WO2022220184A1 - 光配向層の露光方法 - Google Patents

光配向層の露光方法 Download PDF

Info

Publication number
WO2022220184A1
WO2022220184A1 PCT/JP2022/017175 JP2022017175W WO2022220184A1 WO 2022220184 A1 WO2022220184 A1 WO 2022220184A1 JP 2022017175 W JP2022017175 W JP 2022017175W WO 2022220184 A1 WO2022220184 A1 WO 2022220184A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
optically anisotropic
anisotropic layer
alignment
photo
Prior art date
Application number
PCT/JP2022/017175
Other languages
English (en)
French (fr)
Inventor
寛 佐藤
克己 篠田
隆 米本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023514623A priority Critical patent/JPWO2022220184A1/ja
Publication of WO2022220184A1 publication Critical patent/WO2022220184A1/ja
Priority to US18/485,071 priority patent/US20240045335A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a method for exposing a photo-alignment layer used for manufacturing a polarization diffraction element.
  • a liquid crystal diffraction element which has an optically anisotropic layer in which a liquid crystal compound is oriented in a liquid crystal orientation pattern in which the direction of the optic axis derived from the liquid crystal compound rotates continuously along one in-plane direction.
  • the optically anisotropic layer of such a liquid crystal diffraction element is obtained by forming an alignment layer having an alignment pattern formed on a substrate, coating and drying a composition containing a liquid crystal compound on the alignment layer, and It is produced by orienting a liquid crystal compound.
  • a photo-alignment layer is known as an alignment layer having an alignment pattern.
  • the photo-alignment layer forms a photosensitive coating film by coating and drying a coating material containing a compound having a photo-alignment group on the substrate, and exposing the coating film to light according to the alignment pattern to be formed. is formed.
  • Alignment pattern formation of the photo-alignment layer by exposure is, for example, by superimposing two circularly polarized light with opposite directions of rotation to interfere with each other, and by entering this interference light into a photosensitive coating film, the coating film. Generate an interference pattern with interference fringes. By exposing the coating film to this interference light, an alignment pattern corresponding to the interference pattern is formed on the coating film, thereby forming a photo-alignment layer.
  • the exposure of the photosensitive coating film is performed, for example, by an interference type exposure apparatus described below.
  • a parallel laser beam is split into two orthogonal linearly polarized beams by a polarization beam splitter.
  • a convex lens After condensing one of the linearly polarized lights with a convex lens, one of the linearly polarized lights is incident on one surface of the half mirror and the other linearly polarized light is incident on the other surface of the half mirror, thereby superimposing the two linearly polarized lights.
  • the two superimposed linearly polarized lights are converted into circularly polarized lights with different rotation directions by a quarter-wave plate.
  • the interference of the two overlapping circularly polarized light the circularly polarized light incident on the coating film generates an interference pattern of interference fringes according to the focal length of the convex lens and the like.
  • a liquid crystal diffraction element using an optically anisotropic layer having a liquid crystal alignment pattern as described above is used as an exposure mask.
  • a method of exposing a coating film through this exposure mask is known. According to this exposure method, an alignment pattern corresponding to the liquid crystal alignment pattern of the liquid crystal diffraction element used as the exposure mask can be formed on the photosensitive coating film, that is, the photo-alignment layer.
  • Patent Document 1 discloses a step of patterning an alignment surface by photolithography using a birefringent mask having a holographic pattern to create an alignment state on the alignment surface based on the holographic pattern; forming a layer such that the direction of the local optic axis of the layer is determined by the orientation state of the orientation surface.
  • FIG. 1 A specific example of the exposure method described in Patent Document 1 is conceptually shown in FIG.
  • a photosensitive coating film 104 containing a compound having a photo-orientation group is formed on the surface of a substrate 106, a liquid crystal diffraction element is used as an exposure mask 100, and light (linearly polarized light) irradiated from a light source 102 is used. Lp) is applied to the coating 104 through the exposure mask 100 .
  • Lp linearly polarized light
  • the coating film 104 is exposed to the liquid crystal alignment pattern of the liquid crystal diffraction element, which is the exposure mask 100, to form a photo-alignment layer having an alignment pattern corresponding to the liquid crystal alignment pattern.
  • the liquid crystal diffraction element used as the exposure mask 100 has, for example, a liquid crystal orientation pattern in which the orientation of the liquid crystal compound 30 is continuously rotated along one direction within the plane, as conceptually shown in FIG. Note that FIG. 13 exemplifies a rod-like liquid crystal compound as the liquid crystal compound 30 , so the optical axis coincides with the longitudinal direction of the liquid crystal compound 30 .
  • ⁇ n ⁇ d which is the product of the refractive index difference ⁇ n of the liquid crystal compound forming the optically anisotropic layer of the liquid crystal diffraction element and the thickness d of the optically anisotropic layer, is the wavelength ⁇ of the incident light.
  • the exposure mask 100 is designed to have a half wavelength ( ⁇ /2).
  • the circularly polarized light +Cp which is the positive first-order light
  • the circularly polarized light ⁇ Cp which is the negative first-order light
  • adjacent circularly polarized light +Cp and circularly polarized light ⁇ Cp interfere with each other to form an interference pattern (interference fringes) on the coating film 104 .
  • an interference pattern having the same orientation pattern as the liquid crystal orientation pattern of the liquid crystal diffraction element that is the exposure mask 100 and a diffraction period of 1/2 is formed on the coating film 104 .
  • an alignment pattern corresponding to the liquid crystal alignment pattern of the liquid crystal diffraction element is formed on the coating film 104 .
  • the zero-order light indicated by the dashed line in FIG. It has been found that the linearly polarized light Lp, which is not reflected, is incident on the coating film 104 inevitably. Such 0th-order light becomes noise that unnecessarily exposes the coating film 104, so that the alignment pattern formed may be disturbed. In particular, when the pitch of the alignment pattern of the exposure mask 100, that is, the diffraction period is short, the 0th-order light increases, and the disturbance of the alignment pattern due to noise may increase.
  • An object of the present invention is to solve the problems of the prior art, and a method for exposing a photo-alignment layer that can form a photo-alignment layer having an alignment pattern without disturbance by a simple method using an exposure mask. is to provide
  • the present invention has the following configuration.
  • An exposure mask and a substrate having a coating film containing a compound having a photo-orientation group are placed so that the exposure mask and the coating film face each other, and the compound is irradiated with light to which the compound is photosensitive from the exposure mask side.
  • the light is circularly polarized light with an ellipticity of 0.7 to 1.3
  • the exposure mask is a polarization diffraction element having an orientation pattern in which the direction of the optical axis changes while continuously rotating along at least one in-plane direction
  • the exposure step is to expose the coating film with 0th order light and 1st order light of the light diffracted by the exposure mask, and A method of exposing a photo-alignment layer, wherein the intensity ratio of the 0th order light to the 1st order light is 0.5-2.
  • the 0th-order light and the 1st-order light are circularly polarized light with an ellipticity of 0.6 to 2, and The method for exposing a photo-alignment layer according to [1], wherein the 0th order light and the 1st order light are circularly polarized light having opposite rotating directions.
  • the exposure mask and the coating film subjected to the exposure process are the exposure mask when the length of the orientation of the optic axis rotated 180° along one in-plane direction is defined as one period.
  • the coating film to which the exposure process has been applied has a region with a period of 5 ⁇ m or less, where one period is the length of the 180° rotation of the optical axis direction in the plane.
  • the method for exposing a photo-alignment layer according to any one of [1] to [3].
  • the optically anisotropic layer has a liquid crystal alignment pattern in which the direction of the optical axis derived from the liquid crystal compound changes while continuously rotating along at least one in-plane direction [1] to [4].
  • the optically anisotropic layer has a bright portion and a dark portion extending from one principal surface to the other principal surface in an image obtained by observing a cross section cut in the thickness direction along one direction with a scanning electron microscope. and wherein the dark portion has a region that is inclined with respect to the main surface.
  • the orientation pattern of the exposure mask is a pattern having one direction in which the direction of the optical axis changes while continuously rotating along at least one in-plane direction radially outward from the center.
  • a photo-alignment layer having an alignment pattern without disorder can be formed by a simple method using an exposure mask.
  • FIG. 1 is a schematic plan view of an example of an optically anisotropic layer; FIG. It is a conceptual diagram for demonstrating the exposure method of the photo-alignment layer of this invention.
  • 1 is a diagram conceptually showing an example of an exposure apparatus for a coating film;
  • FIG. 4 is a schematic plan view of another example of an optically anisotropic layer;
  • FIG. 4 is a diagram conceptually showing another example of a coating film exposure apparatus.
  • FIG. 4 is a diagram conceptually showing another example of an optically anisotropic layer;
  • FIG. 4 is a diagram conceptually showing another example of an optically anisotropic layer;
  • FIG. 4 is a diagram conceptually showing another example of an optically anisotropic layer;
  • FIG. 4 is a diagram conceptually showing another example of an optically anisotropic layer;
  • FIG. 4 is a diagram conceptually showing another example of an optically anisotropic layer;
  • FIG. 4 is a diagram conceptually showing another example of an optically anisotropic layer;
  • It is a conceptual diagram for explaining the exposure method of the conventional photo-alignment layer. It is a conceptual diagram for explaining the exposure method of the conventional photo-alignment layer. It is a conceptual diagram for explaining the exposure method of the conventional photo-alignment layer. It is a conceptual diagram for explaining the exposure method of the conventional photo-alignment layer.
  • FIG. 1 conceptually shows an example of an exposure apparatus for carrying out the method of exposing a photo-alignment layer of the present invention.
  • the exposure method for the photo-alignment layer of the present invention is also referred to as the “exposure method of the present invention”.
  • light (circularly polarized light Cp) emitted from a light source 12 is diffracted by an exposure mask 10 and applied to a coating film 14 formed on the surface of a substrate 16 .
  • Various known exposure apparatuses can be used as the exposure apparatus for carrying out the exposure method of the present invention. Suitable examples include an exposure apparatus that performs proximity exposure, an exposure apparatus that uses a laser light source, and an exposure apparatus that uses a parallel light source.
  • the substrate 16 is similar to the support 20 of the exposure mask 10, which will be described later.
  • the coating film 14 is the same as the coating film forming the photo-alignment layer in the alignment layer 24 of the exposure mask 10, which will be described later. That is, the coating film 14 is obtained by coating the surface of the substrate 16 with a coating material containing a compound having a photo-orientation group and drying the coating material.
  • a compound having a photo-alignment group is also referred to as a "photo-alignment material”.
  • the light source 12 emits light having a wavelength to which the photo-orientation material contained in the coating film 14 is photosensitive.
  • the exposure mask 10 is a polarization diffraction element having an orientation pattern in which the direction of the optical axis changes while continuously rotating along at least one in-plane direction.
  • the exposure mask 10 is a liquid crystal diffraction element having an optically anisotropic layer formed using a composition containing a liquid crystal compound. This optically anisotropic layer has a liquid crystal alignment pattern in which the direction of the optic axis derived from the liquid crystal compound changes while continuously rotating along at least one in-plane direction.
  • the exposure method of the present invention irradiates the coating film 14 with light emitted from the light source 12 through the exposure mask 10 .
  • the photo-alignment material of the coating film 14 is oriented to form the same alignment pattern as the liquid crystal alignment pattern in the exposure mask 10, that is, the liquid crystal diffraction element (optical anisotropic layer).
  • the light source 12 irradiates the exposure mask 10 with circularly polarized light having an ellipticity of 0.7 to 1.3. That is, in the present invention, circularly polarized light close to a perfect circle is incident on the exposure mask.
  • the ellipticity of the light irradiated to the exposure mask 10 exceeds 0.7 to 1.3, the alignment pattern formed on the coating film 14 (photo-alignment layer) is disturbed. Inconveniences such as a decrease in the orientation regulating force occur.
  • the ellipticity of the irradiation light with which the exposure mask 10 is irradiated is preferably 0.8 to 1.2, more preferably 0.9 to 1.1.
  • various known light irradiation means can be used as long as the ellipticity is within the above range and it is possible to irradiate collimated light having coherence.
  • a laser light source that emits diffusive and non-polarized laser light
  • a light source that combines a circularly polarizing plate, and a collimator lens
  • a laser light source that emits non-polarized parallel laser light and a circularly polarizing plate.
  • a combined light source a laser light source that emits diffusive and linearly polarized laser light, a light source that combines a quarter-wave plate and a collimator lens, and a laser light source that emits parallel linearly polarized laser light
  • a light source combined with a quarter-wave plate is exemplified.
  • the light source 12 can irradiate collimated light having an ellipticity in the above range and having coherence to the extent that an alignment pattern can be formed on the coating film 14 after passing through the exposure mask 10, Various known light irradiation means can be used.
  • Examples include a light source combining an exposure light source for proximity exposure and a circularly polarizing plate, a light source combining a mercury light source, a collimator lens, and a circularly polarizing plate, and an LED light source, a collimator lens, and a circularly polarized light source.
  • a light source combined with a plate is exemplified.
  • FIG. 2 conceptually shows an example of the exposure mask 10 .
  • the exposure mask 10 shown in FIG. 2 is, for example, a liquid crystal diffraction element having a support 20, an alignment layer 24, and an optically anisotropic layer 26.
  • the optically anisotropic layer 26 is formed using a composition containing a liquid crystal compound, and the direction of the optical axis derived from the liquid crystal compound is continuous along at least one in-plane direction. It has a liquid crystal orientation pattern that changes while rotating in the direction of rotation.
  • the exposure mask 10 is not limited to the configuration shown in FIG.
  • the exposure mask may consist of an optically anisotropic layer 26 and an orientation layer 24 obtained by peeling off the support 20 from the exposure mask 10 shown in FIG. It may consist of only the optically anisotropic layer 26 that has been peeled off. Alternatively, the exposure mask may be an optically anisotropic layer 26 adhered to another support.
  • support 20 supports alignment layer 24 and optically anisotropic layer 26 .
  • Various sheet-like materials films, plate-like materials
  • a transparent support is preferable, and a polyacrylic resin film such as polymethyl methacrylate, a cellulose resin film such as cellulose triacetate, or a cycloolefin polymer film (for example, the product name "Arton” manufactured by JSR Corporation, Trade name "Zeonor", manufactured by Nippon Zeon Co., Ltd.), polyethylene terephthalate (PET), polycarbonate, and polyvinyl chloride.
  • the support is not limited to a flexible film, and may be a non-flexible substrate such as a glass substrate.
  • the thickness of the support 20 is not limited, and the thickness capable of holding the orientation layer and the optically anisotropic layer can be appropriately set according to the use of the exposure mask 10, the material forming the support 20, and the like. good.
  • the thickness of the support 20 is preferably 1-2000 ⁇ m, more preferably 3-500 ⁇ m, and even more preferably 5-150 ⁇ m.
  • an alignment layer 24 is formed on the surface of the support 20 .
  • the alignment layer 24 is an alignment layer for aligning the liquid crystal compound 30 in a predetermined liquid crystal alignment pattern when forming the optically anisotropic layer 26 of the exposure mask 10, which is a liquid crystal diffraction element.
  • a rod-like liquid crystal compound is illustrated as the liquid crystal compound 30 .
  • the optically anisotropic layer 26 has an optical axis 30A derived from the liquid crystal compound 30 as shown in FIG. It has a liquid crystal orientation pattern that changes while continuously rotating along (the direction of arrow A in the figure). Accordingly, the alignment layer 24 of the exposure mask 10 is formed such that the optically anisotropic layer 26 can form this liquid crystal alignment pattern.
  • the optic axis 30A of the liquid crystal compound 30 is intended to be the long molecular axis of the rod-like liquid crystal compound.
  • the optic axis 30A of the liquid crystal compound 30 is intended to be an axis parallel to the normal direction (perpendicular direction) to the disc surface of the discotic liquid crystal compound.
  • rotation of the direction of the optical axis 30A is also simply referred to as “rotation of the optical axis 30A”.
  • alignment layer 24 Various known alignment layers can be used for the alignment layer 24 .
  • rubbed films made of organic compounds such as polymers, oblique deposition films of inorganic compounds, films with microgrooves, and Langmuir films of organic compounds such as ⁇ -tricosanoic acid, dioctadecylmethylammonium chloride and methyl stearate.
  • LB Liquinuir-Blodgett
  • the alignment layer by rubbing treatment can be formed by rubbing the surface of the polymer layer with paper or cloth several times in one direction.
  • Materials used for the alignment layer include polyimide, polyvinyl alcohol, polymers having a polymerizable group described in JP-A-9-152509, JP-A-2005-97377, JP-A-2005-99228, and Materials used for forming an alignment layer, etc., described in JP-A-2005-128503 are preferably exemplified.
  • the orientation layer is preferably a so-called photo-orientation layer formed by irradiating a photo-orientation material with polarized or non-polarized light to form an orientation layer. That is, in the exposure mask 10, as the alignment layer 24, a coating containing a photo-alignment material is applied to the support 20 and dried to form a coating film, and the coating film is irradiated with light according to the alignment pattern.
  • a photo-alignment layer oriented in a single layer is preferably utilized.
  • the "photo-alignment material” is a "compound having a photo-alignment group" as described above.
  • photo-alignment material for example, JP-A-2006-285197, JP-A-2007-76839, JP-A-2007-138138, JP-A-2007-94071, JP-A-2007-121721, JP 2007-140465, JP 2007-156439, JP 2007-133184, JP 2009-109831, JP 3883848 and the azo compounds described in JP 4151746, JP Aromatic ester compounds described in 2002-229039, maleimide and / or alkenyl-substituted nadimide compounds having photoalignable units described in JP-A-2002-265541 and JP-A-2002-317013, Japanese Patent No.
  • Preferred examples include photodimerizable compounds described in JP-A-2003-200034, particularly cinnamate compounds, chalcone compounds and coumarin compounds.
  • azo compounds, photocrosslinkable polyimides, photocrosslinkable polyamides, photocrosslinkable esters, cinnamate compounds, and chalcone compounds are preferably used.
  • the thickness of the alignment layer 24 is not limited, and the thickness that can provide the required alignment function may be appropriately set according to the material forming the alignment layer 24 .
  • the thickness of the alignment layer 24 is preferably 0.01-5 ⁇ m, more preferably 0.02-2 ⁇ m.
  • the method for forming the alignment layer 24 is not limited, and various known methods can be used depending on the material for forming the alignment layer.
  • a coating containing a photo-alignable material is applied to the surface of the support 20 and dried to form a coating film. After that, the coating film is exposed with a laser beam to form an alignment pattern, and a method of forming a photo-alignment layer is exemplified.
  • FIG. 5 conceptually shows an example of an exposure apparatus that exposes the alignment layer 24 to form the alignment pattern described above.
  • the exposure device 60 shown in FIG. 5 includes a light source 64 having a laser 62, a ⁇ /2 plate 65 that changes the polarization direction of the laser beam M emitted by the laser 62, and a beam MA and a beam MA. It includes a polarizing beam splitter 68 that splits the beams MB into two, mirrors 70A and 70B placed respectively on the optical paths of the two split beams MA and MB, and ⁇ /4 plates 72A and 72B.
  • the light source 64 emits linearly polarized light P 0 .
  • the ⁇ /4 plate 72A converts the linearly polarized light P 0 (light ray MA) into right circularly polarized light PR
  • the ⁇ /4 plate 72B converts the linearly polarized light P 0 (light ray MB) into left circularly polarized light P L .
  • a support 20 having an alignment layer 24 before being formed with an alignment pattern is placed in an exposure area, and two light beams MA and MB are crossed and interfered on the alignment layer 24 , and the interference light is transmitted to the alignment layer 24 . exposed to light. Due to the interference at this time, the polarization state of the light with which the alignment layer 24 is irradiated periodically changes in the form of interference fringes. As a result, an alignment layer having an alignment pattern in which the alignment state changes periodically (hereinafter also referred to as a pattern alignment layer) is obtained.
  • the period of the alignment pattern can be adjusted by changing the crossing angle ⁇ of the two light beams MA and MB.
  • the exposure device 60 by adjusting the intersection angle ⁇ , in the orientation pattern in which the optical axis 30A derived from the liquid crystal compound 30 rotates continuously along one direction, , the length of one cycle (one cycle .LAMBDA. to be described later) in which the optical axis 30A rotates by 180.degree. can be adjusted.
  • the optically anisotropic layer 26 By forming the optically anisotropic layer 26 on the alignment layer 24 having such an alignment pattern in which the alignment state changes periodically, the optical axis 30A derived from the liquid crystal compound 30, which will be described later, is oriented along one direction.
  • An optically anisotropic layer 26 can be formed having a liquid crystal alignment pattern that continuously rotates with the Further, by rotating the optical axes of the ⁇ /4 plates 72A and 72B by 90°, the direction of rotation of the optical axis 30A can be reversed.
  • the orientation of the optical axis of the liquid crystal compound in the optically anisotropic layer 26 formed on the patterned alignment layer changes while continuously rotating along at least one in-plane direction. It has an alignment pattern for aligning the liquid crystal compound so that a liquid crystal alignment pattern is obtained.
  • the patterned alignment layer has an alignment axis along the direction in which the liquid crystal compound is aligned
  • the direction of the alignment axis of the patterned alignment layer changes while continuously rotating along at least one in-plane direction. It can be said that it has an orientation pattern.
  • the orientation axis of the patterned orientation layer can be detected by measuring absorption anisotropy.
  • the patterned alignment layer is irradiated with linearly polarized light while being rotated and the amount of light transmitted through the patterned alignment layer is measured, the direction in which the amount of light is maximum or minimum gradually changes along one direction in the plane. Observed to change.
  • the orientation layer 24 is provided as a preferred embodiment and is not an essential component.
  • the optically anisotropic layer 26 or the like is attached to the liquid crystal compound 30. It is also possible to have a liquid crystal orientation pattern in which the direction of the derived optical axis 30A changes while continuously rotating along one direction.
  • an optically anisotropic layer 26 is formed on the surface of the alignment layer 24 .
  • the optically anisotropic layer 26 is formed using a composition containing a liquid crystal compound.
  • the direction of the optical axis 30A derived from the liquid crystal compound 30 changes while continuously rotating in one direction (arrow A direction in FIG. 3 etc.) in the plane of the optically anisotropic layer. It has a liquid crystal alignment pattern.
  • the optical axis 30A derived from the liquid crystal compound 30 is the axis with the highest refractive index in the liquid crystal compound 30, that is, the so-called slow axis.
  • the optic axis 30A is along the long axis direction of the rod shape.
  • the optic axis 30A derived from the liquid crystal compound 30 is also referred to as "the optic axis 30A of the liquid crystal compound 30" or "the optic axis 30A".
  • FIG. 3 is a schematic diagram showing the alignment state of the liquid crystal compound 30 in the plane of the main surface of the optically anisotropic layer 26.
  • the main surface is the maximum surface of the sheet-like material (film, plate-like material, layer).
  • the optically anisotropic layer 26 has a liquid crystal orientation pattern that changes while the optical axis 30A continuously rotates in one direction indicated by the arrow A in the plane.
  • the liquid crystal compound 30 is two-dimensionally aligned in a plane parallel to one direction indicated by the arrow A and the Y direction perpendicular to the arrow A direction.
  • “one direction indicated by arrow A” is also simply referred to as "arrow A direction”.
  • it is a diagram of the optically anisotropic layer 26 viewed from a direction orthogonal to the main surface.
  • FIG. 3 shows only the liquid crystal compound 30 on the surface of the alignment layer 24 in order to clearly show the structure of the exposure mask 10 .
  • this optically anisotropic layer 26 also has a structure in which the liquid crystal compound 30 is stacked from the liquid crystal compound 30 on the surface of the alignment layer in the thickness direction, as shown in FIG.
  • the optically anisotropic layer 26 has a liquid crystal orientation pattern in which the direction of the optical axis 30A derived from the liquid crystal compound 30 changes while continuously rotating along the direction of the arrow A in the plane of the optically anisotropic layer 26. have. That the direction of the optic axis 30A of the liquid crystal compound 30 changes while continuously rotating in the direction of the arrow A (predetermined one direction) specifically means that the liquid crystal compounds arranged along the direction of the arrow A.
  • the angle formed by the optical axis 30A of 30 and the direction of the arrow A varies depending on the position in the direction of the arrow A. This means that the angle changes sequentially up to ⁇ 180°.
  • the difference in angle between the optical axes 30A of the liquid crystal compounds 30 adjacent to each other in the direction of the arrow A is preferably 45° or less, more preferably 15° or less, and even more preferably a smaller angle. .
  • the direction of the optic axis 30A is oriented in the Y direction perpendicular to the arrow A direction, that is, in the Y direction perpendicular to one direction in which the optic axis 30A rotates continuously.
  • Equivalent liquid crystal compounds 30 are arranged at regular intervals. In other words, in the liquid crystal compounds 30 forming the optically anisotropic layer 26, the angle between the direction of the optical axis 30A and the direction of the arrow A is the same between the liquid crystal compounds 30 arranged in the Y direction.
  • the optically anisotropic layer 26 is formed using a liquid crystal composition containing a rod-shaped liquid crystal compound or a discotic liquid crystal compound, and the optical axis of the rod-shaped liquid crystal compound or the optical axis of the discotic liquid crystal compound is as described above. It has a liquid crystal alignment pattern oriented to An alignment layer 24 having an alignment pattern corresponding to the above-described liquid crystal alignment pattern is formed on the support 20, and a liquid crystal composition is applied onto the alignment layer 24 and cured, thereby removing from the cured layer of the liquid crystal composition An optically anisotropic layer can be obtained.
  • multi-layer application which will be described later in Examples, can also be suitably used.
  • the liquid crystal composition for forming the optically anisotropic layer 26 contains a rod-like liquid crystal compound or a discotic liquid crystal compound, and further contains a leveling agent, an alignment control agent, a surfactant, a polymerization initiator, It may contain other components such as a cross-linking agent and an alignment aid.
  • the optically anisotropic layer 26 preferably has a wide band with respect to the wavelength of incident light, and is preferably constructed using a liquid crystal material whose birefringence exhibits inverse dispersion. It is also preferable to make the optically anisotropic layer substantially broadband with respect to the wavelength of incident light by imparting a twist component to the liquid crystal composition or laminating different retardation layers.
  • Japanese Unexamined Patent Application Publication No. 2014-089476 discloses a method of realizing a broadband patterned ⁇ /2 plate by laminating two layers of liquid crystal having different twist directions in the optically anisotropic layer 26. and can be preferably used in the present invention.
  • Rod-shaped liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular-weight liquid crystalline molecules as described above, but also high-molecular-weight liquid crystalline molecules can be used.
  • Discotic Liquid Crystal Compounds for example, those described in JP-A-2007-108732 and JP-A-2010-244038 can be preferably used.
  • the liquid crystal compound 30 rises in the thickness direction in the optically anisotropic layer, and the optical axis 30A derived from the liquid crystal compound is aligned with the disc surface. is defined as the axis perpendicular to , the so-called fast axis.
  • the optically anisotropic layer 26 of the exposure mask 10 has a liquid crystal alignment pattern in which the optical axis 30A derived from the liquid crystal compound 30 rotates continuously along the arrow A direction.
  • ⁇ n ⁇ d which is the product of the refractive index difference ⁇ n of the liquid crystal compound 30 constituting the optically anisotropic layer 26 and the thickness d of the optically anisotropic layer 26 is
  • the optically anisotropic layer 26 is designed to have a wavelength of about 1/4 ( ⁇ /4) with respect to the wavelength ⁇ of the light with which the exposure mask 10 is irradiated.
  • the optically anisotropic layer 26 preferably has a ⁇ n ⁇ d of 0.2 ⁇ to 0.3 ⁇ [nm] with respect to the wavelength ⁇ [nm] of the light with which the exposure mask 10 is irradiated. , 0.225 ⁇ to 0.275 ⁇ [nm].
  • the coating film 14 is obtained by coating the substrate 16 with a coating containing a photo-orientation material and drying the coating.
  • the coating 14 is the same as the coating in the photo-alignment layer of the alignment layer 24 of the exposure mask 10 described above.
  • the photo-alignment material is a compound having a photo-alignment group.
  • the optically anisotropic layer 26 constituting the exposure mask 10, which is a liquid crystal diffraction element, has a liquid crystal orientation in which the direction of the optical axis 30A derived from the liquid crystal compound 30 continuously rotates in the direction of the arrow A. have a pattern.
  • ⁇ n ⁇ d is about 1/4 wavelength with respect to the wavelength ⁇ of the incident light.
  • the liquid crystal compound 30 is helically swirled in the thickness direction, as will be described later.
  • the light source 12 irradiates the exposure mask 10 with circularly polarized light having an ellipticity of 0.7 to 1.3.
  • circularly polarized light Cp When circularly polarized light Cp is incident on the exposure mask 10 having such an optically anisotropic layer 26, approximately half of the circularly polarized light Cp is diffracted by the optically anisotropic layer 26 as shown in FIG. It becomes circularly polarized light Cp1. Also, the circularly polarized light Cp1 becomes circularly polarized light having a direction opposite to that of the circularly polarized light Cp by diffraction.
  • about half of the circularly polarized light Cp incident on the optically anisotropic layer 26 passes through the optically anisotropic layer 26 as it is, and becomes circularly polarized light Cp0, which is zero-order light. That is, the optically anisotropic layer 26 has a diffraction efficiency of approximately 50%.
  • the circularly polarized light Cp1 which is the 1st-order light
  • the circularly polarized light Cp0 which is the same 0th-order light as the original circularly polarized light Cp
  • the adjacent circularly polarized light Cp1 and circularly polarized light Cp0 interfere with each other to form the same interference pattern as the liquid crystal orientation pattern of the optically anisotropic layer 26 on the coating film 14 . That is, an orientation pattern is formed in the coating film 14 in which the direction of the line segment corresponding to the optical axis rotates continuously in the direction of the arrow A.
  • the coating film 14 is formed with an alignment pattern that is the same as the liquid crystal alignment pattern of the optically anisotropic layer 26 of the exposure mask 10 and that has substantially the same one period ⁇ , which will be described later.
  • the interference pattern is formed on the coating film 14 by effectively utilizing the 0th-order light, which has conventionally been noise, and by interfering the 0th-order light with the plus 1st-order light. to form an alignment pattern corresponding to the interference pattern. Therefore, according to the present invention, it is possible to form a photo-alignment layer having a clear alignment pattern free from disturbance caused by light that causes noise, by a simple method using an exposure mask. Therefore, by using the photo-alignment layer exposed by the exposure method of the present invention, a liquid crystal diffraction element having high diffraction efficiency can be obtained.
  • the coating film 14 is exposed by the interference pattern obtained by the interference between the circularly polarized light Cp1, which is positive first-order light, and the circularly polarized light Cp0, which is zero-order light. It is used as a photo-alignment layer. Therefore, if the intensity difference between the circularly polarized light Cp1 and the circularly polarized light Cp0 is large, an appropriate interference pattern, that is, an orientation pattern cannot be formed.
  • the intensity ratio between the circularly polarized light Cp1 and the circularly polarized light Cp0 is 0.5 to 2 as the intensity ratio of "circularly polarized light Cp0/circularly polarized light Cp1 (0th order light/1st order light)". If the intensity ratio between the circularly polarized light Cp1 and the circularly polarized light Cp0 exceeds 0.5 to 2, problems such as disturbance of the orientation pattern occur.
  • the intensity ratio between the circularly polarized light Cp1 and the circularly polarized light Cp0 is preferably 0.7 to 1.5, more preferably 0.8 to 1.3.
  • Circularly polarized light Cp1 which is positive first-order light
  • circularly polarized light Cp0 which is zero-order light
  • Both the circularly polarized light Cp1 and the circularly polarized light Cp0 are preferably circularly polarized light with an ellipticity of 0.6-2.
  • the ellipticities of the circularly polarized light Cp1 and the circularly polarized light Cp0 are more preferably 0.8 to 1.3, and still more preferably 0.9 to 1.2.
  • the circularly polarized light Cp1 and the circularly polarized light Cp0 are preferably circularly polarized lights with opposite turning directions as described above.
  • the circularly polarized light Cp1 and the circularly polarized light Cp0 are preferably circularly polarized lights with opposite turning directions as described above.
  • the optic axis 30A of the liquid crystal compound 30 rotates 180° along one direction.
  • the length (distance) be one period ⁇ in the liquid crystal alignment pattern. That is, in the case of the optically anisotropic layer 26 shown in FIGS. 2 and 3, the optic axis 30A of the liquid crystal compound 30 is 180° in the direction of the arrow A in which the direction of the optic axis 30A rotates continuously within the plane.
  • the length (distance) of rotation is defined as one cycle ⁇ in the liquid crystal alignment pattern.
  • one period ⁇ in the liquid crystal alignment pattern is defined by the distance from ⁇ to ⁇ +180° formed by the optical axis 30A of the liquid crystal compound 30 and the direction of the arrow A. That is, the distance between the centers in the direction of arrow A of two liquid crystal compounds 30 having the same angle with respect to the direction of arrow A is defined as one period ⁇ . Specifically, as shown in FIG. 3, the distance between the centers of the two liquid crystal compounds 30 in the direction of the arrow A and the direction of the optical axis 30A is defined as one period ⁇ . In the exposure mask 10, the liquid crystal alignment pattern of the optically anisotropic layer 26 repeats this one period .LAMBDA.
  • the exposure mask 10 (optically anisotropic layer 26) is also a liquid crystal diffraction element, and this one period ⁇ is the period (one period) of the diffraction structure.
  • one period ⁇ in the coating film 14, that is, the photo-alignment layer is the length that the alignment axis corresponding to the optical axis 30A of the liquid crystal compound 30 rotates 180° along one direction. Become.
  • One period ⁇ of the photo-alignment layer can be found, for example, by similarly forming an optically anisotropic layer on the photo-alignment layer and measuring one period ⁇ of this optically anisotropic layer.
  • the optically anisotropic layer 26, the liquid crystal alignment pattern, and the coating film 14, that is, the alignment pattern formed on the photo-alignment layer have the same alignment pattern, and one cycle ⁇ are also approximately equal.
  • the length of one cycle ⁇ of the liquid crystal alignment pattern in the optically anisotropic layer 26 and the length of one cycle ⁇ of the alignment pattern formed on the coating film 14 are combined into a “coating film/optically anisotropic layer”. is preferably 0.7 to 1.5.
  • the ratio of the length of one cycle ⁇ of the liquid crystal alignment pattern in the optically anisotropic layer 26 to the length of one cycle ⁇ of the alignment pattern formed on the coating film 14 is preferably 0.8 to 1.3, and more preferably 0.8 to 1.3. 9 to 1.2 are more preferred.
  • the alignment pattern formed on the coating film 14 preferably has a region where the length of one period ⁇ is 5 ⁇ m or less. That is, the exposure method of the present invention is more preferably used for forming a fine orientation pattern on the coating film 14 .
  • the alignment pattern formed on the coating film 14 (photo-alignment layer) preferably has a region with one period ⁇ of 3 ⁇ m or less, more preferably 2 ⁇ m or less.
  • the direction of the optical axis 30A derived from the liquid crystal compound 30 rotates continuously along only one direction.
  • the liquid crystal alignment pattern of the exposure mask 10 (optically anisotropic layer 26), which is a liquid crystal diffraction element, that is, the alignment pattern formed on the coating film 14 is not limited to this, and various Liquid crystal alignment patterns are available.
  • An example is an exposure mask having an optically anisotropic layer 26 with a liquid crystal alignment pattern as conceptually shown in the plan view of FIG.
  • This optically anisotropic layer 26 has a liquid crystal orientation pattern in which the direction of the optic axis derived from the liquid crystal compound changes while continuously rotating along one direction, radially from the inside to the outside. That is, the liquid crystal alignment pattern of the optically anisotropic layer 26 shown in FIG. 6 has one direction in which the direction of the optic axis derived from the liquid crystal compound 30 changes while continuously rotating, concentrically from the inside to the outside. It is a pattern of concentric circles.
  • the orientation of the optic axis of the liquid crystal compound 30 is in a number of directions outward from the center of the optically anisotropic layer 26, such as the direction indicated by arrow A1, the direction indicated by arrow A2 , It changes while continuously rotating along the direction indicated by arrow A3 , the direction indicated by arrow A4 , and so on. Therefore, in the optically anisotropic layer 26, the rotation direction of the optic axis of the liquid crystal compound 30 is the same in all directions (one direction).
  • the direction of rotation of the optic axis of the liquid crystal compound 30 in all the directions indicated by arrow A1, the direction indicated by arrow A2 , the direction indicated by arrow A3, and the direction indicated by arrow A4 is counterclockwise. That is, if the arrows A 1 and A 4 are regarded as one straight line, the direction of rotation of the optical axis of the liquid crystal compound 30 is reversed at the center of the optically anisotropic layer 26 on this straight line. As an example, it is assumed that a straight line formed by arrows A1 and A4 is directed to the right in the drawing (direction of arrow A1).
  • the optic axis of the liquid crystal compound 30 initially rotates clockwise from the outer direction toward the center of the optically anisotropic layer 26, and the direction of rotation is reversed at the center of the optically anisotropic layer 26. , and then rotate counterclockwise outward from the center of the optically anisotropic layer 26 .
  • the mask 10 for exposing the optically anisotropic layer 26 having such a liquid crystal orientation pattern is also diffracted to produce circularly polarized light Cp1, which is first-order light, and 0th-order light, which is the same as the original circularly polarized light Cp, as in the above example.
  • Circularly polarized light Cp0 is generated, and the coating film 14 is exposed by the interference light of both.
  • the same alignment pattern as the liquid crystal alignment pattern of the optically anisotropic layer 26 of the exposure mask 10 has an alignment pattern in which the optic axis changes radially and continuously rotates, and the alignment pattern has substantially the same period ⁇ . , can be formed in the coating 14 .
  • FIG. 7 the coating film to be the alignment layer 24 (photo-alignment layer) for forming the optically anisotropic layer 26 is exposed, and the radial optical axis shown in FIG. 6 rotates continuously and changes.
  • the exposure apparatus 80 shown in FIG. 7 includes a light source 84 having a laser 82, a polarizing beam splitter 86 that splits the laser beam M from the laser 82 into S-polarized light MS and P-polarized light MP, and arranged in the optical path of the P-polarized light MP. and a mirror 90B arranged in the optical path of the S-polarized MS, a lens 92 arranged in the optical path of the S-polarized MS, a polarizing beam splitter 94, and a ⁇ /4 plate 96.
  • the P-polarized light MP split by the polarizing beam splitter 86 is reflected by the mirror 90A and enters the polarizing beam splitter 94 .
  • the S-polarized light MS split by the polarizing beam splitter 86 is reflected by the mirror 90B, condensed by the lens 92, and enters the polarizing beam splitter 94.
  • FIG. The P-polarized MP and S-polarized light MS are combined by a polarizing beam splitter 94 into right-handed circularly polarized light and left-handed circularly polarized light according to the polarization direction by a ⁇ /4 plate 96, and are formed into the alignment layer 24 on the support 20.
  • the polarization state of the light with which the alignment layer 24 is irradiated periodically changes in the form of interference fringes. Since the crossing angle of the left-handed circularly polarized light and the right-handed circularly polarized light changes from the inside to the outside of the concentric circle, an exposure pattern is obtained in which the pitch changes from the inside to the outside. As a result, a radial (concentric) alignment pattern in which the alignment state changes periodically is obtained in the alignment layer 24 .
  • one period ⁇ of the liquid crystal alignment pattern in which the optical axis of the liquid crystal compound 30 is continuously rotated 180° along one direction is determined by the refractive power of the lens 92, the focal length of the lens 92, and the focal length of the lens 92.
  • the refractive power of the lens 92 the F number of the lens 92
  • the length of one period of the liquid crystal alignment pattern can be changed in one direction in which the optical axis rotates continuously.
  • the length of one cycle of the liquid crystal alignment pattern can be changed in one direction in which the optical axis continuously rotates, depending on the spread angle of the light spread by the lens 92 that interferes with the parallel light. More specifically, when the refractive power of the lens 92 is weakened, the light becomes closer to parallel light, so the length ⁇ of one period of the liquid crystal alignment pattern gradually decreases from the inside to the outside. Conversely, when the refractive power of the lens 92 is strengthened, the length ⁇ of one period of the liquid crystal alignment pattern suddenly shortens from the inside to the outside.
  • the liquid crystal compounds 30 are oriented in the same direction in the thickness direction.
  • the optically anisotropic layer 26 constituting the liquid crystal diffraction element that serves as the exposure mask 10 is not limited to this. That is, in the exposure method of the present invention, the liquid crystal compound 30 of the optically anisotropic layer 26 that constitutes the liquid crystal diffraction element that serves as the exposure mask 10 may spirally rotate in the thickness direction. That is, the liquid crystal compound 30 forming the optically anisotropic layer 26 may be helically twisted in the thickness direction.
  • the direction of the optical axis 30A of the liquid crystal compound 30 is continuous.
  • an image obtained by observing a cross section cut in the thickness direction along one direction that changes while rotating with a scanning electron microscope (SEM) due to the rotation of the liquid crystal compound 30, the main surface A striped pattern of bright and dark portions slanted against the image is observed.
  • SEM image an image obtained by observing a cross section cut in the thickness direction along one direction in which the optical axis 30A rotates.
  • the optically anisotropic layer 26 in which the liquid crystal compound 30 spirals in the thickness direction can be formed by adding a chiral agent to the composition for forming the optically anisotropic layer 26 described above.
  • a chiral agent optical agent
  • a chiral agent has a function of inducing a helical structure of a liquid crystal phase.
  • the chiral agent may be selected depending on the purpose, since the helical twisting direction and helical twisting power (HTP) induced by the compound differ.
  • the chiral agent is not particularly limited, and known compounds (for example, liquid crystal device handbook, Chapter 3, Section 4-3, chiral agent for TN (twisted nematic), STN (Super Twisted Nematic), page 199, Japan Society for the Promotion of Science 142nd Committee, ed., 1989), isosorbide, isomannide derivatives, and the like can be used.
  • Chiral agents generally contain an asymmetric carbon atom, but axially chiral compounds or planar chiral compounds that do not contain an asymmetric carbon atom can also be used as chiral agents. Examples of axially or planarly chiral compounds include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group.
  • a repeating unit derived from the polymerizable liquid crystal compound and a repeating unit derived from the chiral agent are formed by the polymerization reaction of the polymerizable chiral agent and the polymerizable liquid crystal compound.
  • a polymer having repeating units can be formed.
  • the polymerizable group possessed by the polymerizable chiral agent is preferably the same type of group as the polymerizable group possessed by the polymerizable liquid crystal compound.
  • the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. More preferred. Also, the chiral agent may be a liquid crystal compound.
  • the chiral agent has a photoisomerizable group
  • a desired twisted orientation corresponding to the emission wavelength can be formed by irradiation with a photomask such as actinic rays after application and orientation.
  • the photoisomerizable group is preferably an isomerization site of a compound exhibiting photochromic properties, an azo group, an azoxy group, or a cinnamoyl group.
  • Specific compounds include JP-A-2002-80478, JP-A-2002-80851, JP-A-2002-179668, JP-A-2002-179669, JP-A-2002-179670, JP-A-2002- 179681, JP-A-2002-179682, JP-A-2002-338575, JP-A-2002-338668, JP-A-2003-313189, and compounds described in JP-A-2003-313292, etc. can be used.
  • the content of the chiral agent in the liquid crystal composition is preferably 0.01 to 200 mol%, more preferably 1 to 30 mol%, relative to the content molar amount of the liquid crystal compound.
  • the optically anisotropic layer 26 has a liquid crystal alignment pattern in which the direction of the optical axis 30A changes while continuously rotating along one direction in the plane, and the liquid crystal compound 30 has a thickness
  • the liquid crystal compound 30 has a thickness
  • it has a structure that spirally turns in the direction, it has a bright portion and a dark portion extending from one principal surface to the other principal surface in a cross-sectional SEM image, and in the thickness direction, the dark portion is an optically anisotropic layer.
  • 26 has an inclined area with respect to the main surface.
  • the bright and dark portions observed in the cross-sectional SEM image of the optically anisotropic layer 26 originate from the orientation of the optic axis of the liquid crystal compound.
  • the measurement conditions for observing the cross-sectional SEM image of the optically anisotropic layer 26 can be appropriately set.
  • a cross-sectional SEM image of the optically anisotropic layer 26 has a bright portion and a dark portion extending from one principal surface to the other principal surface, and the dark portion extends to the principal surface of the optically anisotropic layer 26 in the thickness direction.
  • the angle of the dark portion (average tilt angle) with respect to the normal direction (normal direction) to the main surface varies along one direction. It is preferable to have regions, more preferably to have gradual regions.
  • the optically anisotropic layer 26 as described above has, in the in-plane direction, regions with different one periods ⁇ in which the direction of the optic axis of the liquid crystal compound is rotated 180° in the plane, and the twist angle in the thickness direction.
  • the configuration in which the twist angle in the thickness direction is different in the plane direction is obtained by adding a photoreactive chiral agent to the liquid crystal composition, coating the liquid crystal composition on the alignment layer, and then irradiating light with a different irradiation amount for each region. Then, by varying the helical twisting power (HTP) of the photoreactive chiral agent for each region, it can be formed.
  • HTP helical twisting power
  • the structure in which the twist angle in the thickness direction differs for each region in the plane causes reisomerization, dimerization, isomerization and dimerization, etc. by light irradiation.
  • light having a wavelength that changes the HTP of the chiral agent is applied to each region.
  • the HTP is greatly reduced and the induction of the spiral is reduced, so that the twist angle of the twisted structure is reduced.
  • the decrease in HTP is small, so the twist angle of the twisted structure is large.
  • a gradation mask is a mask in which the transmittance of irradiated light varies within the plane.
  • the photoreactive chiral agent is composed of, for example, a compound represented by the following general formula (I), and can control the alignment structure of the liquid crystal compound.
  • HTP helical twisting power
  • it is a compound that causes a change in the twisting force of a helical structure induced in a liquid crystal compound, preferably a nematic liquid crystal compound, by light irradiation (from ultraviolet rays to visible light to infrared rays). (chiral site) and a site that undergoes a structural change upon irradiation with light.
  • the photoreactive chiral agent represented by the following general formula (I) can significantly change the HTP of liquid crystal molecules.
  • R represents a hydrogen atom, an alkoxy group having 1 to 15 carbon atoms, an acryloyloxyalkyloxy group having 3 to 15 carbon atoms in total, or a methacryloyloxyalkyloxy group having 4 to 15 carbon atoms in total.
  • alkoxy group having 1 to 15 carbon atoms include methoxy group, ethoxy group, propoxy group, butoxy group, hexyloxy group, dodecyloxy group, etc.
  • alkoxy group having 1 to 12 carbon atoms is An alkoxy group having 1 to 8 carbon atoms is particularly preferred.
  • Examples of the acryloyloxyalkyloxy group having a total of 3 to 15 carbon atoms include acryloyloxyethyloxy group, acryloyloxybutyloxy group, acryloyloxydecyloxy group, etc. Among them, acryloyloxy having 5 to 13 carbon atoms An oxyalkyloxy group is preferred, and an acryloyloxyalkyloxy group having 5 to 11 carbon atoms is particularly preferred.
  • Examples of the aforementioned methacryloyloxyalkyloxy group having 4 to 15 carbon atoms in total include, for example, methacryloyloxyethyloxy group, methacryloyloxybutyloxy group, methacryloyloxydecyloxy group, etc. Among them, methacryloyloxyalkyloxy group having 6 to 14 carbon atoms An oxyalkyloxy group is preferred, and a methacryloyloxyalkyloxy group having 6 to 12 carbon atoms is particularly preferred.
  • the molecular weight of the photoreactive chiral agent represented by the general formula (I) is preferably 300 or more. Further, it is preferable to have a high solubility with the liquid crystal compound described later, and more preferably have a solubility parameter SP value close to that of the liquid crystal compound.
  • photoreactive chiral agent for example, a photoreactive optically active compound represented by the following general formula (II) is also used.
  • R represents a hydrogen atom, an alkoxy group having 1 to 15 carbon atoms, an acryloyloxyalkyloxy group having 3 to 15 carbon atoms in total, or a methacryloyloxyalkyloxy group having 4 to 15 carbon atoms in total.
  • alkoxy group having 1 to 15 carbon atoms include methoxy group, ethoxy group, propoxy group, butoxy group, hexyloxy group, octyloxy group, dodecyloxy group and the like. is preferred, and an alkoxy group having 1 to 8 carbon atoms is particularly preferred.
  • Examples of the acryloyloxyalkyloxy group having 3 to 15 carbon atoms in total include acryloyloxy group, acryloyloxyethyloxy group, acryloyloxypropyloxy group, acryloyloxyhexyloxy group, acryloyloxybutyloxy group and acryloyloxydecyl group. Among them, an acryloyloxyalkyloxy group having 3 to 13 carbon atoms is preferred, and an acryloyloxyalkyloxy group having 3 to 11 carbon atoms is particularly preferred.
  • Examples of the aforementioned methacryloyloxyalkyloxy group having a total of 4 to 15 carbon atoms include a methacryloyloxy group, a methacryloyloxyethyloxy group, a methacryloyloxyhexyloxy group and the like, and among them, a methacryloyloxyalkyl group having 4 to 14 carbon atoms.
  • An oxy group is preferred, and a methacryloyloxyalkyloxy group having 4 to 12 carbon atoms is particularly preferred.
  • the molecular weight of the photoreactive optically active compound represented by the general formula (II) is preferably 300 or more. Further, it is preferable to have a high solubility with the liquid crystal compound described later, and more preferably have a solubility parameter SP value close to that of the liquid crystal compound.
  • photoreactive optically active compound represented by the general formula (II) exemplary compounds (21) to (32) are shown below, but the present invention is not limited to these.
  • the photoreactive chiral agent can also be used in combination with a chiral agent that is not photoreactive, such as a chiral compound whose twisting force is highly temperature dependent.
  • a chiral agent that is not photoreactive such as a chiral compound whose twisting force is highly temperature dependent.
  • known chiral agents having no photoreactivity include JP-A-2000-44451, JP-A-10-509726, WO98/00428, JP-A-2000-506873, JP-A-9-506088, Examples include chiral agents described in Liquid Crystals (1996, 21, 327), Liquid Crystals (1998, 24, 219) and the like.
  • the optically anisotropic layer in which the dark portion 44 is inclined with respect to the direction perpendicular to the main surface is slanted from one main surface to the other main surface in the cross-sectional SEM image.
  • Light and dark areas extending across the surface are observed, preferably the dark areas having one or more or two or more angular inflection points.
  • FIG. 8 An example of such an optically anisotropic layer is shown in FIG.
  • the bright portion 42 and the dark portion 44 are shown superimposed on the cross section of the optically anisotropic layer 26a.
  • the dark portion 44 has two inflection points at which the angle changes. That is, it can be said that the optically anisotropic layer 26 has three regions, regions 27a, 27b and 27c, in the thickness direction according to the inflection point of the dark portion 44.
  • the optically anisotropic layer 26a has a liquid crystal alignment pattern in which the optical axis derived from the liquid crystal compound 30 rotates clockwise in the in-plane direction at any position in the thickness direction. .
  • One period of the liquid crystal alignment pattern is constant in the thickness direction.
  • the liquid crystal compound 30 is spirally twisted clockwise (rightward) in the thickness direction from the top to the bottom in the thickness direction in the lower region 27c in the thickness direction. As such, it is twist oriented.
  • the liquid crystal compound 30 In the middle region 27b in the thickness direction, the liquid crystal compound 30 is not twisted in the thickness direction, and the liquid crystal compounds 30 stacked in the thickness direction have the same optical axis. That is, the liquid crystal compounds 30 existing at the same position in the in-plane direction have the same optical axis.
  • the liquid crystal compound 30 is twisted and oriented so as to be spirally twisted counterclockwise (counterclockwise) from the upper side to the lower side of the drawing in the thickness direction. That is, in the optically anisotropic layer 26 shown in FIG. 8, the twist states in the thickness direction of the liquid crystal compound 30 are different in the regions 27a, 27b, and 27c.
  • the bright portions and dark portions in the cross-sectional SEM image of the optically anisotropic layer are oriented in the same direction. It is observed that the liquid crystal compound is connected.
  • FIG. 8 shows that a dark portion 44 is observed so as to connect the liquid crystal compound 30 whose optical axis is oriented perpendicular to the plane of the paper. In the lowermost region 27c in the thickness direction, the dark portion 44 is inclined toward the upper left in the figure. In the central region 27b, the dark portion 44 extends in the thickness direction.
  • the dark portion 44 is slanted upward and to the right in the figure. That is, the optically anisotropic layer 26 shown in FIG. 8 has two angle inflection points at which the angle of the dark portion 44 changes. In the uppermost region 27a, the dark portion 44 is slanted upward and to the right, and in the lowermost region 27b, the dark portion 44 is slanted upward and to the left. That is, the direction of inclination of the dark portion 44 differs between the region 27a and the region 27c.
  • the dark portion 44 has one inflection point where the tilt direction is reversed.
  • the tilt direction in the region 27a is opposite to the tilt direction in the region 27b. Therefore, the inflection point located at the interface between the regions 27a and 27b is the inflection point where the tilt direction is reversed. That is, the optically anisotropic layer 26 has one inflection point where the tilt direction is reversed.
  • the regions 27a and 27c have, for example, the same thickness, and the liquid crystal compound 30 is twisted differently in the thickness direction as described above. Therefore, as shown in FIG. 1, the bright portion 42 and the dark portion 44 in the cross-sectional SEM image are substantially C-shaped. Accordingly, in the optically anisotropic layer 26a, the shape of the dark portion 44 is symmetrical with respect to the center line in the thickness direction.
  • the liquid crystal diffraction element of the present invention has such an optically anisotropic layer 26a, that is, a bright portion 42 and a dark portion 44 extending from one surface to the other surface in a cross-sectional SEM image.
  • an optically anisotropic layer 26a that is, a bright portion 42 and a dark portion 44 extending from one surface to the other surface in a cross-sectional SEM image.
  • the dark portion 44 has two angular inflection points, but the present invention is not limited to this, and the dark portion 44 has one angular inflection point. It may be a configuration, or a configuration having three or more angular inflection points.
  • the dark portion 44 of the optically anisotropic layer may be composed of the regions 27a and 27b, or it may be composed of the regions 27b and 27c.
  • the configuration may be such that two regions 27a and two regions 27c shown in FIG. 8 are alternately provided. .
  • the optically anisotropic layer has a radial liquid crystal alignment pattern as shown in FIG. 6, one period ⁇ of the optically anisotropic layer gradually becomes shorter from the center toward the outside.
  • the optically anisotropic layer 26 has a region in which one period ⁇ of the liquid crystal alignment pattern gradually shortens in one direction
  • the helical shape of the liquid crystal compound 30 in the thickness direction Preferably, the swivel angle increases gradually as one cycle ⁇ decreases. That is, when one period ⁇ of the liquid crystal alignment pattern has a region that gradually shortens in one direction, the angle of the dark portion 44 with respect to the direction perpendicular to the main surface increases as the one period ⁇ gradually decreases. It is preferable to become
  • FIG. 10 An example of such an optically anisotropic layer is shown in FIG.
  • the optically anisotropic layer 26b shown in FIG. 10 has a liquid crystal alignment pattern radially from the center of the optically anisotropic layer 26 in which the direction of the optical axis of the liquid crystal compound 30 changes while continuously rotating. And, in each direction, one period ⁇ of the liquid crystal alignment pattern is gradually shortened from the center toward the outside.
  • the optically anisotropic layer 26b has a striped pattern of bright portions 42 and dark portions 44 extending from one surface to the other surface in a cross-sectional SEM image, and each dark portion 44 has two inflection points. have. Also, in any of the dark portions 44, the tilt direction in the upper region in the drawing is opposite to the tilt direction in the lower region in the drawing. That is, each dark portion 44 has regions with different tilt directions. Specifically, the optically anisotropic layer 26b shown in FIG. In the area of , the dark portion 44 is inclined leftward. On the other hand, in the left side of the center of the optically anisotropic layer 26b, the dark portion 44 is inclined leftward in the upper region in the figure, and the dark portion 44 is inclined rightward in the lower region in the figure. Inclined.
  • the optically anisotropic layer 26b has an angle formed by a line connecting a contact point with one surface of each dark portion 44 and a contact point with the other surface and a direction perpendicular to the main surface of the optically anisotropic layer 26b. Then, the angle of the dark portion 44 gradually changes along one direction (arrows A 1 , A 2 , A 3 , etc.) in which the direction of the optic axis of the liquid crystal compound 30 changes while rotating continuously. Specifically, in the example shown in FIG. 10, the angle of the dark portion 44 near the center is approximately 0°, and the angle gradually increases outward from the center.
  • the angle of the dark portion 44 gradually increases as one period ⁇ of the liquid crystal alignment pattern gradually shortens.
  • the gradual change in the angle of the dark area means that the angle changes continuously and that the angle changes stepwise.
  • Such an optically anisotropic layer 26b has three regions (27a, 27b, 27c) in the thickness direction, and each region has a different inclination angle of the dark portion 44 at the same position in the plane direction. It can also be said that there are
  • a cross-sectional SEM image of the radially central portion (area portion indicated by A in FIG. 10) of the optically anisotropic layer 26b shown in FIG. 10 is a diagram as shown in FIG.
  • the liquid crystal compound 30 in the center portion, is twisted clockwise (rightward) in the thickness direction from the top to the bottom in the thickness direction in the lower region 27c in the thickness direction. is oriented to
  • the middle region 27b in the thickness direction the liquid crystal compounds 30 are not twisted in the thickness direction, and the liquid crystal compounds 30 stacked in the thickness direction have the same optical axis. That is, the liquid crystal compounds 30 existing at the same position in the plane direction have the same optical axis.
  • the liquid crystal compound 30 in the upper region 27a in the thickness direction, is oriented so as to be twisted counterclockwise (counterclockwise) from the upper side to the lower side in the drawing in the thickness direction.
  • the twisted states of the liquid crystal compound 30 in the thickness direction are different in the regions 27a, 27b, and 27c.
  • a bright portion 42 and a dark portion 44 in the image are substantially C-shaped.
  • the thickness of the region 27a and the thickness of the region 27c are substantially the same, and the twist angle in the thickness direction of the liquid crystal compound 30 in the region 27a and the thickness of the liquid crystal compound 30 in the region 27c
  • the torsion angle in the vertical direction is substantially the same. Therefore, the dark portion 44 of the region 27a and the dark portion 44 of the region 27c have opposite tilt directions and the same tilt angle. Since the liquid crystal compound 30 is not twisted in the thickness direction in the region 27b, the dark portion 44 is not tilted. Therefore, the angle of the dark portion 44 in the central portion of the optically anisotropic layer 26 is approximately 0°.
  • the optically anisotropic layer 26b has symmetrical shapes of the bright portions 42 and the dark portions 44 with respect to the central line in the thickness direction of the optically anisotropic layer 26b in the cross section of the radial central portion. be able to.
  • FIG. 10 a cross-sectional SEM image of the radial end portion (the outer portion, the area indicated by B in FIG. 10) of the optically anisotropic layer 26b shown in FIG. 10 is as shown in FIG.
  • the liquid crystal compound 30 is oriented so as to be twisted clockwise (rightward) in the thickness direction from the upper side to the lower side in the drawing in the lower region 27c in the thickness direction. It is The outer portion of the region 27c has a greater twist angle in the thickness direction than the central portion. Also, in the middle region 27b in the thickness direction, the liquid crystal compound 30 is oriented so as to be twisted clockwise (rightward) from the upper side to the lower side in the drawing in the thickness direction. Also, the twist angle in the thickness direction in the region 27c is different from the twist angle in the thickness direction in the region 27b. Therefore, the dark portion 44 of the region 27c and the dark portion 44 of the region 27b have the same tilt direction but different tilt angles.
  • the liquid crystal compound 30 is oriented so as to be twisted counterclockwise (counterclockwise) from the upper side to the lower side in the drawing in the thickness direction. Therefore, the dark portion 44 of the region 27a slopes in the opposite direction to the regions 27c and 27b.
  • the twist angle in the thickness direction is smaller in the outer portion of the region 27a than in the central portion. Therefore, the absolute value of the tilt angle of the dark portion 44 in the region 27a is smaller than the absolute value of the tilt angle of the dark portion 44 in the region 27c.
  • the angle of the dark portion 44 in the outer portion of the optically anisotropic layer 26b is a certain value that is not 0°.
  • the shapes of the bright portions 42 and the dark portions 44 are asymmetric with respect to the center line in the thickness direction of the optically anisotropic layer 26b in the cross section of the radial end portion. can.
  • regions 27a, 27b, and 27c of the optically anisotropic layer 26b have a structure in which one cycle ⁇ of the liquid crystal alignment pattern gradually shortens from the center toward the outside.
  • the clockwise twist in the thickness direction increases from the center toward the outside
  • the clockwise twist in the thickness direction increases from the center toward the outside
  • the counterclockwise twist in the thickness direction decreases from the center toward the outside. It can be said that in each region, a clockwise twist is imparted toward the outer side with respect to the twist in the thickness direction at the center.
  • the optically anisotropic layer 26b has, as shown in FIG.
  • the shape of 44 is symmetrical, and the shapes of the bright portion 42 and the dark portion 44 are asymmetrical with respect to the center line in the thickness direction of the optically anisotropic layer 26b in the cross section of the radial end portion.
  • the optically anisotropic layer 26b has two inflection points at which the tilt angle of each dark portion 44 changes.
  • a configuration having one inflection point or a configuration having three or more inflection points may be employed.
  • the shapes of the bright portions 42 and the dark portions 44 are different with respect to the center line in the thickness direction of the optically anisotropic layer 26b in the cross section of the radial central portion. It is symmetrical, and the shapes of the bright portion 42 and the dark portion 44 are asymmetric with respect to the center line in the thickness direction of the optically anisotropic layer 26b in the cross section of the radial end portion. That is, in the surface direction, the optically anisotropic layer 26b has a mixture of regions in which the shapes of the bright and dark portions are symmetrical with respect to the center line in the thickness direction, and regions in which the shapes are asymmetrical.
  • the present invention is not limited to this, and the optically anisotropic layer may be asymmetric with respect to the center line in the thickness direction throughout the surface direction.
  • the exposure mask 10 described above is a liquid crystal diffraction element having an optically anisotropic layer in which the direction of the optical axis 30A derived from the liquid crystal compound 30 changes while continuously rotating along at least one direction.
  • the exposure mask is not limited to one using a liquid crystal diffraction element. That is, in the exposure method of the present invention, various known members can be used as the exposure mask as long as they have an orientation pattern in which the direction of the optical axis changes continuously along at least one direction in the plane. .
  • a metasurface or the like is exemplified as an example.
  • the photosensitive coating film 14 containing the photo-alignment material formed on the substrate 16 is exposed to light having, for example, the optically anisotropic layer 26 which is a liquid crystal diffraction element.
  • a mask 10 is used for exposure.
  • the liquid crystal alignment pattern of the exposure mask 10 that is, the optically anisotropic layer 26 is formed as an alignment pattern on the coating film 14 to produce a photo-alignment layer on the substrate 16 .
  • a transmissive liquid crystal diffraction element is obtained.
  • a chiral agent is added to the liquid crystal composition, the liquid crystal composition is applied to the photo-alignment layer, and then heated to helically rotate the liquid crystal compound in the thickness direction to align it in a specific wavelength region.
  • a reflective liquid crystal diffraction element can be manufactured by forming a cholesteric liquid crystal layer that selectively reflects a specific circularly polarized light.
  • the following coating solution for forming an alignment layer was applied onto the support by spin coating.
  • the support on which the coating film of the coating solution for forming the alignment layer was formed was dried on a hot plate at 60° C. for 60 seconds to form a coating film of the coating solution for forming the alignment layer.
  • the coating film is exposed using the exposure apparatus shown in FIG. 7, and an orientation pattern having one direction in which the direction of the optical axis changes while continuously rotating as shown in FIG.
  • An alignment layer P-1 having a (concentric alignment pattern) was formed.
  • this alignment pattern is also referred to as a radial alignment pattern.
  • a laser that emits laser light with a wavelength (325 nm) was used.
  • the amount of exposure by interference light was set to 1000 mJ/cm 2 .
  • one cycle of the alignment pattern was made to gradually become shorter from the center toward the outside.
  • composition A-1 (Formation of optically anisotropic layer) Composition A-1 below was prepared as a liquid crystal composition for forming the first optically anisotropic layer.
  • the optically anisotropic layer was formed by coating the composition A-1 on the alignment layer P-1 in multiple layers.
  • Multi-layer coating means that the first layer composition A-1 is first applied on the alignment layer, and after heating and UV curing to prepare a liquid crystal fixing layer, the second and subsequent layers are applied to the liquid crystal fixing layer. It refers to repeating the process of coating in layers and then curing with UV rays after heating in the same manner.
  • the following composition A-1 is applied on the alignment layer P-1, the coating film is heated to 80 ° C. on a hot plate, and then a high-pressure mercury lamp is used in a nitrogen atmosphere.
  • the alignment of the liquid crystal compound was fixed by irradiating the coating film with ultraviolet rays of 365 nm at an irradiation amount of 300 mJ/cm 2 .
  • the second and subsequent layers were applied over the liquid crystal fixing layer, heated under the same conditions as above, and then UV-cured to prepare the liquid crystal fixing layer. In this manner, the layers were repeatedly coated until the total thickness reached a desired thickness to form an optically anisotropic layer, thereby producing a liquid crystal diffraction element serving as an exposure mask.
  • the complex refractive index ⁇ n of the cured layer of the composition A-1 was obtained by coating the composition A-1 on a separately prepared support with an alignment layer for retardation measurement, and placing the director of the liquid crystal compound on the substrate.
  • the retardation value and film thickness of the liquid crystal fixed layer (cured layer) obtained by fixing the liquid crystal by irradiating it with ultraviolet rays after aligning it so as to be horizontal were measured and obtained.
  • ⁇ n can be calculated by dividing the retardation value by the film thickness.
  • the retardation value was measured at a target wavelength using an Axoscan from Axometrix, and the film thickness was measured using an SEM.
  • the optically anisotropic layer finally has a liquid crystal ⁇ n 365 ⁇ thickness (Re(365)) of 183 nm, and has a radial (concentric) periodically oriented surface as shown in FIG. confirmed with a polarizing microscope.
  • Re(365) liquid crystal ⁇ n 365 ⁇ thickness
  • a radial (concentric) periodically oriented surface as shown in FIG. confirmed with a polarizing microscope.
  • one period in which the optical axis of the liquid crystal compound rotates 180° is 20 ⁇ m at a distance of about 3 mm from the center, and one period at a distance of 25 mm from the center. was 2 ⁇ m, and the liquid crystal alignment pattern was such that the period became shorter in the outward direction.
  • the twist angle in the thickness direction of the optically anisotropic layer was ⁇ 0°.
  • measurements such as " ⁇ n ⁇ thickness"(" ⁇ n ⁇ d") were performed in the same manner.
  • a cross-sectional SEM image obtained by observing a cross-sectional image of the produced optically anisotropic layer with a SEM, a pattern of bright areas and dark areas was observed.
  • the pattern of dark areas extended in the direction normal to the main surface (the dark areas were not inclined with respect to the main surface).
  • a coating film of the alignment layer-forming coating liquid was formed on the glass substrate in the same manner as in the production of the exposure mask (liquid crystal diffraction element) described above.
  • the coating film was exposed through the exposure mask prepared above to form a photo-alignment layer PA-1 having a concentric alignment pattern.
  • a proximity exposure apparatus that emits parallel light with a wavelength (365 nm) was used as an exposure apparatus.
  • the exposure dose was set to 1000 mJ/cm 2 .
  • Linearly polarized light (ellipticity ⁇ 0.1) was incident on the exposure mask.
  • composition B-1 was prepared as a liquid crystal composition for forming the first optically anisotropic layer.
  • Composition B-1 Liquid crystal compound L-1 100.00 parts by mass Chiral agent C-1 0.32 parts by mass Polymerization initiator (manufactured by BASF, Irgacure OXE01) 1.00 parts by mass Leveling agent T-1 0.08 parts by mass Methyl ethyl ketone 1050.00 parts by mass ⁇ ⁇
  • the first optically anisotropic layer was formed by coating the composition B-1 on the photo-alignment layer PA-1 in multiple layers.
  • Multi-layer coating means that the first layer composition B-1 is first applied on the alignment layer, and after heating and UV curing to prepare a liquid crystal fixing layer, the second and subsequent layers are applied to the liquid crystal fixing layer. It refers to repeating the process of coating in layers and then curing with UV rays after heating in the same manner.
  • the first layer is coated with the following composition B-1 on the photo-alignment layer PA-1, the coating film is heated to 80 ° C. on a hot plate, and then a high-pressure mercury lamp is used in a nitrogen atmosphere.
  • the orientation of the liquid crystal compound was fixed by irradiating the coating film with ultraviolet light having a wavelength of 365 nm at an irradiation dose of 300 mJ/cm 2 .
  • the second and subsequent layers were applied over the liquid crystal fixing layer, heated under the same conditions as above, and then UV-cured to prepare the liquid crystal fixing layer. In this way, the coating was repeated until the total thickness reached a desired thickness, forming a first optically anisotropic layer, and producing a liquid crystal diffraction element.
  • the complex refractive index ⁇ n of the cured layer of the composition B-1 was obtained by coating the composition B-1 on a separately prepared support with an alignment layer for retardation measurement, and placing the director of the liquid crystal compound on the substrate.
  • the retardation value and film thickness of the liquid crystal fixed layer (cured layer) obtained by fixing the liquid crystal by irradiating it with ultraviolet rays after aligning it so as to be horizontal were measured and obtained.
  • ⁇ n can be calculated by dividing the retardation value by the film thickness.
  • the retardation value was measured at a target wavelength using an Axoscan from Axometrix, and the film thickness was measured using an SEM.
  • the first optically anisotropic layer finally has a liquid crystal ⁇ n 550 ⁇ thickness (Re(550)) of 275 nm, and has a radial (concentric) periodically oriented surface as shown in FIG. It was confirmed with a polarizing microscope that In the liquid crystal alignment pattern of the first optically anisotropic layer, one cycle in which the optical axis of the liquid crystal compound rotates 180° is 10 ⁇ m at a distance of about 3 mm from the center, and 10 ⁇ m at a distance of 25 mm from the center. The liquid crystal orientation pattern was one period of 1 ⁇ m, and the period became shorter toward the outside. The twist angle in the thickness direction of the first optically anisotropic layer was 70° ( ⁇ 70°) counterclockwise.
  • composition B-2 was prepared as a liquid crystal composition for forming the second optically anisotropic layer.
  • Composition B-2 Liquid crystal compound L-1 100.00 parts by mass Chiral agent C-2 0.18 parts by mass Polymerization initiator (manufactured by BASF, Irgacure OXE01) 1.00 parts by mass Leveling agent T-1 0.08 parts by mass Methyl ethyl ketone 1050.00 parts by mass ⁇ ⁇
  • a second optically anisotropic layer was formed in the same manner as the first optically anisotropic layer, except that composition B-2 was used and the thickness of the optically anisotropic layer was adjusted.
  • the second optically anisotropic layer finally has a liquid crystal ⁇ n 550 ⁇ thickness (Re(550)) of 275 nm, and has a radial (concentric) periodically oriented surface as shown in FIG. It was confirmed with a polarizing microscope that The liquid crystal alignment pattern of this second optically anisotropic layer was a liquid crystal alignment pattern in which the period became shorter toward the outer direction. The twist angle in the thickness direction of the optically anisotropic layer was 70° clockwise.
  • Composition A-2 below was prepared as a liquid crystal composition for forming the first optically anisotropic layer.
  • Composition A-2 ⁇ Liquid crystal compound L-1 100.00 parts by mass Chiral agent C-1 0.33 parts by mass Polymerization initiator (manufactured by BASF, Irgacure OXE01) 1.00 parts by mass Leveling agent T-1 0.20 parts by mass Methyl ethyl ketone 2000.00 parts by mass ⁇ ⁇
  • the first optically anisotropic layer was formed by coating composition A-2 on alignment layer P-2 in multiple layers.
  • the first optically anisotropic layer finally has a liquid crystal ⁇ n 365 ⁇ thickness (Re(365)) of 183 nm, and has a concentric (radial) periodically oriented surface as shown in FIG. It was confirmed with a polarizing microscope that In the liquid crystal alignment pattern of this optically anisotropic layer, one period in which the optical axis of the liquid crystal compound rotates 180° is 10 ⁇ m at a distance of about 3 mm from the center, and one period at a distance of 25 mm from the center. was 1 ⁇ m, and the liquid crystal alignment pattern was such that one period became shorter toward the outside.
  • the twist angle in the thickness direction of the optically anisotropic layer was 36° ( ⁇ 36°) counterclockwise.
  • Composition A-3 was prepared as a liquid crystal composition for forming the second optically anisotropic layer.
  • Composition A-3 Liquid crystal compound L-1 100.00 parts by mass Chiral agent C-2 0.19 parts by mass Polymerization initiator (manufactured by BASF, Irgacure OXE01) 1.00 parts by mass Leveling agent T-1 0.20 parts by mass Methyl ethyl ketone 2000.00 parts by mass ⁇ ⁇
  • the second optically anisotropic layer was formed by coating composition A-3 on the first optically anisotropic layer in multiple layers.
  • the second optically anisotropic layer finally has a liquid crystal ⁇ n 365 ⁇ thickness (Re(365)) of 183 nm, and has a concentric (radial) periodically oriented surface as shown in FIG. It was confirmed with a polarizing microscope that In the liquid crystal alignment pattern of this optically anisotropic layer, one period in which the optical axis of the liquid crystal compound rotates 180° is 10 ⁇ m at a distance of about 3 mm from the center, and one period at a distance of 25 mm from the center. was 1 ⁇ m, and the liquid crystal alignment pattern was such that the period became shorter in the outward direction. The twist angle in the thickness direction of the optically anisotropic layer was 36° clockwise.
  • the first optically anisotropic layer and the second optically anisotropic layer were arranged so that the combined retardation of the two layers was 1/4 wavelength ( ⁇ /4).
  • a cross-sectional SEM image obtained by observing a cross-section of the produced optically anisotropic layer with a SEM a pattern of bright areas and dark areas was observed.
  • the pattern of the dark part was inclined with respect to the main surface. It was also confirmed that the direction of inclination of the dark portion differs between the first optically anisotropic layer and the second optically anisotropic layer, and that the dark portion has an inflection point with an accuracy of 1 or more.
  • the optically anisotropic layer thus produced had regions in which the shapes of the bright and dark portions were symmetrical with respect to the center line in the thickness direction.
  • the photo-alignment layer was exposed through the exposure mask prepared above to form a photo-alignment layer PA-2 having a concentric alignment pattern.
  • a proximity exposure apparatus that emits parallel light with a wavelength (365 nm) was used as an exposure apparatus.
  • the exposure dose was set to 1000 mJ/cm 2 .
  • Circularly polarized light (ellipticity 0.9 to 1.1) was incident on the exposure mask.
  • optically anisotropic layer An optically anisotropic layer was formed in the same manner as the liquid crystal diffraction element of Comparative Example 1 was produced.
  • the first optically anisotropic layer finally has a liquid crystal ⁇ n 550 ⁇ thickness (Re(550)) of 275 nm, and has a concentric (radial) periodic orientation surface as shown in FIG. It was confirmed with a polarizing microscope that In the liquid crystal alignment pattern of this optically anisotropic layer, one period in which the optical axis of the liquid crystal compound rotates 180° is 10 ⁇ m at a distance of about 3 mm from the center, and one period at a distance of 25 mm from the center. was 1 ⁇ m, and the liquid crystal alignment pattern was such that the period became shorter in the outward direction.
  • the twist angle in the thickness direction of the optically anisotropic layer was 70° ( ⁇ 70°) counterclockwise.
  • the second optically anisotropic layer finally has a liquid crystal ⁇ n 550 ⁇ thickness (Re(550)) of 275 nm, and has a concentric (radial) periodically oriented surface as shown in FIG. It was confirmed with a polarizing microscope that The liquid crystal alignment pattern of this optically anisotropic layer was a liquid crystal alignment pattern in which the period became shorter in the outward direction. The twist angle in the thickness direction of the optically anisotropic layer was 70° clockwise.
  • the intensity ratio between the 0th-order light and the 1st-order light (0th-order light/1st-order light) was calculated.
  • the measurement was performed by making the light perpendicularly incident on a circularly polarizing plate corresponding to the wavelength of the light source, circularly polarizing the light, and then making the light incident on the prepared exposure mask.
  • the intensity ratio was evaluated at a position where one period is 2 ⁇ m where the optical axis of the liquid crystal compound rotates 180°, and at the position where one period is 1 ⁇ m in the example. Table 1 shows the results.
  • the liquid crystal alignment pattern of the liquid crystal diffraction element produced in Comparative Example 1 was distorted in the pattern of bright and dark lines when observed with a polarizing microscope. In contrast, the liquid crystal diffraction element produced in Example 1 was improved in the distortion of the bright and dark lines.
  • Diffraction efficiency of emitted light was evaluated when light was incident on the fabricated liquid crystal diffraction element from the front (in the direction of 0° angle with respect to the normal line). Specifically, a laser beam having an output center wavelength of 532 nm was irradiated from a light source and vertically incident on the fabricated liquid crystal diffraction element.
  • the diffracted light (1st order light) diffracted in the desired direction from the liquid crystal diffraction element, the 0th order light emitted in the other direction (emitted in the same direction as the incident light), and the -1st order light (0
  • the diffraction angle of the first-order light with respect to the next-order light
  • exposure mask 12
  • light source 14
  • coating film 16 substrate 20 support 24 alignment layer 26, 26a, 26b optically anisotropic layer 30 liquid crystal compound 30A optical axis 42 bright area 44 dark area 60
  • exposure device 62
  • laser 64
  • light source 65 ⁇ /2 plate
  • Polarization beam splitters 70A, 70B Mirrors
  • Exposure device 82
  • Laser 84 Light source 86, 94
  • Polarization beam splitters 90A, 90B Mirror

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

乱れの無い配向パターンを形成できる光配向層の露光方法の提供を課題とする。光配向層の露光方法は、露光マスクと、光配向性基を有する化合物を含む塗膜を有する基板とを、露光マスクと塗膜とを対面して配置し、化合物が感光性を有する光を露光マスク側から照射し、塗膜を露光して、配向パターンを形成する、露光工程を含み、光は、楕円率が0.7~1.3の円偏光であり、露光マスクは、面内の少なくとも一方向に沿って光学軸の向きが連続的に回転しながら変化している配向パターンを有する偏光回折素子であり、露光工程は、露光マスクで回折された光の0次光と1次光とで塗膜を露光するものであり、さらに、1次光に対する0次光の強度比が0.5~2である。

Description

光配向層の露光方法
 本発明は、偏光回折素子の製造等に用いられる光配向層の露光方法に関する。
 液晶化合物を、液晶化合物由来の光学軸の向きが面内の一方向に沿って連続的に回転する液晶配向パターンで配向した光学異方性層を有する、液晶回折素子が知られている。
 このような液晶回折素子の光学異方性層は、一例として、基板に、配向パターンを形成した配向層を形成し、この配向層に、液晶化合物を有する組成物を、塗布、乾燥して、液晶化合物を配向することで、作製される。
 配向パターンを有する配向層として、光配向層が知られている。光配向層は、光配向性基を有する化合物を含む塗料を、基板に塗布、乾燥することで感光性の塗膜を形成し、この塗膜を、形成する配向パターンに応じた光で露光することで、形成される。
 露光による光配向層の配向パターン形成は、例えば、旋回方向が逆方向である2つの円偏光を重ね合わせることで干渉させ、この干渉光を感光性の塗膜に入射することで、塗膜に干渉縞による干渉パターンを生成する。この干渉光によって塗膜に露光することで、干渉パターンに応じた配向パターンを塗膜に形成して、光配向層となる。
 感光性の塗膜の露光は、例えば、以下に示す干渉系の露光装置で行われる。
 この露光装置では、平行光のレーザ光を、偏光ビームスプリッタによって、直交する2本の直線偏光に分割する。直線偏光の一方を凸レンズで集光した後に、ハーフミラーの一面に一方の直線偏光を、他方の面に他方の直線偏光を入射することで、2つの直線偏光を重ね合わせる。その後、重ね合わせた2つの直線偏光を、1/4波長板によって旋回方向が異なる円偏光に変換する。重なり合う2つの円偏光が干渉することで、塗膜に入射した円偏光は、凸レンズの焦点距離等に応じた干渉縞による干渉パターンを生成する。
 このような露光装置を用いずに、簡便に感光性の塗膜に配向パターンを形成する方法として、上述のような液晶配向パターンを有する光学異方性層を用いる液晶回折素子を露光マスクとして用い、この露光マスクを介して塗膜を露光する方法が知られている。
 この露光方法によれば、露光マスクとして用いる液晶回折素子の液晶配向パターンに応じた配向パターンを、感光性の塗膜すなわち光配向層に形成できる。
 例えば、特許文献1には、ホログラフィックパターンを有する複屈折性マスクを用いてフォトリソグラフィによりある配向表面をパターン化して、ホログラフィックパターンに基づき配向表面に配向状態を作り出すステップと、配向表面に有る層を形成し、層の局所的な光軸の方向が配向表面の配向状態により定められるようにするステップと、を含む、露光方法(光学素子の製造方法)が開示されている。
特許第5651753号公報
 特許文献1に記載される露光方法の具体例を、図12に概念的に示す。
 この露光方法は、基板106の表面に、光配向性基を有する化合物を含む感光性の塗膜104を形成し、液晶回折素子を露光マスク100として用いて、光源102から照射した光(直線偏光Lp)を、露光マスク100を介して塗膜104に照射する。
 これにより、塗膜104に、露光マスク100である液晶回折素子の液晶配向パターンを露光し、液晶配向パターンに応じた配向パターンを形成した光配向層を形成する。
 露光マスク100として用いる液晶回折素子は、一例として、図13に概念的に示すように、液晶化合物30の向きが、面内の一方向に沿って連続的に回転する液晶配向パターンを有する。
 なお、図13では、液晶化合物30として棒状液晶化合物を例示しているので、光学軸は、液晶化合物30の長手方向と一致する。
 特許文献1では、液晶回折素子の光学異方性層を構成する液晶化合物の屈折率差Δnと、光学異方性層の厚さdとの積であるΔn×dが、入射光の波長λに対して、1/2波長(λ/2)となるように、露光マスク100を設計している。
 このような露光マスク100に、直線偏光Lpを入射すると、図14に概念的に示すように、直線偏光Lpが回折されて、プラス1次光である円偏光+Cpと、マイナス1次光である円偏光-Cpとに分割される。
 ここで、プラス1次光である円偏光+Cpと、マイナス1次光である円偏光-Cpとは、波長は同じで、円偏光の旋回方向が逆である。そのため、隣接する円偏光+Cpと円偏光-Cpとが干渉して、干渉パターン(干渉縞)を塗膜104に形成する。
 その結果、塗膜104には、露光マスク100である液晶回折素子の液晶配向パターンと同じ配向パターンを有し、かつ、回折周期が1/2の干渉パターンが形成される。この干渉パターンが露光されることで、塗膜104には、液晶回折素子の液晶配向パターンに応じた配向パターンが形成される。
 ここで、本発明者らの検討によれば、このような液晶回折素子を露光マスクとして用いる従来の露光方法では、図14に破線で示す0次光、すなわち、露光マスク100を、そのまま抜けてしまう直線偏光Lpが、塗膜104に入射することが避けられないことがわかった。
 このような0次光は、塗膜104を不要に露光するノイズとなるため、形成される配向パターンが乱れてしまう可能性がある。
 特に、露光マスク100の配向パターンのピッチ、すなわち回折周期が短い場合には、0次光が増加してしまい、ノイズによる配向パターンの乱れが大きくなる可能性がある。
 本発明の目的は、このような従来技術の問題点を解決することにあり、露光マスクを用いた簡便な方法で、乱れの無い配向パターンを有する光配向層を形成できる光配向層の露光方法を提供することにある。
 この課題を解決するために、本発明は、以下の構成を有する。
 [1] 露光マスクと、光配向性基を有する化合物を含む塗膜を有する基板とを、露光マスクと塗膜とを対面して配置し、化合物が感光性を有する光を露光マスク側から照射し、塗膜を露光して、配向パターンを形成する、露光工程を含み、
 光は、楕円率が0.7~1.3の円偏光であり、
 露光マスクは、面内の少なくとも一方向に沿って光学軸の向きが連続的に回転しながら変化している配向パターンを有する偏光回折素子であり、
 露光工程は、露光マスクで回折された光の0次光と1次光とで塗膜を露光するものであり、さらに、
 1次光に対する0次光の強度比が0.5~2である、光配向層の露光方法。
 [2] 0次光および1次光は、楕円率が0.6~2の円偏光であり、かつ、
 0次光と1次光とは、逆の旋回方向を有する円偏光である、[1]に記載の光配向層の露光方法。
 [3] 配向パターンにおいて、光学軸の向きが面内の一方向に沿って180°回転する長さを1周期とした際に、露光マスクおよび露光工程を適用された塗膜が、露光マスクの1周期の長さに対する塗膜の1周期の長さの比が0.7~1.5である領域をそれぞれ有する、[1]または[2]に記載の光配向層の露光方法。
 [4] 露光マスクの配向パターンにおいて、光学軸の向きが面内で180°回転する長さを1周期とした際に、露光工程を適用された塗膜は、1周期が5μm以下の領域を有する、[1]~[3]のいずれかに記載の光配向層の露光方法。
 [5] 露光マスクが、液晶化合物を含む液晶組成物を用いて形成された光学異方性層を有する液晶回折素子であって、
 光学異方性層は、液晶化合物に由来する光学軸の向きが、面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する、[1]~[4]のいずれかに記載の光配向層の露光方法。
 [6] 光学異方性層は、一方向に沿って厚さ方向に切断した断面を走査型電子顕微鏡で観察した画像において、一方の主面から他方の主面に延在する明部と暗部とを有し、暗部が、主面に対して傾斜している領域を有する、[5]に記載の光配向層の露光方法。
 [7] 光学異方性層の主面の垂線方向に対する暗部の角度が、光学異方性層の厚さ方向において異なる領域を有する、請求項6に記載の光配向層の露光方法。
 [8] 光学異方性層は、暗部が1以上の角度の変曲点を有する、[6]または[7]に記載の光配向層の露光方法。
 [9] 暗部が2以上の角度の変曲点を有する、[8]に記載の光配向層の露光方法。
 [10] 光学軸の向きが面内の一方向に沿って180°回転する長さを1周期とした際に、光学異方性層は、液晶配向パターンにおける一方向に沿って1周期が短くなる領域を有し、
 光学異方性層は、1周期が短くなるにしたがって、主面の垂線方向に対する暗部の角度が大きくなる領域を有する、[6]~[9]のいずれかに記載の光配向層の露光方法。
 [11] 光学異方性層は、厚さ方向の中心線に対して、明部および暗部の形状が対称な領域を有する、[6]~[10]のいずれかに記載の光配向層の露光方法。
 [12] 光学異方性層は、厚さ方向の中心線に対して、明部および暗部の形状が非対称な領域を有する、[6]~[11]のいずれかに記載の光配向層の露光方法。
 [13] 露光マスクの配向パターンが、面内の少なくとも一方向に沿って光学軸の向きが連続的に回転しながら変化している一方向を、中心から外側に向かう放射状に有するパターンである、[1]~[12]のいずれかに記載の光配向層の露光方法。
 [14] [1]~[13]のいずれかに記載の光配向層の露光方法を用いて製造された、光配向層。
 本発明の光配向層の露光方法によれば、露光マスクを用いた簡便な方法で、乱れの無い配向パターンを有する光配向層を形成できる。
本発明の光配向層の露光方法の一例を概念的に示す図である。 露光マスクの一例を概念的に示す図である。 光学異方性層の一例の概略平面図である。 本発明の光配向層の露光方法を説明するための概念図である。 塗膜の露光装置の一例を概念的に示す図である。 光学異方性層の別の例の概略平面図である。 塗膜の露光装置の別の例を概念的に示す図である。 光学異方性層の別の例を概念的に示す図である。 光学異方性層の別の例を概念的に示す図である。 光学異方性層の別の例を概念的に示す図である。 光学異方性層の別の例を概念的に示す図である。 従来の光配向層の露光方法を説明するための概念図である。 従来の光配向層の露光方法を説明するための概念図である。 従来の光配向層の露光方法を説明するための概念図である。
 以下、本発明の光配向層の露光方法について、添付の図面に示される好適実施例をもとに、詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 また、以下に示す図は、いずれも、本発明を説明するための概念的な図であって、各部材および部位などの大きさ、厚さ、および、位置関係等は、必ずしも、現実の物と一致しない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 図1に、本発明の光配向層の露光方法を実施する露光装置の一例を、概念的に示す。
 なお、以下の説明では、『本発明の光配向層の露光方法』を『本発明の露光方法』ともいう。
 図1に示すように、本発明の露光方法は、基板16の表面に形成した塗膜14に、光源12が照射した光(円偏光Cp)を、露光マスク10で回折して照射するものである。
 このような本発明の露光方法を実施する露光装置は、公知の露光装置が、各種、利用可能である。一例として、プロキシミティ露光を行う露光装置、レーザー光源を用いる露光装置、および、平行光源を用いる露光装置等が好適に例示される。
 基板16は、後述する露光マスク10の支持体20と同様のものである。
 また、塗膜14は、後述する露光マスク10の配向層24における光配向層を形成する塗膜と同様のものである。すなわち、塗膜14は、光配向性基を有する化合物を含む塗料を、基板16の表面に塗布して乾燥したものである。以下の説明では、『光配向性基を有する化合物』を『光配向性材料』ともいう。
 光源12は、塗膜14が含む光配向性材料が感光性を有する波長の光を照射する。
 露光マスク10は、光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している配向パターンを有する偏光回折素子である。
 図示例において、露光マスク10は、液晶化合物を含む組成物を用いて形成された光学異方性層を有する液晶回折素子である。この光学異方性層は、液晶化合物に由来する光学軸の向きが、面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する。
 後に詳述するが、本発明の露光方法は、光源12が照射した光を、露光マスク10を介して塗膜14に照射する。これにより、塗膜14が有する光配向性材料を配向して、露光マスク10すなわち液晶回折素子(光学異方性層)における液晶配向パターンと同じ配向パターンを、塗膜14に形成する。
 本発明の露光方法において、光源12は、楕円率が0.7~1.3の円偏光を露光マスク10に照射するものである。すなわち、本発明においては、真円に近い円偏光を露光マスクに入射する。
 露光マスク10に照射する光の楕円率が0.7~1.3を超えると、塗膜14(光配向層)に形成する配向パターンの乱れが発生する、塗膜14(光配向層)の配向規制力が低下する等の不都合が生じる。
 露光マスク10に照射する照射光の楕円率は、0.8~1.2が好ましく、0.9~1.1がより好ましい。
 光源12は、楕円率が上記の範囲で、かつ、干渉性を有する平行光を照射可能であれば、公知の光照射手段が、各種、利用可能である。
 一例として、拡散性で無偏光のレーザ光を出射するレーザ光源と、円偏光板と、コリメータレンズとを組み合わせた光源、無偏光で平行なレーザ光を出射するレーザ光源と、円偏光板とを組み合わせた光源、拡散性で直線偏光のレーザ光を出射するレーザ光源と、1/4波長板と、コリメータレンズとを組み合わせた光源、および、平行な直線偏光のレーザ光を出射するレーザ光源と、1/4波長板とを組み合わせた光源等が例示される。
 また、光源12は、楕円率が上述の上記の範囲で、かつ、露光マスク10を介した後に、塗膜14に配向パターンを形成できる程度の干渉性を有する平行光を照射可能であれば、公知の光照射手段が、各種、利用可能である。
 一例として、プロキシミティ露光を行う露光光源と、円偏光板とを組み合わせた光源、水銀光源と、コリメータレンズと、円偏光板とを組み合わせた光源、および、LED光源と、コリメータレンズと、円偏光板とを組み合わせた光源等が例示される。
 図2に、露光マスク10の一例を概念的に示す。
 図2に示す露光マスク10は、一例として、支持体20と、配向層24と、光学異方性層26とを有する、液晶回折素子である。上述のように、光学異方性層26は、液晶化合物を含む組成物を用いて形成されるものであり、液晶化合物に由来する光学軸の向きが、面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する。
 なお、本発明の露光方法において、露光マスク10は、図2に示す構成に制限はされない。例えば、露光マスクは、図2に示す露光マスク10から支持体20を剥離した、光学異方性層26と配向層24とからなるものでもよく、露光マスク10から支持体20および配向層24を剥離した、光学異方性層26のみからなるものでもよい。あるいは、露光マスクは、光学異方性層26に、別の支持体を貼着したものであってもよい。
 <<支持体>>
 露光マスク10において、支持体20は、配向層24、および、光学異方性層26を支持するものである。
 支持体20は、配向層24および光学異方性層26を支持できるものであれば、各種のシート状物(フィルム、板状物)が利用可能である。
 支持体20としては、透明支持体が好ましく、ポリメチルメタクリレート等のポリアクリル系樹脂フィルム、セルローストリアセテート等のセルロース系樹脂フィルム、シクロオレフィンポリマー系フィルム(例えば、商品名「アートン」、JSR社製、商品名「ゼオノア」、日本ゼオン社製)、ポリエチレンテレフタレート(PET)、ポリカーボネート、および、ポリ塩化ビニル等を挙げることができる。支持体は、可撓性のフィルムに限らず、ガラス基板等の非可撓性の基板であってもよい。
 支持体20の厚さには、制限はなく、露光マスク10の用途および支持体20の形成材料等に応じて、配向層および光学異方性層を保持できる厚さを、適宜、設定すればよい。
 支持体20の厚さは、1~2000μmが好ましく、3~500μmがより好ましく、5~150μmがさらに好ましい。
 <<配向層>>
 露光マスク10において、支持体20の表面には配向層24が形成される。
 配向層24は、液晶回折素子である露光マスク10の光学異方性層26を形成する際に、液晶化合物30を所定の液晶配向パターンに配向するための配向層である。
 なお、図2等においては、液晶化合物30として、棒状液晶化合物を例示している。
 上述のように、図示例の透過型の露光マスク10において、光学異方性層26は、例えば、図3に示すように液晶化合物30に由来する光学軸30Aの向きが、面内の一方向(図中の矢印A方向)に沿って連続的に回転しながら変化している液晶配向パターンを有する。
 従って、露光マスク10の配向層24は、光学異方性層26が、この液晶配向パターンを形成できるように、形成される。
 なお、本発明において、液晶化合物30が棒状液晶化合物である場合、液晶化合物30の光学軸30Aは、棒状液晶化合物の分子長軸を意図する。一方、液晶化合物30が円盤状液晶化合物である場合、液晶化合物30の光学軸30Aは、円盤状液晶化合物の円盤面に対する法線方向(直交方向)に平行な軸を意図する。
 以下の説明では、『光学軸30Aの向きが回転』を単に『光学軸30Aが回転』とも言う。
 配向層24は、公知の各種のものが利用可能である。
 例えば、ポリマーなどの有機化合物からなるラビング処理膜、無機化合物の斜方蒸着膜、マイクログルーブを有する膜、ならびに、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライドおよびステアリン酸メチルなどの有機化合物のラングミュア・ブロジェット法によるLB(Langmuir-Blodgett:ラングミュア・ブロジェット)膜を累積させた膜、等が例示される。
 ラビング処理による配向層は、ポリマー層の表面を紙または布で一定方向に数回こすることにより形成できる。
 配向層に使用する材料としては、ポリイミド、ポリビニルアルコール、特開平9-152509号公報に記載された重合性基を有するポリマー、特開2005-97377号公報、特開2005-99228号公報、および、特開2005-128503号公報記載の配向層等の形成に用いられる材料が好ましく例示される。
 露光マスク10においては、配向層は、光配向性の素材に偏光または非偏光を照射して配向層とした、いわゆる光配向層が好適に利用される。
 すなわち、露光マスク10においては、配向層24として、支持体20に、光配向性材料を含む塗料を塗布、乾燥して塗膜を形成し、この塗膜に配向パターンに応じた光を照射して配向した光配向層が、好適に利用される。なお、『光配向性材料』とは、上述のように、『光配向性基を有する化合物』である。
 光配向性材料としては、例えば、特開2006-285197号公報、特開2007-76839号公報、特開2007-138138号公報、特開2007-94071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特許第3883848号公報および特許第4151746号公報に記載のアゾ化合物、特開2002-229039号公報に記載の芳香族エステル化合物、特開2002-265541号公報および特開2002-317013号公報に記載の光配向性単位を有するマレイミドおよび/またはアルケニル置換ナジイミド化合物、特許第4205195号および特許第4205198号に記載の光架橋性シラン誘導体、特表2003-520878号公報、特表2004-529220号公報および特許第4162850号に記載の光架橋性ポリイミド、光架橋性ポリアミドおよび光架橋性エステル、ならびに、特開平9-118717号公報、特表平10-506420号公報、特表2003-505561号公報、国際公開第2010/150748号、特開2013-177561号公報および特開2014-12823号公報に記載の光二量化可能な化合物、特にシンナメート化合物、カルコン化合物およびクマリン化合物等が、好ましく例示される。
 中でも、アゾ化合物、光架橋性ポリイミド、光架橋性ポリアミド、光架橋性エステル、シンナメート化合物、および、カルコン化合物は、好適に利用される。
 配向層24の厚さには制限はなく、配向層24の形成材料に応じて、必要な配向機能を得られる厚さを、適宜、設定すればよい。配向層24の厚さは、0.01~5μmが好ましく、0.02~2μmがより好ましい。
 配向層24の形成方法には、制限はなく、配向層の形成材料に応じた公知の方法が、各種、利用可能である。
 一例として、光配向性材料を含む塗料を支持体20の表面に塗布、乾燥して、塗膜を形成する。その後、塗膜をレーザ光によって露光して配向パターンを形成して、光配向層とする方法が例示される。
 図5に、配向層24を露光して、上述した配向パターンを形成する露光装置の一例を概念的に示す。
 図5に示す露光装置60は、レーザ62を備えた光源64と、レーザ62が出射したレーザ光Mの偏光方向を変えるλ/2板65と、レーザ62が出射したレーザ光Mを光線MAおよびMBの2つに分離する偏光ビームスプリッタ68と、分離された2つの光線MAおよびMBの光路上にそれぞれ配置されたミラー70Aおよび70Bと、λ/4板72Aおよび72Bと、を備える。
 なお、光源64は直線偏光P0を出射する。λ/4板72Aは、直線偏光P0(光線MA)を右円偏光PRに、λ/4板72Bは直線偏光P0(光線MB)を左円偏光PLに、それぞれ変換する。
 配向パターンを形成される前の配向層24を有する支持体20が露光部に配置され、2つの光線MAと光線MBとを配向層24上において交差させて干渉させ、その干渉光を配向層24に照射して露光する。
 この際の干渉により、配向層24に照射される光の偏光状態が干渉縞状に周期的に変化するものとなる。これにより、配向状態が周期的に変化する配向パターンを有する配向層(以下、パターン配向層ともいう)が得られる。
 露光装置60においては、2つの光線MAおよびMBの交差角αを変化させることにより、配向パターンの周期を調節できる。すなわち、露光装置60においては、交差角αを調節することにより、液晶化合物30に由来する光学軸30Aが一方向に沿って連続的に回転する配向パターンにおいて、光学軸30Aが回転する1方向における、光学軸30Aが180°回転する1周期の長さ(後述する1周期Λ)を調節できる。
 このような配向状態が周期的に変化した配向パターンを有する配向層24上に、光学異方性層26を形成することにより、後述する、液晶化合物30に由来する光学軸30Aが一方向に沿って連続的に回転する液晶配向パターンを有する、光学異方性層26を形成できる。
 また、λ/4板72Aおよび72Bの光学軸を、それぞれ、90°回転することにより、光学軸30Aの回転方向を逆にすることができる。
 上述のとおり、パターン配向層は、パターン配向層の上に形成される光学異方性層26の液晶化合物の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンとなるように、液晶化合物を配向させる配向パターンを有する。
 パターン配向層が、液晶化合物を配向させる向きに沿った軸を配向軸とすると、パターン配向層は、配向軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している配向パターンを有するといえる。
 パターン配向層の配向軸は、吸収異方性を測定することで検出することができる。例えば、パターン配向層に直線偏光を回転させながら照射して、パターン配向層を透過する光の光量を測定した際に、光量が最大または最小となる向きが、面内の一方向に沿って漸次変化して観測される。
 なお、露光マスク10において、配向層24は、好ましい態様として設けられるものであり、必須の構成要件ではないのは、上述のとおりである。
 例えば、支持体20をラビング処理する方法、支持体20をレーザ光等で加工する方法等によって、支持体20に配向パターンを形成することにより、光学異方性層26等が、液晶化合物30に由来する光学軸30Aの向きが、一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する構成とすることも、可能である。
 <<光学異方性層>>
 図2に示す露光マスク10において、配向層24の表面には、光学異方性層26が形成される。
 前述のように、液晶回折素子である露光マスク10において、光学異方性層26は、液晶化合物を含む組成物を用いて形成されたものである。
 光学異方性層26は、光学異方性層の面内において、液晶化合物30に由来する光学軸30Aの向きが一方向(図3等の矢印A方向)に連続的に回転しながら変化する液晶配向パターンを有する。
 なお、液晶化合物30に由来する光学軸30Aとは、液晶化合物30において屈折率が最も高くなる軸、いわゆる遅相軸である。例えば、液晶化合物30が棒状液晶化合物である場合には、光学軸30Aは、棒形状の長軸方向に沿っている。
 以下の説明では、液晶化合物30に由来する光学軸30Aを、『液晶化合物30の光学軸30A』または『光学軸30A』とも言う。
 図3に、光学異方性層26の主面の面内における液晶化合物30の配向状態を示す模式図である。なお、主面とは、シート状物(フィルム、板状物、層)の最大面である。
 上述のように、光学異方性層26は、面内において、光学軸30Aが矢印Aで示す一方向に連続的に回転しながら変化する液晶配向パターンを有するものである。
 光学異方性層26において、液晶化合物30は、矢印Aで示す一方向と、この矢印A方向と直交するY方向とに平行な面内に二次元的に配向している。
 以下の説明では、『矢印Aで示す一方向』を単に『矢印A方向』とも言う。
 なお、平面図とは、光学異方性層26を厚さ方向(=各層(膜)の積層方向)から見た図である。言い換えれば、光学異方性層26を主面と直交する方向から見た図である。
 また、図3では、露光マスク10の構成を明確に示すために、液晶化合物30は配向層24の表面の液晶化合物30のみを示している。しかしながら、この光学異方性層26も、厚さ方向には、図2に示されるように、この配向層の表面の液晶化合物30から、液晶化合物30が積み重ねられた構造を有する。
 光学異方性層26は、光学異方性層26の面内において、液晶化合物30に由来する光学軸30Aの向きが、矢印A方向に沿って連続的に回転しながら変化する液晶配向パターンを有する。
 液晶化合物30の光学軸30Aの向きが矢印A方向(所定の一方向)に連続的に回転しながら変化しているとは、具体的には、矢印A方向に沿って配列されている液晶化合物30の光学軸30Aと、矢印A方向とが成す角度が、矢印A方向の位置によって異なっており、矢印A方向に沿って、光学軸30Aと矢印A方向とが成す角度がθからθ+180°あるいはθ-180°まで、順次、変化していることを意味する。
 なお、矢印A方向に互いに隣接する液晶化合物30の光学軸30Aの角度の差は、45°以下であるのが好ましく、15°以下であるのがより好ましく、より小さい角度であるのがさらに好ましい。
 一方、光学異方性層26を形成する液晶化合物30は、矢印A方向と直交するY方向、すなわち光学軸30Aが連続的に回転する一方向と直交するY方向では、光学軸30Aの向きが等しい液晶化合物30が等間隔で配列されている。
 言い換えれば、光学異方性層26を形成する液晶化合物30において、Y方向に配列される液晶化合物30同士では、光学軸30Aの向きと矢印A方向とが成す角度が等しい。
 光学異方性層26は、棒状液晶化合物または円盤状液晶化合物を含む液晶組成物を用いて形成されるものであり、棒状液晶化合物の光学軸または円盤状液晶化合物の光学軸が、上記のように配向された液晶配向パターンを有している。
 支持体20上に、上述した液晶配向パターンに応じた配向パターンを有する配向層24を形成し、配向層24上に液晶組成物を塗布して、硬化することにより、液晶組成物の硬化層からなる光学異方性層を得ることができる。なお、液晶組成物の塗布は、後に実施例で示す多層塗布も、好適に利用可能である。
 なお、光学異方性層26を形成するための液晶組成物は、棒状液晶化合物または円盤状液晶化合物を含有するものであり、さらに、レベリング剤、配向制御剤、界面活性剤、重合開始剤、架橋剤、および、配向助剤などのその他の成分を含有していてもよい。
 また、光学異方性層26は、入射光の波長に対して広帯域であることが望ましく、複屈折率が逆分散となる液晶材料を用いて構成されていることが好ましい。また、液晶組成物に捩れ成分を付与することにより、また、異なる位相差層を積層することにより、入射光の波長に対して光学異方性層を実質的に広帯域にすることも好ましい。例えば、光学異方性層26において、捩れ方向が異なる2層の液晶を積層することによって広帯域のパターン化されたλ/2板を実現する方法が特開2014-089476号公報等に示されており、本発明において好ましく使用することができる。
―棒状液晶化合物―
 棒状液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。以上のような低分子液晶性分子だけではなく、高分子液晶性分子も用いることができる。
 光学異方性層26では、棒状液晶化合物を重合によって配向を固定することがより好ましく、重合性棒状液晶化合物としては、Makromol. Chem., 190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開第95/22586号、同95/24455号、同97/00600号、同98/23580号、同98/52905号、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、および、特開2001-328973号公報などに記載の化合物を用いることができる。
さらに棒状液晶化合物としては、例えば、特表平11-513019号公報および特開2007-279688号公報に記載のものも好ましく用いることができる。
―円盤状液晶化合物―
 円盤状液晶化合物としては、例えば、特開2007-108732号公報および特開2010-244038号公報に記載のものを好ましく用いることができる。
 なお、光学異方性層に円盤状液晶化合物を用いた場合には、光学異方性層において、液晶化合物30は厚さ方向に立ち上がっており、液晶化合物に由来する光学軸30Aは、円盤面に垂直な軸、いわゆる進相軸として定義される。
 上述のように、露光マスク10の光学異方性層26は、液晶化合物30に由来する光学軸30Aが、矢印A方向に沿って連続的に回転する液晶配向パターンを有する。
 図示例の露光マスク10は、好ましい態様として、光学異方性層26を構成する液晶化合物30の屈折率差Δnと、光学異方性層26の厚さdとの積であるΔn×dが、露光マスク10に照射する光の波長λに対して、約1/4波長(λ/4)となるように、光学異方性層26を設計する。
 具体的には、光学異方性層26は、露光マスク10に照射する光の波長λ[nm]に対して、Δn×dが、0.2λ~0.3λ[nm]であるのが好ましく、0.225λ~0.275λ[nm]であるのがより好ましい。
 以下、図4の概念図を参照して、露光マスク10すなわち光学異方性層26による、塗膜14の露光の作用を説明する。
 上述のように、塗膜14は、光配向性材料を含む塗料を基板16に塗布して、乾燥したものである。この塗膜14は、上述した露光マスク10の配向層24における光配向層における塗膜と同様のものであるのも、上述のとおりである。なお、光配向性材料とは、光配向性基を有する化合物である。
 上述のように、液晶回折素子である露光マスク10を構成する光学異方性層26は、液晶化合物30に由来する光学軸30Aの向きが、矢印A方向に向かって連続的に回転する液晶配向パターンを有する。
 また、光学異方性層26は、好ましい態様として、Δn×dが、入射光の波長λに対して、約1/4波長となっている。あるいは、光学異方性層26は、好ましい態様として、後述するように、液晶化合物30が、厚さ方向に向かって螺旋状に旋回する。
 さらに、上述のように、光源12が露光マスク10に照射するのは、楕円率が0.7~1.3の円偏光である。
 このような光学異方性層26を有する露光マスク10に円偏光Cpが入射すると、図4に示すように、約半分の円偏光Cpが光学異方性層26で回折されて、プラス1次光である円偏光Cp1となる。また、円偏光Cp1は、回折によって、円偏光Cpとは旋回方向が逆の円偏光になる。
 ここで、光学異方性層26に入射した円偏光Cpの約半分は、光学異方性層26を、そのまま透過して、0次光である円偏光Cp0となる。
 すなわち、光学異方性層26は、回折効率が約50%程度である。
 ここで、1次光である円偏光Cp1と、元の円偏光Cpと同じ0次光である円偏光Cp0とは、波長は同じで、円偏光の旋回方向が逆である。そのため、隣接する円偏光Cp1と、円偏光Cp0とが干渉して、光学異方性層26の液晶配向パターンと同じ干渉パターンを塗膜14に形成する。すなわち、塗膜14には、光学軸に対応する線分の向きが矢印A方向に向かって連続的に回転する、配向パターンが形成される。
 その結果、塗膜14には、露光マスク10の光学異方性層26の液晶配向パターンと同じ配向パターンで、かつ、後述する1周期Λもほぼ等しい配向パターンが形成される。
 以上のように、本発明の露光方法では、従来はノイズとなっていた0次光を有効活用して、0次光とプラス1次光とを干渉して、干渉パターンを塗膜14に形成して、干渉パターンに応じた配向パターンを形成する。
 そのため、本発明によれば、露光マスクを用いた簡便な方法で、ノイズとなる光に起因する乱れの無い、綺麗な配向パターンを有する光配向層を形成ができる。従って、本発明の露光方法で露光した光配向層を用いることにより、高い回折効率を有する液晶回折素子を得ることができる。
 上述のように、本発明の露光方法では、プラス1次光である円偏光Cp1と、0次光である円偏光Cp0とを干渉して得られた干渉パターンによって、塗膜14を露光して光配向層とする。
 従って、円偏光Cp1と円偏光Cp0との強度差が大きいと、適正な干渉パターンすなわち配向パターンを形成できない。本発明の露光方法において、円偏光Cp1と円偏光Cp0との強度比は、『円偏光Cp0/円偏光Cp1(0次光/1次光)』の強度比で0.5~2である。
 円偏光Cp1と円偏光Cp0との強度比が0.5~2を超えると、配向パターンの乱れが発生する等の不都合が生じる。
 円偏光Cp1と円偏光Cp0との強度比は、0.7~1.5が好ましく、0.8~1.3がより好ましい。
 プラス1次光である円偏光Cp1、および、0次光である円偏光Cp0は、いずれも円偏光である。円偏光Cp1および円偏光Cp0は、いずれも、楕円率が0.6~2の円偏光であるのが好ましい。
 円偏光Cp1および円偏光Cp0の楕円率を0.6~2とすることにより、より乱れの無い綺麗な配向パターンを形成できる等の点で好ましい。
 なお、円偏光Cp1および円偏光Cp0の楕円率は、0.8~1.3がより好ましく、0.9~1.2がさらに好ましい。
 さらに、円偏光Cp1および円偏光Cp0は、好ましくは、上述のように、旋回方向が逆の円偏光である。
 円偏光Cp1と円偏光Cp0とを、旋回方向が逆の円偏光とすることにより、より乱れの無い綺麗な配向パターンを形成できる等の点で好ましい。
 光学軸30Aが一方向に沿って連続的に回転する液晶配向パターンを有する、露光マスク10の光学異方性層26においては、液晶化合物30の光学軸30Aが一方向に沿って180°回転する長さ(距離)を、液晶配向パターンにおける1周期Λとする。
 すなわち、図2および図3に示す光学異方性層26であれば、面内で光学軸30Aの向きが連続的に回転して変化する矢印A方向において、液晶化合物30の光学軸30Aが180°回転する長さ(距離)を、液晶配向パターンにおける1周期Λとする。言い換えれば、液晶配向パターンにおける1周期Λは、液晶化合物30の光学軸30Aと矢印A方向とのなす角度がθからθ+180°となるまでの距離により定義される。
 すなわち、矢印A方向に対する角度が等しい2つの液晶化合物30の、矢印A方向の中心間の距離を、1周期Λとする。具体的には、図3に示すように、矢印A方向と光学軸30Aの方向とが一致する2つの液晶化合物30の、矢印A方向の中心間の距離を、1周期Λとする。
 露光マスク10において、光学異方性層26の液晶配向パターンは、この1周期Λを、矢印A方向すなわち光学軸30Aの向きが連続的に回転して変化する一方向に繰り返す。また、露光マスク10(光学異方性層26)は、液晶回折素子でもあり、この1周期Λが、回折構造の周期(1周期)となる。
 同様に、塗膜14すなわち光配向層における1周期Λは、液晶化合物30の光学軸30Aに対応する配向軸が、一方向に沿って180°回転する長さが、配向パターンにおける1周期Λとなる。
 光配向層の1周期Λは、一例として、光配向層に、同様に光学異方性層を形成し、この光学異方性層の1周期Λを測定することで、知見すればよい。
 上述のように、本発明の露光方法においては、光学異方性層26と液晶配向パターンと、塗膜14すなわち光配向層に形成する配向パターンは、配向パターンが同じであり、また、1周期Λも、ほぼ等しい。
 具体的には、光学異方性層26における液晶配向パターンの1周期Λの長さと、塗膜14に形成する配向パターンの1周期Λの長さとが、『塗膜/光学異方性層』の比で0.7~1.5であるのが好ましい。
 光学異方性層26と塗膜14とにおいて、1周期Λの長さの比を0.7~1.5とすることにより、より乱れの無い綺麗な配向パターンを形成できる等の点で好ましい。
 光学異方性層26における液晶配向パターンの1周期Λの長さと、塗膜14に形成する配向パターンの1周期Λの長さとの比は、0.8~1.3がより好ましく、0.9~1.2がさらに好ましい。
 上述のように、従来の露光マスクを用いる塗膜への配向パターンの形成では、配向パターンが微細になるほど、すなわち、配向パターンにおける1周期Λが短くなるほど、ノイズとなる0次光が多くなり、配向パターンの乱れが生じる。
 これに対して、0次光を有効活用する本発明の露光方法では、配向パターンを微細にしても、配向パターンの乱れは、極めて小さい。
 この点を考慮すると、本発明の露光方法では、塗膜14(光配向層)に形成する配向パターンが、1周期Λの長さが5μm以下の領域を有するのが好ましい。すなわち、本発明の露光方法は、塗膜14への微細な配向パターンの形成に、より好適に用いられる。
 塗膜14(光配向層)に形成する配向パターンは、1周期Λが3μm以下の領域を有するのがより好ましく、2μm以下の領域を有するのがさらに好ましい。
 露光マスク10の光学異方性層26は、図3に示すように、液晶化合物30に由来する光学軸30Aの方向が、一方向のみに沿って連続的に回転するものである。
 本発明の露光方法において、液晶回折素子である露光マスク10(光学異方性層26)が有する液晶配向パターン、すなわち、塗膜14に形成する配向パターンは、これに制限はされず、各種の液晶配向パターンが利用可能である。
 一例として、図6の平面図に概念的に示すような液晶配向パターンを有する光学異方性層26を有する露光マスクが例示される。
 この光学異方性層26は、液晶化合物に由来する光学軸の向きが、一方向に沿って連続的に回転しながら変化している液晶配向パターンを、内側から外側に向かう放射状に有する。すなわち、図6に示す光学異方性層26の液晶配向パターンは、液晶化合物30に由来する光学軸の向きが連続的に回転しながら変化する一方向を内側から外側に向かう同心円状に有する、同心円状のパターンである。
 光学異方性層26では、液晶化合物30の光学軸の向きは、光学異方性層26の中心から外側に向かう多数の方向、例えば、矢印A1で示す方向、矢印A2で示す方向、矢印A3で示す方向、矢印A4で示す方向…に沿って、連続的に回転しながら変化している。
 従って、光学異方性層26において、液晶化合物30の光学軸の回転方向は、全ての方向(一方向)で同じ方向である。図示例では、矢印A1で示す方向、矢印A2で示す方向、矢印A3で示す方向、および、矢印A4で示す方向の全ての方向で、液晶化合物30の光学軸の回転方向は、反時計回りである。
 すなわち、矢印A1と矢印A4とを1本の直線と見なすと、この直線上では、光学異方性層26の中心で、液晶化合物30の光学軸の回転方向が逆転する。一例として、矢印A1と矢印A4とが成す直線が、図中右方向(矢印A1方向)に向かうとする。この場合には、液晶化合物30の光学軸は、最初は、光学異方性層26の外方向から中心に向かって時計回りに回転し、光学異方性層26の中心で回転方向が逆転し、その後は、光学異方性層26の中心から外方向に向かって反時計回りに回転する。
 このような液晶配向パターンの光学異方性層26を露光マスク10も、上述の例と同様、回折によって、1次光である円偏光Cp1と、元の円偏光Cpと同じ0次光である円偏光Cp0とを生成して、両者の干渉光によって塗膜14を露光する。
 これにより、露光マスク10の光学異方性層26の液晶配向パターンと同じ、放射状に光学軸が連続的に回転して変化する配向パターンを有し、かつ、1周期Λもほぼ等しい配向パターンを、塗膜14に形成できる。
 図7に、光学異方性層26を形成するための配向層24(光配向層)となる塗膜を露光して、図6に示す、放射状に光学軸が連続的に回転して変化する液晶配向パターンに対応する配向パターンを形成する露光装置の一例を概念的に示す。
 図7に示す露光装置80は、レーザ82を備えた光源84と、レーザ82からのレーザ光MをS偏光MSとP偏光MPとに分割する偏光ビームスプリッタ86と、P偏光MPの光路に配置されたミラー90AおよびS偏光MSの光路に配置されたミラー90Bと、S偏光MSの光路に配置されたレンズ92と、偏光ビームスプリッタ94と、λ/4板96とを有する。
 偏光ビームスプリッタ86で分割されたP偏光MPは、ミラー90Aによって反射されて、偏光ビームスプリッタ94に入射する。他方、偏光ビームスプリッタ86で分割されたS偏光MSは、ミラー90Bによって反射され、レンズ92によって集光されて偏光ビームスプリッタ94に入射する。
 P偏光MPおよびS偏光MSは、偏光ビームスプリッタ94で合波されて、λ/4板96によって偏光方向に応じた右円偏光および左円偏光となって、支持体20の上の配向層24に入射する。
 ここで、右円偏光と左円偏光の干渉により、配向層24に照射される光の偏光状態が干渉縞状に周期的に変化するものとなる。同心円の内側から外側に向かうにしたがい、左円偏光と右円偏光の交差角が変化するため、内側から外側に向かってピッチが変化する露光パターンが得られる。これにより、配向層24において、配向状態が周期的に変化する放射状(同心円状)の配向パターンが得られる。
 この露光装置80において、液晶化合物30の光軸が一方向に沿って連続的に180°回転する液晶配向パターンの1周期Λは、レンズ92の屈折力、レンズ92の焦点距離、および、レンズ92と配向層24との距離等を変化させることで、制御できる。
 また、レンズ92の屈折力(レンズ92のFナンバー)を調節することによって、光軸が連続的に回転する一方向において、液晶配向パターンの1周期の長さを変更できる。
 具体的には、平行光と干渉させる、レンズ92で広げる光の広がり角によって、光軸が連続的に回転する一方向において、液晶配向パターンの1周期の長さを変えることができる。より具体的には、レンズ92の屈折力を弱くすると、平行光に近づくため、液晶配向パターンの1周期の長さΛは、内側から外側に向かって緩やかに短くなる。逆に、レンズ92の屈折力を強めると、液晶配向パターンの1周期の長さΛは、内側から外側に向かって急に短くなる。
 以上の例において、露光マスク10となる液晶回折素子を構成する光学異方性層26は、図2に示すように、液晶化合物30は、厚さ方向には、同じ方向を向いている。
 しかしながら、本発明の露光方法において、露光マスク10となる得液晶回折素子を構成する光学異方性層26は、これに制限はされない。
 すなわち、本発明の露光方法においては、露光マスク10となる液晶回折素子を構成する光学異方性層26は、液晶化合物30が、厚さ方向に向かって、螺旋状に旋回してもよい。すなわち、光学異方性層26を構成する液晶化合物30は、厚さ方向に向かって、螺旋状に捩れ配向されたものでもよい。
 このような、上述した液晶配向パターンを有し、かつ、液晶化合物30が厚さ方向に向かって螺旋状に旋回する光学異方性層は、液晶化合物30の光学軸30Aの向きが連続的に回転しながら変化する一方向に沿って厚さ方向に切断した断面を走査型電子顕微鏡(SEM(Scanning Electron Microscope))で観察した画像において、この液晶化合物30の旋回に起因して、主面に対して傾斜する明部と暗部の縞模様が観察される。
 以下の説明では、光学軸30Aが回転する一方向に沿って厚さ方向に切断した断面を、SEMで観察する画像を、単に『断面SEM画像』ともいう。
 厚さ方向に液晶化合物30が螺旋状に旋回する光学異方性層26は、上述した光学異方性層26を形成するための組成物に、キラル剤を添加することで形成できる。
--キラル剤(光学活性化合物)--
 キラル剤(カイラル剤)は液晶相の螺旋構造を誘起する機能を有する。キラル剤は、化合物によって誘起する螺旋の捩れ方向および螺旋誘起力(Helical twisting power:HTP)が異なるため、目的に応じて選択すればよい。
 キラル剤としては、特に制限はなく、公知の化合物(例えば、液晶デバイスハンドブック、第3章4-3項、TN(twisted nematic)、STN(Super Twisted Nematic)用キラル剤、199頁、日本学術振興会第142委員会編、1989に記載)、イソソルビド、および、イソマンニド誘導体等を用いることができる。
 キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物または面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファン、および、これらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤と液晶化合物とがいずれも重合性基を有する場合は、重合性キラル剤と重合性液晶化合物との重合反応により、重合性液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性キラル剤が有する重合性基は、重合性液晶化合物が有する重合性基と、同種の基であるのが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であるのが好ましく、不飽和重合性基であるのがより好ましく、エチレン性不飽和重合性基であるのがさらに好ましい。
 また、キラル剤は、液晶化合物であってもよい。
 キラル剤が光異性化基を有する場合には、塗布、配向後に活性光線などのフォトマスク照射によって、発光波長に対応した所望のねじれ配向を形成することができるので好ましい。光異性化基としては、フォトクロッミック性を示す化合物の異性化部位、アゾ基、アゾキシ基、または、シンナモイル基が好ましい。具体的な化合物として、特開2002-80478号公報、特開2002-80851号公報、特開2002-179668号公報、特開2002-179669号公報、特開2002-179670号公報、特開2002-179681号公報、特開2002-179682号公報、特開2002-338575号公報、特開2002-338668号公報、特開2003-313189号公報、および、特開2003-313292号公報等に記載の化合物を用いることができる。
 液晶組成物における、キラル剤の含有量は、液晶化合物の含有モル量に対して0.01~200モル%が好ましく、1~30モル%がより好ましい。
 このように光学異方性層26が、面内において、一方向に沿って、光学軸30Aの向きが連続的に回転しながら変化する液晶配向パターンを有し、かつ、液晶化合物30が厚さ方向に螺旋状に旋回する構造を有すると、断面SEM画像において、一方の主面から他方の主面に延在する明部および暗部を有し、厚さ方向において、暗部が光学異方性層26の主面に対して傾斜している領域を有するものとなる。
 光学異方性層26の断面SEM画像において観察される明部および暗部は液晶化合物の光学軸の向きに由来する。なお、光学異方性層26の断面SEM画像を観察する際の測定条件は、適宜設定することができる。
 光学異方性層26の断面SEM画像において、一方の主面から他方の主面に延在する明部および暗部を有し、厚さ方向において、暗部が光学異方性層26の主面に対して傾斜している領域を有すると、屈折された光の回折効率の低下をより好適に抑制することができる。
 ここで、露光マスク10となる液晶回折素子を構成する光学異方性層26は、主面の垂線方向(法線方向)に対する暗部の角度(平均傾斜角)が、一方向に沿って、異なる領域を有するのが好ましく、漸次変化する領域を有するのがより好ましい。
 上述のような光学異方性層26が、面内方向において、液晶化合物の光学軸の向きが面内で180°回転する1周期Λが異なる領域を有し、かつ、厚さ方向のねじれ角の大きさが異なる領域を有し、かつ、液晶配向パターンの1周期Λが短い領域ほど厚さ方向のねじれ角を大きくなる構成の場合には、一方向に沿って厚さ方向に切断した断面を走査型電子顕微鏡で観察した画像において、液晶配向パターンの1周期の長さが短くなるにしたがって、主面の垂線方向に対する暗部の角度が大きくなるものとして観察される。
 面方向に厚さ方向のねじれ角が異なる構成は、液晶組成物に光反応型キラル剤を添加して、配向層上に液晶組成物を塗布した後に、領域ごとに異なる照射量の光を照射して、領域ごとに光反応型キラル剤の螺旋誘起力(HTP:Helical Twisting Power)を異ならせることで、形成することができる。
 具体的には、光学異方性層において、厚さ方向の捩じれ角が面内の領域ごとに異なる構成は、光の照射によって、戻り異性化、二量化、ならびに、異性化および二量化等を生じて、HTPが変化するキラル剤を用い、光学異方性層を形成する液晶組成物の硬化前、または、液晶組成物の硬化時、キラル剤のHTPを変化させる波長の光を、領域ごとに照射量を変えて照射することで形成できる。
 例えば、光の照射によってHTPが小さくなるキラル剤を用いることにより、光の照射によってキラル剤のHTPが低下する。ここで、領域ごとに光の照射量を変えることで、例えば、照射量が多い領域では、HTPが大きく低下し、螺旋の誘起が小さくなるのでねじれ構造のねじれ角が小さくなる。一方、照射量が少ない領域では、HTPの低下が小さいため、ねじれ構造のねじれ角は大きくなる。
 領域ごとに光の照射量を変える方法には特に限定はなく、グラデーションマスクを介して光を照射する方法、領域ごとに照射時間を変える方法、あるいは、領域ごとに照射強度を変える方法等が利用可能である。
 なお、グラデーションマスクとは、照射する光に対する透過率が面内で変化しているマスクである。
―光反応型キラル剤―
 光反応型キラル剤は、例えば、下記一般式(I)で表される化合物からなり、液晶化合物の配向構造を制御し得ると共に、光の照射により液晶化合物の螺旋ピッチ、即ち螺旋構造の捻れ力(HTP:ヘリカルツイスティングパワー)を変化させることができる特質を有する。即ち、液晶化合物、好ましくはネマチック液晶化合物に誘起する螺旋構造の捻れ力の変化を光照射(紫外線~可視光線~赤外線)によって起こさせる化合物であり、必要な部位(分子構造単位)として、カイラル部位(キラル部位)と光の照射によって構造変化を生じる部位とを有する。しかも、下記一般式(I)で表される光反応型キラル剤は、特に液晶分子のHTPを大きく変化させることができる。
 尚、前述のHTPは、液晶の螺旋構造の捻れ力、即ち、HTP=1/(ピッチ×キラル剤濃度〔質量分率〕)を表し、例えば、ある温度での液晶分子の螺旋ピッチ(螺旋構造の一周期;μm)を測定し、この値をキラル剤(キラル剤)の濃度から換算〔μm-1〕して求めることができる。光反応型キラル剤により光の照度により選択反射色を形成する場合、前述のHTPの変化率(=照射前のHTP/照射後のHTP)としては、照射後にHTPがより小さくなる場合には1.5以上が好ましく、更に2.5以上がより好ましく、照射後にHTPがより大きくなる場合には0.7以下が好ましく、更に0.4以下がより好ましい。
 次に、一般式(I)で表される化合物について説明する。
 一般式(I)
Figure JPOXMLDOC01-appb-C000001
 前述の式中、Rは、水素原子、炭素数1~15のアルコキシ基、総炭素数3~15のアクリロイルオキシアルキルオキシ基、総炭素数4~15のメタクリロイルオキシアルキルオキシ基を表す。
 前述の炭素数1~15のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ヘキシルオキシ基、ドデシルオキシ基等が挙げられ、中でも、炭素数1~12のアルコキシ基が好ましく、炭素数1~8のアルコキシ基が特に好ましい。
 前述の総炭素数3~15のアクリロイルオキシアルキルオキシ基としては、例えば、アクリロイルオキシエチルオキシ基、アクリロイルオキシブチルオキシ基、アクリロイルオキシデシルオキシ基等が挙げられ、中でも、炭素数5~13のアクリロイルオキシアルキルオキシ基が好ましく、炭素数5~11のアクリロイルオキシアルキルオキシ基が特に好ましい。
 前述の総炭素数4~15のメタクリロイルオキシアルキルオキシ基としては、例えば、メタクリロイルオキシエチルオキシ基、メタクリロイルオキシブチルオキシ基、メタクリロイルオキシデシルオキシ基等が挙げられ、中でも、炭素数6~14のメタクリロイルオキシアルキルオキシ基が好ましく、炭素数6~12のメタクリロイルオキシアルキルオキシ基が特に好ましい。
 前述の一般式(I)で表される光反応型キラル剤の分子量としては、300以上が好ましい。また、後述する液晶化合物との溶解性の高いものが好ましく、その溶解度パラメータSP値が、液晶化合物に近似するものがより好ましい。
 以下、前述の一般式(I)で表される化合物の具体例(例示化合物(1)~(15))を示すが、本発明においてはこれらに制限されるものではない。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 本発明において、光反応型キラル剤としては、例えば、下記一般式(II)で表される光反応型光学活性化合物も用いられる。
一般式(II)
Figure JPOXMLDOC01-appb-C000005
 前述の式中、Rは、水素原子、炭素数1~15のアルコキシ基、総炭素数3~15のアクリロイルオキシアルキルオキシ基、総炭素数4~15のメタクリロイルオキシアルキルオキシ基を表す。
 前述の炭素数1~15のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等が挙げられ、中でも、炭素数1~10のアルコキシ基が好ましく、炭素数1~8のアルコキシ基が特に好ましい。
 前述の総炭素数3~15のアクリロイルオキシアルキルオキシ基としては、例えば、アクリロイルオキシ基、アクリロイルオキシエチルオキシ基、アクリロイルオキシプロピルオキシ基、アクリロイルオキシヘキシルオキシ基、アクリロイルオキシブチルオキシ基、アクリロイルオキシデシルオキシ基等が挙げられ、中でも、炭素数3~13のアクリロイルオキシアルキルオキシ基が好ましく、炭素数3~11のアクリロイルオキシアルキルオキシ基が特に好ましい。
 前述の総炭素数4~15のメタクリロイルオキシアルキルオキシ基としては、例えば、メタクリロイルオキシ基、メタクリロイルオキシエチルオキシ基、メタクリロイルオキシヘキシルオキシ基等が挙げられ、中でも、炭素数4~14のメタクリロイルオキシアルキルオキシ基が好ましく、炭素数4~12のメタクリロイルオキシアルキルオキシ基が特に好ましい。
 前述の一般式(II)で表される光反応型光学活性化合物の分子量としては、300以上が好ましい。また、後述する液晶化合物との溶解性の高いものが好ましく、その溶解度パラメータSP値が、液晶化合物に近似するものがより好ましい。
 以下、前述の一般式(II)で表される光反応型光学活性化合物の具体例(例示化合物(21)~(32))を示すが、本発明においてはこれらに制限されるものではない。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 また、光反応型キラル剤は、捻れ力の温度依存性が大きいカイラル化合物など、光反応性のないキラル剤と併用することもできる。前述の光反応性のない公知のキラル剤としては、例えば、特開2000-44451号、特表平10-509726号、WO98/00428、特表2000-506873号、特表平9-506088号、Liquid Crystals(1996、21、327)、Liquid Crystals(1998、24、219)等に記載のキラル剤が挙げられる。
 露光マスク10となる液晶回折素子を構成する、断面SEM画像において、主面の垂線方向に対して暗部44が傾斜する光学異方性層は、断面SEM画像において、一方の主面から他方の主面に延在する明部および暗部が観察され、暗部が1つ以上あるいは2つ以上の角度の変曲点を有するのが好ましい。
 このような光学異方性層の一例を図8に示す。なお、図8では、明部42および暗部44を、光学異方性層26aの断面に重ねて示している。
 図8に示す光学異方性層26aは、断面SEM画像において、暗部44は、角度が変化する変曲点を、2か所、有する。すなわち、光学異方性層26は、暗部44の変曲点に応じて、厚さ方向に、領域27a、領域27bおよび領域27cの、3つの領域を有するということもできる。
 光学異方性層26aは、厚さ方向のどの位置においても、面内方向において、液晶化合物30に由来する光学軸が、図中左方向に向かって、時計回りに回転する液晶配向パターンを有する。また、液晶配向パターンの1周期は、厚さ方向に一定である。
 また、図8に示すように、液晶化合物30は、厚さ方向の下側の領域27cでは、厚さ方向に図中上側から下側に向かって時計回り(右回り)に螺旋状に捩じれるように、捩じれ配向されている。
 厚さ方向の真ん中の領域27bでは、液晶化合物30は、厚さ方向に捩じれておらず、厚さ方向に積み重ねられた液晶化合物30は、光学軸が同じ方向を向いている。すなわち、面内方向の同じ位置に存在する液晶化合物30は、光学軸が同じ方向を向いている。
 厚さ方向の上側の領域27aでは、液晶化合物30は、厚さ方向に図中上側から下側に向かって反時計回り(左回り)に螺旋状に捩じれるように捩じれ配向されている。
 すなわち、図8に示す光学異方性層26は、領域27a、領域27b、および、領域27cにおける液晶化合物30の厚さ方向の捩じれの状態がそれぞれ異なっている。
 液晶化合物30に由来する光学軸30Aが一方向に向かって連続的に回転する液晶配向パターンを有する光学異方性層において、光学異方性層の断面SEM画像における明部および暗部は、同じ向きの液晶化合物を結ぶように観察される。
 一例として、図8では、光学軸が紙面に直交する方向を向いている液晶化合物30を結ぶように暗部44が観察されることを示している。
 厚さ方向の一番下の領域27cでは、暗部44は、図中左上方に向かうように傾斜している。真ん中の領域27bでは、暗部44は厚さ方向に延在している。一番上の領域27aでは、暗部44は、図中右上方に向かうように傾斜している。
 すなわち、図8に示す光学異方性層26は、暗部44の角度が変わる、角度の変曲点を2つ有している。また、一番上の領域27aでは、暗部44は右上方に向かうように傾斜しており、一番下の領域27bでは、暗部44は左上方に向かうように傾斜している。すなわち、領域27aと領域27cとでは、暗部44の傾斜方向が異なる。
 さらに、図8に示す光学異方性層26aは、暗部44は、傾斜方向が逆方向に折り返される変曲点を1か所、有している。
 具体的には、光学異方性層26aの暗部44は、領域27aにおける傾斜方向と、領域27bにおける傾斜方向とが逆方向である。そのため、領域27aおよび領域27bの界面に位置する変曲点が、傾斜方向が逆方向に折り返される変曲点である。すなわち、光学異方性層26は、傾斜方向が逆方向に折り返される変曲点を、1か所、有している。
 また、光学異方性層26aは、領域27aおよび領域27cは、一例として厚さが等しく、かつ、上述のように、液晶化合物30の厚さ方向の捩じれの状態がそれぞれ異なっている。そのため、図1に示すように、断面SEM画像における明部42および暗部44は、略C字状をなしている。
 従って、光学異方性層26aは、暗部44の形状が厚さ方向の中心線に対して、対称である。
 本発明の液晶回折素子は、このような光学異方性層26a、すなわち、断面SEM画像において、一方の表面から他方の表面まで延在する明部42および暗部44を有し、暗部44が、1つ以上あるいは2つ以上の角度の変曲点を有することにより、回折効率の波長依存性を小さくして、波長によらず、同様の回折効率で光を回折できる。
 なお、図8に示す例では、暗部44が、2つの角度の変曲点を有する構成としたが、本発明は、これに制限はされず、暗部44が1つの角度の変曲点を有する構成であってもよいし、3つ以上の角度の変曲点を有する構成であってもよい。
 例えば、光学異方性層の暗部44が1つの角度の変曲点を有する構成の場合には、例えば、図9に示すように図8における領域27aと領域27cとからなるものであってもよいし、領域27aと領域27bとからなる構成であってもよいし、領域27bと領域27cとからなる構成であってもよい。あるいは、例えば、光学異方性層の暗部44が3つの角度の変曲点を有する構成の場合には、図8に示す領域27aと領域27cとを交互に2つずつ有する構成とすればよい。
 上述のように、図6に示すような放射状の液晶配向パターンを有する場合には、光学異方性層は、1周期Λは、中心から外側に向かって、漸次、短くなる。
 このように、光学異方性層26が、液晶配向パターンの1周期Λが、一方向に向かって、漸次、短くなる領域を有する場合には、厚さ方向に向かう液晶化合物30の螺旋状の旋回角度が、1周期Λの漸減に応じて、漸次、大きくなるのが好ましい。
 すなわち、液晶配向パターンの1周期Λが、一方向に向かって、漸次、短くなる領域を有する場合には、1周期Λの漸減に応じて、主面の垂線方向に対する暗部44の角度が、大きくなるのが好ましい。
 このような光学異方性層の例を図10に示す。
 図10に示す光学異方性層26bは、液晶配向パターンが液晶化合物30の光学軸の向きが連続的に回転しながら変化する一方向を、光学異方性層26の中心から放射状に有し、かつ、各方向において、中心から外側に向かうにしたがって、液晶配向パターンの1周期Λが漸次、短くなる構成を有する。
 また、光学異方性層26bは、断面SEM画像において、一方の表面から他方の表面に延在する明部42および暗部44の縞模様を有し、各暗部44はそれぞれ2つの変曲点を有している。また、いずれの暗部44においても、図中上側の領域における傾斜方向と、図中下側の領域における傾斜方向とが互いに逆である。すなわち、各暗部44は、傾斜方向が異なる領域を有している。
 具体的には、図10に示す光学異方性層26bは、面方向の中心より右側の部分では、図中上側の領域では、暗部44は、右方向に傾斜しており、図中下側の領域では、暗部44は、左方向に傾斜している。一方、光学異方性層26bの中心より左側の部分では、図中上側の領域では、暗部44は、左方向に傾斜しており、図中下側の領域では、暗部44は、右方向に傾斜している。
 また、光学異方性層26bは、各暗部44の一方の表面との接点と他方の表面との接点とを結んだ線が光学異方性層26bの主面の垂線方向と成す角度を角度とすると、暗部44の角度は、液晶化合物30の光学軸の向きが連続的に回転しながら変化する一方向(矢印A1、A2、A3等)に沿って漸次変化している。具体的には、図10に示す例では、中心付近における暗部44の角度は略0°であり、中心から外側に向かうにしたがって、角度が漸次大きくなっている。すなわち、図示例の光学異方性層26bは、液晶配向パターンの1周期Λが漸次、短くなるにしたがって、暗部44の角度が漸次、大きくなっている。
 なお、本発明において、暗部の角度が漸次変化するとは、角度が連続的に変化するもの、および、角度が段階的に変化するものを意図している。
 このような光学異方性層26bは、厚さ方向に3つの領域(27a、27b、27c)を有しており、それぞれの領域で、面方向の同じ位置における暗部44の傾斜角度が異なっている、ということもできる。
 ここで、図10に示す光学異方性層26bの放射状の中心部分(図10のAで示す領域部分)における断面SEM画像は、図8に示すような図となる。
 図8に示すように、中心部分において、液晶化合物30は、厚さ方向の下側の領域27cでは、厚さ方向に図中上側から下側に向かって時計回り(右回り)に捩じれるように配向されている。
 一方、厚さ方向の真ん中の領域27bでは、液晶化合物30は、厚さ方向に捩じれておらず、厚さ方向に積み重ねられた液晶化合物30は、光学軸が同じ方向を向いている。すなわち、面方向の同じ位置に存在する液晶化合物30は、光学軸が同じ方向を向いている。
 また、厚さ方向の上側の領域27aでは、液晶化合物30は、厚さ方向に図中上側から下側に向かって反時計回り(左回り)に捩じれるように配向されている。
 光学異方性層26bの放射状の中心部分において、領域27a、領域27b、および、領域27cにおける液晶化合物30の厚さ方向の捩じれの状態がそれぞれ異なっているため、図8に示すように、SEM画像における明部42および暗部44は、略C字状をなしている。
 また、図8に示す例では、領域27aの厚さと領域27cの厚さとが略同じであり、かつ、領域27aにおける液晶化合物30の厚さ方向の捩じれ角と、領域27cにおける液晶化合物30の厚さ方向の捩じれ角とが略同じである。従って、領域27aの暗部44と領域27cの暗部44とは、傾斜方向が逆で、傾斜角度が同じである。領域27bでは、液晶化合物30は厚さ方向に捩じれていないため、暗部44は傾斜していない。従って、光学異方性層26の中心部分における暗部44の角度は、略0°となる。
 すなわち、光学異方性層26bは、放射状の中心部分の断面においては、光学異方性層26bの厚さ方向の中心線に対して、明部42および暗部44の形状が対称である、ということができる。
 一方、図10に示す光学異方性層26bの放射状の端部(外側部分、図10のBで示す領域部分)における断面SEM画像は、図11に示すような図となる。
 図11に示す外側部分においては、液晶化合物30は、厚さ方向の下側の領域27cでは、厚さ方向に図中上側から下側に向かって時計回り(右回り)に捩じれるように配向されている。領域27cの外側部分では、中心部分に比べて厚さ方向の捩じれ角が大きくなっている。
 また、厚さ方向の真ん中の領域27bでも、液晶化合物30は、厚さ方向に図中上側から下側に向かって時計回り(右回り)に捩じれるように配向されている。
 また、領域27cにおける厚さ方向の捩じれ角と領域27bにおける厚さ方向の捩じれ角とは異なっている。従って、領域27cの暗部44と、領域27bの暗部44とは、傾斜方向は同じであるが、傾斜角度が異なっている。
 一方、厚さ方向の上側の領域27aでは、液晶化合物30は、厚さ方向に図中上側から下側に向かって反時計回り(左回り)に捩じれるように配向されている。従って、領域27aの暗部44は、領域27cおよび領域27bとは逆方向に傾斜する。また、領域27aの外側部分では、中心部分に比べて厚さ方向の捩じれ角が小さくなっている。そのため、領域27aにおける暗部44の傾斜角度の絶対値は、領域27cにおける暗部44の傾斜角度の絶対値よりも小さい。
 従って、光学異方性層26bの外側部分における暗部44の角度は、0°ではない、或る値となる。
 すなわち、光学異方性層26bは、放射状の端部の断面において光学異方性層26bの厚さ方向の中心線に対して、明部42および暗部44の形状が非対称である、ということができる。
 図10に示す例では、光学異方性層26bの領域27a、領域27bおよび領域27cは、中心から外側に向かうにしたがって、液晶配向パターンの1周期Λが漸次、短くなる構成を有している。また、領域27cでは、厚さ方向の右回りの捩じれが、中心から外側に向かうにしたがって大きくなり、領域27bでは、厚さ方向の右回りの捩じれが、中心から外側に向かうにしたがって大きくなり、領域27aでは、厚さ方向の左回りの捩じれが、中心から外側に向かうにしたがって小さくなる。
 これは、各領域において、中心における厚さ方向の捩じれに対して、外側に向かうにしたがって、右回りの捩じれを付与したものということができる。このような構成により、光学異方性層26bは、図10に示すように、放射状の中心部分の断面において光学異方性層26bの厚さ方向の中心線に対して、明部42および暗部44の形状が対称であり、放射状の端部の断面において光学異方性層26bの厚さ方向の中心線に対して、明部42および暗部44の形状が非対称である構成となる。
 光学異方性層がこのような構成を有することで、回折角度が大きくなる領域においても回折効率の低下を抑制することができる。これにより、回折角度によらず回折効率が高く、透過した光の光量が均一になる液晶回折素子とすることができ、また、回折効率の波長依存性を小さくして、波長によらず、同様の回折効率で光を回折できる。
 ここで、図10に示す例では、光学異方性層26bは、各暗部44の傾斜角度が変化する変曲点を2つ有する構成としたがこれに限定はされず、各暗部44は、1つの変曲点を有する構成であってもよいし、3つ以上の変曲点を有する構成としてもよい。
 また、図10に示す例では、光学異方性層26bは、放射状の中心部分の断面において光学異方性層26bの厚さ方向の中心線に対して、明部42および暗部44の形状が対称であり、放射状の端部の断面において光学異方性層26bの厚さ方向の中心線に対して、明部42および暗部44の形状が非対称である。すなわち、この光学異方性層26bは、面方向において、厚さ方向の中心線に対して、明部と暗部の形状が対称な領域と、非対称な領域とが混在する。
 しかしながら、本発明は、これに制限はされず、光学異方性層が、面方向の全域で、厚さ方向の中心線に対して非対称であってもよい。
 上述した露光マスク10は、液晶化合物30に由来する光学軸30Aの向きが、少なくとも一方向に沿って連続的に回転しながら変化する光学異方性層を有する、液晶回折素子である。
 しかしながら、本発明の露光方法において、露光マスクは、液晶回折素子を用いるものに制限はされない。すなわち、本発明の露光方法では、光学軸の向きが面内の少なくとも一方向に沿って連続的に変化する配向パターンを有するものであれば、公知の各種の部材が露光マスクとして利用可能である。
 一例として、メタサーフェス等が例示される。
 上述のように、本発明の露光方法は、基板16の上に形成した、光配向性材料を含む感光性の塗膜14を、例えば、液晶回折素子である光学異方性層26を有する露光マスク10を用いて露光する。本発明の露光方法は、これにより、露光マスク10すなわち光学異方性層26が有する液晶配向パターンを、配向パターンとして塗膜14に形成して、基板16の上に光配向層を作製する。
 このようにして作製した光配向層に、例えば、上述した光学異方性層26等と同様にして、液晶組成物を用いて光学異方性層を形成することにより、透過型の液晶回折素子を製造できる。
 あるいは、液晶組成物にキラル剤を添加して、光配向層に液晶組成物を塗布した後、加熱して液晶化合物を厚さ方向に螺旋状に旋回して配向することにより、特定の波長域の特定の円偏光を選択的に反射するコレステリック液晶層を形成して、反射型の液晶回折素子を製造できる。
 以上、本発明の光配向層の露光方法について詳細に説明したが、本発明は上述の例に制限はされず、本発明の要旨を逸脱しない範囲において、各種の改良および変更等を行ってもよいのは、もちろんである。
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。
 以下の実施例に示す材料、試薬、使用量、物質量、割合、処理内容、および、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
 [比較例1]
 <露光マスクの作製>
(支持体)
 支持体として、ガラス基板を用意した。
(塗膜の形成)
 支持体上に、下記の配向層形成用塗布液をスピンコートで塗布した。この配向層形成用塗布液の塗膜が形成された支持体を60℃のホットプレート上で60秒間乾燥し、配向層形成用塗布液の塗膜を形成した。
  配向層形成用塗布液
――――――――――――――――――――――――――――――――
 光配向用素材A                 1.00質量部
 水                      16.00質量部
 ブトキシエタノール              42.00質量部
 プロピレングリコールモノメチルエーテル    42.00質量部
――――――――――――――――――――――――――――――――
-光配向用素材A-
Figure JPOXMLDOC01-appb-C000009
(塗膜の露光(配向層の形成))
 図7に示す露光装置を用いて塗膜を露光して、図6に示すような、光学軸の向きが連続的に回転しながら変化する一方向を、中心から外側に向かう放射状に有する配向パターン(同心円状の配向パターン)を有する配向層P-1を形成した。以下、この配向パターンを、放射状の配向パターンともいう。
 露光装置において、レーザとして波長(325nm)のレーザ光を出射するものを用いた。干渉光による露光量を1000mJ/cm2とした。なお、図7に示す露光装置を用いることによって、配向パターンの1周期が、中心から外方向に向かって、漸次、短くなるようにした。
(光学異方性層の形成)
 第1の光学異方性層を形成する液晶組成物として、下記の組成物A-1を調製した。
  組成物A-1
――――――――――――――――――――――――――――――――
 液晶化合物L-1              100.00質量部
 重合開始剤(BASF社製、Irgacure OXE01)
                         1.00質量部
 レベリング剤T-1               0.08質量部
 メチルエチルケトン            1050.00質量部
――――――――――――――――――――――――――――――――
  液晶化合物L-1
Figure JPOXMLDOC01-appb-C000010
  レベリング剤T-1
Figure JPOXMLDOC01-appb-C000011
 光学異方性層は、組成物A-1を配向層P-1上に多層塗布することにより形成した。多層塗布とは、先ず配向層の上に1層目の組成物A-1を塗布、加熱後に紫外線硬化を行って液晶固定化層を作製した後、2層目以降はその液晶固定化層に重ね塗りして塗布を行い、同様に加熱後に紫外線硬化を行うことを繰り返すことを指す。多層塗布により形成することにより、光学異方性層の総厚が厚くなった場合でも配向層の配向方向が光学異方性層の下面から上面にわたって反映される。
 先ず1層目は、配向層P-1上に下記の組成物A-1を塗布して、塗膜をホットプレート上で80℃に加熱し、その後、窒素雰囲気下で高圧水銀灯を用いて波長365nmの紫外線を300mJ/cm2の照射量で塗膜に照射することにより、液晶化合物の配向を固定化した。
 2層目以降は、この液晶固定化層に重ね塗りして、上記と同じ条件で加熱後に紫外線硬化を行って液晶固定化層を作製した。このようにして、総厚が所望の膜厚になるまで重ね塗りを繰り返し、光学異方性層を形成して、露光マスクとなる液晶回折素子を作製した。
 なお、組成物A-1の硬化層の複素屈折率Δnは、組成物A-1を別途に用意したリターデーション測定用の配向層付き支持体上に塗布し、液晶化合物のダイレクタが基材に水平となるよう配向させた後に紫外線照射して固定化して得た液晶固定化層(硬化層)のリタ―デーション値および膜厚を測定して求めた。リタ―デーション値を膜厚で除算することによりΔnを算出できる。リタ―デーション値はAxometrix 社のAxoscanを用いて目的の波長で測定し、膜厚はSEMを用いて測定した。
 光学異方性層は、最終的に液晶のΔn365×厚さ(Re(365))が183nmになり、かつ、図6に示すような放射状(同心円状)の周期的な配向表面になっていることを偏光顕微鏡で確認した。
 なお、この光学異方性層の液晶配向パターンにおいて、液晶化合物の光学軸が180°回転する1周期は、中心から約3mmの距離での1周期が20μm、中心から25mmの距離での1周期が2μmであり、外方向に向かって周期が短くなる液晶配向パターンであった。また、光学異方性層の厚さ方向のねじれ角は~0°であった。
 以下、特に記載が無い場合には、『Δn×厚さ』(『Δn×d』)等の測定は、同様に行った。
 作製した光学異方性層の断面画像をSEMで観察した断面SEM画像では、明部および暗部のパターンが観察された。SEMで観察した断面画像において、暗部のパターンは主面に対し、法線方向に延在していた(暗部が主面に対して傾斜していなかった)。
 <液晶回折素子の作製>
 (塗膜の形成)
 上述した露光マスク(液晶回折素子)の作製と同様にして、ガラス基板上に配向層形成用塗布液の塗膜を形成した。
(塗膜の露光(光配向層の形成))
 図1に示す露光装置を用いて、上記で作製した露光マスク越しに塗膜を露光して、同心円状の配向パターンを有する光配向層PA-1を形成した。
 露光装置は、波長(365nm)の平行光を射出する、プロキシミティ露光装置を用いた。露光量を1000mJ/cm2とした。なお、露光マスクへは直線偏光(楕円率<0.1)を入射した。
(光学異方性層の形成)第1の光学異方性層を形成する液晶組成物として、下記の組成物B-1を調製した。
  組成物B-1
――――――――――――――――――――――――――――――――
 液晶化合物L-1              100.00質量部
 カイラル剤C-1                0.32質量部
 重合開始剤(BASF社製、Irgacure OXE01)
                         1.00質量部
 レベリング剤T-1               0.08質量部
 メチルエチルケトン            1050.00質量部
――――――――――――――――――――――――――――――――
  カイラル剤C-1
Figure JPOXMLDOC01-appb-C000012
  レベリング剤T-1
Figure JPOXMLDOC01-appb-C000013
 第1の光学異方性層は、組成物B-1を光配向層PA-1上に多層塗布することにより形成した。多層塗布とは、先ず配向層の上に1層目の組成物B-1を塗布、加熱後に紫外線硬化を行って液晶固定化層を作製した後、2層目以降はその液晶固定化層に重ね塗りして塗布を行い、同様に加熱後に紫外線硬化を行うことを繰り返すことを指す。多層塗布により形成することにより、光学異方性層の総厚が厚くなった場合でも配向層の配向方向が光学異方性層の下面から上面にわたって反映される。
 先ず1層目は、光配向層PA-1上に下記の組成物B-1を塗布して、塗膜をホットプレート上で80℃に加熱し、その後、窒素雰囲気下で高圧水銀灯を用いて波長365nmの紫外線を300mJ/cm2の照射量で塗膜に照射することにより、液晶化合物の配向を固定化した。
 2層目以降は、この液晶固定化層に重ね塗りして、上記と同じ条件で加熱後に紫外線硬化を行って液晶固定化層を作製した。このようにして、総厚が所望の膜厚になるまで重ね塗りを繰り返し、第1の光学異方性層を形成して、液晶回折素子を作製した。
 なお、組成物B-1の硬化層の複素屈折率Δnは、組成物B-1を別途に用意したリターデーション測定用の配向層付き支持体上に塗布し、液晶化合物のダイレクタが基材に水平となるよう配向させた後に紫外線照射して固定化して得た液晶固定化層(硬化層)のリタ―デーション値および膜厚を測定して求めた。リタ―デーション値を膜厚で除算することによりΔnを算出できる。リタ―デーション値はAxometrix 社のAxoscanを用いて目的の波長で測定し、膜厚はSEMを用いて測定した。
 第1の光学異方性層は、最終的に液晶のΔn550×厚さ(Re(550))が275nmになり、かつ、図6に示すような放射状(同心円状)の周期的な配向表面になっていることを偏光顕微鏡で確認した。
 なお、この第1の光学異方性層の液晶配向パターンにおいて、液晶化合物の光学軸が180°回転する1周期は、中心から約3mmの距離での1周期が10μm、中心から25mmの距離での1周期が1μmであり、外方向に向かって周期が短くなる液晶配向パターンであった。また、第1の光学異方性層の厚さ方向のねじれ角は、左回りに70°(-70°)であった。
 第2の光学異方性層を形成する液晶組成物として、下記の組成物B-2を調製した。
  組成物B-2
――――――――――――――――――――――――――――――――
 液晶化合物L-1              100.00質量部
 カイラル剤C-2                0.18質量部
 重合開始剤(BASF社製、Irgacure OXE01)
                         1.00質量部
 レベリング剤T-1               0.08質量部
 メチルエチルケトン            1050.00質量部
――――――――――――――――――――――――――――――――
  カイラル剤C-2
Figure JPOXMLDOC01-appb-C000014
 組成物B-2を用い、光学異方性層の膜厚を調節した以外は、第1の光学異方性層と同様にして第2の光学異方性層を形成した。
 第2の光学異方性層は、最終的に液晶のΔn550×厚さ(Re(550))が275nmになり、かつ、図6に示すような放射状(同心円状)の周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、この第2の光学異方性層の液晶配向パターンは、外方向に向かって周期が短くなる液晶配向パターンであった。また、光学異方性層の厚さ方向のねじれ角は、右回りに70°であった。
 [実施例1]
 <露光マスクの作製>
(基板の準備、および、塗膜の形成)
 比較例1と同様のガラス板を基板として、比較例1と同様に配向層形成用塗布液の塗膜を形成した。
(塗膜の露光(光配向層の形成))
 比較例1において、露光に使用するレンズの焦点距離、レンズと配向層との距離を変更した以外は、同様にして塗膜を露光して、同心円状の配向パターンを有する光配向層P-2を形成した。
(光学異方性層の形成)
 以下に示す手順に沿って第1および第2の光学異方性層を形成し、露光マスクとなる液晶回折素子を作製した。
 第1の光学異方性層を形成する液晶組成物として、下記の組成物A-2を調製した。
  組成物A-2
――――――――――――――――――――――――――――――――
 液晶化合物L-1              100.00質量部
 カイラル剤C-1                0.33質量部
  重合開始剤(BASF社製、Irgacure OXE01)
                         1.00質量部
 レベリング剤T-1               0.20質量部
 メチルエチルケトン            2000.00質量部
――――――――――――――――――――――――――――――――
 第1の光学異方性層は、組成物A-2を配向層P-2上に多層塗布することにより形成した。
 第1の光学異方性層は、最終的に液晶のΔn365×厚さ(Re(365))が183nmになり、かつ、図6に示すような同心円状(放射状)の周期的な配向表面になっていることを偏光顕微鏡で確認した。
 なお、この光学異方性層の液晶配向パターンにおいて、液晶化合物の光学軸が180°回転する1周期は、中心から約3mmの距離での1周期が10μm、中心から25mmの距離での1周期が1μmであり、外方向に向かって1周期が短くなる液晶配向パターンであった。また、光学異方性層の厚さ方向のねじれ角は左回りに36°(-36°)であった。
 第2の光学異方性層を形成する液晶組成物として、下記の組成物A-3を調製した。
  組成物A-3
――――――――――――――――――――――――――――――――
 液晶化合物L-1              100.00質量部
 カイラル剤C-2                0.19質量部
 重合開始剤(BASF社製、Irgacure OXE01)
                         1.00質量部
 レベリング剤T-1               0.20質量部
 メチルエチルケトン            2000.00質量部
――――――――――――――――――――――――――――――――
 第2の光学異方性層は、組成物A-3を第1の光学異方性層上に多層塗布することにより形成した。
 第2の光学異方性層は、最終的に液晶のΔn365×厚さ(Re(365))が183nmになり、かつ、図6に示すような同心円状(放射状)の周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、この光学異方性層の液晶配向パターンにおいて、液晶化合物の光学軸が180°回転する1周期は、中心から約3mmの距離での1周期が10μm、中心から25mmの距離での1周期が1μmであり、外方向に向かって周期が短くなる液晶配向パターンであった。また、光学異方性層の厚さ方向のねじれ角は右回りに36°であった。
 なお、第1の光学異方性層および第2の光学異方性層は、2層を合わせた位相差が1/4波長(λ/4)となるようにした。
 作製した光学異方性層の断面をSEMで観察した断面SEM画像では、明部および暗部のパターンが観察された。また、SEMで観察した断面画像において、暗部のパターンは主面に対し、暗部が傾斜していた。また、暗部の傾斜方向は第1の光学異方性層と第2の光学異方性層で異なっており、暗部が1以上の確度の変曲点を有することを確認した。
 なお、作製した光学異方性層は、厚さ方向の中心線に対して、明部および暗部の形状が対称な領域を有していた。
 <液晶回折素子の作製>
 (光配向層の形成)
 上記露光マスクの作製と同様にして、ガラス基板上に配向層(光配向層)を形成した。
(光配向層の露光)
 図1に示す露光装置を用いて、上記作製した露光マスク越しに光配向層を露光して、同心円状の配向パターンを有する光配向層PA-2を形成した。
 露光装置は、波長(365nm)の平行光を射出する、プロキシミティ露光装置を用いた。露光量を1000mJ/cm2とした。なお、露光マスクへは円偏光(楕円率0.9~1.1)を入射した。
(光学異方性層の形成)
 比較例1の液晶回折素子の作製と同様にして、光学異方性層を形成した。
 第1の光学異方性層は、最終的に液晶のΔn550×厚さ(Re(550))が275nmになり、かつ、図6に示すような同心円状(放射状)の周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、この光学異方性層の液晶配向パターンにおいて、液晶化合物の光学軸が180°回転する1周期は、中心から約3mmの距離での1周期が10μm、中心から25mmの距離での1周期が1μmであり、外方向に向かって周期が短くなる液晶配向パターンであった。また、光学異方性層の厚さ方向のねじれ角は、左回りに70°(-70°)であった。
 第2の光学異方性層は、最終的に液晶のΔn550×厚さ(Re(550))が275nmになり、かつ、図6に示すような同心円状(放射状)の周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、この光学異方性層の液晶配向パターンは、外方向に向かって周期が短くなる液晶配向パターンであった。また、光学異方性層の厚さ方向のねじれ角は、右回りに70°であった。
[評価]
<露光マスクの評価>
 作製した露光マスクから出射した回折光の0次光と1次光の強度比(0次光/1次光)を評価した。測定は、出力中心波長が365nmの平行光源を用い、作製した露光マスクに光を垂直入射させて行った。この際に、露光マスクから出射した回折光の0次光と1次光の光強度を光検出器で測定した。
 測定した0次光と1次光の光強度を用い、0次光と1次光の強度比(0次光/1次光)を算出した。なお、測定は、光源の波長に対応する円偏光板に光を垂直入射させて、円偏光にした後、作製した露光マスクに光を入射して行った。
 なお、比較例は、液晶化合物の光学軸が180°回転する1周期が2μmの位置、実施例は、同1μmの位置での強度比を評価した。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000015
<液晶回折素子の配向パターンの評価>
 作製した液晶回折素子の偏光顕微鏡画像を評価した。なお、液晶化合物の光学軸が180°回転する1周期が1μmでの液晶配向パターンを評価した。
 比較例1で作製した液晶回折素子の液晶配向パターンは偏光顕微鏡で観察したときの明暗線のパターンに歪みが見られた。これに対して、実施例1で作製した液晶回折素子は明暗線の歪みが改善されていた。
<回折効率の評価>
 作製した液晶回折素子に正面(法線に対する角度0°の方向)から光を入射した際における、出射光の、回折効率を評価した。
 具体的には、光源から532nmに出力中心波長を持つレーザー光を照射し、作製した液晶回折素子に垂直入射させた。
 出射光のうち、液晶回折素子からの所望の方向に回折した回折光(1次光)とその他方向へ出射した0次光(入射光と同一方向へ出射)、および、-1次光(0次光に対する1次光の回折角度をθとしたときに、-θ方向へ回折する光)の光強度を光検出器で測定し、各波長における回折効率を下記式で算出した。
 なお、液晶回折素子の評価において、液晶化合物の光学軸が180°回転する1周期が1μmの箇所に円偏光を入射して評価を行った。
  回折効率=1次光/(1次光+0次光+(-1次光))
 その結果、比較例1に対し、実施例1で作製した液晶回折素子は5%以上高い回折効率が得られた。
 以上の結果より、本発明の効果は、明らかである。
  10 露光マスク
  12 光源
  14 塗膜
  16 基板
  20 支持体
  24 配向層
  26,26a,26b 光学異方性層
  30 液晶化合物
  30A 光学軸
  42 明部
  44 暗部
  60 露光装置
  62 レーザ
  64 光源
  65 λ/2板
  68 偏光ビームスプリッタ
  70A,70B ミラー
  72A,72B λ/4板
  80 露光装置
  82 レーザ
  84 光源
  86,94 偏光ビームスプリッタ
  90A,90B ミラー
  92 レンズ
  96 λ/4板

Claims (14)

  1.  露光マスクと、光配向性基を有する化合物を含む塗膜を有する基板とを、前記露光マスクと前記塗膜とを対面して配置し、前記化合物が感光性を有する光を前記露光マスク側から照射し、前記塗膜を露光して、配向パターンを形成する、露光工程を含み、
     前記光は、楕円率が0.7~1.3の円偏光であり、
     前記露光マスクは、面内の少なくとも一方向に沿って光学軸の向きが連続的に回転しながら変化している配向パターンを有する偏光回折素子であり、
     前記露光工程は、前記露光マスクで回折された前記光の0次光と1次光とで前記塗膜を露光するものであり、さらに、
     前記1次光に対する前記0次光の強度比が0.5~2である、光配向層の露光方法。
  2.  前記0次光および前記1次光は、楕円率が0.6~2の円偏光であり、かつ、
     前記0次光と前記1次光とは、逆の旋回方向を有する円偏光である、請求項1に記載の光配向層の露光方法。
  3.  前記配向パターンにおいて、前記光学軸の向きが面内の一方向に沿って180°回転する長さを1周期とした際に、前記露光マスクおよび前記露光工程を適用された前記塗膜が、前記露光マスクの前記1周期の長さに対する前記塗膜の前記1周期の長さの比が0.7~1.5である領域をそれぞれ有する、請求項1または2に記載の光配向層の露光方法。
  4.  前記露光マスクの前記配向パターンにおいて、前記光学軸の向きが面内で180°回転する長さを1周期とした際に、前記露光工程を適用された前記塗膜は、前記1周期が5μm以下の領域を有する、請求項1~3のいずれか1項に記載の光配向層の露光方法。
  5.  前記露光マスクが、液晶化合物を含む液晶組成物を用いて形成された光学異方性層を有する液晶回折素子であって、
     前記光学異方性層は、前記液晶化合物に由来する光学軸の向きが、面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有する、請求項1~4のいずれか1項に記載の光配向層の露光方法。
  6.  前記光学異方性層は、前記一方向に沿って厚さ方向に切断した断面を走査型電子顕微鏡で観察した画像において、一方の主面から他方の主面に延在する明部と暗部とを有し、前記暗部が、主面に対して傾斜している領域を有する、請求項5に記載の光配向層の露光方法。
  7.  前記光学異方性層の主面の垂線方向に対する前記暗部の角度が、前記光学異方性層の厚さ方向において異なる領域を有する、請求項6に記載の光配向層の露光方法。
  8.  前記光学異方性層は、前記暗部が1以上の角度の変曲点を有する、請求項6または7に記載の光配向層の露光方法。
  9.  前記暗部が2以上の角度の変曲点を有する、請求項8に記載の光配向層の露光方法。
  10.  前記光学軸の向きが面内の一方向に沿って180°回転する長さを1周期とした際に、前記光学異方性層は、前記液晶配向パターンにおける前記一方向に沿って前記1周期が短くなる領域を有し、
     前記光学異方性層は、前記1周期が短くなるにしたがって、主面の垂線方向に対する前記暗部の角度が大きくなる領域を有する、請求項6~9のいずれか1項に記載の光配向層の露光方法。
  11.  前記光学異方性層は、厚さ方向の中心線に対して、前記明部および前記暗部の形状が対称な領域を有する、請求項6~10のいずれか1項に記載の光配向層の露光方法。
  12.  前記光学異方性層は、厚さ方向の中心線に対して、前記明部および前記暗部の形状が非対称な領域を有する、請求項6~11のいずれか1項に記載の光配向層の露光方法。
  13.  前記露光マスクの前記配向パターンが、前記面内の少なくとも一方向に沿って光学軸の向きが連続的に回転しながら変化している前記一方向を、中心から外側に向かう放射状に有するパターンである、請求項1~12のいずれか1項に記載の光配向層の露光方法。
  14.  請求項1~13のいずれか1項に記載の光配向層の露光方法を用いて製造された、光配向層。
PCT/JP2022/017175 2021-04-12 2022-04-06 光配向層の露光方法 WO2022220184A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023514623A JPWO2022220184A1 (ja) 2021-04-12 2022-04-06
US18/485,071 US20240045335A1 (en) 2021-04-12 2023-10-11 Exposure method of photoalignment layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021067262 2021-04-12
JP2021-067262 2021-04-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/485,071 Continuation US20240045335A1 (en) 2021-04-12 2023-10-11 Exposure method of photoalignment layer

Publications (1)

Publication Number Publication Date
WO2022220184A1 true WO2022220184A1 (ja) 2022-10-20

Family

ID=83639735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017175 WO2022220184A1 (ja) 2021-04-12 2022-04-06 光配向層の露光方法

Country Status (3)

Country Link
US (1) US20240045335A1 (ja)
JP (1) JPWO2022220184A1 (ja)
WO (1) WO2022220184A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181539A1 (ja) * 2013-05-08 2014-11-13 カラーリンク・ジャパン 株式会社 光学装置
JP2017522601A (ja) * 2014-07-31 2017-08-10 ノース・キャロライナ・ステイト・ユニヴァーシティ ブラッグ液晶偏光格子
US20170373459A1 (en) * 2016-06-27 2017-12-28 University Of Central Florida Research Foundation, Inc. Volume polarization grating, methods of making, and applications
WO2019189675A1 (ja) * 2018-03-29 2019-10-03 富士フイルム株式会社 光偏向装置および光学装置
WO2020022496A1 (ja) * 2018-07-27 2020-01-30 富士フイルム株式会社 光学素子、光配向パターンの形成方法および光学素子の製造方法
WO2020066429A1 (ja) * 2018-09-28 2020-04-02 富士フイルム株式会社 光学素子および光偏向装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181539A1 (ja) * 2013-05-08 2014-11-13 カラーリンク・ジャパン 株式会社 光学装置
JP2017522601A (ja) * 2014-07-31 2017-08-10 ノース・キャロライナ・ステイト・ユニヴァーシティ ブラッグ液晶偏光格子
US20170373459A1 (en) * 2016-06-27 2017-12-28 University Of Central Florida Research Foundation, Inc. Volume polarization grating, methods of making, and applications
WO2019189675A1 (ja) * 2018-03-29 2019-10-03 富士フイルム株式会社 光偏向装置および光学装置
WO2020022496A1 (ja) * 2018-07-27 2020-01-30 富士フイルム株式会社 光学素子、光配向パターンの形成方法および光学素子の製造方法
WO2020066429A1 (ja) * 2018-09-28 2020-04-02 富士フイルム株式会社 光学素子および光偏向装置

Also Published As

Publication number Publication date
JPWO2022220184A1 (ja) 2022-10-20
US20240045335A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
JP7397954B2 (ja) 光学素子および光偏向装置
WO2019221294A1 (ja) 光学素子
WO2019093228A1 (ja) 光学素子
WO2020022513A1 (ja) 光学素子の製造方法および光学素子
JP7174041B2 (ja) 光照射装置およびセンサー
JP7492001B2 (ja) 透過型液晶回折素子
WO2020230700A1 (ja) 光学素子、波長選択フィルタおよびセンサー
WO2020022504A1 (ja) 光学素子の製造方法および光学素子
WO2022070799A1 (ja) 透過型液晶回折素子
JP7196290B2 (ja) 液晶回折素子および積層回折素子
WO2021182625A1 (ja) 液晶層の製造方法
WO2022220184A1 (ja) 光配向層の露光方法
WO2022220185A1 (ja) 光配向層の露光方法
WO2022264908A1 (ja) 透過型液晶回折素子
JP7392160B2 (ja) 透過型液晶回折素子
WO2023100916A1 (ja) 光学素子および光学センサー
WO2022211026A1 (ja) ビームコンバイナ、配向膜の形成方法、および、光学素子の製造方法
WO2022239858A1 (ja) 光学素子および光学センサー
WO2021256413A1 (ja) 光学異方性膜、光学素子、光学システム
WO2023127537A1 (ja) 積層体、光学素子、導光素子
JP7465968B2 (ja) 光学素子、導光素子および液晶組成物
WO2023085398A1 (ja) 光学素子、および、画像表示装置
WO2023101014A1 (ja) ビームコンバイナ、配向膜の形成方法、および、光学素子の製造方法
WO2024057917A1 (ja) 光学素子および光学センサー
WO2022239835A1 (ja) 光学素子、画像表示装置、ヘッドマウントディスプレイ、センシング装置、アイトラッキング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788109

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023514623

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22788109

Country of ref document: EP

Kind code of ref document: A1