WO2019187947A1 - 発泡粒子、発泡成形体、それらの製造方法及び樹脂複合体 - Google Patents

発泡粒子、発泡成形体、それらの製造方法及び樹脂複合体 Download PDF

Info

Publication number
WO2019187947A1
WO2019187947A1 PCT/JP2019/007728 JP2019007728W WO2019187947A1 WO 2019187947 A1 WO2019187947 A1 WO 2019187947A1 JP 2019007728 W JP2019007728 W JP 2019007728W WO 2019187947 A1 WO2019187947 A1 WO 2019187947A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic polyester
mass
resin
foamed
polyester resin
Prior art date
Application number
PCT/JP2019/007728
Other languages
English (en)
French (fr)
Inventor
哲朗 田井
佑輔 ▲桑▼▲原▼
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Publication of WO2019187947A1 publication Critical patent/WO2019187947A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to foamed particles, foamed molded products, production methods thereof, and resin composites. More specifically, the present invention relates to a foamed particle for producing a foam molded article having a beautiful appearance and excellent in heat resistance and mechanical strength, a foam molded article having a beautiful appearance and excellent in heat resistance and mechanical strength, and production thereof.
  • the present invention relates to a method and a resin composite. Since the foamed molded article of the present invention has excellent lightness, heat resistance, shock-absorbing properties and mechanical strength, it is a part of transportation equipment such as automobiles, aircraft, railway vehicles and ships, and industrial equipment such as windmill blades. It can use suitably for these parts.
  • a resin composite formed by laminating and integrating a fiber reinforced resin layer on the surface of a foamed molded product is further excellent in heat resistance and mechanical strength, and is used for parts of the above transportation equipment and automobiles, airplanes, railway vehicles or Suitable as a structural member including a structural member constituting a main body of a ship's transportation equipment, and a structural member including a structural member constituting the main body of an industrial equipment such as a part of the industrial equipment and a wind turbine blade. Can be used.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2014-70153
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2014-70153
  • the amorphous thermoplastic polyester-based resin contains at least one of 1,4-cyclohexanedimethanol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol or spiroglycol as a diol component, and glass Examples thereof include resins having a transition temperature Tg of 100 to 130 ° C., and crystalline thermoplastic polyester resins include resins having an intrinsic viscosity of 0.8 to 1.1.
  • Patent Document 1 it is said that it is possible to provide foamed particles made of a thermoplastic polyester resin that has excellent foaming properties and can produce a foamed molded article having excellent heat resistance, buffering properties and mechanical strength.
  • Patent Document 1 two types of polyester resins are used. Since these two types of resins are not completely compatible, two Tg's are observed in the resin composition obtained by blending them. When trying to produce expanded particles by extrusion foaming such a resin composition, it is difficult to extrude and foam the amorphous thermoplastic polyester resin itself. Since the proper foaming temperature of the thermoplastic polyester resin is different, even if it is adjusted to either one of the proper foaming temperatures, foamed particles having a sufficiently low open cell ratio (less than 15%) may not be obtained. In addition, when a foamed molded article is produced using foamed particles having a high open cell ratio, the foamed molded article having poor surface properties may be obtained because the secondary foaming power of the foamed particles is low. There was room for improvement.
  • the inventors of the present invention conducted a sincere study to solve the above problems, and as a result, a resin composition comprising a crystalline aromatic polyester resin and an amorphous aromatic polyester resin having high compatibility therewith
  • the glass transition temperature Tg becomes one, and it is possible to obtain foamed particles having a low open cell rate controlled to a desired crystallization rate.
  • the foamed particles have sufficient foamability for in-mold molding. It has been found that it is possible to obtain a foamed molded article having a good appearance by using it, and the present invention has been completed.
  • thermoplastic aromatic polyester resin composition wherein the thermoplastic aromatic polyester resin composition comprises a crystalline aromatic polyester resin and an amorphous aromatic polyester resin.
  • the expanded particles have the following properties in a DSC curve obtained when heated from 30 ° C. to 290 ° C. at a heating rate of 10 ° C./min: (1) The DSC curve shows one glass transition temperature and a crystallization peak. (2) The amount of crystallization determined from the area of the crystallization peak is 20 mJ / mg or more, (3) the half crystallization time at 120 ° C. is 180 to 1000 seconds, Expanded particles exhibiting are provided.
  • mold is provided.
  • stacked and integrated on the surface of the said foaming molding is provided.
  • a method for producing the expanded particle A thermoplastic aromatic polyester resin composition containing a crystalline aromatic polyester resin and an amorphous aromatic polyester resin is supplied to an extruder, and the supply supplied to the extruder is supplied with a foaming agent.
  • a method for producing foamed particles comprising a step of cutting the extruded foam to obtain foamed particles.
  • a foaming process including a foaming step for obtaining a foamed molded article is provided.
  • thermoplastic aromatic polyester resin that can give a foamed molded article having a good appearance.
  • foamed particles made of a thermoplastic aromatic polyester resin that can give a foamed molded article having a better appearance.
  • the expanded particles exhibit an open cell ratio of less than 15%.
  • the crystalline aromatic polyester-based resin and the amorphous aromatic polyester-based resin are contained in a ratio of 65 to 99% by mass and 35 to 1% by mass with respect to 100% by mass in total of both resins.
  • the amorphous aromatic polyester resin exhibits a glass transition temperature of 60 to 90 ° C.
  • the amorphous aromatic polyester resin exhibits an intrinsic viscosity (IV value) of 0.6 to 1.1.
  • the difference in glass transition temperature between the amorphous aromatic polyester resin and the crystalline aromatic polyester resin is 15 ° C. or less.
  • the crystalline aromatic polyester resin is at least one selected from polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, polytrimethylene naphthalate, and the amorphous aromatic polyester resin is It is a copolymer of terephthalic acid and 1,4-cyclohexanedimethanol and / or neopentylene glycol.
  • Expanded particles have the following properties in a DSC curve obtained when heated from 30 ° C. to 290 ° C. at a heating rate of 10 ° C./min: (1) DSC curve shows one glass transition temperature and crystallization peak, (2) The amount of crystallization calculated from the area of the crystallization peak is 20 mJ / mg or more. (3) The half crystallization time at 120 ° C. is 180 to 1000 seconds. Indicates.
  • the expanded particles exhibit the above properties (1) to (3), it can be confirmed that the crystalline aromatic polyester resin and the amorphous aromatic polyester resin are highly compatible. As a result, it is possible to provide expanded particles having a low open cell ratio. Such foamed particles can provide a foamed molded article having a beautiful appearance and excellent heat resistance and mechanical strength.
  • the foamed particles When the crystalline component contained in the foamed particles is not crystallized, it is advantageous for the foamed particles to exhibit good secondary foamability. In addition, it is advantageous that the crystalline component contained in the expanded particles is not crystallized in order to fuse the expanded particles. For this reason, when the amount of heat of crystallization determined from the area of the crystallization peak is less than 20 mJ / mg, the foamed molded article has few crystallinity components, and the heat resistance may decrease.
  • the amount of crystallization heat is preferably 22 mJ / mg or more, and more preferably 25 mJ / mg or more.
  • the amount of crystallization heat is preferably 32 mJ / mg or less, and more preferably 30 mJ / mg or less.
  • the amount of crystallization heat is 20.0 mJ / mg, 20.5 mJ / mg, 21.0 mJ / mg, 21.5 mJ / mg, 22.0 mJ / mg, 22.5 mJ / mg, 23.0 mJ / mg, 23.5 mJ.
  • the half crystallization time at 120 ° C. of the expanded particles according to the present invention is 180 seconds or more and 1000 seconds or less.
  • the half crystallization time at 120 ° C. is less than 180 seconds, the crystallization speed of the foamed particles is high, and thus the degree of crystallinity of the foamed particles increases before the foamed particles are fused during foam molding in the mold. For this reason, the fusion-bonding property of the foamed molded product is lowered, and the mechanical strength may be lowered. If it is longer than 1000 seconds, it is necessary to lengthen the heat retention time (heat retention time) at the time of producing the foam molded body in order to promote crystallization of the foam molded body and to exhibit excellent heat resistance.
  • the half crystallization time is preferably 200 to 800 seconds, and more preferably 230 to 500 seconds.
  • Semi-crystallization time is 180 seconds, 200 seconds, 220 seconds, 230 seconds, 240 seconds, 260 seconds, 280 seconds, 300 seconds, 320 seconds, 340 seconds, 360 seconds, 380 seconds, 400 seconds, 420 seconds, 440 seconds.
  • 460 seconds, 480 seconds, 500 seconds, 525 seconds, 550 seconds, 600 seconds, 650 seconds, 700 seconds, 750 seconds, 800 seconds, 850 seconds, 900 seconds, 950 seconds, 1000 seconds can be taken.
  • the expanded particle which concerns on this invention shows the open cell rate of less than 15%.
  • the open cell ratio is 15% or more, sufficient foamability for in-mold molding cannot be exhibited, and as a result, the mechanical strength of the resulting foam molded article is reduced, or it becomes difficult to obtain a foam molded article having a good appearance.
  • the open cell ratio is more preferably 13% or less, and still more preferably 10% or less.
  • the lower limit of the open cell ratio is 0%.
  • Expanded particles are 14.99%, 14.9%, 14.5%, 14.0%, 13.5%, 13.0%, 12.5%, 12.0%, 11.5%, 11 0.0%, 10.5%, 10.0%, 9.5%, 9.0%, 8.5%, 8.0%, 7.5%, 7.0%, 6.5%, 6 0.0%, 5.5%, 5.0%, 4.5%, 4.0%, 3.5%, 3.0%, 2.5%, 2.0%, 1.5%, 1% Open cell ratios of 0.0%, 0.5%, 0.1%, 0.01%, 0.001%, 0% can be taken.
  • the shape of the expanded particles is not particularly limited. For example, spherical shape, cylindrical shape, etc. are mentioned. Of these, it is preferable that the shape be as spherical as possible. That is, it is preferable that the ratio of the minor axis to the major axis of the expanded particles is as close to 1 as possible.
  • the expanded particles preferably have an average particle diameter of 1 to 20 mm. The average particle diameter can be measured by classification using a sieve having a predetermined opening.
  • the expanded particles are 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 4.5 mm, 5.0 mm, 5.5 mm, 6.0 mm, 6.
  • the bulk density is less than 0.05 g / cm 3 , the open cell ratio of the expanded particles increases, and the foaming force necessary for the expanded particles may not be imparted during foaming in the in-mold foam molding. If it is larger than 0.7 g / cm 3 , the foamed particles obtained may have non-uniform bubbles, and the foamability of the foamed particles during in-mold foam molding may be insufficient.
  • the bulk density is more preferably 0.07 ⁇ 0.6g / cm 3, particularly preferably 0.08 ⁇ 0.5g / cm 3.
  • the bulk density of the expanded particles is 0.05 g / cm 3 , 0.07 g / cm 3 , 0.08 g / cm 3 , 0.10 g / cm 3 , 0.15 g / cm 3 , 0.20 g / cm 3 , 0 .25 g / cm 3 , 0.30 g / cm 3 , 0.35 g / cm 3 , 0.40 g / cm 3 , 0.45 g / cm 3 , 0.50 g / cm 3 , 0.55 g / cm 3 ,. 60 g / cm 3 , 0.65 g / cm 3 , and 0.70 g / cm 3 can be taken.
  • Thermoplastic aromatic polyester-based resin composition The foamed particles are composed of a thermoplastic aromatic polyester-based resin composition (hereinafter also simply referred to as a resin composition).
  • the resin composition includes a crystalline aromatic polyester resin and an amorphous aromatic polyester resin.
  • the content of the two types of polyester resins in the resin composition can be 80% by mass or more, 90% by mass or more, and 100% by mass.
  • the content of the two polyester resins in the resin composition is 80% by mass, 81.0% by mass, 82.5% by mass, 85% by mass, 87.5% by mass, 90.0% by mass, 92.5%.
  • Mass%, 95.0 mass%, 97.5 mass%, 99.0 mass%, 99.9 mass%, 100 mass% can be taken.
  • a polyester resin sample was measured from 30 ° C. to 290 using a differential scanning calorimeter (DSC) at a rate of temperature increase of 10 ° C./min in accordance with JIS K7121: 1987, 2012 “Plastic Transition Temperature Measurement Method”. Heat to melt to 0 ° C. and hold at 290 ° C. for 10 minutes. After the holding, the sample is taken out from the heating furnace and allowed to cool to 30 ° C. in an air atmosphere at 25 ° C. Thereafter, the sample is heated and melted from 30 to 290 ° C. at a temperature rising rate of 10 ° C./min. In this second temperature raising step, those that do not show a melting peak are made amorphous, and those that show a melting peak are judged to be crystalline.
  • DSC differential scanning calorimeter
  • (B-1) Crystalline aromatic polyester-based resin examples include polyesters obtained by an esterification reaction between an aromatic dicarboxylic acid and a diol.
  • the aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenoxy dicarboxylic acid, and the like.
  • the aromatic dicarboxylic acid is preferably terephthalic acid or isophthalic acid.
  • Aromatic dicarboxylic acids may be used alone or in combination of two or more.
  • diol examples include aliphatic diols and alicyclic diols.
  • aliphatic diol examples include ethylene glycol, trimethylene glycol, tetramethylene glycol, neopentylene glycol, hexamethylene glycol, diethylene glycol and the like.
  • the aliphatic diol is preferably ethylene glycol or diethylene glycol.
  • alicyclic diol examples include cyclohexanedimethanol. Diols may be used alone or in combination of two or more.
  • the crystalline aromatic polyester-based resin examples include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, and polytrimethylene naphthalate.
  • Crystalline aromatic polyester resins may be used alone or in combination of two or more.
  • the crystalline aromatic polyester resin is preferably polyethylene terephthalate.
  • the crystalline aromatic polyester resin can be synthesized by a known method.
  • the crystalline aromatic polyester resin preferably has an intrinsic viscosity (IV value) of 0.6 to 1.1.
  • IV value intrinsic viscosity
  • the IV value is more preferably 0.65 to 1.05, and still more preferably 0.7 to 1.
  • the IV value of the crystalline aromatic polyester resin is 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.88, 0.90, 0.95, 1. 00, 1.05, 1.10.
  • the crystalline aromatic polyester resin preferably has a melting point (Tm) of 220 to 270 ° C. When the melting point is less than 220 ° C., the reactivity between the thermoplastic aromatic polyester resin composition and the cross-linking agent is lowered, so that the resin composition is not sufficiently modified when the expanded particles are produced, and the extrusion is performed. Foamability is not improved and extrusion foaming may be difficult.
  • the open cell ratio of the expanded particles is increased, the secondary expandability of the expanded particles is decreased, and the lightweight property or mechanical strength of the expanded molded product obtained using the expanded particles is decreased.
  • the open cell ratio of the expanded particles is increased, the secondary expandability of the expanded particles is decreased, and the lightweight property or mechanical strength of the expanded molded product obtained using the expanded particles is decreased.
  • hydrolysis of the thermoplastic aromatic polyester resin composition is likely to proceed.
  • foamed particles are produced in such a situation, modification of the resin composition is insufficient, and extrusion foamability is not improved, and extrusion foaming may be difficult.
  • the open cell ratio of the expanded particles is increased, the secondary expandability of the expanded particles is decreased, and the lightweight property or mechanical strength of the expanded molded product obtained using the expanded particles is decreased.
  • the melting point is more preferably 230 to 265 ° C, still more preferably 235 to 260 ° C. Melting points are 220.0 ° C., 222.5 ° C., 225.0 ° C., 227.5 ° C., 230.0 ° C., 232.5 ° C., 235.0 ° C., 237.5 ° C., 240.0 ° C., 242.
  • the crystalline aromatic polyester resin preferably has a glass transition temperature (Tg) of 60 to 90 ° C. When the glass transition temperature is less than 60 ° C., the mechanical strength of the foamed molded product in a high temperature environment may decrease.
  • Tg glass transition temperature
  • the glass transition temperature is more preferably 65 to 85 ° C, and further preferably 70 to 80 ° C. Glass transition temperatures are 60.0 ° C., 62.5 ° C., 65.0 ° C., 67.5 ° C., 70.0 ° C., 72.5 ° C., 75.0 ° C., 77.5 ° C., 78.0 ° C., It can take 80.0 ° C, 82.5 ° C, 85.0 ° C, 87.5 ° C, 90.0 ° C.
  • a non-crystalline aromatic polyester resin includes a polyester obtained by an esterification reaction between an aromatic dicarboxylic acid and a diol.
  • the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenoxy dicarboxylic acid, and the like.
  • the aromatic dicarboxylic acid is preferably terephthalic acid or isophthalic acid.
  • Aromatic dicarboxylic acids may be used alone or in combination of two or more.
  • diol examples include aliphatic diols and alicyclic diols.
  • aliphatic diol include ethylene glycol, trimethylene glycol, tetramethylene glycol, neopentylene glycol, hexamethylene glycol, diethylene glycol, propanediol, 1,4-butanediol, and polytetramethylene glycol.
  • alicyclic diol include cyclohexanedimethanol, tetramethylcyclobutanediol, and spiroglycol.
  • the diol is preferably 1,4-cyclohexanedimethanol and neopentylene glycol.
  • Diols may be used alone or in combination of two or more.
  • a specific amorphous aromatic polyester-based resin is preferably a copolymer of terephthalic acid and 1,4-cyclohexanedimethanol and / or neopentylene glycol.
  • the proportion of units derived from 1,4-cyclohexanedimethanol and / or neopentylene glycol in the amorphous aromatic polyester-based resin is preferably 10 mol% or more, more preferably 15 mol% or more, and 20 mol%. The above is particularly preferable.
  • the proportion of units derived from 1,4-cyclohexanedimethanol and / or neopentylene glycol in the amorphous aromatic polyester-based resin is 10.0 mol%, 12.5 mol%, 15.0 mol%, 17.5 mol%, 20.0 mol%, 22.5 mol%, 25.0 mol%, 30.0 mol%, 35.0 mol%, 40.0 mol%, 45.0 mol%, 50. 0 mol%, 55.0 mol%, 60.0 mol%, 65.0 mol%, 70.0 mol%, 75.0 mol%, 80.0 mol%, 85.0 mol%, 90.0 mol %, 95.0 mol%, 99.0 mol%, 100 mol%.
  • the amorphous aromatic polyester resin can be synthesized by a known method.
  • the amorphous aromatic polyester resin preferably exhibits a glass transition temperature of 60 to 90 ° C.
  • the glass transition temperature is less than 60 ° C.
  • the mechanical strength of the foamed molded product in a high temperature environment may decrease.
  • the temperature is higher than 90 ° C.
  • the compatibility between the amorphous thermoplastic polyester resin and the crystalline thermoplastic polyester resin is lowered, so that the open cell ratio of the obtained foamed particles is increased, and the secondary foamability of the foamed particles is increased. May decrease, and the lightweight property or mechanical strength of the foamed molded product obtained using the expanded particles may decrease.
  • the melt-bonding property of the foamed molded product may be reduced during the foam molding in the mold, and the mechanical strength of the foamed molded product may be reduced.
  • the glass transition temperature is more preferably 65 to 85 ° C, and further preferably 70 to 80 ° C.
  • the glass transition temperatures are 60.0 ° C., 62.5 ° C., 65.0 ° C., 67.5 ° C., 70.0 ° C., 72.5 ° C., 75.0 ° C., 77.5 ° C., 78.0 ° C., 79 It can be 0.0 ° C, 80.0 ° C, 82.5 ° C, 85.0 ° C, 87.5 ° C, 90.0 ° C.
  • the difference in glass transition temperature between the amorphous aromatic polyester resin and the crystalline aromatic polyester resin is preferably 15 ° C. or less, and more preferably 10 ° C. or less.
  • the difference in glass transition temperature between the amorphous aromatic polyester resin and the crystalline aromatic polyester resin is 15.0 ° C, 14.5 ° C, 14.0 ° C, 13.5 ° C, 13. 0 ° C, 12.5 ° C, 12.0 ° C, 11.5 ° C, 11.0 ° C, 10.5 ° C, 10.0 ° C, 9.5 ° C, 9.0 ° C, 8.5 ° C, 8.
  • the amorphous aromatic polyester-based resin preferably has an IV value of 0.6 to 1.1.
  • the IV value is less than 0.6, foam breakage may occur during the production of the foamed particles, the open cell ratio of the obtained foamed particles may be increased, and the secondary foamability of the foamed particles may be reduced.
  • the IV value is larger than 1.1, the load during extrusion foaming may become too large, and the productivity of the expanded particles may decrease, or the expansion ratio of the obtained expanded particles may decrease. As a result, the lightweight property or buffer property of the foamed molded article obtained using the foamed particles may be lowered.
  • the IV value is more preferably 0.65 to 1.05, and still more preferably 0.7 to 1.
  • the IV values are 0.600, 0.625, 0.640, 0.650, 0.670, 0.675, 0.700, 0.725, 0.750, 0.775, 0.790,. 800, 0.825, 0.850, 0.875, 0.900, 0.925, 0.950, 0.975, 1.000, 1.025, 1.050, 1.075, 1.100 I can take it.
  • thermoplastic aromatic polyester resin 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP- d 2 , deuterated solvent) and can be measured using 1 H-NMR.
  • HFIP- d 2 1,1,1,3,3,3-hexafluoro-2-propanol
  • 1 H-NMR 1,1,1,3,3,3-hexafluoro-2-propanol
  • (B-3) Content Ratio of Crystalline Aromatic Polyester Resin and Amorphous Aromatic Polyester Resin Crystalline aromatic polyester resin and amorphous aromatic polyester resin are a total of 100 masses of both resins. It is preferable that it is contained in the resin composition at a ratio of 65 to 99 mass% and 35 to 1 mass% with respect to%.
  • the ratio of the crystalline aromatic polyester resin is less than 65% by mass, the modification of the resin composition is insufficient when producing expanded particles, the extrusion foamability is not improved, and extrusion foaming becomes difficult. Sometimes.
  • the open cell ratio of the expanded particles is increased, the secondary expandability of the expanded particles is decreased, and the lightweight property or mechanical strength of the expanded molded product obtained using the expanded particles is decreased.
  • the crystalline aromatic polyester resin and the amorphous aromatic polyester resin are more preferably contained in a proportion of 70 to 95% by mass and 30 to 5% by mass, and 80 to 90% by mass and 20 to 10% by mass. More preferably, it is contained in a ratio of%.
  • the crystalline aromatic polyester-based resin and the amorphous aromatic polyester-based resin are a ratio of 65.0% by mass and 35.0% by mass, 67.5% by mass with respect to a total of 100% by mass of both resins. 32.5% by weight, 70.0% by weight and 30.0% by weight, 72.5% by weight and 27.5% by weight, 75.0% by weight and 25.0% by weight, 77.5% by weight and 22.5% by weight, 80.0% by weight and 20.0% by weight, 82.5% by weight and 17.5% by weight, 85.0% by weight and 15.
  • the resin composition may contain a crosslinking agent.
  • a crosslinking agent By including a crosslinking agent, the extrusion foamability of the resin composition can be improved, and expanded particles can be easily produced.
  • a well-known thing can be used as a crosslinking agent.
  • the compound which has an acid anhydride group, a polyfunctional epoxy compound, an oxazoline compound, an oxazine compound etc. are mentioned. Of these, compounds having an acid anhydride group are preferred.
  • a crosslinking agent may be used independently or 2 or more types may be used together.
  • the compound having an acid anhydride group is not particularly limited, and for example, it may belong to any of aromatic, alicyclic and aliphatic.
  • the content of the crosslinking agent is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass in total of the crystalline aromatic polyester resin and the amorphous aromatic polyester resin.
  • the content of the cross-linking agent is less than 0.01 parts by mass, the melt viscosity at the time of melting of the resin composition is low, and foam breakage may occur at the time of extrusion foaming of the resin composition.
  • the content of the crosslinking agent is more preferably 0.05 to 1% by mass, and further preferably 0.1 to 0.4% by mass.
  • the content of the crosslinking agent is 0.01% by mass, 0.025% by mass, 0.05% by mass, 0.075% by mass, 0.10% by mass, 0.125% by mass, 0.15% by mass, 0.005% by mass.
  • the resin composition may contain a resin other than the thermoplastic aromatic polyester resin composition, if necessary.
  • resins other than the thermoplastic aromatic polyester resin composition that can be contained in the resin composition include, for example, polyolefin resins, polyamide resins, acrylic resins, saturated polyester resins, ABS resins, and polystyrene resins. Examples thereof include resins and polyphenylene oxide resins.
  • the proportion of the other resin in the total resin component of the thermoplastic aromatic polyester resin composition is usually more than 0% by mass and 20% by mass or less.
  • the proportion of the other resin is preferably 10% by mass or less, and more preferably 5% by mass or less.
  • the foamed particles may contain an additive in addition to the resin composition, if necessary.
  • Additives include bubble regulators, plasticizers, flame retardants, flame retardant aids, antistatic agents, spreading agents, fillers, colorants, weathering agents, anti-aging agents, lubricants, antifogging agents, fragrances, etc.
  • the air conditioner include inorganic cell nucleating agent, sodium bicarbonate citric acid, higher fatty acid amide, higher fatty acid bisamide, higher fatty acid salt and the like. These bubble regulators may be used in combination.
  • the inorganic cell nucleating agent include talc, calcium silicate, synthetically or naturally produced silicon dioxide, and the like.
  • higher fatty acid amides include stearic acid amide and 12-hydroxystearic acid amide.
  • higher fatty acid bisamides include ethylene bis stearic acid amide, ethylene bis-12-hydroxystearic acid amide, and methylene bis stearic acid amide.
  • An example of the higher fatty acid salt is calcium stearate.
  • the content of the cell regulator in the expanded particles is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the resin composition. When the content is less than 0.01 parts by mass, the foamed bubbles may be coarse and the appearance of the resulting foamed molded product may be deteriorated.
  • the content is more preferably 0.05 to 3 parts by mass, still more preferably 0.1 to 2 parts by mass.
  • the content of the air conditioner in the expanded particles is 0.01 parts by mass, 0.025 parts by mass, 0.05 parts by mass, 0.075 parts by mass, and 0.10 parts by mass with respect to 100 parts by mass of the resin composition.
  • the method for producing expanded particles includes the following steps: A thermoplastic aromatic polyester resin composition containing a crystalline aromatic polyester resin and an amorphous aromatic polyester resin is supplied to an extruder, and the supply supplied to the extruder is supplied with a foaming agent. A melt-extrusion step to obtain an extruded foam by extrusion foaming while melt-kneading under; Cutting the extruded foam to obtain expanded particles.
  • the nozzle mold 1 is preferably one that can form uniform fine bubbles by extruding and foaming the resin composition. As shown in FIG. 4, a plurality of nozzle outlet portions 11 are formed on the same virtual circle A at equal intervals on the front end surface 1 a of the nozzle mold 1.
  • the nozzle mold attached to the front end of the extruder is not particularly limited as long as the resin composition does not foam in the nozzle.
  • the number of nozzles of the nozzle mold 1 is preferably 2 to 80. When the number of nozzles is one, the production efficiency of foamed particles may decrease. When the number is more than 80, extruded foams extruded and foamed from nozzles adjacent to each other may come into contact with each other and be bonded together. In addition, foamed particles obtained by cutting the extruded foam may be bonded together.
  • the number of nozzles is more preferably 5 to 60, and particularly preferably 8 to 50.
  • the diameter of the outlet 11 of the nozzle in the nozzle mold 1 is preferably 0.2 to 2 mm. If the diameter is less than 0.2 mm, the extrusion pressure may become too high, making extrusion foaming difficult.
  • the diameter of the expanded particles may be increased, and the filling property into the mold may be lowered.
  • the diameter is more preferably 0.3 to 1.6 mm, and particularly preferably 0.4 to 1.2 mm.
  • the length of the land portion of the nozzle die 1 is preferably 4 to 30 times the diameter of the outlet portion 11 in the nozzle of the nozzle die 1. When the length is less than 4 times, fracture may occur and stable extrusion foaming may not be possible. If it is larger than 30 times, a large pressure may be applied to the nozzle mold so that extrusion foaming may not be possible.
  • the length is more preferably 5 to 20 times.
  • a portion of the front end face 1a surrounded by the nozzle outlet portion 11 is disposed in a state in which the rotating shaft 2 protrudes forward, and the rotating shaft 2 is a cooling member that constitutes a cooling member 4 described later.
  • the drum 41 is connected to the driving member 3 such as a motor through the front portion 41a.
  • one or a plurality of rotary blades 5 are integrally provided on the outer peripheral surface of the rear end portion of the rotary shaft 2, and all the rotary blades 5 are always in contact with the front end surface 1a during the rotation. It will be in the state.
  • the plurality of rotary blades 5 are arranged at equal intervals in the circumferential direction of the rotary shaft 2.
  • FIG. 4 the case where the four rotary blades 5 are integrally provided in the outer peripheral surface of the rotating shaft 2 is shown as an example.
  • the rotary blade 5 moves on a virtual circle A in which the nozzle outlet 11 is formed while being always in contact with the front end face 1 a and is pushed out of the nozzle outlet 11.
  • the extruded foam is configured so that it can be cut sequentially and continuously.
  • a cooling member 4 is disposed so as to surround at least the front end portion of the nozzle mold 1 and the rotating shaft 2.
  • the cooling member 4 has a front circular front part 41a having a diameter larger than that of the nozzle mold 1 and a cylindrical peripheral wall part 41b extending rearward from the outer peripheral edge of the front part 41a.
  • a bottom cylindrical cooling drum 41 is provided.
  • the supply port 41c for supplying the cooling fluid 42 is formed in the part corresponding to the outer side of the nozzle metal mold
  • a supply pipe 41d for supplying the coolant 42 into the cooling drum 41 is connected to the outer opening of the supply port 41c.
  • the coolant 42 is configured to be supplied obliquely forward along the inner peripheral surface of the peripheral wall portion 41b of the cooling drum 41 through the supply pipe 41d.
  • the coolant 42 advances forward so as to draw a spiral along the inner peripheral surface of the peripheral wall portion 41b due to the centrifugal force accompanying the flow velocity when being supplied from the supply pipe 41d to the inner peripheral surface of the peripheral wall portion 41b.
  • the coolant 42 is not particularly limited as long as the particulate cut product can be cooled.
  • water, alcohol and the like can be mentioned, but water is preferable in consideration of the treatment after use.
  • a discharge port 41e is formed on the lower surface of the front end portion of the peripheral wall portion 41b so as to penetrate between the inner and outer peripheral surfaces.
  • a discharge pipe 41f is connected to the outer opening of the discharge port 41e.
  • the particulate cut material and the coolant 42 are configured to be continuously discharged through the discharge port 41e.
  • the extruder is not particularly limited as long as it is a conventionally used extruder, and examples thereof include a single-screw extruder, a twin-screw extruder, and a tandem extruder in which a plurality of extruders are connected. .
  • the foaming agent those conventionally used are used.
  • blowing agent examples include chemical blowing agents such as azodicarbonamide, dinitrosopentamethylenetetramine, hydrazoyl dicarbonamide, sodium bicarbonate; saturated aliphatic carbonization such as propane, normal butane, isobutane, normal pentane, isopentane, and hexane.
  • chemical blowing agents such as azodicarbonamide, dinitrosopentamethylenetetramine, hydrazoyl dicarbonamide, sodium bicarbonate
  • saturated aliphatic carbonization such as propane, normal butane, isobutane, normal pentane, isopentane, and hexane.
  • examples include hydrogen, ethers such as dimethyl ether, fluorocarbons such as methyl chloride, 1,1,1,2-tetrafluoroethane, 1,1-difluoroethane, and monochlorodifluoromethane, and physical foaming agents such as carbon dioxide and nitrogen.
  • Dimethyl ether, propane, normal butane, isobutane and carbon dioxide are preferred, propane, normal butane and isobutane are more preferred, and normal butane and isobutane are particularly preferred.
  • a foaming agent may be used independently or 2 or more types may be used together.
  • the amount of the blowing agent supplied to the extruder is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin. When the amount of the foaming agent is less than 0.1 parts by mass, the foamed particles may not be foamed to a desired expansion ratio.
  • the foaming agent acts as a plasticizer, so that the viscoelasticity of the resin composition in the molten state is excessively lowered and the foamability is lowered, and good foamed particles cannot be obtained. is there.
  • the amount of the foaming agent is more preferably 0.2 to 4 parts by mass, and particularly preferably 0.3 to 3 parts by mass. You may supply a bubble regulator to an extruder.
  • (B) Cutting step The extruded foam extruded and foamed from the nozzle mold 1 continues to enter the cutting step. Cutting the extruded foam is performed by rotating the rotary shaft 2 to rotate the rotary blade 5 disposed on the front end face 1a.
  • the rotational speed of the rotary blade 5 is preferably 2000 to 10,000 rpm. If the rotational speed is less than 2000 rpm, the resin foam cannot be reliably cut by the rotary blade 5, and the foam particles may be bonded together, or the foam particles may have an uneven shape. When the rotational speed exceeds 10,000 rpm, the following two problems are likely to occur.
  • the first problem is that the initial velocity of the expanded particles increases when the cutting stress by the rotary blade increases and the expanded particles are scattered from the outlet portion of the nozzle toward the cooling member. As a result, the time required for the foamed particles to collide with the cooling member after cutting is shortened, foaming of the foamed particles becomes insufficient, and the foaming ratio may be lowered.
  • the second problem is that the wear of the rotary blade and the rotary shaft is increased and the life of the rotary blade and the rotary shaft is shortened.
  • the rotary blade is preferably rotated at a constant rotational speed.
  • the rotational speed is more preferably 2000 to 9000 rpm, and particularly preferably 2000 to 8000 rpm.
  • All the rotary blades 5 are always rotating while being in contact with the front end face 1a, and the extruded foam extruded and foamed from the nozzle mold 1 is between the rotary blade 5 and the edge of the outlet 11 of the nozzle. Due to the generated shear stress, it is cut in the atmosphere at regular time intervals to form a particulate cut product. At this time, water may be sprayed onto the extruded foam in a range where the extruded foam is not excessively cooled.
  • the resin composition is prevented from foaming in the nozzle of the nozzle mold 1. The resin composition is not yet foamed immediately after being discharged from the outlet 11 of the nozzle, and starts to foam after a short time has elapsed since being discharged.
  • the extruded foam is composed of an unfoamed portion immediately after being discharged from the outlet portion 11 of the nozzle, and a foamed portion that is continuous with the unfoamed portion and is extruded before the unfoamed portion.
  • the non-foamed portion maintains its state from when it is discharged from the outlet 11 of the nozzle to when foaming is started.
  • the time during which the unfoamed part is maintained can be adjusted by the resin pressure at the outlet 11 of the nozzle, the amount of foaming agent, and the like. When the resin pressure at the nozzle outlet 11 is high, the resin composition does not foam immediately after being extruded from the nozzle mold 1 and maintains an unfoamed state.
  • the resin pressure at the nozzle outlet 11 can be adjusted by adjusting the nozzle diameter, the amount of extrusion, the melt viscosity and the melt tension of the resin composition.
  • the amount of the foaming agent By adjusting the amount of the foaming agent to an appropriate amount, the resin composition can be prevented from foaming inside the mold, and the unfoamed portion can be formed reliably. Since all the rotary blades 5 cut the extruded foam while being always in contact with the front end face 1a, the extruded foam is cut at the unfoamed portion immediately after being discharged from the outlet 11 of the nozzle. Particulate cuts (foamed particles) are produced.
  • the particulate cut material obtained as described above is scattered toward the cooling drum 41 simultaneously with the cutting by the cutting stress by the rotary blade 5, and immediately collides with the cooling liquid 42 covering the inner peripheral surface of the peripheral wall portion 41b. .
  • the particulate cut product continues to foam until it collides with the coolant 42, and the particulate cut product has grown into a substantially spherical shape by foaming. Accordingly, the obtained expanded particles are substantially spherical.
  • the foamed particles are excellent in filling into the mold and can be uniformly filled with foamed particles to obtain a homogeneous foamed molded product Can do.
  • the inner peripheral surface of the peripheral wall portion 41 b is entirely covered with the coolant 42.
  • the coolant 42 is supplied obliquely forward along the inner peripheral surface of the peripheral wall portion 41b through the supply pipe 41d, and is centrifuged according to the flow velocity when being supplied from the supply pipe 41d to the inner peripheral surface of the peripheral wall portion 41b. Due to the force, it advances forward so as to draw a spiral along the inner peripheral surface of the peripheral wall 41b.
  • the coolant 42 gradually spreads in the direction orthogonal to the traveling direction while traveling along the inner peripheral surface of the peripheral wall portion 41b. As a result, the inner peripheral surface of the peripheral wall portion 41b in front of the supply port 41c is completely covered with the coolant 42.
  • the particulate cut product is immediately cooled by the cooling liquid 42, thereby preventing the foamed particles from being excessively foamed. Further, the particulate cut product obtained by cutting the extruded foam with the rotary blade 5 is scattered toward the cooling liquid 42.
  • the coolant 42 flowing along the inner peripheral surface of the peripheral wall portion 41b flows while turning spirally. Accordingly, the particulate cut P collides with the cooling liquid 42 and enters the cooling liquid 42 obliquely with respect to the surface of the cooling liquid 42 and from the upstream side to the downstream side of the flow of the cooling liquid 42. It is preferable (see FIG. 5). In FIG. 5, the flow direction of the coolant is indicated as “X”.
  • the particulate cut material when the particulate cut material is allowed to enter the cooling liquid 42, the particulate cut material is caused to enter the cooling liquid 42 from the direction following the flow of the cooling liquid 42.
  • the particulate cut material smoothly and surely enters the cooling liquid 42 without being bounced to the surface of the liquid 42 and is cooled by the cooling liquid 42 to produce expanded particles.
  • the foamed particles have a substantially spherical shape with no cooling unevenness or shrinkage, and exhibit excellent foamability during in-mold foam molding.
  • the particulate cut product is cooled immediately after cutting the extruded foam, and the degree of increase in the crystallinity of the crystalline aromatic polyester resin is small and contains the amorphous aromatic polyester resin.
  • the temperature of the cooling liquid 42 is preferably 10 to 40 ° C.
  • the nozzle mold located in the vicinity of the cooling drum 41 is excessively cooled, which may adversely affect the extrusion foaming of the resin composition.
  • it is higher than 40 ° C. the particulate cut product may be insufficiently cooled.
  • the bulk density of the foamed particles can be adjusted by the resin pressure at the outlet 11 of the nozzle or the amount of foaming agent.
  • the adjustment of the resin pressure at the outlet 11 of the nozzle can be adjusted by the nozzle diameter, the amount of extrusion, and the melt viscosity of the resin composition.
  • the foamed particles are formed by cutting an extruded foam at an unfoamed portion. There is little or no bubble cross section on the surface of the cut part of the extruded foam. As a result, the entire surface of the expanded particles has no or only a slight cross section of bubbles. Accordingly, the foamed particles have excellent foamability with no loss of foaming gas, a low open cell ratio, and excellent surface heat-sealing property.
  • a foamed sheet is produced as an extruded foam by extrusion foaming from a T die attached to the front end of the extruder.
  • a method of producing foamed particles by cooling the foamed sheet and then cutting into particles.
  • An annular extruded foam is produced by extrusion foaming from a circular die attached to the front end of the extruder while the resin composition is supplied to the extruder and melt-kneaded in the presence of a foaming agent.
  • a method for producing a foamed particle by cutting an annular extruded foam continuously between the inner and outer peripheral surfaces in the extrusion direction to produce a foamed sheet, and cutting the foamed sheet into particles; Also good.
  • the foam-molded product can be obtained by foam-molding the foamed particles in a mold.
  • the foamed molded product can have various densities. For example, a density of 0.05 to 0.7 g / cm 3 can be taken. Density is more preferably 0.07 ⁇ 0.6g / cm 3, particularly preferably 0.08 ⁇ 0.5g / cm 3.
  • Foamed molded products are excellent in light weight, heat resistance, shock-absorbing properties and mechanical strength, and in particular in load resistance and dimensional stability under high-temperature environments, for example, automobiles, aircraft, railway vehicles. And it can be suitably used for parts of transportation equipment such as ships. As an automobile part, for example, it can be suitably used for a part used in the vicinity of an engine, an exterior material, a heat insulating material and the like.
  • the skin material examples include a fiber reinforcing material, a metal sheet, and a synthetic resin film.
  • a fiber reinforcing material is used as the skin material is referred to as a resin composite in this specification, and items will be described below again.
  • It does not specifically limit as a metal sheet For example, an aluminum sheet, a stainless steel sheet, an iron sheet, a steel sheet, a titanium sheet etc. are mentioned. Among these, an aluminum sheet is preferable because it is excellent in both light weight and mechanical strength.
  • the aluminum sheet also includes an aluminum alloy sheet containing 50% by mass or more of aluminum.
  • the synthetic resin film is not particularly limited, and examples thereof include a polyolefin resin film such as a polyethylene resin film and a polypropylene resin film, a polyester resin film such as a polyethylene terephthalate film, and an acrylic resin film.
  • the foamed molded product is not particularly limited, and can take various shapes depending on applications.
  • Foam molding is a foaming process in which the foamed particles are integrated into the mold cavity and the foamed particles are subjected to secondary foaming, and the resulting secondary foamed particles are integrated by thermal fusion. And a foaming step for obtaining a body.
  • A) Filling step The method for filling the foam particles into the cavity of the molding die of the foam molding machine is not particularly limited.
  • As the foam molding machine an EPS molding machine used when producing a foam molded body from polystyrene resin foam particles or a high-pressure molding used when producing a foam molded body from polypropylene resin foam particles. A machine or the like can be used.
  • the foamed particles may be further impregnated with an inert gas to improve the foaming power.
  • an inert gas By improving the foaming force, the heat-fusability between the foamed particles is improved during in-mold foam molding, and the resulting foamed molded article has further excellent mechanical strength.
  • the inert gas include carbon dioxide, nitrogen, helium, and argon, and carbon dioxide is preferable.
  • Examples of the method of impregnating the expanded particles with the inert gas include a method of placing the expanded particles in an inert gas atmosphere having a pressure equal to or higher than normal pressure. In such a case, an inert gas may be impregnated before filling the foamed particles into the mold. After filling the foamed particles into the mold, the mold is placed in an inert gas atmosphere to form the foamed particles. An inert gas may be impregnated. The temperature when impregnating the expanded particles with an inert gas is preferably 5 to 40 ° C.
  • the foamed particles When the temperature is less than 5 ° C., the foamed particles are cooled too much, and the foamed particles cannot be sufficiently heated at the time of in-mold foam molding. The strength may decrease.
  • the temperature is higher than 40 ° C., the amount of impregnation of the foamed particles with the inert gas is low, and sufficient foamability may not be imparted to the foamed particles, and crystallization of the foamed particles is promoted. The mechanical strength of the resulting foamed molded product may be reduced.
  • the temperature is more preferably 10 to 30 ° C.
  • the pressure when impregnating the expanded particles with the inert gas is preferably 0.2 to 2.0 MPa.
  • the pressure is less than 0.2 MPa, the amount of the inert gas impregnated into the foamed particles is low, and sufficient foamability cannot be imparted to the foamed particles, and the mechanical strength of the resulting foamed molded product may be lowered. If it is higher than 2.0 MPa, the crystallinity of the expanded particles increases, the heat-fusibility of the expanded particles decreases, and the mechanical strength of the resulting foamed molded product may decrease.
  • the pressure is more preferably 0.25 to 1.5 MPa. When the inert gas is carbon dioxide, 0.2 to 1.5 MPa is preferable, and 0.25 to 1.2 MPa is more preferable.
  • the time for impregnating the expanded particles with the inert gas is preferably 10 minutes to 72 hours. When the time is less than 10 minutes, the expanded particles may not be sufficiently impregnated with the inert gas. If it is longer than 72 hours, the production efficiency of the foamed molded product may be lowered.
  • the time is more preferably 15 minutes to 64 hours, and particularly preferably 20 minutes to 48 hours.
  • the inert gas is carbon dioxide, 20 minutes to 24 hours are preferable.
  • the foamability is improved while suppressing the increase in the crystallinity of the expanded particles. Therefore, at the time of in-mold foam molding, the foam particles can be integrated by firmly heat-sealing the foam particles with a sufficient foaming force, and a foam molded article having excellent mechanical strength can be obtained.
  • the expanded particles After impregnating the expanded particles with the inert gas as described above, the expanded particles are pre-expanded into pre-expanded particles. You may shape
  • the pre-foamed particles may be further impregnated with the inert gas in the same manner as the method of impregnating the expanded particles with the inert gas.
  • Examples of a method for pre-expanding the expanded particles to obtain the pre-expanded particles include a method of expanding the expanded particles impregnated with an inert gas by heating to 55 to 90 ° C. When the heating time is lengthened, shrinkage or poor fusion may occur in the expanded particles, and therefore heating with a medium that can give high energy in a short time is desired. Water vapor is suitable as such a medium.
  • the water vapor pressure is preferably 0.1 to 0.8 MPa in terms of gauge pressure.
  • the heating time is preferably 5 to 600 seconds.
  • the heating medium for the foamed particles for secondary foaming is not particularly limited, and includes hot air, hot water, etc. in addition to water vapor.
  • the secondary foaming is preferably performed under conditions of a gauge pressure of 0.1 to 0.8 MPa and a heating time of 5 to 600 seconds.
  • the heat retention time is preferably 10 to 1000 seconds, for example, when a foam molded article having dimensions of 300 mm in length, 400 mm in width, and 30 mm in height is formed.
  • the resin composite has the above-mentioned foamed molded product and a fiber reinforced resin layer (skin material) laminated and integrated on the surface of the foamed molded product. Resin composites are further superior in heat resistance and mechanical strength.
  • resin composites are used for transportation equipment construction including structural members that constitute the body of transportation equipment such as automobiles, aircraft, railway vehicles, and ships. It can be used in a wide range as a member, and is also suitable as a building material, windmill blade, robot arm, cushioning material for helmets, agricultural containers, transport containers such as thermal insulation containers, rotor blades for industrial helicopters, and parts packing materials Can be used.
  • Examples of structural members constituting the automobile body include a door panel, a door inner, a bumper, a fender, a fender support, an engine cover, a roof panel, a trunk lid, a floor panel, a center tunnel, a crash box, and a cowl.
  • a door panel having substantially the same rigidity as that of a steel plate door panel can be greatly reduced in weight, so that a high effect of reducing the weight of an automobile can be obtained.
  • the fiber constituting the fiber reinforced resin layer is not particularly limited, and examples thereof include carbon fiber, glass fiber, aramid fiber, boron fiber, and metal fiber. Among these, carbon fiber, glass fiber, and aramid fiber are preferable because of having excellent mechanical strength and heat resistance, and carbon fiber is more preferable.
  • the form of the fiber is not particularly limited. For example, a woven fabric, a knitted fabric, a non-woven fabric, a fiber bundle (strand) in which fibers are aligned in one direction, a synthetic resin yarn such as a polyamide resin or a polyester resin, or a stitch such as a glass fiber yarn. Examples thereof include face materials formed by binding (stitching) with a thread. Examples of the weaving method include plain weave, twill weave and satin weave.
  • the fibers are (1) a multilayer surface material formed by laminating a plurality of woven fabrics, knitted fabrics or nonwoven fabrics in any combination, (2) a fiber bundle (strand) in which fibers are aligned in one direction, a polyamide resin, A plurality of face materials formed by bundling (stitching) with synthetic resin yarns such as polyester resin or stitch yarns such as glass fiber yarns are overlapped so that the fiber directions of the fiber bundles are different from each other. It may be a multi-layer face material in which face materials are integrated (stitched) with synthetic resin yarns such as polyamide resin and polyester resin, or stitch yarns such as glass fiber yarns.
  • thermosetting resin examples include uncured thermosetting resins and thermoplastic resins.
  • the thermosetting resin is not particularly limited.
  • examples thereof include a resin obtained by prepolymerizing an acid ester resin.
  • Epoxy resins and vinyl ester resins are preferred because of their excellent heat resistance, elastic modulus, and chemical resistance.
  • the thermosetting resin may contain additives such as a curing agent and a curing accelerator.
  • a thermosetting resin may be used independently or 2 or more types may be used together.
  • the thermoplastic resin is not particularly limited, and examples thereof include polyolefin resins such as polyethylene resins and polypropylene resins, and acrylic resins.
  • the content of the resin in the fiber reinforced resin layer is preferably 20 to 70% by mass. When content is less than 20 mass%, the coupling
  • the content is more preferably 30 to 60% by mass.
  • the method for impregnating the fiber with the resin is not particularly limited, and examples thereof include (1) a method of immersing the fiber in the resin, and (2) a method of applying the resin to the fiber.
  • the method for laminating and integrating the fiber reinforced resin layer on the surface of the foam molded body is not particularly limited. For example, (1) the method of laminating and integrating the fiber reinforced resin layer on the surface of the foam molded body via an adhesive.
  • a method of laminating a fiber reinforced resin layer impregnated with a thermoplastic resin on the surface of a foam molded body, and laminating and integrating the surface of the foam molded body and a fiber reinforced resin layer using a thermoplastic resin as a binder (3) A fiber reinforced resin layer impregnated with an uncured thermosetting resin is laminated on the surface of the foam molded body, and the surface of the foam molded body, the fiber reinforced resin layer, and the cured product of the thermosetting resin are used as a binder.
  • a foam-molded product is obtained by laminating a heated and softened fiber-reinforced resin layer on the surface of the foam-molded product and pressing the fiber-reinforced resin layer on the surface of the foam-molded product.
  • the fiber reinforced resin layer can be deformed along the surface of the foamed molded product.
  • the method (4) can also be suitably used.
  • the method used for forming the fiber reinforced resin layer include an autoclave method, a hand lay-up method, a spray-up method, a PCM (Prepre Compression Molding) method, an RTM (Resin Transfer Molding) method, and a VaRTM (Vacuum Assisted Resin Transfer Transfer). ) Law.
  • the intrinsic viscosity (IV value) of the crystalline aromatic polyester resin and the amorphous aromatic polyester resin was a value measured in accordance with JIS K7367-5: 2000. Specifically, the resin was dried for 15 hours at 40 ° C. under a vacuum of 133 Pa. A sample of 0.1000 g was removed from the resin and placed in a 20 mL volumetric flask, and about 15 mL of a mixed solvent (phenol 50 mass%, 1,1,2,2-tetrachloroethane 50 mass%) was added to the volumetric flask.
  • a mixed solvent phenol 50 mass%, 1,1,2,2-tetrachloroethane 50 mass%
  • sample concentration 0.500 g / 100 mL
  • sample solution 8 mL of the sample solution was supplied to the viscometer with a whole pipette, the temperature of the sample was stabilized using a water bath containing 25 ° C. water, and the flow time of the sample was measured.
  • concentration of the sample solution 8 mL of a mixed solvent was sequentially added to the viscometer, mixed and diluted to prepare a diluted sample solution. And the flow time of the diluted sample solution was measured.
  • the flow time of the mixed solvent was measured. Based on the following formula, the intrinsic viscosity of the crystalline aromatic polyester resin and the amorphous aromatic polyester resin was calculated. The following was calculated from the flow time (t 0 ) of the mixed solvent and the flow time (t) of the sample solution.
  • Relative viscosity ( ⁇ r ) t / t 0
  • first temperature raising step 290
  • second temperature raising step a DSC curve was obtained when the temperature was raised from 30 ° C. to 290 ° C.
  • All temperature increases were performed at a rate of 10 ° C./min, and alumina was used as a reference material.
  • the melting temperature (melting point) was set to the top temperature of the melting peak observed in the second heating step using the analysis software attached to the apparatus.
  • the glass transition temperature is calculated by calculating the midpoint glass transition temperature using the analysis software attached to the apparatus at the stepwise change portion of the glass transition observed in the second temperature raising step. It was temperature. In addition, this intermediate point glass transition temperature was calculated
  • the open cell ratio of the expanded particles was measured as follows. First, a sample cup of a volumetric air comparison type hydrometer was prepared, and the total mass A (g) of foamed particles in an amount satisfying about 80% of the sample cup was measured. Next, the volume B (cm 3 ) of the entire expanded particles was measured by a 1-1 / 2-1 atmospheric pressure method using a hydrometer. For the measurement, a “volumetric air comparison hydrometer 1000 type” manufactured by Tokyo Science Co., Ltd. was used. Subsequently, a wire mesh container was prepared, the wire mesh container was immersed in water, and the mass C (g) of the wire mesh container in the state immersed in water was measured.
  • the wire mesh container is immersed in water, and the wire mesh container in the water soaked state and the foam particles placed in the wire mesh container
  • the total mass D (g) was measured.
  • “Electronic Balance HB3000” minimum scale 0.01 g) manufactured by Daiwa Seikan Co., Ltd. was used.
  • the apparent volume E (cm 3 ) of the expanded particles is calculated based on the following formula, and the open cell ratio of the expanded particles is calculated by the following formula based on the apparent volume E and the entire volume B (cm 3 ) of the expanded particles. did.
  • the volume of 1 g of water was 1 cm 3 .
  • a DSC curve was obtained when the temperature was raised from 30 ° C. to 290 ° C. under a nitrogen gas flow rate of 20 mL / min using a “DSC7000X, AS-3” differential scanning calorimeter manufactured by Hitachi High-Tech Science. The temperature was raised at a rate of 10 ° C./min, and alumina was used as a reference material. Melting temperature Tm (melting point) and crystallization temperature Tc are the top of the melting peak and crystallization peak in the DSC curve obtained in the first heating step shown in FIG. The temperature was taken as the read value.
  • the glass transition temperature Tg is obtained from the standard (9.3 “How to find the glass transition temperature”), and in the stepwise change portion of the glass transition of the DSC curve obtained in the first heating step shown in FIG.
  • the midpoint glass transition temperature was calculated.
  • ⁇ (mW) between the low-temperature base line and the high-temperature base line in the vertical axis direction is 0.02 mW or less in the step change portion of the glass transition of the DSC curve, the glass transition step shape Not considered a change.
  • the amount of crystallization heat was determined from the area of the crystallization peak in the DSC curve obtained in the first heating step shown in FIG. Specifically, as shown in FIG. 1, in the obtained DSC curve, a line connecting the point where the DSC curve is separated from the base line on the low temperature side and the point where the DSC curve returns to the high temperature side again, and the DSC curve It calculated from the area of the part enclosed.
  • the half crystallization time at 120 ° C. measured by DSC for the expanded particles was the time measured in the following manner. Specifically, a differential scanning calorimeter device (“DSC7000X, AS-3” manufactured by Hitachi High-Tech Science Co., Ltd.) was used as a measuring device. About 5.5 ⁇ 0.5 mg of expanded particles were filled so that there was no gap at the bottom of the aluminum measurement container. After filling, the half crystallization time was measured using alumina as a reference material under the condition of a nitrogen gas flow rate of 20 mL / min. As heat treatment conditions, the foamed particles were heated from 30 ° C. to 290 ° C.
  • the foamed particles were held at 290 ° C. for 10 minutes, and then the foamed particles were removed from the heating furnace. It was allowed to cool to 30 ° C. in an environment of 25 ° C. air. After this heat treatment, the expanded particles were heated from 30 ° C. to 110 ° C. at the maximum heating rate of the heating furnace (approximately 35 ° C./min), and further heated from 110 ° C. to 120 ° C. at 10 ° C./min. Thereafter, the amount of heat generated by crystallization of the resin when the expanded particles were held at 120 ⁇ 1 ° C. for 30 minutes was measured.
  • a DSC curve with the horizontal axis as time as shown in FIG. 2 was obtained.
  • the point a where heat generation started the point b where heat generation ended (the earliest point at which the DSC curve returns to the baseline after the peak top point c), and the peak top point c of the DSC curve were identified.
  • Point a was the intersection of the extension line of the baseline (straight line immediately after the exothermic peak) and the DSC curve when the temperature of the measurement sample was 120 ⁇ 1 ° C.
  • the time T elapsed from the point a to the point c was defined as the “half-crystallization time of the expanded particles (thermoplastic polyester resin)”.
  • half-crystallization time of the foamed particles three samples of the foamed particles are prepared, the half-crystallization time of the foamed particles is measured from each sample, and the half-crystallization time of each sample obtained is added. The average value was used.
  • the heating dimensional change rate of the foamed molded article was measured by the method B described in JIS K6767: 1999 “Foamed Plastics-Polyethylene Test Method”.
  • a test piece having a square shape with a side of 150 mm on a side and a thickness of the foamed molded product was cut out from the foamed molded product.
  • Three 100 mm straight lines were written at 50 mm intervals in the center of the test piece in parallel with each other in the vertical and horizontal directions. The lengths of three straight lines in each of the vertical direction and the horizontal direction were measured, and the arithmetic average value L0 was used as the initial dimension. Thereafter, the test piece was left in a 130 ° C.
  • Heating dimensional change rate 100 ⁇ (L1-L0) / L0
  • Example 1 (1) Production of Expanded Particles Using the production apparatus shown in FIGS. 3 to 5, foamed particles were produced according to the following procedure. First, the predetermined amounts of resin a, resin c, cell regulator and cross-linking agent shown in Table 1 were supplied to a single screw extruder having a diameter of 65 mm and an L / D ratio of 35, and melt kneaded at 290 ° C. . Subsequently, from the middle of the extruder, butane composed of 35% by mass of isobutane and 65% by mass of normal butane is a resin in a molten state so as to be 0.5 parts by mass with respect to 100 parts by mass of the total amount of resin a and resin c.
  • the nozzle mold 1 has 20 nozzles having an outlet portion 11 having a diameter of 1 mm, and all of the nozzle outlet portions 11 have a diameter of 139.5 mm, which is assumed on the front end surface 1a of the nozzle die 1. Are arranged at equal intervals on the virtual circle A.
  • the cooling member 4 includes a cooling drum 41 including a front circular front part 41a and a cylindrical peripheral wall part 41b extending rearward from the outer peripheral edge of the front part 41a and having an inner diameter of 320 mm. It was.
  • the cooling water 42 at 20 ° C. was supplied into the cooling drum 41 through the supply pipe 41 d and the supply port 41 c of the cooling drum 41.
  • the volume in the cooling drum 41 was 17684 cm 3 .
  • the cooling water 42 draws a spiral along the inner peripheral surface of the peripheral wall portion 41b of the cooling drum 41 due to the centrifugal force accompanying the flow velocity when being supplied from the supply pipe 41d to the inner peripheral surface of the peripheral wall portion 41b of the cooling drum 41.
  • the cooling liquid 42 gradually spreads in the direction perpendicular to the traveling direction while traveling along the inner peripheral surface of the peripheral wall portion 41b, and as a result, the supply port 41c of the cooling drum 41
  • the inner peripheral surface of the more peripheral wall portion 41b was entirely covered with the coolant 42.
  • the rotary blade 5 disposed on the front end face 1a is rotated at a rotational speed of 2500 rpm, and the resin extrudate extruded and foamed from the outlet portion 11 of each nozzle of the nozzle mold 1 is cut by the rotary blade 5 to be substantially spherical. A particulate cut was produced.
  • the resin extrudate consisted of an unfoamed portion immediately after being extruded from the nozzle of the nozzle mold 1 and a foamed portion in the course of foaming that continued from the unfoamed portion. And the resin extrudate was cut
  • the rotating shaft 2 was not attached to the nozzle mold 1 and the cooling member 4 was retracted from the nozzle mold 1.
  • the resin extrudate is extruded and foamed from the extruder, and the resin extrudate immediately after being extruded from the nozzle of the nozzle mold 1, and the foaming portion in the process of foaming continuous with the unfoamed portion, It was confirmed that it consists of.
  • the rotating shaft 2 is rotated, and the resin extrudate is moved by the rotating blade 5 at the opening end of the outlet 11 of the nozzle.
  • Cutting was performed to produce a particulate cut product.
  • the particulate cut matter is blown outward or forward by the cutting stress of the rotary blade 5, and the flow of the cooling water 42 flows into the cooling water 42 flowing along the inner surface of the cooling drum 41 of the cooling member 4. Colliding with the surface of the cooling water 42 in an oblique direction so as to follow the cooling water 42 from the upstream side toward the downstream side, the particulate cut material enters the cooling water 42 and is immediately cooled, and the expanded particles Was manufactured.
  • the obtained foamed particles were discharged together with the cooling water 42 through the discharge port 41e of the cooling drum 41, and then separated from the cooling water 42 by a dehydrator.
  • the pressure is applied to the laminate by applying a gauge pressure of 0.3 MPa, and the laminate is heated at 130 ° C. for 60 minutes, so that the thermosetting property in the fiber reinforced resin layer forming material is increased.
  • the resin was cured, and the fiber reinforced resin layer forming material was laminated and integrated on both surfaces of the foamed molded body with a cured thermosetting resin.
  • Example 2 Except that the ratio of the crystalline aromatic polyester-based resin and the amorphous aromatic polyester-based resin and the type of the amorphous aromatic polyester-based resin were set as shown in Table 1, as in Example 1, Foamed particles and a foamed molded product were obtained.
  • Comparative Example 1 In the same manner as in Example 1 except that the crystalline aromatic polyester resin a was set to 60% by mass and the amorphous aromatic polyester resin c was set to 40% by mass, foamed particles and a foam molded article were obtained. . When the half-crystallization time at 120 ° C.
  • the expanded particles have the following properties: (1) The DSC curve shows one glass transition temperature and a crystallization peak. (2) The amount of crystallization calculated from the area of the crystallization peak is 20 mJ / mg or more. (3) The half crystallization time at 120 ° C. is 180 to 1000 seconds. It can be seen that a foamed molded article having a beautiful appearance and excellent heat resistance and mechanical strength can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

熱可塑性芳香族ポリエステル系樹脂組成物の発泡粒子であり、前記熱可塑性芳香族ポリエステル系樹脂組成物が結晶性芳香族ポリエステル系樹脂と非晶性芳香族ポリエステル系樹脂とを含み、前記発泡粒子は、昇温速度10℃/分で30℃から290℃まで加熱した際に得られたDSC曲線において、以下の性質:(1)前記DSC曲線が、1つのガラス転移温度と、結晶化ピークとを示す、(2)前記結晶化ピークの面積から求められる結晶化熱量が20mJ/mg以上である、(3)120℃における半結晶化時間が、180~1000秒である、を示す発泡粒子。

Description

発泡粒子、発泡成形体、それらの製造方法及び樹脂複合体
 本発明は、発泡粒子、発泡成形体、それらの製造方法及び樹脂複合体に関する。更に詳しくは、本発明は、外観美麗で、耐熱性と機械強度に優れた発泡成形体を製造するための発泡粒子、外観美麗で、耐熱性と機械強度に優れた発泡成形体、それらの製造方法及び樹脂複合体に関する。本発明の発泡成形体は、優れた軽量性、耐熱性、緩衝性及び機械強度を有していることから、自動車、航空機、鉄道車輛及び船舶等の輸送機器の部品、風車ブレード等の産業機器の部品に好適に用いることができる。更に、発泡成形体の表面に繊維強化樹脂層を積層一体化させてなる樹脂複合体は、耐熱性及び機械強度に更に優れており、上記輸送機器の部品、及び、自動車、航空機、鉄道車輛又は船舶の輸送機器の本体を構成する構造部材を含めた構成用部材、並びに、上記産業機器の部品、及び、風車ブレード等の産業機器の本体を構成する構造部材を含めた構成用部材として好適に用いることができる。
 ポリエチレンテレフタレート(PET)のような熱可塑性芳香族ポリエステル系樹脂は、剛性及び寸法安定性に優れた発泡成形体を与え得ることが予想されるため、この樹脂を使用した発泡成形体についての検討結果が種々の文献で報告されている。例えば特許文献1(特開2014-70153号公報)では、熱可塑性ポリエステル系樹脂として、非晶性熱可塑性ポリエステル系樹脂100質量部と、結晶性熱可塑性ポリエステル系樹脂10~900質量部とを含む発泡粒子が記載されている。非晶性熱可塑性ポリエステル系樹脂には、ジオール成分として1,4-シクロヘキサンジメタノール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール又はスピログリコールの少なくとも一種を含有し且つガラス転移温度Tgが100~130℃である樹脂が挙げられ、結晶性熱可塑性ポリエステル系樹脂には、固有粘度が0.8~1.1である樹脂が挙げられている。特許文献1では、優れた発泡性を有しており、耐熱性、緩衝性及び機械強度に優れた発泡成形体を製造できる熱可塑性ポリエステル系樹脂製の発泡粒子が提供できる、とされている。
特開2014-70153号公報
 特許文献1では、2種のポリエステル系樹脂を使用している。これら2種類の樹脂は完全に相溶しないため、それらをブレンドした樹脂組成物には二つのTgが観測される。そのような樹脂組成物を押出発泡にて発泡粒子を製造しようとすると、非晶性熱可塑性ポリエステル系樹脂自体を押出発泡させることが難しいことに加え、非晶性熱可塑性ポリエステル系樹脂と結晶性熱可塑性ポリエステル系樹脂の発泡適正温度が異なるため、どちらか一方の発泡適正温度に調整しても、十分に連続気泡率が低い(15%未満)発泡粒子は得られないことがあった。また、連続気泡率が高い発泡粒子を用いて発泡成形体を製造すると、発泡粒子の二次発泡力が低いため、表面性に劣る発泡成形体が得られることがあり、発泡成形体の外観について改善の余地を残していた。
 本発明の発明者等は、上記課題を解決すべく誠意研究を行なった結果、結晶性芳香族ポリエステル系樹脂と、それと高い相溶性を有する非晶性芳香族ポリエステル系樹脂とを含む樹脂組成物を発泡させることで、ガラス転移温度Tgが一つとなり、所望の結晶化速度に制御された連続気泡率の低い発泡粒子を得ることができ、その発泡粒子は型内成形に十分な発泡性を発揮し、それを用いることで外観の良好な発泡成形体を得ることができることを見出し、本発明を完成するに至った。
 かくして本発明によれば、熱可塑性芳香族ポリエステル系樹脂組成物の発泡粒子であり、前記熱可塑性芳香族ポリエステル系樹脂組成物が結晶性芳香族ポリエステル系樹脂と非晶性芳香族ポリエステル系樹脂とを含み、
 前記発泡粒子は、昇温速度10℃/分で30℃から290℃まで加熱した際に得られたDSC曲線において、以下の性質:
(1)前記DSC曲線が、1つのガラス転移温度と、結晶化ピークとを示す、
(2)前記結晶化ピークの面積から求められる結晶化熱量が20mJ/mg以上である、(3)120℃における半結晶化時間が、180~1000秒である、
を示す発泡粒子が提供される。
 また、本発明によれば、上記発泡粒子を、型内で発泡成形することにより得られる発泡成形体が提供される。
 更に、本発明によれば、上記発泡成形体と、前記発泡成形体の表面に積層且つ一体化された繊維強化樹脂層とを有する樹脂複合体が提供される。
 また、本発明によれば、上記発泡粒子の製造方法であって、
 結晶性芳香族ポリエステル系樹脂と非晶性芳香族ポリエステル系樹脂とを含む熱可塑性芳香族ポリエステル系樹脂組成物を押出機に供給し、前記押出機に供給された供給物を、発泡剤の存在下で溶融混練しつつ、押出発泡させて、押出発泡体を得る溶融押出工程と、
 前記押出発泡体を切断して、発泡粒子を得る切断工程とを含む発泡粒子の製造方法が提供される。
 更に、本発明によれば、上記発泡粒子を金型のキャビティ内に充填する充填工程と、前記発泡粒子を二次発泡させることで、得られた二次発泡粒子どうしを熱融着により一体化させて、発泡成形体を得る発泡工程とを含む発泡成形体の製造方法が提供される。
 本発明の製造方法によれば、外観の良好な発泡成形体を与え得る熱可塑性芳香族ポリエステル系樹脂製の発泡粒子を提供できる。
 以下のいずれかの場合、外観のより良好な発泡成形体を与え得る熱可塑性芳香族ポリエステル系樹脂製の発泡粒子を提供できる。
(1)発泡粒子が、15%未満の連続気泡率を示す。
(2)結晶性芳香族ポリエステル系樹脂と非晶性芳香族ポリエステル系樹脂とが、両樹脂の合計100質量%に対して、65~99質量%と35~1質量%の割合で含まれる。
(3)非晶性芳香族ポリエステル系樹脂が、60~90℃のガラス転移温度を示す。
(4)非晶性芳香族ポリエステル系樹脂が、0.6~1.1の固有粘度(IV値)を示す。
(5)非晶性芳香族ポリエステル系樹脂と、結晶性芳香族ポリエステル系樹脂とのそれぞれのガラス転移温度の差が15℃以下を示す。
(6)結晶性芳香族ポリエステル系樹脂が、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリトリメチレンナフタレートから1種以上選ばれ、非晶性芳香族ポリエステル系樹脂が、テレフタル酸と、1,4-シクロヘキサンジメタノール及び/又はネオペンチレングリコールとの共重合体である。
DSC曲線の一例を示したグラフである。 DSC曲線の一例を示したグラフである。 発泡粒子の製造装置の一例を示した模式図である。 発泡粒子の製造装置の一例を示した模式図である。 発泡粒子の製造装置の一例を示した模式図である。
 以下、本発明を詳細に説明する。
(発泡粒子)
 (A)物性
 発泡粒子は、昇温速度10℃/分で30℃から290℃まで加熱した際に得られたDSC曲線において、以下の性質:
(1)DSC曲線が、1つのガラス転移温度と、結晶化ピークとを示す、
(2)結晶化ピークの面積から求められる結晶化熱量が20mJ/mg以上である、
(3)120℃における半結晶化時間が、180~1000秒である、
を示す。
 発泡粒子が、上記性質(1)~(3)を示すことで、結晶性芳香族ポリエステル系樹脂と非晶性芳香族ポリエステル系樹脂とが高く相溶していることを確認できる。その結果、連続気泡率の低い発泡粒子を提供できる。また、そのような発泡粒子は、外観美麗で、耐熱性と機械強度に優れた発泡成形体を提供できる。
 前記発泡粒子に含まれる結晶性の成分は、結晶化していない方が、前記発泡粒子に良好なる二次発泡性を発揮させる上において有利である。また、前記発泡粒子に含まれる結晶性の成分は、結晶化していない方が、当該発泡粒子どうしを融着させる上において有利である。
 このようなことから、結晶化ピークの面積から求められる結晶化熱量が20mJ/mg未満の場合、発泡成形体の結晶性の成分が少なく、耐熱性が低下することがある。結晶化熱量は、22mJ/mg以上であることが好ましく、25mJ/mg以上であることがより好ましい。
 一方で、発泡成形体作製時の結晶化促進工程(保熱工程)の時間を短縮し、生産性を向上させる上において、発泡粒子は、未結晶状態の結晶性成分を過度に存在させない方が好ましい。
 このようなことから、前記結晶化熱量は、32mJ/mg以下であることが好ましく、30mJ/mg以下であることがより好ましい。
 結晶化熱量は、20.0mJ/mg、20.5mJ/mg、21.0mJ/mg、21.5mJ/mg、22.0mJ/mg、22.5mJ/mg、23.0mJ/mg、23.5mJ/mg、24.0mJ/mg、24.5mJ/mg、25.0mJ/mg、25.5mJ/mg、26.0mJ/mg、26.5mJ/mg、27.0mJ/mg、27.5mJ/mg、28.0mJ/mg、28.5mJ/mg、29.0mJ/mg、29.5mJ/mg、30.0mJ/mg、30.5mJ/mg、31.0mJ/mg、31.5mJ/mg、32.0mJ/mgを取り得る。
 また、本発明に係る発泡粒子の120℃における半結晶化時間は、180秒以上1000秒以下である。
 120℃における半結晶化時間が180秒未満の場合、発泡粒子の結晶化速度が速いため、型内での発泡成形時に、発泡粒子どうしが融着する前に発泡粒子の結晶化度が上昇するため、発泡成形体の融着性が低下し、機械強度が低下することがある。1000秒より長い場合、発泡成形体の結晶化を促進し、優れた耐熱性を発現するためには、発泡成形体作製時の保熱工程の時間(保熱時間)を長くする必要があるため、生産性が悪くなることがある。このようなことから、前記半結晶化時間は、200~800秒であることが好ましく、230~500秒であることがより好ましい。
 半結晶化時間は、180秒、200秒、220秒、230秒、240秒、260秒、280秒、300秒、320秒、340秒、360秒、380秒、400秒、420秒、440秒、460秒、480秒、500秒、525秒、550秒、600秒、650秒、700秒、750秒、800秒、850秒、900秒、950秒、1000秒を取り得る。
 また、本発明に係る発泡粒子は、15%未満の連続気泡率を示すことが好ましい。連続気泡率が15%以上の場合、型内成形に十分な発泡性を発揮できず、その結果、得られる発泡成形体の機械強度が低下したり、外観の良好な発泡成形体を得難くなることがある。連続気泡率は、13%以下であることがより好ましく、10%以下であることが更に好ましい。連続気泡率の下限は0%である。
 発泡粒子は、14.99%、14.9%、14.5%、14.0%、13.5%、13.0%、12.5%、12.0%、11.5%、11.0%、10.5%、10.0%、9.5%、9.0%、8.5%、8.0%、7.5%、7.0%、6.5%、6.0%、5.5%、5.0%、4.5%、4.0%、3.5%、3.0%、2.5%、2.0%、1.5%、1.0%、0.5%、0.1%、0.01%、0.001%、0%の連続気泡率を取り得る。
 発泡粒子の形状は特に限定されない。例えば、球状、円柱状等が挙げられる。この内、できるだけ球状に近いことが好ましい。即ち、発泡粒子の短径と長径との比ができるだけ1に近いことが好ましい。
 発泡粒子は、1~20mmの平均粒子径を有していることが好ましい。平均粒子径は、所定の目開きの篩を用いて分級することにより測定できる。
 発泡粒子は、1.0mm、1.5mm、2.0mm、2.5mm、3.0mm、3.5mm、4.0mm、4.5mm、5.0mm、5.5mm、6.0mm、6.5mm、7.0mm、7.5mm、8.0mm、8.5mm、9.0mm、9.5mm、10.0mm、10.5mm、11.0mm、11.5mm、12.0mm、12.5mm、13.0mm、13.5mm、14.0mm、14.5mm、15.0mm、15.5mm、16.0mm、16.5mm、17.0mm、17.5mm、18.0mm、18.5mm、19.0mm、19.5mm、20.0mmの平均粒子径を取り得る。
 発泡粒子の嵩密度は、0.05~0.7g/cm3が好ましい。嵩密度が0.05g/cm3未満の場合、発泡粒子の連続気泡率が上昇して、型内発泡成形における発泡時に発泡粒子に必要な発泡力を付与できないことがある。0.7g/cm3より大きい場合、得られる発泡粒子の気泡が不均一となって、型内発泡成形時における発泡粒子の発泡性が不充分となることがある。嵩密度は、0.07~0.6g/cm3がより好ましく、0.08~0.5g/cm3が特に好ましい。
 発泡粒子の嵩密度は、0.05g/cm3、0.07g/cm3、0.08g/cm3、0.10g/cm3、0.15g/cm3、0.20g/cm3、0.25g/cm3、0.30g/cm3、0.35g/cm3、0.40g/cm3、0.45g/cm3、0.50g/cm3、0.55g/cm3、0.60g/cm3、0.65g/cm3、0.70g/cm3を取り得る。
 (B)熱可塑性芳香族ポリエステル系樹脂組成物
 発泡粒子は熱可塑性芳香族ポリエステル系樹脂組成物(以下、単に樹脂組成物ともいう)から構成される。樹脂組成物は、結晶性芳香族ポリエステル系樹脂と非晶性芳香族ポリエステル系樹脂とを含む。樹脂組成物に占める2種のポリエステル系樹脂の含量は、80質量%以上、90質量%以上、100質量%とすることができる。
 樹脂組成物に占める2種のポリエステル系樹脂の含量は、80質量%、81.0質量%、82.5質量%、85質量%、87.5質量%、90.0質量%、92.5質量%、95.0質量%、97.5質量%、99.0質量%、99.9質量%、100質量%を取り得る。
 本明細書において、ポリエステル系樹脂が結晶性又は非晶性であるかは次の要領によって判断する。まず、ポリエステル系樹脂の試料を示差走査型熱量計(DSC)を用いてJIS K7121:1987、2012「プラスチックの転移温度測定方法」に準拠して10℃/分の昇温速度で30℃から290℃まで加熱溶融させ、290℃にて10分間に亘って保持する。保持後、試料を加熱炉から取り出して25℃の空気中の環境下で30℃まで放冷させる。その後、試料を10℃/分の昇温速度にて30から290℃まで加熱溶融させる。この二回目の昇温工程において、融解ピークを示さないものを非晶性とし、融解ピークを示したものを結晶性と判断する。
  (B-1)結晶性芳香族ポリエステル系樹脂
 結晶性芳香族ポリエステル系樹脂は、芳香族ジカルボン酸とジオールとの間でエステル化反応をさせて得られたポリエステルが挙げられる。芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェノキシジカルボン酸等が挙げられる。芳香族ジカルボン酸は、テレフタル酸、イソフタル酸が好ましい。芳香族ジカルボン酸は、単独で用いられても二種以上が併用されてもよい。
 ジオールとしては、脂肪族ジオール又は脂環族ジオールが挙げられる。脂肪族ジオールとしては、例えば、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ネオペンチレングリコール、ヘキサメチレングリコール、ジエチレングリコール等が挙げられる。脂肪族ジオールは、エチレングリコール、ジエチレングリコールが好ましい。脂環族ジオールとしては、例えば、シクロヘキサンジメタノールが挙げられる。ジオールは、単独で用いられても二種以上が併用されてもよい。
 具体的な結晶性芳香族ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリトリメチレンナフタレート等が挙げられる。結晶性芳香族ポリエステル系樹脂は、単独で用いられても二種以上が併用されてもよい。結晶性芳香族ポリエステル系樹脂は、ポリエチレンテレフタレートが好ましい。
 結晶性芳香族ポリエステル系樹脂は、公知の方法で合成できる。
 結晶性芳香族ポリエステル系樹脂は、0.6~1.1の固有粘度(IV値)を有していることが好ましい。IV値が0.6未満の場合、発泡粒子の製造時に破泡を生じてしまい、得られる発泡粒子の連続気泡率が高くなり、発泡粒子の二次発泡性が低下することがある。IV値が1.1より大きい場合、押出発泡時の負荷が大きくなりすぎて発泡粒子の生産性が低下したり、得られる発泡粒子の発泡倍率が低下したりすることがある。その結果、発泡粒子を用いて得られる発泡成形体の軽量性又は緩衝性が低下することがある。IV値は、0.65~1.05であることがより好ましく、0.7~1が更に好ましい。
 結晶性芳香族ポリエステル系樹脂のIV値は、0.60、0.65、0.70、0.75、0.80、0.85、0.88、0.90、0.95、1.00、1.05、1.10を取り得る。
 結晶性芳香族ポリエステル系樹脂は、220~270℃の融点(Tm)を有していることが好ましい。融点が220℃未満の場合、熱可塑性芳香族ポリエステル系樹脂組成物と架橋剤との反応性が低下するために、発泡粒子を製造する際に樹脂組成物の改質が不十分となって押出発泡性が改善されず、押出発泡が困難となることがある。また、発泡粒子が得られたとしても、発泡粒子の連続気泡率が高くなり、発泡粒子の二次発泡性が低下し、発泡粒子を用いて得られる発泡成形体の軽量性又は機械強度が低下することがある。280℃より高い場合、発泡粒子を製造する際に高温で押出する必要があり、その場合、熱可塑性芳香族ポリエステル系樹脂組成物の加水分解が進行しやすくなる。そのような状況で発泡粒子を製造すると、樹脂組成物の改質が不十分となって押出発泡性が改善されず、押出発泡が困難となることがある。また、発泡粒子が得られたとしても、発泡粒子の連続気泡率が高くなり、発泡粒子の二次発泡性が低下し、発泡粒子を用いて得られる発泡成形体の軽量性又は機械強度が低下することがある。融点は、230~265℃であることがより好ましく、235~260℃が更に好ましい。
 融点は、220.0℃、222.5℃、225.0℃、227.5℃、230.0℃、232.5℃、235.0℃、237.5℃、240.0℃、242.5℃、245.0℃、247.0℃、247.5℃、250.0℃、252.5℃、255.0℃、257.5℃、260.0℃、262.5℃、265.0℃、267.5℃、270.0℃を取り得る。
 結晶性芳香族ポリエステル系樹脂は、60~90℃のガラス転移温度(Tg)を有していることが好ましい。ガラス転移温度が60℃未満の場合、発泡成形体の高温環境下での機械強度が低下することがある。90℃より高い場合、型内発泡成形時に発泡成形体の融着性が低下し、発泡成形体の機械強度が低下することがある。ガラス転移温度は、65~85℃であることがより好ましく、70~80℃が更に好ましい。
 ガラス転移温度は、60.0℃、62.5℃、65.0℃、67.5℃、70.0℃、72.5℃、75.0℃、77.5℃、78.0℃、80.0℃、82.5℃、85.0℃、87.5℃、90.0℃を取り得る。
  (B-2)非晶性芳香族ポリエステル系樹脂
 非結晶性芳香族ポリエステル系樹脂は、芳香族ジカルボン酸とジオールとの間でエステル化反応をさせて得られたポリエステルが挙げられる。芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェノキシジカルボン酸等が挙げられる。芳香族ジカルボン酸は、テレフタル酸、イソフタル酸が好ましい。芳香族ジカルボン酸は、単独で用いられても二種以上が併用されてもよい。
 ジオールとしては、脂肪族ジオール又は脂環族ジオールが挙げられる。脂肪族ジオールとしては、例えば、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ネオペンチレングリコール、ヘキサメチレングリコール、ジエチレングリコール、プロパンジオール、1,4-ブタンジオール、ポリテトラメチレングリコール等が挙げられる。脂環族ジオールとしては、例えば、シクロヘキサンジメタノール、テトラメチルシクロブタンジオール、スピログリコール等が挙げられる。ジオールは、1,4-シクロヘキサンジメタノール及びネオペンチレングリコールが好ましい。ジオールは、単独で用いられても二種以上が併用されてもよい。
 具体的な非晶性芳香族ポリエステル系樹脂は、テレフタル酸と、1,4-シクロヘキサンジメタノール及び/又はネオペンチレングリコールとの共重合体が好ましい。非晶性芳香族ポリエステル系樹脂に占める1,4-シクロヘキサンジメタノール及び/又はネオペンチレングリコールに由来する単位の割合は、10モル%以上が好ましく、15モル%以上がより好ましく、20モル%以上が特に好ましい。
 非晶性芳香族ポリエステル系樹脂に占める1,4-シクロヘキサンジメタノール及び/又はネオペンチレングリコールに由来する単位の割合は、10.0モル%、12.5モル%、15.0モル%、17.5モル%、20.0モル%、22.5モル%、25.0モル%、30.0モル%、35.0モル%、40.0モル%、45.0モル%、50.0モル%、55.0モル%、60.0モル%、65.0モル%、70.0モル%、75.0モル%、80.0モル%、85.0モル%、90.0モル%、95.0モル%、99.0モル%、100モル%を取り得る。
 非晶性芳香族ポリエステル系樹脂は、公知の方法で合成できる。
 非晶性芳香族ポリエステル系樹脂は、60~90℃のガラス転移温度を示すことが好ましい。ガラス転移温度が60℃未満の場合、発泡成形体の高温環境下での機械強度が低下することがある。90℃より高い場合、非晶性熱可塑性ポリエステル系樹脂と結晶性熱可塑性ポリエステル系樹脂との相溶性が低下するため、得られる発泡粒子の連続気泡率が高くなり、発泡粒子の二次発泡性が低下し、発泡粒子を用いて得られる発泡成形体の軽量性又は機械強度が低下することがある。また型内発泡成形時に発泡成形体の融着性が低下し、発泡成形体の機械強度が低下することがある。ガラス転移温度は、65~85℃であることがより好ましく、70~80℃が更に好ましい。
 ガラス転移温度は60.0℃、62.5℃、65.0℃、67.5℃、70.0℃、72.5℃、75.0℃、77.5℃、78.0℃、79.0℃、80.0℃、82.5℃、85.0℃、87.5℃、90.0℃を取り得る。
 非晶性芳香族ポリエステル系樹脂と、結晶性芳香族ポリエステル系樹脂とのそれぞれのガラス転移温度の差は、15℃以下が好ましく、10℃以下が更に好ましい。
 非晶性芳香族ポリエステル系樹脂と、結晶性芳香族ポリエステル系樹脂とのそれぞれのガラス転移温度の差は、15.0℃、14.5℃、14.0℃、13.5℃、13.0℃、12.5℃、12.0℃、11.5℃、11.0℃、10.5℃、10.0℃、9.5℃、9.0℃、8.5℃、8.0℃、7.5℃、7.0℃、6.5℃、6.0℃、5.5℃、5.0℃、4.5℃、4.0℃、3.5℃、3.0℃、2.5℃、2.0℃、1.5℃、1.0℃、0.5℃、0.25℃、0.1℃、0℃を取り得る。
 非晶性芳香族ポリエステル系樹脂は、0.6~1.1のIV値を有していることが好ましい。IV値が0.6未満の場合、発泡粒子の製造時に破泡を生じてしまい、得られる発泡粒子の連続気泡率が高くなり、発泡粒子の二次発泡性が低下することがある。IV値が1.1より大きい場合、押出発泡時の負荷が大きくなりすぎて発泡粒子の生産性が低下したり、得られる発泡粒子の発泡倍率が低下したりすることがある。その結果、発泡粒子を用いて得られる発泡成形体の軽量性又は緩衝性が低下することがある。IV値は、0.65~1.05であることがより好ましく、0.7~1が更に好ましい。
 IV値は、0.600、0.625、0.640、0.650、0.670、0.675、0.700、0.725、0.750、0.775、0.790、0.800、0.825、0.850、0.875、0.900、0.925、0.950、0.975、1.000、1.025、1.050、1.075、1.100を取り得る。
 なお、熱可塑性芳香族ポリエステル系樹脂を構成するモノマー由来成分の存在は、例えば、熱可塑性芳香族ポリエステル系樹脂を1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(HFIP-d、重溶媒)に溶解させ、H-NMRを用いて測定できる。
 装置及び測定条件としては、例えば、以下に記載したものを用いることができる。
<装置>
Bruker Biospin,AVANCEIII-600 with Cryo Probe
<測定条件>
観測周波数=600MHz(H)
測定溶媒:HFIP-d
測定温度:300K
化学シフト基準=測定溶媒(HFIP-dH;4.41ppm)
  (B-3)結晶性芳香族ポリエステル系樹脂と非晶性芳香族ポリエステル系樹脂との含有割合
 結晶性芳香族ポリエステル系樹脂と非晶性芳香族ポリエステル系樹脂とは、両樹脂の合計100質量%に対して、65~99質量%と35~1質量%の割合で樹脂組成物中に含まれることが好ましい。結晶性芳香族ポリエステル系樹脂の割合が65質量%未満の場合、発泡粒子を製造する場合に樹脂組成物の改質が不十分となって押出発泡性が改善されず、押出発泡が困難となることがある。また、発泡粒子が得られたとしても、発泡粒子の連続気泡率が高くなり、発泡粒子の二次発泡性が低下し、発泡粒子を用いて得られる発泡成形体の軽量性又は機械強度が低下することがある。99質量%より多い場合、発泡粒子を用いて得られる発泡成形体の緩衝性又は耐衝撃性が低下することがある。また、型内発泡成形時に発泡成形体の融着性が低下し、発泡成形体の機械強度が低下することがある。結晶性芳香族ポリエステル系樹脂と非晶性芳香族ポリエステル系樹脂とは、70~95質量%と30~5質量%の割合で含まれることがより好ましく、80~90質量%と20~10質量%の割合で含まれることが更に好ましい。
 結晶性芳香族ポリエステル系樹脂と非晶性芳香族ポリエステル系樹脂とは、両樹脂の合計100質量%に対して、65.0質量%と35.0質量%の割合、67.5質量%と32.5質量%の割合、70.0質量%と30.0質量%の割合、72.5質量%と27.5質量%の割合、75.0質量%と25.0質量%の割合、77.5質量%と22.5質量%の割合、80.0質量%と20.0質量%の割合、82.5質量%と17.5質量%の割合、85.0質量%と15.0質量%の割合、87.5質量%と12.5質量%の割合、90.0質量%と10.0質量%の割合、92.5質量%と7.5質量%の割合、95.0質量%と5.0質量%の割合、97.5質量%と2.5質量%の割合、98.0質量%と2.0質量%の割合、99.0質量%と1.0質量%の割合を取り得る。
  (B-4)架橋剤
 樹脂組成物は、架橋剤を含んでいてもよい。架橋剤を含むことで、樹脂組成物の押出発泡性を改善でき、発泡粒子を容易に製造できる。架橋剤としては、公知のものを使用できる。例えば、酸無水物基を有する化合物、多官能エポキシ化合物、オキサゾリン化合物、オキサジン化合物等が挙げられる。この内、酸無水物基を有する化合物が好ましい。なお、架橋剤は、単独で用いられても二種以上が併用されてもよい。
 酸無水物基を有する化合物としては、特に限定されず、例えば、芳香族、脂環族、脂肪族のいずれに属するものであってもよい。例えば、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、ジフェニルスルホンテトラカルボン酸二無水物等が挙げられる。
 架橋剤の含量は、結晶性芳香族ポリエステル系樹脂と非晶性芳香族ポリエステル系樹脂の合計100質量部に対して、0.01~5質量部含まれていることが好ましい。架橋剤の含量が0.01質量部未満の場合、樹脂組成物の溶融時の溶融粘度が低く、樹脂組成物の押出発泡時に破泡を生じることがある。5質量部より多い場合、熱可塑性ポリエステル系樹脂の溶融時の溶融粘度が高くなりすぎて、熱可塑性ポリエステル系樹脂の押出発泡が困難となることがある。また、発泡倍率の高い発泡粒子の製造が困難となることがある。
架橋剤の含量は、0.05~1質量%であることがより好ましく、0.1~0.4質量%であることが更に好ましい。
 架橋剤の含量は、0.01質量%、0.025質量%、0.05質量%、0.075質量%、0.10質量%、0.125質量%、0.15質量%、0.175質量%、0.20質量%、0.225質量%、0.24質量%、0.25質量%、0.275質量%、0.30質量%、0.325質量%、0.35質量%、0.375質量%、0.40質量%、0.425質量%、0.45質量%、0.475質量%、0.50質量%、0.55質量%、0.60質量%、0.65質量%、0.70質量%、0.75質量%、0.80質量%、0.85質量%、0.90質量%、0.95質量%、1.00質量%、1.25質量%、1.50質量%、2.00質量%、2.50質量%、3.00質量%、3.50質量%、4.00質量%、4.50質量%、5.00質量%を取り得る。
  (B-5)その他の樹脂成分
 樹脂組成物には、必要に応じて前記熱可塑性芳香族ポリエステル系樹脂組成物以外の樹脂を含有させてよい。
 樹脂組成物に含有させることができる熱可塑性芳香族ポリエステル系樹脂組成物以外の他樹脂としては、例えば、ポリオレフィン系樹脂、ポリアミド系樹脂、アクリル系樹脂、飽和ポリエステル系樹脂、ABS系樹脂、ポリスチレン系樹脂及びポリフェニレンオキサイド系樹脂等が挙げられる。
 前記熱可塑性芳香族ポリエステル系樹脂組成物の全樹脂成分に占める当該他樹脂の割合は、通常、0質量%を超え20質量%以下である。
 他樹脂の前記割合は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
  (B-6)添加剤
 発泡粒子は、必要に応じて、樹脂組成物以外に添加剤が含まれていてもよい。添加剤としては、気泡調整剤、可塑剤、難燃剤、難燃助剤、帯電防止剤、展着剤、充填剤、着色剤、耐候剤、老化防止剤、滑剤、防曇剤、香料等が挙げられる。
 気泡調整剤としては、無機気泡核剤、重曹クエン酸、高級脂肪酸アミド、高級脂肪酸ビスアミド、高級脂肪酸塩等が挙げられる。これら気泡調整剤は、複数種組み合わせてもよい。
 無機気泡核剤としては、タルク、珪酸カルシウム、合成又は天然に産出される二酸化ケイ素等が挙げられる。
 高級脂肪酸アミドとしては、ステアリン酸アミド、12-ヒドロキシステアリン酸アミド等が挙げられる。
 高級脂肪酸ビスアミドとしては、エチレンビスステアリン酸アミド、エチレンビス-12-ヒドロキシステアリン酸アミド、メチレンビスステアリン酸アミド等が挙げられる。
 高級脂肪酸塩としては、ステアリン酸カルシウムが挙げられる。
 発泡粒子中の気泡調整剤の含量は、樹脂組成物100質量部に対して、0.01~5質量部であることが好ましい。含量が、0.01質量部未満の場合、発泡粒子の気泡が粗大となり、得られる発泡成形体の外観が低下することがある。5質量部より多い場合、熱可塑性ポリエステル系樹脂材料を押出発泡させる際に破泡を生じて発泡粒子の連続気泡率が高くなることがある。含量は、0.05~3質量部であることがより好ましく、0.1~2質量部であることが更に好ましい。
 発泡粒子中の気泡調整剤の含量は、樹脂組成物100質量部に対して、0.01質量部、0.025質量部、0.05質量部、0.075質量部、0.10質量部、0.15質量部、0.20質量部、0.25質量部、0.30質量部、0.35質量部、0.40質量部、0.45質量部、0.50質量部、0.75質量部、1.00質量部、1.25質量部、1.50質量部、1.75質量部、1.80質量部、2.00質量部、2.25質量部、2.50質量部、2.75質量部、3.00質量部、3.50質量部、4.00質量部、4.50質量部、5.00質量部を取り得る。
[規則91に基づく訂正 05.07.2019] 
(発泡粒子の製造方法)
 発泡粒子の製造方法は、以下の工程:
 結晶性芳香族ポリエステル系樹脂と非晶性芳香族ポリエステル系樹脂とを含む熱可塑性芳香族ポリエステル系樹脂組成物を押出機に供給し、前記押出機に供給された供給物を、発泡剤の存在下で溶融混練しつつ、押出発泡させて、押出発泡体を得る溶融押出工程と、
 前記押出発泡体を切断して、発泡粒子を得る切断工程と
を含む。
 (A)溶融押出工程
 まず、押出発泡体の製造に用いられる製造装置の一例について図3~5を用いて説明する。図3中、押出機の前端にはノズル金型1が取り付けられている。ノズル金型1は、樹脂組成物を押出発泡させて均一微細な気泡を形成できるものが好ましい。そして、図4に示したように、ノズル金型1の前端面1aには、ノズルの出口部11が複数個、同一仮想円A上に等間隔毎に形成されている。なお、押出機の前端に取り付けるノズル金型は、ノズル内において樹脂組成物が発泡しなければ、特に限定されない。
 ノズル金型1のノズルの数は、2~80個が好ましい。ノズル数が1個の場合、発泡粒子の製造効率が低下することがある。80個より多い場合、互いに隣接するノズルから押出発泡される押出発泡体どうしが接触して合着することがある。また、押出発泡体を切断して得られる発泡粒子どうしが合着することがある。ノズルの数は、5~60個がより好ましく、8~50個が特に好ましい。
 ノズル金型1におけるノズルの出口部11の直径は、0.2~2mmが好ましい。直径が0.2mm未満の場合、押出圧力が高くなりすぎて押出発泡が困難となることがある。2mmより大きい場合、発泡粒子の径が大きくなって金型への充填性が低下することがある。直径は、0.3~1.6mmがより好ましく、0.4~1.2mmが特に好ましい。
 ノズル金型1のランド部の長さは、ノズル金型1のノズルにおける出口部11の直径の4~30倍が好ましい。長さが4倍未満の場合、フラクチャーが発生して安定的に押出発泡できないことがある。30倍より大きい場合、ノズル金型に大きな圧力が加わり過ぎて押出発泡できない場合があるからである。長さは、5~20倍がより好ましい。
 前端面1aにおけるノズルの出口部11で囲まれた部分には、回転軸2が前方に向かって突出した状態に配設されており、この回転軸2は、後述する冷却部材4を構成する冷却ドラム41の前部41aを貫通してモータ等の駆動部材3に連結されている。
 更に、回転軸2の後端部の外周面には一枚又は複数枚の回転刃5が一体的に設けられており、全ての回転刃5は、その回転時には、前端面1aに常時、接触した状態となる。なお、回転軸2に複数枚の回転刃5が一体的に設けられている場合には、複数枚の回転刃5は回転軸2の周方向に等間隔毎に配列されている。また、図4では、一例として、四個の回転刃5を回転軸2の外周面に一体的に設けた場合を示している。
 回転軸2が回転することによって回転刃5は、前端面1aに常時、接触しながら、ノズルの出口部11が形成されている仮想円A上を移動し、ノズルの出口部11から押出された押出発泡体を順次、連続的に切断可能に構成されている。
 また、ノズル金型1の少なくとも前端部と、回転軸2とを包囲するように冷却部材4が配設されている。この冷却部材4は、ノズル金型1よりも大径な正面円形状の前部41aと、この前部41aの外周縁から後方に向かって延設された円筒状の周壁部41bとを有する有底円筒状の冷却ドラム41とを備えている。
 更に、周壁部41bにおけるノズル金型1の外方に対応する部分には、冷却液42を供給するための供給口41cが内外周面間に亘って貫通した状態に形成されている。供給口41cの外側開口部には冷却液42を冷却ドラム41内に供給するための供給管41dが接続されている。
 冷却液42は、供給管41dを通じて、冷却ドラム41の周壁部41bの内周面に沿って斜め前方に向かって供給されるように構成されている。冷却液42は、供給管41dから周壁部41bの内周面に供給される際の流速に伴う遠心力によって、周壁部41b内周面に沿って螺旋状を描くように前方に向かって進む。そして、冷却液42は、周壁部41bの内周面に沿って進行中に、徐々に進行方向に直交する方向に広がり、その結果、供給口41cより前方の周壁部41bの内周面は冷却液42によって全面的に被覆された状態となるように構成されている。
 なお、冷却液42としては、粒子状切断物を冷却できれば、特に限定されず、例えば、水、アルコール等が挙げられるが、使用後の処理を考慮すると、水が好ましい。
 周壁部41bの前端部下面には、その内外周面間に亘って貫通した状態に排出口41eが形成されている。排出口41eの外側開口部には排出管41fが接続されている。粒子状切断物及び冷却液42が排出口41eを通じて連続的に排出されるように構成されている。
 押出機としては、従来から汎用されている押出機であれば、特に限定されず、例えば、単軸押出機、二軸押出機、複数の押出機を連結させたタンデム型の押出機が挙げられる。
 発泡剤としては、従来から汎用されているものが用いられる。発泡剤としては、例えば、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、ヒドラゾイルジカルボンアミド、重炭酸ナトリウム等の化学発泡剤;プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン等の飽和脂肪族炭化水素、ジメチルエーテル等のエーテル類、塩化メチル、1,1,1,2-テトラフルオロエタン、1,1-ジフルオロエタン、モノクロロジフルオロメタン等のフロン、二酸化炭素、窒素等の物理発泡剤等が挙げられ、ジメチルエーテル、プロパン、ノルマルブタン、イソブタン、二酸化炭素が好ましく、プロパン、ノルマルブタン、イソブタンがより好ましく、ノルマルブタン、イソブタンが特に好ましい。なお、発泡剤は、単独で用いられても二種以上が併用されてもよい。
 押出機に供給される発泡剤量は、熱可塑性ポリエステル系樹脂100質量部に対して0.1~5質量部が好ましい。発泡剤量が0.1質量部未満の場合、発泡粒子を所望発泡倍率まで発泡できないことがある。発泡剤量が5質量部より多い場合、発泡剤が可塑剤として作用することから溶融状態の樹脂組成物の粘弾性が低下し過ぎて発泡性が低下し良好な発泡粒子を得られないことがある。発泡剤量は、0.2~4質量部がより好ましく、0.3~3質量部が特に好ましい。
 押出機には気泡調整剤を供給してもよい。
 (B)切断工程
 ノズル金型1から押出発泡された押出発泡体は引き続き切断工程に入る。押出発泡体の切断は、回転軸2を回転させることによって、前端面1aに配設された回転刃5を回転させて行われる。回転刃5の回転数は2000~10000rpmが好ましい。回転数が2000rpmを下回ると、樹脂発泡体を回転刃5によって確実に切断できず、発泡粒子どうしが合着するか、発泡粒子の形状が不均一となることがある。回転数が10000rpmを上回ると下記の2つの問題点を生じ易くなる。第一の問題点は、回転刃による切断応力が大きくなって、発泡粒子がノズルの出口部から冷却部材に向かって飛散される際に、発泡粒子の初速が速くなることである。その結果、発泡粒子が、切断後、冷却部材に衝突するまでの時間が短くなり、発泡粒子の発泡が不充分となって、発泡倍率が低くなることがある。第二の問題点は、回転刃及び回転軸の摩耗が大きくなって回転刃及び回転軸の寿命が短くなることである。回転刃は、一定の回転数で回転させることが好ましい。回転数は、2000~9000rpmがより好ましく、2000~8000rpmが特に好ましい。
 全ての回転刃5は前端面1aに常時、接触しながら回転しており、ノズル金型1から押出発泡された押出発泡体は、回転刃5と、ノズルの出口部11端縁との間に生じる剪断応力によって、一定の時間間隔毎に大気中において切断されて粒子状切断物とされる。この時、押出発泡体の冷却が過度とならない範囲内において、押出発泡体に水を霧状に吹き付けてもよい。
 ノズル金型1のノズル内において樹脂組成物が発泡しないようにしている。そして、樹脂組成物は、ノズルの出口部11から吐出された直後は、未だに発泡しておらず、吐出されてから僅かな時間が経過した後に発泡を始める。従って、押出発泡体は、ノズルの出口部11から吐出された直後の未発泡部と、この未発泡部に連続する、未発泡部に先んじて押出された発泡途上の発泡部とからなる。
 ノズルの出口部11から吐出されてから発泡を開始するまでの間、未発泡部はその状態を維持する。この未発泡部が維持される時間は、ノズルの出口部11における樹脂圧力や、発泡剤量等によって調整できる。ノズルの出口部11における樹脂圧力が高いと、樹脂組成物はノズル金型1から押出されてから直ぐに発泡することはなく未発泡の状態を維持する。ノズルの出口部11における樹脂圧力の調整は、ノズルの直径、押出量、樹脂組成物の溶融粘度及び溶融張力によって調整できる。発泡剤量を適正な量に調整することによって金型内部において樹脂組成物が発泡することを防止し、未発泡部を確実に形成できる。
 全ての回転刃5は前端面1aに常時、接触した状態で押出発泡体を切断していることから、押出発泡体は、ノズルの出口部11から吐出された直後の未発泡部において切断されて粒子状切断物(発泡粒子)が製造される。
 上述のようにして得られた粒子状切断物は、回転刃5による切断応力によって切断と同時に冷却ドラム41に向かって飛散され、周壁部41bの内周面を被覆する冷却液42に直ちに衝突する。粒子状切断物は、冷却液42に衝突するまでの間も発泡をし続けており、粒子状切断物は発泡によって略球状に成長している。従って、得られる発泡粒子は略球状である。発泡粒子を金型内に充填して型内発泡を行うにあたって、発泡粒子は金型内への充填性に優れ、金型内に発泡粒子を均一に充填でき、均質な発泡成形体を得ることができる。
 周壁部41bの内周面は全面的に冷却液42で被覆されている。この冷却液42は、供給管41dを通じて、周壁部41bの内周面に沿って斜め前方に向かって供給され、供給管41dから周壁部41bの内周面に供給される際の流速に伴う遠心力によって、周壁部41b内周面に沿って螺旋状を描くように前方に向かって進む。冷却液42は、周壁部41bの内周面に沿って進行中に、徐々に進行方向に直交する方向に広がる。その結果、供給口41cより前方の周壁部41bの内周面は冷却液42によって全面的に被覆された状態となっている。
 押出発泡体を回転刃5によって切断した後に、粒子状切断物を直ちに冷却液42によって冷却していることから、発泡粒子が過度に発泡するのを防止している。
 更に、押出発泡体を回転刃5によって切断して得られた粒子状切断物は冷却液42に向かって飛散させられる。上述の通り、周壁部41bの内周面に沿って流れている冷却液42は螺旋状に旋回しながら流れている。従って、冷却液42の表面に対して斜交し且つ冷却液42の流れの上流側から下流側に向かって粒子状切断物Pを冷却液42に衝突させて冷却液42に進入させるようにすることが好ましい(図5参照)。なお、図5において、冷却液の流れ方向を「X」として示した。
 このように、粒子状切断物を冷却液42内に進入させるときに、粒子状切断物を冷却液42の流れを追う方向から冷却液42に進入させているので、粒子状切断物は冷却液42の表面に弾かれることなく、粒子状切断物は冷却液42内に円滑に且つ確実に進入して冷却液42によって冷却されて発泡粒子が製造される。
 従って、発泡粒子は、冷却ムラや収縮のない略球状の形態を有し、型内発泡成形時に優れた発泡性を発揮する。そして、粒子状切断物は、押出発泡体の切断後に直ちに冷却され、結晶性芳香族ポリエステル系樹脂の結晶化度の上昇度合いは小さいと共に非晶性芳香族ポリエステル系樹脂を含んでいる。従って、発泡粒子は、全体として結晶化度が低いため、優れた熱融着性を有しており、得られる発泡成形体は優れた機械強度を有している。そして、型内発泡成形時に結晶性芳香族ポリエステル系樹脂の結晶化度を上昇させて耐熱性を向上でき、得られる発泡成形体は優れた耐熱性を有している。
 冷却液42の温度は、10~40℃が好ましい。温度が10℃未満の場合、冷却ドラム41の近傍に位置するノズル金型が過度に冷却されて、樹脂組成物の押出発泡に悪影響が生じることがある。40℃より高い場合、粒子状切断物の冷却が不十分となることがある。
 発泡粒子の嵩密度は、ノズルの出口部11における樹脂圧力、又は、発泡剤量等によって調整できる。ノズルの出口部11における樹脂圧力の調整は、ノズルの直径、押出量及び樹脂組成物の溶融粘度によって調整できる。
 発泡粒子は、押出発泡体をその未発泡部で切断して形成されている。押出発泡体を切断した部分の表面には気泡断面は全く存在しないか又は存在していても僅かである。その結果、発泡粒子の表面全面は、気泡断面が全く存在しないか又は僅かに存在しているだけである。従って、発泡粒子は、発泡ガスの抜けがなく優れた発泡性を有していると共に連続気泡率も低く、更に、表面の熱融着性にも優れている。
 (C)その他の製造方法
 上記では、発泡粒子を製造する方法として、図3~5に示した製造装置を使用した場合を説明したが、上記製造方法に限定されず、例えば、
(1)樹脂組成物を押出機に供給して発泡剤の存在下にて溶融混練しつつ、押出機の前端に取り付けたノズル金型からの押出発泡によってストランド状の押出発泡体を製造し、このストランド状の押出発泡体を、冷却した後に、ペレタイザー等を用いて粒子状に切断して発泡粒子を製造する方法(樹脂組成物は、含まれる樹脂を改質するために、必要に応じて、架橋剤を含んでいてもよい;以下(2)及び(3)でも同じ)、
(2)樹脂組成物を押出機に供給して発泡剤の存在下にて溶融混練しつつ、押出機の前端に取り付けたTダイからの押出発泡によって押出発泡体として発泡シートを製造し、この発泡シートを、冷却した後に、粒子状に切断して発泡粒子を製造する方法、
(3)樹脂組成物を押出機に供給して発泡剤の存在下にて溶融混練しつつ、押出機の前端に取り付けたサーキュラダイからの押出発泡によって円環状の押出発泡体を製造し、この円環状の押出発泡体をその押出方向に内外周面間に亘って連続的に切断して発泡シートを製造し、この発泡シートを粒子状に切断して発泡粒子を製造する方法
等であってもよい。
(発泡成形体)
 発泡成形体は、上記発泡粒子を、型内で発泡成形することにより得ることができる。
 発泡成形体は、種々の密度をとり得る。例えば、0.05~0.7g/cm3の密度をとり得る。密度は、0.07~0.6g/cm3がより好ましく、0.08~0.5g/cm3が特に好ましい。
 発泡成形体は、軽量性、耐熱性、緩衝性及び機械強度に優れており、特に、高温環境下での耐荷重性や寸法安定性に優れていることから、例えば、自動車、航空機、鉄道車輛及び船舶等の輸送機器の部品に好適に用いることができる。自動車部品としては、例えば、エンジン付近に用いられる部品、外装材、断熱材等に好適に用いることができる。
 表皮材としては、繊維強化材、金属シート、合成樹脂フィルム等が挙げられる。表皮材として繊維強化材を使用した場合を、本明細書では樹脂複合体と称し、以下において項目を改めて説明する。
 金属シートとしては、特に限定されず、例えば、アルミニウムシート、ステンレスシート、鉄シート、鋼シート、チタニウムシート等が挙げられる。この内、軽量性及び機械強度の双方に優れているので、アルミニウムシートが好ましい。なお、アルミニウムシートには、アルミニウムを50質量%以上含有しているアルミニウム合金シートも含まれる。金属シートの厚みは、薄すぎると、機械強度が低下することがあり、厚すぎると、軽量性が低下するので、0.1~0.5mmが好ましく、0.2~0.5mmがより好ましい。
 合成樹脂フィルムとしては、特に限定されず、例えば、ポリエチレン系樹脂フィルム、ポリプロピレン系樹脂フィルム等のポリオレフィン系樹脂フィルム、ポリエチレンテレフタレートフィルム等のポリエステル系樹脂フィルム、アクリル系樹脂フィルム等が挙げられる。
 発泡成形体は、特に限定されず、用途に応じて種々の形状をとり得る。
(発泡成形体の製造方法)
 発泡成形体は、発泡粒子を金型のキャビティ内に充填する充填工程と、発泡粒子を二次発泡させることで、得られた二次発泡粒子どうしを熱融着により一体化させて、発泡成形体を得る発泡工程とを含む方法により製造できる。
 (A)充填工程
 発泡粒子を、発泡成形機の成形金型のキャビティ内に充填する方法は、特に限定されない。発泡成形機としては、ポリスチレン系樹脂製の発泡粒子から発泡成形体を製造する際に用いられるEPS成形機やポリプロピレン系樹脂製の発泡粒子から発泡成形体を製造する際に用いられる高圧仕様の成形機等を用いることができる。
 発泡粒子は、更に不活性ガスを含浸させて、発泡力を向上させてもよい。発泡力を向上させることにより、型内発泡成形時に発泡粒子どうしの熱融着性が向上し、得られる発泡成形体は更に優れた機械強度を有する。なお、上記不活性ガスとしては、例えば、二酸化炭素、窒素、ヘリウム、アルゴン等が挙げられ、二酸化炭素が好ましい。
[規則91に基づく訂正 05.07.2019] 
 発泡粒子に不活性ガスを含浸させる方法としては、例えば、常圧以上の圧力を有する不活性ガス雰囲気下に発泡粒子を置く方法が挙げられる。このような場合、発泡粒子を金型内に充填する前に不活性ガスを含浸させてもよく、発泡粒子を金型内に充填した後に金型ごと不活性ガス雰囲気下に置き、発泡粒子に不活性ガスを含浸させてもよい。
 発泡粒子に不活性ガスを含浸させる時の温度は5~40℃が好ましい。温度が5℃未満の場合、発泡粒子が冷却され過ぎて、型内発泡成形時において発泡粒子を充分に加熱できず、発泡粒子どうしの熱融着性が低下し、得られる発泡成形体の機械強度が低下することがある。40℃より高い場合、発泡粒子への不活性ガスの含浸量が低くなり、発泡粒子に充分な発泡性を付与できないことがあると共に、発泡粒子の結晶化が促進され、発泡粒子の熱融着性が低下し、得られる発泡成形体の機械強度が低下することがある。温度は、10~30℃がより好ましい。
 また、発泡粒子に不活性ガスを含浸させる時の圧力は0.2~2.0MPaが好ましい。圧力が0.2MPa未満の場合、発泡粒子への不活性ガスの含浸量が低くなり、発泡粒子に充分な発泡性を付与できず、得られる発泡成形体の機械強度が低下することがある。2.0MPaより高い場合、発泡粒子の結晶化度が上昇し、発泡粒子の熱融着性が低下し、得られる発泡成形体の機械強度が低下することがある。圧力は、0.25~1.5MPaがより好ましい。不活性ガスが二酸化炭素である場合には、0.2~1.5MPaが好ましく、0.25~1.2MPaがより好ましい。
 更に、発泡粒子に不活性ガスを含浸させる時間は、10分~72時間が好ましい。時間が10分未満の場合、発泡粒子に不活性ガスを充分に含浸できないことがある。72時間より長い場合、発泡成形体の製造効率が低下することがある。時間は、15分~64時間がより好ましく、20分~48時間が特に好ましい。不活性ガスが二酸化炭素である場合には、20分~24時間が好ましい。
 このように、発泡粒子に不活性ガスを5~40℃で且つ0.2~2.0MPaの圧力下にて含浸させることによって、発泡粒子の結晶化度の上昇を抑えつつ、発泡性を向上でき、よって、型内発泡成形時に、発泡粒子どうしを充分な発泡力で強固に熱融着させて一体化でき、機械強度に優れた発泡成形体を得ることができる。
 発泡粒子に上述の要領で不活性ガスを含浸させた後、発泡粒子を予備発泡させて予備発泡粒子とした上で、予備発泡粒子を金型のキャビティ内に充填して加熱し、予備発泡粒子を発泡させることによって発泡成形体を成形してもよい。なお、発泡粒子に不活性ガスを含浸させる要領と同様の要領で、予備発泡粒子に不活性ガスを更に含浸させてもよい。
 発泡粒子を予備発泡させて予備発泡粒子を得る方法としては、例えば、不活性ガスを含浸させた発泡粒子を55~90℃に加熱することによって発泡させる方法が挙げられる。加熱時間が長くなると発泡粒子に収縮や融着不良が生じることがあるため、短時間に高エネルギーを与えうる媒体による加熱が望まれる。そのような媒体としては水蒸気が好適である。水蒸気の圧力は、ゲージ圧にて0.1~0.8MPaであることが好ましい。また、加熱時間は、5~600秒であることが好ましい。
 (B)発泡工程
 二次発泡のための発泡粒子の加熱媒体としては、特に限定されず、水蒸気の他に、熱風、温水等が挙げられる。
 二次発泡は、加熱媒体が水蒸気の場合、ゲージ圧にて0.1~0.8MPaの圧力、5~600秒の加熱時間の条件下で行うことが好ましい。
 発泡成形体の結晶化を促進させ、発泡成形体の耐熱性を向上させるという観点から、発泡工程後に発泡成形体を成型金型内で保熱する工程を設けることが好ましい。
 保熱時間は、例えば寸法が縦300mm×横400mm×高さ30mmの発泡成形体を成形する場合、10~1000秒であることが好ましい。
(樹脂複合体)
 樹脂複合体は、上記発泡成形体と、発泡成形体の表面に積層且つ一体化された繊維強化樹脂層(表皮材)とを有する。
 樹脂複合体は、耐熱性及び機械強度に更に優れており、輸送機器の部品の他に、自動車、航空機、鉄道車輛及び船舶等の輸送機器の本体を構成する構造部材を含めた輸送機器構成用部材として広範囲に用いることができ、又、建築資材、風車翼、ロボットアーム、ヘルメット用緩衝材、農産箱、保温保冷容器等の輸送容器、産業用ヘリコプターのローターブレード、部品梱包材としても好適に用いることができる。自動車の本体を構成する構造部材としては、例えば、ドアパネル、ドアインナー、バンパー、フェンダー、フェンダーサポート、エンジンカバー、ルーフパネル、トランクリッド、フロアパネル、センタートンネル、クラッシュボックス、カウル等が挙げられる。例えば、従来、鋼板で作製されていたドアパネルに樹脂複合体を用いると、鋼板製ドアパネルと略同一の剛性を有するドアパネルが大きく軽量化できるため、自動車の軽量化の高い効果が得られる。
 繊維強化樹脂層を構成している繊維としては、特に限定されず、例えば、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、金属繊維等が挙げられる。この内、優れた機械強度及び耐熱性を有していることから、炭素繊維、ガラス繊維、アラミド繊維が好ましく、炭素繊維がより好ましい。
 繊維の形態としては、特に限定されず、例えば、織物、編物、不織布、繊維を一方向に引き揃えた繊維束(ストランド)をポリアミド樹脂、ポリエステル樹脂等の合成樹脂糸又はガラス繊維糸等のステッチ糸で結束(縫合)してなる面材等が挙げられる。織物の織り方としては、平織、綾織、朱子織等が挙げられる。
 繊維は、(1)織物、編物若しくは不織布どうし又はこれらを任意の組み合わせで複数枚、積層してなる多層面材、(2)繊維を一方向に引き揃えた繊維束(ストランド)をポリアミド樹脂、ポリエステル樹脂等の合成樹脂糸又はガラス繊維糸等のステッチ糸で結束(縫合)してなる複数枚の面材を繊維束の繊維方向が互いに相違した方向を指向するように重ね合わせ、重ね合わせた面材どうしをポリアミド樹脂、ポリエステル樹脂等の合成樹脂糸又はガラス繊維糸等のステッチ糸で一体化(縫合)してなる多層面材であってもよい。
 繊維強化樹脂層に含まれる樹脂としては、未硬化の熱硬化性樹脂、熱可塑性樹脂が挙げられる。熱硬化性樹脂としては、特に限定されず、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、シリコン樹脂、マレイミド樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、マレイミド樹脂とシアン酸エステル樹脂を予備重合した樹脂等が挙げられる。耐熱性、弾性率及び耐薬品性に優れていることから、エポキシ樹脂、ビニルエステル樹脂が好ましい。熱硬化性樹脂には、硬化剤、硬化促進剤等の添加剤が含有されていてもよい。なお、熱硬化性樹脂は、単独で用いられても二種以上が併用されてもよい。
 熱可塑性樹脂としては、特に限定されず、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂等のポリオレフィン系樹脂、アクリル系樹脂等が挙げられる。
 繊維強化樹脂層中の樹脂の含有量は、20~70質量%が好ましい。含有量が20質量%未満の場合、繊維どうしの結合が弱くなり、得られる樹脂複合体の機械強度が低下することがある。70質量%より多い場合、繊維間に存在する樹脂の量が多くなりすぎ、かえって繊維強化樹脂層の機械強度が低下し、得られる樹脂複合体の機械強度が低下することがある。含有量は、30~60質量%がより好ましい。
 繊維に樹脂を含浸させる方法としては、特に限定されず、例えば、(1)繊維を樹脂中に浸漬する方法、(2)繊維に樹脂を塗布する方法等が挙げられる。
 発泡成形体の表面に繊維強化樹脂層を積層一体化させる方法としては、特に限定されず、例えば、(1)発泡成形体の表面に接着剤を介して繊維強化樹脂層を積層一体化する方法、(2)発泡成形体の表面に、熱可塑性樹脂が含浸された繊維強化樹脂層を積層し、熱可塑性樹脂をバインダーとして発泡成形体の表面と繊維強化樹脂層とを積層一体化する方法、(3)発泡成形体の表面に、未硬化の熱硬化性樹脂が含浸された繊維強化樹脂層を積層し、熱硬化性樹脂の硬化物をバインダーとして発泡成形体の表面と繊維強化樹脂層とを積層一体化する方法、(4)発泡成形体の表面に、加熱されて軟化状態の繊維強化樹脂層を積層し、発泡成形体の表面に繊維強化樹脂層を押圧することによって、発泡成形体の表面と繊維強化樹脂層とを積層一体化する方法等が挙げられる。方法(4)では、繊維強化樹脂層を発泡成形体の表面に沿って変形させることも可能である。ここで、本発明の発泡成形体は高温環境下における耐荷重性に優れていることから、方法(4)も好適に用いることができる。
 繊維強化樹脂層の成形で用いられる方法としては、例えば、オートクレーブ法、ハンドレイアップ法、スプレーアップ法、PCM(Prepreg Compression Molding)法、RTM(Resin Transfer Molding)法、VaRTM(Vacuum assisted Resin Transfer Molding)法等が挙げられる。
 次に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。
[固有粘度(IV値)]
 結晶性芳香族ポリエステル系樹脂及び非晶性芳香族ポリエステル系樹脂の固有粘度(IV値)は、JIS K7367-5:2000に準拠して測定された値とした。具体的には、樹脂を133Paの真空度で40℃にて15時間に亘って乾燥させた。
 樹脂から0.1000gを試料として取り出して20mLのメスフラスコに入れ、メスフラスコに混合溶媒(フェノール50質量%、1,1,2,2-テトラクロロエタン50質量%)約15mLを添加した。メスフラスコ内の試料をホットプレート上に載置して約130℃に加熱して溶融させた。試料を溶融させた後に室温まで冷却し、体積が20mLとなるように調製し試料溶液(試料濃度:0.500g/100mL)を作製した。
 試料溶液8mLをホールピペットで粘度計に供給し、25℃の水が入れられた水槽を用いて試料の温度を安定させた後、試料の流下時間を測定した。試料溶液の濃度変更は、順次、粘度計内に混合溶媒8mLを添加して混合し希釈して希釈試料溶液を作製した。そして、希釈試料溶液の流下時間を測定した。試料溶液とは別に上記混合溶媒の流下時間を測定した。
 下記の計算式に基づいて結晶性芳香族ポリエステル系樹脂及び非晶性芳香族ポリエステル系樹脂の固有粘度を算出した。混合溶媒の流下時間(t0)と試料溶液の流下時間(t)から以下を算出した。
相対粘度(η)=t/t0
比粘度(ηsp)=(t-t0)/t0=ηr-1
還元粘度=ηsp/C
 試料溶液の濃度C(g/100mL)を種々、変更した希釈試料溶液の測定結果から、縦軸を還元粘度とし横軸を試料溶液の濃度Cとしてグラフを作成し、得られた直線関係をC=0に外挿した縦軸切片から固有粘度[η]を求めた。
Figure JPOXMLDOC01-appb-M000001
[結晶性芳香族ポリエステル系樹脂及び非晶性芳香族ポリエステル系樹脂の融点及びガラス転移温度]
 結晶性芳香族ポリエステル系樹脂及び非晶性芳香族ポリエステル系樹脂の融点はJIS K7121:1987、JIS K7121:2012「プラスチックの転移温度測定方法」に記載されている方法で測定した。但し、サンプリング方法・温度条件に関しては以下のように行った。試料をアルミニウム製測定容器の底に隙間のないよう5.5±0.5mg充填後、アルミニウム製の蓋をした。次いでエスアイアイ・ナノテクノロジー社製「DSC7000X、AS-3」示差走査熱量計を用い、窒素ガス流量20mL/分のもと、30℃から290℃まで昇温し(1回目昇温工程)、290℃にて10分間に亘って保持した後、試料を加熱炉から取り出して25℃の空気中の環境下にて30℃まで放冷させた。この熱処理の後、30℃から290℃まで昇温(2回目昇温工程)した時のDSC曲線を得た。なお、全ての昇温は速度10℃/分で行い、基準物質としてアルミナを用いた。
 本発明において、融解温度(融点)は、装置付属の解析ソフトを用いて、2回目の昇温工程にみられる融解ピークのトップの温度とした。
 また本発明において、ガラス転移温度は、2回目の昇温工程にみられるガラス転移の階段状変化部分において、装置付属の解析ソフトを用いて、中間点ガラス転移温度を算出し、それをガラス転移温度とした。なお、この中間点ガラス転移温度は、該規格(9.3「ガラス転移温度の求め方」)より求めた。
[発泡粒子の嵩密度]
 発泡粒子の嵩密度を、JIS K6911:1995「熱硬化性プラスチック一般試験方法」に準拠して測定した。JIS K6911:1995に準拠した見掛け密度測定器を用いて測定を行い、下記式に基づいて、発泡粒子の嵩密度を求めた。
発泡粒子の嵩密度(g/cm3)=[発泡粒子を入れたメスシリンダーの質量(g)-メスシリンダーの質量(g)]/[メスシリンダーの容量(cm3)]
[発泡粒子の連続気泡率]
 発泡粒子の連続気泡率を下記の要領で測定した。まず、体積測定空気比較式比重計の試料カップを用意し、この試料カップの80%程度を満たす量の発泡粒子の全質量A(g)を測定した。次に、発泡粒子全体の体積B(cm3)を比重計を用いて1-1/2-1気圧法により測定した。なお、測定には、東京サイエンス社の「体積測定空気比較式比重計 1000型」を使用した。
 続いて、金網製の容器を用意し、この金網製の容器を水中に浸漬し、この水中に浸漬した状態における金網製の容器の質量C(g)を測定した。次に、この金網製の容器内に発泡粒子を全量入れた上で、この金網製の容器を水中に浸漬し、水中に浸漬した状態における金網製の容器とこの金網製容器に入れた発泡粒子の全量とを併せた質量D(g)を測定した。なお、発泡粒子及び金網製容器の質量測定には、大和製衡社製「電子天びんHB3000」(最小目盛り0.01g)を使用した。
 そして、下記式に基づいて発泡粒子の見掛け体積E(cm3)を算出し、この見掛け体積Eと発泡粒子全体の体積B(cm3)に基づいて下記式により発泡粒子の連続気泡率を算出した。なお、水1gの体積を1cm3とした。また、本測定において発泡粒子は、予め、JIS K7100-1999 記号23/50、2級の環境下で16時間保管した後、同環境下において測定を実施した。
E=A+(C-D)
連続気泡率(%)=100×(E-B)/E
[発泡粒子の融解温度Tm、結晶化温度Tc、ガラス転移温度Tg及び結晶化熱量]
 発泡粒子の融解温度Tm、結晶化温度Tc及びガラス転移温度Tgは、JIS K7121:1987、JIS K7121:2012「プラスチックの転移温度測定方法」に記載されている方法で測定した。発泡粒子の結晶化熱量は、JIS K7121:1987、JIS K7122:2012「プラスチックの転移熱測定方法」に記載されている方法で測定した。但し、サンプリング方法・温度条件に関しては以下のように行った。
 試料をアルミニウム製測定容器の底に隙間のないよう5.5±0.5mg充填後、アルミニウム製の蓋をした。次いで日立ハイテクサイエンス社製「DSC7000X、AS-3」示差走査熱量計を用い、窒素ガス流量20mL/分のもと、30℃から290℃まで昇温したときのDSC曲線を得た。なお、昇温は速度10℃/分で行い、基準物質としてアルミナを使用した。
 融解温度Tm(融点)及び結晶化温度Tcは、装置付属の解析ソフトを用いて、図1に示す1回目の昇温工程で得られたDSC曲線にみられる融解ピーク及び結晶化ピークのトップの温度を読みとった値とした。
 ガラス転移温度Tgは、規格(9.3「ガラス転移温度の求め方」)より求められ、図1に示す1回目の昇温工程で得られたDSC曲線のガラス転移の階段状変化部分において、中間点ガラス転移温度として算出した。なお、DSC曲線のガラス転移の階段状変化部分において、縦軸方向における低温側のベースラインと高温側のベースラインとの差Δ(mW)が0.02mW以下である場合はガラス転移の階段状変化とみなさなかった。
 結晶化熱量は、図1に示す1回目の昇温工程で得られたDSC曲線における結晶化ピークの面積から求めた。具体的には、図1に示すように、得られたDSC曲線において低温側のベースラインからDSC曲線が離れる点と、そのDSC曲線が再び高温側へ戻る点とを結ぶ直線と、DSC曲線に囲まれる部分の面積から算出した。
[発泡粒子の半結晶化時間]
 発泡粒子においてDSCによって測定された120℃における半結晶化時間は下記の要領で測定された時間とした。
 具体的には、測定装置として、示差走査熱量計装置(日立ハイテクサイエンス社製「DSC7000X、AS-3」)を使用した。アルミニウム製の測定容器の底部に隙間のないように発泡粒子を約5.5±0.5mg充填した。充填後に、窒素ガス流量20mL/分の条件下にて、アルミナを基準物質として、半結晶化時間を測定した。熱処理条件としては、10℃/分の昇温速度で発泡粒子を30℃から290℃まで加熱し、発泡粒子を290℃にて10分間に亘って保持した後、発泡粒子を加熱炉から取り出して25℃の空気中の環境下にて30℃まで放冷させた。この熱処理の後、発泡粒子を30℃から110℃まで加熱炉の最大能力昇温速度(およそ35℃/分)で昇温させ、更に110℃から120℃まで10℃/分で昇温し、その後、発泡粒子を120±1℃で30分間に亘って保持した時の樹脂の結晶化による発熱量を測定した。図2に示したような横軸を時間としたDSC曲線が得られた。DSC曲線において、発熱を開始した点aと、発熱が終了した点b(DSC曲線がピークトップ点c以降にベースラインに戻る最も早い点)と、DSC曲線のピークトップ点cとを特定した。なお、点aは、測定試料の温度が120±1℃になった状態における、ベースライン(発熱ピーク直後の直線部分)の延長線とDSC曲線との交点とした。ここで、上記点aから点cに至るまでに経過した時間Tを「発泡粒子(熱可塑性ポリエステル系樹脂)の半結晶化時間」とした。発泡粒子の半結晶化時間は、発泡粒子の試料を3回の測定分用意し、それぞれの試料から発泡粒子の半結晶化時間を測定し、得られた各試料の半結晶化時間の相加平均値とした。
[発泡成形体の密度]
 発泡成形体の密度は、JIS K7222:1999「発泡プラスチック及びゴム-見掛け密度の測定」に記載される方法により測定した。50cm3以上(半硬質及び軟質材料の場合は100cm3以上)の発泡成形体を材料の元のセル構造を変えない様に切断し、その質量を測定した。密度を下記式により算出した。
密度(g/cm3)=発泡成形体の質量(g)/発泡成形体の体積(cm3
[発泡成形体の加熱寸法変化率]
 発泡成形体の加熱寸法変化率はJIS K6767:1999「発泡プラスチック-ポリエチレン-試験方法」に記載のB法にて測定した。
 発泡成形体から、平面形状が一辺150mmの正方形であり且つ厚みが発泡成形体の厚みである試験片を切り出した。上記試験片の中央部に縦方向及び横方向にそれぞれ互いに平行に3本の100mmの直線を50mm間隔に記入した。縦方向及び横方向についてそれぞれ3本の直線の長さを測定し、それらの相加平均値L0を初めの寸法とした。その後、試験片を130℃の熱風循環式乾燥機の中に168時間放置して、加熱試験を行った。加熱試験後に試験片を取り出し、試験片を25℃にて1時間放置した。次に、試験片の表面に記入した縦方向及び横方向のそれぞれ3本の直線の長さを測定し、それらの相加平均値L1を加熱後の寸法とした。下記式に基づいて加熱寸法変化率を算出した。
加熱寸法変化率(%)=100×(L1-L0)/L0
[発泡成形体の機械物性:最大点荷重、最大点応力、最大点エネルギー及び弾性率]
 発泡成形体から、縦20mm×横25mm×高さ130mmの直方体形状の試験片を5個切り出した。各試験片について、JIS K7221-1に準拠して曲げ試験を行った。測定には、テンシロン万能試験機(オリエンテック社製「UCT-10T」)を使用した。最大点荷重、最大点応力、最大点変位及び最大点エネルギーは、万能試験機データ処理システム(ソフト・ブレーン社製「UTPS-237S Ver,1.00」)を用いて算出した。各試験片の最大点荷重、最大点応力、最大点エネルギー及び弾性率の相加平均値をそれぞれ、最大点荷重、最大点応力、最大点エネルギー及び弾性率とした。
[規則91に基づく訂正 05.07.2019] 
[発泡成形体の耐熱性評価の判定基準]
 上記の発泡成形体の130℃の加熱寸法変化率測定の結果から以下の判定基準で評価した。
◎:加熱寸法変化率が-0.5%を超え且つ+0.5%未満
○:加熱寸法変化率が-1.0%を超え-0.5%以下且つ+0.5%以上+1.0%未満×:加熱寸法変化率が-1.0%以下又は+1.0%以上
[発泡成形体の機械物性評価の判定基準]
 上記の発泡体の機械物性から以下の判定基準で評価した。
◎:最大点応力が1.2MPa以上
○:最大点応力が1.0MPa以上1.2MPa未満
×:上記「◎」「○」のいずれの判定基準にも相当しない。
[発泡成形体の外観評価]
 得られた発泡成形体の表面の発泡粒子どうしが接合した境界部分の凹凸を目視で確認し、以下の判定基準で評価した。
◎:発泡成形体表面の発泡粒子どうしが接合した境界部分が平滑であった。
○:発泡成形体表面の発泡粒子どうしが接合した境界部分に僅かに凹凸があり平滑性に劣っていた。
×:発泡成形体表面の発泡粒子どうしが接合した境界部分の大部分に凹凸があり平滑性が著しく劣っていた。
[発泡成形体の総合評価]
 上記の発泡成形体の耐熱性評価、機械物性評価及び外観評価の3つの評価結果をもとに、発泡成形体の総合評価を下記の基準で判定した。
◎:3つの評価結果のうち「◎」が2つ以上であった。
○:3つの評価結果のうち「◎」が2つ未満であった。
×:3つの評価結果のうち少なくとも1つの評価結果が「×」であった。
[樹脂複合体における複合化可否評価]
 樹脂複合体における複合化可否は、樹脂複合体の表面を目視にて観察し、以下の判定基準で評価した。樹脂複合体の繊維強化樹脂層表面の凹凸部とは、発泡成形体の不均一な膨張や収縮により、繊維強化樹脂層が1.0mm以上突出又は陥没している部分とした。
○:樹脂複合体の繊維強化樹脂層表面に凹凸部が無く、外観が美麗であった。
×:樹脂複合体の繊維強化樹脂層表面に凹凸部が確認された。
[樹脂複合体の機械物性評価]
 上記発泡成形体の機械物性の評価結果に優れた発泡成形体を用いている場合に、上記発泡成形体の機械物性の評価結果に劣る発泡成形体を使用した場合と比べて、複合発泡体の機械物性が高くなることを確認した。従って、複合発泡体の機械物性は、上記発泡成形体の機械物性の評価結果に従って以下の基準で判定した。
○:上記発泡成形体の機械物性の評価結果が「◎」ないしは「○」
×:上記発泡成形体の機械物性の評価結果が「×」
[樹脂複合体の総合評価]
 上記樹脂複合体における複合化可否の評価結果と、上記樹脂複合体の機械物性評価結果との2つから、樹脂複合体の総合評価を下記の基準で判定した。
○:2つの評価結果がいずれも「○」
×:少なくとも1つの評価結果が「×」
 実施例、比較例及び参考例において、下記の通りの結晶性芳香族ポリエステル系樹脂、非晶性芳香族ポリエステル系樹脂、気泡調製剤及び架橋剤を使用した。
(A)結晶性芳香族ポリエステル系樹脂:樹脂a
 (a)ポリエチレンテレフタレート(PET)
三井化学社製 商品名「三井ペット SA-135」
IV値=0.88、融点Tm=247℃、ガラス転移温度Tg=78℃
 (b)ポリエチレンナフタレート(PEN):樹脂b
帝人社製 商品名「テオネックス TN8050SC」
IV値=0.51、融点Tm=265℃、ガラス転移温度Tg=120℃
(B)非晶性芳香族ポリエステル系樹脂
 (c)CHDM共重合PET(PETG):樹脂c
イーストマンケミカル社製 商品名「Eastar copolyester GN001」
IV値=0.75、ガラス転移温度Tg=78℃
ジオール成分として1,4-シクロヘキサンジメタノールを33mol%含む
 (d)CHDM共重合PET(PETG):樹脂d
イーストマンケミカル社製 商品名「Eastar copolyester GN401」
IV値=0.67、ガラス転移温度Tg=79℃
ジオール成分として1,4-シクロヘキサンジメタノールを16mol%含む
 (e)CHDM共重合PET(PETG):樹脂e
イーストマンケミカル社製 商品名「Eastar copolyester 5011」
IV値=0.59、ガラス転移温度Tg=80℃
ジオール成分として1,4-シクロヘキサンジメタノール15mol%を含む
 (f)NPG共重合PET:樹脂f
ベルポリエステルプロダクツ社製 商品名「ベルペット E-02」
IV値=0.79、ガラス転移温度Tg=75℃
ジオール成分としてネオペンチルグリコール16mol%を含む
 (g)CHDM及びTMCD共重合PET(PCT):樹脂g
イーストマンケミカル社製 商品名「Tritan FX-200」
IV値=0.64、ガラス転移温度Tg=118℃
ジオール成分として1,4-シクロヘキサンジメタノール65mol%、2,2,4,4-テトラメチル-1,3-シクロブタンジオール35mol%を含む
(C)気泡調整剤
テラボウ社製 商品名「PET-F40-1」
ポリエチレンテレフタレートにタルクを含有させてなるマスターバッチ
(ポリエチレンテレフタレート含有量:60質量%、タルク含有量:40質量%)
(D)架橋剤
ダイセル社製、無水ピロメリット酸
 (実施例1)
(1)発泡粒子の作製
 図3~5に示した製造装置を用いて、以下の手順で発泡粒子を作製した。
 まず、表1に示した所定量の樹脂a、樹脂c、気泡調整剤及び架橋剤を口径が65mmで且つL/D比が35の単軸押出機に供給して290℃にて溶融混練した。
 続いて、押出機の途中から、イソブタン35質量%及びノルマルブタン65質量%からなるブタンを、樹脂a及び樹脂cの総量100質量部に対して0.5質量部となるように溶融状態の樹脂組成物に圧入して、樹脂組成物中に均一に分散させた。 
 しかる後、押出機の前端部において、溶融状態の樹脂組成物を250℃に冷却した後、押出機の前端に取り付けたマルチノズル金型1の各ノズルから樹脂組成物を押出発泡させた。樹脂組成物の押出量を30Kg/時間とした。
 なお、ノズル金型1は、出口部11の直径が1mmのノズルを20個有しており、ノズルの出口部11は全て、ノズル金型1の前端面1aに想定した、直径が139.5mmの仮想円A上に等間隔毎に配設されていた。そして、回転軸2の後端部外周面には、2枚の回転刃5が回転軸2の周方向に180°の位相差でもって一体的に設けられており、各回転刃5はノズル金型1の前端面1aに常時、接触した状態で仮想円A上を移動するように構成されていた。
 更に、冷却部材4は、正面円形状の前部41aと、この前部41aの外周縁から後方に向かって延設され且つ内径が320mmの円筒状の周壁部41bとからなる冷却ドラム41を備えていた。そして、供給管41d及び冷却ドラム41の供給口41cを通じて冷却ドラム41内に20℃の冷却水42が供給されていた。冷却ドラム41内の容積は17684cm3であった。
 冷却水42は、供給管41dから冷却ドラム41の周壁部41bの内周面に供給される際の流速に伴う遠心力によって、冷却ドラム41の周壁部41b内周面に沿って螺旋状を描くように前方に向かって進んでおり、冷却液42は、周壁部41bの内周面に沿って進行中に、徐々に進行方向に直交する方向に広がり、その結果、冷却ドラム41の供給口41cより前方の周壁部41bの内周面は冷却液42によって全面的に被覆された状態となっていた。
 前端面1aに配設した回転刃5を2500rpmの回転数で回転させてあり、ノズル金型1の各ノズルの出口部11から押出発泡された樹脂押出物を回転刃5によって切断して略球状の粒子状切断物を製造した。樹脂押出物は、ノズル金型1のノズルから押出された直後の未発泡部と、この未発泡部に連続する発泡途上の発泡部とからなっていた。そして、樹脂押出物は、ノズルの出口部11の開口端において切断されており、樹脂押出物の切断は未発泡部において行われていた。
 なお、上述の発泡粒子の製造にあたっては、まず、ノズル金型1に回転軸2を取り付けず且つ冷却部材4をノズル金型1から退避させておいた。この状態で、押出機から樹脂押出物を押出発泡させ、樹脂押出物が、ノズル金型1のノズルから押出された直後の未発泡部と、この未発泡部に連続する発泡途上の発泡部とからなることを確認した。次に、ノズル金型1に回転軸2を取り付け且つ冷却部材4を所定位置に配設した後、回転軸2を回転させ、樹脂押出物をノズルの出口部11の開口端において回転刃5で切断して粒子状切断物を製造した。
 この粒子状切断物は、回転刃5による切断応力によって外方又は前方に向かって飛ばされ、冷却部材4の冷却ドラム41の内面に沿って流れている冷却水42にこの冷却水42の流れの上流側から下流側に向かって冷却水42を追うように冷却水42の表面に対して斜交する方向から衝突し、粒子状切断物は冷却水42中に進入して直ちに冷却され、発泡粒子が製造された。
 得られた発泡粒子は、冷却ドラム41の排出口41eを通じて冷却水42と共に排出された後、脱水機にて冷却水42と分離された。
(2)発泡成形体の作製
 金型(雄金型と雌金型)を備えた型内発泡成形機を用意した。雄金型と雌金型とを型締めした状態において、雌雄金型間には内法寸法が縦300mm×横400mm×高さ30mmである直方体形状のキャビティが形成されていた。 
 そして、金型クラッキングを3mm取った状態で金型内に発泡粒子を充填後、雌型からキャビティ内が0.05MPa(ゲージ圧)となるようにスチームを30秒間導入し、次いで、雄型からキャビティ内が0.05MPa(ゲージ圧)となるようにスチームを30秒間導入し、次いで、雄雌両型からキャビティ内が0.1MPa(ゲージ圧)となるように30秒間水蒸気を供給し、発泡粒子を加熱、二次発泡させて二次発泡粒子どうしを熱融着一体化させた。その後、キャビティ内へスチームの導入を止めた状態で300秒間保持した後(保熱工程)、最後に、キャビティ内に冷却水を供給して金型内の発泡成形体を冷却した上でキャビティを開いて発泡成形体を取り出した。
 このとき、金型内に発泡粒子を充填する工程から発泡成形体を得るためにかかった時間(成形サイクル時間)は600秒であった。
(3)樹脂複合体の作製
 炭素繊維からなる綾織の織物から形成された繊維強化基材に、熱硬化性樹脂として未硬化のエポキシ樹脂を40質量%含有させた厚みが0.23mmの繊維強化樹脂層形成材(CFRP、三菱レイヨン社製「パイロフィルプリプレグ TR3523 381GMP」、目付:200g/m)を用意した。発泡成形体の両面に2層ずつ繊維強化樹脂層形成材を積層し、オートクレーブ法にて発泡成形体の表面に繊維強化樹脂層形成材を積層一体化させた。具体的には、0.3MPaのゲージ圧力に加圧して積層体に押圧力を加えると共に、130℃で60分間に亘って積層体を加熱して、繊維強化樹脂層形成材中の熱硬化性樹脂を硬化させると共に、繊維強化樹脂層形成材を硬化した熱硬化性樹脂によって発泡成形体の両面に積層一体化させた。
 (実施例2~8)
 結晶性芳香族ポリエステル系樹脂と非晶性芳香族ポリエステル系樹脂の割合及び、非晶性芳香族ポリエステル系樹脂の種類を表1に示すように設定したこと以外は実施例1と同様にして、発泡粒子及び発泡成形体を得た。
 (比較例1)
 結晶性芳香族ポリエステル系樹脂aを60質量%に、非晶性芳香族ポリエステル系樹脂cを40質量%に設定したこと以外は実施例1と同様にして、発泡粒子及び発泡成形体を得た。
 得られた発泡粒子の120℃における半結晶化時間を測定したところ、測定時間内に結晶化が完結しなかった(DSC曲線における発熱ピークがベースラインまで戻らなかった)ことから、半結晶化時間の算出は不可能であった。
 (比較例2)
 結晶性芳香族ポリエステル系樹脂aのみを使用し、非晶性芳香族ポリエステル系樹脂を使用しなかったこと以外は実施例1と同様にして、発泡粒子及び発泡成形体を得た。
 (比較例3)
 非晶性芳香族ポリエステル系樹脂として樹脂gを使用したこと以外は実施例1と同様にして、発泡粒子及び発泡成形体を得た。
 得られた発泡粒子をDSCにて測定したところ、DSC曲線におけるガラス転移温度Tgは2つ観測された。
 (比較例4)
 結晶性芳香族ポリエステル系樹脂a及びbのみを使用したこと以外は実施例1と同様にして、発泡粒子及び発泡成形体を得た。
 得られた発泡粒子をDSCにて測定したところ、DSC曲線における結晶化ピークと融解ピークが近接しており、ベースラインを引くことができなかったため、結晶化熱量の算出は不可能であった。
 得られた発泡粒子の120℃における半結晶化時間を測定したところ、測定時間内に結晶化が完結しなかった(DSC曲線における発熱ピークがベースラインまで戻らなかった)ことから、半結晶化時間の算出は不可能であった。
 得られた発泡成形体の加熱寸法変化率は、加熱後の発泡成形体が大きく変形し、算出は不可能であった。
 (参考例1)
 比較例4で得た発泡粒子を使用し、更に発泡成形体作製時の保熱工程の時間を900秒とし、成形サイクル時間を1200秒としたこと以外は実施例1と同様にして、発泡成形体を得た。
 配合割合、発泡粒子の評価結果、発泡成形体の成形条件、発泡成形体の評価結果ならびに樹脂複合体の評価結果を、下記の表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記表1及び表2の実施例1~8から、発泡粒子が以下の性質:
(1)前記DSC曲線が、1つのガラス転移温度と、結晶化ピークとを示す、
(2)前記結晶化ピークの面積から求められる結晶化熱量が20mJ/mg以上である、
(3)120℃における半結晶化時間が、180~1000秒である、
を示すことにより、外観美麗で、耐熱性と機械強度に優れた発泡成形体を得ることができることがわかる。
1…ノズル金型、1a…前端面、2…回転軸、3…駆動部材、4…冷却部材、5…回転刃、11…出口部、41…冷却ドラム、41a…前部、41b…周壁部、41c…供給口、41d…供給管、41e…排出口、41f…排出管、42…冷却液(冷却水)、A…仮想円、X…冷却液の流れ方向

Claims (12)

  1. 熱可塑性芳香族ポリエステル系樹脂組成物の発泡粒子であり、前記熱可塑性芳香族ポリエステル系樹脂組成物が結晶性芳香族ポリエステル系樹脂と非晶性芳香族ポリエステル系樹脂とを含み、
     前記発泡粒子は、昇温速度10℃/分で30℃から290℃まで加熱した際に得られたDSC曲線において、以下の性質:
    (1)前記DSC曲線が、1つのガラス転移温度と、結晶化ピークとを示す、
    (2)前記結晶化ピークの面積から求められる結晶化熱量が20mJ/mg以上である、
    (3)120℃における半結晶化時間が、180~1000秒である、
    を示す発泡粒子。
  2. 前記発泡粒子が、15%未満の連続気泡率を示す請求項1に記載の発泡粒子。
  3. 前記結晶性芳香族ポリエステル系樹脂と非晶性芳香族ポリエステル系樹脂とが、両樹脂の合計100質量%に対して、65~99質量%と35~1質量%の割合で含まれる請求項1に記載の発泡粒子。
  4. 前記非晶性芳香族ポリエステル系樹脂が、60~90℃のガラス転移温度を示す請求項1に記載の発泡粒子。
  5. 前記非晶性芳香族ポリエステル系樹脂が、0.6~1.1の固有粘度(IV値)を示す請求項1に記載の発泡粒子。
  6. 前記非晶性芳香族ポリエステル系樹脂と、前記結晶性芳香族ポリエステル系樹脂とのそれぞれのガラス転移温度の差が15℃以下である請求項1に記載の発泡粒子。
  7. 前記結晶性芳香族ポリエステル系樹脂が、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリトリメチレンナフタレートから1種以上選ばれ、前記非晶性芳香族ポリエステル系樹脂が、テレフタル酸と、1,4-シクロヘキサンジメタノール及び/又はネオペンチレングリコールとの共重合体である請求項1に記載の発泡粒子。
  8. 請求項1に記載の発泡粒子を、型内で発泡成形することにより得られる発泡成形体。
  9. 請求項8に記載の発泡成形体と、前記発泡成形体の表面に積層且つ一体化された繊維強化樹脂層とを有する樹脂複合体。
  10. 請求項1に記載の発泡粒子の製造方法であって、
     結晶性芳香族ポリエステル系樹脂と非晶性芳香族ポリエステル系樹脂とを含む熱可塑性芳香族ポリエステル系樹脂組成物を押出機に供給し、前記押出機に供給された供給物を、発泡剤の存在下で溶融混練しつつ、押出発泡させて、押出発泡体を得る溶融押出工程と、
     前記押出発泡体を切断して、発泡粒子を得る切断工程とを含む発泡粒子の製造方法。
  11. 前記結晶性芳香族ポリエステル系樹脂と非晶性芳香族ポリエステル系樹脂とが、両樹脂の合計100質量%に対して、65~99質量%と35~1質量%の含有割合で含まれる請求項10に記載の発泡粒子の製造方法。
  12. 請求項1に記載の発泡粒子を金型のキャビティ内に充填する充填工程と、前記発泡粒子を二次発泡させることで、得られた二次発泡粒子どうしを熱融着により一体化させて、発泡成形体を得る発泡工程とを含む発泡成形体の製造方法。
PCT/JP2019/007728 2018-03-27 2019-02-28 発泡粒子、発泡成形体、それらの製造方法及び樹脂複合体 WO2019187947A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018059811A JP2019172735A (ja) 2018-03-27 2018-03-27 発泡粒子、発泡成形体、それらの製造方法及び樹脂複合体
JP2018-059811 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019187947A1 true WO2019187947A1 (ja) 2019-10-03

Family

ID=68061391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007728 WO2019187947A1 (ja) 2018-03-27 2019-02-28 発泡粒子、発泡成形体、それらの製造方法及び樹脂複合体

Country Status (3)

Country Link
JP (1) JP2019172735A (ja)
TW (1) TWI700306B (ja)
WO (1) WO2019187947A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022025274A1 (ja) * 2020-07-31 2022-02-03 積水化成品工業株式会社 熱可塑性樹脂発泡体、熱可塑性樹脂発泡シート、繊維強化樹脂複合体、熱可塑性樹脂発泡体の製造方法、熱可塑性樹脂発泡成形体、熱可塑性樹脂発泡成形体の製造方法、及び発泡樹脂複合体
JP2022027384A (ja) * 2020-07-31 2022-02-10 積水化成品工業株式会社 熱可塑性樹脂発泡シート、熱可塑性樹脂発泡シート成形体及びこれらの製造方法
WO2023145811A1 (ja) * 2022-01-28 2023-08-03 積水化成品工業株式会社 芳香族ポリエステル系樹脂発泡粒子及びその製造方法、発泡成形体、複合構造部材、並びに自動車用部材

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474337B2 (ja) 2020-08-28 2024-04-24 旭化成株式会社 複合不燃成形体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036000A1 (fr) * 1998-12-11 2000-06-22 Sekisui Plastics Co., Ltd. Particules pre-expansees en resine de polyester aromatique cristallin, produit expanse dans le moule et lamine expanse ainsi realise
JP2006181753A (ja) * 2004-12-27 2006-07-13 Okura Ind Co Ltd 鋼板用化粧フィルム
JP2013177544A (ja) * 2012-01-31 2013-09-09 Toray Ind Inc 芳香族ポリエステル樹脂発泡体
JP2013227483A (ja) * 2012-03-30 2013-11-07 Sekisui Plastics Co Ltd 熱可塑性ポリエステル系樹脂発泡粒子及びこれを用いた発泡成形体の製造方法、発泡成形体並びに複合発泡体
JP2014043528A (ja) * 2012-08-28 2014-03-13 Sekisui Plastics Co Ltd 熱可塑性ポリエステル系樹脂発泡粒子及びこの製造方法、発泡成形体並びに複合成形体
JP2015178553A (ja) * 2014-03-19 2015-10-08 積水化成品工業株式会社 芳香族ポリエステル系樹脂発泡粒子、芳香族ポリエステル系樹脂発泡粒子の製造方法、及び成形体
JP2016537450A (ja) * 2013-10-09 2016-12-01 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 膨張したポリエステル発泡体ビーズを製造する方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6407055B2 (ja) * 2015-02-19 2018-10-17 積水化成品工業株式会社 樹脂発泡シート及び繊維強化複合体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036000A1 (fr) * 1998-12-11 2000-06-22 Sekisui Plastics Co., Ltd. Particules pre-expansees en resine de polyester aromatique cristallin, produit expanse dans le moule et lamine expanse ainsi realise
JP2006181753A (ja) * 2004-12-27 2006-07-13 Okura Ind Co Ltd 鋼板用化粧フィルム
JP2013177544A (ja) * 2012-01-31 2013-09-09 Toray Ind Inc 芳香族ポリエステル樹脂発泡体
JP2013227483A (ja) * 2012-03-30 2013-11-07 Sekisui Plastics Co Ltd 熱可塑性ポリエステル系樹脂発泡粒子及びこれを用いた発泡成形体の製造方法、発泡成形体並びに複合発泡体
JP2014043528A (ja) * 2012-08-28 2014-03-13 Sekisui Plastics Co Ltd 熱可塑性ポリエステル系樹脂発泡粒子及びこの製造方法、発泡成形体並びに複合成形体
JP2016537450A (ja) * 2013-10-09 2016-12-01 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 膨張したポリエステル発泡体ビーズを製造する方法
JP2015178553A (ja) * 2014-03-19 2015-10-08 積水化成品工業株式会社 芳香族ポリエステル系樹脂発泡粒子、芳香族ポリエステル系樹脂発泡粒子の製造方法、及び成形体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022025274A1 (ja) * 2020-07-31 2022-02-03 積水化成品工業株式会社 熱可塑性樹脂発泡体、熱可塑性樹脂発泡シート、繊維強化樹脂複合体、熱可塑性樹脂発泡体の製造方法、熱可塑性樹脂発泡成形体、熱可塑性樹脂発泡成形体の製造方法、及び発泡樹脂複合体
JP2022027384A (ja) * 2020-07-31 2022-02-10 積水化成品工業株式会社 熱可塑性樹脂発泡シート、熱可塑性樹脂発泡シート成形体及びこれらの製造方法
WO2023145811A1 (ja) * 2022-01-28 2023-08-03 積水化成品工業株式会社 芳香族ポリエステル系樹脂発泡粒子及びその製造方法、発泡成形体、複合構造部材、並びに自動車用部材

Also Published As

Publication number Publication date
TWI700306B (zh) 2020-08-01
JP2019172735A (ja) 2019-10-10
TW201942183A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
WO2019187947A1 (ja) 発泡粒子、発泡成形体、それらの製造方法及び樹脂複合体
JP5974010B2 (ja) 型内発泡成形用芳香族ポリエステル系樹脂発泡粒子及びその製造方法、型内発泡成形体、複合構造部材、並びに、自動車用部材
JP5960013B2 (ja) 熱可塑性ポリエステル系樹脂発泡粒子及びこれを用いた発泡成形体の製造方法、発泡成形体並びに複合発泡体
JP6043677B2 (ja) 熱可塑性ポリエステル系樹脂押出発泡シート及びこれを用いた成形品、熱可塑性ポリエステル系樹脂押出発泡シートの製造方法並びに繊維強化複合体
WO2019189635A1 (ja) 発泡粒子、発泡成形体、繊維強化複合体及び自動車用部品
JP5907847B2 (ja) 熱可塑性ポリエステル系樹脂発泡粒子の製造方法、熱可塑性ポリエステル系樹脂発泡粒子、熱可塑性ポリエステル系樹脂発泡粒子を用いた発泡成形体の製造方法、発泡成形体及び複合発泡体
JP6131232B2 (ja) 熱可塑性ポリエステル系樹脂発泡粒子及びその製造方法、発泡成形体及びその製造方法、並びに複合発泡体
JP5890717B2 (ja) 複合体用発泡体及びその製造方法
JP2014043528A (ja) 熱可塑性ポリエステル系樹脂発泡粒子及びこの製造方法、発泡成形体並びに複合成形体
JP6668433B1 (ja) 発泡粒子、発泡成形体、その製造方法及び繊維強化複合体
JP2022057468A (ja) 熱可塑性樹脂発泡粒子、熱可塑性樹脂発泡粒子成形体、発泡樹脂複合体、熱可塑性樹脂発泡粒子の製造方法及び熱可塑性樹脂発泡粒子成形体の製造方法
JP7262273B2 (ja) 発泡粒子及び発泡成形体
JP3722727B2 (ja) 熱可塑性ポリエステル系樹脂の型内発泡成形体、その製造方法及びその用途
JP6404197B2 (ja) 繊維強化発泡体、その製造方法及び繊維強化発泡体を芯材とする繊維強化複合体
JP2019183099A (ja) 発泡粒子、発泡成形体、繊維強化複合体及び自動車用部品
JP7203198B2 (ja) 発泡粒子製造用の樹脂組成物、発泡粒子、発泡成形体及び複合構造部材
WO2022196473A1 (ja) 芳香族ポリエステル系樹脂発泡粒子及びその製造方法、発泡成形体、並びに自動車用部材
WO2023238958A1 (ja) 熱可塑性樹脂発泡粒子、熱可塑性樹脂発泡粒子成形体、発泡樹脂複合体、熱可塑性樹脂発泡粒子の製造方法及び熱可塑性樹脂発泡粒子成形体の製造方法
JP7277308B2 (ja) 発泡成形体
JP2022129943A (ja) 発泡粒子、発泡成形体及び複合構造部材
JP7262266B2 (ja) 発泡粒子及び発泡成形体
JP2021031623A (ja) 発泡粒子、発泡成形体及び複合構造部材
JP6077363B2 (ja) 繊維強化複合体の製造方法
WO2020065485A1 (ja) 発泡粒子及び発泡成形体
JP2023111039A (ja) 熱可塑性樹脂発泡粒子、熱可塑性樹脂発泡粒子成形体、発泡樹脂複合体、熱可塑性樹脂発泡粒子の製造方法及び熱可塑性樹脂発泡粒子成形体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777989

Country of ref document: EP

Kind code of ref document: A1