WO2020066349A1 - 発泡粒子、発泡成形体、その製造方法及び繊維強化複合体 - Google Patents
発泡粒子、発泡成形体、その製造方法及び繊維強化複合体 Download PDFInfo
- Publication number
- WO2020066349A1 WO2020066349A1 PCT/JP2019/031902 JP2019031902W WO2020066349A1 WO 2020066349 A1 WO2020066349 A1 WO 2020066349A1 JP 2019031902 W JP2019031902 W JP 2019031902W WO 2020066349 A1 WO2020066349 A1 WO 2020066349A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molded article
- foamed
- resin
- fiber
- particles
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/28—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/199—Acids or hydroxy compounds containing cycloaliphatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/16—Making expandable particles
- C08J9/18—Making expandable particles by impregnating polymer particles with the blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/228—Forming foamed products
Definitions
- the present invention relates to a foamed particle, a foamed molded product, a method for producing the same, and a fiber-reinforced composite. More specifically, the present invention uses a thermoplastic polyester-based resin as a base resin, and produces a foamed molded article and a fiber-reinforced composite having excellent surface smoothness and a high degree of freedom in shape, and a foamed molded article and a fiber-reinforced composite. The present invention relates to a method for producing foamed particles and a foamed molded article.
- a foamed molded article which is a core material for compounding a fiber reinforced resin and a decorative film is also required to have surface smoothness.
- the applicant of the present application has disclosed a technique of using a foamed molded product containing a thermoplastic polyester resin having high rigidity and excellent shape stability as a base resin as a core material in Japanese Patent No. 5907847 ( It is proposed in Patent Document 1).
- Patent Document 1 a foam molded article having a good appearance is obtained.
- Patent Document 1 Although a certain degree of surface smoothness of the foamed molded article can be realized, there has been a demand for providing a foamed molded article having excellent surface smoothness and a high degree of freedom in shape.
- the inventor of the present invention has made intensive studies to produce a foam molded article having excellent surface smoothness and a high degree of shape freedom by in-mold foam molding as long as the foam particles have an average cell diameter in a specific range.
- the present inventors have found that the obtained expanded particles can be provided, and have reached the present invention.
- thermoplastic polyester-based resin as a base resin
- the thermoplastic polyester-based resin is amorphous, and contains a unit derived from a diol component,
- the diol component is selected from 1,4-cyclohexanedimethanol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol and spiro glycol;
- a foamed particle is provided, wherein the foamed particle has an average cell diameter of 15 to 75 ⁇ m.
- a foamed molded article obtained by subjecting the foamed particles to in-mold foam molding.
- a fiber-reinforced composite having the foamed molded article and a fiber-reinforced plastic layer laminated and integrated on the surface of the foamed molded article. Further, according to the present invention, there is provided a method for producing a foamed molded article, wherein the foamed article is subjected to in-mold foam molding to produce a foamed molded article.
- the foaming particle which is excellent in surface smoothness and can manufacture a foaming molded body with a high degree of freedom by in-mold foaming molding can be provided. Further, according to the present invention, in any of the following cases, it is possible to provide foamed particles which can produce a foamed molded article having more excellent surface smoothness and a higher degree of freedom by in-mold foam molding.
- the expanded particles have an open cell ratio of 20% or less.
- the foamed particles have a bulk density of 8 to 500 kg / m 3 .
- 4 is a photograph of a cross section of the foamed particles of Example 1.
- 6 is a cross-sectional photograph of the expanded particles of Example 2.
- 4 is a cross-sectional photograph of the expanded particles of Comparative Example 1.
- the expanded particles of the present invention are expanded particles for in-mold expansion molding using a thermoplastic polyester resin as a base resin.
- (1-1) Base Resin The proportion of the thermoplastic polyester resin in the base resin is preferably 70% by weight or more, more preferably 85% by weight or more, and more preferably 100% by weight. Is also good.
- the thermoplastic polyester resin is amorphous. Whether the thermoplastic polyester resin is crystalline or non-crystalline is determined according to the following procedure (JIS K7121: 1987, JIS K7121: 2012 "Method for measuring transition temperature of plastic"). Compliance).
- thermoplastic polyester resin (sample) is heated and melted from -100 ° C to 300 ° C at a rate of 10 ° C / min, and then heated at 300 ° C for 10 minutes. Hold over.
- the sample is cooled to -100 ° C at a rate of 10 ° C / min.
- the sample is heated and melted at a rate of 10 ° C./min from ⁇ 100 to 300 ° C.
- those which do not show a melting peak are made amorphous, and those which show a melting peak are judged as crystalline.
- the thermoplastic polyester resin contains a unit derived from a specific diol component.
- Particular diol components are selected from 1,4-cyclohexanedimethanol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol and spiro glycol.
- the amorphous thermoplastic polyester-based resin may contain a unit derived from a diol component other than the specific diol component.
- Other diol components include aliphatic diols and alicyclic diols.
- aliphatic diol examples include ethylene glycol, diethylene glycol, trimethylene glycol, tetramethylene glycol, neopentyl glycol, hexamethylene glycol, 1,3-propanediol, 1,4-butanediol, and polytetramethylene glycol.
- alicyclic diol examples include cyclohexane dimethanol.
- the proportion of the other diol component in the diol component is preferably at most 80 mol%, more preferably at most 60 mol%, even more preferably at most 40 mol%.
- the diol component may be occupied only by a specific diol component.
- the amorphous thermoplastic polyester resin is a resin obtained by subjecting a diol component and a dicarboxylic acid component to an esterification reaction.
- the dicarboxylic acid component include an aromatic dicarboxylic acid, an aliphatic dicarboxylic acid, and an alicyclic dicarboxylic acid.
- the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, dimethyl isophthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyl ether dicarboxylic acid, diphenyl sulfone dicarboxylic acid, diphenoxy dicarboxylic acid, and the like.
- the aliphatic dicarboxylic acid include adipic acid, succinic acid, sebacic acid and the like.
- the alicyclic dicarboxylic acid include 1,4-cyclohexanedicarboxylic acid.
- the qualitative and quantitative determination of the units derived from the diol component and the dicarboxylic acid component can be performed, for example, by dissolving a thermoplastic polyester resin in a 1: 1 (weight ratio) mixed solution of trifluoroacetic acid-d and heavy chloroform.
- the mixed solution may be mixed with tetramethylsilane as a standard, and the mixture may be subjected to FT-NMR.
- FT-NMR for example, an apparatus commercially available from Varian under the trade name “300MG type” can be used.
- thermoplastic polyester resin examples include "Tritan FX-100” (trade name: aromatic dicarboxylic acid component: terephthalic acid, diol component: 1,4-cyclohexanedimethanol) from Eastman Chemical Company.
- the amorphous thermoplastic polyester resin can be produced, for example, by the methods described in JP-T-2008-544022 and JP-A-2012-1589.
- An example of the synthesis method is described below.
- a dicarboxylic acid component and a diol component are supplied to a heat medium circulation type esterification reactor equipped with a stirrer, and triethylamine is added. Water is added at 200 to 270 ° C. under a pressure of 0.1 to 0.3 MPa.
- An esterification reaction between the dicarboxylic acid component and the diol component is performed while excluding the mixture to the outside, to obtain a mixture of an ester compound and an oligomer.
- the mixture of the ester compound and the oligomer is transported to a polycondenser equipped with a stirrer, and a catalyst such as antimony trioxide is added as a polycondensation catalyst. Subsequently, the mixture of the ester compound and the oligomer is stirred at a normal pressure at 200 to 270 ° C. under a nitrogen atmosphere. Thereafter, while maintaining the mixture of the ester compound and the oligomer at 200 to 270 ° C., the pressure of the reaction system is gradually lowered to perform the first stage initial polycondensation to produce a prepolymer.
- a catalyst such as antimony trioxide
- the prepolymer is discharged into cooling water in the form of a strand and quenched, and chipped by a strand cutter to obtain a cylindrical chip.
- the resin temperature from the outlet of the polycondensation unit to the nozzle pores is set to about 270 ° C., and the whole amount is chipped within about 30 minutes.
- the obtained chips are immediately heat-treated at about 50 to 150 ° C. in a vacuum dryer, and are processed by a vibrating sieving step and an airflow classification step to remove fine powder and film-like materials to obtain a prepolymer. .
- the prepolymer is preheated in a nitrogen atmosphere, then sent to a continuous solid-state polymerization reactor, and subjected to solid-state polymerization at about 200 to 250 ° C. in a nitrogen atmosphere to produce an amorphous thermoplastic polyester resin. .
- Other resins may be mixed with the base resin.
- Other resins include crystalline thermoplastic polyester resins, polyolefin resins such as polyethylene and polypropylene, and polyene resins such as polybutadiene, styrene-butadiene copolymer, and ethylene-propylene-non-conjugated diene three-dimensional copolymer.
- Rubber-modified impact-resistant polystyrene resin to which a rubber-like polymer is added polycarbonate resin, polyamide resin, polyphenylene ether, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer, polymethyl methacrylate, styrene- ( (Meth) acrylic acid copolymer, styrene- (meth) acrylic acid ester copolymer and the like.
- the foamed particles may contain an additive, if necessary.
- Additives include anti-binding agents, plasticizers, flame retardants, flame retardant aids, antistatic agents, spreading agents, air bubble regulators, fillers, colorants, weathering agents, anti-aging agents, lubricants, anti-fog agents And perfumes.
- the expanded particles have an average cell diameter of 15 to 75 ⁇ m. When the average cell diameter is less than 15 ⁇ m, the lightweight or cushioning properties of the foam may decrease. If it is larger than 75 ⁇ m, the foam molded article may be brittle.
- the average bubble diameter is preferably from 20 to 70 ⁇ m, more preferably from 25 to 65 ⁇ m.
- the expanded particles preferably have an open cell ratio of 20% or less. If it is more than 20%, the foam molded article may become brittle.
- the open cell ratio is more preferably 10% or less, and further preferably 5% or less.
- the expanded particles preferably have a bulk density of 8 to 500 kg / m 3 .
- the foam molded article When the bulk density is less than 8 kg / m 3 , the foam molded article may become brittle. When it is larger than 500 kg / m 3 , the lightweight or cushioning property of the foam may be reduced.
- the bulk density is more preferably from 20 to 400 kg / m 3 , even more preferably from 30 to 300 kg / m 3 .
- the outer shape of the foamed particles is not particularly limited as long as a foamed molded article can be produced, and examples thereof include a sphere, a substantially sphere, and a cylinder.
- the expanded particles can be produced, for example, by impregnating resin particles with a foaming agent in the gas phase to obtain expandable particles, and expanding the expandable particles.
- the resin particles pellets commercially available from a resin manufacturer can be used. Further, it may be formed into a desired shape by a known method.
- resin particles can be produced by melt-kneading the raw material resin using an extruder and then granulating by extrusion, underwater cut (underwater cut), strand cut, or the like. The temperature, time, pressure, etc., during melt-kneading can be appropriately set according to the raw materials used and the production equipment.
- the melt-kneading temperature in the extruder at the time of melt-kneading is a temperature at which the raw material resin is sufficiently softened, preferably from 220 to 280 ° C, more preferably from 225 to 270 ° C.
- the melt-kneading temperature means the temperature of the melt-kneaded material inside the extruder obtained by measuring the temperature at the center of the flow path of the melt-kneaded material near the extruder head with a thermocouple thermometer. It is preferable that the extruder be supplied with a bubble regulator. Examples of the cell regulator include polytetrafluoroethylene powder, polytetrafluoroethylene powder modified with an acrylic resin, and talc.
- the amount of the cell regulator is preferably 0.01 to 5 parts by weight based on 100 parts by weight of the base resin. If the amount of the cell regulator is less than 0.01 part by weight, the cells of the expanded particles become coarse, and the appearance of the obtained foamed molded article may be deteriorated. When the amount is more than 5 parts by weight, the appearance of the foam molded article obtained by foam breaking may be deteriorated.
- the amount of the cell regulator is more preferably 0.05 to 3 parts by weight, particularly preferably 0.1 to 2 parts by weight.
- the resin particles are gas-phase impregnated with a blowing agent in a sealable container.
- the foaming agent include propane, normal butane, isobutane, normal pentane, isopentane, saturated aliphatic hydrocarbons such as hexane, ethers such as dimethyl ether, methyl chloride, 1,1,1,2-tetrafluoroethane, Inorganic gases such as fluorocarbons such as 1-difluoroethane and monochlorodifluoromethane, carbon dioxide, and nitrogen are exemplified.
- the blowing agents may be used alone or in combination of two or more. If the amount of the foaming agent charged into the container is too small, the foamed particles may not be able to be foamed to a desired foaming ratio. If the amount of the foaming agent is too large, the foaming agent acts as a plasticizer, so that the viscoelasticity of the base resin is too low, so that the foaming property is reduced and good foamed particles may not be obtained.
- the amount of the foaming agent is preferably 0.1 to 15 parts by weight, more preferably 0.2 to 14 parts by weight, and particularly preferably 0.3 to 13 parts by weight based on 100 parts by weight of the base resin.
- a method for producing the foamed particles there is a method in which the foamed particles are heated with a heating medium such as steam in a sealable container.
- the heating conditions include, for example, a gauge pressure of 0.15 to 0.30 MPa, a temperature of 127 to 143 ° C., and 10 to 180 seconds.
- the particle size of the foamed particles can be varied by changing the diameter of a multi-nozzle mold attached to the front end of the extruder.
- a foamed molded article can be obtained by subjecting the foamed particles to in-mold foam molding.
- the foamed article preferably has a density of 8 to 500 kg / m 3 . If the density is less than 8 kg / m 3 , the mechanical strength may be low. If it is larger than 500 kg / m 3 , the lightness may be impaired.
- the density is more preferably from 20 to 400 kg / m 3 , even more preferably from 38 to 300 kg / m 3 .
- the foamed particles are filled in a mold cavity, a heating medium is supplied into the cavity, the foamed particles are heated and re-foamed, and the re-foamed foamed particles are mixed with each other. And a method of obtaining a foamed molded article by heat-sealing and integrating them with each other by the foaming pressure.
- the heating medium include steam, hot air, hot water, and the like, and steam is preferred.
- the foamed particles Before the in-mold foam molding, the foamed particles may be further impregnated with an inert gas and subjected to an internal pressure to improve the foaming power of the foamed particles.
- an inert gas include carbon dioxide, nitrogen, helium, and argon.
- the impregnation temperature is preferably 5 to 40 ° C, more preferably 10 to 30 ° C.
- the impregnation pressure is preferably a gauge pressure of 0.2 to 2.0 MPa, more preferably 0.25 to 1.5 MPa.
- the impregnation time is preferably 10 minutes to 72 hours, more preferably 15 minutes to 64 hours, and particularly preferably 20 minutes to 48 hours.
- the foam molded article can be suitably used for parts of transportation equipment such as automobiles, aircraft, railway vehicles, ships, and the like.
- automobile parts include parts used near the engine, exterior materials, and the like.
- Specific examples of automotive components include floor panels, roofs, hoods, fenders, undercovers, wheels, steering wheels, containers (housings), hood panels, suspension arms, bumpers, sun visors, trunk lids, luggage boxes, seats , Doors, cowls and the like.
- the fiber reinforced composite has the above-mentioned foamed molded article and a fiber reinforced plastic layer laminated and integrated on the surface thereof.
- the foamed molded article is a foamed sheet, it is not necessary to be laminated and integrated on both sides of the foamed molded article, provided that the fiber-reinforced plastic layer is laminated and integrated on at least one of both surfaces of the foamed molded article. Good.
- the lamination of the fiber reinforced plastic layer may be determined according to the use of the fiber reinforced composite. Above all, in consideration of the surface hardness and mechanical strength of the fiber-reinforced composite, it is preferable that the fiber-reinforced plastic layers are laminated and integrated on both sides in the thickness direction of the foamed molded article.
- Reinforcing fibers constituting the fiber-reinforced plastic layer include inorganic fibers such as glass fiber, carbon fiber, silicon carbide fiber, alumina fiber, Tyranno fiber, basalt fiber, and ceramic fiber; metal fibers such as stainless steel fiber and steel fiber; Organic fibers such as aramid fibers, polyethylene fibers, and polyparaphenylenebenzoxadol (PBO) fibers; and boron fibers.
- the reinforcing fibers may be used alone or in combination of two or more. Among them, carbon fibers, glass fibers and aramid fibers are preferred, and carbon fibers are more preferred. These reinforcing fibers have excellent mechanical properties despite their light weight.
- the reinforcing fiber is preferably used as a reinforcing fiber base processed into a desired shape.
- the reinforcing fiber base include a woven fabric, a knitted fabric, and a nonwoven fabric using the reinforcing fiber, and a face material formed by binding (sewing) a fiber bundle (strand) in which reinforcing fibers are aligned in one direction with a thread.
- the weaving method of the woven fabric include plain weave, twill weave, and satin weave.
- the yarn include a synthetic resin yarn such as a polyamide resin yarn and a polyester resin yarn, and a stitch yarn such as a glass fiber yarn.
- the reinforcing fiber base may be used without laminating only one reinforcing fiber base, or may be used as a laminated reinforcing fiber base by laminating a plurality of reinforcing fiber bases.
- the laminated reinforcing fiber base material obtained by laminating a plurality of reinforcing fiber base materials (1) a plurality of one kind of reinforcing fiber base material is prepared, and a laminated reinforcing fiber base material obtained by laminating these reinforcing fiber base materials; 2) A plurality of types of reinforcing fiber base materials are prepared, a laminated reinforcing fiber base material obtained by stacking these reinforcing fiber base materials, and (3) a fiber bundle (strand) in which reinforcing fibers are aligned in one direction are bound with yarn ( A plurality of reinforced fiber substrates are prepared, and the reinforced fiber substrates are overlapped so that the fiber directions of the fiber bundles are directed in different directions. For example, a laminated reinforced fiber base material integrated (sewed) with the above is
- the fiber reinforced plastic layer is formed by impregnating a reinforcing fiber with a resin.
- the reinforcing fibers are bound and integrated by the impregnated resin.
- the method of impregnating the reinforcing fiber with the resin is not particularly limited, and examples thereof include (1) a method of immersing the reinforcing fiber in the resin, and (2) a method of applying the resin to the reinforcing fiber.
- the resin to be impregnated into the reinforcing fibers either a thermoplastic resin or a thermosetting resin can be used, and a thermosetting resin is preferably used.
- the thermosetting resin to be impregnated into the reinforcing fibers is not particularly limited, and may be epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, polyurethane resin, silicone resin, maleimide resin, vinyl ester resin, cyanate ester resin, maleimide.
- the resin include a resin obtained by prepolymerizing a resin and a cyanate ester resin. Epoxy resins and vinyl ester resins are preferred because of their excellent heat resistance, shock absorption and chemical resistance.
- the thermosetting resin may contain additives such as a curing agent and a curing accelerator.
- the thermosetting resin may be used alone, or two or more kinds may be used in combination.
- the thermoplastic resin to be impregnated into the reinforcing fibers is not particularly limited, and examples thereof include an olefin resin, a polyester resin, a thermoplastic epoxy resin, an amide resin, a thermoplastic polyurethane resin, a sulfide resin, and an acrylic resin.
- polyester resins and thermoplastic epoxy resins are preferred because they are excellent in adhesiveness to a foamed molded article or adhesiveness between reinforcing fibers constituting a fiber-reinforced plastic.
- the thermoplastic resin may be used alone, or two or more kinds may be used in combination.
- the thermoplastic epoxy resin is a polymer or copolymer of epoxy compounds having a linear structure, or a copolymer of an epoxy compound and a monomer polymerizable with the epoxy compound. And a copolymer having a linear structure.
- the thermoplastic epoxy resin for example, bisphenol A type epoxy resin, bisphenol fluorene type epoxy resin, cresol novolak type epoxy resin, phenol novolak type epoxy resin, cycloaliphatic type epoxy resin, long chain aliphatic type Epoxy resins, glycidyl ester type epoxy resins, glycidylamine type epoxy resins and the like are mentioned, and bisphenol A type epoxy resins and bisphenol fluorene type epoxy resins are preferred.
- the thermoplastic epoxy resin may be used alone, or two or more kinds may be used in combination.
- thermoplastic polyurethane resin examples include a polymer having a linear structure obtained by polymerizing a diol and a diisocyanate.
- diol examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol and the like.
- the diols may be used alone or in combination of two or more.
- the diisocyanate include an aromatic diisocyanate, an aliphatic diisocyanate and an alicyclic diisocyanate.
- the diisocyanates may be used alone or in combination of two or more.
- the thermoplastic polyurethane resin may be used alone, or two or more kinds may be used in combination.
- the content of the resin in the fiber reinforced plastic layer is preferably from 20 to 70% by weight. When the content is less than 20% by weight, the binding properties between the reinforcing fibers and the adhesiveness between the fiber-reinforced plastic layer and the foamed molded article are insufficient, and the mechanical properties of the fiber-reinforced plastic layer and the mechanical properties of the fiber-reinforced composite are reduced. The target strength may not be sufficiently improved. If the content is more than 70% by weight, the mechanical properties of the fiber-reinforced plastic layer may be reduced, and the mechanical strength of the fiber-reinforced composite may not be sufficiently improved. The content is more preferably 30 to 60% by weight.
- the thickness of the fiber reinforced plastic layer is preferably from 0.02 to 2 mm, more preferably from 0.05 to 1 mm.
- a fiber-reinforced plastic layer having a thickness within this range has excellent mechanical properties despite its light weight.
- Basis weight of the fiber-reinforced plastic layer is preferably 50 ⁇ 4000g / m 2, more preferably 100 ⁇ 1000g / m 2.
- a fiber-reinforced plastic layer having a basis weight within this range has excellent mechanical properties despite its light weight.
- the method for producing a reinforced composite by laminating and integrating a fiber-reinforced plastic layer on the surface of a foamed molded article is not particularly limited.
- a method of laminating and integrating layers (2) laminating a fiber-reinforced plastic forming material in which a reinforcing fiber is impregnated with a thermoplastic resin on the surface of a foam molded article, and binding the thermoplastic resin impregnated in the reinforcing fiber to a binder
- a method of laminating and integrating a fiber-reinforced plastic forming material as a fiber-reinforced plastic layer on the surface of a foamed molded article and (3) fiber reinforced impregnation of an uncured thermosetting resin into reinforcing fibers on the surface of the foamed molded article.
- thermosetting resin impregnated in reinforcing fibers as a binder, a plastic forming material is laminated and the fiber-reinforced plastic layer formed by curing the thermosetting resin is foamed.
- the method (4) can also be suitably used.
- the method used for forming the fiber reinforced plastic layer include an autoclave method, a hand lay-up method, a spray-up method, a PCM (Prepreg Compression Molding) method, a RTM (Resin Transfer Molding) method, and a VaRTM (Vacuum assisted Resin Transfer Molding). ) Method.
- fiber-reinforced composite thus obtained is excellent in heat resistance, mechanical strength, and lightness. Therefore, it can be used in a wide range of applications such as in the field of transportation equipment such as automobiles, aircraft, railway vehicles, and ships, in the field of home appliances, in the field of information terminals, and in the field of furniture.
- fiber-reinforced composites include transport equipment components and transport equipment component parts (especially automobile parts) including structural components constituting the main body of the transport equipment, windmill blades, robot arms, cushioning materials for helmets, It can be suitably used as a transportation container such as an agricultural box, a heat insulation / cooling container, a rotor blade of an industrial helicopter, and a component packing material.
- Automotive parts include, for example, floor panels, roofs, hoods, fenders, undercovers, wheels, steering wheels, containers (housings), hood panels, suspension arms, bumpers, sun visors, trunk lids, luggage boxes, seats, Parts such as doors and cowls are included.
- thermoplastic polyester resin The density of the thermoplastic polyester resin was measured by a method specified in ISO1183-1: 2004 or ASTM D-792.
- the weight (a) and volume (b) of a test piece eg, 75 ⁇ 300 ⁇ 30 mm
- the density (kg / m 3 ) of the foamed molded article was determined by the formulas (a) / (b).
- the multiple was a value obtained by integrating the reciprocal of the density with the density (kg / m 3 ) of the thermoplastic polyester resin.
- the foamed particles were divided into two pieces by a razor from the surface through the center.
- the cross section of the two sections was photographed with a scanning electron microscope (scanning electron microscope (for example, trade name “S-3000N” manufactured by Hitachi, Ltd.)) at a magnification of 15 to 30 times (200 times in some cases).
- the photographed images were printed one by one on A4 paper.
- Arbitrary line segments (length 150 mm) were drawn at six places on the printed image.
- the average chord length (t) of each line segment was calculated from the number of bubbles overlapping the line segment by the following equation.
- the cell diameter (C) was determined from the average chord length (t) by the following equation, and the cell diameters (C) determined for the six line segments were averaged to obtain the average cell diameter. However, the line segment was drawn so as not to make point contact with bubbles as much as possible, and in the case of point contact, the bubbles were included in the number of bubbles.
- Average chord length (t) length of line segment / (number of bubbles ⁇ magnification of photograph)
- Cell diameter (C) t / 0.616
- the heating dimensional change rate of the foamed molded article was measured by the method B described in JIS K6767: 1999 "Expanded plastic-polyethylene-test method”. Specifically, a test piece having a square planar shape with a side of 150 mm and a thickness equal to the thickness of the foam molded article was cut out from the foam molded article. Three 100 mm straight lines were drawn at 50 mm intervals in the center of the test piece in parallel with each other in the vertical and horizontal directions. For longitudinal and transverse directions by measuring the length of the three straight lines respectively, and their arithmetic mean value L 0 and the beginning of the dimension. Thereafter, the test piece was left in a hot air circulating dryer at 110 ° C.
- Heating dimensional change rate 100 ⁇ (L 1 ⁇ L 0 ) / L 0
- Example 1 100 parts by weight (1000 g) of Tritan FX200 (manufactured by Eastman, density 1160 kg / m 3 ) as an amorphous thermoplastic polyester resin is charged into a sealable 10 L pressure vessel, and the pressure vessel is filled with carbon dioxide.
- the pressure vessel was filled with carbon dioxide.
- Foaming process After completion of the impregnation, the pressure was released by slowly discharging the carbon dioxide in the pressure vessel to take out the expandable particles inside.
- Example 2> In the foaming step, foamed particles having a bulk density of 34 kg / m 3 were obtained by foaming with steam of 0.24 MPa for 15 seconds, and foamed particles having a density of 41 kg / m 3 were filled in the molding step with 4341 cm 3 foamed particles.
- a foamed particle and a foamed molded body were obtained in the same manner as in Example 1 except that a green body was obtained ⁇ Comparative Example 1>
- foamed particles having a bulk density of 27 kg / m 3 were obtained, and 4760 cm 3 of foamed particles were filled in the molding step, and a density of 35.7 kg / m 3 was obtained.
- Example 1 shows various properties of the expanded particles and the expanded molded articles of the examples and the comparative examples.
- the flexural strength, compressive strength, and dimensional change of Comparative Example 1 were indicated by x because the foamed molded article was brittle and the test piece could not be cut and could not be measured.
- Cross-sectional photographs (200 times) of the expanded particles of Example 1, Example 2, and Comparative Example 1 are shown in FIGS.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Laminated Bodies (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
【課題】表面平滑性に優れ、かつ形状自由度の高い発泡成形体を型内発泡成形で製造し得る発泡粒子を提供することを課題とする。 【解決手段】熱可塑性ポリエステル系樹脂を基材樹脂とする型内発泡成形用の発泡粒子であって、前記熱可塑性ポリエステル系樹脂が、非晶性であり、かつジオール成分に由来する単位を含み、前記ジオール成分が、1,4-シクロヘキサンジメタノール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール及びスピログリコールから選択され、前記発泡粒子が、15~75μmの平均気泡径を有することを特徴とする発泡粒子により上記課題を解決する。
Description
本発明は、発泡粒子、発泡成形体、その製造方法及び繊維強化複合体に関する。更に詳しくは、本発明は、熱可塑性ポリエステル系樹脂を基材樹脂とし、表面平滑性に優れ、かつ形状自由度の高い発泡成形体及び繊維強化複合体、発泡成形体及び繊維強化複合体を製造し得る発泡粒子、発泡成形体の製造方法に関する。
省エネルギーの観点から、近年、自動車、航空機、鉄道車両等の分野においては、軽量性に劣る金属材料の代わりに、繊維強化プラスチックのような高強度素材と、発泡成形体のような軽量芯材との複合体を用いる動きが強くなっている。また、軽量性及び製品の外観性の向上と、環境保護を両立するために、発泡成形体の表面に加飾フィルムを積層一体化させて製品に美麗な外観を付与することも行われている。更に、近年の消費者の嗜好の高度化に伴って、複雑な形状を有する発泡成形体が要求されている。そのような複雑な形状を有する発泡成形体においても美麗な外観を有することが求められている。
よって、繊維強化樹脂や加飾フィルムを複合化する芯材である発泡成形体にも表面平滑性が求められている。
本願の出願人は、剛性が強くて形状安定性に優れた性質を有している熱可塑性ポリエステル系樹脂を基材樹脂として含む発泡成形体を芯材として使用する技術を特許第5907847号公報(特許文献1)で提案している。この特許文献1では、良好な外観を有する発泡成形体が得られている。
よって、繊維強化樹脂や加飾フィルムを複合化する芯材である発泡成形体にも表面平滑性が求められている。
本願の出願人は、剛性が強くて形状安定性に優れた性質を有している熱可塑性ポリエステル系樹脂を基材樹脂として含む発泡成形体を芯材として使用する技術を特許第5907847号公報(特許文献1)で提案している。この特許文献1では、良好な外観を有する発泡成形体が得られている。
特許文献1でも、ある程度の発泡成形体の表面平滑性を実現できるが、更に、表面平滑性に優れ、かつ形状自由度の高い発泡成形体を提供することが求められていた。
本発明の発明者は、鋭意検討の結果、特定の範囲の平均気泡径を有する発泡粒子であれば、表面平滑性に優れ、かつ形状自由度の高い発泡成形体を型内発泡成形で製造し得る発泡粒子を提供可能であることを見い出し本発明に至った。
かくして本発明によれば、熱可塑性ポリエステル系樹脂を基材樹脂とする型内発泡成形用の発泡粒子であって、
前記熱可塑性ポリエステル系樹脂が、非晶性であり、かつジオール成分に由来する単位を含み、
前記ジオール成分が、1,4-シクロヘキサンジメタノール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール及びスピログリコールから選択され、
前記発泡粒子が、15~75μmの平均気泡径を有することを特徴とする発泡粒子が提供される。
また、本発明によれば、上記発泡粒子を型内発泡成形に付すことによって得られた発泡成形体が提供される。
更に、本発明によれば、上記発泡成形体と、この発泡成形体の表面に積層一体化された繊維強化プラスチック層とを有する繊維強化複合体が提供される。
また、本発明によれば、上記発泡粒子を型内発泡成形に付すことにより発泡成形体を製造する発泡成形体の製造方法が提供される。
かくして本発明によれば、熱可塑性ポリエステル系樹脂を基材樹脂とする型内発泡成形用の発泡粒子であって、
前記熱可塑性ポリエステル系樹脂が、非晶性であり、かつジオール成分に由来する単位を含み、
前記ジオール成分が、1,4-シクロヘキサンジメタノール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール及びスピログリコールから選択され、
前記発泡粒子が、15~75μmの平均気泡径を有することを特徴とする発泡粒子が提供される。
また、本発明によれば、上記発泡粒子を型内発泡成形に付すことによって得られた発泡成形体が提供される。
更に、本発明によれば、上記発泡成形体と、この発泡成形体の表面に積層一体化された繊維強化プラスチック層とを有する繊維強化複合体が提供される。
また、本発明によれば、上記発泡粒子を型内発泡成形に付すことにより発泡成形体を製造する発泡成形体の製造方法が提供される。
本発明によれば、表面平滑性に優れ、かつ形状自由度の高い発泡成形体を型内発泡成形で製造し得る発泡粒子を提供できる。
更に、本発明によれば、以下のいずれかの場合、より表面平滑性に優れ、かつより形状自由度の高い発泡成形体を型内発泡成形で製造し得る発泡粒子を提供できる。
(1)発泡粒子が、20%以下の連続気泡率を有する。
(2)発泡粒子が、8~500kg/m3の嵩密度を有する。
更に、本発明によれば、以下のいずれかの場合、より表面平滑性に優れ、かつより形状自由度の高い発泡成形体を型内発泡成形で製造し得る発泡粒子を提供できる。
(1)発泡粒子が、20%以下の連続気泡率を有する。
(2)発泡粒子が、8~500kg/m3の嵩密度を有する。
(1)発泡粒子
本発明の発泡粒子は、熱可塑性ポリエステル系樹脂を基材樹脂とする型内発泡成形用の発泡粒子である。
(1-1)基材樹脂
基材樹脂中に熱可塑性ポリエステル系樹脂が占める割合は、70重量%以上であることが好ましく、85重量%以上であることがより好ましく、100重量%であってもよい。
熱可塑性ポリエステル系樹脂は、非晶性である。
熱可塑性ポリエステル系樹脂が結晶性又は非晶性であるかは下記の要領(JIS K7121:1987、JIS K7121:2012「プラスチックの転移温度測定方法」
準拠)によって判断できる。まず、熱可塑性ポリエステル系樹脂(試料)を示差走査型熱量計(DSC)を用いて、10℃/分の昇温速度で-100℃から300℃まで加熱溶融させ、300℃にて10分間に亘って保持する。次に、試料を10℃/分の降温速度で-100℃まで降温する。次に、試料を10℃/分の昇温速度にて-100から300℃まで加熱溶融させる。この二回目の昇温工程において、融解ピークを示さないものを非晶性とし、融解ピークを示したものを結晶性と判断する。
本発明の発泡粒子は、熱可塑性ポリエステル系樹脂を基材樹脂とする型内発泡成形用の発泡粒子である。
(1-1)基材樹脂
基材樹脂中に熱可塑性ポリエステル系樹脂が占める割合は、70重量%以上であることが好ましく、85重量%以上であることがより好ましく、100重量%であってもよい。
熱可塑性ポリエステル系樹脂は、非晶性である。
熱可塑性ポリエステル系樹脂が結晶性又は非晶性であるかは下記の要領(JIS K7121:1987、JIS K7121:2012「プラスチックの転移温度測定方法」
準拠)によって判断できる。まず、熱可塑性ポリエステル系樹脂(試料)を示差走査型熱量計(DSC)を用いて、10℃/分の昇温速度で-100℃から300℃まで加熱溶融させ、300℃にて10分間に亘って保持する。次に、試料を10℃/分の降温速度で-100℃まで降温する。次に、試料を10℃/分の昇温速度にて-100から300℃まで加熱溶融させる。この二回目の昇温工程において、融解ピークを示さないものを非晶性とし、融解ピークを示したものを結晶性と判断する。
熱可塑性ポリエステル系樹脂は、特定のジオール成分に由来する単位を含む。
特定のジオール成分は、1,4-シクロヘキサンジメタノール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール及びスピログリコールから選択される。
非晶性熱可塑性ポリエステル系樹脂は、上記特定のジオール成分以外の他のジオール成分に由来する単位を含有していてもよい。他のジオール成分としては、脂肪族ジオール又は脂環族ジオールが挙げられる。脂肪族ジオールとしては、例えば、エチレングリコール、ジエチレングリコール、トリメチレングリコール、テトラメチレングリコール、ネオペンチルグリコール、ヘキサメチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ポリテトラメチレングリコール等が挙げられる。脂環族ジオールとしては、例えば、シクロヘキサンジメタノール等が挙げられる。
ジオール成分に占める他のジオール成分の割合は、80モル%以下であることが好ましく、60モル%以下であることがより好ましく、40モル%以下であることが更に好ましい。ジオール成分は、特定のジオール成分のみで占められていてもよい。
特定のジオール成分は、1,4-シクロヘキサンジメタノール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール及びスピログリコールから選択される。
非晶性熱可塑性ポリエステル系樹脂は、上記特定のジオール成分以外の他のジオール成分に由来する単位を含有していてもよい。他のジオール成分としては、脂肪族ジオール又は脂環族ジオールが挙げられる。脂肪族ジオールとしては、例えば、エチレングリコール、ジエチレングリコール、トリメチレングリコール、テトラメチレングリコール、ネオペンチルグリコール、ヘキサメチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ポリテトラメチレングリコール等が挙げられる。脂環族ジオールとしては、例えば、シクロヘキサンジメタノール等が挙げられる。
ジオール成分に占める他のジオール成分の割合は、80モル%以下であることが好ましく、60モル%以下であることがより好ましく、40モル%以下であることが更に好ましい。ジオール成分は、特定のジオール成分のみで占められていてもよい。
非晶性熱可塑性ポリエステル系樹脂は、ジオール成分とジカルボン酸成分とをエステル化反応させて得られた樹脂である。
ジカルボン酸成分としては、例えば、芳香族ジカルボン酸、脂肪族ジカルボン酸、脂環族ジカルボン酸等が挙げられる。芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、ジメチルイソフタル酸、2,6-ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェノキシジカルボン酸等が挙げられる。脂肪族ジカルボン酸としては、例えば、アジピン酸、コハク酸、セバシン酸等が挙げられる。脂環族ジカルボン酸としては、例えば、1,4-シクロヘキサンジカルボン酸等が挙げられる。
ジカルボン酸成分としては、例えば、芳香族ジカルボン酸、脂肪族ジカルボン酸、脂環族ジカルボン酸等が挙げられる。芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、ジメチルイソフタル酸、2,6-ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェノキシジカルボン酸等が挙げられる。脂肪族ジカルボン酸としては、例えば、アジピン酸、コハク酸、セバシン酸等が挙げられる。脂環族ジカルボン酸としては、例えば、1,4-シクロヘキサンジカルボン酸等が挙げられる。
なお、ジオール成分とジカルボン酸成分に由来する単位の定性及び定量は、例えば、熱可塑性ポリエステル系樹脂をトリフルオロ酢酸-dと重クロロホルムとの1:1(重量比)混合溶液に溶解させ、更に、混合溶液にテトラメチルシランを標品として混合し、FT-NMRを用いて行うことができる。なお、FT-NMRとしては、例えば、バリアン社から商品名「300MG型」にて市販されている装置を用いることができる。
非晶性の熱可塑性ポリエステル系樹脂としては、例えば、イーストマン・ケミカル・カンパニー社から商品名「トライタンFX-100」(芳香族ジカルボン酸成分:テレフタル酸、ジオール成分:1,4-シクロヘキサンジメタノール79モル%及び2,2,4,4-テトラメチル-1,3-シクロブタンジオール21モル%)及び商品名「トライタンFX-200」(芳香族ジカルボン酸成分:テレフタル酸、ジオール成分:1,4-シクロヘキサンジメタノール65モル%及び2,2,4,4-テトラメチル-1,3-シクロブタンジオール35モル%)にて市販されている樹脂、三菱ガス化学社から商品名「アルテスタ45」(芳香族ジカルボン酸:テレフタル酸、ジオール成分:スピログリコール44モル%、エチレングリコール53モル%及びジエチレングリコール3モル%)にて市販されている樹脂が挙げられる。
非晶性の熱可塑性ポリエステル系樹脂は、例えば、特表2008-544022号公報、特開2012-1589号公報に記載された方法で製造できる。合成方法の一例を以下に記載する。
撹拌機付き熱媒循環式エステル化反応器に、ジカルボン酸成分とジオール成分とを供給した上でトリエチルアミンを加え、0.1~0.3MPaの加圧下にて200~270℃にて水を系外に排除しながらジカルボン酸成分とジオール成分とのエステル化反応を行い、エステル化合物及びオリゴマーの混合物を得る。このエステル化合物及びオリゴマーの混合物を撹拌機付き重縮合器に輸送し、これに重縮合触媒として三酸化アンチモン等の触媒を添加する。続いて、エステル化合物及びオリゴマーの混合物を窒素雰囲気下、常圧にて200~270℃で撹拌する。しかる後、エステル化合物及びオリゴマーの混合物を200~270℃に保ったまま反応系の圧力を徐々に下げて第一段目の初期重縮合を行ってプレポリマーを製造する。次に、プレポリマーを冷却水中にストランド状に吐出して急冷し、ストランドカッターでチップ化してシリンダー形状のチップを得る。なお、チップ化時、重縮合器出口からノズル細孔までの樹脂温度は約270℃とし、約30分以内に全量をチップ化する。続いて、得られたチップを直ちに減圧乾燥機にて約50~150℃で熱処理し、振動式篩分工程及び気流分級工程によって処理して、微粉体及びフィルム状物を除去しプレポリマーを得る。次に、プレポリマーを窒素雰囲気下で予熱後、連続固相重合反応器に送り、窒素雰囲気下、約200~250℃で固相重合することによって非晶性の熱可塑性ポリエステル系樹脂を製造できる。
撹拌機付き熱媒循環式エステル化反応器に、ジカルボン酸成分とジオール成分とを供給した上でトリエチルアミンを加え、0.1~0.3MPaの加圧下にて200~270℃にて水を系外に排除しながらジカルボン酸成分とジオール成分とのエステル化反応を行い、エステル化合物及びオリゴマーの混合物を得る。このエステル化合物及びオリゴマーの混合物を撹拌機付き重縮合器に輸送し、これに重縮合触媒として三酸化アンチモン等の触媒を添加する。続いて、エステル化合物及びオリゴマーの混合物を窒素雰囲気下、常圧にて200~270℃で撹拌する。しかる後、エステル化合物及びオリゴマーの混合物を200~270℃に保ったまま反応系の圧力を徐々に下げて第一段目の初期重縮合を行ってプレポリマーを製造する。次に、プレポリマーを冷却水中にストランド状に吐出して急冷し、ストランドカッターでチップ化してシリンダー形状のチップを得る。なお、チップ化時、重縮合器出口からノズル細孔までの樹脂温度は約270℃とし、約30分以内に全量をチップ化する。続いて、得られたチップを直ちに減圧乾燥機にて約50~150℃で熱処理し、振動式篩分工程及び気流分級工程によって処理して、微粉体及びフィルム状物を除去しプレポリマーを得る。次に、プレポリマーを窒素雰囲気下で予熱後、連続固相重合反応器に送り、窒素雰囲気下、約200~250℃で固相重合することによって非晶性の熱可塑性ポリエステル系樹脂を製造できる。
基材樹脂には他の樹脂が混合されていてもよい。他の樹脂としては、結晶性の熱可塑性ポリエステル系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリブタジエン、スチレン-ブタジエン共重合体、エチレン-プロピレン-非共役ジエン三次元共重合体等のジエン系のゴム状重合体を添加したゴム変性耐衝撃性ポリスチレン系樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンエーテル、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-スチレン共重合体、ポリメタクリル酸メチル等、スチレン-(メタ)アクリル酸共重合体、スチレン-(メタ)アクリル酸エステル共重合体等が挙げられる。
発泡粒子には必要に応じて、添加剤が含まれていてもよい。添加剤としては、結合防止剤、可塑剤、難燃剤、難燃助剤、帯電防止剤、展着剤、気泡調整剤、充てん剤、着色剤、耐候剤、老化防止剤、滑剤、防曇剤、香料等が挙げられる。
(1-2)物性
発泡粒子は、15~75μmの平均気泡径を有している。平均気泡径が15μm未満の場合、発泡体の軽量性又は緩衝性が低下することがある。75μmより大きい場合、発泡成形体が脆くなることがある。平均気泡径は、20~70μmであることが好ましく、25~65μmであることがより好ましい。
発泡粒子は20%以下の連続気泡率を有することが好ましい。20%より大きい場合、発泡成形体が脆くなることがある。連続気泡率は、10%以下であることがより好ましく、5%以下であることが更に好ましい。
発泡粒子は、8~500kg/m3の嵩密度を有することが好ましい。嵩密度が8kg/m3未満の場合、発泡成形体が脆くなることがある。500kg/m3より大きい場合、発泡体の軽量性又は緩衝性が低下することがある。嵩密度は、20~400kg/m3であることがより好ましく、30~300kg/m3であることが更に好ましい。
発泡粒子の外形は、発泡成形体を製造できさえすれば特に限定されず、例えば、球状、略球状、円筒形等が挙げられる。
発泡粒子は、15~75μmの平均気泡径を有している。平均気泡径が15μm未満の場合、発泡体の軽量性又は緩衝性が低下することがある。75μmより大きい場合、発泡成形体が脆くなることがある。平均気泡径は、20~70μmであることが好ましく、25~65μmであることがより好ましい。
発泡粒子は20%以下の連続気泡率を有することが好ましい。20%より大きい場合、発泡成形体が脆くなることがある。連続気泡率は、10%以下であることがより好ましく、5%以下であることが更に好ましい。
発泡粒子は、8~500kg/m3の嵩密度を有することが好ましい。嵩密度が8kg/m3未満の場合、発泡成形体が脆くなることがある。500kg/m3より大きい場合、発泡体の軽量性又は緩衝性が低下することがある。嵩密度は、20~400kg/m3であることがより好ましく、30~300kg/m3であることが更に好ましい。
発泡粒子の外形は、発泡成形体を製造できさえすれば特に限定されず、例えば、球状、略球状、円筒形等が挙げられる。
(1-3)製造方法
発泡粒子は、例えば、樹脂粒子に発泡剤を気相含浸させて発泡性粒子を得、発泡性粒子を発泡させることにより製造できる。
樹脂粒子は、樹脂メーカーから市販されているペレットそのものを使用できる。また、公知の方法により所望の形状に成形してもよい。例えば、押出機を使用して原料樹脂を溶融混練し、次いで押出、水中カット(アンダーウォーターカット)、ストランドカット等により造粒することによって、樹脂粒子を製造できる。溶融混練時の温度、時間、圧力等は、使用原料及び製造設備に合わせて適宜設定できる。
発泡粒子は、例えば、樹脂粒子に発泡剤を気相含浸させて発泡性粒子を得、発泡性粒子を発泡させることにより製造できる。
樹脂粒子は、樹脂メーカーから市販されているペレットそのものを使用できる。また、公知の方法により所望の形状に成形してもよい。例えば、押出機を使用して原料樹脂を溶融混練し、次いで押出、水中カット(アンダーウォーターカット)、ストランドカット等により造粒することによって、樹脂粒子を製造できる。溶融混練時の温度、時間、圧力等は、使用原料及び製造設備に合わせて適宜設定できる。
溶融混練時の押出機内の溶融混練温度は、原料樹脂が十分に軟化する温度である、220~280℃が好ましく、225~270℃がより好ましい。溶融混練温度とは、押出機ヘッド付近の溶融混練物流路の中心部温度を熱電対式温度計で測定した押出機内部の溶融混練物の温度を意味する。
なお、押出機には気泡調整剤が供給されることが好ましい。気泡調整剤としては、ポリテトラフルオロエチレン粉末、アクリル樹脂で変性されたポリテトラフルオロエチレン粉末、タルク等が挙げられる。気泡調整剤の量は、基材樹脂100重量部に対して0.01~5重量部が好ましい。気泡調整剤の量が0.01重量部未満の場合、発泡粒子の気泡が粗大となり、得られる発泡成形体の外観が低下することがある。5重量部より多い場合、破泡により得られる発泡成形体の外観が低下することがある。気泡調整剤の量は、0.05~3重量部がより好ましく、0.1~2重量部が特に好ましい。
なお、押出機には気泡調整剤が供給されることが好ましい。気泡調整剤としては、ポリテトラフルオロエチレン粉末、アクリル樹脂で変性されたポリテトラフルオロエチレン粉末、タルク等が挙げられる。気泡調整剤の量は、基材樹脂100重量部に対して0.01~5重量部が好ましい。気泡調整剤の量が0.01重量部未満の場合、発泡粒子の気泡が粗大となり、得られる発泡成形体の外観が低下することがある。5重量部より多い場合、破泡により得られる発泡成形体の外観が低下することがある。気泡調整剤の量は、0.05~3重量部がより好ましく、0.1~2重量部が特に好ましい。
次に、発泡性粒子の製造方法としては、密閉し得る容器中で、発泡剤を樹脂粒子に気相含浸させる方法が挙げられる。発泡剤としては、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン等の飽和脂肪族炭化水素、ジメチルエーテルのようなエーテル類、塩化メチル、1,1,1,2-テトラフルオロエタン、1,1-ジフルオロエタン、モノクロロジフルオロメタン等のフロン、二酸化炭素、窒素等の無機ガスが挙げられる。中でも、ジメチルエーテル、プロパン、ノルマルブタン、イソブタン、二酸化炭素が好ましく、プロパン、ノルマルブタン、イソブタン、二酸化炭素がより好ましく、二酸化炭素が特に好ましい。なお、発泡剤は、単独で用いられても二種以上が併用されてもよい。
容器に投入される発泡剤量は、少なすぎると、発泡粒子を所望の発泡倍率まで発泡できないことがある。発泡剤量は、多すぎると、発泡剤が可塑剤として作用することから基材樹脂の粘弾性が低下し過ぎて発泡性が低下し良好な発泡粒子を得ることができないことがある。従って、発泡剤量は、基材樹脂100重量部に対して0.1~15重量部が好ましく、0.2~14重量部がより好ましく、0.3~13重量部が特に好ましい。
更に、発泡粒子の製造方法としては、密閉し得る容器中で、水蒸気のような加熱媒体で加熱する方法が挙げられる。加熱条件としては、例えば、0.15~0.30MPaのゲージ圧、127~143℃の温度、10~180秒が挙げられる。
発泡粒子の粒子径は、押出機の前端に取り付けたマルチノズル金型の径を変えること等によって変動させることができる。
容器に投入される発泡剤量は、少なすぎると、発泡粒子を所望の発泡倍率まで発泡できないことがある。発泡剤量は、多すぎると、発泡剤が可塑剤として作用することから基材樹脂の粘弾性が低下し過ぎて発泡性が低下し良好な発泡粒子を得ることができないことがある。従って、発泡剤量は、基材樹脂100重量部に対して0.1~15重量部が好ましく、0.2~14重量部がより好ましく、0.3~13重量部が特に好ましい。
更に、発泡粒子の製造方法としては、密閉し得る容器中で、水蒸気のような加熱媒体で加熱する方法が挙げられる。加熱条件としては、例えば、0.15~0.30MPaのゲージ圧、127~143℃の温度、10~180秒が挙げられる。
発泡粒子の粒子径は、押出機の前端に取り付けたマルチノズル金型の径を変えること等によって変動させることができる。
(2)発泡成形体
発泡成形体は、上記発泡粒子を型内発泡成形に付すことにより得ることができる。
発泡成形体は、8~500kg/m3の密度を有することが好ましい。密度が8kg/m3未満の場合、機械的強度が低くなることがある。500kg/m3より大きい場合、軽量性が損なわれることがある。密度は、20~400kg/m3であることがより好ましく、38~300kg/m3であることが更に好ましい。
発泡成形体は、上記発泡粒子を型内発泡成形に付すことにより得ることができる。
発泡成形体は、8~500kg/m3の密度を有することが好ましい。密度が8kg/m3未満の場合、機械的強度が低くなることがある。500kg/m3より大きい場合、軽量性が損なわれることがある。密度は、20~400kg/m3であることがより好ましく、38~300kg/m3であることが更に好ましい。
発泡成形体の製造方法としては、発泡粒子を金型のキャビティ内に充てんし、キャビティ内に加熱媒体を供給して、発泡粒子を加熱して再発泡させ、再発泡させた発泡粒子同士をこれらの発泡圧力によって互いに熱融着一体化させることによって発泡成形体を得る方法が挙げられる。加熱媒体としては、例えば、水蒸気、熱風、温水等が挙げられ、水蒸気が好ましい。
型内発泡成形前に、発泡粒子に更に不活性ガスを含浸させて、内圧付与することで、発泡粒子の発泡力を向上させてもよい。発泡力を向上させることにより、型内発泡成形時に発泡粒子同士の熱融着性が向上し、得られる発泡成形体に更に優れた機械的強度を付与できる。なお、不活性ガスとしては、例えば、二酸化炭素、窒素、ヘリウム、アルゴン等が挙げられる。
発泡粒子に不活性ガスを含浸させる方法としては、例えば、常圧以上の圧力を有する不活性ガス雰囲気下に発泡粒子を置く方法が挙げられる。含浸温度は5~40℃が好ましく、10~30℃がより好ましい。また、含浸圧力は0.2~2.0MPaのゲージ圧が好ましく、0.25~1.5MPaがより好ましい。更に、含浸時間は、10分~72時間が好ましく、15分~64時間がより好ましく、20分~48時間が特に好ましい。
発泡成形体は、例えば、自動車、航空機、鉄道車輛、船舶等の輸送機器の部品に好適に用いることができる。自動車の部品としては、例えば、エンジン付近に用いられる部品、外装材等が挙げられる。自動車の部品の具体例としては、フロアパネル、ルーフ、ボンネット、フェンダー、アンダーカバー、ホイール、ステアリングホイール、コンテナ(筐体)、フードパネル、サスペンションアーム、バンパー、サンバイザー、トランクリッド、ラゲッジボックス、シート、ドア、カウル等の部品が挙げられる。
(3)繊維強化複合体
繊維強化複合体は、上記発泡成形体と、その表面に積層一体化された繊維強化プラスチック層とを有している。
発泡成形体が発泡シートである場合、発泡成形体の両面に積層一体化されている必要はなく、発泡成形体の両面のうち少なくとも一方の面に繊維強化プラスチック層が積層一体化されていればよい。繊維強化プラスチック層の積層は、繊維強化複合体の用途に応じて決定すればよい。なかでも、繊維強化複合体の表面硬度や機械的強度を考慮すると、発泡成形体の厚み方向における両面のそれぞれに繊維強化プラスチック層が積層一体化されていることが好ましい。
繊維強化プラスチック層を構成している強化繊維としては、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、チラノ繊維、玄武岩繊維、セラミックス繊維等の無機繊維;ステンレス繊維、スチール繊維等の金属繊維;アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサドール(PBO)繊維等の有機繊維;ボロン繊維が挙げられる。強化繊維は、一種単独で用いられてもよく、二種以上が併用されてもよい。なかでも、炭素繊維、ガラス繊維及びアラミド繊維が好ましく、炭素繊維がより好ましい。これらの強化繊維は、軽量であるにも関わらず優れた機械的物性を有している。
繊維強化複合体は、上記発泡成形体と、その表面に積層一体化された繊維強化プラスチック層とを有している。
発泡成形体が発泡シートである場合、発泡成形体の両面に積層一体化されている必要はなく、発泡成形体の両面のうち少なくとも一方の面に繊維強化プラスチック層が積層一体化されていればよい。繊維強化プラスチック層の積層は、繊維強化複合体の用途に応じて決定すればよい。なかでも、繊維強化複合体の表面硬度や機械的強度を考慮すると、発泡成形体の厚み方向における両面のそれぞれに繊維強化プラスチック層が積層一体化されていることが好ましい。
繊維強化プラスチック層を構成している強化繊維としては、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、チラノ繊維、玄武岩繊維、セラミックス繊維等の無機繊維;ステンレス繊維、スチール繊維等の金属繊維;アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサドール(PBO)繊維等の有機繊維;ボロン繊維が挙げられる。強化繊維は、一種単独で用いられてもよく、二種以上が併用されてもよい。なかでも、炭素繊維、ガラス繊維及びアラミド繊維が好ましく、炭素繊維がより好ましい。これらの強化繊維は、軽量であるにも関わらず優れた機械的物性を有している。
強化繊維は、所望の形状に加工された強化繊維基材として用いられることが好ましい。強化繊維基材としては、強化繊維を用いてなる織物、編物、不織布、及び強化繊維を一方向に引き揃えた繊維束(ストランド)を糸で結束(縫合)してなる面材等が挙げられる。織物の織り方としては、平織、綾織、朱子織等が挙げられる。また、糸としては、ポリアミド樹脂糸、ポリエステル樹脂糸等の合成樹脂糸、及びガラス繊維糸のようなステッチ糸が挙げられる。
強化繊維基材は、一枚の強化繊維基材のみを積層せずに用いてもよく、複数枚の強化繊維基材を積層して積層強化繊維基材として用いてもよい。複数枚の強化繊維基材を積層した積層強化繊維基材としては、(1)一種のみの強化繊維基材を複数枚用意し、これらの強化繊維基材を積層した積層強化繊維基材、(2)複数種の強化繊維基材を用意し、これらの強化繊維基材を積層した積層強化繊維基材、(3)強化繊維を一方向に引き揃えた繊維束(ストランド)を糸で結束(縫合)してなる強化繊維基材を複数枚用意し、これらの強化繊維基材を繊維束の繊維方向が互いに相違した方向を指向するように重ね合わせ、重ね合わせた強化繊維基材同士を糸で一体化(縫合)してなる積層強化繊維基材等が用いられる。
強化繊維基材は、一枚の強化繊維基材のみを積層せずに用いてもよく、複数枚の強化繊維基材を積層して積層強化繊維基材として用いてもよい。複数枚の強化繊維基材を積層した積層強化繊維基材としては、(1)一種のみの強化繊維基材を複数枚用意し、これらの強化繊維基材を積層した積層強化繊維基材、(2)複数種の強化繊維基材を用意し、これらの強化繊維基材を積層した積層強化繊維基材、(3)強化繊維を一方向に引き揃えた繊維束(ストランド)を糸で結束(縫合)してなる強化繊維基材を複数枚用意し、これらの強化繊維基材を繊維束の繊維方向が互いに相違した方向を指向するように重ね合わせ、重ね合わせた強化繊維基材同士を糸で一体化(縫合)してなる積層強化繊維基材等が用いられる。
繊維強化プラスチック層は強化繊維に樹脂が含浸されてなるものである。含浸させた樹脂によって強化繊維同士を結着一体化させている。
強化繊維に樹脂を含浸させる方法としては、特に限定されず、例えば、(1)強化繊維を樹脂中に浸漬する方法、(2)強化繊維に樹脂を塗布する方法等が挙げられる。
強化繊維に含浸させる樹脂としては、熱可塑性樹脂又は熱硬化性樹脂のいずれも用いることができ、熱硬化性樹脂が好ましく用いられる。強化繊維に含浸させる熱硬化性樹脂としては、特に限定されず、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、シリコーン樹脂、マレイミド樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、マレイミド樹脂とシアン酸エステル樹脂とを予備重合した樹脂等が挙げられる。耐熱性、衝撃吸収性又は耐薬品性に優れていることから、エポキシ樹脂、ビニルエステル樹脂が好ましい。熱硬化性樹脂には、硬化剤、硬化促進剤等の添加剤が含有されていてもよい。なお、熱硬化性樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
強化繊維に樹脂を含浸させる方法としては、特に限定されず、例えば、(1)強化繊維を樹脂中に浸漬する方法、(2)強化繊維に樹脂を塗布する方法等が挙げられる。
強化繊維に含浸させる樹脂としては、熱可塑性樹脂又は熱硬化性樹脂のいずれも用いることができ、熱硬化性樹脂が好ましく用いられる。強化繊維に含浸させる熱硬化性樹脂としては、特に限定されず、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、シリコーン樹脂、マレイミド樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、マレイミド樹脂とシアン酸エステル樹脂とを予備重合した樹脂等が挙げられる。耐熱性、衝撃吸収性又は耐薬品性に優れていることから、エポキシ樹脂、ビニルエステル樹脂が好ましい。熱硬化性樹脂には、硬化剤、硬化促進剤等の添加剤が含有されていてもよい。なお、熱硬化性樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
また、強化繊維に含浸させる熱可塑性樹脂としては、特に限定されず、オレフィン系樹脂、ポリエステル系樹脂、熱可塑性エポキシ樹脂、アミド系樹脂、熱可塑性ポリウレタン樹脂、サルファイド系樹脂、アクリル系樹脂等が挙げられ、発泡成形体との接着性又は繊維強化プラスチックを構成している強化繊維同士の接着性に優れていることから、ポリエステル系樹脂、熱可塑性エポキシ樹脂が好ましい。なお、熱可塑性樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
熱可塑性エポキシ樹脂としては、エポキシ化合物同士の重合体又は共重合体であって直鎖構造を有する重合体や、エポキシ化合物と、このエポキシ化合物と重合し得る単量体との共重合体であって直鎖構造を有する共重合体が挙げられる。具体的には、熱可塑性エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、環状脂肪族型エポキシ樹脂、長鎖脂肪族型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂等が挙げられ、ビスフェノールA型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂が好ましい。なお、熱可塑性エポキシ樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
熱可塑性エポキシ樹脂としては、エポキシ化合物同士の重合体又は共重合体であって直鎖構造を有する重合体や、エポキシ化合物と、このエポキシ化合物と重合し得る単量体との共重合体であって直鎖構造を有する共重合体が挙げられる。具体的には、熱可塑性エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、環状脂肪族型エポキシ樹脂、長鎖脂肪族型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂等が挙げられ、ビスフェノールA型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂が好ましい。なお、熱可塑性エポキシ樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
熱可塑性ポリウレタン樹脂としては、ジオールとジイソシアネートとを重合させて得られる直鎖構造を有する重合体が挙げられる。ジオールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール等が挙げられる。ジオールは、単独で用いられても二種以上が併用されてもよい。ジイソシアネートとしては、例えば、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環式ジイソシアネートが挙げられる。ジイソシアネートは、単独で用いられても二種以上が併用されてもよい。なお、熱可塑性ポリウレタン樹脂は、単独で用いられてもよく、二種以上が併用されてもよい。
繊維強化プラスチック層中における樹脂の含有量は、20~70重量%が好ましい。含有量が20重量%未満の場合、強化繊維同士の結着性や繊維強化プラスチック層と発泡成形体との接着性が不十分となり、繊維強化プラスチック層の機械的物性や繊維強化複合体の機械的強度を十分に向上できないことがある。70重量%より多い場合、繊維強化プラスチック層の機械的物性が低下して、繊維強化複合体の機械的強度を十分に向上できない
ことがある。含有量は30~60重量%がより好ましい。
繊維強化プラスチック層の厚みは、0.02~2mmが好ましく、0.05~1mmがより好ましい。厚みがこの範囲内である繊維強化プラスチック層は、軽量であるにも関わらず機械的物性に優れている。
繊維強化プラスチック層の目付は、50~4000g/m2が好ましく、100~1000g/m2がより好ましい。目付がこの範囲内である繊維強化プラスチック層は、軽量であるにも関わらず機械的物性に優れている。
繊維強化プラスチック層中における樹脂の含有量は、20~70重量%が好ましい。含有量が20重量%未満の場合、強化繊維同士の結着性や繊維強化プラスチック層と発泡成形体との接着性が不十分となり、繊維強化プラスチック層の機械的物性や繊維強化複合体の機械的強度を十分に向上できないことがある。70重量%より多い場合、繊維強化プラスチック層の機械的物性が低下して、繊維強化複合体の機械的強度を十分に向上できない
ことがある。含有量は30~60重量%がより好ましい。
繊維強化プラスチック層の厚みは、0.02~2mmが好ましく、0.05~1mmがより好ましい。厚みがこの範囲内である繊維強化プラスチック層は、軽量であるにも関わらず機械的物性に優れている。
繊維強化プラスチック層の目付は、50~4000g/m2が好ましく、100~1000g/m2がより好ましい。目付がこの範囲内である繊維強化プラスチック層は、軽量であるにも関わらず機械的物性に優れている。
次に、強化複合体の製造方法を説明する。発泡成形体の表面に繊維強化プラスチック層を積層一体化させて強化複合体を製造する方法としては、特に限定されず、例えば、(1)発泡成形体の表面に接着剤を介して繊維強化プラスチック層を積層一体化する方法、(2)発泡成形体の表面に、強化繊維に熱可塑性樹脂が含浸されてなる繊維強化プラスチック形成材を積層し、強化繊維中に含浸させた熱可塑性樹脂をバインダーとして発泡成形体の表面に繊維強化プラスチック形成材を繊維強化プラスチック層として積層一体化する方法、(3)発泡成形体の表面に、強化繊維に未硬化の熱硬化性樹脂が含浸された繊維強化プラスチック形成材を積層し、強化繊維中に含浸させた熱硬化性樹脂をバインダーとして、熱硬化性樹脂を硬化させて形成された繊維強化プラスチック層を発泡成形体の表面に積層一体化する方法、(4)発泡成形体の表面に、加熱されて軟化状態の繊維強化プラスチック層を配設し、発泡成形体の表面に繊維強化プラスチック層を押圧させることによって繊維強化プラスチック層を必要に応じて発泡成形体の表面に沿って変形させながら発泡成形体の表面に積層一体化させる方法、(5)繊維強化プラスチック層の成形で一般的に適用される方法等が挙げられる。発泡成形体は高温環境下における耐荷重性のような機械的物性に優れている観点では、上記(4)の方法も好適に用いることができる。
繊維強化プラスチック層の成形で用いられる方法としては、例えば、オートクレーブ法、ハンドレイアップ法、スプレーアップ法、PCM(Prepreg Compression Molding)法、RTM(Resin Transfer Molding)法、VaRTM(Vacuum assisted Resin Transfer Molding)法等が挙げられる。
繊維強化プラスチック層の成形で用いられる方法としては、例えば、オートクレーブ法、ハンドレイアップ法、スプレーアップ法、PCM(Prepreg Compression Molding)法、RTM(Resin Transfer Molding)法、VaRTM(Vacuum assisted Resin Transfer Molding)法等が挙げられる。
このようにして得られた繊維強化複合体は、耐熱性、機械的強度及び軽量性に優れている。そのため、自動車、航空機、鉄道車輛、船舶等の輸送機器分野、家電分野、情報端末分野、家具の分野等の広範な用途に用いることができる。
例えば、繊維強化複合体は、輸送機器の部品、及び、輸送機器の本体を構成する構造部品を含めた輸送機器構成用部品(特に自動車の部品)、風車翼、ロボットアーム、ヘルメット用緩衝材、農産箱、保温保冷容器等の輸送容器、産業用ヘリコプターのローターブレード、部品梱包材として好適に用いることができる。
自動車の部品としては、例えば、フロアパネル、ルーフ、ボンネット、フェンダー、アンダーカバー、ホイール、ステアリングホイール、コンテナ(筐体)、フードパネル、サスペンションアーム、バンパー、サンバイザー、トランクリッド、ラゲッジボックス、シート、ドア、カウル等の部品が挙げられる。
例えば、繊維強化複合体は、輸送機器の部品、及び、輸送機器の本体を構成する構造部品を含めた輸送機器構成用部品(特に自動車の部品)、風車翼、ロボットアーム、ヘルメット用緩衝材、農産箱、保温保冷容器等の輸送容器、産業用ヘリコプターのローターブレード、部品梱包材として好適に用いることができる。
自動車の部品としては、例えば、フロアパネル、ルーフ、ボンネット、フェンダー、アンダーカバー、ホイール、ステアリングホイール、コンテナ(筐体)、フードパネル、サスペンションアーム、バンパー、サンバイザー、トランクリッド、ラゲッジボックス、シート、ドア、カウル等の部品が挙げられる。
以下、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。まず実施例における各種物性の測定法を下記する。
[熱可塑性ポリエステル系樹脂の密度]
熱可塑性ポリエステル系樹脂の密度はISO1183-1:2004、もしくは、ASTM D-792に規定した方法で測定した。
[熱可塑性ポリエステル系樹脂の密度]
熱可塑性ポリエステル系樹脂の密度はISO1183-1:2004、もしくは、ASTM D-792に規定した方法で測定した。
[発泡粒子の嵩密度]
発泡粒子約1000cm3を、メスシリンダー内に1000cm3の目盛りまで充填した。なお、メスシリンダーを水平方向から目視し、発泡粒子が1つでも1000cm3の目盛りに達していれば、その時点で発泡粒子のメスシリンダー内への充填を終了した。次に、メスシリンダー内に充填した発泡粒子の重量を小数点以下2位の有効数字で秤量し、その重量をWgとした。そして、下記式により発泡粒子の嵩密度を求めた。
嵩密度(kg/m3)=(W/1000)/{1000×(0.01)3}
嵩倍数は嵩密度の逆数に熱可塑性ポリエステル系樹脂の密度(kg/m3)を積算した値とした。
発泡粒子約1000cm3を、メスシリンダー内に1000cm3の目盛りまで充填した。なお、メスシリンダーを水平方向から目視し、発泡粒子が1つでも1000cm3の目盛りに達していれば、その時点で発泡粒子のメスシリンダー内への充填を終了した。次に、メスシリンダー内に充填した発泡粒子の重量を小数点以下2位の有効数字で秤量し、その重量をWgとした。そして、下記式により発泡粒子の嵩密度を求めた。
嵩密度(kg/m3)=(W/1000)/{1000×(0.01)3}
嵩倍数は嵩密度の逆数に熱可塑性ポリエステル系樹脂の密度(kg/m3)を積算した値とした。
[発泡成形体の密度]
発泡成形体(成形後、40℃で20時間以上乾燥させたもの)から切り出した試験片(例75×300×30mm)の重量(a)と体積(b)をそれぞれ有効数字3桁以上になるように測定し、式(a)/(b)により発泡成形体の密度(kg/m3)を求めた。
倍数は密度の逆数に熱可塑性ポリエステル系樹脂の密度(kg/m3)を積算した値とした。
発泡成形体(成形後、40℃で20時間以上乾燥させたもの)から切り出した試験片(例75×300×30mm)の重量(a)と体積(b)をそれぞれ有効数字3桁以上になるように測定し、式(a)/(b)により発泡成形体の密度(kg/m3)を求めた。
倍数は密度の逆数に熱可塑性ポリエステル系樹脂の密度(kg/m3)を積算した値とした。
[発泡粒子の平均気泡径]
発泡粒子を剃刀により表面から中心を通って2分割した。2分割した切片の断面を走査型電子顕微鏡(走査型電子顕微鏡(例えば、商品名「S-3000N」日立製作所社製))で15~30倍(場合により200倍)に拡大して撮影した。次に、撮影した画像をA4用紙上に1画像ずつ印刷した。印刷した画像に任意の線分(長さ150mm)を6箇所に引いた。この線分に重なる気泡の数から、各線分毎の平均弦長(t)を下記式によって算出した。平均弦長(t)から下記式によって気泡径(C)を求め、6個の線分について求めた気泡径(C)を平均して平均気泡径とした。ただし、線分は、できる限り気泡と点接触にならないように引き、点接触となった場合には、その気泡も気泡数に含めることとした。
平均弦長(t)=線分の長さ/(気泡数×写真の倍率)
気泡径(C)=t/0.616
発泡粒子を剃刀により表面から中心を通って2分割した。2分割した切片の断面を走査型電子顕微鏡(走査型電子顕微鏡(例えば、商品名「S-3000N」日立製作所社製))で15~30倍(場合により200倍)に拡大して撮影した。次に、撮影した画像をA4用紙上に1画像ずつ印刷した。印刷した画像に任意の線分(長さ150mm)を6箇所に引いた。この線分に重なる気泡の数から、各線分毎の平均弦長(t)を下記式によって算出した。平均弦長(t)から下記式によって気泡径(C)を求め、6個の線分について求めた気泡径(C)を平均して平均気泡径とした。ただし、線分は、できる限り気泡と点接触にならないように引き、点接触となった場合には、その気泡も気泡数に含めることとした。
平均弦長(t)=線分の長さ/(気泡数×写真の倍率)
気泡径(C)=t/0.616
[連続気泡率]
まず、体積測定空気比較式比重計の試料カップを用意し、この試料カップの80%程度を満たす量の発泡粒子の全重量A(g)を測定した。次に、発泡粒子全体の体積B(cm3)を比重計を用いて1-1/2-1気圧法により測定した。なお、体積測定空気比較式比重計は、例えば、東京サイエンス社から商品名「1000型」にて市販されているものを用いた。
続いて、金網製の容器を用意し、この金網製の容器を水中に浸漬し、この水中に浸漬した状態における金網製の容器の重量C(g)を測定した。次に、この金網製の容器内に発泡粒子を全量入れた上で、この金網製の容器を水中に浸漬し、水中に浸漬した状態における金網製の容器とこの金網製容器に入れた発泡粒子の全量とを併せた重量D(g)を測定した。
そして、下記式に基づいて発泡粒子の見掛け体積E(cm3)を算出し、この見掛け体積Eと発泡粒子全体の体積B(cm3)に基づいて下記式により発泡粒子の連続気泡率を算出した。なお、水1gの体積を1cm3とした。
E=A+(C-D)
連続気泡率(%)=100×(E-B)/E
まず、体積測定空気比較式比重計の試料カップを用意し、この試料カップの80%程度を満たす量の発泡粒子の全重量A(g)を測定した。次に、発泡粒子全体の体積B(cm3)を比重計を用いて1-1/2-1気圧法により測定した。なお、体積測定空気比較式比重計は、例えば、東京サイエンス社から商品名「1000型」にて市販されているものを用いた。
続いて、金網製の容器を用意し、この金網製の容器を水中に浸漬し、この水中に浸漬した状態における金網製の容器の重量C(g)を測定した。次に、この金網製の容器内に発泡粒子を全量入れた上で、この金網製の容器を水中に浸漬し、水中に浸漬した状態における金網製の容器とこの金網製容器に入れた発泡粒子の全量とを併せた重量D(g)を測定した。
そして、下記式に基づいて発泡粒子の見掛け体積E(cm3)を算出し、この見掛け体積Eと発泡粒子全体の体積B(cm3)に基づいて下記式により発泡粒子の連続気泡率を算出した。なお、水1gの体積を1cm3とした。
E=A+(C-D)
連続気泡率(%)=100×(E-B)/E
[曲げ強度(2次最大点応力)]
JIS K7221-1:2006「硬質発泡プラスチック-曲げ試験-第1部:たわみ特性の求め方」に準拠した方法により測定した。すなわち、テンシロン万能試験機UCT-10T(オリエンテック社製)を用いて試験サイズは25×120×20mmで試験速度10mm/分として支点間距離100mmで測定した。
JIS K7221-1:2006「硬質発泡プラスチック-曲げ試験-第1部:たわみ特性の求め方」に準拠した方法により測定した。すなわち、テンシロン万能試験機UCT-10T(オリエンテック社製)を用いて試験サイズは25×120×20mmで試験速度10mm/分として支点間距離100mmで測定した。
[圧縮強度(50%圧縮応力)]
JIS K7220:2006「硬質発泡プラスチック-圧縮特性の求め方」に準拠した方法により測定した。すなわち、テンシロン万能試験機UCT-10T(オリエンテック社製)を用いて試験サイズは50×50×25mmで圧縮速度2.5mm/分として50%圧縮時の圧縮強度を測定し、万能試験機データ処理にはソフトプレーン社製「UTPS-458X」を用いた。
JIS K7220:2006「硬質発泡プラスチック-圧縮特性の求め方」に準拠した方法により測定した。すなわち、テンシロン万能試験機UCT-10T(オリエンテック社製)を用いて試験サイズは50×50×25mmで圧縮速度2.5mm/分として50%圧縮時の圧縮強度を測定し、万能試験機データ処理にはソフトプレーン社製「UTPS-458X」を用いた。
[加熱寸法変化率]
発泡成形体の加熱寸法変化率をJIS K6767:1999「発泡プラスチック-ポリエチレン-試験方法」記載のB法にて測定した。具体的には、発泡成形体から平面形状が一辺150mmの正方形でかつ厚みが発泡成形体の厚みである試験片を切り出した。
試験片の中央部に縦及び横方向にそれぞれ互いに平行に3本の100mmの直線を50mm間隔に記入した。縦及び横方向についてそれぞれ3本の直線の長さを測定し、それらの相加平均値L0を初めの寸法とした。しかる後、試験片を110℃の熱風循環式乾燥機の中に168時間に亘って放置して加熱試験を行った後に取出し、試験片を25℃にて1時間に亘って放置した。次に、試験片の表面に記入した縦及び横方向のそれぞれ3本の直線の長さを測定し、それらの相加平均値L1を加熱後の寸法とした。下記式に基づいて加熱寸法変化率を算出した。
加熱寸法変化率(%)=100×(L1-L0)/L0
発泡成形体の加熱寸法変化率をJIS K6767:1999「発泡プラスチック-ポリエチレン-試験方法」記載のB法にて測定した。具体的には、発泡成形体から平面形状が一辺150mmの正方形でかつ厚みが発泡成形体の厚みである試験片を切り出した。
試験片の中央部に縦及び横方向にそれぞれ互いに平行に3本の100mmの直線を50mm間隔に記入した。縦及び横方向についてそれぞれ3本の直線の長さを測定し、それらの相加平均値L0を初めの寸法とした。しかる後、試験片を110℃の熱風循環式乾燥機の中に168時間に亘って放置して加熱試験を行った後に取出し、試験片を25℃にて1時間に亘って放置した。次に、試験片の表面に記入した縦及び横方向のそれぞれ3本の直線の長さを測定し、それらの相加平均値L1を加熱後の寸法とした。下記式に基づいて加熱寸法変化率を算出した。
加熱寸法変化率(%)=100×(L1-L0)/L0
[表面平滑性]
発泡成形体の表面に形成された山と谷の高さをJIS B0601:2001「製品の幾何特性仕様-表面性状:輪郭曲線方式-用語,定義及び表面性状パラメータ」に準拠して高精度レーザー測定器(キーエンス社製 商品名「LT-9000」)と粗さ測定システム(コムス社製 商品名「MAP-2DS」)とを備えた測定装置を用いて基準長さ2.5mm、評価長さ40mm、測定ピッチ10μm、速度1000μm/秒の条件下にて測定した。具体的には、発泡成形体から縦100mm×横100mm×高さ10mmの試験片を切り出し、この試験片の任意の10カ所の表面において、山と谷の高さを測定し、山と谷の高さが0.10mm以上である部分の総数を数え、下記基準に基づいて評価した
◎:0個であった。
○:1個以上でかつ4個未満であった。
×:4個以上であった。
発泡成形体の表面に形成された山と谷の高さをJIS B0601:2001「製品の幾何特性仕様-表面性状:輪郭曲線方式-用語,定義及び表面性状パラメータ」に準拠して高精度レーザー測定器(キーエンス社製 商品名「LT-9000」)と粗さ測定システム(コムス社製 商品名「MAP-2DS」)とを備えた測定装置を用いて基準長さ2.5mm、評価長さ40mm、測定ピッチ10μm、速度1000μm/秒の条件下にて測定した。具体的には、発泡成形体から縦100mm×横100mm×高さ10mmの試験片を切り出し、この試験片の任意の10カ所の表面において、山と谷の高さを測定し、山と谷の高さが0.10mm以上である部分の総数を数え、下記基準に基づいて評価した
◎:0個であった。
○:1個以上でかつ4個未満であった。
×:4個以上であった。
<実施例1>
(含浸工程)
非晶性の熱可塑性ポリエステル系樹脂としてトライタンFX200(イーストマン社製、密度1160kg/m3)100重量部(1000g)を密閉可能な10Lの圧力容器に投入し、二酸化炭素を用いて圧力容器内をゲージ圧4MPaまで昇圧させ、室温(約20℃)の環境下で24時間保持して二酸化炭素が含浸した発泡性粒子を得た。
(発泡工程)
含浸終了後、圧力容器内の二酸化炭素をゆっくりと排出することで除圧し内部の発泡性粒子を取出した。直ちに結合防止剤としての0.3重量部(3g)のステアリン酸亜鉛と発泡性粒子100重量部(1000g)とを混合した。その後、撹拌機付きの高圧発泡機に発泡性粒子を投入し、撹拌しながら0.19MPaの水蒸気を用いて15秒間、発泡させることで、嵩密度146kg/m3の発泡粒子(1次発泡粒子)を得た。
(含浸工程)
非晶性の熱可塑性ポリエステル系樹脂としてトライタンFX200(イーストマン社製、密度1160kg/m3)100重量部(1000g)を密閉可能な10Lの圧力容器に投入し、二酸化炭素を用いて圧力容器内をゲージ圧4MPaまで昇圧させ、室温(約20℃)の環境下で24時間保持して二酸化炭素が含浸した発泡性粒子を得た。
(発泡工程)
含浸終了後、圧力容器内の二酸化炭素をゆっくりと排出することで除圧し内部の発泡性粒子を取出した。直ちに結合防止剤としての0.3重量部(3g)のステアリン酸亜鉛と発泡性粒子100重量部(1000g)とを混合した。その後、撹拌機付きの高圧発泡機に発泡性粒子を投入し、撹拌しながら0.19MPaの水蒸気を用いて15秒間、発泡させることで、嵩密度146kg/m3の発泡粒子(1次発泡粒子)を得た。
(第2の含浸工程:内圧付与工程)
得られた発泡粒子を、10Lの圧力容器に投入し、密閉した。窒素を用いて圧力容器内をゲージ圧0.3MPaまで昇圧させ、室温の環境下で24時間保持して内圧付与を実施した。
(成形工程)
圧力容器内の圧力を窒素をゆっくり排出することで下げ、発泡粒子を取出した。直ちに、縦400mm×横300mm×厚さ30mmの内寸の成形用金型内に3674cm3の発泡粒子を充填し、0.30~0.35MPaの水蒸気を50秒導入して加熱し、冷却することでの発泡成形体を得た(密度149kg/m3)。得られた発泡成形体を30℃の乾燥室で8時間程度乾燥させた。
得られた発泡粒子を、10Lの圧力容器に投入し、密閉した。窒素を用いて圧力容器内をゲージ圧0.3MPaまで昇圧させ、室温の環境下で24時間保持して内圧付与を実施した。
(成形工程)
圧力容器内の圧力を窒素をゆっくり排出することで下げ、発泡粒子を取出した。直ちに、縦400mm×横300mm×厚さ30mmの内寸の成形用金型内に3674cm3の発泡粒子を充填し、0.30~0.35MPaの水蒸気を50秒導入して加熱し、冷却することでの発泡成形体を得た(密度149kg/m3)。得られた発泡成形体を30℃の乾燥室で8時間程度乾燥させた。
<実施例2>
発泡工程で0.24MPaの水蒸気で15秒間、発泡させることで、嵩密度34kg/m3の発泡粒子を得て、成形工程で4341cm3の発泡粒子を充填し、密度41kg/m3の発泡成形体を得たこと以外は実施例1と同様にして発泡粒子及び発泡成形体を得た
<比較例1>
発泡工程で0.24MPaの水蒸気で25秒間、発泡させることで、嵩密度27kg/m3の発泡粒子を得て、成形工程で4760cm3の発泡粒子を充填し、密度35.7kg/m3の発泡成形体を得たこと以外は実施例1と同様にして発泡粒子及び発泡成形体を得た。
実施例及び比較例の発泡粒子及び発泡成形体の各種性質を表1に示す。なお、比較例1の曲げ強度、圧縮強度及び寸法変化率は、発泡成形体が脆く、試験片が切り取れず測定できなかったため、×と表記した。
実施例1、実施例2及び比較例1の発泡粒子の断面写真(200倍)を図1~3に示す
発泡工程で0.24MPaの水蒸気で15秒間、発泡させることで、嵩密度34kg/m3の発泡粒子を得て、成形工程で4341cm3の発泡粒子を充填し、密度41kg/m3の発泡成形体を得たこと以外は実施例1と同様にして発泡粒子及び発泡成形体を得た
<比較例1>
発泡工程で0.24MPaの水蒸気で25秒間、発泡させることで、嵩密度27kg/m3の発泡粒子を得て、成形工程で4760cm3の発泡粒子を充填し、密度35.7kg/m3の発泡成形体を得たこと以外は実施例1と同様にして発泡粒子及び発泡成形体を得た。
実施例及び比較例の発泡粒子及び発泡成形体の各種性質を表1に示す。なお、比較例1の曲げ強度、圧縮強度及び寸法変化率は、発泡成形体が脆く、試験片が切り取れず測定できなかったため、×と表記した。
実施例1、実施例2及び比較例1の発泡粒子の断面写真(200倍)を図1~3に示す
表1から、特定種のジオール成分に由来する単位を含む熱可塑性ポリエステル系樹脂を基材樹脂とし、特定範囲の平均気泡径を有する発泡粒子であれば、機械的特性が優れ、かつ表面平滑性が向上した発泡成形体を形状自由度の高い型内発泡成形で製造できることが分かる。
Claims (7)
- 熱可塑性ポリエステル系樹脂を基材樹脂とする型内発泡成形用の発泡粒子であって、 前記熱可塑性ポリエステル系樹脂が、非晶性であり、かつジオール成分に由来する単位を含み、
前記ジオール成分が、1,4-シクロヘキサンジメタノール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール及びスピログリコールから選択され、
前記発泡粒子が、15~75μmの平均気泡径を有することを特徴とする発泡粒子。 - 前記発泡粒子が、20%以下の連続気泡率を有する請求項1に記載の発泡粒子。
- 前記発泡粒子が、8~500kg/m3の嵩密度を有する請求項1又は2に記載の発泡粒子。
- 請求項1~3のいずれか1つに記載の発泡粒子を型内発泡成形に付すことによって得られた発泡成形体。
- 請求項4に記載の発泡成形体と、この発泡成形体の表面に積層一体化された繊維強化プラスチック層とを有する繊維強化複合体。
- 請求項1~3のいずれか1つに記載の発泡粒子を型内発泡成形に付すことにより発泡成形体を製造する発泡成形体の製造方法。
- 熱可塑性ポリエステル系樹脂を基材樹脂とする樹脂粒子に加圧下で発泡剤としての二酸化炭素を含浸させて発泡性粒子を得、前記発泡性粒子を発泡させて発泡粒子を得、前記発泡粒子に内圧付与した後、型内発泡成形に付すことにより発泡成形体を製造する請求項6に記載の発泡成形体の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-182839 | 2018-09-27 | ||
JP2018182839A JP6668433B1 (ja) | 2018-09-27 | 2018-09-27 | 発泡粒子、発泡成形体、その製造方法及び繊維強化複合体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020066349A1 true WO2020066349A1 (ja) | 2020-04-02 |
Family
ID=69950416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/031902 WO2020066349A1 (ja) | 2018-09-27 | 2019-08-14 | 発泡粒子、発泡成形体、その製造方法及び繊維強化複合体 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6668433B1 (ja) |
TW (1) | TW202020014A (ja) |
WO (1) | WO2020066349A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12053908B2 (en) | 2021-02-01 | 2024-08-06 | Regen Fiber, Llc | Method and system for recycling wind turbine blades |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3950792A4 (en) * | 2019-03-28 | 2022-12-07 | Sekisui Plastics Co., Ltd. | RESIN COMPOSITION FOR THE PRODUCTION OF FOAM PARTICLES, FOAM PARTICLES, FOAM COLD BODY AND COMPOSITE STRUCTURAL ELEMENT |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000036000A1 (fr) * | 1998-12-11 | 2000-06-22 | Sekisui Plastics Co., Ltd. | Particules pre-expansees en resine de polyester aromatique cristallin, produit expanse dans le moule et lamine expanse ainsi realise |
JP2001329103A (ja) * | 2000-05-25 | 2001-11-27 | Sekisui Plastics Co Ltd | 芳香族ポリエステル系樹脂予備発泡粒子の製造方法 |
JP2003327741A (ja) * | 2002-05-07 | 2003-11-19 | Kanebo Ltd | ポリエステル樹脂製予備発泡用粒子 |
JP2013067740A (ja) * | 2011-09-22 | 2013-04-18 | Furukawa Electric Co Ltd:The | 熱可塑性樹脂ビーズ発泡体、及び熱可塑性樹脂ビーズ発泡体の製造方法 |
JP2014070153A (ja) * | 2012-09-28 | 2014-04-21 | Sekisui Plastics Co Ltd | 熱可塑性ポリエステル系樹脂発泡粒子の製造方法、熱可塑性ポリエステル系樹脂発泡粒子、熱可塑性ポリエステル系樹脂発泡粒子を用いた発泡成形体の製造方法、発泡成形体及び複合発泡体 |
JP2014080022A (ja) * | 2012-09-28 | 2014-05-08 | Sekisui Plastics Co Ltd | 複合体用発泡体、複合体及び輸送機器構成用部材 |
JP2016532737A (ja) * | 2013-10-11 | 2016-10-20 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 発泡熱可塑性エラストマー粒子の製造方法 |
-
2018
- 2018-09-27 JP JP2018182839A patent/JP6668433B1/ja active Active
-
2019
- 2019-08-14 WO PCT/JP2019/031902 patent/WO2020066349A1/ja active Application Filing
- 2019-08-14 TW TW108128940A patent/TW202020014A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000036000A1 (fr) * | 1998-12-11 | 2000-06-22 | Sekisui Plastics Co., Ltd. | Particules pre-expansees en resine de polyester aromatique cristallin, produit expanse dans le moule et lamine expanse ainsi realise |
JP2001329103A (ja) * | 2000-05-25 | 2001-11-27 | Sekisui Plastics Co Ltd | 芳香族ポリエステル系樹脂予備発泡粒子の製造方法 |
JP2003327741A (ja) * | 2002-05-07 | 2003-11-19 | Kanebo Ltd | ポリエステル樹脂製予備発泡用粒子 |
JP2013067740A (ja) * | 2011-09-22 | 2013-04-18 | Furukawa Electric Co Ltd:The | 熱可塑性樹脂ビーズ発泡体、及び熱可塑性樹脂ビーズ発泡体の製造方法 |
JP2014070153A (ja) * | 2012-09-28 | 2014-04-21 | Sekisui Plastics Co Ltd | 熱可塑性ポリエステル系樹脂発泡粒子の製造方法、熱可塑性ポリエステル系樹脂発泡粒子、熱可塑性ポリエステル系樹脂発泡粒子を用いた発泡成形体の製造方法、発泡成形体及び複合発泡体 |
JP2014080022A (ja) * | 2012-09-28 | 2014-05-08 | Sekisui Plastics Co Ltd | 複合体用発泡体、複合体及び輸送機器構成用部材 |
JP2016532737A (ja) * | 2013-10-11 | 2016-10-20 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 発泡熱可塑性エラストマー粒子の製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12053908B2 (en) | 2021-02-01 | 2024-08-06 | Regen Fiber, Llc | Method and system for recycling wind turbine blades |
Also Published As
Publication number | Publication date |
---|---|
JP6668433B1 (ja) | 2020-03-18 |
TW202020014A (zh) | 2020-06-01 |
JP2020050794A (ja) | 2020-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6043677B2 (ja) | 熱可塑性ポリエステル系樹脂押出発泡シート及びこれを用いた成形品、熱可塑性ポリエステル系樹脂押出発泡シートの製造方法並びに繊維強化複合体 | |
WO2019187947A1 (ja) | 発泡粒子、発泡成形体、それらの製造方法及び樹脂複合体 | |
CN105531112B (zh) | 树脂复合体及树脂复合体的制造方法 | |
JP6161563B2 (ja) | 繊維強化複合体 | |
WO2019189635A1 (ja) | 発泡粒子、発泡成形体、繊維強化複合体及び自動車用部品 | |
WO2020066349A1 (ja) | 発泡粒子、発泡成形体、その製造方法及び繊維強化複合体 | |
JP2017043011A (ja) | 繊維強化複合発泡体の製造方法及びその方法に使用しうる熱可塑性樹脂発泡粒子 | |
WO2018061263A1 (ja) | 発泡粒子、発泡成形体、繊維強化複合体及び自動車用部品 | |
JP6395896B2 (ja) | 型内発泡成形用発泡粒子、型内発泡成形体及び繊維強化複合体 | |
CN112739755B (zh) | 发泡颗粒和发泡成形体 | |
JP5907847B2 (ja) | 熱可塑性ポリエステル系樹脂発泡粒子の製造方法、熱可塑性ポリエステル系樹脂発泡粒子、熱可塑性ポリエステル系樹脂発泡粒子を用いた発泡成形体の製造方法、発泡成形体及び複合発泡体 | |
JP2021155609A (ja) | 樹脂発泡粒子および樹脂発泡成形体 | |
JP2019044105A (ja) | 発泡粒子、発泡成形体、繊維強化複合体、その製造方法及び自動車用部品 | |
TW201942226A (zh) | 發泡粒子、發泡成型體、纖維強化複合體及汽車用零件 | |
JP6895871B2 (ja) | 複合粒子、複合粒子硬化物及び複合粒子型内成形体並びに複合粒子の製造方法 | |
JP7262273B2 (ja) | 発泡粒子及び発泡成形体 | |
JP7524018B2 (ja) | 熱可塑性樹脂発泡粒子、熱可塑性樹脂発泡粒子成形体、発泡樹脂複合体、熱可塑性樹脂発泡粒子の製造方法及び熱可塑性樹脂発泡粒子成形体の製造方法 | |
JP2015105334A (ja) | 繊維強化複合体の製造方法、繊維強化複合体及び輸送機器構成用部材 | |
JP7262266B2 (ja) | 発泡粒子及び発泡成形体 | |
JP2022129943A (ja) | 発泡粒子、発泡成形体及び複合構造部材 | |
JP7277308B2 (ja) | 発泡成形体 | |
JP7203198B2 (ja) | 発泡粒子製造用の樹脂組成物、発泡粒子、発泡成形体及び複合構造部材 | |
WO2020065485A1 (ja) | 発泡粒子及び発泡成形体 | |
JP6449953B1 (ja) | 繊維強化複合体製造用の発泡粒子及び発泡成形体、繊維強化複合体及び自動車用部品 | |
TWI725550B (zh) | 發泡粒子及發泡成形體 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19867467 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19867467 Country of ref document: EP Kind code of ref document: A1 |