WO2022239835A1 - 光学素子、画像表示装置、ヘッドマウントディスプレイ、センシング装置、アイトラッキング装置 - Google Patents

光学素子、画像表示装置、ヘッドマウントディスプレイ、センシング装置、アイトラッキング装置 Download PDF

Info

Publication number
WO2022239835A1
WO2022239835A1 PCT/JP2022/020065 JP2022020065W WO2022239835A1 WO 2022239835 A1 WO2022239835 A1 WO 2022239835A1 JP 2022020065 W JP2022020065 W JP 2022020065W WO 2022239835 A1 WO2022239835 A1 WO 2022239835A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
cholesteric liquid
layer
reflective layer
optical element
Prior art date
Application number
PCT/JP2022/020065
Other languages
English (en)
French (fr)
Inventor
寛 佐藤
之人 齊藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023521245A priority Critical patent/JPWO2022239835A1/ja
Priority to CN202280033817.1A priority patent/CN117280258A/zh
Publication of WO2022239835A1 publication Critical patent/WO2022239835A1/ja
Priority to US18/497,465 priority patent/US20240085607A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to optical elements, image display devices, head-mounted displays, sensing devices, and eye tracking devices.
  • a layer with a fixed cholesteric liquid crystal phase (hereinafter also referred to as a "cholesteric liquid crystal layer”) is known as a layer that selectively reflects either right-handed circularly polarized light or left-handed circularly polarized light in a specific wavelength range.
  • An optical element is known in which the orientation of the cholesteric liquid crystal layer is finely controlled so that the reflected light is obliquely reflected instead of specularly reflected (for example, Patent Document 1).
  • Such optical elements are required to have more selective reflection characteristics, and in particular, to suppress the generation of side lobes.
  • the sidelobe means the portion S where the reflectance is relatively large at wavelengths near the outside of the reflection wavelength band B, as shown in FIG. When such side lobes occur, light of wavelengths that should not be reflected is reflected, which is undesirable.
  • Another object of the present invention is to provide an optical element that suppresses generation of side lobes and has high reflectance. Another object of the present invention is to provide an image display device, a head mounted display, a sensing device, and an eye tracking device.
  • a reflective layer pair Arranged between a reflective layer pair, which is a combination of two reflective layers in which the circularly polarized light to be reflected has the same rotation direction and at least part of the reflection wavelength band overlaps, and the reflective layer of the reflective layer pair
  • An optical element comprising at least one set of a retardation layer and the reflective layer includes a cholesteric liquid crystal layer in which the cholesteric liquid crystal phase is fixed;
  • the cholesteric liquid crystal layer has a liquid crystal alignment pattern in which the orientation of the optic axis derived from the liquid crystal compound changes while continuously rotating along at least one in-plane direction,
  • a depth position corresponding to 10% of the total helical pitch number of the reflective layer from one surface to the other surface side of the reflective layer is defined as a depth position X, which corresponds to 90% of the total helical pitch number of the reflective layer.
  • Depth position Y is the depth position Y
  • the region from one surface to depth position X is the first region
  • the region from depth position X to depth position Y is the second region
  • from depth position Y to the other wherein at least one of the birefringence in the first region and the third region is smaller than the birefringence in the second region when the region to the surface of the optical element is defined as the third region.
  • the reflective layer includes a plurality of cholesteric liquid crystal layers;
  • the rotation directions of the optic axes derived from the liquid crystal compounds in the liquid crystal alignment patterns of the plurality of cholesteric liquid crystal layers contained in one of the two reflective layers are the same,
  • the optical system according to [1], wherein the rotation directions of the optic axes derived from the liquid crystal compounds in the liquid crystal orientation patterns of the plurality of cholesteric liquid crystal layers contained in the other of the two reflective layers are the same. element.
  • the reflective layer includes a plurality of cholesteric liquid crystal layers formed from compositions containing different liquid crystal compounds; any one of [1] to [6], wherein the birefringence of the cholesteric liquid crystal layer gradually decreases from the cholesteric liquid crystal layer positioned at the center of the film thickness of the reflective layer toward at least one surface side of the reflective layer; Optical element as described.
  • the optical element according to [9] which has a region in which the average tilt angle of the dark portion gradually changes along one direction as the length of one period in the liquid crystal alignment pattern becomes shorter.
  • [13] including a plurality of reflective layer pairs The optical element according to any one of [1] to [12], wherein the selective reflection central wavelengths of the reflective layers constituting the reflective layer pair are different between different reflective layer pairs.
  • the optical element according to any one of [13].
  • a head-mounted display including the image display device according to [15].
  • a sensing device comprising the optical element according to any one of [1] to [14].
  • An eye tracking device including the optical element according to any one of [1] to [14].
  • an optical element that suppresses generation of side lobes and has high reflectance.
  • an image display device a head mounted display, a sensing device, and an eye tracking device can also be provided.
  • FIG. 1 is a graph showing typical reflectance characteristics of a cholesteric liquid crystal layer.
  • FIG. 2 is a side view of an example of an optical element.
  • FIG. 3 is a cross-sectional view of the first cholesteric liquid crystal layer.
  • FIG. 4 shows a plan view of the first cholesteric liquid crystal layer shown in FIG.
  • FIG. 5 is a cross-sectional view of the first reflective layer for explaining requirement X.
  • FIG. FIG. 6 is a plan view of another example of a cholesteric liquid crystal layer.
  • FIG. 7 is a cross-sectional view of another embodiment of a cholesteric liquid crystal layer.
  • FIG. 8 is a cross-sectional view of another embodiment of a cholesteric liquid crystal layer.
  • FIG. 9 is a conceptual diagram of an example of an exposure apparatus that exposes an alignment film.
  • FIG. 10 is a conceptual diagram of an example of an image display device.
  • a numerical range represented by “to” means a range including the numerical values before and after “to” as lower and upper limits.
  • a single substance corresponding to each component may be used alone, or two or more substances may be used in combination.
  • the content of the component refers to the total content of the substances used in combination unless otherwise specified.
  • (meth)acrylate means "either or both of acrylate and methacrylate”.
  • visible light is light with a wavelength visible to the human eye among electromagnetic waves, and indicates light in the wavelength range of 380 to 780 nm.
  • Invisible light is light in the wavelength range below 380 nm and the wavelength range above 780 nm.
  • light in the wavelength range of 420 to 490 nm is blue light
  • light in the wavelength range of 495 to 570 nm is green light
  • wavelength range of 620 to 750 nm. is red light.
  • the birefringence of the cholesteric liquid crystal layer and each region represents the birefringence at a wavelength of 550 nm.
  • the reflection wavelength band means the wavelength range of circularly polarized light that is selectively reflected from the cholesteric liquid crystal layer.
  • a feature of the optical element of the present invention is that the reflective layer has regions with different birefringence in the film thickness direction and uses two reflective layers and a retardation layer that reflect the same circularly polarized light. . Since the reflective layer has regions with different birefringences in the film thickness direction, the reflected lights interfere with each other and weaken each other, resulting in a reduction in side lobes.
  • a retardation layer is placed between two reflective layers that reflect the same circularly polarized light, and the other circularly polarized light incident on the optical element is converted into reflected circularly polarized light and reflected, thereby increasing the reflectance. ing.
  • FIG. 2 shows a side view conceptually showing an example of the optical element of the present invention.
  • the optical element 10 includes a first reflective layer 12 , a retardation layer 16 and a second reflective layer 14 .
  • the first reflective layer 12 includes three cholesteric liquid crystal layers, a first cholesteric liquid crystal layer 20 , a second cholesteric liquid crystal layer 22 and a third cholesteric liquid crystal layer 24 .
  • the second reflective layer 14 includes three cholesteric liquid crystal layers, a fourth cholesteric liquid crystal layer 30 , a fifth cholesteric liquid crystal layer 32 and a sixth cholesteric liquid crystal layer 34 .
  • the rotating direction of the circularly polarized light reflected by the first reflective layer 12 and the rotating direction of the circularly polarized light reflected by the second reflective layer 14 are the same.
  • the reflection wavelength band of the first reflection layer 12 and the reflection wavelength band of the second reflection layer 14 overlap.
  • the first reflective layer 12 and the second reflective layer are a reflective layer pair that is a combination of two reflective layers in which the circularly polarized light reflected has the same rotation direction and at least a part of the reflected wavelength band overlaps.
  • the optical element 10 also has a retardation layer 16 between the first reflective layer 12 and the second reflective layer 14 that constitute the reflective layer pair.
  • the retardation layer 16 functions as a ⁇ /2 plate having a ⁇ /2 retardation function at wavelengths in the reflection wavelength bands of the first reflective layer 12 and the second reflective layer 14 .
  • the retardation layer 16 has a ⁇ /2 retardation function, so that the circularly polarized light in the turning direction that is not reflected by the first reflective layer 12 and the second reflective layer 14 is reflected by the first reflective layer 12 and the second reflective layer 14. Converts to circularly polarized light with the direction of rotation reflected.
  • the cholesteric liquid crystal layers (first cholesteric liquid crystal layer 20 to sixth cholesteric liquid crystal layer 34) included in the first reflective layer 12 and the second reflective layer 14 correspond to layers in which the cholesteric liquid crystal phase is fixed.
  • the first reflective layer 12 and the second reflective layer 14 each include three cholesteric liquid crystal layers.
  • the cholesteric liquid crystal layer included in each reflective layer may be one layer or a plurality of layers as long as birefringence is satisfied in a predetermined depth region.
  • the first reflective layer 12 and the second reflective layer 14 emit light of a predetermined wavelength (for example, visible light. More specifically, blue light, green light, red light, etc.) by the cholesteric liquid crystal layers included therein. ) can be reflected.
  • a predetermined wavelength for example, visible light. More specifically, blue light, green light, red light, etc.
  • the retardation layer 16 is arranged between the first reflective layer 12 and the second reflective layer 14 .
  • the retardation layer 16 preferably functions as a ⁇ /2 plate having a substantially ⁇ /2 retardation function at wavelengths in the reflection wavelength bands of the first reflective layer 12 and the second reflective layer 14 .
  • the optical element of the present invention may have a ⁇ /2 retardation function with respect to the wavelength ⁇ in the reflection wavelength band of the first reflective layer 12 and the second reflective layer 14 .
  • the retardation layer 16 has a ⁇ /2 retardation function, so that the circularly polarized light in the turning direction that is not reflected by the first reflective layer 12 and the second reflective layer 14 is reflected by the first reflective layer 12 and the second reflective layer 14. Converts to circularly polarized light with the direction of rotation reflected.
  • the first reflective layer 12 reflects a circularly polarized component in one of the rotating directions (for example, right-handed circularly polarized light). , transmits the circularly polarized light component in the other rotating direction (for example, the left-handed circularly polarized light).
  • the circularly polarized light (left-handed circularly polarized light) transmitted through the first reflective layer 12 is converted by the retardation layer 16 into circularly polarized light in the opposite rotating direction (right-handed circularly polarized light).
  • the circularly polarized light (right-handed circularly polarized light) transmitted through the retardation layer 16 enters the second reflective layer 14 . Since the second reflective layer 14 reflects the circularly polarized light (right-handed circularly polarized light) in the same turning direction as the first reflective layer 12, the circularly polarized light (right-handed circularly polarized light) transmitted through the retardation layer 16 and incident on the second reflective layer 14 (right-handed circularly polarized light) ) are reflected by the second reflective layer 14 .
  • Circularly polarized light (right-handed circularly polarized light) incident on the retardation layer 16 is converted by the retardation layer 16 into circularly-polarized light in the opposite direction of rotation (left-handed circularly polarized light).
  • the circularly polarized light (left-handed circularly polarized light) transmitted through the retardation layer 16 is transmitted through the first reflective layer 12 and emitted from the optical element 10 as reflected light.
  • the optical element 10 can reflect both incident right-handed circularly polarized light and left-handed circularly polarized light, and has excellent reflection characteristics.
  • the retardation layer 16 is not particularly limited as long as it has a substantially ⁇ / 2 retardation function at the wavelength of the reflection wavelength band of the first reflective layer 12 and the second reflective layer 14, and various known retardation layers. can be used. Examples include a ⁇ /2 plate obtained by polymerizing a polymerizable liquid crystal compound, a ⁇ /2 plate made of a polymer film, a ⁇ /2 plate obtained by laminating two polymer films, and a retardation layer of ⁇ /2 as a retardation layer. and a ⁇ /2 plate exhibiting a phase difference of ⁇ /2 by structural birefringence.
  • the retardation layer 16 may have a C plate in addition to the ⁇ /2 plate (so-called A plate).
  • the C plate may be either a positive C plate or a negative C plate. Since the retardation layer 16 has a C plate, it can be adjusted to exhibit a ⁇ /2 retardation function even for light incident on the main surface of the retardation layer 16 from an oblique direction.
  • FIG. 3 shows a cross-sectional view of the first cholesteric liquid crystal layer 20 .
  • FIG. 4 shows a plan view of the first cholesteric liquid crystal layer 20 shown in FIG. The plan view is a view of the first cholesteric liquid crystal layer 20 viewed from above. 3 is a cross-sectional view taken along line A--A in FIG.
  • the X direction and Z direction indicate the directions of two coordinate axes that are orthogonal to each other on the viewing plane.
  • the Z direction is parallel to the thickness direction of the first cholesteric liquid crystal layer 20 .
  • the X direction and the Y direction indicate directions of two coordinate axes orthogonal to each other on the observation plane.
  • the liquid crystal compound LC rotates along the helical axis along the thickness direction, similar to the cholesteric liquid crystal layer in which the cholesteric liquid crystal phase is fixed. It has a helical structure in which the liquid crystal compound LC is stacked in a helical manner and is shown in a simplified manner in FIG. It has a structure in which helically swirling liquid crystal compounds LC are laminated at a plurality of pitches. Regarding this point, the same applies to the second cholesteric liquid crystal layer 22 to the sixth cholesteric liquid crystal layer 34 .
  • the rotation direction of the optical axis derived from the liquid crystal compound in the liquid crystal alignment pattern is the same direction. is.
  • the first to sixth cholesteric liquid crystal layers 20 to 34 have wavelength selective reflectivity.
  • Cholesteric liquid crystal phases are known to exhibit selective reflectivity at specific wavelengths.
  • the helical pitch of the cholesteric liquid crystal phase depends on the type of chiral agent used together with the liquid crystal compound when forming the cholesteric liquid crystal layer, or the concentration of the chiral agent added.
  • the pitch P (helical pitch) of the helical structure in the cholesteric liquid crystal phase is the period of the helical structure in the cholesteric liquid crystal phase.
  • the adjustment of the pitch refer to Fuji Film Research Report No. 50 (2005) p. 60-63 for a detailed description.
  • For the method of measuring the sense and pitch of the helix use the method described in "Introduction to Liquid Crystal Chemistry Experiments” edited by the Japan Liquid Crystal Society, published by Sigma Publishing, 2007, page 46, and "Liquid crystal handbook” Liquid crystal handbook editorial committee Maruzen, page 196. can be done.
  • the selective reflection central wavelength (for example, the selective central reflection wavelength of the reflective layer, the selective central reflection wavelength of the cholesteric liquid crystal layer) means the minimum value of the transmittance of the target object (member) Tmin ( %), it means the average value of two wavelengths showing the half-value transmittance: T1/2 (%) represented by the following formula.
  • Formula for calculating half-value transmittance: T1/2 100-(100-Tmin)/2
  • a cholesteric liquid crystal phase exhibits selective reflectivity for either left or right circularly polarized light at a specific wavelength. Whether the reflected light is right-handed circularly polarized light or left-handed circularly polarized light depends on the twist direction (sense) of the spiral of the cholesteric liquid crystal phase.
  • the selective reflection of circularly polarized light by the cholesteric liquid crystal phase reflects right circularly polarized light when the spiral of the cholesteric liquid crystal phase is twisted to the right, and reflects left circularly polarized light when the spiral is twisted to the left. Therefore, in the first cholesteric liquid crystal layer 20 shown in FIG. 3, the cholesteric liquid crystal layer is a layer formed by fixing the right-twisted cholesteric liquid crystal phase.
  • the direction of rotation of the cholesteric liquid crystal phase can be adjusted by the type of liquid crystal compound forming the cholesteric liquid crystal layer and/or the type of chiral agent added.
  • the half width of the reflection wavelength band is adjusted according to the application of the optical element 10, preferably 10 to 500 nm, more preferably 20 to 300 nm, even more preferably 30 to 150 nm.
  • the absolute value of the difference between the selective reflection center wavelengths is preferably 50 nm or less, more preferably 25 nm or less, in order to further suppress the generation of side lobes.
  • the lower limit is not particularly limited, 0 can be mentioned.
  • the orientation of the optical axis 20A derived from the liquid crystal compound LC forming the cholesteric liquid crystal phase is continuous in one direction within the plane of the cholesteric liquid crystal layer. It has a liquid crystal orientation pattern that changes while rotating. Regarding this point, the same applies to the second cholesteric liquid crystal layer 22 to the sixth cholesteric liquid crystal layer 34 .
  • the optical axis 20A derived from the liquid crystal compound LC is the axis with the highest refractive index in the liquid crystal compound LC.
  • the optic axis 20A is along the long axis direction of the rod shape.
  • the optic axis 20A derived from the liquid crystal compound LC is also referred to as "the optic axis 20A of the liquid crystal compound LC" or "the optic axis 20A".
  • the liquid crystal compounds LC forming the first cholesteric liquid crystal layer 20 are two-dimensionally arranged in the X direction and the direction perpendicular to the X direction (Y direction). It has become.
  • the liquid crystal compound LC forming the first cholesteric liquid crystal layer 20 has a liquid crystal orientation pattern in which the direction of the optical axis 20A changes while continuously rotating along the X direction in the in-plane direction.
  • the optic axis 20A of the liquid crystal compound LC has a liquid crystal orientation pattern that changes while continuously rotating clockwise along the outline arrow.
  • That the direction of the optical axis 20A of the liquid crystal compound LC changes while continuously rotating in the direction of the white arrow specifically means that the liquid crystal compound LC is arranged along the direction of the white arrow.
  • the angle formed between the optical axis 20A of the liquid crystal compound LC and the direction of the white arrow differs depending on the position of the direction of the white arrow. This means that the angle formed with the direction of .theta. changes sequentially from .theta.
  • the difference in angle between the optical axes 20A of the liquid crystal compounds LC adjacent to each other in the direction of the white arrow is preferably 45° or less, more preferably 15° or less, and preferably a smaller angle. More preferred.
  • the direction of the optic axis 20A is oriented in the Y direction orthogonal to the X direction, that is, in the Y direction orthogonal to the one direction in which the optic axis 20A rotates continuously. equal.
  • the angle between the optic axis 20A of the liquid crystal compound LC and the X direction is equal in the Y direction.
  • the optical axis 20A of the liquid crystal compound LC is 180° in the X direction in which the optical axis 20A continuously rotates and changes in the plane.
  • the length (distance) of rotation be the length ⁇ of one cycle in the liquid crystal alignment pattern. That is, let the length of one period ⁇ be the distance between the centers in the X direction of two liquid crystal compounds LC having the same angle with respect to the X direction.
  • the distance between the centers in the X direction of two liquid crystal compounds LC whose X direction and the direction of the optical axis 20A match is defined as the length of one period ⁇ .
  • the length ⁇ of one period is also referred to as "one period ⁇ ".
  • the liquid crystal alignment pattern of the cholesteric liquid crystal layer repeats this one period ⁇ in one direction in which the direction of the X direction, that is, the optical axis 20A, is continuously rotated and changed.
  • the first cholesteric liquid crystal layer 20 has a liquid crystal alignment pattern that changes while the optic axis 20A continuously rotates along the X direction (predetermined one direction) in the plane.
  • a cholesteric liquid crystal layer in which a cholesteric liquid crystal phase is fixed normally mirror-reflects incident light (circularly polarized light).
  • the first cholesteric liquid crystal layer 20 having the liquid crystal alignment pattern as described above reflects incident light in a direction angled in the X direction with respect to the specular reflection.
  • the first cholesteric liquid crystal layer 20 reflects the light incident from the normal direction not in the normal direction but at an angle with respect to the normal direction.
  • the light incident from the normal direction is the light incident from the front, that is, the light incident perpendicularly to the main surface.
  • the principal surface is the maximum surface of the sheet-like material.
  • the angle of reflection of light by the cholesteric liquid crystal layer in which the optic axis 20A of the liquid crystal compound LC rotates continuously in one direction (X direction) varies depending on the wavelength of the reflected light. Specifically, the longer the wavelength of the light, the larger the angle of the reflected light with respect to the incident light.
  • the angle of reflection of light by the cholesteric liquid crystal layer in which the optic axis 20A of the liquid crystal compound LC rotates continuously in one direction (X direction) is the same as that of the liquid crystal orientation pattern in which the optic axis 20A rotates 180° in the X direction. It differs depending on the length ⁇ of one period, that is, one period ⁇ .
  • the one period ⁇ is not particularly limited, and may be appropriately set according to the use of the optical element 10. For example, it is preferably 50 ⁇ m or less, more preferably 10 ⁇ m or less. Considering the accuracy of the liquid crystal alignment pattern, etc., the thickness is preferably 0.1 ⁇ m or more.
  • the cholesteric liquid crystal layers (the first cholesteric liquid crystal layer 20 to the sixth cholesteric liquid crystal layer 34) included in the optical element 10 have the liquid crystal alignment pattern described above.
  • the rotation directions of the optical axes derived from the liquid crystal compound in the liquid crystal alignment patterns of the first to third cholesteric liquid crystal layers 20 to 24 included in the first reflective layer 12 are the same.
  • the rotation directions of the optical axes derived from the liquid crystal compound in the liquid crystal alignment patterns of the fourth cholesteric liquid crystal layer 30 to the sixth cholesteric liquid crystal layer 34 included in the second reflective layer 14 are the same.
  • each reflective layer constituting a reflective layer pair includes a plurality of cholesteric liquid crystal layers
  • the rotation direction of the optical axis derived from the liquid crystal compound in the liquid crystal orientation pattern of the plurality of cholesteric liquid crystal layers included in each reflective layer are preferably in the same direction.
  • the rotating direction of the circularly polarized light reflected by the first reflective layer 12 and the rotating direction of the circularly polarized light reflected by the second reflective layer 14 are the same. Further, in the optical element 10, the rotation direction of the optical axis derived from the liquid crystal compound in the liquid crystal alignment pattern of the cholesteric liquid crystal layers (first cholesteric liquid crystal layer 20 to third cholesteric liquid crystal layer 24) included in the first reflective layer 12 and , the rotation direction of the optical axis derived from the liquid crystal compound in the liquid crystal alignment pattern of the cholesteric liquid crystal layers (fourth cholesteric liquid crystal layer 30 to sixth cholesteric liquid crystal layer 34) included in the second reflective layer 14.
  • the rotation direction of the optical axis derived from the liquid crystal compound in the liquid crystal alignment pattern of the fourth cholesteric liquid crystal layer 30 to the sixth cholesteric liquid crystal layer 36 included in the second reflective layer 14 is the same as in the example shown in FIG. .
  • the direction of rotation of the circularly polarized light reflected by the first reflective layer 12 and the direction of rotation of the circularly polarized light reflected by the second reflective layer 14 are the same, and the liquid crystal orientation of the cholesteric liquid crystal layer included in the first reflective layer 12
  • the direction of rotation of the optic axis derived from the liquid crystal compound in the pattern and the direction of rotation of the optic axis derived from the liquid crystal compound in the liquid crystal alignment pattern of the cholesteric liquid crystal layer included in the second reflective layer 14 are the same.
  • the direction of reflection of circularly polarized light by the first reflective layer 12 and the direction of reflection of circularly polarized light by the second reflective layer 14 can be the same.
  • the reflection wavelength band of the first reflection layer 12 and the reflection wavelength band of the second reflection layer 14 overlap.
  • the rotating direction of the circularly polarized light reflected by the first reflective layer 12 and the rotating direction of the circularly polarized light reflected by the second reflective layer 14 are the same, and the first reflective layer 12 and the second reflective layer 14 Since the retardation layer 16 is provided between and, when the reflection wavelength bands of the first reflective layer 12 and the second reflective layer 14 overlap as described above, right-handed circularly polarized light and left-handed circularly polarized light of a predetermined wavelength can be reflected together, and the reflection characteristics are superior. Whether or not at least part of the reflection wavelength band of each reflection layer overlaps can be confirmed by measuring the wavelength distribution of the reflected light.
  • the width and position of the reflection wavelength band of the reflective layers are adjusted by adjusting the reflection characteristics of the cholesteric liquid crystal layers included in the reflective layers (first reflective layer and second reflective layer). can be controlled by
  • the reflection wavelength band of the first reflective layer and the reflection wavelength band of the second reflective layer are not limited to completely overlapping. It is sufficient that the reflection wavelength bands of the two reflective layers) at least partially overlap.
  • the retardation layer 16 should have a substantially ⁇ /2 retardation function at wavelengths in a wavelength region where the reflection wavelength bands of the two reflective layers overlap. From the viewpoint of the amount of light reflected by the optical element, it is preferable that the overlapping region of the reflection wavelength bands of the two reflective layers (the first reflective layer and the second reflective layer) constituting the reflective layer pair is wide.
  • the difference between the selective reflection center wavelengths of the two reflective layers (the first reflective layer and the second reflective layer) constituting the reflective layer pair is preferably 50 nm or less, more preferably 25 nm or less. more preferred. In particular, it is more preferable that the selective reflection central wavelengths of the two reflective layers (the first reflective layer and the second reflective layer) that constitute the reflective layer pair match each other.
  • the length of one period ⁇ in the liquid crystal orientation patterns of the first to third cholesteric liquid crystal layers 20 to 24 included in the first reflective layer 12 is the same. Further, the length of one period ⁇ in the liquid crystal orientation patterns of the fourth cholesteric liquid crystal layer 30 to the sixth cholesteric liquid crystal layer 34 included in the second reflective layer 14 is the same.
  • the length of one period ⁇ in the liquid crystal orientation pattern of the plurality of cholesteric liquid crystal layers included in each reflective layer is preferably the same.
  • the length of one period ⁇ in the liquid crystal alignment pattern in the cholesteric liquid crystal layer (first cholesteric liquid crystal layer 20 to third cholesteric liquid crystal layer 24) included in the first reflective layer 12 and the cholesteric liquid crystal layer included in the second reflective layer 14
  • the length of one period ⁇ in the liquid crystal alignment patterns in the liquid crystal layers (fourth cholesteric liquid crystal layer 30 to sixth cholesteric liquid crystal layer 34) is the same.
  • the length of one period ⁇ in the liquid crystal orientation pattern in the cholesteric liquid crystal layer included in one of the reflective layers constituting the reflective layer pair, and the liquid crystal orientation in the cholesteric liquid crystal layer included in the other reflective layer of the two reflective layers The length of one period ⁇ in the pattern is preferably the same.
  • the same length of one period ⁇ in the liquid crystal alignment pattern means that the difference in length of one period ⁇ is 30% or less.
  • the formula ⁇ (1-cycle ⁇ x-1-cycle ⁇ y)/(one cycle ⁇ x) ⁇ 100. Also, if one period ⁇ x and one period ⁇ y have the same value, the difference is 0%.
  • the smaller the difference in the length of one period ⁇ in the liquid crystal alignment pattern the better.
  • the shorter the length of one period ⁇ the greater the angle of reflection with respect to incident light. Therefore, the smaller the difference in the length of one period ⁇ , the closer the light reflection direction can be made by the cholesteric liquid crystal layer that reflects the light in the same turning direction.
  • the directions in which the optic axes of the liquid crystal compounds in the liquid crystal alignment patterns in the cholesteric liquid crystal layers (the first cholesteric liquid crystal layer 20 to the third cholesteric liquid crystal layer 24) included in the first reflective layer 12 change continuously are all the same. . In such a mode, the direction of reflection of light by the cholesteric liquid crystal layer included in the first reflective layer 12 can be matched. In addition, the direction in which the optical axis of the liquid crystal compound in the liquid crystal orientation pattern in the cholesteric liquid crystal layers (the fourth cholesteric liquid crystal layer 30 to the sixth cholesteric liquid crystal layer 34) included in the second reflective layer 14 changes continuously is the same. is.
  • the direction of reflection of light by the cholesteric liquid crystal layer included in the second reflective layer 14 can be matched. That is, when each reflective layer constituting a reflective layer pair includes a plurality of cholesteric liquid crystal layers, the direction in which the optic axis of the liquid crystal compound in the liquid crystal orientation pattern in the plurality of cholesteric liquid crystal layers included in each reflective layer changes continuously. are preferably the same. In the present invention, the direction in which the optic axes of the liquid crystal compounds in the liquid crystal alignment patterns in the two cholesteric liquid crystal layers continuously change in the same direction means that the optical axes of the liquid crystal compounds in the liquid crystal alignment patterns in the two cholesteric liquid crystal layers are the same.
  • the present invention is not limited to the above embodiment, and the direction in which the optic axis of the liquid crystal compound in the liquid crystal alignment pattern in the cholesteric liquid crystal layer included in the first reflective layer changes continuously may be different.
  • the angle formed by the directions in which the optic axis of the liquid crystal compound in the liquid crystal orientation pattern in the cholesteric liquid crystal layer included in the first reflective layer changes continuously may be 20°.
  • the direction in which the optic axis of the liquid crystal compound in the liquid crystal alignment pattern in the cholesteric liquid crystal layer included in the second reflective layer continuously changes may be different.
  • the birefringence of the second cholesteric liquid crystal layer 22 in the first reflective layer 12 is greater than the birefringence of the first cholesteric liquid crystal layer 20 and the third cholesteric liquid crystal layer 24 .
  • the first cholesteric liquid crystal layer 20 and the third cholesteric liquid crystal layer 24 exhibit the same birefringence.
  • the birefringence of the fifth cholesteric liquid crystal layer 32 in the second reflective layer 14 is greater than the birefringence of the fourth cholesteric liquid crystal layer 30 and the sixth cholesteric liquid crystal layer 34 .
  • the fourth cholesteric liquid crystal layer 30 and the sixth cholesteric liquid crystal layer 34 exhibit the same birefringence.
  • a method of adjusting the birefringence of each cholesteric liquid crystal layer includes a method of adjusting the birefringence of a liquid crystal compound used to form each cholesteric liquid crystal layer.
  • the liquid crystal compound used to form the second cholesteric liquid crystal layer 22 there is a method of selecting a liquid crystal compound having a larger birefringence than the liquid crystal compounds used to form the first cholesteric liquid crystal layer 20 and the third cholesteric liquid crystal layer 24. mentioned.
  • the reflective layer preferably includes a plurality of cholesteric liquid crystal layers formed using compositions containing different types of liquid crystal compounds.
  • the cholesteric liquid crystal layer (second cholesteric liquid crystal layer 22 and It is preferable that the birefringence of the cholesteric liquid crystal layer gradually decreases from the fifth cholesteric liquid crystal layer 32 toward at least one surface side of the reflective layer.
  • the thickness of the cholesteric liquid crystal layer in each reflective layer included in the optical element is not particularly limited, and its configuration is not particularly limited as long as it satisfies the requirement X described later. Among them, it is preferable that the thickness of the cholesteric liquid crystal layer (the second cholesteric liquid crystal layer 22 and the fifth cholesteric liquid crystal layer 32) positioned at the central position of the thickness of the reflective layer is the largest.
  • the helical pitch number of the cholesteric liquid crystal layer with the lowest birefringence in the reflective layer is preferably half or less than the helical pitch number of the cholesteric liquid crystal layer with the highest birefringence.
  • the helical pitch number of the cholesteric liquid crystal layer with the lowest birefringence is more preferably 1/2.5 or less, more preferably 1/10 or more, of the helical pitch number of the cholesteric liquid crystal layer with the highest birefringence. is preferred.
  • the number of helical pitches of the cholesteric liquid crystal layer having the largest birefringence is preferably 6 or more, more preferably 8 or more, and even more preferably 10 or more, from the viewpoint of increasing the reflectance.
  • the helical pitch number of the cholesteric liquid crystal layer with the smallest birefringence is preferably 5.0 or less, more preferably 3.0 or less, in order to further suppress the generation of side lobes.
  • the lower limit is not particularly limited, it may be 1.0 or more.
  • Requirement X From one surface of the reflective layer toward the other surface side, the depth position corresponding to 10% of the total helical pitch of the reflective layer is defined as the depth position X, and the total helical pitch of the reflective layer from one surface The depth position corresponding to 90% of is defined as the depth position Y, the region from one surface to the depth position X is the first region, the region from the depth position X to the depth position Y is the second region, and the depth When the area from the position Y to the other surface is defined as the third area, at least one of the birefringence in the first area and the third area is smaller than the birefringence in the second area.
  • FIG. 5 is a cross-sectional view showing only the first reflective layer 12 in the optical element 10.
  • the depth position be the depth position X.
  • a region from one surface 120 of the first reflective layer 12 to the depth position X is defined as a first region R1.
  • the total number of helical pitches of the first reflective layer 12 means the total number of helical pitches of the cholesteric liquid crystal layers included in the first reflective layer 12 .
  • it means the total number of helical pitches.
  • the depth position X is set so that the number of helical pitches increases from one surface of the first reflective layer toward the other surface. It means the depth position corresponding to the position of 1.9.
  • a depth position Y is defined as a depth position corresponding to 90% of the total number of spiral pitches of the first reflective layer 12 from one surface 120 of the first reflective layer 12 toward the other surface 122 .
  • a region from depth position X to depth position X is defined as a second region R2.
  • the depth position Y is set so that the number of helical pitches increases from one surface of the first reflective layer toward the other surface. 17.
  • the first reflective layer 12 satisfies the requirement X.
  • the second reflective layer 14 also satisfies the requirement X described above.
  • the birefringence of the first region and the third region is not particularly limited. ⁇ 0.8 is preferred, 0.01 to 0.7 is more preferred, and 0.05 to 0.5 is even more preferred.
  • the birefringence ( ⁇ n) of each of the above regions there is a method of obtaining the birefringence ( ⁇ n) by cutting a cross-section of the reflective layer and analyzing the polarized light.
  • the rotating analyzer method and rotating phase shifter method which are general ellipsometry methods
  • the above measured value ⁇ n ⁇ d and the optical axis can be determined by analyzing .
  • the birefringence ( ⁇ n) can be calculated by separately measuring the thickness d of the cut piece. When the total thickness of each region is equally divided into 10, such a measurement is performed at the center thickness position of each of the 10 equally divided regions, and the birefringence in each of the obtained 10 equally divided regions is calculated. The average value is obtained and taken as the birefringence ( ⁇ n) of each region.
  • a method for forming a reflective layer that satisfies the requirement X as in the optical element 10 shown in FIG.
  • the thicknesses of the first cholesteric liquid crystal layer 20, the second cholesteric liquid crystal layer 22, and the third cholesteric liquid crystal layer 24 having the same helical pitch length shown in FIG. of 10%, 80%, and 10%, respectively, a reflective layer that satisfies the requirement X can be formed.
  • the optic axis of the liquid crystal compound in the liquid crystal alignment pattern of the included cholesteric liquid crystal layer continuously rotates only along the X direction.
  • the present invention is not limited to this, and various configurations can be used as long as the optic axis of the liquid crystal compound rotates continuously along one direction in the cholesteric liquid crystal layer.
  • the liquid crystal alignment pattern has one direction in which the direction of the optic axis of the liquid crystal compound LC changes while continuously rotating, radially from the inside to the outside.
  • a radial pattern, cholesteric liquid crystal layer 40 is exemplified.
  • the optical axis (not shown) of the liquid crystal compound LC is the longitudinal direction of the liquid crystal compound LC.
  • the orientation of the optic axis of the liquid crystal compound LC is in a number of directions outward from the center of the cholesteric liquid crystal layer 40, for example, the direction indicated by arrow A1, the direction indicated by arrow A2 , and the direction indicated by arrow A3. It changes while rotating continuously along the indicated directions.
  • FIG. 6 there is one that changes radially from the center of the cholesteric liquid crystal layer 40 while rotating in the same direction.
  • the embodiment shown in FIG. 6 is a counterclockwise orientation. In each of the arrows A1, A2 and A3 in FIG. 6, the direction of rotation of the optical axis is counterclockwise from the center toward the outside.
  • the cholesteric liquid crystal layer may have regions in which one period ⁇ is partially different in one direction in which the optic axis rotates continuously. That is, at least one layer of the cholesteric liquid crystal layer may have a region in which the length of one cycle in the liquid crystal alignment pattern is different in the plane.
  • one period ⁇ may be gradually made in one direction in which the optical axis rotates continuously depending on the application of the optical element. That is, the cholesteric liquid crystal layer may have a region where the length of one cycle in the liquid crystal alignment pattern changes gradually along one direction.
  • the liquid crystal compound LC in the XZ plane of the cholesteric liquid crystal layer, the liquid crystal compound LC is arranged so that its optical axis is parallel to the main plane (XY plane).
  • the invention is not limited to this aspect.
  • the optical axis of the liquid crystal compound LC in the XZ plane of the cholesteric liquid crystal layer 42, the optical axis of the liquid crystal compound LC is tilted with respect to the main plane (XY plane). good too.
  • the inclination angle (tilt angle) with respect to the main plane (XY plane) of the liquid crystal compound LC is uniform in the thickness direction (Z direction).
  • the cholesteric liquid crystal layer may have regions where the tilt angle of the liquid crystal compound LC is different in the thickness direction.
  • the optic axis of the liquid crystal compound LC on one surface of the cholesteric liquid crystal layer 44 is parallel to the main surface (the pretilt angle is 0°), and from one surface to the thickness direction As the distance increases, the tilt angle of the liquid crystal compound LC increases, and then the liquid crystal compound is aligned at a constant tilt angle to the other surface side.
  • the optic axis of the liquid crystal compound LC may have a pretilt angle at one of the upper and lower interfaces, or the optic axis of the liquid crystal compound LC may have a pretilt angle at both interfaces. may Also, the pretilt angles may be different at both interfaces.
  • the XZ plane of a cholesteric liquid crystal layer having a liquid crystal orientation pattern in which the direction of the optic axis derived from the liquid crystal compound rotates continuously and changes is examined with a SEM (Scanning Electron Microscope). ), a striped pattern in which the direction in which the bright portions and the dark portions are alternately arranged is inclined at a predetermined angle with respect to the main surface (XY plane) is observed.
  • SEM Scnning Electron Microscope
  • the cholesteric liquid crystal layer exhibits an in-plane retardation Re in either the slow axis plane or the fast axis plane when the in-plane retardation Re is measured in the normal direction and in a direction inclined with respect to the normal.
  • the direction in which Re is minimum is inclined from the normal direction.
  • the absolute value of the measurement angle formed by the normal line and the direction in which the in-plane retardation Re is minimum is 5° or more.
  • the liquid crystal compound of the cholesteric liquid crystal layer is tilted with respect to the main surface, and that the tilt direction substantially coincides with the bright portion and the dark portion of the cholesteric liquid crystal layer.
  • the normal direction is a direction perpendicular to the main surface.
  • the cholesteric liquid crystal layer can diffract circularly polarized light with higher diffraction efficiency than a liquid crystal layer in which the liquid crystal compound LC is parallel to the main surface.
  • the liquid crystal compound of the cholesteric liquid crystal layer is tilted with respect to the main surface and the tilt direction substantially coincides with the bright portion and the dark portion, the bright portion and the dark portion corresponding to the reflecting surface and the optical axis of the liquid crystal compound are aligned. are consistent. Therefore, the action of the liquid crystal compound on the reflection (diffraction) of light increases, and the diffraction efficiency can be improved. As a result, the amount of reflected light with respect to incident light can be further improved.
  • the cholesteric liquid crystal layer included in the optical element of the present invention may have a region in which the average tilt angle of the dark portion gradually changes along one direction.
  • the cholesteric liquid crystal layer having the regions as described above is obtained by gradually changing the length of one period in the liquid crystal alignment pattern along one direction.
  • the average tilt angle of the dark portion may gradually increase or decrease gradually. It should be noted that the gradual change in the average tilt angle of the dark area is intended to mean that the average tilt angle changes continuously and that the average tilt angle changes stepwise.
  • the optical element of the present invention may have a region in which the average tilt angle of the dark portion increases as the length of one cycle in the liquid crystal alignment pattern decreases, depending on the application of the optical element.
  • the optical element 10 shown in FIG. 2 has two reflective layers (a first reflective layer and a second reflective layer) and a retardation layer disposed between the reflective layers of the reflective layer pair.
  • the present invention is not limited to the above embodiments, and may include a plurality of reflective layer pairs. When a plurality of reflective layer pairs are included, it is preferable that the selective reflection center wavelengths of the reflective layers forming the reflective layer pairs are different between the different reflective layer pairs. Moreover, when a plurality of reflective layer pairs are included, it is preferable to have a retardation layer between the reflective layers of each reflective layer pair.
  • Each retardation layer may have a ⁇ /2 retardation function at the wavelengths in the reflection wavelength band of the reflective layers of the corresponding reflective layer pair.
  • the permutation of the length of the selective reflection central wavelength in the cholesteric liquid crystal layer included in the reflective layers constituting the reflective layer pair matches the permutation of the length of one period. is preferred.
  • each reflective layer includes three cholesteric liquid crystal layers.
  • one to two layers, or four or more layers of cholesteric liquid crystal layers may be included in each reflective layer.
  • a reflective layer is a layer that includes a cholesteric liquid crystal layer.
  • the cholesteric liquid crystal layer can be formed by fixing a cholesteric liquid crystal phase in layers.
  • the structure in which the cholesteric liquid crystal phase is fixed may be any structure as long as the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained.
  • a structure in which a cholesteric liquid crystal phase is fixed is typically formed by aligning a polymerizable liquid crystal compound with a cholesteric liquid crystal phase and then polymerizing and curing the compound by ultraviolet irradiation or heating to form a non-fluid layer.
  • the cholesteric liquid crystal phase is fixed, it is sufficient that the optical properties of the cholesteric liquid crystal phase are maintained, and the liquid crystal compound does not have to exhibit liquid crystallinity in the cholesteric liquid crystal layer.
  • the polymerizable liquid crystal compound may be polymerized by a curing reaction and lose liquid crystallinity.
  • Examples of materials used for forming a cholesteric liquid crystal layer in which a cholesteric liquid crystal phase is fixed include a liquid crystal composition containing a liquid crystal compound.
  • the liquid crystal compound is preferably a polymerizable liquid crystal compound.
  • the liquid crystal composition used for forming the cholesteric liquid crystal layer may further contain a surfactant and a chiral agent.
  • the polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a discotic liquid crystal compound.
  • Rod-like polymerizable liquid crystal compounds forming a cholesteric liquid crystal phase include rod-like nematic liquid crystal compounds.
  • Rod-shaped nematic liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, and alkoxy-substituted phenylpyrimidines.
  • phenyldioxanes, tolanes, and alkenylcyclohexylbenzonitriles are preferred.
  • a polymerizable liquid crystal compound is obtained by introducing a polymerizable group into a liquid crystal compound.
  • the polymerizable group includes an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and more preferably an ethylenically unsaturated polymerizable group.
  • Polymerizable groups can be introduced into molecules of liquid crystal compounds by various methods.
  • the number of polymerizable groups possessed by the polymerizable liquid crystal compound is preferably 1 to 6, more preferably 1 to 3. Examples of polymerizable liquid crystal compounds are described in Makromol. Chem. , 190, 2255 (1989), Advanced Materials 5, 107 (1993), U.S. Pat. No.
  • a cyclic organopolysiloxane compound having a cholesteric phase as disclosed in JP-A-57-165480 can be used as polymerizable liquid crystal compounds other than the above.
  • the polymer liquid crystal compounds described above there are polymers in which mesogenic groups exhibiting liquid crystal are introduced into the main chain, side chains, or both of the main chain and side chains, and polymer cholesteric compounds in which cholesteryl groups are introduced into the side chains.
  • Liquid crystals, liquid crystalline polymers as disclosed in JP-A-9-133810, and liquid-crystalline polymers as disclosed in JP-A-11-293252 and the like can be used.
  • discotic Liquid Crystal Compound As the discotic liquid crystal compound, for example, those described in JP-A-2007-108732 and JP-A-2010-244038 can be preferably used.
  • the content of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 75 to 99.9% by mass, more preferably 80 to 99% by mass, based on the solid content mass (mass excluding the solvent) of the liquid crystal composition. More preferably, 85 to 90% by mass is even more preferable.
  • the liquid crystal composition used for forming the cholesteric liquid crystal layer may contain a surfactant.
  • the surfactant is preferably a compound capable of functioning as an alignment control agent that contributes to stably or quickly form a planar alignment cholesteric liquid crystal phase.
  • Examples of surfactants include silicone-based surfactants and fluorine-based surfactants, with fluorine-based surfactants being preferred.
  • the surfactant include compounds described in paragraphs [0082] to [0090] of JP-A-2014-119605, and compounds described in paragraphs [0031] to [0034] of JP-A-2012-203237. , Compounds exemplified in paragraphs [0092] and [0093] of JP-A-2005-099248, paragraphs [0076] to [0078] and paragraphs [0082] to [0085] of JP-A-2002-129162 compounds exemplified therein, and fluorine (meth)acrylate polymers described in paragraphs [0018] to [0043] of JP-A-2007-272185.
  • surfactant may be used individually by 1 type, and may use 2 or more types together.
  • fluorosurfactant compounds described in paragraphs [0082] to [0090] of JP-A-2014-119605 are preferable.
  • the content of the surfactant in the liquid crystal composition is preferably 0.01 to 10% by mass, more preferably 0.01 to 5% by mass, and 0.02 to 1% by mass with respect to the total mass of the liquid crystal compound. is more preferred.
  • a chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase.
  • the chiral agent may be selected depending on the purpose, since the helical twist direction or helical pitch induced by the compound differs.
  • the chiral agent is not particularly limited, and known compounds (for example, liquid crystal device handbook, Chapter 3, Section 4-3, chiral agent for TN (twisted nematic), STN (Super Twisted Nematic), page 199, Japan Society for the Promotion of Science 142nd Committee, ed., 1989), isosorbide, isomannide derivatives, and the like can be used.
  • Chiral agents generally contain an asymmetric carbon atom, but axially chiral compounds or planar chiral compounds that do not contain an asymmetric carbon atom can also be used as chiral agents.
  • Examples of axially or planarly chiral compounds include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, a repeating unit derived from the polymerizable liquid crystal compound and a repeating unit derived from the chiral agent are formed by the polymerization reaction of the polymerizable chiral agent and the polymerizable liquid crystal compound.
  • the polymerizable group possessed by the polymerizable chiral agent is preferably the same type of group as the polymerizable group possessed by the polymerizable liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. More preferred. Also, the chiral agent may be a liquid crystal compound.
  • the chiral agent has a photoisomerizable group
  • the photoisomerizable group is preferably an isomerization site of a compound exhibiting photochromic properties, an azo group, an azoxy group, or a cinnamoyl group.
  • Specific compounds include JP-A-2002-080478, JP-A-2002-080851, JP-A-2002-179668, JP-A-2002-179669, JP-A-2002-179670, JP-A-2002- 179681, JP-A-2002-179682, JP-A-2002-338575, JP-A-2002-338668, JP-A-2003-313189, and compounds described in JP-A-2003-313292, etc. can be used.
  • the content of the chiral agent in the liquid crystal composition is preferably 0.01 to 200 mol%, more preferably 1 to 30 mol%, relative to the molar amount of the liquid crystal compound.
  • the liquid crystal composition preferably contains a polymerization initiator.
  • the polymerization initiator to be used is preferably a photopolymerization initiator capable of initiating the polymerization reaction by ultraviolet irradiation.
  • photoinitiators include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ethers (described in US Pat. No. 2,448,828), ⁇ -hydrocarbons substituted aromatic acyloin compounds (described in US Pat. No.
  • the content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, more preferably 0.5 to 12% by mass, based on the content of the liquid crystal compound.
  • the liquid crystal composition may contain a cross-linking agent in order to improve film strength and durability after curing.
  • a cross-linking agent those that are cured by ultraviolet rays, heat, moisture, etc. can be preferably used.
  • the cross-linking agent is not particularly limited and can be appropriately selected depending on the intended purpose.
  • Examples include polyfunctional acrylate compounds such as trimethylolpropane tri(meth)acrylate and pentaerythritol tri(meth)acrylate; epoxy compounds such as acrylates and ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris[3-(1-aziridinyl)propionate] and 4,4-bis(ethyleneiminocarbonylamino)diphenylmethane; Isocyanate compounds such as hexamethylene diisocyanate and biuret isocyanate; polyoxazoline compounds having oxazoline groups in side chains; and alkoxysilane compounds such as vinyltrimethoxysilane and N-(2-aminoethyl)3-aminopropyltrimethoxysilane.
  • polyfunctional acrylate compounds such as trimethylolpropane tri(meth)acrylate and pentaerythritol tri(meth)acrylate
  • the content of the cross-linking agent is preferably 3 to 20% by mass, more preferably 5 to 15% by mass, based on the solid mass of the liquid crystal composition.
  • the liquid crystal composition may further contain polymerization inhibitors, antioxidants, ultraviolet absorbers, light stabilizers, colorants, metal oxide fine particles, etc., within a range that does not reduce optical performance. can be added at
  • the liquid crystal composition is preferably used as a liquid when forming the cholesteric liquid crystal layer.
  • the liquid crystal composition may contain a solvent.
  • the solvent is not particularly limited and can be appropriately selected depending on the purpose, and organic solvents are preferred. Examples of organic solvents include ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, and ethers. These may be used individually by 1 type, and may use 2 or more types together.
  • a liquid crystal composition is applied to the surface on which the cholesteric liquid crystal layer is to be formed, the liquid crystal compound is aligned in the cholesteric liquid crystal phase state, and then the liquid crystal compound is cured to form the cholesteric liquid crystal layer.
  • a liquid crystal composition is applied to the alignment film to align the liquid crystal compound in the state of the cholesteric liquid crystal phase, and then the liquid crystal compound is cured to form the cholesteric liquid crystal phase. is preferably formed by fixing the cholesteric liquid crystal layer.
  • the liquid crystal composition can be applied by printing methods such as inkjet and scroll printing, and known methods such as spin coating, bar coating and spray coating, which can uniformly apply the liquid to the sheet.
  • the applied liquid crystal composition is dried and/or heated as necessary, and then cured to form a cholesteric liquid crystal layer.
  • the liquid crystal compound in the liquid crystal composition may be oriented in the cholesteric liquid crystal phase.
  • the heating temperature is preferably 200° C. or lower, more preferably 130° C. or lower.
  • the aligned liquid crystal compound is further polymerized as necessary.
  • Polymerization may be either thermal polymerization or photopolymerization by light irradiation, but photopolymerization is preferred.
  • the irradiation energy is preferably 20 mJ/cm 2 to 50 J/cm 2 , more preferably 50 to 1500 mJ/cm 2 .
  • light irradiation may be performed under heating conditions or under a nitrogen atmosphere.
  • the wavelength of the ultraviolet rays to be irradiated is preferably 250 to 430 nm.
  • the thickness of the cholesteric liquid crystal layer is not limited, and the necessary light reflectance depends on the application of the optical element, the light reflectance required for the cholesteric liquid crystal layer, the material for forming the cholesteric liquid crystal layer, and the like. The thickness to be obtained may be appropriately set.
  • the method of forming the reflective layer included in the optical element is not particularly limited. , a method of forming a cholesteric liquid crystal layer.
  • the optical element of the present invention may contain members other than the reflective layer.
  • the optical element may include a support.
  • Various sheet-like materials films, plate-like materials
  • the support preferably has a transmittance of 50% or more, more preferably 70% or more, and even more preferably 85% or more to the corresponding light (for example, light with a wavelength of 550 nm).
  • the thickness of the support is not particularly limited, and the thickness capable of holding the alignment film and the cholesteric liquid crystal layer may be appropriately set depending on the use of the optical element, the material for forming the support, and the like.
  • the thickness of the support is preferably 1 to 1000 ⁇ m, more preferably 3 to 250 ⁇ m, even more preferably 5 to 150 ⁇ m.
  • the support may be monolayer or multilayer.
  • single-layer supports include supports made of glass, triacetylcellulose (TAC), polyethylene terephthalate (PET), polycarbonate, polyvinyl chloride, acrylic, polyolefin, and the like.
  • PET triacetylcellulose
  • PET polyethylene terephthalate
  • multi-layer supports include any one of the single-layer supports described above as a substrate, and another layer provided on the surface of this substrate.
  • the optical element may contain an alignment film.
  • the cholesteric liquid crystal layer is preferably formed on the alignment film.
  • This alignment film is an alignment film for forming the liquid crystal alignment pattern described above.
  • Various known alignment films are available. For example, rubbed films made of organic compounds such as polymers, oblique deposition films of inorganic compounds, films with microgrooves, and Langmuir films of organic compounds such as ⁇ -tricosanoic acid, dioctadecylmethylammonium chloride and methyl stearate.
  • LB Liquinuir-Blodgett
  • the alignment film by rubbing treatment can be formed by rubbing the surface of the polymer layer with paper or cloth several times in one direction.
  • Materials used for the alignment film include polyimide, polyvinyl alcohol, polymers having a polymerizable group described in JP-A-9-152509, JP-A-2005-097377, JP-A-2005-099228, and A material used for forming an alignment film or the like described in JP-A-2005-128503 is preferable.
  • a so-called photo-alignment film obtained by irradiating a photo-orientation material with polarized or non-polarized light to form an alignment film is preferably used as the alignment film. That is, in the optical element of the present invention, a photo-alignment film formed by coating a support with a photo-alignment material is preferably used as the alignment film. Irradiation with polarized light can be performed in a direction perpendicular to or oblique to the photo-alignment film, and irradiation with non-polarized light can be performed in a direction oblique to the photo-alignment film.
  • Examples of the photo-alignment material used in the photo-alignment film that can be used in the present invention include, for example, JP-A-2006-285197, JP-A-2007-076839, JP-A-2007-138138, and JP-A-2007-094071. Publications, JP 2007-121721, JP 2007-140465, JP 2007-156439, JP 2007-133184, JP 2009-109831, Patent No. 3883848 and Patent No.
  • JP-A Preferred examples include photodimerizable compounds, particularly cinnamate compounds, chalcone compounds and coumarin compounds, described in JP-A-2013-177561 and JP-A-2014-12823.
  • azo compounds, photocrosslinkable polyimides, photocrosslinkable polyamides, photocrosslinkable polyesters, cinnamate compounds, and chalcone compounds are preferably used.
  • the thickness of the alignment film is not limited, and the thickness may be appropriately set according to the material for forming the alignment film so that the required alignment function can be obtained.
  • the thickness of the alignment film is preferably 0.01 to 5 ⁇ m, more preferably 0.05 to 2 ⁇ m.
  • the method for forming the alignment film is not limited, and various known methods can be used depending on the material for forming the alignment film. As an example, a method of forming an alignment pattern by coating an alignment film on the surface of a support, drying the alignment film, and then exposing the alignment film to a laser beam is exemplified.
  • FIG. 9 conceptually shows an example of an exposure apparatus that exposes an alignment film to form an alignment pattern.
  • the exposure device 60 shown in FIG. 9 includes a light source 64 having a laser 62, a ⁇ /2 plate 65 that changes the polarization direction of the laser beam M emitted by the laser 62, and a beam MA and a beam MA. It comprises a polarizing beam splitter 68 that splits the MB into two, mirrors 70A and 70B placed respectively on the optical paths of the two split beams MA and MB, and ⁇ /4 plates 72A and 72B.
  • the light source 64 emits linearly polarized light P 0 .
  • the ⁇ /4 plate 72A converts the linearly polarized light P 0 (light ray MA) into right circularly polarized light PR
  • the ⁇ /4 plate 72B converts the linearly polarized light P 0 (light ray MB) into left circularly polarized light P L .
  • the ⁇ /4 plates 72A and 72B used here may be ⁇ /4 plates corresponding to the wavelength of light to be irradiated. Since the exposure device 60 irradiates the laser light M, for example, if the central wavelength of the laser light M is 325 nm, a ⁇ /4 plate that functions for light with a wavelength of 325 nm may be used.
  • a support 82 having an alignment film 80 before the alignment pattern is formed is placed in the exposure area, and two light beams MA and MB cross each other on the alignment film 80 to cause interference. exposed to light. Due to the interference at this time, the polarization state of the light with which the alignment film 80 is irradiated periodically changes in the form of interference fringes. As a result, an alignment pattern in which the alignment state changes periodically is obtained in the alignment film 80 .
  • the period of the alignment pattern can be adjusted by changing the crossing angle ⁇ of the two light beams MA and MB.
  • the optical axis in one direction in which the optic axis rotates The length of one cycle in which the shaft rotates 180° can be adjusted.
  • a cholesteric liquid crystal layer By forming a cholesteric liquid crystal layer on an alignment film having such an alignment pattern in which the alignment state changes periodically, the optical axis derived from the liquid crystal compound LC described above rotates continuously in one direction.
  • a cholesteric liquid crystal layer can be formed having a liquid crystal alignment pattern that Further, by rotating the optical axes of the ⁇ /4 plates 72A and 72B by 90°, the directions of rotation of the optical axes can be reversed.
  • the optical element of the present invention may have a bonding layer.
  • a layer made of various known materials can be used as long as it is a layer that allows objects to be bonded to be bonded together.
  • the lamination layer has fluidity when laminating and then becomes solid. Even a layer made of an adhesive is a gel-like (rubber-like) soft solid when laminating, and remains gel-like after that. It may be a layer made of an adhesive whose state does not change, or a layer made of a material having the characteristics of both an adhesive and an adhesive. Therefore, the lamination layer is an optical transparent adhesive (OCA (Optical Clear Adhesive)), an optically transparent double-sided tape, and an ultraviolet curable resin. A known layer may be used.
  • OCA optical Clear Adhesive
  • the optical element of the present invention may be formed by holding each layer with a frame, jig, or the like without using the bonding layer.
  • the optical element of the present invention can be applied to various uses.
  • the optical element of the present invention can be applied to image display devices. More specifically, an image display device including the optical element of the present invention and an image display panel is mentioned. Although the configuration of the image display device is not particularly limited, it may include a light guide plate. More specifically, an image display device 90 shown in FIG. 10 has an optical element 10A, a light guide plate 92, and an image display panel 94. As shown in FIG. The optical element 10A is bonded to one end of the main surface of the light guide plate 92, and the optical element 10A is bonded to the other end.
  • the optical element 10A is used as an incident diffraction element and an exit diffraction element.
  • the image display panel 94 is not particularly limited, but various known display elements (display devices, projectors) used for AR glasses or the like can be used. Examples of display elements include liquid crystal displays (including LCOS: Liquid Crystal On Silicon), organic electroluminescence displays, DLP (Digital Light Processing), and scanning displays using MEMS (Micro Electro Mechanical Systems) mirrors. be done.
  • the display element may display a monochrome image (single-color image), a two-color image, or a color image.
  • the projection lens may also be a known projection lens (collecting lens) used for AR (Augmented Reality) glasses or the like.
  • the image display device described above is suitably used as a head-mounted display.
  • the optical element of the present invention can be applied to, for example, sensors, eye tracking devices, and the like, in addition to the applications described above.
  • the following coating solution for forming an alignment film was applied onto the support by spin coating.
  • the support on which the coating film of the alignment film-forming coating liquid was formed was dried on a hot plate at 60° C. for 60 seconds to form an alignment film.
  • Photo-alignment material A 1.00 parts by mass Water 16.00 parts by mass Butoxy ethanol 42.00 parts by mass Propylene glycol monomethyl ether 42.00 parts by mass ⁇ ⁇
  • the alignment film was exposed using the exposure apparatus shown in FIG. 9 to form an alignment film P-1 having an alignment pattern.
  • a laser that emits laser light with a wavelength (325 nm) was used.
  • the amount of exposure by interference light was set to 1000 mJ/cm 2 .
  • One cycle of the alignment pattern formed by the interference of the two laser beams was controlled by changing the crossing angle (crossing angle ⁇ ) of the two beams.
  • Composition A-1 was prepared as a liquid crystal composition for forming a cholesteric liquid crystal layer.
  • the above composition A-1 is applied on the alignment film P-1, the coating film is heated on a hot plate to 80° C., and then heated at 80° C. in a nitrogen atmosphere using a high-pressure mercury lamp.
  • the coating film By irradiating the coating film with ultraviolet light having a wavelength of 365 nm at an irradiation dose of 300 mJ/cm 2 , the alignment of the liquid crystal compound was fixed to form a cholesteric liquid crystal layer.
  • composition A-1 was overcoated on this cholesteric liquid crystal layer, heated under the same conditions as above, cooled, and then cured with ultraviolet rays. In this manner, repeated coating was repeated until the total thickness of the formed cholesteric liquid crystal layer reached a desired film thickness, forming a cholesteric liquid crystal layer and producing a reflective layer.
  • the number of helical pitches in the normal direction (thickness direction) to the main surface was 9 pitches. Also, the bright portion and the dark portion were inclined with respect to the main surface.
  • the term "bright area” and “dark area” as used herein refers to the bright area and dark area derived from the cholesteric liquid crystal phase, which are observed when the cross section of the cholesteric liquid crystal layer is observed with an SEM.
  • the cholesteric liquid crystal layer has a periodically oriented surface as shown in FIG.
  • the cross section of the cholesteric liquid crystal layer was checked with an SEM, it was found that in the liquid crystal alignment pattern of the cholesteric liquid crystal layer, one period ⁇ for rotating the optical axis of the liquid crystal compound by 180° was 0.7 ⁇ m.
  • the reflection spectrum of the prepared reflective layer was measured using an ultraviolet-visible-near-infrared spectrophotometer ("UV-3100", manufactured by Shimadzu Corporation). From the reflection spectrum obtained, the center wavelength of reflection was 530 nm. Also, ⁇ n(550) of the cholesteric liquid crystal layer was 0.15.
  • Example 1 ⁇ Preparation of first reflective layer> (Formation of alignment film) An alignment film was formed on a glass substrate in the same manner as in Comparative Example 1, and the alignment film was exposed to form an alignment film P-1 having an alignment pattern.
  • the above composition B-1 was applied onto the alignment film P-1 to a desired film thickness to form a first cholesteric liquid crystal layer.
  • composition B-2 As a liquid crystal composition for forming the second cholesteric liquid crystal layer, a composition B-2 having the same composition as the composition A-1 of Comparative Example 1 was prepared.
  • a film having an optically anisotropic layer A was obtained in the same manner as the positive A plate described in paragraphs 0102 to 0126 of JP-A-2019-215416.
  • the optically anisotropic layer A is a positive A plate (retardation plate), and the thickness of the positive A plate is controlled so that Re(530) is 265 nm.
  • a positive C plate is produced in the same manner as the positive C plate described in paragraph 0124 of JP-A-2015-200861 (however, the thickness of the positive C plate is controlled so that Rth (530) is ⁇ 139 nm). was made.
  • Fourth to sixth cholesteric liquid crystal layers were formed in the same manner as the first to third cholesteric liquid crystal layers to produce a second reflective layer.
  • a positive A plate was attached to the third cholesteric liquid crystal layer side of the first reflective layer using an adhesive.
  • the positive C plate was then laminated onto the positive A plate using an adhesive.
  • the second reflective layer is transferred to a temporary support, and the fourth cholesteric liquid crystal layer side is laminated via an adhesive so that the retardation layer and the third cholesteric liquid crystal layer are arranged in that order, and the optical element was made.
  • the number of spiral pitches in the normal direction (thickness direction) to the main surface was 5 for the first cholesteric liquid crystal layer, and 5 for the second cholesteric liquid crystal layer. was 9 pitches, the third cholesteric liquid crystal layer was 5 pitches, the fourth cholesteric liquid crystal layer was 5 pitches, the fifth cholesteric liquid crystal layer was 9 pitches, and the sixth cholesteric liquid crystal layer was 5 pitches. Also, the bright and dark portions of each layer were inclined with respect to the main surface. In the liquid crystal alignment pattern of each cholesteric liquid crystal layer, one period ⁇ for rotating the optic axis of the liquid crystal compound by 180° was 0.7 ⁇ m.
  • the reflection center wavelengths of the produced first and second reflective layers were both 530 nm.
  • the birefringence ⁇ n(550) of the cholesteric liquid crystal layer is 0.08 for the first cholesteric liquid crystal layer, 0.15 for the second cholesteric liquid crystal layer, 0.08 for the third cholesteric liquid crystal layer, and 0.08 for the fourth cholesteric liquid crystal layer. was 0.08, the fifth cholesteric liquid crystal layer was 0.15, and the sixth cholesteric liquid crystal layer was 0.08. Therefore, each reflective layer satisfies the requirement X.
  • Examples 2-3 A reflective layer was formed in the same manner as in Example 1, except that the addition amount of the chiral agent C-1 was appropriately adjusted and the cholesteric liquid crystal layer was coated to a desired film thickness to form each cholesteric liquid crystal layer. was formed to produce an optical element.
  • Table 1 shows the helical pitch number and birefringence ⁇ n(550) of each cholesteric liquid crystal layer.
  • Example 4-5 In Example 1, the mixing ratio of the liquid crystal compound L-2 and the liquid crystal compound L-3 and the amount of the chiral agent C-1 added were appropriately adjusted, and the cholesteric liquid crystal layer was coated so as to have a desired thickness.
  • a reflective layer was formed and an optical element was produced in the same manner except that a cholesteric liquid crystal layer was formed.
  • Table 1 shows the helical pitch number and birefringence ⁇ n(550) of each cholesteric liquid crystal layer.
  • composition B-1 (Formation of second cholesteric liquid crystal layer)
  • the liquid crystal compound to be used is changed to the liquid crystal compound L-1 to liquid crystal compound L-4, the mixing ratio thereof is adjusted, and the amount of the chiral agent C-1 added is adjusted as appropriate. was obtained.
  • the obtained composition was applied onto the first cholesteric liquid crystal layer so as to have a desired film thickness, and the helical pitch number shown in Table 3, which will be described later, was obtained.
  • a second cholesteric liquid crystal layer having a predetermined film thickness was formed.
  • composition A-1 of Comparative Example 1 The same composition as composition A-1 of Comparative Example 1 was obtained. Next, in the same manner as in Comparative Example 1, the obtained composition was applied onto the second cholesteric liquid crystal layer so as to have a desired film thickness, and the helical pitch number shown in Table 3, which will be described later, was obtained. A third cholesteric liquid crystal layer having a predetermined film thickness was formed.
  • the second reflective layer is transferred to a temporary support, and the sixth cholesteric liquid crystal layer side is laminated via an adhesive so that the retardation layer and the fifth cholesteric liquid crystal layer are arranged in that order, and the optical element was made.
  • the selective reflection central wavelength of the first reflective layer and the selective reflection central wavelength of the second reflective layer were both 530 nm.
  • one period ⁇ for rotating the optic axis of the liquid crystal compound by 180° was 0.7 ⁇ m.
  • the birefringence ⁇ n(550) of each cholesteric liquid crystal layer was as shown in Table 3.
  • a reflective layer was prepared in the same manner as in Comparative Example 1 except that the amount of chiral agent C-1 added was adjusted to 2.0 parts by mass and the film thickness of the cholesteric liquid crystal layer was changed.
  • the reflection spectrum of the prepared reflective layer was measured using an ultraviolet-visible-near-infrared spectrophotometer ("UV-3100", manufactured by Shimadzu Corporation). From the reflection spectrum obtained, the center wavelength of reflection was 980 nm. Also, ⁇ n(550) of the cholesteric liquid crystal layer was 0.15. Moreover, the spiral pitch number was 9 pitches.
  • composition B-1 (Formation of cholesteric liquid crystal layer)
  • the amount of the chiral agent C-1 added was appropriately adjusted, and the resulting composition was coated on the third cholesteric liquid crystal layer so as to have a desired film thickness.
  • a first reflective layer and a second reflective layer were prepared in the same manner, except that each cholesteric liquid crystal layer was formed to have a predetermined film thickness so as to have the described number of helical pitches.
  • a positive A plate was attached to the third cholesteric liquid crystal layer side of the first reflective layer using an adhesive.
  • the positive C plate was then laminated onto the positive A plate using an adhesive.
  • the second reflective layer is transferred to a temporary support, and the fourth cholesteric liquid crystal layer side is laminated via an adhesive so that the retardation layer and the third cholesteric liquid crystal layer are arranged in that order, and the optical element was made.
  • Table 2 shows the helical pitch number and birefringence ⁇ n(550) of each cholesteric liquid crystal layer.
  • Examples 8-9 In the same manner as in Example 7, except that the addition amount of the chiral agent C-1 was appropriately adjusted, and each cholesteric liquid crystal layer was formed to have a desired film thickness so as to have a helical pitch number shown in Table 2 below. An optical element was produced. Table 2 shows the helical pitch number and birefringence ⁇ n(550) of each cholesteric liquid crystal layer.
  • Example 7 ⁇ Preparation of reflective layer>
  • the contents of the liquid crystal compound L-1, the liquid crystal compound L-2 and the liquid crystal compound L-3, and the amount of the chiral agent C-1 added were appropriately adjusted, and the helical pitch number and An optical element was produced in the same manner, except that each cholesteric liquid crystal layer having a predetermined film thickness was formed so as to have a thickness of .
  • Alignment film P-3 was prepared in the same manner as in Example 1, except that the crossing angle (crossing angle ⁇ ) of the two lights was changed in the exposure of the alignment film.
  • ⁇ Side lobe generation, reflectance evaluation> Using an ultraviolet-visible-near-infrared spectrophotometer (“UV-3100” manufactured by Shimadzu Corporation), the reflectance of the prepared optical element was measured. Based on the obtained reflection spectrum data, as shown in FIG. 1, the wavelength of the short wavelength side end E1 and the wavelength of the long wavelength side end E2 of the reflection wavelength band (selective reflection band) were determined. .
  • the end E1 on the short wavelength side of the reflection wavelength band is intended to be the wavelength that exhibits the lowest reflectance of the concave portion where the reflectance first becomes 5% or less toward the short wavelength side from the reflection wavelength band.
  • the end E2 on the long wavelength side of the selective reflection band is intended to be the wavelength exhibiting the lowest reflectance of the recess where the reflectance is 5% or less first from the reflection wavelength band toward the long wavelength side.
  • the wavelength at the position P1 was calculated by subtracting 100 nm from the wavelength at the end E1, and the integrated value V1 of the reflectance between the wavelength at the end E1 and the wavelength at the position P1 was calculated.
  • the wavelength at the position P2 was calculated by adding 100 nm to the wavelength at the end E2, and the integrated value V2 of the reflectance between the wavelength at the end E2 and the wavelength at the position P2 was calculated.
  • the side lobe reflectance was calculated by adding the obtained integrated values V1 and V2.
  • the reflectance of the selective central reflection wavelength of the selective reflection band was evaluated.
  • the column “selected central reflection wavelength (nm)” represents the selective central reflection wavelength (nm) of the optical element.
  • the column “One cycle ⁇ of liquid crystal alignment pattern ( ⁇ m)” represents the value of one cycle ⁇ of the liquid crystal alignment pattern of each cholesteric liquid crystal layer.
  • first layer to “tenth layer” represent the first to tenth cholesteric liquid crystal layers, respectively.
  • first region birefringence ⁇ n (550) “second region birefringence ⁇ n (550)”, and “third region birefringence ⁇ n (550)”
  • the birefringence ⁇ n(550) birefringence at a wavelength of 550 nm) of the first to third regions defined by the requirement X of the reflective layer and the second reflective layer is shown.
  • the selective reflection center wavelengths of the first reflective layer and the second reflective layer were both 530 nm.
  • the rotating direction of the circularly polarized light reflected by the first reflective layer and the second reflective layer was the same.
  • the retardation layer had a ⁇ /2 retardation function at the wavelengths in the reflection wavelength bands of the first reflective layer and the second reflective layer.
  • the direction in which the optical axis of the liquid crystal compound in the liquid crystal orientation pattern in the cholesteric liquid crystal layer contained in the first reflective layer and the second reflective layer changed continuously was the same.
  • the selective reflection center wavelengths of the first reflective layer and the second reflective layer were both 980 nm.
  • the rotating direction of the circularly polarized light reflected by the first reflective layer and the second reflective layer was the same.
  • the retardation layer had a ⁇ /2 retardation function at the wavelengths in the reflection wavelength bands of the first reflective layer and the second reflective layer.
  • the direction in which the optical axis of the liquid crystal compound in the liquid crystal orientation pattern in the cholesteric liquid crystal layer contained in the first reflective layer and the second reflective layer changed continuously was the same.
  • Example 1 to 6 were confirmed to reduce the sidelobe reflectance.
  • the effect of reducing the sidelobe reflectance was higher in Example 6 than in Examples 1 to 5.
  • Examples 7 to 12 were confirmed to reduce the sidelobe reflectance.
  • Example 12 was more effective in reducing sidelobe reflectance than Examples 7 to 11. From the above results, the effect of the present invention is clear.
  • optical element 12 first reflective layer 14 second reflective layer 20 first cholesteric liquid crystal layer 22 second cholesteric liquid crystal layer 24 third cholesteric liquid crystal layer 30 fourth cholesteric liquid crystal layer 32 fifth cholesteric liquid crystal layer 34 sixth cholesteric liquid crystal layer 40 , 42, 44 cholesteric liquid crystal layer 60 exposure device 62 laser 64 light source 65 ⁇ /2 plate 68 polarizing beam splitter 70A, 70B mirror 72A, 72B ⁇ /4 plate 80 alignment film 82 support 90 image display device 92 light guide plate 94 image display panel

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

サイドローブの発生が抑制され、反射率が高い、光学素子を提供する。反射する円偏光の旋回方向が同じで、かつ、反射波長帯域の少なくとも一部が重複する2つの反射層の組み合わせである反射層対と、反射層対の反射層の間に配置される位相差層とを含む光学素子であって、反射層がコレステリック液晶相を固定してなるコレステリック液晶層を含み、コレステリック液晶層は光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有し、反射層の一方の表面から他方の表面側に向かって、反射層の全厚みの10%に相当する位置をXとし、反射層の全厚みの90%に相当する位置をYとし、一方の表面からXまでの領域を第1領域、XからYまでの領域を第2領域、Yから他方の表面までの領域を第3領域とした際に、第1領域および第3領域での複屈折の少なくとも一方が、第2領域での複屈折よりも小さい。

Description

光学素子、画像表示装置、ヘッドマウントディスプレイ、センシング装置、アイトラッキング装置
 本発明は、光学素子、画像表示装置、ヘッドマウントディスプレイ、センシング装置、および、アイトラッキング装置に関する。
 コレステリック液晶相を固定してなる層(以後、「コレステリック液晶層」ともいう)は、特定の波長域において右円偏光および左円偏光のいずれか一方を選択的に反射させる層として知られている。このコレステリック液晶層の配向状態を微細に制御することによって、反射光の反射方向を鏡面反射ではなく斜め反射にする光学素子が知られている(例えば、特許文献1)。
国際公開第2016/194961号
 このような光学素子においてより選択性の高い反射特性が求められており、特にサイドローブの発生の抑制が求められている。なお、サイドローブとは、図1に示すように、反射波長帯域Bの外側近傍の波長で反射率が比較的大きくなる部分Sを意図する。このようなサイドローブが発生すると、本来反射すべきでない波長の光を反射することになり、好ましくない。
 本発明は、上記実情に鑑みて、サイドローブの発生が抑制され、反射率が高い、光学素子を提供することを課題とする。
 また、本発明は、画像表示装置、ヘッドマウントディスプレイ、センシング装置、および、アイトラッキング装置も提供することを課題とする。
 本発明者らは、以下の構成により上記課題を解決できることを見出した。
[1] 反射する円偏光の旋回方向が同じで、かつ、反射波長帯域の少なくとも一部が重複する、2つの反射層の組み合わせである反射層対と、反射層対の反射層の間に配置される位相差層と、を、少なくとも1組含む、光学素子であって、
 反射層が、コレステリック液晶相を固定してなるコレステリック液晶層を含み、
 コレステリック液晶層は、液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有し、
 反射層の一方の表面から他方の表面側に向かって、反射層の全螺旋ピッチ数の10%に相当する深さ位置を深さ位置Xとし、反射層の全螺旋ピッチ数の90%に相当する深さ位置を深さ位置Yとし、一方の表面から深さ位置Xまでの領域を第1領域、深さ位置Xから深さ位置Yまでの領域を第2領域、深さ位置Yから他方の表面までの領域を第3領域とした際に、第1領域および第3領域での複屈折の少なくとも一方が、第2領域での複屈折よりも小さい、光学素子。
[2] 反射層が複数のコレステリック液晶層を含み、
 2つの反射層のうちの一方の反射層に含まれる複数のコレステリック液晶層が有する液晶配向パターン中における液晶化合物由来の光学軸の回転方向がいずれも同方向であり、
 2つの反射層のうちの他方の反射層に含まれる複数のコレステリック液晶層が有する液晶配向パターン中における液晶化合物由来の光学軸の回転方向がいずれも同方向である、[1]に記載の光学素子。
[3] 2つの反射層のうちの一方の反射層に含まれるコレステリック液晶層が有する液晶配向パターン中における液晶化合物由来の光学軸の回転方向と、2つの反射層のうちの他方の反射層に含まれるコレステリック液晶層が有する液晶配向パターン中における液晶化合物由来の光学軸の回転方向とが同方向である、[1]または[2]に記載の光学素子。
[4] コレステリック液晶層中の液晶配向パターンにおいて、液晶化合物由来の光学軸の向きが連続的に回転しながら変化する一方向における、液晶化合物由来の光学軸の向きが180°回転する長さを1周期とした際に、
 2つの反射層のうちの一方の反射層に含まれるコレステリック液晶層中の液晶配向パターンにおける1周期の長さと、2つの反射層のうちの他方の反射層に含まれるコレステリック液晶層中の液晶配向パターンにおける1周期の長さとが同じである、[1]~[3]のいずれかに記載の光学素子。
[5] コレステリック液晶層の少なくとも1層が、面内に、液晶配向パターンにおける1周期の長さが異なる領域を有する、[1]~[4]のいずれかに記載の光学素子。
[6] コレステリック液晶層の少なくとも1層が、液晶配向パターンにおける1周期の長さが、一方向に沿って漸次変化する領域を有する、[1]~[5]のいずれかに記載の光学素子。
[7] 反射層は、異なる液晶化合物を含む組成物から形成された複数のコレステリック液晶層を含み、
 反射層の膜厚の中心位置に位置するコレステリック液晶層から、反射層の少なくとも一方の表面側に向かって、コレステリック液晶層の複屈折が漸次小さくなる、[1]~[6]のいずれかに記載の光学素子。
[8] 反射層において、複屈折が最も小さいコレステリック液晶層の螺旋ピッチ数が、複屈折が最も大きいコレステリック液晶層の螺旋ピッチ数の半分以下である、[7]に記載の光学素子。
[9] 走査型電子顕微鏡によって観察されるコレステリック液晶層の断面において、
 コレステリック液晶相に由来する明部および暗部が、コレステリック液晶層の主面に対して傾斜しており、さらに、コレステリック液晶層の主面の法線方向および法線に対して傾斜した方向から面内レタデーションを測定した際に、遅相軸面内および進相軸面内のいずれかにおいて、面内レタデーションが最小となる方向が法線方向から傾斜している、コレステリック液晶層を、少なくとも1層、有する、[1]~[8]のいずれかに記載の光学素子。
[10] 液晶配向パターンにおける1周期の長さが短くなるにしたがって、暗部の平均傾斜角が、一方向に沿って漸次変化する領域を有する、[9]に記載の光学素子。
[11] 液晶配向パターンにおける1周期の長さが短くなるにしたがって、暗部の平均傾斜角が大きくなる領域を有する、[9]に記載の光学素子。
[12] 位相差層が、反射層の反射波長帯域の波長においてλ/2位相差機能を有する、[1]~[11]のいずれかに記載の光学素子。
[13] 反射層対を複数含み、
 異なる反射層対の間では、反射層対を構成する反射層の選択反射中心波長が、互いに異なる、[1]~[12]のいずれかに記載の光学素子。
[14] 反射層対を複数含み、
 異なる反射層対の間では、反射層対を構成する反射層に含まれるコレステリック液晶層における選択反射中心波長の長さの順列と、1周期の長さの順列とが、一致している、[1]~[13]のいずれかに記載の光学素子。
[15] [1]~[14]のいずれかに記載の光学素子と、
 画像表示パネルと、を含む、画像表示装置。
[16] [15]に記載の画像表示装置を含む、ヘッドマウントディスプレイ。
[17] [1]~[14]のいずれかに記載の光学素子を含む、センシング装置。
[18] [1]~[14]のいずれかに記載の光学素子を含む、アイトラッキング装置。
 本発明によれば、サイドローブの発生が抑制され、反射率が高い、光学素子を提供できる。
 また、本発明によれば、画像表示装置、ヘッドマウントディスプレイ、センシング装置、および、アイトラッキング装置も提供できる。
図1は、コレステリック液晶層の一般的な反射率特性を示すグラフである。 図2は、光学素子の一例の側面図である。 図3は、第1コレステリック液晶層の断面図である。 図4は、図3に示す第1コレステリック液晶層の平面図を示す。 図5は、要件Xを説明するための第1反射層の断面図である。 図6は、コレステリック液晶層の別の例の平面図である。 図7は、コレステリック液晶層の別の実施形態の断面図である。 図8は、コレステリック液晶層の別の実施形態の断面図である。 図9は、配向膜を露光する露光装置の一例の概念図である。 図10は、画像表示装置の一例の概念図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に制限されるものではない。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、各成分は、各成分に該当する物質を1種単独でも用いても、2種以上を併用してもよい。ここで、各成分について2種以上の物質を併用する場合、その成分についての含有量とは、特段の断りが無い限り、併用した物質の合計の含有量を指す。
 本明細書において、「(メタ)アクリレート」は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味で使用される。
 本明細書において、可視光は、電磁波のうち、ヒトの目で見える波長の光であり、380~780nmの波長域の光を示す。非可視光は、380nm未満の波長域および780nmを超える波長域の光である。
 またこれに制限されるものではないが、可視光のうち、420~490nmの波長域の光は青色光であり、495~570nmの波長域の光は緑色光であり、620~750nmの波長域の光は赤色光である。
 本明細書において、コレステリック液晶層および各領域などの複屈折は、波長550nmにおける複屈折を表す。
 本明細書において、反射波長帯域とは、コレステリック液晶層に由来して選択的に反射される円偏光の波長の範囲を意味する。
 本発明の光学素子の特徴点としては、反射層が膜厚方向に複屈折が異なる領域を有し、かつ、同じ円偏光を反射する2つの反射層と位相差層とを用いる点が挙げられる。反射層が膜厚方向に複屈折が異なる領域を有することにより、反射光が互いに干渉しあい、両者が弱めあうことで、結果としてサイドローブが低減する。また、同じ円偏光を反射する2つの反射層の間に位相差層を配置して、光学素子に入射する他方の円偏光を反射される円偏光に変換して反射することで反射率を高めている。
 図2に、本発明の光学素子の一例を概念的に示す側面図を示す。
 光学素子10は、第1反射層12と、位相差層16と、第2反射層14とを含む。第1反射層12は、第1コレステリック液晶層20、第2コレステリック液晶層22、および、第3コレステリック液晶層24の3つのコレステリック液晶層を含む。第2反射層14は、第4コレステリック液晶層30、第5コレステリック液晶層32、および、第6コレステリック液晶層34の3つのコレステリック液晶層を含む。
 後段で詳述するように、第1反射層12が反射する円偏光の旋回方向と、第2反射層14が反射する円偏光の旋回方向とは、同方向である。また、第1反射層12の反射波長帯域と、第2反射層14の反射波長帯域とは、重複している。つまり、第1反射層12および第2反射層が、反射する円偏光の旋回方向が同じで、かつ、反射波長帯域の少なくとも一部が重複する、2つの反射層の組み合わせである反射層対を構成している。
 また、光学素子10は、反射層対を構成する第1反射層12と第2反射層14との間に位相差層16を有する。
 後段で詳述するように、位相差層16は、第1反射層12および第2反射層14の反射波長帯域の波長においてλ/2位相差機能を有するλ/2板として機能する。位相差層16は、λ/2位相差機能を有することで、第1反射層12および第2反射層14で反射されない旋回方向の円偏光を、第1反射層12および第2反射層14で反射される旋回方向の円偏光に変換する。
 第1反射層12および第2反射層14に含まれるコレステリック液晶層(第1コレステリック液晶層20~第6コレステリック液晶層34)は、コレステリック液晶相を固定してなる層に該当する。
 なお、図2においては、第1反射層12および第2反射層14にそれぞれ3層のコレステリック液晶層が含まれる態様について述べるが、本発明はこの態様には制限されず、後述する反射層の所定の深さ領域での複屈折を満たせば、各反射層に含まれるコレステリック液晶層は1層でもよいし、複数層であってもよい。
 第1反射層12および第2反射層14は、それぞれに含まれるコレステリック液晶層によって、所定の波長の光(例えば、可視光。より具体的には、青色光、緑色光、および、赤色光など。)を反射できる。
<位相差層の説明>
 図2に示すように位相差層16は、第1反射層12と第2反射層14との間に配置される。
 位相差層16は、好ましくは、第1反射層12および第2反射層14の反射波長帯域の波長において略λ/2位相差機能を有するλ/2板として機能する。λ/2板とは、特定の波長λnmにおける面内レターデーションRe(λ)がRe(λ)=λ/2を満たす板のことをいう。本発明の光学素子においては、第1反射層12および第2反射層14の反射波長帯域の波長λに対してλ/2位相差機能を有するものであればよい。
 位相差層16は、λ/2位相差機能を有することで、第1反射層12および第2反射層14で反射されない旋回方向の円偏光を、第1反射層12および第2反射層14で反射される旋回方向の円偏光に変換する。
 これにより、例えば、光学素子10に対して、第1反射層12側から無偏光が入射した場合、第1反射層12は一方の旋回方向の円偏光成分(例えば、右円偏光)を反射し、他方の旋回方向の円偏光成分(例えば、左円偏光)を透過する。第1反射層12を透過した円偏光(左円偏光)は、位相差層16によって反対の旋回方向の円偏光(右円偏光)に変換される。位相差層16を透過した円偏光(右円偏光)は、第2反射層14に入射する。第2反射層14は第1反射層12と同じ旋回方向の円偏光(右円偏光)を反射するので、位相差層16を透過し、第2反射層14に入射した円偏光(右円偏光)は、第2反射層14によって反射される。第2反射層14によって反射された円偏光(右円偏光)は、再度、位相差層16に入射する。位相差層16に入射した円偏光(右円偏光)は、位相差層16によって反対の旋回方向の円偏光(左円偏光)に変換される。位相差層16を透過した円偏光(左円偏光)は、第1反射層12を透過し、反射光として光学素子10から出射される。これにより、光学素子10は、入射する右円偏光および左円偏光を共に反射でき、反射特性により優れるものとなる。
 位相差層16としては、第1反射層12および第2反射層14の反射波長帯域の波長において略λ/2位相差機能を有するものであれば特に制限はなく、種々の公知の位相差層を用いることができる。
 一例として、重合性の液晶化合物を重合させてなるλ/2板、ポリマーフィルムからなるλ/2板、2枚のポリマーフィルムを積層したλ/2板、位相差層としてλ/2の位相差を有するλ/2板、および、構造複屈折でλ/2の位相差を発現するλ/2板等が例示される。
 また、位相差層16は、λ/2板(いわゆるAプレート)に加えて、Cプレートを有していてもよい。Cプレートとしては、ポジティブCプレート、ネガティブCプレートのいずれであってもよい。
 位相差層16がCプレートを有することで、位相差層16の主面に対して斜め方向から入射する光に対してもλ/2位相差機能を発揮するように調整することができる。
<反射層およびコレステリック液晶層の説明>
 コレステリック液晶層の説明を行うために、図3においては、第1コレステリック液晶層20の断面図を示す。図4に、図3に示す第1コレステリック液晶層20の平面図を示す。なお、平面図とは、第1コレステリック液晶層20を上方から見た図である。また、図3は、図4中のA線-A線での断面図である。
 図3において、X方向およびZ方向は、観察面において互いに直交する2つの座標軸の向きを示す。Z方向は、第1コレステリック液晶層20の厚さ方向と平行である。
 図4において、X方向およびY方向は、観察面において互いに直交する2つの座標軸の向きを示す。
 図3に概念的に示すように、通常のコレステリック液晶相を固定してなるコレステリック液晶層と同様に、第1コレステリック液晶層20は、液晶化合物LCが厚み方向に沿った螺旋軸に沿って旋回して積み重ねられた螺旋構造を有し、図3では簡略化して示されているが、液晶化合物LCが螺旋状に1回転(360°回転)して積み重ねられた構成を螺旋1ピッチとて、螺旋状に旋回する液晶化合物LCが、複数ピッチ、積層された構造を有する。この点に関しては、第2コレステリック液晶層22~第6コレステリック液晶層34についても同様である。
 また、第1コレステリック液晶層20~第3コレステリック液晶層24と、第4コレステリック液晶層30~第6コレステリック液晶層34とでは、液晶配向パターン中における液晶化合物由来の光学軸の回転方向が同じ方向である。
 第1コレステリック液晶層20~第6コレステリック液晶層34は、波長選択反射性を有する。
 コレステリック液晶相は、特定の波長において選択反射性を示すことが知られている。選択反射の中心波長λ(選択反射中心波長λ)は、コレステリック液晶相における螺旋構造のピッチP(螺旋ピッチ)に依存し、コレステリック液晶相の平均屈折率nとλ=n×Pの関係に従う。そのため、この螺旋構造のピッチを調節することによって、選択反射中心波長を調節できる。コレステリック液晶相の螺旋ピッチは、コレステリック液晶層の形成の際、液晶化合物と共に用いるキラル剤の種類、または、その添加濃度に依存するため、これらを調節することによって所望のピッチを得ることができる。なお、コレステリック液晶相における螺旋構造のピッチP(螺旋ピッチ)とは、すなわち、コレステリック液晶相の螺旋構造における螺旋の周期である。
 なお、ピッチの調節については富士フイルム研究報告No.50(2005年)p.60-63に詳細な記載がある。螺旋のセンスおよびピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46頁、および、「液晶便覧」液晶便覧編集委員会 丸善 196頁に記載の方法を用いることができる。
 なお、本明細書において、選択反射中心波長(例えば、反射層の選択中心反射波長、コレステリック液晶層の選択中心反射波長)とは、対象となる物(部材)における透過率の極小値をTmin(%)とした場合、下記の式で表される半値透過率:T1/2(%)を示す2つの波長の平均値のことをいう。
 半値透過率を求める式:T1/2=100-(100-Tmin)÷2
 コレステリック液晶相は、特定の波長において左右いずれかの円偏光に対して選択反射性を示す。反射光が右円偏光であるか左円偏光であるかは、コレステリック液晶相の螺旋の捩れ方向(センス)による。コレステリック液晶相による円偏光の選択反射は、コレステリック液晶相の螺旋の捩れ方向が右の場合は右円偏光を反射し、螺旋の捩れ方向が左の場合は左円偏光を反射する。
 したがって、図3に示す第1コレステリック液晶層20においては、コレステリック液晶層は、右捩れのコレステリック液晶相を固定してなる層である。
 なお、コレステリック液晶相の旋回の方向は、コレステリック液晶層を形成する液晶化合物の種類および/または添加されるキラル剤の種類によって調節できる。
 また、選択反射を示す反射波長帯域(円偏光反射帯域)の半値幅Δλ(nm)は、コレステリック液晶層の複屈折Δnと螺旋のピッチPとに依存し、Δλ=Δn×Pの関係に従う。そのため、反射波長帯域の幅の制御は、Δnを調節して行うことができる。Δnは、コレステリック液晶層を形成する液晶化合物の種類およびその混合比率、ならびに、配向固定時の温度により調節できる。
 反射波長帯域の半値幅は、光学素子10の用途に応じて調節され、10~500nmが好ましく、20~300nmがより好ましく、30~150nmがさらに好ましい。
 光学素子に含まれる反射層に複数のコレステリック液晶層が含まれる場合、それぞれの反射層において、最も大きい反射中心波長を示すコレステリック液晶層と最も小さい選択反射中心波長を示すコレステリック液晶層との間の、選択反射中心波長の差の絶対値は、サイドローブの発生がより抑制される点で、50nm以下が好ましく、25nm以下がより好ましい。下限は特に制限されないが、0が挙げられる。
 図3および4に示すように、第1コレステリック液晶層20は、コレステリック液晶相を形成する液晶化合物LCに由来する光学軸20Aの向きが、コレステリック液晶層の面内において、一方向に連続的に回転しながら変化する液晶配向パターンを有する。この点に関しては、第2コレステリック液晶層22~第6コレステリック液晶層34についても同様である。
 なお、液晶化合物LCに由来する光学軸20Aとは、液晶化合物LCにおいて屈折率が最も高くなる軸である。例えば、液晶化合物LCが棒状液晶化合物である場合には、光学軸20Aは、棒形状の長軸方向に沿っている。以下の説明では、液晶化合物LCに由来する光学軸20Aを、『液晶化合物LCの光学軸20A』または『光学軸20A』ともいう。
 図4に示すように、第1コレステリック液晶層20を構成する液晶化合物LCは、X方向、および、X方向と直交する方向(Y方向)と直交する方向に、二次元的に配置された状態になっている。
 第1コレステリック液晶層20を形成する液晶化合物LCは、面内方向において、X方向に沿って、光学軸20Aの向きが、連続的に回転しながら変化する、液晶配向パターンを有する。図示例においては、液晶化合物LCの光学軸20Aが、白抜き矢印に沿って、時計回り方向に連続的に回転しながら変化する、液晶配向パターンを有する。
 液晶化合物LCの光学軸20Aの向きが白抜き矢印の方向(所定の一方向)に連続的に回転しながら変化しているとは、具体的には、白抜き矢印の方向に沿って配列されている液晶化合物LCの光学軸20Aと、白抜き矢印の方向とが成す角度が、白抜き矢印の方向の位置によって異なっており、白抜き矢印の方向に沿って、光学軸20Aと白抜き矢印の方向とが成す角度がθからθ+180°あるいはθ-180°まで、順次、変化していることを意味する。
 なお、白抜き矢印の方向に互いに隣接する液晶化合物LCの光学軸20Aの角度の差は、45°以下であるのが好ましく、15°以下であるのがより好ましく、より小さい角度であるのがさらに好ましい。
 一方、第1コレステリック液晶層20を形成する液晶化合物LCは、X方向と直交するY方向、すなわち、光学軸20Aが連続的に回転する一方向と直交するY方向では、光学軸20Aの向きが等しい。
 言い換えれば、第1コレステリック液晶層20を形成する液晶化合物LCは、Y方向では、液晶化合物LCの光学軸20AとX方向とが成す角度が等しい。
 本発明の光学素子10においては、このような液晶化合物LCの液晶配向パターンにおいて、面内で光学軸20Aが連続的に回転して変化するX方向において、液晶化合物LCの光学軸20Aが180°回転する長さ(距離)を、液晶配向パターンにおける1周期の長さΛとする。
 すなわち、X方向に対する角度が等しい2つの液晶化合物LCの、X方向の中心間の距離を、1周期の長さΛとする。具体的には、図4に示すように、X方向と光学軸20Aの方向とが一致する2つの液晶化合物LCの、X方向の中心間の距離を、1周期の長さΛとする。
 以下の説明では、この1周期の長さΛを『1周期Λ』とも言う。
 コレステリック液晶層の液晶配向パターンは、この1周期Λを、X方向すなわち光学軸20Aの向きが連続的に回転して変化する一方向に繰り返す。
 第1コレステリック液晶層20は、面内において、X方向(所定の一方向)に沿って光学軸20Aが連続的に回転しながら変化する、液晶配向パターンを有する。
 コレステリック液晶相を固定してなるコレステリック液晶層は、通常、入射した光(円偏光)を鏡面反射する。
 これに対して、上述のような液晶配向パターンを有する第1コレステリック液晶層20は、入射した光を、鏡面反射に対してX方向に角度を有した方向に反射する。具体的には、図3に示すように、第1コレステリック液晶層20は、法線方向から入射した光を、法線方向に反射するのではなく、法線方向に対して傾けて反射する。法線方向から入射した光とは、すなわち正面から入射した光であり、主面に対して垂直に入射した光である。主面とは、シート状物の最大面である。
 なお、一方向(X方向)に向かって液晶化合物LCの光学軸20Aが連続的に回転するコレステリック液晶層による光の反射角度は、反射する光の波長によって、角度が異なる。具体的には、長波長の光ほど、入射光に対する反射光の角度が大きくなる。
 また、一方向(X方向)に向かって液晶化合物LCの光学軸20Aが連続的に回転するコレステリック液晶層による光の反射角度は、X方向において、光学軸20Aが180°回転する液晶配向パターンの1周期の長さΛ、すなわち、1周期Λによって異なる。具体的には、1周期Λが短いほど、入射光に対する反射光の角度が大きくなる。
 なお、上記1周期Λは特に制限されず、光学素子10の用途等に応じて、適宜、設定すればよく、例えば、50μm以下が好ましく、10μm以下がより好ましい。液晶配向パターンの精度等を考慮すると、0.1μm以上とするのが好ましい。
 上述したように、光学素子10に含まれるコレステリック液晶層(第1コレステリック液晶層20~第6コレステリック液晶層34)は、上述した液晶配向パターンを有する。
 なかでも、第1反射層12に含まれる第1コレステリック液晶層20~第3コレステリック液晶層24がそれぞれ有する液晶配向パターン中における液晶化合物由来の光学軸の回転方向は同じである。
 また、第2反射層14に含まれる第4コレステリック液晶層30~第6コレステリック液晶層34がそれぞれ有する液晶配向パターン中における液晶化合物由来の光学軸の回転方向は同じである。
 つまり、反射層対を構成する各反射層が複数のコレステリック液晶層を含む場合、各反射層に含まれる複数のコレステリック液晶層が有する液晶配向パターン中における液晶化合物由来の光学軸の回転方向がいずれも同方向であることが好ましい。
 また、上述したように、第1反射層12が反射する円偏光の旋回方向と、第2反射層14が反射する円偏光の旋回方向とが同じ方向である。
 また、光学素子10において、第1反射層12に含まれるコレステリック液晶層(第1コレステリック液晶層20~第3コレステリック液晶層24)が有する液晶配向パターン中における液晶化合物由来の光学軸の回転方向と、第2反射層14に含まれるコレステリック液晶層(第4コレステリック液晶層30~第6コレステリック液晶層34)が有する液晶配向パターン中における液晶化合物由来の光学軸の回転方向とが同じ方向である。すなわち、第2反射層14に含まれる第4コレステリック液晶層30~第6コレステリック液晶層36が有する液晶配向パターン中における液晶化合物由来の光学軸の回転方向は、図4に示す例と同様である。
 第1反射層12が反射する円偏光の旋回方向と、第2反射層14が反射する円偏光の旋回方向とが同じで、かつ、第1反射層12に含まれるコレステリック液晶層が有する液晶配向パターン中における液晶化合物由来の光学軸の回転方向と、第2反射層14に含まれるコレステリック液晶層が有する液晶配向パターン中における液晶化合物由来の光学軸の回転方向とが同じ方向であることで、第1反射層12による円偏光の反射方向と第2反射層14による円偏光の反射方向とを同じ方向にすることができる。
 光学素子10において、第1反射層12の反射波長帯域と、第2反射層14の反射波長帯域とが重複する。上述したように、第1反射層12が反射する円偏光の旋回方向と、第2反射層14が反射する円偏光の旋回方向とが同じ方向で、第1反射層12と第2反射層14との間に位相差層16を有することから、上記のように第1反射層12と第2反射層14の反射波長帯域が重複している場合、所定の波長の右円偏光および左円偏光を共に反射でき、反射特性により優れる。
 各反射層の反射波長帯域の少なくとも一部が重複するかどうかは、反射光の波長分布を測定することにより確認できる。
 反射層(第1反射層および第2反射層)の反射波長帯域の幅および位置は、反射層(第1反射層および第2反射層)にそれぞれ含まれるコレステリック液晶層の反射特性を調整することにより、制御できる。
 なお、第1反射層の反射波長帯域と、第2反射層の反射波長帯域とは完全に重複する態様には制限されず、反射層対を構成する2つの反射層(第1反射層および第2反射層)の反射波長帯域が少なくとも一部重複していればよい。この場合、位相差層16は、2つの反射層の反射波長帯域が重複する波長領域の波長において略λ/2位相差機能を有していればよい。
 光学素子の光反射量の点では、反射層対を構成する2つの反射層(第1反射層および第2反射層)の反射波長帯域の重複領域が広い方が好ましい。具体的には、反射層対を構成する2つの反射層(第1反射層および第2反射層)の選択反射中心波長同士の差が、50nm以下であることが好ましく、25nm以下であることがより好ましい。なかでも、反射層対を構成する2つの反射層(第1反射層および第2反射層)の選択反射中心波長同士が一致していることがさらに好ましい。
 また、第1反射層12に含まれる第1コレステリック液晶層20~第3コレステリック液晶層24がそれぞれ有する液晶配向パターンにおける1周期Λの長さは同じである。
 また、第2反射層14に含まれる第4コレステリック液晶層30~第6コレステリック液晶層34がそれぞれ有する液晶配向パターンにおける1周期Λの長さは同じである。
 反射層対を構成する各反射層が複数のコレステリック液晶層を含む場合、各反射層に含まれる複数のコレステリック液晶層が有する液晶配向パターンにおける1周期Λの長さは同じであることが好ましい。
 また、第1反射層12に含まれるコレステリック液晶層(第1コレステリック液晶層20~第3コレステリック液晶層24)中の液晶配向パターンにおける1周期Λの長さと、第2反射層14に含まれるコレステリック液晶層(第4コレステリック液晶層30~第6コレステリック液晶層34)中の液晶配向パターンにおける1周期Λの長さとは、同じである。
 反射層対を構成する一方の反射層に含まれるコレステリック液晶層中の液晶配向パターンにおける1周期Λの長さと、2つの反射層のうちの他方の反射層に含まれるコレステリック液晶層中の液晶配向パターンにおける1周期Λの長さとは同じであることが好ましい。
 なお、本発明において、液晶配向パターンにおける1周期Λの長さが同じとは、1周期Λの長さの差が30%以下であることを示す。上記差の算出方法としては、2つの比較する1周期Λをそれぞれ1周期Λxおよび1周期Λyとした際に、1周期Λxのほうがより大きい場合には、式:{(1周期Λx-1周期Λy)/(1周期Λx)}×100によって算出される。また、1周期Λxおよび1周期Λyが同じ値である場合、差は0%とする。
 上述したように、各反射層に含まれるコレステリック液晶層同士において、液晶配向パターンにおける1周期Λの長さの差は、小さい方が好ましい。前述のように、1周期Λの長さが短いほど、入射光に対する反射角度が大きくなる。したがって、1周期Λの長さの差が小さいほど、同じ旋回方向の光を反射するコレステリック液晶層による光の反射方向を近くできる。
 第1反射層12に含まれるコレステリック液晶層(第1コレステリック液晶層20~第3コレステリック液晶層24)中の液晶配向パターンにおける液晶化合物の光学軸が連続的に変化する方向はいずれも同じである。このような態様の場合、第1反射層12に含まれるコレステリック液晶層による光の反射方向を一致させることができる。
 また、第2反射層14に含まれるコレステリック液晶層(第4コレステリック液晶層30~第6コレステリック液晶層34)中の液晶配向パターンにおける液晶化合物の光学軸が連続的に変化する方向はいずれも同じである。このような態様の場合、第2反射層14に含まれるコレステリック液晶層による光の反射方向を一致させることができる。
 つまり、反射層対を構成する各反射層が複数のコレステリック液晶層を含む場合、各反射層に含まれる複数のコレステリック液晶層中の液晶配向パターンにおける液晶化合物の光学軸が連続的に変化する方向はいずれも同じであることが好ましい。
 なお、本発明において、2つのコレステリック液晶層中の液晶配向パターンにおける液晶化合物の光学軸が連続的に変化する方向が同じとは、2つのコレステリック液晶層中の液晶配向パターンにおける液晶化合物の光学軸が連続的に変化する方向同士がなす角度が10°以内であることが好ましく、1°以内がより好ましく、0.5°以内がさらに好ましい。
 本発明は上記態様には制限されず、第1反射層に含まれるコレステリック液晶層中の液晶配向パターンにおける液晶化合物の光学軸が連続的に変化する方向が異なっていてもよい。例えば、第1反射層に含まれるコレステリック液晶層中の液晶配向パターンにおける液晶化合物の光学軸が連続的に変化する方向同士がなす角度が20°であってもよい。
 また、第2反射層に含まれるコレステリック液晶層中の液晶配向パターンにおける液晶化合物の光学軸が連続的に変化する方向が異なっていてもよい。
 第1反射層12中の第2コレステリック液晶層22の複屈折は、第1コレステリック液晶層20および第3コレステリック液晶層24の複屈折よりも大きい。なお、第1コレステリック液晶層20および第3コレステリック液晶層24は、同じ複屈折を示す。
 また、第2反射層14中の第5コレステリック液晶層32の複屈折は、第4コレステリック液晶層30および第6コレステリック液晶層34の複屈折よりも大きい。なお、第4コレステリック液晶層30および第6コレステリック液晶層34は、同じ複屈折を示す。
 なお、本発明の光学素子においては、上記態様に制限されず、後述する要件Xを満たせばその構成は特に制限されない。
 各コレステリック液晶層の複屈折を調整する方法としては、各コレステリック液晶層の形成に用いられる液晶化合物の複屈折を調整する方法が挙げられる。例えば、第2コレステリック液晶層22の形成に用いられる液晶化合物として、第1コレステリック液晶層20および第3コレステリック液晶層24の形成に用いられる液晶化合物よりも複屈折が大きい液晶化合物を選択する方法が挙げられる。
 つまり、反射層は、異なる種類の液晶化合物を含む組成物を用いて形成された複数のコレステリック液晶層を含むことが好ましい。
 本発明の光学素子においては、光学素子10中の第1反射層12および第2反射層14のように、反射層の膜厚の中心位置に位置するコレステリック液晶層(第2コレステリック液晶層22および第5コレステリック液晶層32に該当)から、反射層の少なくとも一方の表面側に向かって、コレステリック液晶層の複屈折が漸次小さくなることが好ましい。上記態様をとることにより、サイドローブの発生がより抑制される。
 光学素子に含まれる各反射層中のコレステリック液晶層の厚みは特に制限されず、後述する要件Xを満たせばその構成は特に制限されないが、図2に示すように、反射層中のコレステリック液晶層のなかで、反射層の膜厚の中心位置に位置するコレステリック液晶層(第2コレステリック液晶層22および第5コレステリック液晶層32)の膜厚が最も厚いことが好ましい。
 また、本発明の光学素子においては、反射層において、複屈折が最も小さいコレステリック液晶層の螺旋ピッチ数が、複屈折が最も大きいコレステリック液晶層の螺旋ピッチ数の半分以下であることが好ましい。上記態様をとることにより、サイドローブの発生がより抑制される。なかでも、複屈折が最も小さいコレステリック液晶層の螺旋ピッチ数が、複屈折が最も大きいコレステリック液晶層の螺旋ピッチ数の1/2.5以下であることがより好ましく、1/10以上であることが好ましい。
 なかでも、複屈折が最も大きいコレステリック液晶層の螺旋ピッチ数は、反射率を高める点で、6以上が好ましく、8以上がより好ましく、10以上がさらに好ましい。
 また、複屈折が最も小さいコレステリック液晶層の螺旋ピッチ数は、サイドローブの発生がより抑制される点で、5.0以下が好ましく、3.0以下がより好ましい。下限は特に制限されないが、1.0以上としてもよい。
(要件Xの説明)
 光学素子10に含まれる第1反射層12および第2反射層14はいずれも以下の要件Xを満たす。
要件X:反射層の一方の表面から他方の表面側に向かって、反射層の全螺旋ピッチの10%に相当する深さ位置を深さ位置Xとし、一方の表面から反射層の全螺旋ピッチの90%に相当する深さ位置を深さ位置Yとし、一方の表面から深さ位置Xまでの領域を第1領域、深さ位置Xから深さ位置Yまでの領域を第2領域、深さ位置Yから他方の表面までの領域を第3領域とした際に、第1領域および第3領域での複屈折の少なくとも一方が、第2領域での複屈折よりも小さい。
 以下、上記要件Xについて、第1反射層12を代表例として図6を用いて説明する。
 図5は、光学素子10中の第1反射層12のみを表す断面図である。
 まず、図5に示す白抜き矢印のように、第1反射層12の一方の表面120から他方の表面122側に向かって、第1反射層12の全螺旋ピッチ数の10%に相当する深さ位置を深さ位置Xとする。第1反射層12の一方の表面120から深さ位置Xまでの領域を第1領域R1とする。なお、第1反射層12の全螺旋ピッチ数とは、第1反射層12に含まれるコレステリック液晶層の螺旋ピッチ数の合計を意味する。例えば、図2に示す光学素子10においては、第1反射層12に含まれる第1コレステリック液晶層20の螺旋ピッチ数、第2コレステリック液晶層22の螺旋ピッチ数、および、第3コレステリック液晶層全螺旋ピッチ数の合計を意味する。なお、一例としては、第1反射層12の全螺旋ピッチ数が19である場合、上記深さ位置Xは、第1反射層の一方の表面から他方の表面側に向かって、螺旋ピッチ数が1.9となる位置に相当する深さ位置を意味する。
 次に、第1反射層12の一方の表面120から他方の表面122側に向かって、第1反射層12の全螺旋ピッチ数の90%に相当する深さ位置を深さ位置Yとする。深さ位置Xから深さ位置Xまでの領域を第2領域R2とする。なお、一例としては、第1反射層12の全螺旋ピッチ数が19である場合、上記深さ位置Yは、第1反射層の一方の表面から他方の表面側に向かって、螺旋ピッチ数が17.1となる位置に相当する深さ位置を意味する。
 さらに、深さ位置Yから他方の表面122までの領域を第3領域R3とする。
 第1反射層12においては、第1領域R1および第3領域R3での複屈折が、いずれも第2領域R2での複屈折よりも小さい。したがって、第1反射層12は、要件Xを満たす。
 上記では、第1反射層12のみについて説明したが、第2反射層14においても、上記要件Xを満たす。
 光学素子に含まれる反射層が要件Xを満たすことにより、サイドローブの発生が抑制される。
 第1領域および第3領域の複屈折は特に制限されないが、サイドローブの発生がより抑制される点で、第2領域の複屈折を基準(1)としたときに、複屈折が0.01~0.8が好ましく、0.01~0.7がより好ましく、0.05~0.5がさらに好ましい。
 上記各領域の複屈折(Δn)の測定方法としては、反射層を断面切削し、偏光解析することにより複屈折(Δn)を求める方法が挙げられる。一般的な偏光解析法である回転検光子法や回転位相子法を用いた顕微鏡測定により、コレステリック液晶起因の周期的に現れる、液晶化合物が切削片の断面に平行になる領域において、上記測定値を解析することにより、Δn×dおよび光学軸を求めることができる。さらに切削片の厚さdを別途測定することにより、複屈折(Δn)を算出することができる。
 このような測定を各領域の全厚みを均等に10等分した際の10等分された各領域の中心厚み位置において実施し、得られた10等分された各領域での複屈折の算術平均値を求めて、各領域の複屈折(Δn)とする。
 上記要件Xを満たす反射層を形成する方法としては、上述した図2に示す光学素子10のように、反射層の膜厚の中心位置に位置するコレステリック液晶層から、反射層の少なくとも一方の表面側に向かって、コレステリック液晶層の複屈折が漸次小さくなるように調整する方法が挙げられる。例えば、上述した図2に示す、螺旋ピッチの長さが同じである、第1コレステリック液晶層20、第2コレステリック液晶層22、および、第3コレステリック液晶層24の厚みを、反射層の全厚みの10%、80%および10%とそれぞれ調整することにより、上記要件Xを満たす反射層を形成できる。
(他の液晶配向パターンの例)
 図2に示す光学素子10においては、含まれるコレステリック液晶層の液晶配向パターンにおける液晶化合物の光学軸は、X方向のみに沿って、連続して回転している。
 しかしながら、本発明は、これに制限はされず、コレステリック液晶層において、液晶化合物の光学軸が一方向に沿って連続して回転するものであれば、各種の構成が利用可能である。
 一例として、図6の平面図に概念的に示すような、液晶配向パターンが、液晶化合物LCの光学軸の向きが連続的に回転しながら変化する一方向を、内側から外側に向かう放射状に有する、放射状のパターンである、コレステリック液晶層40が例示される。
 図6に示すコレステリック液晶層40において、液晶化合物LCの光学軸(図示省略)は、液晶化合物LCの長手方向である。
 コレステリック液晶層40では、液晶化合物LCの光学軸の向きは、コレステリック液晶層40の中心から外側に向かう多数の方向、例えば、矢印A1で示す方向、矢印A2で示す方向、矢印A3で示す方向…に沿って、連続的に回転しながら変化している。
 また、好ましい態様として、図6に示すようにコレステリック液晶層40の中心から放射状に、同じ方向に回転しながら変化するものが挙げられる。図6で示す態様は、反時計回りの配向である。図6中の矢印A1、A2およびA3の各矢印において、光学軸の回転方向は、中心から外側に向かうにつれて反時計回りとなっている。
 このような、放射状に光学軸が連続的に回転して変化する液晶配向パターンを有するコレステリック液晶層40は、液晶化合物LCの光学軸の回転方向および反射する円偏光の方向に応じて、入射光を、発散光または集束光として反射できる。
 すなわち、コレステリック液晶層の液晶配向パターンを放射状とすることにより、本発明の光学素子は、例えば、凹面鏡または凸面鏡として機能を発現する。
 上述した態様においては、光学軸が連続的に回転する1方向に向かって、1周期Λが一定である態様について述べたが、本発明はこの態様には制限されず、光学素子の用途によっては、コレステリック液晶層は、光学軸が連続的に回転する1方向において、部分的に1周期Λが異なる領域を有していてもよい。つまり、コレステリック液晶層の少なくとも1層が、面内に、液晶配向パターンにおける1周期の長さが異なる領域を有していてもよい。
 また、本発明の光学素子においては、光学素子の用途によっては、光学軸が連続的に回転する1方向に向かって、1周期Λを、漸次させてもよい。つまり、コレステリック液晶層が、液晶配向パターンにおける1周期の長さが、一方向に沿って漸次変化する領域を有していてもよい。
(液晶化合物LCの配向例)
 図3に示す例では、コレステリック液晶層のX-Z面において、液晶化合物LCが、主面(X-Y面)に対して、その光学軸が平行に配向している構成としたが、本発明は、この態様に制限されない。例えば、図7に示すように、コレステリック液晶層42のX-Z面において、主面(X-Y面)に対して、液晶化合物LCの光学軸が傾斜して配向している構成であってもよい。
 また、図7に示す例では、コレステリック液晶層42のX-Z面において、液晶化合物LCの主面(X-Y面)に対する傾斜角度(チルト角)は厚さ方向(Z方向)に一様としたが、本発明は、この態様に制限されない。コレステリック液晶層において、液晶化合物LCのチルト角が厚さ方向で異なっている領域を有していてもよい。
 例えば、図8に示す例は、コレステリック液晶層44の、一方の表面において液晶化合物LCの光学軸が主面に平行であり(プレチルト角が0°であり)、一方の表面から厚さ方向に離間するにしたがって、液晶化合物LCのチルト角が大きくなって、その後、他方の表面側まで一定のチルト角で液晶化合物が配向されている構成である。
 このように、コレステリック液晶層においては、上下界面の一方の界面において、液晶化合物LCの光学軸がプレチルト角を有している構成であってもよく、両方の界面でプレチルト角を有する構成であってもよい。また、両界面でプレチルト角が異なっていてもよい。
 図3に示すような、液晶化合物に由来する光学軸の向きが連続的に回転して変化する液晶配向パターンを有するコレステリック液晶層のX-Z面をSEM(Scanning  Electron  Microscope(走査型電子顕微鏡))で観察すると、明部と暗部とが交互に配列された配列方向が、主面(X-Y面)に対して所定角度で傾斜している縞模様が観察される。つまり、本発明の光学素子に含まれるコレステリック液晶層は、SEMで観察した断面において、コレステリック液晶相に由来する明部および暗部が、主面に対して傾斜している。
 なかでも、コレステリック液晶層は、法線方向および法線に対して傾斜した方向から面内レタデーションReを測定した際に、遅相軸面内および進相軸面内のいずれかにおいて、面内レタデーションReが最小となる方向が法線方向から傾斜しているのが好ましい。具体的には、面内レタデーションReが最小となる方向が法線と成す測定角の絶対値が5°以上であることが好ましい。言い換えると、コレステリック液晶層の液晶化合物が主面に対して傾斜し、かつ、傾斜方向がコレステリック液晶層の明部および暗部に略一致していることが好ましい。なお、法線方向とは、主面に対して直交する方向である。
 コレステリック液晶層がこのような構成を有することにより、液晶化合物LCが主面に平行である液晶層に比して、高い回折効率で円偏光を回折できる。
 コレステリック液晶層の液晶化合物が主面に対して傾斜し、かつ、傾斜方向が明部および暗部に略一致している構成では、反射面に相当する明部および暗部と、液晶化合物の光学軸とが一致している。そのため、光の反射(回折)に対する液晶化合物の作用が大きくなり、回折効率を向上できる。その結果、入射光に対する反射光の光量をより向上できる。
 また、本発明の光学素子に含まれるコレステリック液晶層は、暗部の平均傾斜角が一方向に沿って漸次変化する領域を有していてもよい。上記のような領域を有するコレステリック液晶層は、液晶配向パターンにおける1周期の長さが一方向に沿って漸次変化させることにより得られる。
 上記領域においては、暗部の平均傾斜角が漸次大きくなっていてもよいし、漸次小さくなっていてもよい。
 なお、暗部の平均傾斜角が漸次変化するとは、平均傾斜角が連続的に変化するもの、および、平均傾斜角が段階的に変化するものを意図している。
 また、本発明の光学素子においては、光学素子の用途によっては、液晶配向パターンにおける1周期の長さが短くなるにしたがって、暗部の平均傾斜角が大きくなる領域を有していてもよい。
(反射層対が複数ある構成)
 上記図2に示す光学素子10は、反射する円偏光の旋回方向が同じで、かつ、選択的な反射波長帯域の少なくとも一部が重複する、2つの反射層(第1反射層および第2反射層)の組み合わせである反射層対と、反射層対の反射層の間に配置される位相差層と、を、少なくとも1組含む。
 本発明は、上記態様に制限されず、複数の上記反射層対を含んでいてもよい。複数の反射層対が含まれる場合、異なる反射層対の間では、反射層対を構成する反射層の選択反射中心波長が、互いに異なることが好ましい。また、複数の反射層対を含む場合には、各反射層対の反射層の間に位相差層を有することが好ましい。各位相差層は対応する反射層対の反射層の反射波長帯域の波長においてλ/2位相差機能を有するものとすればよい。
 また、異なる反射層対の間では、反射層対を構成する反射層に含まれるコレステリック液晶層における選択反射中心波長の長さの順列と、1周期の長さの順列とが、一致していることが好ましい。
 上記図2に示す光学素子10では、各反射層に3層のコレステリック液晶層が含まれる態様について述べたが、本発明は、上記態様に制限されず、上述した要件Xを満たす反射層であれば、1~2層、または、4層以上のコレステリック液晶層が各反射層に含まれていてもよい。
<コレステリック液晶層および反射層の形成方法>
 反射層は、コレステリック液晶層を含む層である。
 コレステリック液晶層は、コレステリック液晶相を層状に固定して形成できる。
 コレステリック液晶相を固定した構造は、コレステリック液晶相となっている液晶化合物の配向が保持されている構造であればよい。コレステリック液晶相を固定した構造は、典型的には、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射または加熱によって重合、硬化し、流動性が無い層を形成して、同時に、外場または外力によって配向形態に変化を生じさせることない状態に変化した構造が好ましい。
 なお、コレステリック液晶相を固定した構造においては、コレステリック液晶相の光学的性質が保持されていれば十分であり、コレステリック液晶層において、液晶化合物は液晶性を示さなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子量化して、液晶性を失っていてもよい。
 コレステリック液晶相を固定してなるコレステリック液晶層の形成に用いる材料としては、一例として、液晶化合物を含む液晶組成物が挙げられる。液晶化合物は重合性液晶化合物であるのが好ましい。
 また、コレステリック液晶層の形成に用いる液晶組成物は、さらに界面活性剤およびキラル剤を含んでいてもよい。
--重合性液晶化合物--
 重合性液晶化合物は、棒状液晶化合物であっても、円盤状液晶化合物であってもよい。
 コレステリック液晶相を形成する棒状の重合性液晶化合物としては、棒状ネマチック液晶化合物が挙げられる。棒状ネマチック液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、および、アルケニルシクロヘキシルベンゾニトリル類が好ましい。
 重合性液晶化合物は、重合性基を液晶化合物に導入することで得られる。重合性基としては、不飽和重合性基、エポキシ基、およびアジリジニル基が挙げられ、不飽和重合性基が好ましく、エチレン性不飽和重合性基がより好ましい。重合性基は種々の方法で、液晶化合物の分子中に導入できる。重合性液晶化合物が有する重合性基の個数は、1~6個が好ましく、1~3個がより好ましい。
 重合性液晶化合物の例は、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、米国特許第5622648号明細書、米国特許第5770107号明細書、国際公開第95/022586号、国際公開第95/024455号、国際公開第97/000600号、国際公開第98/023580号、国際公開第98/052905号、特開平1-272551号公報、特開平6-016616号公報、特開平7-110469号公報、特開平11-080081号公報、および、特開2001-328973号公報等に記載の化合物が含まれる。2種類以上の重合性液晶化合物を併用してもよい。2種類以上の重合性液晶化合物を併用すると、配向温度を低下させることができる。
 また、上記以外の重合性液晶化合物としては、特開昭57-165480号公報に開示されているようなコレステリック相を有する環式オルガノポリシロキサン化合物等を用いることができる。さらに、前述の高分子液晶化合物としては、液晶を呈するメソゲン基を主鎖、側鎖、あるいは主鎖および側鎖の両方の位置に導入した高分子、コレステリル基を側鎖に導入した高分子コレステリック液晶、特開平9-133810号公報に開示されているような液晶性高分子、および、特開平11-293252号公報に開示されているような液晶性高分子等を用いることができる。
 --円盤状液晶化合物--
 円盤状液晶化合物としては、例えば、特開2007-108732号公報および特開2010-244038号公報等に記載のものを好ましく用いることができる。
 また、液晶組成物中の重合性液晶化合物の含有量は、液晶組成物の固形分質量(溶媒を除いた質量)に対して、75~99.9質量%が好ましく、80~99質量%がより好ましく、85~90質量%がさらに好ましい。
--界面活性剤--
 コレステリック液晶層を形成する際に用いる液晶組成物は、界面活性剤を含んでいてもよい。
 界面活性剤は、安定的にまたは迅速にプレーナー配向のコレステリック液晶相とするために寄与する配向制御剤として機能できる化合物が好ましい。界面活性剤としては、例えば、シリコ-ン系界面活性剤およびフッ素系界面活性剤が挙げられ、フッ素系界面活性剤が好ましい。
 界面活性剤の具体例としては、特開2014-119605号公報の段落[0082]~[0090]に記載の化合物、特開2012-203237号公報の段落[0031]~[0034]に記載の化合物、特開2005-099248号公報の段落[0092]および[0093]中に例示されている化合物、特開2002-129162号公報の段落[0076]~[0078]および段落[0082]~[0085]中に例示されている化合物、ならびに、特開2007-272185号公報の段落[0018]~[0043]等に記載のフッ素(メタ)アクリレート系ポリマー、などが挙げられる。
 なお、界面活性剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 フッ素系界面活性剤として、特開2014-119605号公報の段落[0082]~[0090]に記載の化合物が好ましい。
 液晶組成物中における、界面活性剤の含有量は、液晶化合物の全質量に対して0.01~10質量%が好ましく、0.01~5質量%がより好ましく、0.02~1質量%がさらに好ましい。
--キラル剤(光学活性化合物)--
 キラル剤(カイラル剤)はコレステリック液晶相の螺旋構造を誘起する機能を有する。キラル剤は、化合物によって誘起する螺旋の捩れ方向または螺旋ピッチが異なるため、目的に応じて選択すればよい。
 キラル剤としては、特に制限はなく、公知の化合物(例えば、液晶デバイスハンドブック、第3章4-3項、TN(twisted nematic)、STN(Super Twisted Nematic)用キラル剤、199頁、日本学術振興会第142委員会編、1989に記載)、イソソルビド、および、イソマンニド誘導体等を用いることができる。
 キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物または面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファン、および、これらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤と液晶化合物とがいずれも重合性基を有する場合は、重合性キラル剤と重合性液晶化合物との重合反応により、重合性液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性キラル剤が有する重合性基は、重合性液晶化合物が有する重合性基と、同種の基であるのが好ましい。したがって、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であるのが好ましく、不飽和重合性基であるのがより好ましく、エチレン性不飽和重合性基であるのがさらに好ましい。
 また、キラル剤は、液晶化合物であってもよい。
 キラル剤が光異性化基を有する場合には、塗布、配向後に活性光線などのフォトマスク照射によって、発光波長に対応した所望の反射波長のパターンを形成することができるので好ましい。光異性化基としては、フォトクロッミック性を示す化合物の異性化部位、アゾ基、アゾキシ基、または、シンナモイル基が好ましい。具体的な化合物として、特開2002-080478号公報、特開2002-080851号公報、特開2002-179668号公報、特開2002-179669号公報、特開2002-179670号公報、特開2002-179681号公報、特開2002-179682号公報、特開2002-338575号公報、特開2002-338668号公報、特開2003-313189号公報、および、特開2003-313292号公報等に記載の化合物を用いることができる。
 液晶組成物における、キラル剤の含有量は、液晶化合物の含有モル量に対して、0.01~200モル%が好ましく、1~30モル%がより好ましい。
--重合開始剤--
 液晶組成物が重合性化合物を含む場合は、液晶組成物は重合開始剤を含むことが好ましい。紫外線照射により重合反応を進行させる態様では、使用する重合開始剤としては、紫外線照射によって重合反応を開始可能な光重合開始剤が好ましい。
 光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、米国特許第2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、米国特許第2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)、ならびに、オキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。
 液晶組成物中の光重合開始剤の含有量は、液晶化合物の含有量に対して、0.1~20質量%が好ましく、0.5~12質量%がより好ましい。
--架橋剤--
 液晶組成物は、硬化後の膜強度向上、耐久性向上のため、架橋剤を含んでいてもよい。架橋剤としては、紫外線、熱、および、湿気等で硬化するものが好適に使用できる。
 架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トリメチロールプロパントリ(メタ)アクリレートおよびペンタエリスリトールトリ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレートおよびエチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]および4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネートおよびビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ならびに、ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物が挙げられる。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 架橋剤の含有量は、液晶組成物の固形分質量に対して、3~20質量%が好ましく、5~15質量%がより好ましい。
--その他の添加剤--
 液晶組成物中には、必要に応じて、さらに重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、および、金属酸化物微粒子等を、光学的性能等を低下させない範囲で添加することができる。
 液晶組成物は、コレステリック液晶層を形成する際には、液体として用いられるのが好ましい。
 液晶組成物は溶媒を含んでいてもよい。溶媒は特に制限されず、目的に応じて適宜選択でき、有機溶媒が好ましい。
 有機溶媒としては、例えば、ケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、および、エーテル類が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 コレステリック液晶層を形成する際には、コレステリック液晶層の形成面に液晶組成物を塗布して、液晶化合物をコレステリック液晶相の状態に配向した後、液晶化合物を硬化して、コレステリック液晶層とするのが好ましい。
 すなわち、配向膜上にコレステリック液晶層を形成する場合には、配向膜に液晶組成物を塗布して、液晶化合物をコレステリック液晶相の状態に配向した後、液晶化合物を硬化して、コレステリック液晶相を固定してなるコレステリック液晶層を形成するのが好ましい。
 液晶組成物の塗布は、インクジェットおよびスクロール印刷等の印刷法、ならびに、スピンコート、バーコートおよびスプレー塗布等のシート状物に液体を一様に塗布できる公知の方法が全て利用可能である。
 塗布された液晶組成物は、必要に応じて乾燥および/または加熱され、その後、硬化され、コレステリック液晶層を形成する。この乾燥および/または加熱の工程で、液晶組成物中の液晶化合物がコレステリック液晶相に配向すればよい。加熱を行う場合、加熱温度は、200℃以下が好ましく、130℃以下がより好ましい。
 配向させた液晶化合物は、必要に応じて、さらに重合される。重合は、熱重合、および、光照射による光重合のいずれでもよいが、光重合が好ましい。光照射は、紫外線を用いるのが好ましい。照射エネルギーは、20mJ/cm2~50J/cm2が好ましく、50~1500mJ/cm2がより好ましい。光重合反応を促進するため、加熱条件下または窒素雰囲気下で光照射を実施してもよい。照射する紫外線の波長は250~430nmが好ましい。
 コレステリック液晶層の厚さには、制限はなく、光学素子の用途、コレステリック液晶層に要求される光の反射率、および、コレステリック液晶層の形成材料等に応じて、必要な光の反射率が得られる厚さを、適宜、設定すればよい。
 光学素子に含まれる反射層の形成方法は特に制限されないが、上述した方法でコレステリック液晶層を形成した後、形成されたコレステリック液晶層上にさらに上述した方法でコレステリック液晶層を形成して、順次、コレステリック液晶層を形成する方法が挙げられる。
<その他の部材>
 本発明の光学素子は、反射層以外の他の部材を含んでいてもよい。
(支持体)
 光学素子は、支持体を含んでいてもよい。
 支持体は、反射層および後述する配向膜などを支持できるものであれば、各種のシート状物(フィルム、板状物)が利用可能である。
 なお、支持体は、対応する光(例えば、波長550nmの光)に対する透過率が50%以上であるのが好ましく、70%以上であるのがより好ましく、85%以上であるのがさらに好ましい。
 支持体の厚さは特に制限されず、光学素子の用途および支持体の形成材料等に応じて、配向膜およびコレステリック液晶層を保持できる厚さを、適宜、設定すればよい。
 支持体の厚さは、1~1000μmが好ましく、3~250μmがより好ましく、5~150μmがさらに好ましい。
 支持体は単層であっても、多層であってもよい。
 単層である場合の支持体としては、ガラス、トリアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリカーボネート、ポリ塩化ビニル、アクリル、および、ポリオレフィン等からなる支持体が例示される。多層である場合の支持体の例としては、前述の単層の支持体のいずれかなどを基板として含み、この基板の表面に他の層を設けたもの等が例示される。
(配向膜)
 光学素子は、配向膜を含んでいてもよい。
 コレステリック液晶層は、配向膜上に形成されることが好ましい。なお、この配向膜は、上述した液晶配向パターンを形成するための配向膜である。
 配向膜は、公知の各種のものが利用可能である。
 例えば、ポリマーなどの有機化合物からなるラビング処理膜、無機化合物の斜方蒸着膜、マイクログルーブを有する膜、ならびに、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライドおよびステアリル酸メチルなどの有機化合物のラングミュア・ブロジェット法によるLB(Langmuir-Blodgett:ラングミュア・ブロジェット)膜を累積させた膜、等が例示される。
 ラビング処理による配向膜は、ポリマー層の表面を紙または布で一定方向に数回こすることにより形成できる。
 配向膜に使用する材料としては、ポリイミド、ポリビニルアルコール、特開平9-152509号公報に記載された重合性基を有するポリマー、特開2005-097377号公報、特開2005-099228号公報、および、特開2005-128503号公報記載の配向膜等の形成に用いられる材料が好ましい。
 本発明の光学素子においては、配向膜は、光配向性の素材に偏光または非偏光を照射して配向膜とした、いわゆる光配向膜が好適に利用される。すなわち、本発明の光学素子においては、配向膜として、支持体上に、光配向材料を塗布して形成した光配向膜が、好適に利用される。
 偏光の照射は、光配向膜に対して、垂直方向または斜め方向から行うことができ、非偏光の照射は、光配向膜に対して、斜め方向から行うことができる。
 本発明に利用可能な光配向膜に用いられる光配向材料としては、例えば、特開2006-285197号公報、特開2007-076839号公報、特開2007-138138号公報、特開2007-094071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特許第3883848号公報および特許第4151746号公報に記載のアゾ化合物、特開2002-229039号公報に記載の芳香族エステル化合物、特開2002-265541号公報および特開2002-317013号公報に記載の光配向性単位を有するマレイミドおよび/またはアルケニル置換ナジイミド化合物、特許第4205195号および特許第4205198号に記載の光架橋性シラン誘導体、特表2003-520878号公報、特表2004-529220号公報および特許第4162850号に記載の光架橋性ポリイミド、光架橋性ポリアミドおよび光架橋性ポリエステル、ならびに、特開平9-118717号公報、特表平10-506420号公報、特表2003-505561号公報、国際公開第2010/150748号、特開2013-177561号公報および特開2014-12823号公報に記載の光二量化可能な化合物、特にシンナメート化合物、カルコン化合物およびクマリン化合物等が、好ましい例として例示される。
 中でも、アゾ化合物、光架橋性ポリイミド、光架橋性ポリアミド、光架橋性ポリエステル、シンナメート化合物、および、カルコン化合物は、好適に利用される。
 配向膜の厚さには制限はなく、配向膜の形成材料に応じて、必要な配向機能を得られる厚さを、適宜、設定すればよい。
 配向膜の厚さは、0.01~5μmが好ましく、0.05~2μmがより好ましい。
 配向膜の形成方法には、制限はなく、配向膜の形成材料に応じた公知の方法が、各種、利用可能である。一例として、配向膜を支持体の表面に塗布して乾燥させた後、配向膜をレーザ光によって露光して、配向パターンを形成する方法が例示される。
 図9に、配向膜を露光して、配向パターンを形成する露光装置の一例を概念的に示す。
 図9に示す露光装置60は、レーザ62を備えた光源64と、レーザ62が出射したレーザ光Mの偏光方向を変えるλ/2板65と、レーザ62が出射したレーザ光Mを光線MAおよびMBの2つに分離する偏光ビームスプリッター68と、分離された2つの光線MAおよびMBの光路上にそれぞれ配置されたミラー70Aおよび70Bと、λ/4板72Aおよび72Bと、を備える。なお、図示は省略するが、光源64は直線偏光P0を出射する。λ/4板72Aは、直線偏光P0(光線MA)を右円偏光PRに、λ/4板72Bは直線偏光P0(光線MB)を左円偏光PLに、それぞれ変換する。
 ここで用いるλ/4板72Aおよび72Bは、照射する光の波長に対応したλ/4板であればよい。露光装置60はレーザ光Mを照射するので、例えばレーザ光Mの中心波長が325nmであれば、325nmの波長の光に対して機能するλ/4板を用いればよい。
 配向パターンを形成される前の配向膜80を有する支持体82が露光部に配置され、2つの光線MAと光線MBとを配向膜80上において交差させて干渉させ、その干渉光を配向膜80に照射して露光する。
 この際の干渉により、配向膜80に照射される光の偏光状態が干渉縞状に周期的に変化するものとなる。これにより、配向膜80において、配向状態が周期的に変化する配向パターンが得られる。
 露光装置60においては、2つの光線MAおよびMBの交差角αを変化させることにより、配向パターンの周期を調節できる。すなわち、露光装置60においては、交差角αを調節することにより、液晶化合物LCに由来する光学軸が一方向に向かって連続的に回転する配向パターンにおいて、光学軸が回転する1方向における、光学軸が180°回転する1周期の長さを調節できる。
 このような配向状態が周期的に変化した配向パターンを有する配向膜上に、コレステリック液晶層を形成することにより、上述した、液晶化合物LCに由来する光学軸が一方向に向かって連続的に回転する液晶配向パターンを有する、コレステリック液晶層を形成できる。また、λ/4板72Aおよび72Bの光学軸を、それぞれ、90°回転することにより、光学軸の回転方向を逆にすることができる。
(貼合層)
 本発明の光学素子は、貼合層を有していてもよい。
 貼合層は、貼り合わせの対象となる物同士を貼り合わせられる層であれば、公知の各種の材料からなる層が利用可能である。貼合層としては、貼り合わせる際には流動性を有し、その後、固体になる、接着剤からなる層でも、貼り合わせる際にゲル状(ゴム状)の柔らかい固体で、その後もゲル状の状態が変化しない、粘着剤からなる層でも、接着剤と粘着剤との両方の特徴を持った材料からなる層でもよい。したがって、貼合層は、光学透明接着剤(OCA(Optical Clear Adhesive))、光学透明両面テープ、および、紫外線硬化型樹脂等の、光学装置および光学素子等でシート状物の貼り合わせに用いられる公知の層を用いればよい。
 なお、本発明の光学素子においては、貼合層を使用せずに、枠体または治具等で各層を保持して、本発明の光学素子を形成してもよい。
<用途>
 本発明の光学素子は、各種用途に適用できる。
 本発明の光学素子は、画像表示装置に適用できる。より具体的には、本発明の光学素子と、画像表示パネルとを含む画像表示装置が挙げられる。
 画像表示装置の構成は特に制限されないが、導光板をさらに含む態様が挙げられる。
 より具体的には、図10に示す、画像表示装置90は、光学素子10Aと、導光板92と、画像表示パネル94とを有する。導光板92の主面上の、一方の端部に光学素子10Aが貼合され、他方の端部に光学素子10Aが貼合されている。このような構成においては、画像表示パネル94より出射された光が、一方の光学素子10Aにて反射され、反射された光が導光板92内を全反射して導光される。導光板92内で導光された光は、他方の光学素子10Aによって全反射条件から外れる角度に反射され、使用者U側に出射される。つまり、光学素子10Aは、入射回折素子および出射回折素子として利用される。
 画像表示パネル94は特に制限されないが、ARグラス等に用いられる公知の表示素子(表示装置、プロジェクター)が、各種、利用可能である。
 表示素子としては、液晶ディスプレイ(LCOS:Liquid Crystal On Siliconなどを含む)、有機エレクトロルミネッセンスディスプレイ、DLP(Digital Light Processing)、および、MEMS(Micro Electro Mechanical Systems)ミラーを用いたスキャニング方式ディスプレイ等が例示される。
 なお、表示素子は、モノクロ画像(単色画像)を表示するものでも、二色画像を表示するものでも、カラー画像を表示するものでもよい。
 投映レンズも、AR(Augmented Reality(拡張現実))グラス等に用いられる公知の投映レンズ(集光レンズ)であればよい。
 上述した画像表示装置は、ヘッドマウントディスプレイとして好適に用いられる。
 また、本発明の光学素子は、上述した用途以外にも、例えば、センサー、および、アイトラッキング装置などにも適用できる。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、および、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更できる。したがって、本発明の範囲は以下に示す具体例により制限的に解釈されるべきものではない。
[原料]
 コレステリック液晶層形成用の液晶組成物を調製するために、下記の原料を使用した。
  光配向用素材A
Figure JPOXMLDOC01-appb-C000001
  液晶化合物L-1
Figure JPOXMLDOC01-appb-C000002
  液晶化合物L-2
Figure JPOXMLDOC01-appb-C000003
  液晶化合物L-3
Figure JPOXMLDOC01-appb-C000004
  液晶化合物L-4
Figure JPOXMLDOC01-appb-C000005
  キラル剤C-1
Figure JPOXMLDOC01-appb-C000006
  キラル剤C-2
Figure JPOXMLDOC01-appb-C000007
  レベリング剤T-1
Figure JPOXMLDOC01-appb-C000008
 [比較例1]
<反射層の作製>
(支持体)
 支持体として、ガラス基板を用意した。
(配向膜の形成)
 支持体上に、下記の配向膜形成用塗布液をスピンコートで塗布した。この配向膜形成用塗布液の塗膜が形成された支持体を60℃のホットプレート上で60秒間乾燥し、配向膜を形成した。
  配向膜形成用塗布液
――――――――――――――――――――――――――――――――
 光配向用素材A                 1.00質量部
 水                      16.00質量部
 ブトキシエタノール              42.00質量部
 プロピレングリコールモノメチルエーテル    42.00質量部
――――――――――――――――――――――――――――――――
(配向膜の露光)
 図9に示す露光装置を用いて配向膜を露光して、配向パターンを有する配向膜P-1を形成した。
 露光装置において、レーザとして波長(325nm)のレーザ光を出射するものを用いた。干渉光による露光量を1000mJ/cm2とした。なお、2つのレーザ光およびの干渉により形成される配向パターンの1周期(光学軸が180°回転する長さ)は、2つの光の交差角(交差角α)を変化させることによって制御した。
(コレステリック液晶層の形成)
 コレステリック液晶層を形成する液晶組成物として、下記の組成物A-1を調製した。
  組成物A-1
――――――――――――――――――――――――――――――――
 液晶化合物L-1              100.00質量部
 キラル剤C-1                3.18質量部
 重合開始剤(BASF製、Irgacure OXE01)
                         1.00質量部
 レベリング剤T-1               0.08質量部
 シクロペンタノン              900.00質量部
――――――――――――――――――――――――――――――――
 先ず、配向膜P-1上に上記の組成物A-1を塗布して、塗膜をホットプレート上で80℃に加熱し、その後、80℃にて、窒素雰囲気下で高圧水銀灯を用いて波長365nmの紫外線を300mJ/cm2の照射量で塗膜に照射することにより、液晶化合物の配向を固定化し、コレステリック液晶層を形成した。
 続いて、このコレステリック液晶層上に組成物A-1を重ね塗りして、上と同じ条件で加熱、冷却後に紫外線硬化を行った。このようにして、形成されるコレステリック液晶層の総厚が所望の膜厚になるまで重ね塗りを繰り返し、コレステリック液晶層を形成して、反射層を作製した。
 塗布層の断面を走査型電子顕微鏡(SEM(Scanning Electron Microscope))で確認したところ、主面に対する法線方向(厚さ方向)の螺旋ピッチ数は9ピッチであった。また、主面に対して明部および暗部が傾斜していた。ここで言う明部および暗部とは、コレステリック液晶層の断面をSEMで観察した際に見られる、コレステリック液晶相に由来する明部および暗部である。
 コレステリック液晶層は、図4に示すような周期的な配向表面になっていることを偏光顕微鏡で確認した。なお、コレステリック液晶層の断面をSEMで確認したところ、コレステリック液晶層の液晶配向パターンにおいて、液晶化合物の光学軸が180°回転する1周期Λは、0.7μmであった。
 紫外可視近赤外分析光度計(「UV-3100」、島津製作所社製)を用いて、作製した反射層の反射スペクトルを測定した。得られた反射スペクトルから、反射中心波長は530nmであった。また、コレステリック液晶層のΔn(550)は0.15であった。
 [実施例1]
<第1反射層の作製>
(配向膜の形成)
 比較例1と同様にして、ガラス基板上に配向膜を形成し、配向膜を露光して、配向パターンを有する配向膜P-1を形成した。
(第1コレステリック液晶層の形成)
 第1コレステリック液晶層を形成する液晶組成物として、比較例1の組成物A-1において、液晶化合物L-1を液晶化合物L-2と液晶化合物L-3に変更し、混合比を調整し、キラル剤C-1の添加量を調整して、組成物B-1を調製した。
 比較例1と同様にして、配向膜P-1上に上記の組成物B-1を所望の膜厚となるように塗布して、第1コレステリック液晶層を形成した。
(第2コレステリック液晶層の形成)
 第2コレステリック液晶層を形成する液晶組成物として、比較例1の組成物A-1と同じ組成の、組成物B-2を調製した。
 比較例1と同様にして、第1コレステリック液晶層上に上記の組成物B-2を所望の膜厚となるように塗布して、第2コレステリック液晶層を形成した。
(第3コレステリック液晶層の形成)
 比較例1と同様にして、第2コレステリック液晶層上に上記の組成物B-1を所望の膜厚となるように塗布して、第3コレステリック液晶層を形成し、第1反射層を作製した。
<位相差層の作製>
 特開2019-215416号公報の段落0102から段落0126に記載のポジティブAプレートと同様の方法で、光学異方性層Aを有するフィルムを得た。
 光学異方性層AはポジティブAプレート(位相差板)であり、Re(530)が265nmとなるように、ポジティブAプレートの厚さを制御している。
 特開2015-200861号公報の段落0124に記載のポジティブCプレートと同様の方法でポジティブCプレート(ただし、Rth(530)が-139nmとなるように、ポジティブCプレートの厚みは制御している)を作製した。
<第2反射層の作製>
(配向膜の形成)
 比較例1と同様にして、ガラス基板上に配向膜を形成し、配向膜を露光して、配向パターンを有する配向膜P-1を形成した。
(第4~第6コレステリック液晶層の形成)
 第1~第3コレステリック液晶層と同様にして、第4~第6コレステリック液晶層を形成し、第2反射層を作製した。
 ポジティブAプレートを第1反射層の第3コレステリック液晶層側に接着剤を用いて貼合した。次に、ポジティブCプレートをポジティブAプレート上に接着剤を用いて貼合した。
 第2反射層を仮支持体に転写し、粘着剤を介して、第4コレステリック液晶層側を、位相差層、第3コレステリック液晶層の順で配置されるように、貼合し、光学素子を作製した。
 第1コレステリック液晶層から第6コレステリック液晶層の断面をSEMで確認したところ、主面に対する法線方向(厚さ方向)の螺旋ピッチ数は第1コレステリック液晶層が5ピッチ、第2コレステリック液晶層が9ピッチ、第3コレステリック液晶層が5ピッチ、第4コレステリック液晶層が5ピッチ、第5コレステリック液晶層が9ピッチ、第6コレステリック液晶層が5ピッチであった。また、主面に対する明部および暗部は各層とも傾斜していた。各コレステリック液晶層の液晶配向パターンにおいて、液晶化合物の光学軸が180°回転する1周期Λはいずれも、0.7μmであった。
 作製した第1反射層および第2反射層の反射中心波長はいずれも530nmであった。また、コレステリック液晶層の複屈折Δn(550)はそれぞれ、第1コレステリック液晶層が0.08、第2コレステリック液晶層が0.15、第3コレステリック液晶層が0.08、第4コレステリック液晶層が0.08、第5コレステリック液晶層が0.15、第6コレステリック液晶層が0.08、であった。したがって、各反射層は、要件Xを満たしている。
 [実施例2~3]
 実施例1において、キラル剤C-1の添加量を適宜調整し、コレステリック液晶層を所望の膜厚となるように塗布して、各コレステリック液晶層を形成した以外は同様にして、反射層を形成し、光学素子を作製した。各コレステリック液晶層の螺旋ピッチ数および複屈折Δn(550)は表1に示すとおりであった。
 [実施例4~5]
 実施例1において、液晶化合物L-2および液晶化合物L-3の混合比、キラル剤C-1の添加量を適宜調整し、コレステリック液晶層を所望の膜厚となるように塗布して、各コレステリック液晶層を形成した以外は同様にして、反射層を形成し、光学素子を作製した。各コレステリック液晶層の螺旋ピッチ数および複屈折Δn(550)は表1に示すとおりであった。
 [実施例6]
<第1反射層の作製>
(第1コレステリック液晶層)
 組成物B-1において、使用する液晶化合物を液晶化合物L-1~液晶化合物L-4に変更し、これらの混合比を調整し、さらにキラル剤C-1の添加量を適宜調整し、所定の組成物を得た。次に、比較例1と同様にして、得られた組成物を配向膜P-1上に所望の膜厚となるように塗布して、後述する表3に記載の螺旋ピッチ数となるように所定の膜厚の第1コレステリック液晶層を形成した。
(第2コレステリック液晶層の形成)
 組成物B-1において、使用する液晶化合物を液晶化合物L-1~液晶化合物L-4に変更し、これらの混合比を調整し、さらにキラル剤C-1の添加量を適宜調整し、所定の組成物を得た。次に、比較例1と同様にして、得られた組成物を第1コレステリック液晶層上に所望の膜厚となるように塗布して、後述する表3に記載の螺旋ピッチ数となるように所定の膜厚の第2コレステリック液晶層を形成した。
(第3コレステリック液晶層の形成)
 比較例1の組成物A-1と同じ組成物を得た。次に、比較例1と同様にして、得られた組成物を第2コレステリック液晶層上に所望の膜厚となるように塗布して、後述する表3に記載の螺旋ピッチ数となるように所定の膜厚の第3コレステリック液晶層を形成した。
(第4コレステリック液晶層の形成)
 組成物B-1において、使用する液晶化合物を液晶化合物L-1~液晶化合物L-4に変更し、これらの混合比を調整し、さらにキラル剤C-1の添加量を適宜調整し、所定の組成物を得た。次に、比較例1と同様にして、得られた組成物を第3コレステリック液晶層上に所望の膜厚となるように塗布して、後述する表3に記載の螺旋ピッチ数となるように所定の膜厚の第4コレステリック液晶層を形成した。
(第5コレステリック液晶層の形成)
 組成物B-1において、使用する液晶化合物を液晶化合物L-1~液晶化合物L-4に変更し、これらの混合比を調整し、さらにキラル剤C-1の添加量を適宜調整し、所定の組成物を得た。次に、比較例1と同様にして、得られた組成物を第4コレステリック液晶層上に所望の膜厚となるように塗布して、後述する表3に記載の螺旋ピッチ数となるように所定の膜厚の第5コレステリック液晶層を形成し、第1反射層を作製した。
<位相差層の作製>
 実施例1と同様にして、第5コレステリック液晶層上に位相差層(AプレートおよびCプレート)を作製した。
<第2反射層の作製>
(配向膜の形成)
 比較例1と同様にして、ガラス基板上に配向膜を形成し、配向膜を露光して、配向パターンを有する配向膜P-1を形成した。
(第6~第10コレステリック液晶層の形成)
 第1~第5コレステリック液晶層と同様にして、第6~第10コレステリック液晶層を形成し、第2反射層を作製した。
 第2反射層を仮支持体に転写し、粘着剤を介して、第6コレステリック液晶層側を、位相差層、第5コレステリック液晶層の順で配置されるように、貼合し、光学素子を作製した。
 第1反射層の選択反射中心波長、および、第2反射層の選択反射中心波長は、いずれも530nmであった。各コレステリック液晶層の液晶配向パターンにおいて、液晶化合物の光学軸が180°回転する1周期Λはいずれも、0.7μmであった。
 また、各コレステリック液晶層の複屈折Δn(550)はそれぞれ、表3に示すとおりであった。
 [比較例2]
(配向膜の露光)
 比較例1の配向膜の露光において、液晶化合物の光学軸が180°回転する1周期Λが、1.3μmとなるように、2つの光の交差角(交差角α)を変化させた以外は同様にして配向膜P-3を作製した。
<反射層の作製>
 比較例1において、キラル剤C-1の添加量を2.0質量部に調整し、コレステリック液晶層の膜厚を変更した以外は同様にして反射層を作製した。
 作製した反射層の反射スペクトルを紫外可視近赤外分析光度計(「UV-3100」、島津製作所社製)を用いて測定した。得られた反射スペクトルから、反射中心波長は980nmであった。また、コレステリック液晶層のΔn(550)は0.15であった。
 また、螺旋ピッチ数は9ピッチであった。
 [実施例7]
<反射層の作製>
 (配向膜の露光)
 実施例1の配向膜の露光において、液晶化合物の光学軸が180°回転する1周期Λが、1.3μmとなるように、2つの光の交差角(交差角α)を変化させた以外は同様にして配向膜P-1に変えて配向膜P-3を作製した。
(コレステリック液晶層の形成)
 組成物B-1において、キラル剤C-1の添加量を適宜調整し、得られた組成物を第3コレステリック液晶層上に所望の膜厚となるように塗布して、後述する表2に記載の螺旋ピッチ数となるように所定の膜厚の各コレステリック液晶層を形成した以外は同様にして第1反射層および第2反射層を作製した。
<位相差層の作製>
 実施例1のポジティブAプレートの厚さおよびポジティブCプレートの厚さを変更して、Aプレートの面内レタデーションReおよびCプレートの厚さ方向レタデーションRthが表2に示す値となるようにして、位相差層を作製した。
 ポジティブAプレートを第1反射層の第3コレステリック液晶層側に接着剤を用いて貼合した。次に、ポジティブCプレートをポジティブAプレート上に接着剤を用いて貼合した。
 第2反射層を仮支持体に転写し、粘着剤を介して、第4コレステリック液晶層側を、位相差層、第3コレステリック液晶層の順で配置されるように、貼合し、光学素子を作製した。各コレステリック液晶層の螺旋ピッチ数および複屈折Δn(550)は表2に示すとおりであった。
 [実施例8~9]
 実施例7において、キラル剤C-1の添加量を適宜調整し、後述する表2に記載の螺旋ピッチ数となるように所望の膜厚の各コレステリック液晶層を形成した以外は同様にして、光学素子を作製した。各コレステリック液晶層の螺旋ピッチ数および複屈折Δn(550)は表2に示すとおりであった。
 [実施例10~11]
<反射層の作製>
 実施例7において、液晶化合物L-1、液晶化合物L-2および液晶化合物L-3の含有量、キラル剤C-1の添加量を適宜調整し、後述する表2に記載の螺旋ピッチ数となるように所定の膜厚の各コレステリック液晶層を形成した以外は同様にして、光学素子を作製した。
 [実施例12]
 (配向膜の露光)
 実施例1の配向膜の露光において、2つの光の交差角(交差角α)を変化させた以外は同様にして配向膜P-1に変えて配向膜P-3を作製した。
<第1反射層の作製>
 実施例6において、キラル剤C-1添加量を調整し、後述する表3に記載の螺旋ピッチ数となるように所定の膜厚の各コレステリック液晶層を形成した以外は同様にして光学素子を作製した。なお、位相差層は実施例7で作製した位相差層に変更した。
<サイドローブ発生、反射率評価>
 紫外可視近赤外分析光度計(「UV-3100」、島津製作所社製)を用いて、作製した光学素子の反射率を測定した。
 得られた反射スペクトルデータをもとにして、図1に示すように、反射波長帯域(選択反射帯域)の短波長側の端部E1の波長および長波長側の端部E2の波長を決定した。反射波長帯域の短波長側の端部E1とは、反射波長帯域から短波長側に向かって最初に反射率が5%以下となる凹部の最低反射率を示す波長を意図する。選択反射帯域の長波長側の端部E2とは、反射波長帯域から長波長側に向かって最初に反射率が5%以下となる凹部の最低反射率を示す波長を意図する。
 端部E1の波長から100nmを引いた位置P1の波長を算出して、端部E1の波長から位置P1の波長の間の反射率の積算値V1を算出した。また、端部E2の波長から100nmを足した位置P2の波長を算出して、端部E2の波長から位置P2の波長の間の反射率の積算値V2を算出した。
 得られた積算値V1およびV2を足し合わせて、サイドローブの反射率を算出した。
 また、選択反射帯域の選択中心反射波長の反射率を評価した。
 表1~3中、「選択中心反射波長(nm)」欄は、光学素子の選択中心反射波長(nm)を表す。
 表1~3中、「液晶配向パターンの1周期Λ(μm)」欄は、各コレステリック液晶層の液晶配向パターンの1周期Λの値を表す。
 表1~3中、「第1層」~「第10層」は、それぞれ第1コレステリック液晶層~第10コレステリック液晶層を表す。
 表1~3中、「第1領域の複屈折Δn(550)」、「第2領域の複屈折Δn(550)」、および、「第3領域の複屈折Δn(550)」は、第1反射層および第2反射層の要件Xで定義される第1領域~第3領域の複屈折Δn(550)(波長550nmにおける複屈折)を表す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 なお、実施例1~実施例6において、第1反射層および第2反射層の選択反射中心波長はいずれも530nmであった。また、第1反射層および第2反射層は反射する円偏光の旋回方向が同じであった。また、位相差層は、第1反射層および第2反射層の反射波長帯域の波長においてλ/2位相差機能を有するものであった。また、第1反射層および第2反射層に含まれるコレステリック液晶層中の液晶配向パターンにおける液晶化合物の光学軸が連続的に変化する方向はいずれも同じであった。
 また、実施例7~実施例12において、第1反射層および第2反射層の選択反射中心波長はいずれも980nmであった。また、第1反射層および第2反射層は反射する円偏光の旋回方向が同じであった。また、位相差層は、第1反射層および第2反射層の反射波長帯域の波長においてλ/2位相差機能を有するものであった。また、第1反射層および第2反射層に含まれるコレステリック液晶層中の液晶配向パターンにおける液晶化合物の光学軸が連続的に変化する方向はいずれも同じであった。
 比較例1に対し、実施例1~実施例6はサイドローブの反射率を低減することを確認した。また、実施例6は実施例1~実施例5に対して、サイドローブの反射率の低減効果が高かった。
 比較例2に対し、実施例7~実施例12はサイドローブの反射率を低減することを確認した。また、実施例12は実施例7~実施例11対して、サイドローブの反射率の低減効果が高かった。
 以上の結果より、本発明の効果は明らかである。
 10  光学素子
 12  第1反射層
 14  第2反射層
 20  第1コレステリック液晶層
 22  第2コレステリック液晶層
 24  第3コレステリック液晶層
 30  第4コレステリック液晶層
 32  第5コレステリック液晶層
 34  第6コレステリック液晶層
 40,42,44  コレステリック液晶層
 60  露光装置
 62  レーザ
 64  光源
 65 λ/2板
 68  偏光ビームスプリッター
 70A、70B  ミラー
 72A,72B  λ/4板
 80  配向膜
 82  支持体
 90  画像表示装置
 92  導光板
 94  画像表示パネル

Claims (18)

  1.  反射する円偏光の旋回方向が同じで、かつ、反射波長帯域の少なくとも一部が重複する、2つの反射層の組み合わせである反射層対と、
    前記反射層対の前記反射層の間に配置される位相差層と、
    を、少なくとも1組含む、光学素子であって、
     前記反射層が、コレステリック液晶相を固定してなるコレステリック液晶層を含み、
     前記コレステリック液晶層は、液晶化合物由来の光学軸の向きが面内の少なくとも一方向に沿って連続的に回転しながら変化している液晶配向パターンを有し、
     前記反射層の一方の表面から他方の表面側に向かって、前記反射層の全螺旋ピッチ数の10%に相当する深さ位置を深さ位置Xとし、前記反射層の全螺旋ピッチ数の90%に相当する深さ位置を深さ位置Yとし、前記一方の表面から前記深さ位置Xまでの領域を第1領域、前記深さ位置Xから前記深さ位置Yまでの領域を第2領域、前記深さ位置Yから前記他方の表面までの領域を第3領域とした際に、前記第1領域および前記第3領域での複屈折の少なくとも一方が、前記第2領域での複屈折よりも小さい、光学素子。
  2.  前記反射層が複数の前記コレステリック液晶層を含み、
     前記2つの反射層のうちの一方の反射層に含まれる複数の前記コレステリック液晶層が有する前記液晶配向パターン中における前記液晶化合物由来の光学軸の回転方向がいずれも同方向であり、
     前記2つの反射層のうちの他方の反射層に含まれる複数の前記コレステリック液晶層が有する前記液晶配向パターン中における前記液晶化合物由来の光学軸の回転方向がいずれも同方向である、請求項1に記載の光学素子。
  3.  前記2つの反射層のうちの一方の反射層に含まれる前記コレステリック液晶層が有する前記液晶配向パターン中における前記液晶化合物由来の光学軸の回転方向と、前記2つの反射層のうちの他方の反射層に含まれるコレステリック液晶層が有する前記液晶配向パターン中における前記液晶化合物由来の光学軸の回転方向とが同方向である、請求項1または2に記載の光学素子。
  4.  前記コレステリック液晶層中の前記液晶配向パターンにおいて、前記液晶化合物由来の光学軸の向きが連続的に回転しながら変化する前記一方向における、前記液晶化合物由来の光学軸の向きが180°回転する長さを1周期とした際に、
     前記2つの反射層のうちの一方の反射層に含まれる前記コレステリック液晶層中の前記液晶配向パターンにおける前記1周期の長さと、前記2つの反射層のうちの他方の反射層に含まれる前記コレステリック液晶層中の前記液晶配向パターンにおける前記1周期の長さとが同じである、請求項1~3のいずれか1項に記載の光学素子。
  5.  前記コレステリック液晶層の少なくとも1層が、面内に、前記液晶配向パターンにおける前記1周期の長さが異なる領域を有する、請求項1~4のいずれか1項に記載の光学素子。
  6.  前記コレステリック液晶層の少なくとも1層が、前記液晶配向パターンにおける前記1周期の長さが、前記一方向に沿って漸次変化する領域を有する、請求項1~5のいずれか1項に記載の光学素子。
  7.  前記反射層は、異なる液晶化合物を含む組成物から形成された複数の前記コレステリック液晶層を含み、
     前記反射層の膜厚の中心位置に位置する前記コレステリック液晶層から、前記反射層の少なくとも一方の表面側に向かって、前記コレステリック液晶層の複屈折が漸次小さくなる、請求項1~6のいずれか1項に記載の光学素子。
  8.  前記反射層において、複屈折が最も小さい前記コレステリック液晶層の螺旋ピッチ数が、複屈折が最も大きい前記コレステリック液晶層の螺旋ピッチ数の半分以下である、請求項7に記載の光学素子。
  9.  走査型電子顕微鏡によって観察される前記コレステリック液晶層の断面において、
     コレステリック液晶相に由来する明部および暗部が、前記コレステリック液晶層の主面に対して傾斜しており、さらに、前記コレステリック液晶層の主面の法線方向および法線に対して傾斜した方向から面内レタデーションを測定した際に、遅相軸面内および進相軸面内のいずれかにおいて、面内レタデーションが最小となる方向が前記法線方向から傾斜している、コレステリック液晶層を、少なくとも1層、有する、請求項1~8のいずれか1項に記載の光学素子。
  10.  前記液晶配向パターンにおける前記1周期の長さが短くなるにしたがって、前記暗部の平均傾斜角が、前記一方向に沿って漸次変化する領域を有する、請求項9に記載の光学素子。
  11.  前記液晶配向パターンにおける前記1周期の長さが短くなるにしたがって、前記暗部の平均傾斜角が大きくなる領域を有する、請求項9に記載の光学素子。
  12.  前記位相差層が、前記反射層の反射波長帯域の波長においてλ/2位相差機能を有する、請求項1~11のいずれか1項に記載の光学素子。
  13.  前記反射層対を複数含み、
     異なる前記反射層対の間では、前記反射層対を構成する反射層の選択反射中心波長が、互いに異なる、請求項1~12のいずれか1項に記載の光学素子。
  14.  前記反射層対を複数含み、
     異なる前記反射層対の間では、前記反射層対を構成する反射層に含まれる前記コレステリック液晶層における選択反射中心波長の長さの順列と、前記1周期の長さの順列とが、一致している、請求項1~13のいずれか1項に記載の光学素子。
  15.  請求項1~14のいずれか1項に記載の光学素子と、
     画像表示パネルと、を含む、画像表示装置。
  16.  請求項15に記載の画像表示装置を含む、ヘッドマウントディスプレイ。
  17.  請求項1~14のいずれか1項に記載の光学素子を含む、センシング装置。
  18.  請求項1~14のいずれか1項に記載の光学素子を含む、アイトラッキング装置。
PCT/JP2022/020065 2021-05-14 2022-05-12 光学素子、画像表示装置、ヘッドマウントディスプレイ、センシング装置、アイトラッキング装置 WO2022239835A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023521245A JPWO2022239835A1 (ja) 2021-05-14 2022-05-12
CN202280033817.1A CN117280258A (zh) 2021-05-14 2022-05-12 光学元件、图像显示装置、头戴式显示器、传感装置及眼睛追踪装置
US18/497,465 US20240085607A1 (en) 2021-05-14 2023-10-30 Optical element, image display apparatus, head-mounted display, sensing apparatus, and eye tracking apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021082774 2021-05-14
JP2021-082774 2021-05-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/497,465 Continuation US20240085607A1 (en) 2021-05-14 2023-10-30 Optical element, image display apparatus, head-mounted display, sensing apparatus, and eye tracking apparatus

Publications (1)

Publication Number Publication Date
WO2022239835A1 true WO2022239835A1 (ja) 2022-11-17

Family

ID=84029213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020065 WO2022239835A1 (ja) 2021-05-14 2022-05-12 光学素子、画像表示装置、ヘッドマウントディスプレイ、センシング装置、アイトラッキング装置

Country Status (4)

Country Link
US (1) US20240085607A1 (ja)
JP (1) JPWO2022239835A1 (ja)
CN (1) CN117280258A (ja)
WO (1) WO2022239835A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091944A (ja) * 1999-08-04 2001-04-06 Asulab Sa ブラッグ反射光素子およびその製造方法
WO2019194291A1 (ja) * 2018-04-05 2019-10-10 富士フイルム株式会社 光学素子および導光素子
WO2020075711A1 (ja) * 2018-10-12 2020-04-16 富士フイルム株式会社 光学積層体、導光素子およびar表示デバイス
WO2020122128A1 (ja) * 2018-12-11 2020-06-18 富士フイルム株式会社 導光素子、画像表示装置およびセンシング装置
WO2020166691A1 (ja) * 2019-02-14 2020-08-20 富士フイルム株式会社 光学素子、導光素子および画像表示素子
JP2020194058A (ja) * 2019-05-28 2020-12-03 日東電工株式会社 光学積層体、面照明装置および画像表示装置
WO2021020337A1 (ja) * 2019-07-26 2021-02-04 富士フイルム株式会社 バックライトユニットおよび液晶表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091944A (ja) * 1999-08-04 2001-04-06 Asulab Sa ブラッグ反射光素子およびその製造方法
WO2019194291A1 (ja) * 2018-04-05 2019-10-10 富士フイルム株式会社 光学素子および導光素子
WO2020075711A1 (ja) * 2018-10-12 2020-04-16 富士フイルム株式会社 光学積層体、導光素子およびar表示デバイス
WO2020122128A1 (ja) * 2018-12-11 2020-06-18 富士フイルム株式会社 導光素子、画像表示装置およびセンシング装置
WO2020166691A1 (ja) * 2019-02-14 2020-08-20 富士フイルム株式会社 光学素子、導光素子および画像表示素子
JP2020194058A (ja) * 2019-05-28 2020-12-03 日東電工株式会社 光学積層体、面照明装置および画像表示装置
WO2021020337A1 (ja) * 2019-07-26 2021-02-04 富士フイルム株式会社 バックライトユニットおよび液晶表示装置

Also Published As

Publication number Publication date
US20240085607A1 (en) 2024-03-14
JPWO2022239835A1 (ja) 2022-11-17
CN117280258A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
JP7030847B2 (ja) 光学素子、導光素子および画像表示装置
JP7232887B2 (ja) 光学素子、導光素子および画像表示装置
JP7153087B2 (ja) 導光素子、画像表示装置およびセンシング装置
JP7175995B2 (ja) 光学積層体、導光素子および画像表示装置
JP7261810B2 (ja) 光学積層体、導光素子およびar表示デバイス
JP7229274B2 (ja) 液晶回折素子および導光素子
JP7483111B2 (ja) 光学素子および画像表示装置
WO2022070799A1 (ja) 透過型液晶回折素子
JP7398470B2 (ja) 光学素子の製造方法
JP7166354B2 (ja) 光学積層体、導光素子およびar表示デバイス
WO2019172270A1 (ja) 光学装置
WO2021256420A1 (ja) 液晶組成物、光学素子および導光素子
WO2022239835A1 (ja) 光学素子、画像表示装置、ヘッドマウントディスプレイ、センシング装置、アイトラッキング装置
WO2022239859A1 (ja) 光学素子、画像表示装置、ヘッドマウントディスプレイ、センシング装置、アイトラッキング装置
WO2023085398A1 (ja) 光学素子、および、画像表示装置
WO2022239858A1 (ja) 光学素子および光学センサー
JP7292414B2 (ja) 導光素子および画像表示装置
WO2021256422A1 (ja) 光学素子、導光素子および液晶組成物
JP7482991B2 (ja) 光学素子および画像表示装置
JP7392160B2 (ja) 透過型液晶回折素子
WO2021132063A1 (ja) 画像表示装置およびarグラス
WO2023090392A1 (ja) 透過型液晶回折素子
WO2022215748A1 (ja) 液晶回折素子、画像表示装置およびヘッドマウントディスプレイ
JP7416941B2 (ja) 光学素子および画像表示装置
JP7303326B2 (ja) 導光素子および画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807534

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023521245

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280033817.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807534

Country of ref document: EP

Kind code of ref document: A1