異方性層である。

Description

光学素子および光偏向装置
 本開示は、光学素子および光学素子を備えた光偏向装置に関する。
 多くの光学デバイスあるいはシステムにおいて、偏光が利用されており、偏光の反射、集光および発散などの制御を行うための光学素子の開発が進められている。
 特開2014-16632号公報(以下において、特許文献1)、および特開2010-525394号公報(以下において、特許文献2)等には、光学的異方性を有する液晶化合物をパターン配向させることによって形成された偏光回折素子が開示されている。
 また、特開2016-519327号公報(以下において、特許文献3)には表面に沿って少なくとも1つの次元で非線形に変化する局所的な光学軸方向を備えた光学異方性を有する幾何学的位相素子を用いた偏光変換システムが開示されている。ここでも、液晶化合物のパターン配向が利用されている。
 特許文献1、2は、入射位置によって光の回折角度を異なる方向に出射させる技術ではなく、そのような記載もない。
 特許文献3のような1つの次元で非線形に変化する局所的な光学軸方向を備えた光学異方性を有する層に対して、光を入射させると、入射位置によって回折度合いが異なることが本発明者らの検討により明らかになった。このような素子において、領域によって異なる入射角で光を入射させ、出射させる場合、面内の回折効率が領域によって異なり、回折効率が低下する領域が生じることがあった。
 本開示は、上記事情に鑑み、面内における回折効率の平均化を図り、平均的な回折効率を向上させた光学素子および光偏向装置を提供することを目的とする。
 本開示の技術には、以下の態様が含まれる。
<1> 液晶化合物に由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化した面内配向パターンを有する光学異方性層を厚さ方向に複数備え、
 上記光学異方性層は、上記一方向において上記光学軸の向きが180°回転するまでの長さが互いに異なる領域を有し、
 上記複数の光学異方性層の少なくとも1層は、上記一方向に沿って上記厚さ方向に切断した断面を走査型電子顕微鏡で観察した断面像において、上記光学軸の向きに由来した明線および暗線の対が上記一方向に沿って複数あり、上記明線および暗線の対が上記光学異方性層の界面の法線に対して互いに異なる傾き角度で傾いた領域を有する傾斜光学異方性層である光学素子。
<2> 上記傾斜光学異方性層を2層備え、上記断面像において、上記2層の傾斜光学異方性層の少なくとも一部の対向領域の、一方の傾斜光学異方性層における上記明線および暗線の対と、他方の傾斜光学異方性層における上記明線および暗線の対との、上記傾き角度が互いに異なっている<1>に記載の光学素子。
<3> 上記傾斜光学異方性層を2層備え、上記断面像において、上記2層の傾斜光学異方性層が少なくとも一部の対向領域の、一方の傾斜光学異方性層における上記明線および暗線の対と、他方の傾斜光学異方性層における上記明線および暗線の対との、上記法線に対する傾き方向が異なる<1>または<2>のいずれかに記載の光学素子。
<4> 上記傾斜光学異方性層を2層備え、上記断面像において、上記2層の傾斜光学異方性層が少なくとも一部の対向領域の、一方の傾斜光学異方性層における上記明線および暗線の対と、他方の傾斜光学異方性層における上記明線および暗線の対との、上記法線に対する傾き方向が同じである<1>から<3>のいずれかに記載の光学素子。
<5> 上記傾斜光学異方性層は、上記光学軸が厚さ方向に捩れ配向した領域を有する<1>から<4>のいずれかに記載の光学素子。
<6> 入射した光を回折して透過する機能を有する<1>から<5>のいずれかに記載の光学素子。
<7> 上記傾斜光学異方性層において、上記液晶化合物がコレステリック配向している<1>から<5>のいずれかに記載の光学素子。
<8> 入射した光を回折して反射する機能を有する<7>に記載の光学素子。
<9> 上記光学異方性層の上記面内配向パターンが、上記一方向において上記光学軸の向きが180°回転するまでの長さが、該一方向において徐々に変化するパターンである<1>から<8>のいずれかに記載の光学素子。
<10> 上記光学異方性層の上記面内配向パターンが、上記一方向を、内側から外側に向かう放射状に有するパターンである。
<1>から<9>のいずれかに記載の光学素子。
<11> 上記光学異方性層の上記面内配向パターンにおいて、上記一方向において上記光学軸の向きが180°回転するまでの長さが10μm以下である領域を有する<1>から<10>のいずれかに記載の光学素子。
<12> 入射された光を偏向して出射する光偏向素子と、上記光偏向素子を駆動する駆動手段と、上記光偏向素子の光出射側に配置された、<1>から<11>のいずれかに記載の光学素子とを備えた光偏向装置。
 本開示によれば、光学素子および光偏向装置において、面内における回折効率の平均化を図り、平均的な回折効率を向上させることができる。
第1の実施形態の光学素子の表面の一部における光学軸の配向パターンを模式的に示す平面図である。 図1に示す光学素子についての走査型顕微鏡で得られる断面像の模式図である。 図1に示す光学素子の厚み方向(z方向)および水平方向(x方向)の液晶配向パターンを模式的に示す図である。 水平回転配向パターンを有する光学異方性層の作用を示す概念図である。 第2の実施形態の光学素子についての走査型顕微鏡で得られる断面像の模式図である。 第3の実施形態の光学素子についての走査型顕微鏡で得られる断面像の模式図である。 第4の実施形態の光学素子の断面を模式的に示す図である。 設計変更例の光学素子の表面における光学軸の配向パターンを模式的に示す平面図である。 配向膜を露光して配向パターンを形成する露光装置の一例を概念的に示す図である。 光偏向装置の一例の概略構成を示す図である。 比較例1の光学素子の層構成を示す図である。 実施例1の光学素子の層構成を示す図である。 実施例2の光学素子の層構成を示す図である。 実施例3の光学素子の層構成を示す図である。 実施例4の光学素子の層構成を示す図である。 実施例5の光学素子の層構成を示す図である。 透過光強度の測定方法を示す概念図である。 比較例11の光学素子の層構成を示す図である。 実施例11の光学素子の層構成を示す図である。 反射光強度の測定方法を示す概念図である。
 以下、本発明の光学素子の実施形態について図面を参照して説明する。なお、各図面においては、視認しやすくするため、構成要素の縮尺は実際のものとは適宜異ならせてある。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、角度について「直交」および「平行」とは、厳密な角度±10°の範囲を意味するものとする。
[光学素子]
 図1は、第1の実施形態の光学素子1の表面の一部を模式的に示す平面図であり、図2は光学素子1の断面を、走査型顕微鏡(SEM:Scanning Electron Microscope)で観察して得られる断面像の模式図である。なお、以下の図面においては、シート状の光学素子のシート面をxy面、厚み方向をz方向と定義している。
 光学素子1は、厚さ方向に積層された2層の光学異方性層10、20を備えている。光学異方性層10、20は、液晶化合物を含む組成物の硬化層からなる。なお、光学素子1は、支持体および配向膜を備え配向膜上に光学異方性層が備えられた構成であってもよい。本開示の光学素子としては、光学異方性層を厚さ方向に複数備えていればよく、2層構造には限らず、3層以上備えていてもよい。
 光学異方性層10、20は、液晶化合物由来の光学軸30Aの向きが面内の少なくとも一方向Aに沿って連続的に回転しながら変化する面内配向パターン(面内における液晶配向パターン)を有する。図1には、光学異方性層20の表面における液晶化合物由来の光学軸30Aの面内配向パターンを模式的に示している。
 なお、液晶化合物に由来する光学軸30Aとは、棒状液晶化合物である場合には、棒形状の長軸方向(遅相軸)であり、円盤状液晶化合物である場合には、円盤面に垂直な方向(進相軸)である。以下の説明では、液晶化合物に由来する光学軸30Aを、液晶化合物の光学軸30A、または単に、光学軸30Aとも言う。
 光学軸30Aの向きが一方向Aに連続的に回転しながら変化する面内配向パターンとは、一方向A(以下、軸Aともいう。)に沿って配列されている液晶化合物の光学軸30Aと、軸Aとのなす角度が、軸A方向の位置によって異なっており、軸Aに沿って、光学軸30Aと軸Aとがなす角度がφからφ+180°あるいはφ-180°まで、徐々に変化するように配向され固定化されたパターンである。以下において、図1に示すような、光学異方性層において、液晶化合物の光学軸が光学異方性層の面に平行であり、かつ光学軸の向きが一定である局所領域(単位領域)が、一方向に配列されている複数の局所領域間で光学軸の向きが一方向に連続的に回転変化するように配置されている面内配向パターンを水平回転配向パターンと称する。
 なお、「光学軸30Aと軸Aとがなす角度が徐々に変化する」とは、光学軸の向きが単位領域間で所定の角度ずつ変化するものであってもよいし、一定の角度間隔ではなく、不均一な角度間隔で変化するものであってもよく、さらには、連続的に変化するものであってもよい。但し、x方向に互いに隣接する単位領域間での光学軸30Aの角度差は、45°以下であるのが好ましく、15°以下であるのがより好ましく、より小さい角度であるのがさらに好ましい。
 光学素子1では、このような液晶化合物30の水平回転配向パターンにおいて、液晶化合物30の光学軸30Aが180°回転する長さ(距離)を、水平回転配向における1周期の長さΛとする。言い換えれば、水平回転配向パターンにおける1周期の長さは、液晶化合物30の光学軸30Aと軸Aとのなす角度φからφ+180°となるまでの距離である。以下の説明では、この1周期の長さΛを「1周期Λ」あるいは単に「周期Λ」とも言う。
 光学素子1における光学異方性層10、20は、軸A方向において1周期の長さΛが互いに異なる領域を含む。図1に示す例では、軸A方向において、1周期の長さが、それぞれΛA1,ΛA2,ΛA3…(ここで、ΛA1<ΛA2<ΛA3)と異なる領域A,A,A…を含む。本例においては紙面右から左へと周期が徐々に短くなる液晶配向パターンを有するが、本開示の光学素子としては、1周期の長さが互いに異なる2以上の領域を有していればよい。但し、後述する光偏向装置に適用する場合には、本例で示すように、1周期の長さが徐々に変化する液晶配向パターンが好ましい。周期Λが10μm以下の領域を含むことが好ましい。
 なお、複数の光学異方性層間において、対向する領域における1周期の長さはずれていてもよいが、±10%以内の範囲で一致していることが好ましい。
 このような構成は、1層目の光学異方性層を先に形成した上に、塗布などで2層目の光学異方性層を形成する順で複数の光学異方性層を形成することで、周期を一致させることが可能となる。
 図1に示すように、光学軸の配向パターンに対して、直交する2つの偏光子の間に光学異方性層を備えた光学素子1を挟んだ状態で光学顕微鏡により観察すると、明部42と暗部44が交互に観察される。明暗の周期(すなわち、明部の周期または暗部の周期)は光学軸の水平回転配向パターンの周期Λの半分である。
 2層の光学異方性層10、20のうち、少なくとも1層、本例では第1の光学異方性層10が傾斜光学異方性層である。以下において、第1の光学異方性層を傾斜光学異方性層10ともいう。ここで、傾斜光学異方性層とは、一方向に沿って厚さ方向に切断した断面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)で観察された断面像(以下において、断面SEM像という。)において、光学軸の向きに由来した明線および暗線の対(明暗線)が一方向に沿って複数あり、明暗線がその層の界面の法線nに対して互いに異なる傾き角度で傾いた領域を有する層である。「光学軸の向きに由来した明線および暗線」とは、光学異方性層の厚さ方向における液晶化合物の配向状態に応じて観察される明暗線である。
 図2は、光学軸が回転する一方向に沿って、厚さ方向に切断した断面をSEMで観察した場合の断面像の模式図である。図2に示すように、断面像において、傾斜光学異方性層10の界面の法線nに対して斜めに傾いた明線および暗線の対が交互に複数存在している。
 明暗線の界面の法線nに対する傾きは、x方向位置によって異なり、本例ではx軸方向に徐々に傾き角度が大きくなっている(α<α<α…)。なお、ここで明暗線の傾き角度は、明暗線が法線nとなす角度のうち90°より小さい鋭角の角度で定義する。
 傾斜光学異方性層10においては、例えば、水平回転配向に加えて厚さ方向における捩れ配向を備えていることによって、上述の断面像に明暗線が観察される。
 図3に、図1および図2に示す光学素子1の断面における液晶配向パターンを模式的に示す。ここでは、液晶化合物は棒状液晶化合物30である。なお、図3中において断面をSEMで観察した場合に観察される明暗線を重ねて示している。
 図3に示すように、傾斜光学異方性層10は、x方向には棒状液晶化合物30(以下において単に液晶化合物30という。)が水平回転配向し、かつ厚さ方向に捩れ配向した液晶配向パターンを有する。
 「光学軸が厚さ方向に捩れ配向した」とは、光学異方性層10の一方の面から他方の面に向かう厚さ方向に配列されている光学軸の向きが相対的に変化し一方向に捩れて配向し、固定された状態をいう。捩れ性には、右捩れ性および左捩れ性があるが、回折させたい方向に応じて適用すればよい。なお、厚さ方向における光学軸の捩れは1回転未満、すなわち捩れ角は360°未満である。例えば、図3の例では、厚み方向(z方向)において、一方の面側から他方の面側までの間に液晶化合物30の光学軸は略140°回転している。厚み方向における液晶化合物30の捩れ角は10°から200°程度が好ましく、45°から180°程度がより好ましい。後述するコレステリック配向の場合には、捩れ角が360°以上であり特定の波長域の特定の円偏光を反射する選択反射性を有するものとなる。本明細書における「捩れ配向」にはコレステリック配向を含まず、捩れ配向を有する光学異方性層において選択反射性は生じない。
 このような液晶配向パターンを有する傾斜光学異方性層について断面をSEMで観察すると、図2に示した明暗線が観察される。図3において明暗線を重ねて示すように、この明暗線の周期は、水平回転配向の周期と一致する。
 一方、断面像において、第2の光学異方性層20についても明暗線が交互に複数存在しているが、第2の光学異方性層20の明暗線は光学異方性層20の界面の法線nに沿っており、傾きを有していない。第2の光学異方性層20においては、厚さ方向における光学軸の向きは一様である。
 また、本光学素子1においては、図2に示すように、第1の光学異方性層10における水平回転配向の周期ΛA1、ΛA2…と第2の光学異方性層20における水平回転配向の周期ΛB1、ΛB2…は対向領域において一致している。すなわち、ΛA1=ΛB1、ΛA2=ΛB2…である。
 光学素子1は、入射した光を回折して透過する。例えば、所定の円偏光の入射光Linを入射させた場合、入射光Linは、光学異方性層20により屈折力を受け、屈曲した方向に光を出射する。屈折力は、水平回転配向の周期によって異なり、周期が小さいほど大きな回折角が得られる。光学異方性層10、20において水平回転配向の周期が異なる領域に同一の入射角で所定の円偏光の入射光Linを入射した場合、周期が相対的に大きい領域における出射光Lout1よりも周期が相対的に小さい領域における出射光Lout2の回折角が大きい。
 ここで、水平回転配向パターンを有する光学異方性層が、透過型の回折素子として機能する原理について図4を参照して簡単に説明する。
 なお、透過型の回折素子として機能させる場合、光学異方性層は、波長λに対する面内リタデーションRe(λ)(=Δnλ×d)が0.3λ~0.7λであることが好ましい。リタデーションReは0.4λ~0.6λが好ましく、0.45λ~0.55λがより好ましく、0.5λであることが特に好ましい。Δnλは波長λにおける光学異方性層の複屈折率、dは光学異方性層の厚みである。例えば、940nmの光を入射光として想定する場合には、940nmの光に対するリタデーションReが282nm~658nmの範囲であればよく、470nmであることが特に好ましい。このようなリタデーションReを有する場合、光学異方性層は一般的なλ/2板としての機能、すなわち、入射光の直交する直線偏光成分の間に180°(=π=λ/2)の位相差を与える機能を呈する。なお、リタデーションは、λ/2に近いほど回折効率が向上して好ましいが、リタデーションは上記範囲に限定されるものではない。
 光学異方性層が略λ/2のリタデーションを有している場合、入射光に対してλ/2の位相差を与え、所定の円偏光を有する入射光を逆向きの円偏光に変換して出射する。
 図4に、水平回転配向パターンを有する光学異方性層11に対して、入射光L1として波長λの右円偏光Pを用いた場合における光学異方性層11による作用を概念的に示す。波長λの右円偏光の入射光L1を光学異方性層11に入射した場合、右円偏光PRである入射光L1は、光学異方性層11を通過することにより、λ/2の位相差が与えられて左円偏光Pに変換される。また、入射光L1は、水平回転配向パターン中の個々の単位領域(局所領域)における液晶化合物30の光学軸30Aにより、絶対位相が変化する。ここで、光学異方性層においては、液晶化合物30の光学軸30Aの向きが、軸Aに沿って回転して変化しているため、入射光が入射する光学異方性層11の軸Aの位置における液晶化合物30の光学軸30Aの向きに応じて絶対位相の変化量が異なる。図4中の破線で示す領域には、その絶対位相Qの変化量がx座標によって異なる様子を模式的に示している。
 図4に示すように、光学異方性層11を通過する際の絶対位相Qのずれにより、光学異方性層11の面に対して角度を有する絶対位相の等位相面Eが形成される。これによって、法線方向から入射した入射光L1に対して、等位相面Eに垂直な方向に屈曲力が与えられ、入射光L1の進行方向が変化する。すなわち、右円偏光PRである入射光L1は、光学異方性層11を通過した後には左円偏光PLとなり、かつ、法線方向と所定の角度をなす方向に進行する出射光L2として光学異方性層11から出射される。
 なお、光学異方性層11に左円偏光を入射光として入射させた場合には、入射光は光学異方性層11において右円偏光に変換されると共に図とは逆向きの屈曲力を受けて進行方向が変化される。また、液晶化合物30の光学軸30Aの水平回転配向の回転方向が逆である場合には、光学異方性層による光の屈折方向は、上記と逆になる。
 光学異方性層中の面内配向パターンにおける1周期が短いほど入射光に大きな屈曲力を与えることができるので、回折角を大きくすることができる。
 また、光学異方性層11により回折作用を生じさせる光の波長λは、紫外から可視光、赤外、さらには、電磁波レベルであってもよい。同一の周期であれば、入射光の波長が大きいほど回折角が大きく、入射光の波長が小さいほど回折角が小さくなる。したがって、対象波長および所望の回折角に応じて周期を設定すればよい。
 なお、上記では法線方向から入射した光に対して屈曲力が与えられる場合について説明したが、斜め入射の光に対しても同様の原理で屈曲力が与えられ、入射角とは異なる角度の出射角の出射光を得ることができる。
 本構成の光学素子1は、第1および第2の光学異方性層10、20は、それぞれの面内に水平回転配向パターンの周期が異なる領域を備えているので、同一の入射角に対して、異なる出射角の光を出射させることができる。第2の光学異方性層20のように、厚さ方向に捩れ配向していない場合、法線方向に入射した光に対する回折効率は高いが、斜め入射した光に対する回折効率は低いという問題がある。他方、傾斜光学異方性層10では、斜め入射した光に対する回折効率を向上させることができる。
 光学素子1は、2層以上の光学異方性層の積層構造を有し、そのうち、少なくとも1層が傾斜光学異方性層であるので、領域によって入射角を変化させて入射した場合における平均的な回折効率を向上させることができ、出射光の強度差を抑制して出射強度を平均化することができる。
 光学異方性層は、本例においては2層構造であるが、3層以上であってもよい。また、傾斜光学異方性層は1層であってもよいが、2層以上備えていることがより好ましい。
 第2および第3の実施形態の光学素子2、3として、図5、6に、傾斜光学異方性層を2層備えた構成例を示す。図5および図6は、それぞれの光学素子2、3の断面像の模式図である。断面像は、上記と同様に、水平回転配向している一方向に沿って厚さ方向に切断した断面を観察したSEM像である。
 2層の傾斜光学異方性層は、図5に示すように、断面像において、その2層の対向領域の、一方の傾斜光学異方性層10おける明暗線の法線nに対する傾き方向と、他方の傾斜光学異方性層22における明暗線の法線nに対する傾き方向とが異なっていてもよい。法線nに対する傾き方向が異なるとは、一方の傾斜光学異方性層10の明暗線の法線nに対する傾き方向がx軸の負側(紙面左側)であるのに対して、他方の傾斜光学異方性層22の明暗線の法線nに対する傾き方向はx軸の正側(紙面右側)である。2層の傾斜光学異方性層の法線nに対する傾き角度は、対向領域において、同一であってもよい(α=β)し、異なっていても(α≠β)よい。なお、2層の傾斜光学異方性層を備えている場合、互いの明暗線の傾き方向が異なる向きである対向領域は、全域に亘っていてもよいし、一部であってもよい。本明細書において、2層の傾斜光学異方性層の対向領域とは、同一のxy領域で、厚さ方向から視認した場合に重なっている領域である。
 一方の傾斜光学異方性層10と、他方の傾斜光学異方性層22とにおける厚さ方向の捩れ配向の捩れ性を逆向きにすることで、互いの明暗線の法線に対する傾きを逆にすることができる。
 2層の傾斜光学異方性層は、図6に示すように、断面像において、その2層の対向領域の、一方の傾斜光学異方性層10における明暗線の界面の法線nに対する傾き方向と、他方の傾斜光学異方性層24における明暗線の界面の法線nに対する傾き方向とが同じ方向であってもよい。但し、ここでは、対向領域における一方の傾斜光学異方性層10における明暗線の傾き角度αと、他方の傾斜光学異方性層24における明暗線の傾き角度γとが互いに異なっている。なお、2層の傾斜光学異方性層を備えている場合、互いの明暗線の傾き方向が同一である対向領域は、全域に亘っていてもよいし、一部であってもよい。
 一方の傾斜光学異方性層10と、他方の傾斜光学異方性層22とにおける厚さ方向の捩れ配向の捩れのピッチを異ならせることで、互いの明暗線の法線に対する傾きを異ならせることができる。捩れのピッチが異なるとは、光学軸が同一の捩れ角まで捩れるまでの厚さが異なっていることをいう。
 なお、1つの光学素子に備えられる2層の傾斜光学異方性層において、傾き方向が同一である対向領域と、傾き方向が異なる対向領域とを同時に含んでいてもよい。
 上記においては、透過型の回折素子として機能する光学素子について説明したが、本開示の光学素子は、反射型の回折素子として機能するものとすることもできる。
 図7に、反射型の回折素子として機能する第4の実施形態の光学素子5の断面図を示す。図7には、断面SEM像における明暗線を模式的に重ねて示している。
 光学素子5は、2層の傾斜光学異方性層12、14を備えている。2層の傾斜光学異方性層12、14は、いずれも水平回転配向しており、かつ、厚さ方向にコレステリック配向している。2層の傾斜光学異方性層12、14は、水平回転配向における光学軸の回転の向きが互いに逆であり、コレステリック配向の旋回の向きも逆向きである。
 傾斜光学異方性層12、14は、コレステリック配向を有しているので、特定の円偏光の特定の選択波長域の光のみを選択的に反射する。選択的に反射される光の中心波長はコレステリックの螺旋ピッチおよび膜厚により定められ、いずれの円偏光を反射するかは、螺旋の回転方向により定められる。
 水平回転配向かつ、コレステリック配向を有する液晶配向パターンであるため、断面像においては、既述の実施形態と同様に法線方向に傾きを有し、その傾き角度が異なっている明暗線が観察される(図7参照)。
 傾斜光学異方性層12、14の面内方向における光学軸30Aの配向パターンは先の態様と同様に水平回転配向であるため、光学素子1と同様の作用を生じる。すなわち、入射した光の絶対位相を変化させて所定の方向に屈曲させる作用を奏する。従って、光学素子5は、入射光を入射方向とは異なる方向に屈曲させる作用と上記コレステリック配向による作用とを併せ持ち、鏡面反射の反射方向に対して所定方向に角度を有して光を反射する。また、面内方向においては、水平回転配向の周期が異なる領域を有しているので、同一入射角に対して異なる反射角で光を反射させることができる。
 また、領域によって入射角を変化させて入射した場合における平均的な回折効率を向上させることができ、反射光の強度差を抑制することができる。
 上記各実施形態においては、水平回転配向の1周期がx方向に徐々に長くなるパターンを示している。光学素子としては、光学異方性層が面内において、1軸方向の中心から一端および他端に向かって1周期が徐々に短くなる面内配向パターンを有していることも好ましい。
 また、さらに、図8に示すように、水平回転配向する一方向を、内側から外側に向かう放射状に設定した面内配向パターンを有することも好ましい。図8は、設計変更例の光学素子の光学異方性層の平面模式図である。図8において、面内配向パターンを液晶化合物の光学軸30Aによって示している。光学異方性層は、光学軸の向きが同一である領域が同心円状に設けられ、光学軸30Aの向きが連続的に回転しながら変化する一方向が、光学異方性層15の中心から放射状に設けられた面内配向パターンを有する。
 光学異方性層15では、光学軸30Aの向きは、光学異方性層15の中心から外側に向かう多数の方向、例えば、矢印Aで示す方向、矢印Aで示す方向、矢印Aで示す方向に沿って、連続的に回転しながら変化している。それぞれの軸方向に沿って回転する光学軸の回転の向きは中心に対して回転対称になっている。
 直交する2つの偏光子の間に、図8に示す面内配向パターンを有する光学異方性層を備えた光学素子1を挟んだ状態で光学顕微鏡により観察すると、同心円状に明部と暗部とが交互に観察される。同心円状の周期的な配向表面における明暗の周期(すなわち、暗部の周期または明部の周期)は水平回転配向パターンの周期Λの半分である。周期は外側に向かって徐々に短くなっているので、同心円の直径は外側ほど、隣接する同心円の直径との差が小さくなる。
 この面内配向パターンを有する光学異方性層15に入射した円偏光は、液晶化合物30の光学軸の向きが異なる個々の局所的な領域において、それぞれ、絶対位相が変化する。この際に、それぞれの絶対位相の変化量は、円偏光が入射した液晶化合物30の光学軸の向きに応じて異なる。
 前述のように、入射方向に対する光の屈折の角度は、液晶配向パターンにおける1周期Λが短いほど、大きくなる。従って、面内配向パターンにおける1周期Λを、光学異方性層15の中心から、光学軸が連続的に回転する1方向の外方向に向かって、徐々に短くすることにより、光学異方性層15による光の集束力あるいは発散力を、より向上できる。
 なお、逆に、同心円状の液晶配向パターンにおける1周期Λを、光学異方性層15の中心から、光学軸が連続的に回転する1方向の外方向に向かって、徐々に長くしてもよい。
 さらに、例えば透過光に光量分布を設けたい場合など、光学素子の用途によって、光学軸が連続的に回転する1方向に向かって、1周期Λを、徐々に変更するのではなく、光学軸が連続的に回転する1方向において、部分的に1周期Λが異なる領域を有する構成も利用可能である。
 次に、本開示の光学素子に備えられる構成要素材料および形成方法について説明する。
<光学異方性層>
 光学異方性層を形成するための、液晶化合物を含む液晶組成物は、液晶化合物の他に、レベリング剤、配向制御剤、重合開始剤および配向助剤などのその他の成分を含有していてもよい。支持体上に配向膜を形成し、その配向膜上に液晶組成物を塗布、硬化することにより、液晶組成物の硬化層からなる、所定の液晶配向パターンが固定化された光学異方性層を得ることができる。
-棒状液晶化合物-
 棒状液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。以上のような低分子液晶性分子だけではなく、高分子液晶性分子も用いることができる。
 棒状液晶化合物を重合によって配向を固定することがより好ましく、重合性棒状液晶化合物としては、Makromol. Chem., 190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開第95/22586号、同95/24455号、同97/00600号、同98/23580号、同98/52905号、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、および、特開2001-328973号公報などに記載の化合物を用いることができる。さらに棒状液晶化合物としては、例えば、特表平11-513019号公報および特開2007-279688号公報に記載のものも好ましく用いることができる。
-円盤状液晶化合物-
 円盤状液晶化合物としては、例えば、特開2007-108732号公報および特開2010-244038号公報に記載のものを好ましく用いることができる。
-その他の成分-
 なお、配向制御剤、重合開始剤、および配向助剤などのその他の成分については、いずれも公知の材料を利用することができる。なお、厚み方向に捩れ配向を有する光学異方性層あるいは、厚み方向にコレステリック配向を有する光学異方性層を得るためにはカイラル剤を添加する。
--カイラル剤(光学活性化合物)--
 カイラル剤はコレステリック液晶相の螺旋構造を誘起する機能を有する。カイラル剤は、化合物によって誘起する螺旋の捩れ方向または螺旋ピッチが異なるため、目的に応じて選択すればよい。
 カイラル剤としては、特に制限はなく、公知の化合物(例えば、液晶デバイスハンドブック、第3章4-3項、TN(twisted nematic)、STN(Super Twisted Nematic)用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載)、イソソルビド、および、イソマンニド誘導体等を用いることができる。
 カイラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物または面性不斉化合物もカイラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファン、および、これらの誘導体が含まれる。カイラル剤は、重合性基を有していてもよい。カイラル剤と液晶化合物とがいずれも重合性基を有する場合は、重合性カイラル剤と重合性液晶化合物との重合反応により、重合性液晶化合物から誘導される繰り返し単位と、カイラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性カイラル剤が有する重合性基は、重合性液晶化合物が有する重合性基と、同種の基であるのが好ましい。従って、カイラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であるのが好ましく、不飽和重合性基であるのがより好ましく、エチレン性不飽和重合性基であるのがさらに好ましい。
 また、カイラル剤は、液晶化合物であってもよい。
 カイラル剤が光異性化基を有する場合には、塗布、配向後に活性光線などのフォトマスク照射によって、発光波長に対応した所望の反射波長のパターンを形成することができるので好ましい。光異性化基としては、フォトクロッミック性を示す化合物の異性化部位、アゾ基、アゾキシ基、または、シンナモイル基が好ましい。具体的な化合物として、特開2002-80478号公報、特開2002-80851号公報、特開2002-179668号公報、特開2002-179669号公報、特開2002-179670号公報、特開2002-179681号公報、特開2002-179682号公報、特開2002-338575号公報、特開2002-338668号公報、特開2003-313189号公報、および、特開2003-313292号公報等に記載の化合物を用いることができる。
-溶媒-
 液晶組成物の溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N、N-ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン、シクロヘキサノン)、エーテル(例、テトラヒドロフラン、1、2-ジメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。二種類以上の有機溶媒を併用してもよい。
<光学異方性層の形成>
 光学異方性層は、例えば、配向膜上に液晶組成物を多層塗布することにより形成することができる。多層塗布とは、配向膜の上に液晶組成物を塗布し、加熱し、さらに冷却した後に紫外線硬化を行って1層目の液晶固定化層を作製した後、2層目以降はその液晶固定化層に重ね塗りして塗布を行い、同様に加熱し、冷却後に紫外線硬化を行うことを繰り返すことをいう。
<支持体>
 支持体は、光学異方性層あるいは光学異方性層および配向膜を支持するものである。支持体は光学素子の必須の構成要素ではない。光学異方性層を形成する際に用い、その後、剥離されてもよい。
 支持体は、光学異方性層を支持できるものであれば、各種のシート状物(フィルム、板状物)が利用可能である。
 支持体としては、透明支持体が好ましく、ポリメチルメタクリレート等のポリアクリル系樹脂フィルム、セルローストリアセテート等のセルロース系樹脂フィルム、シクロオレフィンポリマー系フィルム(例えば、商品名「アートン」、JSR社製、商品名「ゼオノア」、日本ゼオン社製)、ポリエチレンテレフタレート(PET)、ポリカーボネート、および、ポリ塩化ビニル等を挙げることができる。支持体は、可撓性のフィルムに限らず、ガラス基板等の非可撓性の基板であってもよい。
 支持体の厚さには、制限はなく、光学素子の用途および支持体の形成材料等に応じて、配向膜および光学異方性層を保持できる厚さを、適宜、設定すればよい。
 支持体の厚さは、1~1000μmが好ましく、3~250μmがより好ましく、5~150μmがさらに好ましい。
<配向膜>
 配向膜は光学異方性層を形成する際に、液晶化合物を所定の液晶配向パターンに配向するために設けられる。
 配向膜は、公知の各種のものが利用可能である。
 例えば、ポリマーなどの有機化合物からなるラビング処理膜、無機化合物の斜方蒸着膜、マイクログルーブを有する膜、ならびに、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライドおよびステアリル酸メチルなどの有機化合物のラングミュア・ブロジェット法によるLB(Langmuir-Blodgett:ラングミュア・ブロジェット)膜を累積させた膜、等が例示される。
 ラビング処理による配向膜は、ポリマー層の表面を紙または布で一定方向に数回こすることにより形成できる。
 配向膜に使用する材料としては、ポリイミド、ポリビニルアルコール、特開平9-152509号公報に記載された重合性基を有するポリマー、特開2005-97377号公報、特開2005-99228号公報、および、特開2005-128503号公報記載の配向膜等の形成に用いられる材料が好ましく例示される。
 本開示の光学素子においては、配向膜は、光配向性の素材に偏光または非偏光を照射して配向膜とした、いわゆる光配向膜が好適に利用される。すなわち、本開示の光学素子においては、配向膜として、支持体上に、光配向材料を塗布して形成した光配向膜が、好適に利用される。
 偏光の照射は、光配向膜に対して、垂直方向または斜め方向から行うことができ、非偏光の照射は、光配向膜に対して、斜め方向から行うことができる。
 光配向膜に用いられる光配向材料としては、例えば、特開2006-285197号公報、特開2007-76839号公報、特開2007-138138号公報、特開2007-94071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特許第3883848号公報および特許第4151746号公報に記載のアゾ化合物、特開2002-229039号公報に記載の芳香族エステル化合物、特開2002-265541号公報および特開2002-317013号公報に記載の光配向性単位を有するマレイミドおよび/またはアルケニル置換ナジイミド化合物、特許第4205195号および特許第4205198号に記載の光架橋性シラン誘導体、特表2003-520878号公報、特表2004-529220号公報および特許第4162850号に記載の光架橋性ポリイミド、光架橋性ポリアミドおよび光架橋性エステル、ならびに、特開平9-118717号公報、特表平10-506420号公報、特表2003-505561号公報、国際公開第2010/150748号、特開2013-177561号公報および特開2014-12823号公報に記載の光二量化可能な化合物、特にシンナメート化合物、カルコン化合物およびクマリン化合物等が、好ましい例として例示される。
 中でも、アゾ化合物、光架橋性ポリイミド、光架橋性ポリアミド、光架橋性エステル、シンナメート化合物、および、カルコン化合物は、好適に利用される。
 配向膜の厚さには制限はなく、配向膜の形成材料に応じて、必要な配向機能を得られる厚さを、適宜、設定すればよい。
 配向膜の厚さは、0.01~5μmが好ましく、0.05~2μmがより好ましい。
 配向膜の形成方法には、制限はなく、配向膜の形成材料に応じた公知の方法が、各種、利用可能である。一例として、配向膜を支持体の表面に塗布して乾燥させた後、配向膜をレーザ光によって露光して、配向パターンを形成する方法が挙げられる。
 図9に、配向膜を露光して配向パターンを形成する露光装置の一例を概念的に示す。露光装置は、レーザ光を出射するレーザ光源81と、レーザ光源81から出射されたレーザ光Lのビーム径を拡大するビームエクスパンダ82と、レーザ光Lの光路上に配置されたλ/2板83と、レンズ84および配向膜90が設置される駆動ステージ86とを備えている。λ/2板83は図示しない回転式マウントに取り付けられており可変偏光ローテータとして機能する。
 レーザ光源81から出射されたレーザ光Lのビーム径をビームエクスパンダ82で拡大し、λ/2板83の回転によって任意の偏光方向に調整され、レンズ84によって光配向膜上に集光され、駆動ステージ86を駆動させて光配向膜をスキャン露光してパターニングする。これによって、所望のパターンのパターン化配向膜を形成することができる。
 なお、本開示の光学素子において、配向膜は、好ましい態様として設けられるものであり、必須の構成要件ではない。
 例えば、支持体をラビング処理する方法、支持体をレーザ光等で加工する方法等によって、支持体に配向パターンを形成することにより、水平回転配向パターンを有する光学異方性層を形成することも、可能である。
 なお、上記の各光学素子においては、基本的に単波長の入射光を想定した構成について説明したが、多波長の入射光に対して同様の効果を奏する構成とすることもできる。各波長に応じた液晶配向パターンを備えた光学異方性層を積層した構造の光学素子とすれば、多波長の入射光を用いることができる。
[光偏向装置]
 図10に、一実施形態の光偏向装置の一例の概略構成図を示す。
 光偏向装置130は、光(光ビーム)の進行方向の上流側から、集光レンズ131と、λ/4板111と、光偏向素子132と、本発明の一態様の光学素子120とを有する。以下の説明では、上流および下流とは、光の進行方向の上流および下流とする。
 集光レンズ131は、公知の集光レンズであって、図示しない光源からの光(光ビーム)を若干、集光させた状態で光偏向素子132に入射するために備えられる。集光レンズ131は、好ましい態様として設けられるものであり、必須構成要素ではない。但し、集光レンズ131を備えることにより、光偏向装置130から出射する光(光ビーム)を、適正な平行光にして、直進性を向上できる。
 なお、集光レンズ131に制限されず、光(光ビーム)を集光可能な公知の集光素子が、全て、利用可能である。
 λ/4板111は、外部に光源から出射された直線偏光を円偏光にする、公知のλ/4板(1/4位相差板)である。λ/4板111としては、公知のものを制限なく用いることができる。従って、λ/4板111は、ポリマー由来のものであってもよいし、液晶由来のものであってもよい。なお、λ/4板111は、MEMS(Micro Electro Mechanical System)偏向素子132と光学素子120との間に配置されていてもよい。しかしながら、λ/4板111を小型化できる等の点で、MEMS光偏向素子132よりも上流に設けるのが好ましい。MEMS光偏向素子132を用いる光偏向装置130に、円偏光の光が入射される場合には、λ/4板111を設けなくてよい。
 光偏向素子132は光を2次元スキャンするMEMS光偏向素子である。MEMS光偏向素子としては、特に制限はなく、特開2012-208352号公報に記載されるMEMS光偏向素子、特開2014-134642号公報に記載されるMEMS光偏向素子、および、特開2015-22064号公報に記載されるMEMS光偏向素子等、圧電アクチュエータ等を用いてミラー(鏡)を揺動させることにより、光を偏向(偏向走査)する、公知のMEMS光偏向素子(MEMS(光)スキャナ、MEMS光偏向器、MEMSミラー、あるいはDMD(Digital Micromirror Device))を適宜利用することができる。
 光偏向素子132には、ミラーを回転駆動するための駆動装置134が接続されている。駆動装置134は、MEMS光偏向素子132の構成等に応じた、公知のものを用いればよい。
 光学素子120は、図8に示した、中心から放射状に設けられた軸に沿って光学軸が水平回転配向し、その周期が外側ほど小さくなる面内の液晶配向パターンを有する光学異方性層を2層備えている。図10に示すように、光学素子120の中心領域の周期Λと比較して外側に向かうほど周期が小さく(Λ>Λ>Λ>Λ…)なっている。ここでは、一方の光学異方性層121が傾斜光学異方性層であり、他方の光学異方性層122が厚み方向に捩れ性を有さず、厚み方向に一様なパターンを有する光学異方性層である。光学素子120は中心が光偏向素子132の偏向の中心と一致するように配置されている。光学素子120の断面SEM像における明暗線の法線に対する傾きは中心程大きく外側ほど小さな傾きとなっている。
 光偏向装置130は、図示しない光源から出射された、光学素子120の出射面120bに対してP偏光の光は、集光レンズ131によって、若干、集光され、次いで、λ/4板111によって、例えば、右円偏光に変換される。
 λ/4板111によって円偏光に変換された光は、MEMS光偏向素子132によって偏向され、光学素子120の入射面120aに入射される。光学素子120入射した光は回折され、光学素子120の出射面120bから、すなわち光偏向装置130から出射される。
 光学素子120の中心が光偏向素子132の偏向の中心と一致するように配置されているので、光偏向素子132によって走査される光は光学素子120の一面に対してその一面の中心から離れるにつれて大きな入射角で入射される。水平回転配向の周期は中心から離れるにつれて短くなるように構成されており、外側程屈曲力が強い。従って、光学素子120は垂直に入射した光に対してはほとんど屈曲力を生じさせず、そのまま透過させ、光学素子120の外側ほどに大きく屈曲させて出射させる。光学素子120に対して、光学異方性層121、122の水平回転配向によって、中心から外側に向かって屈曲力が与えられる偏光を入射光として入射させることで、光偏向素子132のスキャン角度θmaxよりも大きなスキャン角度θmaxoutを得ることができる。
 ここで、光学素子120の入射面120aへ入射する光の入射角をθ1、入射側の媒質の屈折率をn1、光学素子120の出射面120bから出射する光の出射角をθ2、出射側の媒質の屈折率をn2、光の波長をλ、液晶回折素子の周期構造ピッチをΛ、回折次数をm、とすると、以下の式(1)によって、これらの値は関係づけられる。
  n1・sinθ1-n2・sinθ2=m・λ/Λ   (1)
 既述の通り、光学素子120の光学異方性層における水平回転配向パターンの周期Λを変えることによって、光学素子120からの出射光の角度を変えることができる。
 スネル則を考慮すると、最終的に空気に出射されるときの角度は絶対値80°程度まで可能であるため、非常に大きな角度まで出射角を拡大することが可能である。また、光学素子120の光学異方性層における水平回転配向パターンの周期を、面内で連続的に変化させることによって、連続的に任意の方向に光を出射できる。
 以上の説明から明らかなように、本開示の光偏向装置は、光偏向素子の有するスキャン角度(画角)よりも広いスキャン角度で光走査を行うことを可能とする。なお、図10においては、x方向のスキャン角度が広がる様子を示しているが、水平回転配向パターンが放射状に設けられているので、y方向においても同様の原理でスキャン角度を拡げることができる。したがって光偏向素子132からの偏向光(走査光)を、光学素子120で回折させ走査させることにより、光偏向素子132によって2次元スキャン可能な走査範囲よりも大幅に走査範囲を広げることが可能となる。
 このような光偏向装置130に適用される光学素子120が、傾斜光学異方性層121を備えていない場合であっても、スキャン角度の拡大という効果を得ることができる。しかしながら、傾斜光学異方性層121を備えておらず、光学異方性層122のみを備えた光学素子を適用した場合、入射角の小さい中心近傍と入射角が大きく、かつ回折角が大きくなる外周部の領域とで、回折効率に大きな差が生じ、全体としての回折効率(平均回折効率)が低いという問題があった。傾斜光学異方性層121を備えることによって、入射角が大きくなる素子外周部の回折効率を向上させることができ、入射位置および入射角による回折効率の差を抑制し、出射光の光量ばらつきを抑制することができる。また、2層以上の光学異方性層を備えることによって、平均回折効率も向上させることができる。
 なお、光偏向装置においては、上記光学素子120に限らず、例えば、図1に示したようなx軸方向に周期が一方から他方に向かって徐々に小さくなる水平回転配向パターンを有する光学異方性層を備えた光学素子を用いてもよい。また、x軸方向において、素子の中心から外側に向かって周期が徐々に小さくなる水平回転配向パターンを有し、中心を挟んで両側の水平回転配向パターンの光学軸の回転方向が逆向きである光学異方性層を備えた光学素子を用いてもよい。
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、試薬、使用量、物質量、割合、処理内容、および、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。以下の実施例および比較例においては、対象波長940nmの赤外光を入射光として想定して液晶配向パターンを設計した。
 [比較例1]
 断面SEM像において明暗線が傾いていない非傾斜光学異方性層211を第1光学異方性層として備えた光学素子を比較例1として作製した(図11参照)。
<光学素子の作製>
(配向膜の形成)
 ガラス基板上に、下記の配向膜形成用塗布液をスピンコートで塗布した。この配向膜形成用塗布液の塗膜が形成された支持体を60℃のホットプレート上で60秒間乾燥し、配向膜を形成した。
配向膜形成用塗布液
――――――――――――――――――――――――――――――――
 光配向用素材A                 1.00質量部
 水                      16.00質量部
 ブトキシエタノール              42.00質量部
 プロピレングリコールモノメチルエーテル    42.00質量部
――――――――――――――――――――――――――――――――
-光配向用素材A-
Figure JPOXMLDOC01-appb-C000001

 
(配向膜の露光)
 図9に示した、集光したレーザ光の偏光方向を任意に変えながら、光配向膜をスキャン露光してパターニングする露光装置を用いて配向膜を露光して、配向パターンを有する配向膜P-1を形成した。露光装置において、レーザとして波長(325nm)のレーザ光を出射するものを用いた。なお、同心円状の配向パターンとし、その配向パターンの1周期が、中心から外方向に向かって、徐々に短くなるようにした。
(第1光学異方性層の形成)
 光学異方性層を形成する液晶組成物として、下記の組成物A-1を調製した。
組成物A-1
―――――――――――――――――――――――――――――――――
 液晶化合物L-1               100.00質量部
 重合開始剤(BASF製、Irgacure(登録商標)907)
                          3.00質量部
 光増感剤(日本化薬製、KAYACURE DETX-S)
                          1.00質量部
 レベリング剤T-1                0.08質量部
 メチルエチルケトン             2840.00質量部
―――――――――――――――――――――――――――――――――
  液晶化合物L-1
Figure JPOXMLDOC01-appb-C000002

 
  レベリング剤T-1
Figure JPOXMLDOC01-appb-C000003

 
 第1光学異方性層は、組成物A-1を配向膜P-1上に多層塗布することにより形成した。先ず配向膜の上に1層目の組成物A-1を塗布、加熱、冷却後に紫外線硬化を行って液晶固定化層を作製した後、2層目以降はその液晶固定化層に重ね塗りして塗布を行い、同様に加熱、冷却後に紫外線硬化を行うことを繰り返した。
 先ず1層目は、配向膜P-1上に下記の組成物A-1を塗布して、塗膜をホットプレート上で70℃に加熱し、その後、25℃に冷却した後、窒素雰囲気下で高圧水銀灯を用いて波長365nmの紫外線を300mJ/cmの照射量で塗膜に照射することにより、液晶化合物の配向を固定化した。この時の1層目の液晶層の膜厚は0.2μmであった。
 2層目以降は、この液晶層に重ね塗りして、上と同じ条件で加熱、冷却後に紫外線硬化を行って液晶固定化層を作製した。このようにして、総厚が所望の膜厚になるまで重ね塗りを繰り返し、第1光学異方性層を形成した。
 以上の工程により比較例1の光学素子を作製した。
 なお、液晶組成物A1の硬化層の複素屈折率Δnは、液晶組成物A1を別途に用意したリタデーション測定用の配向膜付き支持体上に塗布し、液晶化合物のダイレクタが基材に水平となるよう配向させた後に紫外線照射して固定化して得た液晶固定化層(硬化層)のリタデーションRe(λ)および膜厚を測定して求めた。リタデーションRe(λ)を膜厚で除算することによりΔnλを算出できる。リタデーションRe(λ)はWoollam社の分光エリプソメーターを用いて目的の波長で測定し、膜厚はSEMを用いて測定した。Re(λ)の表記においてλは入射光の波長である。以下において、入射光の波長λは940nmとした。
 第1光学異方性層は、最終的に液晶のΔn940×厚さ=Re(940)が470nmになり、かつ、図8に示すような同心円状の周期的な配向表面になっていることを偏光顕微鏡で確認した。同心円状の周期的な配向表面は、水平回転配向の軸が中心から放射状に配置された面内配向パターンであることを意味する。なお、この第1光学異方性層の水平回転配向パターンにおいて、1周期は、中心部で非常に大きく(周期の逆数が0と見なせる)、中心から1.0mmの距離で9.0μm、中心から2.5mmの距離で4.5μm、中心から4.0mmの距離で3.0μmであり、外方向に向かって周期が短くなっていた。また、第1光学異方性層の厚さ方向の捩れ角は、0°であった。以下、特に記載が無い場合には、『Δn940×厚さ』等の測定は、同様に行った。また、SEMによる断面像において、光学異方性層の下界面(ガラス基板との界面)に対し、垂直方向、すなわち法線に沿って延びる明暗線が観察された。明暗線の繰り返しパターンにおいては中心から外側に向かって周期が短くなる様子が観察された。
 [実施例1]
 2層の光学異方性層を備え、第1の光学異方性層が、断面SEM像において明暗線が界面の法線に傾いた傾斜光学異方性層212であり、第2の光学異方性層が非傾斜光学異方性層211である光学素子を実施例1として作製した(図12参照)。
(第1光学異方性層の形成)
 光学異方性層を形成する液晶組成物として、下記の組成物A-2を調製した。
組成物A-2
――――――――――――――――――――――――――――――――
 液晶化合物L-1              100.00質量部
 カイラル剤A                  0.21質量部
 重合開始剤(BASF製、Irgacure(登録商標)907)
                         3.00質量部
 光増感剤(日本化薬製、KAYACURE DETX-S)
                         1.00質量部
 レベリング剤T-1               0.08質量部
 メチルエチルケトン            2840.00質量部
――――――――――――――――――――――――――――――――
カイラル剤A
Figure JPOXMLDOC01-appb-C000004

 
 組成物A-2を用いた以外は比較例1と同様にして、配向膜P-1上に第1光学異方性層を形成した。
(第2光学異方性層の形成)
 実施例1の第2光学異方性層は、比較例1の第1光学異方性層と同様であり、組成物A-1を用い、比較例1の第1光学異方性層と同様にして、第1光学異方性層上に第2光学異方性層を形成し、実施例1の光学素子を作製した。
 第1光学異方性層および第2光学異方性層は、最終的に液晶のΔn940×厚さ=Re(940)が470nmになり、かつ、図8に示すような同心円状の周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、この第1光学異方性層の水平回転配向パターンにおいて、1周期は、中心部で非常に大きく(周期の逆数が0と見なせる)、中心から1.0mmの距離で9.0μm、中心から2.5mmの距離で4.5μm、中心から4.0mmの距離で3.0μmであり、外方向に向かって周期が短くなっていた。なお、第2光学異方性層は、第1光学異方性層上に塗布形成されているので、その周期は第1光学異方性層の周期と同一である。後記においても第1光学異方性層上に塗布によって形成された他の層は同一の周期である。また、第1光学異方性層の厚さ方向の捩れ角は、右捩れ140°であった。第2光学異方性層の厚さ方向の捩れ角は、0°であった。また、SEMによる断面像において、第1光学異方性層では光学異方性層下界面(ガラス基板との界面)の法線に対し、斜めに傾斜した明暗線が観察され、第2光学異方性層では法線方向に延びる明暗線が観察された。第1光学異方性層は中心から外側に向かって明暗線の法線に対する傾斜角度が小さくなっていた。明暗線のパターンは第1光学異方性層、第2光学異方性層ともに中心から外側に向かって周期が短くなる様子が観察された。
 [実施例2]
 2層の光学異方性層を備え、第1の光学異方性層が非傾斜光学異方性層211であり、第2の光学異方性層が傾斜光学異方性層212である光学素子を実施例2として作製した(図13参照)。すなわち、実施例2は、実施例1の第1の光学異方性層と第2の光学異方性層とを逆に構成した構成を有する。
 組成物A-1を用い第1光学異方性層を形成し、組成物A-2を用い第2光学異方性層を形成した以外は実施例1と同様にして実施例2の光学素子を作製した。
 第1光学異方性層および第2光学異方性層は、最終的に液晶のΔn940×厚さ(Re(940))が470nmになり、かつ、図8に示すような同心円状の周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、この第1光学異方性層の水平回転配向パターンにおいて、1周期は、中心部で非常に大きく(周期の逆数が0と見なせる)、中心から1.0mmの距離で9.0μm、中心から2.5mmの距離で4.5μm、中心から4.0mmの距離で3.0μmであり、外方向に向かって周期が短くなっていた。また、第1光学異方性層の厚さ方向の捩れ角は、0°であった。第2光学異方性層の厚さ方向の捩れ角は、右捩れ140°であった。また、SEMによる断面像において、第1光学異方性層では、光学異方性層下界面(ガラス基板との界面)の法線方向に延びる明暗線が観察され、第2光学異方性層では、法線に対して斜めに傾斜した明暗線が観察された。第2光学異方性層は中心から外側に向かって明暗線の法線に対する傾斜角度が小さくなっていた。明暗線のパターンは第1光学異方性層、第2光学異方性層ともに中心から外側に向かって周期が短くなる様子が観察された。
 [比較例2]
 断面SEM像において明暗線が界面の法線に対し傾いた傾斜光学異方性層212を第1光学異方性層として備えた光学素子を比較例2として作製した。
 (第1光学異方性層の形成)
比較例2の第1光学異方性層は、実施例1の第1光学異方性層と同様であり、組成物A-2を用い、実施例1の第1光学異方性層と同様にして、配向膜P-1上に第1光学異方性層を形成し、比較例2の光学素子を作製した。すなわち、比較例2の光学素子は光学異方性層として、1層の傾斜光学異方性層のみを備えた構成である。
 第1光学異方性層は、最終的に液晶のΔn940×厚さ=Re(940)が470nmになり、かつ、図8に示すような同心円状の周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、この第1光学異方性層の水平回転配向パターンにおいて、1周期は、中心部で非常に大きく(周期の逆数が0と見なせる)、中心から1.0mmの距離で9.0μm、中心から2.5mmの距離で4.5μm、中心から4.0mmの距離で3.0μmであり、外方向に向かって周期が短くなっていた。また、第1光学異方性層の厚さ方向の捩れ角は、右捩れ140°であった。また、SEMによる断面像において、第1光学異方性層では光学異方性層下界面(ガラス基板との界面)の法線に対し、斜めに傾斜した明暗線が観察された。第1光学異方性層は中心から外側に向かって明暗線の法線に対する傾斜角度が小さくなっていた。明暗線のパターンは中心から外側に向かって周期が短くなる様子が観察された。
 [実施例3]
 2層の光学異方性層を備え、第1の光学異方性層および第2の光学異方性層が、断面SEM像において明暗線が界面の法線に傾いた傾斜光学異方性層213、214である光学素子を実施例3として作製した(図14参照)。第1の光学異方性層と第2の光学異方性層とでは、断面SEM像における明暗線の傾きの方向は同一とし、傾き角度を異ならせた。
(第1光学異方性層の形成)
 第1光学異方性層を形成する液晶組成物として、下記の組成物A-3を調製した。
組成物A-3
――――――――――――――――――――――――――――――――
 液晶化合物L-1              100.00質量部
 カイラル剤A                  0.24質量部
 重合開始剤(BASF製、Irgacure(登録商標)907)
                         3.00質量部
 光増感剤(日本化薬製、KAYACURE DETX-S)
                         1.00質量部
 レベリング剤T-1               0.08質量部
 メチルエチルケトン            2840.00質量部
――――――――――――――――――――――――――――――――
 組成物A-3を用いた以外は実施例1と同様にして、配向膜P-1上に第1光学異方性層を形成した。
(第2光学異方性層の形成)
 光学異方性層を形成する液晶組成物として、下記の組成物A-4を調製した。
組成物A-4
――――――――――――――――――――――――――――――――
 液晶化合物L-1              100.00質量部
 カイラル剤A                  0.03質量部
 重合開始剤(BASF製、Irgacure(登録商標)907)
                         3.00質量部
 光増感剤(日本化薬製、KAYACURE DETX-S)
                         1.00質量部
 レベリング剤T-1               0.08質量部
 メチルエチルケトン            2840.00質量部
――――――――――――――――――――――――――――――――
 組成物A-4を用いた以外は実施例1と同様にして、第1光学異方性層上に第2光学異方性層を形成し、実施例3の光学素子を作製した。
 第1光学異方性層および第2光学異方性層は、最終的に液晶のΔn940×厚さ=Re(940)が470nmになり、かつ、図8に示すような同心円状の周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、この第1光学異方性層の水平回転配向パターンにおいて、1周期は、中心部で非常に大きく(周期の逆数が0と見なせる)、中心から1.0mmの距離で9.0μm、中心から2.5mmの距離で4.5μm、中心から4.0mmの距離で3.0μmであり、外方向に向かって周期が短くなっていた。また、第1光学異方性層の厚さ方向の捩れ角は、右捩れ160°であった。第2光学異方性層の厚さ方向の捩れ角は、右捩れ20°であった。第1光学異方性層と第2光学異方性層の捩れの方向は同じであった。また、SEMによる断面像において、第1光学異方性層および第2光学異方性層共に光学異方性層下界面の法線に対し、斜めに傾斜した明暗線が観察された。さらに、中心から外側に向かって明暗線の法線に対する傾斜角度が小さくなっており、第1光学異方性層と第2光学異方性層との明暗線の法線からの傾き方向は同じであった。明暗線のパターンは第1光学異方性層および第2光学異方性層ともに中心から外側に向かって周期が短くなる様子が観察された。
 [実施例4]
 2層の光学異方性層を備え、第1の光学異方性層および第2の光学異方性層が、断面SEM像において明暗線が界面の法線に傾いた傾斜光学異方性層215、216である光学素子を実施例4として作製した(図15参照)。第1の光学異方性層と第2の光学異方性層とでは、断面SEM像における明暗線の傾きの方向を異ならせた。
(第1光学異方性層の形成)
 光学異方性層を形成する液晶組成物として、下記の組成物A-5を調製した。
組成物A-5
――――――――――――――――――――――――――――――――
 液晶化合物L-1              100.00質量部
 カイラル剤A                  0.13質量部
 重合開始剤(BASF製、Irgacure(登録商標)907)
                         3.00質量部
 光増感剤(日本化薬製、KAYACURE DETX-S)
                         1.00質量部
 レベリング剤T-1               0.08質量部
 メチルエチルケトン            2840.00質量部
――――――――――――――――――――――――――――――――
 組成物A-5を用いた以外は実施例1と同様にして、配向膜P-1上に第1光学異方性層を形成した。
(第2光学異方性層の形成)
 光学異方性層を形成する液晶組成物として、下記の組成物A-6を調製した。
 組成物A-6
――――――――――――――――――――――――――――――――
 液晶化合物L-1              100.00質量部
 カイラル剤B                  0.22質量部
 重合開始剤(BASF製、Irgacure(登録商標)907)
                         3.00質量部
 光増感剤(日本化薬製、KAYACURE DETX-S)
                         1.00質量部
 レベリング剤T-1               0.08質量部
 メチルエチルケトン            2840.00質量部
――――――――――――――――――――――――――――――――
カイラル剤B
Figure JPOXMLDOC01-appb-C000005

 
 組成物A-6を用いた以外は実施例1と同様にして、第1光学異方性層上に第2光学異方性層を形成し、実施例4の光学素子を作製した。
 第1光学異方性層および第2光学異方性層は、最終的に液晶のΔn940×厚さ=Re(940)が470nmになり、かつ、図8に示すような同心円状の周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、この第1光学異方性層の水平回転配向パターンにおいて、1周期は、中心部で非常に大きく(周期の逆数が0と見なせる)、中心から1.0mmの距離で9.0μm、中心から2.5mmの距離で4.5μm、中心から4.0mmの距離で3.0μmであり、外方向に向かって周期が短くなっていた。また、第1光学異方性層の厚さ方向の捩れ角は、右捩れ80°であった。第2光学異方性層の厚さ方向の捩れ角は、左捩れ80°であった。第1光学異方性層と第2光学異方性層の捩れの方向は逆であった。また、SEMによる断面像において、第1光学異方性層および第2光学異方性層はともに明暗線が光学異方性層下界面の法線に対し、斜めに傾斜した様子が観察された。さらに中心から外側に向かって明暗線の法線に対する傾斜角度が小さくなっており、第1光学異方性層と第2光学異方性層との明暗線の法線からの傾き方向は逆であった。明暗線のパターンは第1光学異方性層および第2光学異方性層ともに中心から外側に向かって周期が短くなる様子が観察された。
 [実施例5]
 3層の光学異方性層を備え、第1光学異方性層および第3光学異方性層が、断面SEM像において明暗線が界面の法線に傾いた傾斜光学異方性層217、218であり、第1および第3光学異方性層の間に配置された第2光学異方性層219が非傾斜光学異方性層である光学素子を実施例5として作製した(図16参照)。第1の光学異方性層と第3の光学異方性層とでは、断面SEM像における明暗線の傾きの方向を異ならせた。
(第1光学異方性層の形成)
 光学異方性層を形成する液晶組成物として、下記の組成物A-7を調製した。
  組成物A-7
――――――――――――――――――――――――――――――――
 液晶化合物L-1              100.00質量部
 カイラル剤A                  0.19質量部
 重合開始剤(BASF製、Irgacure(登録商標)907)
                         3.00質量部
 光増感剤(日本化薬製、KAYACURE DETX-S)
                         1.00質量部
 レベリング剤T-1               0.08質量部
 メチルエチルケトン            2840.00質量部
――――――――――――――――――――――――――――――――
 組成物A-7を用いた以外は実施例1と同様にして、配向膜P-1上に第1光学異方性層を形成した。
(第2光学異方性層の形成)
 組成物A-1を用い、膜厚を変更した以外は、比較例1の第1光学異方性層と同様にして、第1の光学異方性層上に第2光学異方性層を形成した。
(第3光学異方性層の形成)
 光学異方性層を形成する液晶組成物として、下記の組成物A-8を調製した。
  組成物A-8
――――――――――――――――――――――――――――――――
 液晶化合物L-1              100.00質量部
 カイラル剤B                  0.32質量部
 重合開始剤(BASF製、Irgacure(登録商標)907)
                         3.00質量部
 光増感剤(日本化薬製、KAYACURE DETX-S)
                         1.00質量部
 レベリング剤T-1               0.08質量部
 メチルエチルケトン            2840.00質量部
――――――――――――――――――――――――――――――――
 組成物A-8を用いた以外は実施例1と同様にして、第2光学異方性層上に第3光学異方性層を形成し、実施例5の光学素子を作製した。
 第1光学異方性層および第3光学異方性層は、最終的に液晶のΔn940×厚さ=Re(940)が470nmであり、第2光学異方性層はΔn940×厚さ(Re(940))が564nmであった。また、図8に示すような同心円状の周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、この第1光学異方性層の水平回転配向パターンにおいて、1周期は、中心部で非常に大きく(周期の逆数が0と見なせる)、中心から1.0mmの距離で9.0μm、中心から2.5mmの距離で4.5μm、中心から4.0mmの距離で3.0μmであり、外方向に向かって周期が短くなっていた。また、第1光学異方性層の厚さ方向の捩れ角は、右捩れ130°であった。第2光学異方性層の厚さ方向の捩れ角は、0°であり、第3光学異方性層の厚さ方向の捩れ角は、左捩れ130°であった。第1光学異方性層と第3光学異方性層の捩れの方向は逆であった。また、SEMによる断面像において、第1光学異方性層および第3光学異方性層では、光学異方性層下界面の法線に対し、斜めに傾斜した明暗線が観察され、第2光学異方性層では、法線に沿って延びる明暗線が観察された。第1および第3の光学異方性層において、中心から外側に向かって明暗線の法線に対する傾斜角度は小さくなっており、第1光学異方性層と第3光学異方性層との法線に対する明暗線の傾き方向は逆であった。明暗線のパターンは第1光学異方性層、第2光学異方性層および第3光学異方性層ともに中心から外側に向かって周期が短くなる様子が観察された。
[評価]
 比較例1および実施例1~5の光学素子は透過型の回折素子として機能する。各光学素子について、光を入射した際における、光学素子の法線方向に対する透過回折光の角度を測定し、比較例1の素子に対する光強度増加率を評価した。具体的な測定方法は以下の通りである。
 まず、レーザ光を光学素子の表面の所定位置に所定の入射角で入射させ、透過光を、光学素子の法線方向30cmの距離に配置したスクリーンに投影し、赤外カメラで撮影した画像から透過回折光の角度を算出した。光源には波長940nmのレーザーダイオードを用いた。
 次いで、図17に示すように、レーザ光源251から出射した波長940nmのレーザ光を、直線偏光子252およびλ/4板254を透過させて右円偏光の光Liとした。この光Liを光学素子Sの表面の所定の位置に所定の入射角で入射させた。光学素子Sにより回折された透過回折光Ldの光強度を光検出器256で測定した。そして、回折光Ldの光強度と光Liの光強度との比をとり、回折光Ldの入射光に対する相対光強度値を求めた。また、入射角を変えて同様に相対光強度値を求めた。異なる入射角に対する相対光強度値の平均値で比較例1に対する実施例の光強度増加率を以下の基準で評価した。
A:光強度増加率が20%以上
B:光強度増加率が10%以上、20%未満
C:光強度増加率が5%以上、10%未満
D:光強度増加率が5%未満
 なお、比較例1および比較例2と実施例1~3との比較では中心から1.0mmの距離(1周期9.0μm)での入射角を10°、中心から2.5mmの距離(1周期4.5μm)での入射角を20°、中心から4.0mmの距離(1周期3.0μm)での入射角を30°として評価を行った。
 また、比較例1および比較例2と実施例4および実施例5との比較では中心から1.0mmの距離(1周期9.0μm)での入射角を±10°、中心から2.5mmの距離(1周期4.5μm)での入射角を±20°、中心から4.0mmの距離(1周期3.0μm)での入射角を±30°として評価を行った。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000006
 実施例1~3は入射角10~30°の範囲で、実施例4および5は入射角-30~+30°の範囲で、いずれも比較例1よりも高い平均回折効率が得られた。断面SEM像における明暗線傾きが逆の傾斜光学異方性層を組み合わせることで、より広い入射角範囲に亘って回折効率を増加させることができた。なお、1層の傾斜光学異方性層のみを備えた比較例2の光学素子では平均回折効率を高める効果が得られなかった。
[比較例11]
 周期が徐々に変化する水平回転配向パターンを有し、かつ厚み方向にコレステリック配向した第1光学異方性層221を備えた光学素子を比較例11として作製した(図18参照)。図18において、厚み方向についてはコレステリック配向の一部を模式的に示している。
(第1光学異方性層の形成)
 光学異方性層を形成する液晶組成物として、下記の組成物C-1を調製した。この組成物C-1は、選択反射中心波長が940nmで、右円偏光を反射するコレステリック液晶層を形成する、液晶組成物である。
組成物C-1
――――――――――――――――――――――――――――――――
 液晶化合物L-1              100.00質量部
 カイラル剤A                  3.11質量部
 重合開始剤(BASF製、Irgacure(登録商標)907)
                         3.00質量部
 光増感剤(日本化薬製、KAYACURE DETX-S)
                         1.00質量部
 レベリング剤T-1               0.08質量部
 メチルエチルケトン            2840.00質量部
――――――――――――――――――――――――――――――――
 組成物C-1を用い、膜厚を変更した以外は実施例1と同様にして、配向膜P-1上に第1光学異方性層を形成し、比較例11の光学素子を作製した。
 第1光学異方性層は、塗布層の断面を査型電子顕微鏡で確認したところ、コレステリック液晶相は8ピッチであり、かつ、図8に示すような同心円状の周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、この第1光学異方性層の水平回転配向パターンにおいて、1周期は、中心部で非常に大きく(周期の逆数が0と見なせる)、中心から1.0mmの距離で9.0μm、中心から2.5mmの距離で4.5μm、中心から4.0mmの距離で3.0μmであり、外方向に向かって周期が短くなっていた。また、SEMによる断面像において、第1光学異方性層では明暗線が光学異方性層下界面の法線に対し、斜めに傾斜していた。第1光学異方性層は中心から外側に向かって明暗線の傾斜角度が大きくなっていた。第1光学異方性層の明暗線のパターンは、中心から外側に向かって周期が短くなる様子が観察された。
[実施例11]
 周期が徐々に変化する水平回転配向パターンを有し、かつ厚み方向にコレステリック配向した第1光学異方性層222および第2光学異方性層223を備えた光学素子を実施例11として作製した(図19参照)。図19において、厚み方向についてはコレステリック配向の一部を模式的に示している。
(第1光学異方性層の形成)
 組成物C-1を用い、比較例11と同様にして、配向膜P-1上に第1光学異方性層を形成した。
 第1光学異方性層は、塗布層の断面を査型電子顕微鏡で確認したところ、コレステリック液晶相は8ピッチであり、かつ、図8に示すような同心円状(放射状)の周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、この第1光学異方性層の水平回転配向パターンにおいて、1周期は、中心部で非常に大きく(周期の逆数が0と見なせる)、中心から1.0mmの距離で9.0μm、中心から2.5mmの距離で4.5μm、中心から4.0mmの距離で3.0μmであり、外方向に向かって周期が短くなっていた。
(第2光学異方性層の形成)
 第2光学異方性層を形成する液晶組成物として、下記の組成物C-2を調製した。この組成物C-2は、選択反射中心波長が940nmで、左円偏光を反射するコレステリック液晶層を形成する、液晶組成物である。
<組成物C-2>
――――――――――――――――――――――――――――――――
 液晶化合物L-1              100.00質量部
 カイラル剤B                  4.42質量部
 重合開始剤(BASF製、Irgacure(登録商標)907)
                         3.00質量部
 光増感剤(日本化薬製、KAYACURE DETX-S)
                         1.00質量部
 レベリング剤T-1               0.08質量部
 メチルエチルケトン            2840.00質量部
――――――――――――――――――――――――――――――――
 比較例11と同様にして、配向膜P-1上に第2光学異方性層を形成した。
 第1光学異方性層は、塗布層の断面を査型電子顕微鏡で確認したところ、コレステリック液晶相は8ピッチであり、かつ、図8に示すような同心円状の周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、この第1光学異方性層の水平回転配向パターンにおいて、1周期は、中心部で非常に大きく(周期の逆数が0と見なせる)、中心から1.0mmの距離で9.0μm、中心から2.5mmの距離で4.5μm、中心から4.0mmの距離で3.0μmであり、外方向に向かって周期が短くなっていた。
 第1光学異方性層と第2光学異方性層を貼合して、実施例11の光学素子を作製した。なお、第1光学異方性層と第2光学異方性層を積層する際には、液晶配向パターンにおける光学軸の向きの連続的な回転方向が、互いに異なるように貼合した。
 SEMによる断面像において、第1光学異方性層、第2光学異方性層ともに明暗線が光学異方性層下界面の法線に対し、斜めに傾斜した様子が観察された。さらに中心から外側に向かって明暗線の傾斜角度が小さくなっており、第1光学異方性層および第2光学異方性層の法線に対する明暗線の傾きの方向は同じであった。明暗線のパターンは第1光学異方性層および第2光学異方性層ともに中心から外側に向かって周期が短くなる様子が観察された。
[評価]
 比較例11および実施例11の光学素子は反射型の回折素子として機能する。各素子について、光を入射した際における、光学素子の法線方向に対する反射回折光の角度を測定し、光強度増加率を評価した。具体的な測定方法以下の通りである。
 レーザ光を光学素子の表面の所定位置に所定の入射角で入射させ、反射光を光学素子の法線方向30cmの距離に配置したスクリーンに投影し、赤外カメラで撮影した画像から反射回折光の角度を算出した。光源には波長940nmのレーザーダイオードを用いた。
 次いで、図20に示すように、レーザ光源251から出射した波長940nmのレーザ光を、直線偏光子252を透過させて直線偏光の光Lirとした。この光Lirを光学素子Sの表面の所定の位置に所定の入射角で入射させた。光学素子Sにより回折された反射回折光Ldrの光強度を光検出器256で測定した。そして、回折光Ldrの光強度と光Lirの光強度との比をとり、回折光Ldrの入射光に対する相対光強度値を求めた。また、入射角を変えて同様に相対光強度値を求めた。異なる入射角に対する相対光強度値の平均値について、比較例に対する実施例の光強度増加率を以下の基準で評価した。
A:光強度増加率が20%以上
B:光強度増加率が10%以上、20%未満
C:光強度増加率が5%以上、10%未満
D:光強度増加率が5%未満
 なお、比較例11と実施例11の比較では中心から1.0mmの距離(1周期9.0μm)での入射角を10°、中心から2.5mmの距離(1周期4.5μm)での入射角を20°、中心から4.0mmの距離(1周期3.0μm)での入射角を30°として評価を行った。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000007
 実施例11は入射角10~30°の範囲で、比較例11よりも高い平均回折効率が得られた。
 2018年9月28日に出願された日本出願特願2018-185584の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (12)

  1.  液晶化合物に由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化した面内配向パターンを有する光学異方性層を厚さ方向に複数備え、
     前記光学異方性層は、前記一方向において前記光学軸の向きが180°回転するまでの長さが互いに異なる領域を有し、
     前記複数の光学異方性層の少なくとも1層は、前記一方向に沿って前記厚さ方向に切断した断面を走査型電子顕微鏡で観察した断面像において、前記光学軸の向きに由来した明線および暗線の対が前記一方向に沿って複数あり、前記明線および暗線の対が前記光学異方性層の界面の法線に対して互いに異なる傾き角度で傾いた領域を有する傾斜光学異方性層である光学素子。
  2.  前記傾斜光学異方性層を2層備え、
     前記断面像において、前記2層の傾斜光学異方性層の少なくとも一部の対向領域の、一方の傾斜光学異方性層における前記明線および暗線の対と、他方の傾斜光学異方性層における前記明線および暗線の対との、前記傾き角度が互いに異なっている請求項1に記載の光学素子。
  3.  前記傾斜光学異方性層を2層備え、
     前記断面像において、前記2層の傾斜光学異方性層が少なくとも一部の対向領域の、一方の傾斜光学異方性層における前記明線および暗線の対と、他方の傾斜光学異方性層における前記明線および暗線の対との、前記法線に対する傾き方向が異なる請求項1または2のいずれか1項に記載の光学素子。
  4.  前記傾斜光学異方性層を2層備え、
     前記断面像において、前記2層の傾斜光学異方性層が少なくとも一部の対向領域の、一方の傾斜光学異方性層における前記明線および暗線の対と、他方の傾斜光学異方性層における前記明線および暗線の対との、前記法線に対する傾き方向が同じである請求項1から3のいずれか1項に記載の光学素子。
  5.  前記傾斜光学異方性層は、前記光学軸が厚さ方向に捩れ配向した領域を有する請求項1から4のいずれか1項に記載の光学素子。
  6.  入射した光を回折して透過する機能を有する請求項1から5のいずれか1項に記載の光学素子。
  7.  前記傾斜光学異方性層において、前記液晶化合物がコレステリック配向している請求項1から5のいずれか1項に記載の光学素子。
  8.  入射した光を回折して反射する機能を有する請求項7に記載の光学素子。
  9.  前記光学異方性層の前記面内配向パターンが、前記一方向において前記光学軸の向きが180°回転するまでの長さが、該一方向において徐々に変化するパターンである請求項1から8のいずれか1項に記載の光学素子。
  10.  前記光学異方性層の前記面内配向パターンが、前記一方向を、内側から外側に向かう放射状に有するパターンである請求項1から9のいずれか1項に記載の光学素子。
  11.  前記光学異方性層の前記面内配向パターンにおいて、前記一方向において前記光学軸の向きが180°回転するまでの長さが10μm以下である領域を有する請求項1から10のいずれか1項に記載の光学素子。
  12.  入射された光を偏向して出射する光偏向素子と、
     前記光偏向素子を駆動する駆動手段と、
     前記光偏向素子の光出射側に配置された、請求項1から11のいずれか1項に記載の光学素子とを備えた光偏向装置。
PCT/JP2019/033565 2018-09-28 2019-08-27 光学素子および光偏向装置 WO2020066429A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020548216A JP7191970B2 (ja) 2018-09-28 2019-08-27 光学素子および光偏向装置
CN202310296589.3A CN116184549A (zh) 2018-09-28 2019-08-27 光学元件及光偏振装置
CN201980063397.XA CN112771420B (zh) 2018-09-28 2019-08-27 光学元件及光偏振装置
US17/212,351 US20210208316A1 (en) 2018-09-28 2021-03-25 Optical element and light deflection device
JP2022195917A JP7397954B2 (ja) 2018-09-28 2022-12-07 光学素子および光偏向装置
JP2023203783A JP2024028817A (ja) 2018-09-28 2023-12-01 光学素子および光偏向装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-185584 2018-09-28
JP2018185584 2018-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/212,351 Continuation US20210208316A1 (en) 2018-09-28 2021-03-25 Optical element and light deflection device

Publications (1)

Publication Number Publication Date
WO2020066429A1 true WO2020066429A1 (ja) 2020-04-02

Family

ID=69951838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033565 WO2020066429A1 (ja) 2018-09-28 2019-08-27 光学素子および光偏向装置

Country Status (4)

Country Link
US (1) US20210208316A1 (ja)
JP (3) JP7191970B2 (ja)
CN (2) CN112771420B (ja)
WO (1) WO2020066429A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021153096A1 (ja) * 2020-01-31 2021-08-05
WO2021256413A1 (ja) * 2020-06-19 2021-12-23 富士フイルム株式会社 光学異方性膜、光学素子、光学システム
WO2021256422A1 (ja) * 2020-06-19 2021-12-23 富士フイルム株式会社 光学素子、導光素子および液晶組成物
WO2022050319A1 (ja) * 2020-09-02 2022-03-10 富士フイルム株式会社 液晶回折素子、光学素子、画像表示ユニット、ヘッドマウントディスプレイ、ビームステアリング、および、センサー
WO2022050321A1 (ja) * 2020-09-02 2022-03-10 富士フイルム株式会社 液晶回折素子、光学素子、画像表示ユニット、ヘッドマウントディスプレイ、ビームステアリングおよびセンサー
WO2022070942A1 (ja) * 2020-09-30 2022-04-07 富士フイルム株式会社 光学素子
WO2022070799A1 (ja) * 2020-09-30 2022-04-07 富士フイルム株式会社 透過型液晶回折素子
WO2022215748A1 (ja) * 2021-04-09 2022-10-13 富士フイルム株式会社 液晶回折素子、画像表示装置およびヘッドマウントディスプレイ
WO2022220184A1 (ja) * 2021-04-12 2022-10-20 富士フイルム株式会社 光配向層の露光方法
WO2022220185A1 (ja) * 2021-04-12 2022-10-20 富士フイルム株式会社 光配向層の露光方法
WO2023084589A1 (ja) * 2021-11-09 2023-05-19 カラーリンク・ジャパン 株式会社 光学積層体及び光学装置
WO2023085257A1 (ja) * 2021-11-11 2023-05-19 富士フイルム株式会社 露光方法および露光装置、ならびに、光学異方性層の形成方法
WO2023085308A1 (ja) * 2021-11-11 2023-05-19 富士フイルム株式会社 露光方法及び露光装置、並びに光学異方性層の製造方法
WO2023101002A1 (ja) * 2021-12-03 2023-06-08 富士フイルム株式会社 液晶回折素子、画像表示装置およびヘッドマウントディスプレイ
WO2024071217A1 (ja) * 2022-09-30 2024-04-04 富士フイルム株式会社 液晶回折素子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019203357A1 (ja) * 2018-04-20 2019-10-24 富士フイルム株式会社 光照射装置およびセンサー
JP7229275B2 (ja) * 2018-12-11 2023-02-27 富士フイルム株式会社 コレステリック液晶層およびコレステリック液晶層の形成方法、ならびに、積層体、導光素子および画像表示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014528597A (ja) * 2011-10-07 2014-10-27 ノース・キャロライナ・ステイト・ユニヴァーシティ 広帯域偏光変換のためのマルチツイストリターダおよび関連製造方法
US20150205182A1 (en) * 2012-07-27 2015-07-23 Seereal Technologies S.A. Polarization gratings for oblique incidence angles
JP2016519327A (ja) * 2013-03-13 2016-06-30 ノース・キャロライナ・ステイト・ユニヴァーシティ 幾何学的位相ホログラムを用いる偏光変換システム
WO2016194961A1 (ja) * 2015-06-04 2016-12-08 国立大学法人大阪大学 反射構造体、機器、及び反射構造体の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2137558B1 (en) 2007-04-16 2011-10-19 North Carolina State University Low-twist chiral liquid crystal polarization gratings and related fabrication methods
US9046729B2 (en) * 2011-03-24 2015-06-02 The Hong Kong University Of Science And Technology Cholesteric liquid crystal structure
WO2014062615A2 (en) 2012-10-15 2014-04-24 North Carolina State University Direct write lithography for the fabrication of geometric phase holograms
JP6726110B2 (ja) 2014-07-31 2020-07-22 イマジンオプティクス・コーポレイション 光学素子、及び回折光学素子
CN107615165B (zh) * 2015-04-30 2020-07-14 富士胶片株式会社 透明屏幕
JP6580143B2 (ja) * 2015-08-20 2019-09-25 富士フイルム株式会社 投映システムおよび投映システムの中間像スクリーンの製造方法
KR102506485B1 (ko) 2016-11-18 2023-03-03 매직 립, 인코포레이티드 넓은 입사 각도 범위들의 광을 방향전환시키기 위한 다중층 액정 회절 격자들
JP6857384B2 (ja) 2016-11-24 2021-04-14 国立大学法人大阪大学 光学素子
DE102017202634A1 (de) 2017-02-20 2018-08-23 Robert Bosch Gmbh Lidar-Sensor zur Erfassung eines Objektes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014528597A (ja) * 2011-10-07 2014-10-27 ノース・キャロライナ・ステイト・ユニヴァーシティ 広帯域偏光変換のためのマルチツイストリターダおよび関連製造方法
US20150205182A1 (en) * 2012-07-27 2015-07-23 Seereal Technologies S.A. Polarization gratings for oblique incidence angles
JP2016519327A (ja) * 2013-03-13 2016-06-30 ノース・キャロライナ・ステイト・ユニヴァーシティ 幾何学的位相ホログラムを用いる偏光変換システム
WO2016194961A1 (ja) * 2015-06-04 2016-12-08 国立大学法人大阪大学 反射構造体、機器、及び反射構造体の製造方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021153096A1 (ja) * 2020-01-31 2021-08-05
WO2021153096A1 (ja) * 2020-01-31 2021-08-05 富士フイルム株式会社 コレステリック液晶膜及びその製造方法
WO2021256413A1 (ja) * 2020-06-19 2021-12-23 富士フイルム株式会社 光学異方性膜、光学素子、光学システム
WO2021256422A1 (ja) * 2020-06-19 2021-12-23 富士フイルム株式会社 光学素子、導光素子および液晶組成物
JPWO2021256422A1 (ja) * 2020-06-19 2021-12-23
JPWO2021256413A1 (ja) * 2020-06-19 2021-12-23
US11852940B2 (en) 2020-06-19 2023-12-26 Fujifilm Corporation Optically anisotropic film, optical element, and optical system
JP7433434B2 (ja) 2020-06-19 2024-02-19 富士フイルム株式会社 光学異方性膜、光学素子、光学システム
JP7465968B2 (ja) 2020-06-19 2024-04-11 富士フイルム株式会社 光学素子、導光素子および液晶組成物
WO2022050319A1 (ja) * 2020-09-02 2022-03-10 富士フイルム株式会社 液晶回折素子、光学素子、画像表示ユニット、ヘッドマウントディスプレイ、ビームステアリング、および、センサー
US11977290B2 (en) 2020-09-02 2024-05-07 Fujifilm Corporation Liquid crystal diffraction element, optical element, image display unit, head-mounted display, beam steering, and sensor
WO2022050321A1 (ja) * 2020-09-02 2022-03-10 富士フイルム株式会社 液晶回折素子、光学素子、画像表示ユニット、ヘッドマウントディスプレイ、ビームステアリングおよびセンサー
WO2022070799A1 (ja) * 2020-09-30 2022-04-07 富士フイルム株式会社 透過型液晶回折素子
WO2022070942A1 (ja) * 2020-09-30 2022-04-07 富士フイルム株式会社 光学素子
WO2022215748A1 (ja) * 2021-04-09 2022-10-13 富士フイルム株式会社 液晶回折素子、画像表示装置およびヘッドマウントディスプレイ
WO2022220185A1 (ja) * 2021-04-12 2022-10-20 富士フイルム株式会社 光配向層の露光方法
WO2022220184A1 (ja) * 2021-04-12 2022-10-20 富士フイルム株式会社 光配向層の露光方法
WO2023084589A1 (ja) * 2021-11-09 2023-05-19 カラーリンク・ジャパン 株式会社 光学積層体及び光学装置
JP7445094B2 (ja) 2021-11-09 2024-03-06 カラーリンク・ジャパン 株式会社 光学積層体及び光学装置
WO2023085308A1 (ja) * 2021-11-11 2023-05-19 富士フイルム株式会社 露光方法及び露光装置、並びに光学異方性層の製造方法
WO2023085257A1 (ja) * 2021-11-11 2023-05-19 富士フイルム株式会社 露光方法および露光装置、ならびに、光学異方性層の形成方法
WO2023101002A1 (ja) * 2021-12-03 2023-06-08 富士フイルム株式会社 液晶回折素子、画像表示装置およびヘッドマウントディスプレイ
WO2024071217A1 (ja) * 2022-09-30 2024-04-04 富士フイルム株式会社 液晶回折素子

Also Published As

Publication number Publication date
JP2023027201A (ja) 2023-03-01
JPWO2020066429A1 (ja) 2021-04-30
CN112771420A (zh) 2021-05-07
CN112771420B (zh) 2023-04-14
US20210208316A1 (en) 2021-07-08
CN116184549A (zh) 2023-05-30
JP7191970B2 (ja) 2022-12-19
JP2024028817A (ja) 2024-03-05
JP7397954B2 (ja) 2023-12-13

Similar Documents

Publication Publication Date Title
WO2020066429A1 (ja) 光学素子および光偏向装置
JP7232887B2 (ja) 光学素子、導光素子および画像表示装置
JP6968190B2 (ja) 光学素子
US11480716B2 (en) Optical element that functions as a liquid crystal diffraction lattice
JP7015380B2 (ja) 光偏向装置および光学装置
JP7492001B2 (ja) 透過型液晶回折素子
WO2020022504A1 (ja) 光学素子の製造方法および光学素子
JP7483111B2 (ja) 光学素子および画像表示装置
WO2019131950A1 (ja) 光学素子およびセンサー
WO2019163944A1 (ja) 光学素子
WO2021200228A1 (ja) 導光素子
JP7196290B2 (ja) 液晶回折素子および積層回折素子
WO2021040012A1 (ja) 光偏向装置および光学装置
WO2020075740A1 (ja) 光学積層体、導光素子およびar表示デバイス
JP7252355B2 (ja) 光偏向装置および光学装置
WO2023100916A1 (ja) 光学素子および光学センサー
WO2023090392A1 (ja) 透過型液晶回折素子
WO2021132646A1 (ja) 光走査装置
WO2022239858A1 (ja) 光学素子および光学センサー
WO2022024677A1 (ja) 透過型液晶回折素子
WO2023085257A1 (ja) 露光方法および露光装置、ならびに、光学異方性層の形成方法
WO2022264908A1 (ja) 透過型液晶回折素子
WO2023085308A1 (ja) 露光方法及び露光装置、並びに光学異方性層の製造方法
WO2021157598A1 (ja) 光学素子および画像表示装置
WO2024057917A1 (ja) 光学素子および光学センサー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548216

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865200

Country of ref document: EP

Kind code of ref document: A1