WO2020066024A1 - 表示装置およびその駆動方法 - Google Patents
表示装置およびその駆動方法 Download PDFInfo
- Publication number
- WO2020066024A1 WO2020066024A1 PCT/JP2018/036597 JP2018036597W WO2020066024A1 WO 2020066024 A1 WO2020066024 A1 WO 2020066024A1 JP 2018036597 W JP2018036597 W JP 2018036597W WO 2020066024 A1 WO2020066024 A1 WO 2020066024A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- threshold control
- voltage
- threshold
- transistor
- pixel circuit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3225—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
- G09G3/3233—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3266—Details of drivers for scan electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3275—Details of drivers for data electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/04—Structural and physical details of display devices
- G09G2300/0421—Structural details of the set of electrodes
- G09G2300/043—Compensation electrodes or other additional electrodes in matrix displays related to distortions or compensation signals, e.g. for modifying TFT threshold voltage in column driver
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0819—Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0842—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0842—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
- G09G2300/0852—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0202—Addressing of scan or signal lines
- G09G2310/0213—Addressing of scan or signal lines controlling the sequence of the scanning lines with respect to the patterns to be displayed, e.g. to save power
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/06—Details of flat display driving waveforms
- G09G2310/061—Details of flat display driving waveforms for resetting or blanking
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0247—Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/10—Special adaptations of display systems for operation with variable images
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2330/00—Aspects of power supply; Aspects of display protection and defect management
- G09G2330/02—Details of power systems and of start or stop of display operation
- G09G2330/021—Power management, e.g. power saving
Definitions
- the present invention relates to a display device, and more particularly, to a current-driven display device including a current-driven display element such as an organic EL (Electro Luminescence) display device and a driving method thereof.
- a current-driven display device including a current-driven display element such as an organic EL (Electro Luminescence) display device and a driving method thereof.
- an organic EL display device including a pixel circuit including an organic EL element (also referred to as an organic light emitting diode (Organic Light Emitting Diode: OLED)) has been put to practical use.
- the pixel circuit of the organic EL display device includes a drive transistor, a write control transistor, a holding capacitor, and the like, in addition to the organic EL element.
- a thin film transistor Thin Film Transistor
- a storage capacitor is connected to a gate terminal as a control terminal of the drive transistor.
- the storage capacitor is connected to the drive circuit via a data signal line.
- a voltage corresponding to a video signal representing an image to be displayed (more specifically, a voltage indicating a gradation value of a pixel to be formed by the pixel circuit) is provided as a data voltage.
- the organic EL element is a self-luminous display element that emits light at a luminance according to the current flowing through the organic EL element.
- the drive transistor is provided in series with the organic EL element, and controls a current flowing through the organic EL element according to a voltage held by the storage capacitor.
- a display device that performs pause driving (also called intermittent driving or low-frequency driving) is known as a display device with low power consumption.
- a drive period (refresh period) and a pause period (non-refresh period) are provided when the same image is continuously displayed, and the drive circuit is operated during the drive period, and the operation of the drive circuit is stopped during the pause period. It is a driving method.
- the pause drive can be applied when the transistor in the pixel circuit has good off-leak characteristics (off-leak current is small).
- a display device that performs a pause drive is described in, for example, Japanese Patent Application Laid-Open No. H10-157,036.
- the pixel circuit initializes, for example, the voltage of the gate terminal of the driving transistor, that is, the voltage held in the holding capacitor, to a predetermined level. Thereafter, the storage capacitor is charged with the data voltage via the driving transistor in the diode connection state.
- an initialization transistor for initializing a voltage held in the holding capacitor is provided, and one terminal of the holding capacitor (a terminal connected to the gate terminal of the driving transistor) is connected to the initializing transistor. Connected to a supply line of the initialization voltage via the reset transistor.
- the luminance of the organic EL element decreases or increases in the pause period, and the luminance of the organic EL element returns to the original luminance every time the drive period starts.
- the length of the pause period is much longer than the normal frame period (1/60 second), and the driving frequency of the display device is substantially lower than that of the normal drive (for example, 10 Hz or less).
- the driving frequency is greatly reduced by the pause driving, the luminance change of the organic EL element caused by the repetition of the pause period and the driving period is visually recognized as flicker.
- a display device includes a plurality of data signal lines, a plurality of scanning signal lines intersecting the plurality of data signal lines, the plurality of data signal lines, and the plurality of scanning signal lines.
- a plurality of pixel circuits arranged in a matrix along the display device, First and second power lines;
- a data signal line driving circuit for driving the plurality of data signal lines;
- a scanning signal line driving circuit for selectively driving the plurality of scanning signal lines;
- a threshold control circuit provided outside or inside the plurality of pixel circuits,
- Each pixel circuit is Corresponds to any one of the plurality of scanning signal lines and to any one of the plurality of data signal lines, Including a display element driven by current, a holding capacitor, and a driving transistor,
- the drive transistor has a main control terminal for controlling a current flowing through the drive transistor, and a threshold control terminal for controlling a threshold thereof.
- the main control terminal of the drive transistor is connected to the first power supply line via the holding capacitor, Each pixel circuit is When the corresponding scanning signal line is selected, the voltage of the corresponding data signal line is written to the holding capacitor as a data voltage, In the light emitting period of the display element, a drive current of the display element flows in a path from the first power supply line to the second power supply line via the drive transistor and the display element, and a voltage held in the storage capacitor. Is configured so that the drive current is controlled by the drive transistor in accordance with The threshold control circuit, for each pixel circuit, changes a threshold value of the driving transistor so as to compensate for a change in a holding voltage of the holding capacitor due to a leakage current in the pixel circuit during a light emitting period of the display element. A voltage is applied to the threshold control terminal.
- the driving method includes a plurality of data signal lines, a plurality of scanning signal lines intersecting the plurality of data signal lines, first and second power supply lines, A plurality of pixel circuits arranged in a matrix along the data signal lines and the plurality of scanning signal lines, a method for driving a display device, A data signal line driving step of driving the plurality of data signal lines; A scanning signal line driving step of selectively driving the plurality of scanning signal lines; A threshold control step of controlling a threshold of a drive transistor included in the plurality of pixel circuits, Each pixel circuit is Corresponds to any one of the plurality of scanning signal lines and to any one of the plurality of data signal lines, A display element driven by current, a holding capacitor, and the driving transistor, The drive transistor has a main control terminal for controlling a current flowing through the drive transistor, and a threshold control terminal for controlling a threshold thereof.
- the main control terminal of the drive transistor is connected to the first power supply line via the holding capacitor, Each pixel circuit is When the corresponding scanning signal line is selected, the voltage of the corresponding data signal line is written to the holding capacitor as a data voltage, In the light emitting period of the display element, a drive current of the display element flows in a path from the first power supply line to the second power supply line via the drive transistor and the display element, and a voltage held in the storage capacitor.
- a threshold control for each pixel circuit, during a light emitting period of the display element, a threshold control for changing a threshold of the driving transistor so as to compensate for a change in a holding voltage of the holding capacitor due to a leakage current in the pixel circuit.
- a voltage is provided to the threshold control terminal.
- the scanning signal line corresponding to the pixel circuit is selected, and the data voltage is written to the storage capacitor in the pixel circuit.
- the change in the holding voltage is compensated for, that is, the voltage change of the main control terminal of the driving transistor is changed.
- a threshold control voltage for changing the threshold of the drive transistor so as to compensate is provided to a threshold control terminal. This suppresses a change in the drive current due to a change in the holding voltage in the holding capacitor. As a result, generation of flicker due to a change in the luminance of the display element in the refresh cycle is prevented.
- FIG. 2 is a block diagram illustrating an overall configuration of the display device according to the first embodiment.
- FIG. 5 is a signal waveform diagram illustrating an operation when performing normal driving in the display device according to the first embodiment.
- FIG. 5 is a signal waveform diagram illustrating an operation when a pause drive is performed in the display device according to the first embodiment.
- FIG. 2 is a circuit diagram illustrating a configuration of a pixel circuit according to the first embodiment.
- FIG. 2 is a cross-sectional view schematically illustrating a structure of a driving transistor included in the pixel circuit according to the first embodiment.
- FIG. 4 is a signal waveform diagram for explaining an operation of the pixel circuit according to the first embodiment.
- FIG. 9 is a waveform chart for explaining a problem when the pause drive is performed without controlling the threshold of the drive transistor.
- FIG. 4 is a waveform chart for explaining the operation and effect of the first embodiment. It is a block diagram showing the whole composition of the display concerning a 2nd embodiment.
- FIG. 9 is a circuit diagram illustrating a configuration of a pixel circuit according to the second embodiment.
- FIG. 9 is a signal waveform diagram for explaining driving of the display device according to the second embodiment.
- FIG. 9 is a circuit diagram illustrating another configuration example of the pixel circuit according to the second embodiment.
- a gate terminal corresponds to a control terminal
- one of a drain terminal and a source terminal corresponds to a first conduction terminal
- the other corresponds to a second conduction terminal.
- all the transistors will be described as P-channel transistors; however, the present invention is not limited to this.
- the transistor in the following embodiments is, for example, a thin film transistor, but the present invention is not limited to this.
- connection in the present specification means “electrical connection” unless otherwise specified, and means not only direct connection but also other means within a range not departing from the gist of the present invention. This also includes the case of indirect connection through an element.
- FIG. 1 is a block diagram illustrating an overall configuration of an organic EL display device 10 according to the first embodiment.
- the display device 10 is an organic EL display device that performs internal compensation. That is, in the display device 10, each pixel circuit has a function of compensating for variations and variations in the threshold voltage of the driving transistor inside the pixel circuit (details will be described later).
- the display device 10 includes a display unit 11, a display control circuit 20, a data drive circuit 30, a scan drive circuit 40, and a power supply circuit 50.
- the data side driver circuit functions as a data signal line driver circuit (also referred to as “data driver”).
- the scanning side driving circuit 40 functions as a scanning signal line driving circuit (also called “gate driver”) and a light emission control circuit (also called “emission driver”).
- these two circuits on the scanning side are realized as one scanning side driving circuit 40.
- the two circuits may be separated from each other as appropriate. May be separately arranged on one side and the other side of the display unit 11. Further, at least a part of the scanning side driving circuit and the data signal line driving circuit may be formed integrally with the display unit 11.
- the power supply circuit 50 includes a later-described high-level power supply voltage ELVDD, a low-level power supply voltage ELVSS, an initialization voltage Vini to be supplied to the display unit 11, and the display control circuit 20, the data-side drive circuit 30, and the scan-side drive circuit 40. And a power supply voltage (not shown) to be supplied to the power supply.
- the display unit 11 includes m (m is an integer of 2 or more) data signal lines D1 to Dm and n + 1 (n is an integer of 2 or more) scanning signal lines G0 to Gn intersecting with them.
- n emission control lines (emission lines) E1 to En are arranged along the n scanning signal lines G1 to Gn, respectively.
- the display unit 11 includes m ⁇ n pixel circuits 15 arranged in a matrix along m data signal lines D1 to Dm and n scan signal lines G1 to Gn. Each pixel circuit 15 corresponds to any one of the m data signal lines D1 to Dm and also corresponds to any one of the n scanning signal lines G1 to Gn.
- a pixel circuit corresponding to the i-th scanning signal line Gi and the j-th data signal line Dj is also referred to as “i-th row and j-th column pixel circuit”, and is denoted by a symbol “Pix (i, j)”. Shall be).
- the display unit 11 in the present embodiment is provided with n threshold control lines TC1 to TCn along the n scanning signal lines G1 to Gn, respectively.
- the n emission control lines E1 to En correspond to the n scanning signal lines G1 to Gn, respectively, and the n threshold control lines TC1 to TCn also correspond to the n scanning signal lines G1 to Gn, respectively. Therefore, each pixel circuit 15 corresponds to any one of the n light emission control lines E1 to En and any one of the n threshold control lines TC1 to TCn.
- a power supply line (not shown) common to the pixel circuits 15 is provided. That is, a power supply line for supplying a high-level power supply voltage ELVDD for driving an organic EL element (to be described later) (hereinafter, referred to as a “high-level power supply line” and denoted by the same symbol “ELVDD” as the high-level power supply voltage), and And a power supply line for supplying a low-level power supply voltage ELVSS for driving the organic EL element (hereinafter, referred to as a “low-level power supply line” and indicated by the same symbol “ELVSS” as the low-level power supply voltage).
- ELVDD high-level power supply voltage
- ELVSS low-level power supply voltage
- the low-level power line ELVSS is a cathode common to the plurality of pixel circuits 15.
- the display unit 11 has an initialization voltage supply line (not shown) for supplying an initialization voltage Vini used for a reset operation (also referred to as “initialization operation”) for initialization of each pixel circuit 15.
- a voltage “Vini” is also provided.
- the high-level power supply voltage ELVDD, the low-level power supply voltage ELVSS, and the initialization voltage Vini are supplied from the power supply circuit 50.
- the display control circuit 20 receives an input signal Sin including image information representing an image to be displayed and timing control information for image display from outside the display device 10, and based on the input signal Sin, a data-side control signal Scd and a scan.
- a side control signal Scs is generated, a data side control signal Scd is sent to a data side drive circuit (data signal line drive circuit) 30, and a scan side control signal Scs is sent to a scan side drive circuit (scanning signal line drive / light emission control circuit) 40.
- the display control circuit 20 includes a threshold control circuit 22 that generates threshold control signals TC (1) to TC (n) based on the input signal Sin and applies them to the threshold control lines TC1 to TCn in the display unit 11, respectively. . Details of the threshold control signals TC (1) to TC (n) will be described later.
- the data-side drive circuit 30 drives the data signal lines D1 to Dm based on the data-side control signal Scd from the display control circuit 20. That is, the data-side drive circuit 30 outputs m data signals D (1) to D (m) representing an image to be displayed in parallel based on the data-side control signal Scd, and outputs the data signals to the data signal lines D1 to Dm, respectively. Apply.
- the scanning-side driving circuit 40 drives the scanning signal lines G0 to Gn based on the scanning-side control signal Scs from the display control circuit 20, and the light-emitting control circuit drives the light-emitting control lines E1 to En. Function as
- the scanning-side driving circuit 40 sequentially selects the scanning signal lines G0 to Gn in each frame period by a predetermined period corresponding to one horizontal period based on the scanning-side control signal Scs as a scanning signal line driving circuit. Then, an active signal (low-level voltage) is applied to the selected scanning signal line Gk, and an inactive signal (high-level voltage) is applied to the unselected scanning signal lines.
- m pixel circuits Pix (k, 1) to Pix (k, m) corresponding to the selected scanning signal line Gk (1 ⁇ k ⁇ n) are collectively selected.
- the m data signals D (1) to m applied to the data signal lines D1 to Dm from the data driving circuit 30 are output.
- the voltage of D (m) (hereinafter sometimes simply referred to as “data voltage” without distinguishing these voltages) is used as pixel data in the pixel circuits Pix (k, 1) to Pix (k, m). Each is written.
- the scanning-side drive circuit 40 applies a light-emitting control signal (high-level voltage) indicating no light emission in the i-th horizontal period to the i-th light-emitting control line Ei based on the scanning-side control signal Scs, as a light-emitting control circuit.
- a light emission control signal low level voltage
- the organic EL elements in the pixel circuits Pix (i, 1) to Pix (i, m) corresponding to the i-th scanning signal line Gi (hereinafter also referred to as “i-th pixel circuit”) are connected to the emission control line Ei. While the voltage is at the low level, light is emitted at a luminance corresponding to the data voltage written to each of the pixel circuits Pix (i, 1) to Pix (i, m) on the i-th row.
- the display device 10 according to the present embodiment has two operation modes: a normal drive mode and a pause drive mode.
- the normal drive mode as shown in FIG. 2, the scanning signal lines G0 to G1 are sequentially selected in one frame period, and the image is displayed on the display unit 11 (of the pixel circuits Pix (1, 1) to Pix (n, m)).
- a refresh period for writing data hereinafter also referred to as an “RF period”
- a refresh period for writing data hereinafter also referred to as an “RF period”
- a non-refresh period (hereinafter also referred to as an “NRF” period) in which writing of image data to the display unit 11 is stopped is alternately repeated.
- NEF non-refresh period
- the scanning-side and data-side driving circuits are stopped in the non-refresh period, and the display by the image data written in the immediately preceding refresh period is continued. Therefore, the pause drive mode is effective in reducing the power consumption of the display device when displaying a still image.
- the external input signal Sin includes the operation mode signal Sm indicating which of the normal drive mode and the pause drive mode is used to drive the display unit 11 as described above.
- the operation mode signal Sm is supplied to the scanning drive circuit 40 as a part of the scanning control signal Scs, and is also supplied to the data drive circuit 30 as a part of the data control signal Scd.
- the scanning side drive circuit 40 drives the scanning signal lines G0 to Gn and the light emission control lines E1 to En according to the operation mode indicated by the operation mode signal Sm, and the data side drive circuit 30 uses the operation mode signal Sm.
- Data signal lines D1 to Dn are driven according to the indicated operation mode.
- the display control circuit 20 (the threshold control circuit 22) drives the threshold control lines TC1 to TCn according to the operation mode indicated by the operation mode signal Sm.
- a data write operation is performed when the corresponding scanning signal line Gi is in the selected state, and the scanning signal line Gi- immediately before the scanning signal line Gi is performed.
- the reset operation is performed, and the light emission control line Ei is driven so that each pixel circuit Pix (i, j) is in a non-light emitting state during a period in which the data write operation and the reset operation are performed.
- (I 1 to N). That is, as shown in FIGS. 2 and 3, in the RF period, the light emission control lines E1 to En are sequentially activated in two horizontal periods so as to be interlocked with the driving of the scanning signal lines G0 to Gn.
- each light emission control line Ei is , Is activated when a low level (L level) voltage is applied, and is deactivated when a high level (H level) voltage is applied.
- each threshold control line TCi is maintained at a predetermined threshold control initial voltage VtcI, and the threshold value of the drive transistor in each pixel circuit Pix (i, j) is Does not change (details will be described later).
- each threshold control line TCi gradually increases with time in the NRF period (non-refresh period), and the threshold voltage in the next RF period (refresh period). The voltage drops to the control initial voltage VtcI.
- each of the scanning signal lines G0 to Gn is maintained in a non-selected state (H level), and each of the light emission control lines E1 to En is maintained in an active state (L level). Therefore, during the NRF period, the scanning-side and data-side driving circuits are stopped, and each pixel circuit Pix (i, j) continues to emit light according to the data voltage held therein.
- FIG. 4 is a circuit diagram showing the configuration of the pixel circuit 15 in the present embodiment. More specifically, the pixel circuit 15 corresponding to the i-th scanning signal line Gi and the j-th data signal line Dj, that is, the i-th row and j-th column
- FIG. 3 is a circuit diagram illustrating a configuration of a pixel circuit Pix (i, j) (1 ⁇ i ⁇ n, 1 ⁇ j ⁇ m). As shown in FIG.
- the pixel circuit 15 includes an organic EL element OL as a display element, a drive transistor T1, a write control transistor T2, a threshold compensation transistor T3, a first initialization transistor T4, a first light emission control transistor T5, 2 includes a light emission control transistor T6, a second initialization transistor T7, and a holding capacitor Cst.
- the transistors T2 to T7 other than the driving transistor T1 function as switching elements.
- the pixel circuit 15 includes scanning signal lines Gi corresponding thereto (hereinafter also referred to as “corresponding scanning signal lines” in the description focusing on the pixel circuits), and scanning signal lines immediately before the corresponding scanning signal lines Gi (scanning signal lines G1 to G1).
- Gn is the immediately preceding scanning signal line in the scanning order, and is hereinafter also referred to as “preceding scanning signal line” in the description focusing on the pixel circuit.
- Gi-1 and the corresponding emission control line hereinafter, focusing on the pixel circuit).
- a corresponding light emission control line) Ei a corresponding threshold control line (hereinafter, also referred to as a “corresponding threshold control line” in the description focusing on the pixel circuit) TCi, and a corresponding data signal line (hereinafter, pixel circuit) , Dj, the initialization voltage supply line Vini, the high-level power supply line ELVDD, and the low-level power supply line ELV. S is connected.
- a corresponding threshold control line hereinafter, also referred to as a “corresponding threshold control line” in the description focusing on the pixel circuit” TCi
- a corresponding data signal line hereinafter, pixel circuit
- the source terminal of the drive transistor T1 is connected to the corresponding data signal line Dj via the write control transistor T2 and at the high level via the first light emission control transistor T5. It is connected to the power supply line ELVDD.
- the drain terminal of the driving transistor T1 is connected to the anode electrode of the organic EL element OL via the second emission control transistor T6.
- the gate terminal of the driving transistor T1 is connected to the high-level power supply line ELVDD via the holding capacitor Cst, is connected to the drain terminal of the driving transistor T1 via the threshold compensation transistor T3, and is connected to the first initialization transistor. It is connected to the initialization voltage supply line Vini via T4.
- the anode electrode of the organic EL element OL is connected to the initialization voltage supply line Vini via the second initialization transistor T7, and the cathode electrode of the organic EL element OL is connected to the low-level power supply line ELVSS.
- the gate terminals of the write control transistor T2 and the threshold compensation transistor T3 are connected to the corresponding scanning signal line Gi, and the gate terminals of the first and second light emission control transistors T5 and T6 are connected to the corresponding light emission control line Ei.
- Gate terminals of the first initialization transistor T4 and the second initialization transistor T7 are connected to the preceding scanning signal line Gi-1.
- the drive transistor T1 of the pixel circuit 15 in the present embodiment is a thin film transistor having a top gate electrode TG and a bottom gate electrode BG (details will be described later).
- the gate terminal of the second initialization transistor T7 may be connected to the corresponding scanning signal line Gi instead of the preceding scanning signal line Gi-1.
- FIG. 5 is a cross-sectional view showing one configuration example of the driving transistor T1.
- a bottom gate electrode BG is formed on an inorganic insulating film 112 as a moisture-proof layer formed on an insulating substrate 110 of a flexible substrate formed of a glass substrate or a resin material such as polyimide.
- a gate insulating film BGI is formed so as to cover it.
- a semiconductor layer is formed on the gate insulating film BGI.
- the semiconductor layer is formed of an intrinsic semiconductor 122 as a channel region, a conductor 121a as a source region and a drain region formed so as to face each other via the channel region. And the conductor 121b.
- a gate insulating film TGI is further formed on the semiconductor layer having such a configuration, and a top gate electrode TG is formed thereon.
- a first inorganic insulating film 114 and a second inorganic insulating film 116 are sequentially formed so as to cover the top gate electrode TG, and metal layers 120a and 120b for electrical connection with other elements are formed thereon. I have.
- the conductor 121a as a source region is electrically connected to the metal layer 120a through a contact hole
- the conductor 121b as a drain region is electrically connected to the metal layer 120b through a contact hole.
- an insulating layer 118 as a flattening film is formed so as to cover the metal layers 120a and 120b.
- the drive transistor T1 includes the top gate electrode TG arranged so as to face one surface (the upper surface in the drawing) of the channel region (intrinsic semiconductor layer) 122 via the gate insulating film TGI, and the channel region 122. And a bottom gate electrode BG disposed so as to face the other surface via the gate insulating film BGI (see FIG. 5).
- a double gate type such a configuration in which the gate electrode is provided on one surface side and the other surface side of the channel region.
- one of the two gate electrodes is used as an original control terminal (a terminal for controlling the current flowing through the transistor), and the other gate electrode is used by a voltage applied thereto.
- the bottom gate electrode BG is used as a main gate terminal (also referred to as a “main control terminal”) for controlling the current between the source and the drain.
- the top gate electrode TG is used as a threshold control terminal for controlling the threshold of the driving transistor T1.
- the bottom gate electrode BG as the main gate terminal is connected to the holding capacitor Cst, and the top gate electrode TG as the threshold control terminal is connected to the corresponding threshold control line TCi.
- the term “gate terminal” will simply refer to the “main gate terminal”.
- the drive transistor T1 operates in the saturation region, and the drive current I1 flowing through the organic EL element OL during the light emission period is given by the following equation (1).
- the gain ⁇ of the driving transistor T1 included in the equation (1) is given by the following equation (2).
- I1 ( ⁇ / 2) (
- ) 2 ( ⁇ / 2) (
- ⁇ ⁇ ⁇ (W / L) ⁇ Cox (2)
- Vgs, Vth, ⁇ , W, L, and Cox are the gate-source voltage, threshold value, mobility, gate width, and gate length of the driving transistor T1, respectively.
- FIG. 6 is a signal waveform diagram for explaining the operation of the pixel circuit in the present embodiment.
- FIG. 7A is a circuit diagram illustrating a reset operation of the pixel circuit 15 according to the present embodiment
- FIG. 7B is a circuit diagram illustrating a data write operation of the pixel circuit 15.
- 3C is a circuit diagram illustrating a lighting operation of the pixel circuit 15.
- FIG. 6 shows each signal line (correspondence) in the reset operation, the data write operation, and the lighting operation of the pixel circuit 15 of FIG. 4 configured as described above, that is, the pixel circuit Pix (i, j) of the i-th row and the j-th column.
- Vg and the voltage Va of the anode electrode of the organic EL element OL hereinafter referred to as “anode voltage”.
- a period from time t1 to t6 is a non-light emitting period of the pixel circuits Pix (i, 1) to Pix (i, m) in the i-th row.
- the period from time t2 to t4 is the (i-1) th horizontal period
- the period from time t2 to t3 is the selection period of the (i-1) th scanning signal line (preceding scanning signal line) Gi-1, that is, the (i-1) th scanning selection.
- the (i-1) th scanning selection period corresponds to a reset period of the pixel circuits Pix (i, 1) to Pix (i, m) on the i-th row.
- the period from time t4 to t6 is the i-th horizontal period, and the period from time t4 to t5 is the selection period of the i-th scanning signal line (corresponding scanning signal line) Gi, that is, the i-th scanning selection period.
- the i-th scanning selection period corresponds to a data writing period of the pixel circuits Pix (i, 1) to Pix (i, m) on the i-th row.
- the first initialization transistor T4 changes to the ON state.
- the voltage of the main gate terminal of the driving transistor T1 that is, the gate voltage Vg
- the initialization voltage Vini is a voltage that can keep the drive transistor T1 in the ON state when a data voltage is written to the pixel circuit Pix (i, j).
- the second initialization transistor T7 also changes to the ON state.
- the accumulated charge in the parasitic capacitance of the organic EL element OL is discharged, and the anode voltage Va of the organic EL element is initialized to the initialization voltage Vini (see FIG. 6).
- the symbol “Va (i, j)” is used to distinguish the anode voltage Va in the pixel circuit Pix (i, j) from the anode voltage Va in other pixel circuits (the same applies to the following).
- the voltage of the corresponding threshold control line TCi is initialized to a predetermined threshold control initial voltage VtcI, and thereafter, in the next frame period, the preceding scanning signal line Gi-1 is in the selected state. (Until the start of the (i-1) th selective scanning period in the next frame period).
- the period from time t2 to time t3 is a reset period in the pixel circuits Pix (i, 1) to Pix (i, m) in the i-th row.
- the reset period is as described above.
- the first initialization transistor T4 is in the ON state.
- FIG. 7A schematically shows the state of the pixel circuit Pix (i, j) during the reset period, that is, the circuit state during the reset operation.
- a dotted circle indicates that a transistor as a switching element therein is in an off state
- a dotted rectangle indicates that a transistor as a switching element therein is in an on state. (This expression method is also employed in FIGS. 7B and 7C).
- FIG. 6 shows a change in the gate voltage Vg (i, j) in the pixel circuit Pix (i, j) at this time. Note that the symbol “Vg (i, j)” is used to distinguish the gate voltage Vg in the pixel circuit Pix (i, j) from the gate voltage Vg in other pixel circuits (the same applies to the following).
- the data-side driving circuit 30 supplies the data signal D (j) as the data voltage of the pixel in the i-th row and the j-th column to the data signal line Dj.
- the application is started, and the application of the data signal D (j) is continued at least until the end time t5 of the i-th scanning selection period.
- the voltage of the corresponding scanning signal line Gi changes from the H level to the L level, so that the corresponding scanning signal line Gi is in the selected state. Therefore, in the pixel circuit Pix (i, j), the write control transistor T2 and the threshold compensation transistor T3 change to the ON state.
- the period from time t4 to time t5 is a data writing period in the pixel circuits Pix (i, 1) to Pix (i, m) on the i-th row.
- the write control transistor T2 and the threshold compensation transistor T3 are on.
- FIG. 7B schematically shows the state of the pixel circuit Pix (i, j) during the data writing period, that is, the circuit state during the data writing operation.
- the voltage of the corresponding data signal line Dj is applied as the data voltage Vdata to the holding capacitor Cst via the diode-connected drive transistor T1.
- the gate voltage Vg (i, j) changes toward the value given by the following equation (5).
- Vg (i, j) Vdata ⁇
- FIG. 7C schematically shows the state of the pixel circuit Pix (i, j) during the light emission period, that is, the circuit state during the lighting operation.
- the high level power supply line ELVDD is connected to the low level power supply line ELVSS via the first light emission control transistor T5, the driving transistor T1, the second light emission control transistor T6, and the organic EL element OL.
- the current I1 flows.
- This current I1 is given by the above equation (1).
- the drive transistor T1 is of a P-channel type and ELVDD> Vg, from the above equations (1) and (5), this current I1 is given by the following equation.
- each pixel circuit Means that the organic EL element is not turned on not only during the data writing period (i-th scan selection period shown in FIG. 6) but also during the previous reset period (i-1-th scan selection period shown in FIG. 6). , And is in a non-light emitting state for at least both periods.
- the threshold Vth of the drive transistor T1 of each pixel circuit Pix (i, j) is set to the threshold control line TCi given to its threshold control terminal (top gate electrode) TG. It is controlled by the voltage, that is, the voltage of the threshold control signal TC (i) (hereinafter referred to as “threshold control voltage”) Vtc (i) (see FIGS. 3 and 6).
- threshold control voltage the voltage of the threshold control signal TC (i) (hereinafter referred to as “threshold control voltage”) Vtc (i) (see FIGS. 3 and 6).
- a long NRF period is provided between two adjacent RF periods as shown in FIG. 3, so that a writing cycle (refresh cycle) of a data voltage to the pixel circuit Pix (i, j) is normally performed. It is much longer than the drive mode, for example, about 0.1 second or more (refresh rate is 10 Hz or less). Therefore, in the light emitting period including the NRF period, the amount of change in the charge stored in the holding capacitor Cst due to the leakage current Ioff of the first initialization transistor T4 in the off state increases. As a result, the amount of decrease in the gate voltage Vg (i, j) of the drive transistor T1 in one refresh cycle Tref-PD in the idle drive mode also increases.
- the gate voltage Vg (i, j) thus reduced rises by writing a new data voltage in the next RF period (time Tw1 to Tw4 shown in FIG. 8 indicate the time of this writing). Therefore, in the idle drive mode, the gate voltage Vg (i, j) of the drive transistor T1 periodically changes in the refresh cycle Tref-PD as shown in FIG. In response, the luminance L (i, j) of the organic EL element OL in the pixel circuit Pix (i, j) gradually increases as shown in FIG. 8, and this is visually recognized as flicker.
- the threshold control line TCi is driven to change as shown.
- of the threshold value of the driving transistor T1 gradually increases in the light emission period including the NRF period, and the start time t2 of the (i-1) th selective scanning period in the next RF period (this time is 9 at substantially the same time as the data writing times Tw1 to Tw4), the threshold control initial voltage VtcI drops.
- the threshold control voltage Vtc (i) applied to the threshold control terminal TG of the drive transistor T1 periodically changes at the refresh cycle Tref-PD as shown in FIG.
- of the threshold value of the drive transistor T1 increases as the voltage Vtc (i) applied to the threshold control terminal TG increases in the positive direction (the current increases). It becomes difficult to flow).
- acts in the direction of decreasing the drive current I1 of the organic EL element OL by the drive transistor T1 to lower the luminance. Therefore, by appropriately setting the rate of change of the threshold control voltage Vtc (i) during the light emitting period according to the characteristics of the driving transistor T1, the luminance L (i, j) of the organic EL element OL in the pixel circuit Pix (i, j) is obtained.
- the change in j) can be reduced as shown by the solid line in FIG. Therefore, in the idle drive mode, it is possible to suppress the occurrence of flicker due to the change in the amount of charge stored in the holding capacitor Cst due to the leakage current of the first initialization transistor T4.
- the drive current I1 flowing from the drive transistor T1 to the organic EL element OL during the light emission period is given by the above-described equation (1).
- Vdd ELVDD
- Vg Vg (i, j) changes due to the leakage current Ioff of the first initialization transistor T4 during the light emission period
- this gate voltage Vg is regarded as a function of the time t and is set to Vg (t).
- Vg (0) Vdata-
- the gate voltage Vg (t) that changes due to the leakage current Ioff of the first initialization transistor T4 that is in the off state during the light emission period can be expressed by the following equation from FIGS. 4 and 7C.
- Vg (t) (Vg (0) ⁇ Vini) exp ( ⁇ t / (Cst ⁇ Roff)) + Vini (9)
- Vini indicates the initialization voltage
- Cst indicates the capacitance value of the holding capacitor Cst
- Roff indicates the off-resistance of the first initialization transistor T4.
- the voltage gradually decreases from Vg (0) shown in the above equation (8), and rises to Vg (0) shown in the above (8) by writing the data voltage in the next RF period. That is, the gate voltage Vg periodically changes in the refresh cycle Tref-PD in the pause drive mode as shown in FIG.
- the driving current I1 is increased in the light emitting period after the data writing period according to the above equations (8) and (10).
- I1 ( ⁇ / 2) (Vdd ⁇ Vg (0) ⁇
- ) 2 ( ⁇ / 2) (Vdd ⁇ Vdata) 2
- I1 ( ⁇ / 2) (Vdd ⁇ Vdata) 2
- the luminance L (i, j) of the organic EL element OL of the current drive type periodically changes in the refresh cycle Tref-PD in the pause drive mode as shown in FIG.
- Such a change in the luminance L (i, j) of the organic EL element OL is visually recognized as flicker.
- the threshold control terminal (top gate electrode) TG of the drive transistor T1 is connected to the threshold control voltage Vtc (i) via the threshold control line TCi. To control the threshold value Vth of the driving transistor T1.
- this threshold is regarded as a function Vth (t) of the time t, and ideally Vg (t) +
- Vg (0) +
- the threshold Vth (t) may be controlled so that By doing so, the driving current I1 does not change and the value shown by the following equation is maintained from the equation (10).
- I1 ( ⁇ / 2) (Vdd ⁇ Vg (0) ⁇
- Vg (t) represented by the above equation (9) is approximated by the following equation.
- Vg (t) (Vg (0) ⁇ Vini) (1 ⁇ t / (Cst ⁇ Roff)) + Vini (13) From the above equations (11) and (13),
- can be expressed by the following linear expression with respect to the voltage Vtg of the top gate electrode TG. it can.
- a ⁇ Vtg + b
- the threshold control voltage Vtc (i) given as Vtg is given to the top gate electrode TG, the above equation can be rewritten as follows.
- Vtc (i, t) ⁇
- ⁇ b ⁇ / a ⁇
- the threshold control voltage Vtc (i) that changes according to the above equation (17) is changed to the threshold control line TCi.
- the threshold control signals TC (1) to TC (n) are provided by the threshold control circuit 22. It is generated and applied to the threshold control lines TC1 to TCn (see FIGS. 9 and 3).
- the threshold control voltage Vtc (i, t) represented by the above equation (17) corresponds to the voltage of the threshold control signal TC (i).
- the control voltage Vtc (i, t) may be generated.
- the data voltage representative value Vdpr for the data voltage to be written to the corresponding pixel circuits Pix (i, 1) to Pix (i, m) is determined.
- the threshold control voltage Vtc (i) to be applied to the threshold control terminal TG of the drive transistor T1 in the pixel circuits Pix (i, 1) to Pix (i, m) corresponding to the threshold control line TCi is represented by the data voltage representative value Vdpr.
- Vtc (i, t) VtcI + (Vdpr ⁇
- the data voltage indicating the lowest luminance among the n ⁇ m data voltages Vdata may be determined as the data voltage representative value Vdrp.
- a predetermined value based on various display images may be set as the data voltage representative value Vdpr for the n ⁇ m data voltages Vdata.
- the same data voltage representative value Vdpr is determined for each threshold value control line TCi, so that the display control circuit 20 drives all the pixel circuits Pix (1,1) to Pix (n, m).
- threshold control voltage represented by the same time function Vtc (t) is applied to all the pixel circuits Pix (1,1) to Pix (n, m) as shown above, as shown in FIG.
- n threshold control lines TC1 to TCn arranged along the scanning signal lines G1 to Gn
- m threshold control lines TC1 to TCm are arranged along the data signal lines D1 to Dm. Is also good.
- the threshold control voltage represented by the same time function Vtc (t) is given to all the pixel circuits Pix (1,1) to Pix (n, m) as described above, the threshold to be provided
- the control lines do not necessarily need to correspond one-to-one with the scanning signal lines G1 to Gn or the data signal lines D1 to Dm. Therefore, the number of threshold control lines is The number may be less than the number of lines D1 to Dm.
- the threshold control voltage Vtc (i) that changes in the direction to the threshold control terminal TG
- the change in the gate voltage Vg is compensated.
- an increase in drive current due to a decrease in the gate voltage Vg is suppressed, and the occurrence of flicker due to a change in luminance of the organic EL element OL in the refresh cycle Tref-PD can be prevented. Therefore, in the pause drive mode, it is possible to display a good image in which flicker is not visually recognized while reducing power consumption.
- FIG. 10 is a block diagram illustrating an overall configuration of an organic EL display device 10b according to the second embodiment.
- the display device 10b according to the present embodiment is also an organic EL display device that performs internal compensation.
- the display device 10b also includes a display unit 11b, a display control circuit 20, a data drive circuit 30, a scan drive circuit 40b, and a power supply circuit 50, as in the first embodiment.
- the display unit 11b is different from the first embodiment in that the threshold control lines TC1 to TCn are not provided.
- the display control circuit 20 of the present embodiment does not include a threshold control circuit.
- Other points in the overall configuration of the present embodiment are the same as those in the first embodiment (see FIG. 1), and the same or corresponding parts are denoted by the same reference characters and description thereof is omitted.
- the display device 10b also has two operation modes, a normal drive mode and a pause drive mode, as in the first embodiment. Also, as in the first embodiment, in the normal drive mode, the refresh period (RF period) is repeated as shown in FIG. 2, whereas in the pause drive mode, the refresh period (RF period) as shown in FIG. ) And the non-refresh period (NRF period) are alternately repeated.
- the voltage Vtc for controlling the threshold value Vth of the driving transistor is generated in each pixel circuit (details will be described later).
- FIG. 11 is a circuit diagram illustrating a configuration of the pixel circuit 15b according to the present embodiment. More specifically, the pixel circuit 15b corresponding to the i-th scanning signal line Gi and the j-th data signal line Dj, that is, the i-th row and j-th column
- FIG. 3 is a circuit diagram illustrating a configuration of a pixel circuit Pix (i, j) (1 ⁇ i ⁇ n, 1 ⁇ j ⁇ m).
- the pixel circuit 15b has an organic EL element OL as a display element, a drive transistor T1, a write control transistor T2, and a threshold, similarly to the pixel circuit 15 in the first embodiment (FIG. 4).
- the pixel circuit 15b includes a threshold control transistor T8, a threshold control capacitor Ctc, and a threshold control resistance element Rtc.
- the resistance value of the threshold control resistance element Rtc is sufficiently larger than the ON resistance of the threshold control transistor T8.
- the resistance value is smaller than the off resistance of the threshold control transistor T8 (in the present embodiment, the resistance value is sufficiently smaller than the off resistance of the threshold control transistor T8).
- Such a threshold control resistance element Rtc can be realized using a conductor region in a semiconductor layer formed on the gate insulating film BGI as shown in FIG. 5, for example, and can be realized using a transistor. Can also. In the latter case, for example, as shown in FIG. 13, a P-channel transistor T9 whose on-resistance is larger than usual by reducing the channel width W and increasing the channel length is used, and the light emission control corresponding to the gate terminal is performed. By connecting the line Ei, the threshold control resistance element Rtc can be realized.
- the transistors T2 to T8 other than the driving transistor T1 function as switching elements.
- the drive transistor T1 is a double-gate P-channel transistor having a top gate electrode TG and a bottom gate electrode BG (see FIG. 5), and the bottom gate electrode BG is The top gate electrode TG is used as a threshold control terminal for controlling the threshold value of the drive transistor T1, which is used as a main gate terminal for controlling the current flowing through the drive transistor T1.
- the pixel circuit 15b includes a corresponding scanning signal line Gi corresponding to the corresponding scanning signal line, a preceding scanning signal line Gi-1 corresponding to a scanning signal line immediately before the corresponding scanning signal line Gi, and a corresponding light emission control line.
- the corresponding light emission control line Ei, the corresponding data signal line Dj corresponding thereto, the initialization voltage supply line Vini, the high-level power line ELVDD, and the low-level power line ELVSS are connected.
- these signal lines, power supply lines and the like and elements other than the threshold control transistor T8, the threshold control capacitor Ctc, and the threshold control resistance element Rtc (organic EL element OL, drive transistor T1, write control transistor T2, threshold
- the connection form between the threshold control capacitor Ctc and the element other than the threshold control resistance element is the same as that of the pixel circuit 15 in the first embodiment (see FIGS. 4 and 11).
- the pixel circuit 15b includes a threshold control transistor T8, a threshold control capacitor Ctc, and a threshold control resistance element Rtc, unlike the first embodiment, and includes a drive transistor T1. Is connected to the high-level power supply line ELVDD via the threshold control capacitor Ctc, and to the initialization voltage supply line Vini via the threshold control transistor T8. It is connected to the high-level power supply line ELVDD via the control resistance element Rtc.
- FIG. 12 is a signal waveform diagram for explaining the operation of the pixel circuit 15b according to the present embodiment.
- the pixel circuit 15b of FIG. 11 configured as described above, that is, the pixel circuit Pix (i, i, Each signal line (corresponding light emission control line Ei, preceding scanning signal line Gi-1, corresponding scanning signal line Gi, corresponding data signal line Dj, threshold control terminal TG) in the reset operation, data writing operation, and lighting operation of j).
- the voltage (gate voltage) Vg of the main gate terminal of the drive transistor T1 The voltage (anode voltage) Va of the anode electrode of the organic EL element OL.
- each signal line (corresponding light emission control line Ei, preceding scanning signal) connected to each pixel circuit Pix (i, j)
- the line Gi-1, the corresponding scanning signal line Gi, and the corresponding data signal line Dj) are driven in the same manner as in the first embodiment, and the pixel circuit Pix (i, j) in the present embodiment also operates in the first embodiment.
- the same reset operation, data write operation, and lighting operation as in the embodiment are performed.
- the voltage applied to the threshold control terminal TG of the drive transistor T1 of each pixel circuit Pix (i, j) is applied from the threshold control circuit in the display control circuit 20 via the corresponding threshold control line TCi. Instead, it is generated using the threshold control transistor T8, the threshold control capacitor Ctc, and the threshold control resistance element Rtc in the pixel circuit Pix (i, j). The details will be described below.
- the voltage (hereinafter, referred to as “threshold control voltage”) Vtc of the threshold control terminal TG of the drive transistor T1 changes as shown in FIG. That is, since the corresponding scanning signal line Gi is connected to the gate terminal of the threshold control transistor T8, as shown in FIG. 12, the threshold control transistor T8 is turned off at the start time t4 of the data writing period corresponding to the i-th scanning selection period. To the on state, and is maintained in the on state until the end point t5 of the data writing period.
- the threshold control capacitor Ctc is charged by the high-level power supply line ELVDD and the initialization voltage supply line Vini to hold the voltage Vdd-Vini. Thereafter, the threshold control transistor T8 is turned off at the end time t5 of the data writing period, and thereafter, while the threshold control transistor T8 is in the off state, the charge accumulated in the threshold control capacitor Ctc passes through the threshold control resistor Rtc. Is discharged. Therefore, the threshold control voltage Vtc (t) at this time can be expressed by the following equation.
- Vtc (t) (Vini ⁇ Vdd) exp ( ⁇ t / (Ctc ⁇ Rtc)) + Vdd (19)
- Vtc (t) expressed by the above equation (19) is approximated by the following equation.
- the threshold control capacitor is set so as to satisfy the following equation. It can be seen that it is sufficient to set the capacitance value of Ctc (also denoted by reference numeral “Ctc”) and the resistance value of the threshold control resistance element Rtc (also denoted by reference numeral “Rtc”).
- the capacitance value Ctc of the threshold control capacitor and the resistance value Rtc of the threshold control resistance element may be set according to (20). However, since the capacitance value Ctc and the resistance value Rtc are circuit constants, the data voltage representative value Vdpr determined in the present embodiment is a fixed value.
- the threshold for generating the threshold control voltage Vtc using the threshold control capacitor Ctc, the threshold control transistor T8, and the threshold control resistor Rtc is configured (see FIG. 11), and the threshold Vth of the drive transistor T1 is controlled by the threshold control voltage Vtc.
- the same effect as in the first embodiment can be obtained without generating .about.Vtc (n) (see FIG. 9).
- the threshold control voltage Vtc (i) is fixed at VtcI in the normal drive mode, but the threshold control voltage Vtc (i) may be changed similarly to the pause drive mode (FIG. 3, see FIG. 9).
- the pixel circuits Pix (i, 1) to P (i, m) of each row change at timings corresponding to the row by the threshold control lines TC1 to TCn.
- the threshold control voltage Vtc (i) is given to the threshold control terminal TG of the drive transistor T1 in the pixel circuits Pix (i, 1) to P (i, m) of the row (see FIG. 3).
- the threshold control signals TC (1) to TC (n) to be applied to the threshold control lines TC1 to TCn, respectively have the same voltage (the same value). May be generated.
- the n threshold control lines TC1 to TCn are shared by one threshold control line, and the threshold control voltage Vtc as the same time function is applied to all the pixel circuits Pix (1, 1) to P (n, m) may be applied to the threshold control terminal TG of the drive transistor T1.
- the top gate electrode TG of the drive transistor T1 is used as a threshold control terminal
- the bottom gate electrode BG is a main gate terminal (a control terminal for controlling a current flowing through the drive transistor T1).
- the top gate electrode TG may be used as a main gate terminal
- the bottom gate electrode BG may be used as a threshold control terminal.
- the point in time when the voltage returns to the threshold control initial voltage VtcI (Vini) is, as shown in FIG. This is the start time t2 of the (i-1 scan selection period), and in the second embodiment, as shown in FIG. 12, the start of the data writing period (i-th scan selection period) in the pixel circuit Pix (i, j). It is time t4.
- the point in time when the threshold control voltage Vct (t) returns to the threshold control initial voltage VtcI (Vini) is within the non-emission period (preferably in the period t1 to t4 before the start time t4 of the data writing period).
- the corresponding scanning signal line Gi is connected to the gate terminal of the threshold value control transistor T8 in the pixel circuit Pix (i, j).
- the preceding scanning signal line Gi-1 may be connected to the gate terminal.
- the pixel circuits 15 and 15b of the internal compensation system as shown in FIGS. 4 and 11, respectively, are used, but the configuration of the pixel circuit is limited to these configurations. Not something. That is, the driving transistor controls a driving current of a current-driven display element such as an organic EL element according to a voltage held in the holding capacitor.
- the present invention can be applied to any configuration in which the holding voltage may change.
- a P-channel transistor is used as the driving transistor T1 in the pixel circuits 15 and 15b (see FIGS. 4 and 11), but an N-channel transistor is used for the driving transistor T1 and the like.
- Type transistor eg, In—Ga—Zn—O (indium gallium zinc oxide) which is an oxide semiconductor containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O) as main components.
- the present invention can be applied even when an N-channel thin film transistor having a channel layer formed thereon is used, and the same effect is obtained by applying the present invention (flicker does not occur even when pause driving is performed). An effect that good display can be performed) can be obtained.
- the leakage current of the first initialization transistor T4 is considered as a factor of the decrease in the gate voltage Vg (the holding voltage of the holding capacitor Cst) that causes flicker in a display image, and the gate voltage is reduced.
- the formula of the threshold control voltage Vtc for compensating the decrease by formulating the decrease of Vg is derived.
- a leakage current due to another path for example, from the main gate terminal of the driving transistor T1 to the low-level power line ELVSS via the threshold compensation transistor T3, the light emission control transistor T6, and the organic EL element OL. Even when the leakage current due to the leading path cannot be ignored, it is possible to formulate a decrease in the gate voltage Vg and derive a mathematical expression of the threshold control voltage Vtc for compensating the decrease in the same way as described above.
- the embodiments and the modified examples have been described by taking the organic EL display device as an example.
- the present invention is not limited to the organic EL display device, and uses a display element driven by current. Any applicable display device is applicable.
- the display element that can be used here is a display element whose luminance or transmittance or the like is controlled by current.
- an organic EL element that is, an organic light emitting diode (Organic Light Emitting Diode (OLED)), an inorganic light emitting diode, Quantum dot light emitting diodes (Quantum dot light emitting diode (QLED)) and the like can be used.
- OLED Organic Light Emitting Diode
- QLED Quantum dot light emitting diodes
- Vini initialization voltage supply line, initialization voltage
- ELVDD high-level power supply line (first power supply line), high-level power supply voltage
- ELVSS low-level power supply line (second power supply line)
- OLED organic EL element (Display element)
- Ctc Threshold control capacitor
- Rtc Threshold control resistor element
- T4 First initialization transistor (initial switching element)
- T5 First light emission control transistor
- T6 Second light emission control transistor
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Control Of El Displays (AREA)
Abstract
本願は、休止駆動が行われるときにもフリッカの生じない良好な表示を行える電流駆動型の表示装置を開示する。画素回路(15)において、第1初期化トランジスタ(T4)によるゲート電圧(Vg)の初期化後に、データ信号線(Di)の電圧が書込制御トランジスタ(T2)および駆動トランジスタ(T1)を介して保持キャパシタ(Cst)に書き込まれる。その後、発光制御トランジスタ(T5),(T6)がオンして駆動トランジスタ(T1)からの駆動電流(I1)により有機EL素子(OL)が発光する。この発光期間において、オフ状態の第1初期化トランジスタ(T4)の漏れ電流によりゲート電圧(Vg)が低下しても、駆動トランジスタ(T1)の閾値制御端子(TG)に与える閾値制御電圧を増大させることで当該低下が補償される。その結果、休止駆動によりリフレッシュ周期が長くなっても、上記ゲート電圧(Vg)の低下による輝度の増大を抑えフリッカの発生を防止することができる。
Description
本発明は表示装置に関し、より詳しくは、有機EL(Electro Luminescence)表示装置等の電流で駆動される表示素子を備えた電流駆動型の表示装置およびその駆動方法に関する。
近年、有機EL素子(有機発光ダイオード(Organic Light Emitting Diode: OLED)とも呼ばれる)を含む画素回路を備えた有機EL表示装置が実用化されている。有機EL表示装置の画素回路は、有機EL素子に加えて、駆動トランジスタや、書込制御トランジスタ、保持キャパシタ等を含んでいる。駆動トランジスタや書込制御トランジスタには、薄膜トランジスタ(Thin Film Transistor)が使用され、駆動トランジスタの制御端子としてのゲート端子に保持キャパシタが接続され、この保持キャパシタには、駆動回路からデータ信号線を介して、表示すべき画像を表す映像信号に応じた電圧(より詳しくは、当該画素回路で形成すべき画素の階調値を示す電圧)がデータ電圧として与えられる。有機EL素子は、それに流れる電流に応じた輝度で発光する自発光型表示素子である。駆動トランジスタは、有機EL素子と直列に設けられ、保持キャパシタに保持される電圧にしたがって、有機EL素子に流れる電流を制御する。
一方、低消費電力の表示装置として、休止駆動(間欠駆動または低周波駆動とも呼ばれる)を行う表示装置が知られている。休止駆動とは、同じ画像を続けて表示するときに駆動期間(リフレッシュ期間)と休止期間(非リフレッシュ期間)を設け、駆動期間では駆動回路を動作させ、休止期間では駆動回路の動作を停止させる駆動方法である。休止駆動は、画素回路内のトランジスタのオフリーク特性が良い(オフリーク電流が小さい)場合に適用できる。休止駆動を行う表示装置は、例えば、特許文献1に記載されている。
有機EL素子と駆動トランジスタの特性には、ばらつきや変動が発生する。このため、有機EL表示装置において高画質表示を行うためには、これらの素子の特性のばらつきや変動を補償する必要がある。このような素子の特性の補償を画素回路の内部で行う有機EL表示装置では、その画素回路は、例えば、駆動トランジスタのゲート端子の電圧すなわち保持キャパシタに保持される電圧を所定レベルに初期化した後、ダイオード接続状態とした駆動トランジスタを介してデータ電圧で保持キャパシタを充電するように構成されている。この構成の画素回路では、保持キャパシタに保持された電圧の初期化ための初期化トランジスタが設けられており、保持キャパシタの一方の端子(駆動トランジスタのゲート端子と接続されている端子)はその初期化トランジスタを介して初期化電圧の供給線に接続されている。
上記のような画素回路を備える表示装置において既述の休止駆動を行うと、休止期間において有機EL素子の輝度が低下または上昇し、駆動期間の開始毎に有機EL素子の輝度が本来の輝度に戻る。休止駆動では、休止期間の長さは通常のフレーム期間(1/60秒)に比べ格段に長く、表示装置の駆動周波数が実質的に通常駆動よりも大幅に低くなる(例えば10Hz以下)。このように休止駆動により駆動周波数が大幅に低下すると、休止期間と駆動期間との繰り返しにより生じる有機EL素子の輝度変化がフリッカとして視認されることになる。
そこで、電流駆動型の表示装置において休止駆動が行われるときにもフリッカの生じない良好な表示を行えるようにすることが望まれる。
本発明の幾つかの実施形態に係る表示装置は、複数のデータ信号線と、前記複数のデータ信号線に交差する複数の走査信号線と、前記複数のデータ信号線および前記複数の走査信号線に沿ってマトリクス状に配置された複数の画素回路とを有する表示装置であって、
第1および第2電源線と、
前記複数のデータ信号線を駆動するデータ信号線駆動回路と、
前記複数の走査信号線を選択的に駆動する走査信号線駆動回路と、
前記複数の画素回路の外部または内部に設けられた閾値制御回路と
を備え、
各画素回路は、
前記複数の走査信号線のいずれか1つに対応するとともに前記複数のデータ信号線のいずれか1つに対応し、
電流によって駆動される表示素子と、保持キャパシタと、駆動トランジスタとを含み、
前記駆動トランジスタは、それに流れる電流を制御するための主制御端子と、その閾値を制御するための閾値制御端子とを有し、
前記駆動トランジスタの前記主制御端子は、前記保持キャパシタを介して前記第1電源線に接続されており、
各画素回路は、
対応する走査信号線が選択されたときに、対応するデータ信号線の電圧がデータ電圧として前記保持キャパシタに書き込まれ、
前記表示素子の発光期間では、前記第1電源線から前記駆動トランジスタおよび前記表示素子を介して前記第2電源線に至る経路に前記表示素子の駆動電流が流れ、前記保持キャパシタに保持された電圧に応じて前記駆動トランジスタにより当該駆動電流が制御されるように構成されており、
前記閾値制御回路は、各画素回路につき、前記表示素子の発光期間において、当該画素回路内の漏れ電流による前記保持キャパシタの保持電圧の変化を補償するように前記駆動トランジスタの閾値を変化させる閾値制御電圧を前記閾値制御端子に与える。
第1および第2電源線と、
前記複数のデータ信号線を駆動するデータ信号線駆動回路と、
前記複数の走査信号線を選択的に駆動する走査信号線駆動回路と、
前記複数の画素回路の外部または内部に設けられた閾値制御回路と
を備え、
各画素回路は、
前記複数の走査信号線のいずれか1つに対応するとともに前記複数のデータ信号線のいずれか1つに対応し、
電流によって駆動される表示素子と、保持キャパシタと、駆動トランジスタとを含み、
前記駆動トランジスタは、それに流れる電流を制御するための主制御端子と、その閾値を制御するための閾値制御端子とを有し、
前記駆動トランジスタの前記主制御端子は、前記保持キャパシタを介して前記第1電源線に接続されており、
各画素回路は、
対応する走査信号線が選択されたときに、対応するデータ信号線の電圧がデータ電圧として前記保持キャパシタに書き込まれ、
前記表示素子の発光期間では、前記第1電源線から前記駆動トランジスタおよび前記表示素子を介して前記第2電源線に至る経路に前記表示素子の駆動電流が流れ、前記保持キャパシタに保持された電圧に応じて前記駆動トランジスタにより当該駆動電流が制御されるように構成されており、
前記閾値制御回路は、各画素回路につき、前記表示素子の発光期間において、当該画素回路内の漏れ電流による前記保持キャパシタの保持電圧の変化を補償するように前記駆動トランジスタの閾値を変化させる閾値制御電圧を前記閾値制御端子に与える。
本発明の他の幾つかの実施形態に係る駆動方法は、複数のデータ信号線と、前記複数のデータ信号線に交差する複数の走査信号線と、第1および第2電源線と、前記複数のデータ信号線および前記複数の走査信号線に沿ってマトリクス状に配置された複数の画素回路とを有する表示装置の駆動方法であって、
前記複数のデータ信号線を駆動するデータ信号線駆動ステップと、
前記複数の走査信号線を選択的に駆動する走査信号線駆動ステップと、
前記複数の画素回路に含まれる駆動トランジスタの閾値を制御する閾値制御ステップと
を備え、
各画素回路は、
前記複数の走査信号線のいずれか1つに対応するとともに前記複数のデータ信号線のいずれか1つに対応し、
電流によって駆動される表示素子と、保持キャパシタと、前記駆動トランジスタとを含み、
前記駆動トランジスタは、それに流れる電流を制御するための主制御端子と、その閾値を制御するための閾値制御端子とを有し、
前記駆動トランジスタの前記主制御端子は、前記保持キャパシタを介して前記第1電源線に接続されており、
各画素回路は、
対応する走査信号線が選択されたときに、対応するデータ信号線の電圧がデータ電圧として前記保持キャパシタに書き込まれ、
前記表示素子の発光期間では、前記第1電源線から前記駆動トランジスタおよび前記表示素子を介して前記第2電源線に至る経路に前記表示素子の駆動電流が流れ、前記保持キャパシタに保持された電圧に応じて前記駆動トランジスタにより当該駆動電流が制御されるように構成されており、
前記閾値制御ステップでは、各画素回路につき、前記表示素子の発光期間において、当該画素回路内の漏れ電流による前記保持キャパシタの保持電圧の変化を補償するように前記駆動トランジスタの閾値を変化させる閾値制御電圧が前記閾値制御端子に与えられる。
前記複数のデータ信号線を駆動するデータ信号線駆動ステップと、
前記複数の走査信号線を選択的に駆動する走査信号線駆動ステップと、
前記複数の画素回路に含まれる駆動トランジスタの閾値を制御する閾値制御ステップと
を備え、
各画素回路は、
前記複数の走査信号線のいずれか1つに対応するとともに前記複数のデータ信号線のいずれか1つに対応し、
電流によって駆動される表示素子と、保持キャパシタと、前記駆動トランジスタとを含み、
前記駆動トランジスタは、それに流れる電流を制御するための主制御端子と、その閾値を制御するための閾値制御端子とを有し、
前記駆動トランジスタの前記主制御端子は、前記保持キャパシタを介して前記第1電源線に接続されており、
各画素回路は、
対応する走査信号線が選択されたときに、対応するデータ信号線の電圧がデータ電圧として前記保持キャパシタに書き込まれ、
前記表示素子の発光期間では、前記第1電源線から前記駆動トランジスタおよび前記表示素子を介して前記第2電源線に至る経路に前記表示素子の駆動電流が流れ、前記保持キャパシタに保持された電圧に応じて前記駆動トランジスタにより当該駆動電流が制御されるように構成されており、
前記閾値制御ステップでは、各画素回路につき、前記表示素子の発光期間において、当該画素回路内の漏れ電流による前記保持キャパシタの保持電圧の変化を補償するように前記駆動トランジスタの閾値を変化させる閾値制御電圧が前記閾値制御端子に与えられる。
本発明の上記幾つかの実施形態によれば、表示装置におけるいずれの画素回路においても、当該画素回路に対応する走査信号線が選択されて当該画素回路内の保持キャパシタにデータ電圧が書き込まれた後の発光期間において、その保持キャパシタに保持されている電圧が当該画素回路内の漏れ電流により変化しても、その保持電圧の変化を補償するようにすなわち駆動トランジスタの主制御端子の電圧変化を補償するように当該駆動トランジスタの閾値を変化させる閾値制御電圧が閾値制御端子に与えられる。これにより、保持キャパシタにおける保持電圧の変化による駆動電流の変化が抑制される。その結果、リフレッシュ周期で表示素子の輝度が変化することによるフリッカの発生が防止される。また、休止駆動を行うときのようにリフレッシュ周期が長い場合であってもフリッカの発生が防止されるので、休止駆動と組み合わせることにより、消費電力を低減しつつフリッカの視認されない良好な画像を表示することが可能となる。
以下、添付図面を参照しながら実施形態について説明する。なお、以下で言及する各トランジスタにおいて、ゲート端子は制御端子に相当し、ドレイン端子およびソース端子の一方は第1導通端子に相当し、他方は第2導通端子に相当する。また、以下の実施形態におけるトランジスタはすべてPチャネル型であるものとして説明するが、本発明はこれに限定されない。さらに、以下の実施形態におけるトランジスタは例えば薄膜トランジスタであるが、本発明はこれに限定されない。さらにまた、本明細書における「接続」とは、特に断らない限り「電気的接続」を意味し、本発明の要旨を逸脱しない範囲において、直接的な接続を意味する場合のみならず、他の素子を介した間接的な接続を意味する場合も含むものとする。
<1.第1の実施形態>
<1.1 全体構成>
図1は、第1の実施形態に係る有機EL表示装置10の全体構成を示すブロック図である。この表示装置10は、内部補償を行う有機EL表示装置である。すなわち、この表示装置10において、各画素回路は、その内部の駆動トランジスタの閾値電圧のばらつきや変動を補償する機能を有している(詳細は後述)。
<1.1 全体構成>
図1は、第1の実施形態に係る有機EL表示装置10の全体構成を示すブロック図である。この表示装置10は、内部補償を行う有機EL表示装置である。すなわち、この表示装置10において、各画素回路は、その内部の駆動トランジスタの閾値電圧のばらつきや変動を補償する機能を有している(詳細は後述)。
図1に示すように、この表示装置10は、表示部11、表示制御回路20、データ側駆動回路30、走査側駆動回路40、および、電源回路50を備えている。データ側駆動回路はデータ信号線駆動回路(「データドライバ」とも呼ばれる)として機能する。走査側駆動回路40は、走査信号線駆動回路(「ゲートドライバ」とも呼ばれる)および発光制御回路(「エミッションドライバ」とも呼ばれる)として機能する。図1に示す構成ではこれら走査側の2つの回路が1つの走査側駆動回路40として実現されているが、これら2つの回路が適宜分離された構成であってもよく、また、これら2つの回路が表示部11の一方側と他方側に分離されて配置される構成であってもよい。また、走査側駆動回路およびデータ信号線駆動回路の少なくとも一部が表示部11と一体的に形成されていてもよい。これらの点は、後述の他の実施形態や変形例においても同様である。電源回路50は、表示部11に供給すべき後述のハイレベル電源電圧ELVDD、ローレベル電源電圧ELVSS、初期化電圧Vini、および、表示制御回路20、データ側駆動回路30、および走査側駆動回路40に供給すべき電源電圧(不図示)とを生成する。
表示部11には、m本(mは2以上の整数)のデータ信号線D1~Dmと、これらに交差するn+1本(nは2以上の整数)の走査信号線G0~Gnとが配設されており、n本の走査信号線G1~Gnにそれぞれ沿ってn本の発光制御線(エミッションライン)E1~Enが配設されている。また、表示部11には、m本のデータ信号線D1~Dmおよびn本の走査信号線G1~Gnに沿ってマトリクス状に配置されたm×n個の画素回路15が設けられており、各画素回路15は、m本のデータ信号線D1~Dmのいずれか1つに対応するとともにn本の走査信号線G1~Gnのいずれか1つに対応する(以下、各画素回路15を区別する場合には、i番目の走査信号線Giおよびj番目のデータ信号線Djに対応する画素回路を「i行j列目の画素回路」ともいい、符号“Pix(i,j)”で示すものとする)。これらに加えて本実施形態における表示部11には、n本の走査信号線G1~Gnにそれぞれ沿ってn本の閾値制御線TC1~TCnが配設されている。n本の発光制御線E1~Enはn本の走査信号線G1~Gnにそれぞれ対応し、n本の閾値制御線TC1~TCnもn本の走査信号線G1~Gnにそれぞれ対応する。したがって各画素回路15は、n本の発光制御線E1~Enのいずれか1つ、および、n本の閾値制御線TC1~TCnのいずれか1つにも対応する。
また表示部11には、各画素回路15に共通の図示しない電源線が配設されている。すなわち、後述の有機EL素子を駆動するためのハイレベル電源電圧ELVDDを供給するための電源線(以下「ハイレベル電源線」といい、ハイレベル電源電圧と同じく符号“ELVDD”で示す)、および、有機EL素子を駆動するためのローレベル電源電圧ELVSSを供給するための電源線(以下「ローレベル電源線」といい、ローレベル電源電圧と同じく符号“ELVSS”で示す)が配設されている。より詳しくは、ローレベル電源線ELVSSは複数の画素回路15に共通する陰極である。さらに表示部11には、各画素回路15の初期化のためのリセット動作(「初期化動作」ともいう)に使用する初期化電圧Viniを供給するための図示しない初期化電圧供給線(初期化電圧と同じく符号“Vini”で示す)も配設されている。ハイレベル電源電圧ELVDD、ローレベル電源電圧ELVSS、および初期化電圧Viniは、電源回路50から供給される。
表示制御回路20は、表示すべき画像を表す画像情報および画像表示のためのタイミング制御情報を含む入力信号Sinを表示装置10の外部から受け取り、この入力信号Sinに基づきデータ側制御信号Scdおよび走査側制御信号Scsを生成し、データ側制御信号Scdをデータ側駆動回路(データ信号線駆動回路)30に、走査側制御信号Scsを走査側駆動回路(走査信号線駆動/発光制御回路)40にそれぞれ出力する。また表示制御回路20は、入力信号Sinに基づき閾値制御信号TC(1)~TC(n)を生成して表示部11における閾値制御線TC1~TCnにそれぞれ印加する閾値制御回路22を含んでいる。これら閾値制御信号TC(1)~TC(n)の詳細については後述する。
データ側駆動回路30は、表示制御回路20からのデータ側制御信号Scdに基づきデータ信号線D1~Dmを駆動する。すなわちデータ側駆動回路30は、データ側制御信号Scdに基づき、表示すべき画像を表すm個のデータ信号D(1)~D(m)を並列に出力してデータ信号線D1~Dmにそれぞれ印加する。
走査側駆動回路40は、表示制御回路20からの走査側制御信号Scsに基づき、走査信号線G0~Gnを駆動する走査信号線駆動回路、および、発光制御線E1~Enを駆動する発光制御回路として機能する。
より詳細には、走査側駆動回路40は、走査信号線駆動回路として、走査側制御信号Scsに基づき、各フレーム期間において走査信号線G0~Gnを1水平期間に対応する所定期間ずつ順次に選択し、選択した走査信号線Gkに対してアクティブな信号(ローレベル電圧)を印加し、かつ、非選択の走査信号線には非アクティブな信号(ハイレベル電圧)を印加する。これにより、選択された走査信号線Gk(1≦k≦n)に対応したm個の画素回路Pix(k,1)~Pix(k,m)が一括して選択される。その結果、当該走査信号線Gkの選択期間(以下「第k走査選択期間」という)において、データ側駆動回路30からデータ信号線D1~Dmに印加されたm個のデータ信号D(1)~D(m)の電圧(以下では、これらの電圧を区別せずに単に「データ電圧」と呼ぶことがある)が画素データとして、画素回路Pix(k,1)~Pix(k,m)にそれぞれ書き込まれる。
また走査側駆動回路40は、発光制御回路として、走査側制御信号Scsに基づき、i番目の発光制御線Eiに対し、第i水平期間では非発光を示す発光制御信号(ハイレベル電圧)を印加し、それ以外の期間では発光を示す発光制御信号(ローレベル電圧)を印加する(後述の図6参照)。i番目の走査信号線Giに対応する画素回路(以下「i行目の画素回路」ともいう)Pix(i,1)~Pix(i,m)内の有機EL素子は、発光制御線Eiの電圧がローレベルである間、i行目の画素回路Pix(i,1)~Pix(i,m)にそれぞれ書き込まれたデータ電圧に応じた輝度で発光する。
<1.2 概略動作>
次に、図2および図3を参照して、本実施形態に係る表示装置10の概略動作について説明する。本実施形態に係る表示装置10は、通常駆動モードと休止駆動モードとの2つの動作モードを有している。通常駆動モードでは、図2に示すように、1フレーム期間において走査信号線G0~G1を順次選択して表示部11(の画素回路Pix(1,1)~Pix(n,m))に画像データを書き込むリフレッシュ期間(以下「RF期間」ともいう)が繰り返されるのに対し、休止駆動モードでは、図3に示すように、そのようなリフレッシュ期間と、走査信号線G0~G1を非選択状態に維持して表示部11への画像データの書き込みを停止する非リフレッシュ期間(以下「NRF」期間ともいう)とが交互に繰り返される。休止駆動モードでは、非リフレッシュ期間において走査側およびデータ側駆動回路が停止し直前のリフレッシュ期間に書き込まれた画像データによる表示が継続する。このため休止駆動モードは、静止画を表示する場合において表示装置の消費電力の削減に有効である。
次に、図2および図3を参照して、本実施形態に係る表示装置10の概略動作について説明する。本実施形態に係る表示装置10は、通常駆動モードと休止駆動モードとの2つの動作モードを有している。通常駆動モードでは、図2に示すように、1フレーム期間において走査信号線G0~G1を順次選択して表示部11(の画素回路Pix(1,1)~Pix(n,m))に画像データを書き込むリフレッシュ期間(以下「RF期間」ともいう)が繰り返されるのに対し、休止駆動モードでは、図3に示すように、そのようなリフレッシュ期間と、走査信号線G0~G1を非選択状態に維持して表示部11への画像データの書き込みを停止する非リフレッシュ期間(以下「NRF」期間ともいう)とが交互に繰り返される。休止駆動モードでは、非リフレッシュ期間において走査側およびデータ側駆動回路が停止し直前のリフレッシュ期間に書き込まれた画像データによる表示が継続する。このため休止駆動モードは、静止画を表示する場合において表示装置の消費電力の削減に有効である。
外部からの入力信号Sinには、上記のような通常駆動モードと休止駆動モードのうちいずれの動作モードで表示部11を駆動するかを示す動作モード信号Smが含まれている。この動作モード信号Smは、走査側制御信号Scsの一部として走査側駆動回路40に与えられるともに、データ側制御信号Scdの一部としてデータ側駆動回路30に与えられる。走査側駆動回路40は、この動作モード信号Smで示される動作モードに応じて走査信号線G0~Gnおよび発光制御線E1~Enを駆動し、データ側駆動回路30は、この動作モード信号Smで示される動作モードに応じてデータ信号線D1~Dnを駆動する。また表示制御回路20(における閾値制御回路22)は、この動作モード信号Smで示される動作モードに応じて閾値制御線TC1~TCnを駆動する。
本実施形態では、各画素回路Pix(i,j)につき、それに対応する走査信号線Giが選択状態のときにデータ書込動作が行われ、その走査信号線Giの直前の走査信号線Gi-1の選択状態のときリセット動作が行われ、各画素回路Pix(i,j)がそのデータ書込動作およびリセット動作が行われる期間において非発光状態となるように発光制御線Eiが駆動される(i=1~N)。すなわち、図2および図3に示すようにRF期間では、発光制御線E1~Enは、走査信号線G0~Gnの駆動に連動するように、2水平期間ずつ順次に活性状態となる。なお後述のように、本実施形態における画素回路Pix(i,j)では、発光制御トランジスタT5,T6としてPチャネル型トランジスタが使用されるので(後述の図4参照)、各発光制御線Eiは、ローレベル(Lレベル)の電圧を与えられると活性状態となり、ハイレベル(Hレベル)の電圧を与えられると非活性状態となる。
また図2に示すように、通常駆動モードでは、各閾値制御線TCiの電圧は、予め決められた閾値制御初期電圧VtcIに維持され、各画素回路Pix(i,j)における駆動トランジスタの閾値は変化しない(詳細は後述)。
これに対し休止駆動モードでは、図3に示すように、各閾値制御線TCiの電圧は、NRF期間(非リフレッシュ期間)において時間の経過と共に漸次増大し、次のRF期間(リフレッシュ期間)において閾値制御初期電圧VtcIまで低下する。なお、休止駆動モードにおけるNRF期間では、各走査信号線G0~Gnが非選択状態(Hレベル)に維持されるとともに、各発光制御線E1~Enが活性状態(Lレベル)に維持される。したがって、NRF期間の間、走査側およびデータ側駆動回路は停止し、各画素回路Pix(i,j)は、それに保持されたデータ電圧に応じて発光を継続する。
<1.3 画素回路の構成>
次に、図4および図5を参照して本実施形態における画素回路15の構成について説明する。
次に、図4および図5を参照して本実施形態における画素回路15の構成について説明する。
図4は、本実施形態における画素回路15の構成を示す回路図、より詳しくは、i番目の走査信号線Giおよびj番目のデータ信号線Djに対応する画素回路15すなわちi行j列目の画素回路Pix(i,j)の構成を示す回路図である(1≦i≦n、1≦j≦m)。図4に示すように画素回路15は、表示素子としての有機EL素子OL、駆動トランジスタT1、書込制御トランジスタT2、閾値補償トランジスタT3、第1初期化トランジスタT4、第1発光制御トランジスタT5、第2発光制御トランジスタT6、第2初期化トランジスタT7、および、保持キャパシタCstを含んでいる。この画素回路15において、駆動トランジスタT1以外のトランジスタT2~T7はスイッチング素子として機能する。
画素回路15には、それに対応する走査信号線(以下、画素回路に注目した説明において「対応走査信号線」ともいう)Gi、対応走査信号線Giの直前の走査信号線(走査信号線G1~Gnの走査順における直前の走査信号線であり、以下、画素回路に注目した説明において「先行走査信号線」ともいう)Gi-1、それに対応する発光制御線(以下、画素回路に注目した説明において「対応発光制御線」ともいう)Ei、それに対応する閾値制御線(以下、画素回路に注目した説明において「対応閾値制御線」ともいう)TCi、それに対応するデータ信号線(以下、画素回路に注目した説明において「対応データ信号線」ともいう)Dj、初期化電圧供給線Vini、ハイレベル電源線ELVDD、および、ローレベル電源線ELVSSが接続されている。
図4に示すように、画素回路15では、駆動トランジスタT1のソース端子は、書込制御トランジスタT2を介して対応データ信号線Djに接続されるとともに、第1発光制御トランジスタT5を介してハイレベル電源線ELVDDに接続されている。駆動トランジスタT1のドレイン端子は、第2発光制御トランジスタT6を介して有機EL素子OLのアノード電極に接続されている。駆動トランジスタT1のゲート端子は、保持キャパシタCstを介してハイレベル電源線ELVDDに接続され、かつ、閾値補償トランジスタT3を介して当該駆動トランジスタT1のドレイン端子に接続され、かつ、第1初期化トランジスタT4を介して初期化電圧供給線Viniに接続されている。有機EL素子OLのアノード電極は第2初期化トランジスタT7を介して初期化電圧供給線Viniに接続され、有機EL素子OLのカソード電極はローレベル電源線ELVSSに接続されている。また、書込制御トランジスタT2および閾値補償トランジスタT3のゲート端子は対応走査信号線Giに接続され、第1および第2発光制御トランジスタT5,T6のゲート端子は対応発光制御線Eiに接続され、第1初期化トランジスタT4および第2初期化トランジスタT7のゲート端子は先行走査信号線Gi-1に接続されている。本実施形態における画素回路15の駆動トランジスタT1は、トップゲート電極TGとボトムゲート電極BGとを有する薄膜トランジスタである(詳細は後述)。なお、第2初期化トランジスタT7のゲート端子は、先行走査信号線Gi-1に代えて対応走査信号線Giに接続されていてもよい。
図5は、駆動トランジスタT1の一構成例を示す断面図である。図5に示すように、ガラス基板やポリイミド等の樹脂材料で形成されたフレキシブル基板の絶縁体基板110の上に形成された防湿層としての無機絶縁膜112の上にボトムゲート電極BGが形成され、それを覆うようにゲート絶縁膜BGIが形成されている。このゲート絶縁膜BGIの上に半導体層が形成され、この半導体層は、チャネル領域としての真性半導体122と、そのチャネル領域を介して対向するように形成されたソース領域としての導体121aおよびドレイン領域としての導体121bとからなる。このような構成の半導体層の上にさらにゲート絶縁膜TGIが形成され、その上にトップゲート電極TGが形成されている。このトップゲート電極TGを覆うように第1無機絶縁膜114および第2無機絶縁膜116が順に形成され、その上に他の素子との電気的接続のための金属層120a,120bが形成されている。ソース領域としての導体121aはコンタクトホールによって金属層120aと電気的に接続され、ドレイン領域としての導体121bはコンタクトホールによって金属層120bと電気的に接続されている。第2無機絶縁膜116の上には金属層120a,120bを覆うように平坦化膜としての絶縁層118が形成されている。
上記のように駆動トランジスタT1は、チャネル領域(真性半導体層)122の一方の面(図では上面)とゲート絶縁膜TGIを介して対向するように配置されたトップゲート電極TGと、チャネル領域122の他方の面とゲート絶縁膜BGIを介して対向するように配置されたボトムゲート電極BGとを備えている(図5参照)。以下では、このようにチャネル領域の一面側と他面側とにゲート電極を有する構成を「ダブルゲート型」という。このようなダブルゲート型のトランジスタでは、その2つのゲート電極の一方を本来の制御端子(当該トランジスタに流れる電流を制御するための端子)として使用し、他方のゲート電極を、それに与える電圧によって当該トランジスタの閾値を制御するための端子として使用することができる。本実施形態における駆動トランジスタT1では、その2つのゲート電極BG,TGのうち、ボトムゲート電極BGをソース・ドレイン間の電流を制御するための主ゲート端子(「主制御端子」ともいう)として使用し、トップゲート電極TGを駆動トランジスタT1の閾値を制御するための閾値制御端子として使用する。このため、駆動トランジスタT1は、主ゲート端子としてのボトムゲート電極BGを保持キャパシタCstに接続され、閾値制御端子としてのトップゲート電極TGを対応閾値制御線TCiに接続されている。なお、以下において、単に「ゲート端子」というときは、「主ゲート端子」を指すものとする。
駆動トランジスタT1は飽和領域で動作し、発光期間において有機EL素子OLに流れる駆動電流I1は次式(1)で与えられる。式(1)に含まれる駆動トランジスタT1のゲインβは、次式(2)で与えられる。
I1=(β/2)(|Vgs|-|Vth|)2
=(β/2)(|Vg-ELVDD|-|Vth|)2 …(1)
β=μ×(W/L)×Cox …(2)
ただし、上記の式(1)および式(2)において、Vgs,Vth、μ、W、L、Coxは、それぞれ、駆動トランジスタT1のゲート・ソース間電圧、閾値、移動度、ゲート幅、ゲート長、および、単位面積あたりのゲート絶縁膜容量を表す。
I1=(β/2)(|Vgs|-|Vth|)2
=(β/2)(|Vg-ELVDD|-|Vth|)2 …(1)
β=μ×(W/L)×Cox …(2)
ただし、上記の式(1)および式(2)において、Vgs,Vth、μ、W、L、Coxは、それぞれ、駆動トランジスタT1のゲート・ソース間電圧、閾値、移動度、ゲート幅、ゲート長、および、単位面積あたりのゲート絶縁膜容量を表す。
<1.4 画素回路の動作>
次に、図6および図7を参照して本実施形態における画素回路15の動作について説明する。
次に、図6および図7を参照して本実施形態における画素回路15の動作について説明する。
図6は、本実施形態における画素回路の動作を説明するための信号波形図である。図7(A)は、本実施形態における画素回路15のリセット動作を示す回路図であり、図7(B)は、当該画素回路15のデータ書込動作を示す回路図であり、図7(C)は、当該画素回路15の点灯動作を示す回路図である。
図6は、上記のように構成された図4の画素回路15すなわちi行j列目の画素回路Pix(i,j)のリセット動作、データ書込動作、および点灯動作における各信号線(対応発光制御線Ei、先行走査信号線Gi-1、対応走査信号線Gi、対応データ信号線Dj、閾値制御線TCi)の電圧、駆動トランジスタT1の主ゲート端子の電圧(以下「ゲート電圧」という)Vg、および、有機EL素子OLのアノード電極の電圧(以下「アノード電圧」という)Vaの変化を示している。図6において、時刻t1~t6の期間は、i行目の画素回路Pix(i,1)~Pix(i,m)の非発光期間である。時刻t2~t4の期間は第i-1水平期間であり、時刻t2~t3の期間はi-1番目の走査信号線(先行走査信号線)Gi-1の選択期間すなわち第i-1走査選択期間である。この第i-1走査選択期間は、i行目の画素回路Pix(i,1)~Pix(i,m)のリセット期間に相当する。時刻t4~t6の期間は第i水平期間であり、時刻t4~t5の期間はi番目の走査信号線(対応走査信号線)Giの選択期間すなわち第i走査選択期間である。この第i走査選択期間は、i行目の画素回路Pix(i,1)~Pix(i,m)のデータ書込期間に相当する。
i行j列目の画素回路Pix(i,j)では、図6に示すように時刻t1において発光制御線Eiの電圧がLレベルからHレベルに変化すると、第1および第2発光制御トランジスタT5,T6はオン状態からオフ状態に変化し、有機EL素子OLは非発光状態となる。
時刻t2において、先行走査信号線Gi-1の電圧がHレベルからLレベルに変化することで先行走査信号線Gi-1が選択状態となる。このため、第1初期化トランジスタT4がオン状態に変化する。これにより、駆動トランジスタT1の主ゲート端子の電圧すなわちゲート電圧Vgが初期化電圧Viniに初期化される。初期化電圧Viniは、画素回路Pix(i,j)へのデータ電圧の書き込み時に、駆動トランジスタT1をオン状態に維持できる程度の電圧である。また、時刻t2で先行走査信号線Gi-1が選択状態へと変化すると、第2初期化トランジスタT7もオン状態に変化する。その結果、有機EL素子OLの寄生容量における蓄積電荷が放電されて有機EL素子のアノード電圧Vaが初期化電圧Viniに初期化される(図6参照)。なお、画素回路Pix(i,j)におけるアノード電圧Vaを他の画素回路におけるアノード電圧Vaと区別する場合に符号“Va(i,j)”を使用するものとする(以下においても同様)。さらに本実施形態では、この時刻t2において対応閾値制御線TCiの電圧が、予め決められた閾値制御初期電圧VtcIに初期化され、その後、次のフレーム期間において先行走査信号線Gi-1が選択状態となるまで(次のフレーム期間における第i-1選択走査期間の開始時点まで)徐々に増大する。
時刻t2~t3の期間は、i行目の画素回路Pix(i,1)~Pix(i,m)におけるリセット期間であり、画素回路Pix(i,j)では、このリセット期間において上記のように第1初期化トランジスタT4がオン状態である。図7(A)は、このリセット期間における画素回路Pix(i,j)の状態すなわちリセット動作時の回路状態を模式的に示している。この図7(A)において、点線の円は、その中のスイッチング素子としてのトランジスタがオフ状態であることを示し、点線の矩形は、その中のスイッチング素子としてのトランジスタがオン状態であることを示している(このような表現方法は、図7(B)および図7(C)においても採用されている)。このリセット期間では、図7(A)に示すように、第1および第2初期化トランジスタT4,T7がオン状態である。図6に、このときの画素回路Pix(i,j)におけるゲート電圧Vg(i,j)の変化が示されている。なお、画素回路Pix(i,j)におけるゲート電圧Vgを他の画素回路におけるゲート電圧Vgと区別する場合に符号“Vg(i,j)”を使用するものとする(以下においても同様)。
時刻t3において、先行走査信号線Gi-1の電圧がHレベルに変化することで先行走査信号線Gi-1が非選択状態となる。このため、第1初期化トランジスタT4がオフ状態に変化する。この時刻t3から第i走査選択期間の開始時点t4までの間に、データ側駆動回路30により、i行j列目の画素のデータ電圧としてのデータ信号D(j)のデータ信号線Djへの印加が開始され、少なくとも第i走査選択期間の終了時点t5まで当該データ信号D(j)の印加が継続する。
時刻t4において、図6に示すように、対応走査信号線Giの電圧がHレベルからLレベルに変化することで対応走査信号線Giが選択状態となる。このため画素回路Pix(i,j)において、書込制御トランジスタT2および閾値補償トランジスタT3がオン状態に変化する。
時刻t4~t5の期間は、i行目の画素回路Pix(i,1)~Pix(i,m)におけるデータ書込期間であり、このデータ書込期間では、上記のように書込制御トランジスタT2および閾値補償トランジスタT3はオン状態である。図7(B)は、このデータ書込期間における画素回路Pix(i,j)の状態すなわちデータ書込動作時の回路状態を模式的に示している。このデータ書込期間では、対応データ信号線Djの電圧がデータ電圧Vdataとして、ダイオード接続状態の駆動トランジスタT1を介して保持キャパシタCstに与えられる。その結果、図6に示すように、ゲート電圧Vg(i,j)は、次式(5)で与えられる値に向かって変化する。
Vg(i,j)=Vdata-|Vth| …(5)
すなわち、このデータ書込期間において、閾値補償の施されたデータ電圧が保持キャパシタCstに書き込まれ、ゲート電圧Vg(i,j)は上記式(5)で与えられる値となる。
Vg(i,j)=Vdata-|Vth| …(5)
すなわち、このデータ書込期間において、閾値補償の施されたデータ電圧が保持キャパシタCstに書き込まれ、ゲート電圧Vg(i,j)は上記式(5)で与えられる値となる。
その後、時刻t6において、発光制御線Eiの電圧がLレベルに変化する。これに伴い、第1および第2発光制御トランジスタT5,T6がオン状態に変化する。時刻t6以降は発光期間であり、この発光期間では、画素回路Pix(i,j)において、上記のようにして第1および第2発光制御トランジスタT5,T6はオン状態であり、書込制御トランジスタT2、閾値補償トランジスタT3,第1初期化トランジスタT4、および、第2初期化トランジスタT7はオフ状態である。図7(C)は、この発光期間における画素回路Pix(i,j)の状態すなわち点灯動作時の回路状態を模式的に示している。この発光期間(時刻t6以降)では、ハイレベル電源線ELVDDから第1発光制御トランジスタT5、駆動トランジスタT1、第2発光制御トランジスタT6、および、有機EL素子OLを経由してローレベル電源線ELVSSに電流I1が流れる。この電流I1は上記式(1)で与えられる。駆動トランジスタT1がPチャネル型であってELVDD>Vgであることを考慮すると、上記式(1)および(5)より、この電流I1は次式で与えられる。
I1=(β/2)(ELVDD-Vg-|Vth|)2
=(β/2)(ELVDD-Vdata)2 …(6)
上記より、時刻t6以降、有機EL素子OLは、駆動トランジスタT1の閾値Vthに拘わらず、第i走査選択期間における対応データ信号線Djの電圧であるデータ電圧Vdataに応じた駆動電流I1が流れることにより、当該データ電圧Vdataに応じた輝度で発光する。
I1=(β/2)(ELVDD-Vg-|Vth|)2
=(β/2)(ELVDD-Vdata)2 …(6)
上記より、時刻t6以降、有機EL素子OLは、駆動トランジスタT1の閾値Vthに拘わらず、第i走査選択期間における対応データ信号線Djの電圧であるデータ電圧Vdataに応じた駆動電流I1が流れることにより、当該データ電圧Vdataに応じた輝度で発光する。
本実施形態のように、駆動トランジスタのゲート電圧を初期化した後にダイオード接続状態の駆動トランジスタを介して保持キャパシタにデータ電圧を書き込むように構成された画素回路を用いた表示装置では、各画素回路は、そのデータ書込の期間(図6に示す第i走査選択期間)だけでなく、その前のリセット期間(図6に示す第i-1走査選択期間)においても有機EL素子が点灯しないように制御され、少なくとも両期間は非発光状態となる。
<1.5 閾値制御のための構成および動作>
上記のように本実施形態では、休止駆動モードにおいて、各画素回路Pix(i,j)の駆動トランジスタT1の閾値Vthが、その閾値制御端子(トップゲート電極)TGに与えられる閾値制御線TCiの電圧すなわち閾値制御信号TC(i)の電圧(以下「閾値制御電圧」という)Vtc(i)によって制御される(図3、図6参照)。このような本実施形態の作用および効果を説明する前に、まず、休止駆動モードにおいて駆動トランジスタT1の閾値制御が行われない場合の問題について説明する。なお、以下の説明において参照する図面のうち、図8は、駆動トランジスタの閾値を制御することなく休止駆動を行った場合の問題点を説明するための波形図であり、図9は、本実施形態の作用および効果を説明するための波形図である。
上記のように本実施形態では、休止駆動モードにおいて、各画素回路Pix(i,j)の駆動トランジスタT1の閾値Vthが、その閾値制御端子(トップゲート電極)TGに与えられる閾値制御線TCiの電圧すなわち閾値制御信号TC(i)の電圧(以下「閾値制御電圧」という)Vtc(i)によって制御される(図3、図6参照)。このような本実施形態の作用および効果を説明する前に、まず、休止駆動モードにおいて駆動トランジスタT1の閾値制御が行われない場合の問題について説明する。なお、以下の説明において参照する図面のうち、図8は、駆動トランジスタの閾値を制御することなく休止駆動を行った場合の問題点を説明するための波形図であり、図9は、本実施形態の作用および効果を説明するための波形図である。
休止駆動モードでは、図3に示すように隣接する2つのRF期間の間に長いNRF期間が設けられるので、画素回路Pix(i,j)へのデータ電圧の書込周期(リフレッシュ周期)が通常駆動モードに比べて格段に長く、例えば0.1秒程度以上(リフレッシュレートで10Hz以下)となる。このため、NRF期間を含む発光期間において、オフ状態の第1初期化トランジスタT4の漏れ電流Ioffによる保持キャパシタCstの蓄積電荷の変化量が大きくなる。その結果、休止駆動モードにおける1リフレッシュ周期Tref-PDにおいて駆動トランジスタT1のゲート電圧Vg(i,j)の低下量も大きくなる。このようにして低下したゲート電圧Vg(i,j)は、次のRF期間で新たなデータ電圧の書き込みよって上昇する(図8に示す時刻Tw1~Tw4はこの書き込みの時点を示している)。したがって、休止駆動モードでは、駆動トランジスタT1のゲート電圧Vg(i,j)は、図8に示すようにリフレッシュ周期Tref-PDで周期的に変化する。これに応じて画素回路Pix(i,j)における有機EL素子OLの輝度L(i,j)が図8に示すように次第に明るくなり、これがフリッカとして視認される。
これに対し本実施形態では、各画素回路Pix(i,j)において、その駆動トランジスタT1の閾値制御端子TGに閾値制御線TCiを介して与えられる電圧Vtc(i)が図3、図6に示す如く変化するように閾値制御線TCiが駆動される。これにより、駆動トランジスタT1の閾値の絶対値|Vth|は、NRF期間を含む発光期間において漸次に上昇し、次のRF期間における第i-1選択走査期間の開始時点t2(この時点は、図9に示すデータ書き込みの時点Tw1~Tw4と実質的に同時点である)において閾値制御初期電圧VtcIに低下する。その結果、休止駆動モードでは、駆動トランジスタT1の閾値制御端子TGに与えられる閾値制御電圧Vtc(i)は、図8に示すようにリフレッシュ周期Tref-PDで周期的に変化する。
ここで、駆動トランジスタT1はPチャネル型であるので、閾値制御端子TGに与えられる電圧Vtc(i)が正方向に高くなるほど、駆動トランジスタT1の閾値の絶対値|Vth|は大きくなる(電流が流れにくくなる)。既述の式(1)からわかるように、閾値の絶対値|Vth|の増大は、駆動トランジスタT1による有機EL素子OLの駆動電流I1を減少させて輝度を低下させる方向に働く。したがって、発光期間における閾値制御電圧Vtc(i)の変化率を駆動トランジスタT1の特性に応じて適切に設定することにより、画素回路Pix(i,j)における有機EL素子OLの輝度L(i,j)の変化を、図8に実線で示すように低減することができる。よって、休止駆動モードにおいて、第1初期化トランジスタT4の漏れ電流に起因する保持キャパシタCstの蓄積電荷量の変化によるフリッカの発生を抑制することができる。
以下、このようにしてフリッカの発生を抑制するための閾値制御電圧Vtc(i)の具体的な設定方法につき説明する。
発光期間において駆動トランジスタT1から有機EL素子OLに流れる駆動電流I1は、既述の式(1)で与えられる。ここで、説明の便宜のために、Vdd=ELVDDとおき、駆動トランジスタT1がPチャネル型であることを考慮してVdd>Vgとすると、この駆動電流I1は次式のように表すことができる。
I1=(β/2)(Vdd-Vg-|Vth|)2 …(7)
また、発光期間における第1初期化トランジスタT4の漏れ電流Ioffによってゲート電圧Vg=Vg(i,j)が変化することから、このゲート電圧Vgを時間tの関数とみなしVg(t)とおくことにし、画素回路Pix(i,j)のデータ書込期間の終了時点t5をt=0とすると(図6参照)、内部補償が行われる本実施形態では既述の式(5)より、
Vg(0)=Vdata-|Vth| …(8)
である。発光期間においてオフ状態である第1初期化トランジスタT4の漏れ電流Ioffによって変化するゲート電圧Vg(t)は、図4および図7(C)より次式のように表すことができる。
Vg(t)=(Vg(0)-Vini)exp(-t/(Cst・Roff))+Vini …(9)
ここで、Viniは初期化電圧を、Cstは保持キャパシタCstの容量値を、Roffは第1初期化トランジスタT4のオフ抵抗をそれぞれ示す。
I1=(β/2)(Vdd-Vg-|Vth|)2 …(7)
また、発光期間における第1初期化トランジスタT4の漏れ電流Ioffによってゲート電圧Vg=Vg(i,j)が変化することから、このゲート電圧Vgを時間tの関数とみなしVg(t)とおくことにし、画素回路Pix(i,j)のデータ書込期間の終了時点t5をt=0とすると(図6参照)、内部補償が行われる本実施形態では既述の式(5)より、
Vg(0)=Vdata-|Vth| …(8)
である。発光期間においてオフ状態である第1初期化トランジスタT4の漏れ電流Ioffによって変化するゲート電圧Vg(t)は、図4および図7(C)より次式のように表すことができる。
Vg(t)=(Vg(0)-Vini)exp(-t/(Cst・Roff))+Vini …(9)
ここで、Viniは初期化電圧を、Cstは保持キャパシタCstの容量値を、Roffは第1初期化トランジスタT4のオフ抵抗をそれぞれ示す。
第1初期化トランジスタT4の漏れ電流Ioffによるゲート電圧Vgの変化を考慮すると、上記式(8)および(9)で示されるVg(t)を用いて、駆動電流I1を次式のように表すことができる。
I1=(β/2)(Vdd-Vg(t)-|Vth|)2 …(10)
したがって、休止駆動モードにおいて駆動トランジスタT1の閾値制御を行わない場合、画素回路Pix(i,j)では、上記式(8)(9)より、ゲート電圧Vg(t)は、データ書込期間後の発光期間において、上記式(8)に示すVg(0)から漸次に低下し、次のRF期間でのデータ電圧の書き込みにより上記(8)に示すVg(0)へと上昇する。すなわち、ゲート電圧Vgは、図8に示すように休止駆動モードにおけるリフレッシュ周期Tref-PDで周期的に変化する。このようにゲート電圧Vgが変化すると、上記式(8)(10)より、駆動電流I1は、データ書込期間後の発光期間において、
I1=(β/2)(Vdd-Vg(0)-|Vth|)2=(β/2)(Vdd-Vdata)2
で示される値から漸次に増加し、次のRF期間でのデータ電圧の書き込みにより
I1=(β/2)(Vdd-Vdata)2
で示される値へと低下する。これに応じて、電流駆動型の有機EL素子OLの輝度L(i,j)は、図8に示すように休止駆動モードにおけるリフレッシュ周期Tref-PDで周期的に変化する。このような有機EL素子OLの輝度L(i,j)の変化は、フリッカとして視認される。
I1=(β/2)(Vdd-Vg(t)-|Vth|)2 …(10)
したがって、休止駆動モードにおいて駆動トランジスタT1の閾値制御を行わない場合、画素回路Pix(i,j)では、上記式(8)(9)より、ゲート電圧Vg(t)は、データ書込期間後の発光期間において、上記式(8)に示すVg(0)から漸次に低下し、次のRF期間でのデータ電圧の書き込みにより上記(8)に示すVg(0)へと上昇する。すなわち、ゲート電圧Vgは、図8に示すように休止駆動モードにおけるリフレッシュ周期Tref-PDで周期的に変化する。このようにゲート電圧Vgが変化すると、上記式(8)(10)より、駆動電流I1は、データ書込期間後の発光期間において、
I1=(β/2)(Vdd-Vg(0)-|Vth|)2=(β/2)(Vdd-Vdata)2
で示される値から漸次に増加し、次のRF期間でのデータ電圧の書き込みにより
I1=(β/2)(Vdd-Vdata)2
で示される値へと低下する。これに応じて、電流駆動型の有機EL素子OLの輝度L(i,j)は、図8に示すように休止駆動モードにおけるリフレッシュ周期Tref-PDで周期的に変化する。このような有機EL素子OLの輝度L(i,j)の変化は、フリッカとして視認される。
これに対し本実施形態における休止駆動モードでは、各画素回路Pix(i,j)において駆動トランジスタT1の閾値制御端子(トップゲート電極)TGに閾値制御線TCiを介して閾値制御電圧Vtc(i)を与えることで、当該駆動トランジスタT1の閾値Vthを制御する。これにより、ゲート電圧Vgの変化による駆動電流I1の変化を抑えるためには、この閾値を時間tの関数Vth(t)とみなし、理想的には
Vg(t)+|Vth(t)|=Vg(0)+|Vth(0)| …(11)
となるように閾値Vth(t)を制御すればよい。このようにすれば、上記式(10)より、駆動電流I1は変化せず下式で示される値を維持する。
I1=(β/2)(Vdd-Vg(0)-|Vth(0)|)2 …(12)
ここで、t/(Cst・Roff)は十分に小さいとして、上記式(9)で示されるVg(t)を下記式で近似する。
Vg(t)=(Vg(0)-Vini)(1-t/(Cst・Roff))+Vini …(13)
上記式(11)(13)より、
|Vth(t)|=|Vth(0)|+(Vg(0)-Vini)t/(Cst・Roff) …(14)
となる。
Vg(t)+|Vth(t)|=Vg(0)+|Vth(0)| …(11)
となるように閾値Vth(t)を制御すればよい。このようにすれば、上記式(10)より、駆動電流I1は変化せず下式で示される値を維持する。
I1=(β/2)(Vdd-Vg(0)-|Vth(0)|)2 …(12)
ここで、t/(Cst・Roff)は十分に小さいとして、上記式(9)で示されるVg(t)を下記式で近似する。
Vg(t)=(Vg(0)-Vini)(1-t/(Cst・Roff))+Vini …(13)
上記式(11)(13)より、
|Vth(t)|=|Vth(0)|+(Vg(0)-Vini)t/(Cst・Roff) …(14)
となる。
一方、本実施形態のように駆動トランジスタT1のトップゲート電極TGを閾値制御端子とした場合、閾値の絶対値|Vth|は、トップゲート電極TGの電圧Vtgについての下記の一次式で表すことができる。
|Vth|=a・Vtg+b
本実施形態では、トップゲート電極TGにVtgとして与えられる閾値制御電圧Vtc(i)が与えられるので、上記式は次のように書き直すことができる。
|Vth|=a・Vtc(i)+b …(15)
この式(15)において、aは定数であって、トップゲート電極TGとボトムゲート電極BGのゲート絶縁膜容量の比Ct/Cbに等しい(a=Ct/Cb)。本実施形態における休止駆動モードでは、トップゲート電極TGにVtgとして与えられる閾値制御電圧Vtc(i)を変化させることにより閾値Vthが変化するので、両者を時間tの関数Vth(t)、Vtc(i,t)とみなし、t=0のときの閾値制御電圧をVtc(i,0)=VtcIとおくと、上記式(15)より
b=|Vth(0)|-a・VtcI
である。この式と上記式(15)より、次式が得られる。
Vtc(i,t)={|Vth(t)|-b}/a
={|Vth(t)|-|Vth(0)|+a・VtcI}/a …(16)
この式(16)に上記式(14)を代入すると、
Vtc(i,t)=VtcI+(Vg(0)-Vini)t/{(Cst・Roff)・a}
=VtcI+(Vg(0)-Vini)t/{(Cst・Roff)(Ct/Cb)} …(17)
となる。
|Vth|=a・Vtg+b
本実施形態では、トップゲート電極TGにVtgとして与えられる閾値制御電圧Vtc(i)が与えられるので、上記式は次のように書き直すことができる。
|Vth|=a・Vtc(i)+b …(15)
この式(15)において、aは定数であって、トップゲート電極TGとボトムゲート電極BGのゲート絶縁膜容量の比Ct/Cbに等しい(a=Ct/Cb)。本実施形態における休止駆動モードでは、トップゲート電極TGにVtgとして与えられる閾値制御電圧Vtc(i)を変化させることにより閾値Vthが変化するので、両者を時間tの関数Vth(t)、Vtc(i,t)とみなし、t=0のときの閾値制御電圧をVtc(i,0)=VtcIとおくと、上記式(15)より
b=|Vth(0)|-a・VtcI
である。この式と上記式(15)より、次式が得られる。
Vtc(i,t)={|Vth(t)|-b}/a
={|Vth(t)|-|Vth(0)|+a・VtcI}/a …(16)
この式(16)に上記式(14)を代入すると、
Vtc(i,t)=VtcI+(Vg(0)-Vini)t/{(Cst・Roff)・a}
=VtcI+(Vg(0)-Vini)t/{(Cst・Roff)(Ct/Cb)} …(17)
となる。
そこで、本実施形態における休止駆動モードでは、各画素回路Pix(i,j)において(i=1~n,j=1~m)、データ電圧を書き込んだ時点t=0から発光期間(NRF期間を含む)を経て次のRF期間でデータ電圧を書き込むまでの期間(1リフレッシュ周期Tref-PDの間)、上記式(17)にしたがって変化する閾値制御電圧Vtc(i)が、閾値制御線TCiを介して当該画素回路Pix(i,j)における駆動トランジスタT1の閾値制御端子(トップゲート電極)TGに与えられるように、閾値制御回路22により閾値制御信号TC(1)~TC(n)が生成されて閾値制御線TC1~TCnにそれぞれ印加される(図9、図3参照)。ここで、上記式(17)で示される閾値制御電圧Vtc(i,t)は閾値制御信号TC(i)の電圧に相当する。
なお、上記式(17)に含まれるVg(0)は、既述の式(5)より
Vg(0)=Vdata-|Vth(0)|
であるので、上記式(17)で示される閾値制御電圧Vtc(i,t)は、当該画素回路Pix(i,j)に書き込むべきデータ電圧Vdataすなわち対応データ信号線Djの電圧に依存する。しかし、対応閾値制御線TCiに対応する画素回路Pix(i,1)~Pix(i,m)に書き込むべきm個のデータ電圧Vdataの平均値、または、それらm個のデータ電圧Vdataのうち最も低い輝度を示すデータ電圧をデータ電圧代表値Vdrpとして決定し、このデータ電圧代表値Vdprに対応するゲート電圧Vg(0)=Vdpr-|Vth(0)|を用いて式(17)にしたがって閾値制御電圧Vtc(i,t)を生成すればよい。すなわち、各閾値制御線TCi(i=1~n)につき、それに対応する画素回路Pix(i,1)~Pix(i,m)に書き込むべきデータ電圧に対するデータ電圧代表値Vdprを決定し、当該閾値制御線TCiに対応する画素回路Pix(i,1)~Pix(i,m)における駆動トランジスタT1の閾値制御端子TGに与えるべき閾値制御電圧Vtc(i)を、当該データ電圧代表値Vdprを用いた下記式で与えられる時間tの関数Vtc(i,t)で示される電圧として生成すればよい。
Vtc(i,t)=VtcI+(Vdpr-|Vth(0)|-Vini)t/{(Cst・Roff)(Ct/Cb)} …(18)
Vg(0)=Vdata-|Vth(0)|
であるので、上記式(17)で示される閾値制御電圧Vtc(i,t)は、当該画素回路Pix(i,j)に書き込むべきデータ電圧Vdataすなわち対応データ信号線Djの電圧に依存する。しかし、対応閾値制御線TCiに対応する画素回路Pix(i,1)~Pix(i,m)に書き込むべきm個のデータ電圧Vdataの平均値、または、それらm個のデータ電圧Vdataのうち最も低い輝度を示すデータ電圧をデータ電圧代表値Vdrpとして決定し、このデータ電圧代表値Vdprに対応するゲート電圧Vg(0)=Vdpr-|Vth(0)|を用いて式(17)にしたがって閾値制御電圧Vtc(i,t)を生成すればよい。すなわち、各閾値制御線TCi(i=1~n)につき、それに対応する画素回路Pix(i,1)~Pix(i,m)に書き込むべきデータ電圧に対するデータ電圧代表値Vdprを決定し、当該閾値制御線TCiに対応する画素回路Pix(i,1)~Pix(i,m)における駆動トランジスタT1の閾値制御端子TGに与えるべき閾値制御電圧Vtc(i)を、当該データ電圧代表値Vdprを用いた下記式で与えられる時間tの関数Vtc(i,t)で示される電圧として生成すればよい。
Vtc(i,t)=VtcI+(Vdpr-|Vth(0)|-Vini)t/{(Cst・Roff)(Ct/Cb)} …(18)
上記式(18)からわかるように、Ct>Cbであれば、すなわち閾値制御端子側のゲート絶縁膜容量Ctが主制御端子側のゲート絶縁膜容量Cbよりも大きければ、閾値制御電圧Vtc(i,t)の変動(上下の幅)を小さくしても駆動トランジスタT1のゲート電圧Vgの変化による駆動電流I1の変動を抑えることができる。
また、上記のデータ電圧代表値Vdprに代えて、1フレーム期間毎に表示部11bにおけるn×mの画素回路Pix(i,j)に書き込むべきn×m個のデータ電圧の平均値、または、それらn×m個のデータ電圧Vdataのうち最も低い輝度を示すデータ電圧をデータ電圧代表値Vdrpとして決定してもよい。さらに、これに代えて、種々の表示画像に基づき予め決められた値を上記n×m個のデータ電圧Vdataに対するデータ電圧代表値Vdprとしてもよい。これらの場合、各閾値制御線TCiにつき同一のデータ電圧代表値Vdprが決定されることになるので、表示制御回路20から全ての画素回路Pix(1,1)~Pix(n,m)における駆動トランジスタT1の閾値制御端子TGに対し、同一のデータ電圧代表値Vdprを用いた上記式(18)で与えられる時間tの関数Vtc(i,t)で示される閾値制御電圧、すなわち同一の時間関数Vtc(i,t)=Vtc(t)で示される閾値制御電圧が与えられる。
なお、上記のように同一の時間関数Vtc(t)で示される閾値制御電圧が全ての画素回路Pix(1,1)~Pix(n,m)に与えられる場合には、図1に示すように走査信号線G1~Gnに沿って配設されたn本の閾値制御線TC1~TCnに代えて、データ信号線D1~Dmに沿ってm本の閾値制御線TC1~TCmを配設してもよい。また、上記のように同一の時間関数Vtc(t)で示される閾値制御電圧が全ての画素回路Pix(1,1)~Pix(n,m)に与えられる場合には、配設すべき閾値制御線は、必ずしも、走査信号線G1~Gnまたはデータ信号線D1~Dmに1対1に対応させる必要はなく、したがって、閾値制御線の本数は、走査信号線G1~Gnの本数やデータ信号線D1~Dmの本数よりも少なくてもよい。
<1.6 効果>
上記のような本実施形態によれば、休止駆動モードでは、各画素回路Pix(i,j)において、発光期間における第1初期化トランジスタT4の漏れ電流による保持キャパシタCstの保持電圧の低下(蓄積電荷量の変化)すなわちゲート電圧Vgの低下が、閾値制御電圧Vtc(i)の増大によって補償される(図9)。すなわち、各画素回路Pix(i,j)において、発光期間での保持キャパシタCstの保持電圧の変化による主ゲート端子の電位変化(ゲート電圧Vgの変化)に対して閾値制御端子TGの電位を逆方向に変化させる閾値制御電圧Vtc(i)が閾値制御端子TGに与えられることで、ゲート電圧Vgの変化が補償される。これにより、ゲート電圧Vgの低下による駆動電流の増大が抑制され、リフレッシュ周期Tref-PDで有機EL素子OLの輝度が変化することによるフリッカの発生を防ぐことができる。したがって、休止駆動モードにおいて、消費電力を低減しつつフリッカの視認されない良好な画像を表示することができる。
上記のような本実施形態によれば、休止駆動モードでは、各画素回路Pix(i,j)において、発光期間における第1初期化トランジスタT4の漏れ電流による保持キャパシタCstの保持電圧の低下(蓄積電荷量の変化)すなわちゲート電圧Vgの低下が、閾値制御電圧Vtc(i)の増大によって補償される(図9)。すなわち、各画素回路Pix(i,j)において、発光期間での保持キャパシタCstの保持電圧の変化による主ゲート端子の電位変化(ゲート電圧Vgの変化)に対して閾値制御端子TGの電位を逆方向に変化させる閾値制御電圧Vtc(i)が閾値制御端子TGに与えられることで、ゲート電圧Vgの変化が補償される。これにより、ゲート電圧Vgの低下による駆動電流の増大が抑制され、リフレッシュ周期Tref-PDで有機EL素子OLの輝度が変化することによるフリッカの発生を防ぐことができる。したがって、休止駆動モードにおいて、消費電力を低減しつつフリッカの視認されない良好な画像を表示することができる。
<2.第2の実施形態>
<2.1 全体構成および概略動作>
図10は、第2の実施形態に係る有機EL表示装置10bの全体構成を示すブロック図である。本実施形態に係る表示装置10bも、内部補償を行う有機EL表示装置である。この表示装置10bも、上記第1の実施形態と同様、表示部11b、表示制御回路20、データ側駆動回路30、走査側駆動回路40b、および、電源回路50を備えている。しかし本実施形態では、表示部11bは、閾値制御線TC1~TCnが設けられておらず、この点で上記第1の実施形態と相違する。また、これに対応して本実施形態における表示制御回路20は、閾値制御回路を含んでいない。本実施形態の全体構成における他の点については上記第1の実施形態と同様であるので(図1参照)、同一または対応する部分に同一の参照符号を付して説明を省略する。
<2.1 全体構成および概略動作>
図10は、第2の実施形態に係る有機EL表示装置10bの全体構成を示すブロック図である。本実施形態に係る表示装置10bも、内部補償を行う有機EL表示装置である。この表示装置10bも、上記第1の実施形態と同様、表示部11b、表示制御回路20、データ側駆動回路30、走査側駆動回路40b、および、電源回路50を備えている。しかし本実施形態では、表示部11bは、閾値制御線TC1~TCnが設けられておらず、この点で上記第1の実施形態と相違する。また、これに対応して本実施形態における表示制御回路20は、閾値制御回路を含んでいない。本実施形態の全体構成における他の点については上記第1の実施形態と同様であるので(図1参照)、同一または対応する部分に同一の参照符号を付して説明を省略する。
本実施形態に係る表示装置10bも、上記第1の実施形態と同様、通常駆動モードと休止駆動モードとの2つの動作モードを有している。また上記第1の実施形態と同様、通常駆動モードでは、図2に示すようにリフレッシュ期間(RF期間)が繰り返されるのに対し、休止駆動モードでは、図3に示すようにリフレッシュ期間(RF期間)と非リフレッシュ期間(NRF期間)とが交互に繰り返される。なお、本実施形態では、駆動トランジスタの閾値Vthを制御するための電圧Vtcは各画素回路内で生成される(詳細は後述)。
<2.2 画素回路の構成>
次に、図11を参照して本実施形態における画素回路15の構成について説明する。
次に、図11を参照して本実施形態における画素回路15の構成について説明する。
図11は、本実施形態における画素回路15bの構成を示す回路図、より詳しくは、i番目の走査信号線Giおよびj番目のデータ信号線Djに対応する画素回路15bすなわちi行j列目の画素回路Pix(i,j)の構成を示す回路図である(1≦i≦n、1≦j≦m)。図11に示すように、この画素回路15bは、上記第1の実施形態における画素回路15と同様(図4)、表示素子としての有機EL素子OL、駆動トランジスタT1、書込制御トランジスタT2、閾値補償トランジスタT3、第1初期化トランジスタT4、第1発光制御トランジスタT5、第2発光制御トランジスタT6、第2初期化トランジスタT7、および、保持キャパシタCstを含んでいる。これに加えて、この画素回路15bは、閾値制御トランジスタT8、閾値制御キャパシタCtc、および、閾値制御抵抗素子Rtcを含んでいる。この閾値制御抵抗素子Rtcの抵抗値は、閾値制御トランジスタT8のオン抵抗に比べ十分に大きい。また当該抵抗値は、閾値制御トランジスタT8のオフ抵抗に比べ小さい(本実施形態では、当該抵抗値は閾値制御トランジスタT8のオフ抵抗に比べ十分に小さいものとする)。このような閾値制御抵抗素子Rtcは、例えば図5に示したようにゲート絶縁膜BGI上に形成される半導体層における導体領域を用いて実現することができ、また、トランジスタを用いて実現することもできる。後者の場合、例えば図13に示すように、チャネル幅Wを小さくしチャネル長を長くすることで通常よりもオン抵抗を大きくしたPチャネル型のトランジスタT9を使用し、そのゲート端子に対応発光制御線Eiを接続することにより、閾値制御抵抗素子Rtcを実現することができる。
なお、この画素回路15bにおいて、駆動トランジスタT1以外のトランジスタT2~T8はスイッチング素子として機能する。また、上記第1の実施形態と同様、駆動トランジスタT1は、トップゲート電極TGおよびボトムゲート電極BGを有するダブルゲート型のPチャネル型トランジスタであり(図5参照)、ボトムゲート電極BGは、当該駆動トランジスタT1に流れる電流を制御するための主ゲート端子として使用され、トップゲート電極TGは、当該駆動トランジスタT1の閾値を制御するための閾値制御端子として使用される。
画素回路15bには、それに対応する走査信号線である対応走査信号線Gi、その対応走査信号線Giの直前の走査信号線である先行走査信号線Gi-1、それに対応する発光制御線である対応発光制御線Ei、それに対応するデータ信号線である対応データ信号線Dj、初期化電圧供給線Vini、ハイレベル電源線ELVDD、および、ローレベル電源線ELVSSが接続されている。画素回路15bにおいて、これらの信号線や電源線等と閾値制御トランジスタT8、閾値制御キャパシタCtc、および閾値制御抵抗素子Rtc以外の素子(有機EL素子OL、駆動トランジスタT1、書込制御トランジスタT2、閾値補償トランジスタT3、第1初期化トランジスタT4、第1発光制御トランジスタT5、第2発光制御トランジスタT6、第2初期化トランジスタT7、および、保持キャパシタCst)との接続形態、ならびに、閾値制御トランジスタT8、閾値制御キャパシタCtc、および閾値制御抵抗素子以外の当該素子の間での接続形態は、上記第1の実施形態における画素回路15と同様である(図4、図11参照)。
図11に示すように、本実施形態における画素回路15bは、上記第1の実施形態とは異なり、閾値制御トランジスタT8、閾値制御キャパシタCtc、および閾値制御抵抗素子Rtcを含んでおり、駆動トランジスタT1の閾値制御端子(トップゲート電極)TGは、閾値制御キャパシタCtcを介してハイレベル電源線ELVDDに接続され、かつ、閾値制御トランジスタT8を介して初期化電圧供給線Viniに接続され、かつ、閾値制御抵抗素子Rtcを介してハイレベル電源線ELVDDに接続されている。
<2.3 画素回路の動作>
図12は、本実施形態における画素回路15bの動作を説明するための信号波形図であり、上記のように構成された図11の画素回路15bすなわちi行j列目の画素回路Pix(i,j)のリセット動作、データ書込動作、および点灯動作における各信号線(対応発光制御線Ei、先行走査信号線Gi-1、対応走査信号線Gi、対応データ信号線Dj、閾値制御端子TG)の電圧、駆動トランジスタT1の主ゲート端子の電圧(ゲート電圧)Vg、および、有機EL素子OLのアノード電極の電圧(アノード電圧)Vaの変化を示している。
図12は、本実施形態における画素回路15bの動作を説明するための信号波形図であり、上記のように構成された図11の画素回路15bすなわちi行j列目の画素回路Pix(i,j)のリセット動作、データ書込動作、および点灯動作における各信号線(対応発光制御線Ei、先行走査信号線Gi-1、対応走査信号線Gi、対応データ信号線Dj、閾値制御端子TG)の電圧、駆動トランジスタT1の主ゲート端子の電圧(ゲート電圧)Vg、および、有機EL素子OLのアノード電極の電圧(アノード電圧)Vaの変化を示している。
図12に示す信号波形図を図6に示した信号波形図と比較すればわかるように、各画素回路Pix(i,j)に接続された各信号線(対応発光制御線Ei、先行走査信号線Gi-1、対応走査信号線Gi、対応データ信号線Dj)は上記第1の実施形態と同様に駆動され、本実施形態における画素回路Pix(i,j)においても、上記第1の実施形態と同様のリセット動作、データ書込動作、および、点灯動作が行われる。ただし、本実施形態では、各画素回路Pix(i,j)の駆動トランジスタT1の閾値制御端子TGに与えられる電圧は、表示制御回路20内の閾値制御回路から対応閾値制御線TCiを介して与えられるのではなく、当該画素回路Pix(i,j)内において、閾値制御トランジスタT8、閾値制御キャパシタCtc、および閾値制御抵抗素子Rtcを用いて生成される。この詳細は以下で説明する。
<2.4 閾値制御のための構成および動作>
本実施形態における各画素回路Pix(i,j)では、駆動トランジスタT1の閾値制御端子TGの電圧(以下「閾値制御電圧」という)Vtcは、図12に示すように変化する。すなわち、閾値制御トランジスタT8は、そのゲート端子に対応走査信号線Giが接続されているので、図12に示すように、第i走査選択期間に相当するデータ書込期間の開始時点t4でオフ状態からオン状態に変化し、データ書込期間の終了時点t5までオン状態に維持される。このため、閾値制御電圧Vtcは、時刻t4で初期化電圧Viniへと低下し、時刻t5まで初期化電圧に維持される。その後、データ書込期間の終了時点t5で閾値制御トランジスタT8がオフ状態へと変化し、次のRF期間で対応走査信号線Giが選択状態となるまでオフ状態に維持される。データ書込期間の終了時点t5以降において閾値制御トランジスタT8がオフ状態である間、閾値制御電圧Vtcは以下のように変化する。以下では、閾値制御電圧Vtcを時間tの関数とみなしVtc(t)とおくことにし、データ書込期間の終了時点t5をt=0とする。
本実施形態における各画素回路Pix(i,j)では、駆動トランジスタT1の閾値制御端子TGの電圧(以下「閾値制御電圧」という)Vtcは、図12に示すように変化する。すなわち、閾値制御トランジスタT8は、そのゲート端子に対応走査信号線Giが接続されているので、図12に示すように、第i走査選択期間に相当するデータ書込期間の開始時点t4でオフ状態からオン状態に変化し、データ書込期間の終了時点t5までオン状態に維持される。このため、閾値制御電圧Vtcは、時刻t4で初期化電圧Viniへと低下し、時刻t5まで初期化電圧に維持される。その後、データ書込期間の終了時点t5で閾値制御トランジスタT8がオフ状態へと変化し、次のRF期間で対応走査信号線Giが選択状態となるまでオフ状態に維持される。データ書込期間の終了時点t5以降において閾値制御トランジスタT8がオフ状態である間、閾値制御電圧Vtcは以下のように変化する。以下では、閾値制御電圧Vtcを時間tの関数とみなしVtc(t)とおくことにし、データ書込期間の終了時点t5をt=0とする。
閾値制御トランジスタT8がオン状態のとき、閾値制御キャパシタCtcは、ハイレベル電源線ELVDDと初期化電圧供給線Viniにより充電されて電圧Vdd-Viniを保持するようになる。この後、データ書込期間の終了時点t5に閾値制御トランジスタT8がオフ状態となり、以後において閾値制御トランジスタT8がオフ状態である間、閾値制御キャパシタCtcの蓄積電荷は、閾値制御抵抗素子Rtcを介して放電される。したがって、このときの閾値制御電圧Vtc(t)は下記式で表すことができる。
Vtc(t)=(Vini-Vdd)exp(-t/(Ctc・Rtc))+Vdd …(19)
ここで、t/(Ctc・Rtc)は十分に小さいとして、上記式(19)で示されるVtc(t)を下記式で近似する。
Vtc(t)=(Vini-Vdd){1-t/(Ctc・Rtc)}+Vdd
=Vini+(Vdd-Vini)t/(Ctc・Rtc) …(20)
Vtc(t)=(Vini-Vdd)exp(-t/(Ctc・Rtc))+Vdd …(19)
ここで、t/(Ctc・Rtc)は十分に小さいとして、上記式(19)で示されるVtc(t)を下記式で近似する。
Vtc(t)=(Vini-Vdd){1-t/(Ctc・Rtc)}+Vdd
=Vini+(Vdd-Vini)t/(Ctc・Rtc) …(20)
本実施形態においても、上記第1の実施形態と同様に閾値制御電圧Vtcを変化させることにより、発光期間における第1初期化トランジスタT4の漏れ電流に起因するゲート電圧Vgの低下による駆動電流I1の増大を抑えることができる。このためには、本実施形態ではVtc(0)=Viniであることを考慮し、既述の式(17)と上記式(20)と比較することにより、下記式を満たすように閾値制御キャパシタCtcの容量値(これも符号“Ctc”で示す)および閾値制御抵抗素子Rtcの抵抗値(これも符号“Rtc”で示す)を設定すればよいことがわかる。
(Vdd-Vini)/(Ctc・Rtc)=(Vg(0)-Vini)/{(Cst・Roff)・Ct/Cb}
Ctc・Rtc=(Vdd-Vini)(Cst・Roff)(Ct/Cb)/(Vg(0)-Vini) …(21)
(Vdd-Vini)/(Ctc・Rtc)=(Vg(0)-Vini)/{(Cst・Roff)・Ct/Cb}
Ctc・Rtc=(Vdd-Vini)(Cst・Roff)(Ct/Cb)/(Vg(0)-Vini) …(21)
なお、上記式(21)に含まれるVg(0)は、既述の式(5)より
Vg(0)=Vdata-|Vth(0)|
であるので、上記式(21)を満たす容量値Ctcおよび抵抗値Rtcは、画素回路Pix(i,j)に書き込むべきデータ電圧Vdataに依存する。しかし、上記第1の実施形態と同様にして、データ電圧代表値Vdprを決定し、このデータ電圧代表値Vdprに対応するゲート電圧Vg(0)=Vdpr-|Vth(0)|を用いて式(20)にしたがって閾値制御キャパシタの容量値Ctcおよび閾値制御抵抗素子の抵抗値Rtcを設定すればよい。ただし、容量値Ctcおよび抵抗値Rtcは回路定数であることから、本実施形態において決定されるデータ電圧代表値Vdprは固定値である。
Vg(0)=Vdata-|Vth(0)|
であるので、上記式(21)を満たす容量値Ctcおよび抵抗値Rtcは、画素回路Pix(i,j)に書き込むべきデータ電圧Vdataに依存する。しかし、上記第1の実施形態と同様にして、データ電圧代表値Vdprを決定し、このデータ電圧代表値Vdprに対応するゲート電圧Vg(0)=Vdpr-|Vth(0)|を用いて式(20)にしたがって閾値制御キャパシタの容量値Ctcおよび閾値制御抵抗素子の抵抗値Rtcを設定すればよい。ただし、容量値Ctcおよび抵抗値Rtcは回路定数であることから、本実施形態において決定されるデータ電圧代表値Vdprは固定値である。
また、上記式(21)からわかるように、Ct<Cbであれば、すなわち閾値制御端子側のゲート絶縁膜容量Ctが主制御端子側のゲート絶縁膜容量Cbよりも小さければ、Cst・Roffに比べCtc・Rtcを小さくしても、駆動トランジスタT1のゲート電圧Vgの変化による駆動電流I1の変動の抑制につき所望の効果を得ることができる。
<2.5 効果>
上記のような本実施形態によれば、各画素回路Pix(i,j)内において、閾値制御キャパシタCtcと閾値制御トランジスタT8と閾値制御抵抗素子Rtcとを用いて閾値制御電圧Vtcを生成する閾値制御回路24が構成されており(図11参照)、この閾値制御電圧Vtcにより駆動トランジスタT1の閾値Vthが制御される。これにより、第1初期化トランジスタT4の漏れ電流により駆動トランジスタT1のゲート電圧Vgが低下しても、駆動電流I1の増大が抑えられる。したがって、表示部に閾値制御線TC1~TCnを配設することなく、また、これらの閾値制御線TC1~TCnを介して各画素回路Pix(i,j)に与えるべき閾値制御電圧Vtc(1)~Vtc(n)を生成することもなく、上記第1の実施形態と同様の効果を得ることができる(図9参照)。
上記のような本実施形態によれば、各画素回路Pix(i,j)内において、閾値制御キャパシタCtcと閾値制御トランジスタT8と閾値制御抵抗素子Rtcとを用いて閾値制御電圧Vtcを生成する閾値制御回路24が構成されており(図11参照)、この閾値制御電圧Vtcにより駆動トランジスタT1の閾値Vthが制御される。これにより、第1初期化トランジスタT4の漏れ電流により駆動トランジスタT1のゲート電圧Vgが低下しても、駆動電流I1の増大が抑えられる。したがって、表示部に閾値制御線TC1~TCnを配設することなく、また、これらの閾値制御線TC1~TCnを介して各画素回路Pix(i,j)に与えるべき閾値制御電圧Vtc(1)~Vtc(n)を生成することもなく、上記第1の実施形態と同様の効果を得ることができる(図9参照)。
<3.変形例>
本発明は上記実施形態に限定されるものではなく、本発明の範囲を逸脱しない限りにおいてさらに種々の変形を施すことができる。
本発明は上記実施形態に限定されるものではなく、本発明の範囲を逸脱しない限りにおいてさらに種々の変形を施すことができる。
例えば上記第1の実施形態では、通常駆動モードにおいて、閾値制御電圧Vtc(i)がVtcIに固定されるが、休止駆動モードと同様に閾値制御電圧Vtc(i)を変化させてもよい(図3、図9参照)。
また上記第1の実施形態では、休止駆動モードにおいて、閾値制御線TC1~TCnにより、各行の画素回路Pix(i,1)~P(i,m)に対し当該行に応じたタイミングで変化する閾値制御電圧Vtc(i)が、当該行の画素回路Pix(i,1)~P(i,m)における駆動トランジスタT1の閾値制御端子TG与えられる(図3参照)。しかし、NRF期間(非リフレッシュ期間)が十分に長い休止駆動モードにおいては、閾値制御線TC1~TCnにそれぞれ印加すべき閾値制御信号TC(1)~TC(n)として同一の値の電圧(同一の時間関数で示される電圧)Vtcを生成するようにしてもよい。またこの場合、n本の閾値制御線TC1~TCnを1本の閾値制御線に共通化し、同一の時間関数としての閾値制御電圧Vtcを全ての画素回路Pix(1,1)~P(n,m)における駆動トランジスタT1の閾値制御端子TGに与えるようにしてもよい。
上記第1および第2の実施形態では、駆動トランジスタT1におけるトップゲート電極TGが閾値制御端子として使用され、ボトムゲート電極BGが主ゲート端子(駆動トランジスタT1に流れる電流を制御するための制御端子)として使用されているが(図4、図11)、これに代えて、トップゲート電極TGを主ゲート端子として使用し、ボトムゲート電極BGを閾値制御端子として使用してもよい。
上記第1実施形態における休止駆動モードおよび第2の実施形態では、各画素回路Pix(i,j)の駆動トランジスタT1の閾値制御端子TGに与えられる閾値制御電圧Vtc(i),Vtcは、その画素回路Pix(i,j)におけるデータ電圧の書き込み時点の時間間隔に相当するリフレッシュ周期で周期的に変化する。すなわち、図3および図9等に示すように、1リフレッシュ周期内では閾値制御初期電圧VtcIから時間の経過と共に漸次に増大し、データ電圧の書込時点毎に閾値制御初期電圧VtcIへと戻る(ただし第2の実施形態ではVtcI=Viniである)。この閾値制御初期電圧VtcI(Vini)へと戻る時点は、より詳しくは、第1の実施形態の休止駆動モードでは、図6に示すように当該画素回路Pix(i,j)におけるリセット期間(第i-1走査選択期間)の開始時点t2であり、第2の実施形態では、図12に示すように当該画素回路Pix(i,j)におけるデータ書込期間(第i走査選択期間)の開始時点t4である。しかし、閾値制御電圧Vct(t)が閾値制御初期電圧VtcI(Vini)へと戻る時点は、非発光期間内(好ましくはデータ書込期間の開始時点t4よりも前の期間t1~t4内)であればよく、図6や図12に示す時点に限定されない。したがって、例えば上記第2の実施形態では、図11に示すように画素回路Pix(i,j)における閾値制御トランジスタT8のゲート端子には対応走査信号線Giが接続されているが、これに代えて、当該ゲート端子に先行走査信号線Gi-1を接続してもよい。なお、NRF期間(非リフレッシュ期間)が十分に長い休止駆動モードにおいては、閾値制御電圧Vct(t)が閾値制御初期電圧VtcI(Vini)に戻る時点を非発光期間内のどの時点に設定するかは、第1初期化トランジスタT4等の漏れ電流による保持キャパシタCstの保持電圧(ゲート電圧Vg)の低下を補償するという効果には殆ど影響しない。
上記第1および第2の実施形態では、図4および図11にそれぞれ示すような内部補償方式の画素回路15,15bが使用されているが、画素回路の構成は、これらの構成に限定されるものではない。すなわち、保持キャパシタに保持される電圧に応じて有機EL素子等の電流駆動型の表示素子の駆動電流を駆動トランジスタにより制御する構成であって、発光期間において画素回路内の漏れ電流により当該保持キャパシタにおける保持電圧が変化する可能性のある構成であれば、本発明の適用が可能である。また、上記第1および第2の実施形態では、画素回路15,15bにおいて駆動トランジスタT1としてPチャネル型のトランジスタが使用されているが(図4および図11参照)、駆動トランジスタT1等にNチャネル型のトランジスタ(例えば、インジウム(In),ガリウム(Ga),亜鉛(Zn),および酸素(O)を主成分とする酸化物半導体であるIn-Ga-Zn-O(酸化インジウムガリウム亜鉛)によりチャネル層が形成されたNチャネル型の薄膜トランジスタ)を使用する場合であっても本発明の適用が可能であり、本発明の適用により同様の効果(休止駆動が行われるときにもフリッカの生じない良好な表示を行えるという効果)が得られる。
上記第1および第2の実施形態では、表示画像においてフリッカを生じさせるゲート電圧Vg(保持キャパシタCstの保持電圧)の低下の要因として第1初期化トランジスタT4の漏れ電流のみを考慮し、ゲート電圧Vgの低下を数式化して当該低下を補償するための閾値制御電圧Vtcの数式を導出している。ゲート電圧Vgの低下の要因として他の経路による漏れ電流(例えば、駆動トランジスタT1の主ゲート端子から閾値補償トランジスタT3、発光制御トランジスタT6、および有機EL素子OLを介してローレベル電源線ELVSSへと至る経路による漏れ電流)が無視できない場合においても、上記と同様の考え方で、ゲート電圧Vgの低下を数式化して当該低下を補償するための閾値制御電圧Vtcの数式を導出することができる。
以上においては、有機EL表示装置を例に挙げて実施形態およびその変形例が説明されたが、本発明は、有機EL表示装置に限定されるものではなく、電流で駆動される表示素子を用いた表示装置であれば適用可能である。ここで使用可能な表示素子は、電流によって輝度または透過率等が制御される表示素子であり、例えば、有機EL素子すなわち有機発光ダイオード(Organic Light Emitting Diode(OLED))の他、無機発光ダイオードや量子ドット発光ダイオード(Quantum dot Light Emitting Diode(QLED))等が使用可能である。
10,10b …有機EL表示装置
11,11b …表示部
15,15b …画素回路
Pix(j,i)…画素回路(i=1~n、j=1~m)
20 …表示制御回路
22,24 …閾値制御回路
30 …データ側駆動回路(データ信号線駆動回路)
40 …走査側駆動回路(走査信号線駆動/発光制御回路)
40b…走査側駆動回路(走査信号線駆動/発光制御回路)
Gi …走査信号線(i=1~n)
Ei …発光制御線(i=1~n)
TCi…閾値制御線(i=1~n)
Dj …データ信号線(j=1~m)
Vini …初期化電圧供給線、初期化電圧
ELVDD…ハイレベル電源線(第1電源線)、ハイレベル電源電圧
ELVSS…ローレベル電源線(第2電源線)、ローレベル電源電圧
OLED …有機EL素子(表示素子)
Cst …保持キャパシタ
Ctc …閾値制御キャパシタ
Rtc …閾値制御抵抗素子
T1 …駆動トランジスタ
T2 …書込制御トランジスタ
T3 …閾値補償トランジスタ
T4 …第1初期化トランジスタ(初期化スイッチング素子)
T5 …第1発光制御トランジスタ
T6 …第2発光制御トランジスタ
T7 …第2初期化トランジスタ
T8 …閾値制御トランジスタ(閾値制御スイッチング素子)
BG …主ゲート端子、ボトムゲート電極(第1ゲート電極)
TG …閾値制御端子、トップゲート電極(第2ゲート電極)
BGI…ゲート絶縁膜(第1絶縁膜)
TGI…ゲート絶縁膜(第2絶縁膜)
Va …アノード電圧
Vg …ゲート電圧
Vtc…閾値制御電圧
Tref-PD …休止駆動モードにおけるリフレッシュ周期
11,11b …表示部
15,15b …画素回路
Pix(j,i)…画素回路(i=1~n、j=1~m)
20 …表示制御回路
22,24 …閾値制御回路
30 …データ側駆動回路(データ信号線駆動回路)
40 …走査側駆動回路(走査信号線駆動/発光制御回路)
40b…走査側駆動回路(走査信号線駆動/発光制御回路)
Gi …走査信号線(i=1~n)
Ei …発光制御線(i=1~n)
TCi…閾値制御線(i=1~n)
Dj …データ信号線(j=1~m)
Vini …初期化電圧供給線、初期化電圧
ELVDD…ハイレベル電源線(第1電源線)、ハイレベル電源電圧
ELVSS…ローレベル電源線(第2電源線)、ローレベル電源電圧
OLED …有機EL素子(表示素子)
Cst …保持キャパシタ
Ctc …閾値制御キャパシタ
Rtc …閾値制御抵抗素子
T1 …駆動トランジスタ
T2 …書込制御トランジスタ
T3 …閾値補償トランジスタ
T4 …第1初期化トランジスタ(初期化スイッチング素子)
T5 …第1発光制御トランジスタ
T6 …第2発光制御トランジスタ
T7 …第2初期化トランジスタ
T8 …閾値制御トランジスタ(閾値制御スイッチング素子)
BG …主ゲート端子、ボトムゲート電極(第1ゲート電極)
TG …閾値制御端子、トップゲート電極(第2ゲート電極)
BGI…ゲート絶縁膜(第1絶縁膜)
TGI…ゲート絶縁膜(第2絶縁膜)
Va …アノード電圧
Vg …ゲート電圧
Vtc…閾値制御電圧
Tref-PD …休止駆動モードにおけるリフレッシュ周期
Claims (22)
- 複数のデータ信号線と、前記複数のデータ信号線に交差する複数の走査信号線と、前記複数のデータ信号線および前記複数の走査信号線に沿ってマトリクス状に配置された複数の画素回路とを有する表示装置であって、
第1および第2電源線と、
前記複数のデータ信号線を駆動するデータ信号線駆動回路と、
前記複数の走査信号線を選択的に駆動する走査信号線駆動回路と、
前記複数の画素回路の外部または内部に設けられた閾値制御回路と
を備え、
各画素回路は、
前記複数の走査信号線のいずれか1つに対応するとともに前記複数のデータ信号線のいずれか1つに対応し、
電流によって駆動される表示素子と、保持キャパシタと、駆動トランジスタとを含み、
前記駆動トランジスタは、それに流れる電流を制御するための主制御端子と、その閾値を制御するための閾値制御端子とを有し、
前記駆動トランジスタの前記主制御端子は、前記保持キャパシタを介して前記第1電源線に接続されており、
各画素回路は、
対応する走査信号線が選択されたときに、対応するデータ信号線の電圧がデータ電圧として前記保持キャパシタに書き込まれ、
前記表示素子の発光期間では、前記第1電源線から前記駆動トランジスタおよび前記表示素子を介して前記第2電源線に至る経路に前記表示素子の駆動電流が流れ、前記保持キャパシタに保持された電圧に応じて前記駆動トランジスタにより当該駆動電流が制御されるように構成されており、
前記閾値制御回路は、各画素回路につき、前記表示素子の発光期間において、当該画素回路内の漏れ電流による前記保持キャパシタの保持電圧の変化を補償するように前記駆動トランジスタの閾値を変化させる閾値制御電圧を前記閾値制御端子に与える、表示装置。 - 初期化電圧供給線を更に備え、
各画素回路は、初期化スイッチング素子を更に含み
前記駆動トランジスタの前記主制御端子は、前記初期化スイッチング素子を介して前記初期化電圧供給線に接続されており、
前記表示素子の発光期間において前記保持キャパシタの保持電圧を変化させる前記漏れ電流は、オフ状態の前記初期化スイッチング素子の漏れ電流を含む、請求項1に記載の表示装置。 - 前記複数の走査信号線にそれぞれ対応する複数の閾値制御線を更に備え、
前記複数の閾値制御線のそれぞれは、対応する走査信号線に接続された画素回路における前記駆動トランジスタの前記閾値制御端子に接続されており、
前記閾値制御回路は、前記複数の画素回路における前記駆動トランジスタの前記閾値制御端子に与えるべき閾値制御電圧を前記複数の画素回路の外部で生成し、前記複数の閾値制御線を介して前記複数の画素回路に供給する、請求項2に記載の表示装置。 - 前記閾値制御回路は、前記複数の閾値制御線につき共通の閾値制御電圧を生成し、当該共通の閾値制御電圧を前記複数の閾値制御線を介して前記複数の画素回路に供給する、請求項3に記載の表示装置。
- 前記閾値制御回路は、各閾値制御線によって供給すべき閾値制御電圧として、当該閾値制御線に対応する走査信号線に接続された画素回路におけるデータ電圧の書き込み時点の時間間隔に相当するリフレッシュ周期で周期的に変化し、かつ、当該画素回路におけるデータ電圧の各書込時点を時刻t=0としたときに下記式で与えられる時間tの関数Vtc(t)にしたがって各リフレッシュ周期内で変化する電圧を生成する、請求項3に記載の表示装置:
Vtc(t)=VtcI+(Vdpr-|Vth(0)|-Vini)t/{(Cst・Roff)(Ct/Cb)}
ここで、VtcIは、前記データ電圧の書込時点での前記閾値制御端子の電圧であり、Vdprは、当該閾値制御線に対応する走査信号線に接続された画素回路に書き込むべきデータ電圧の代表値に相当する値であり、Vth(0)は、前記データ電圧の書込時点での前記駆動トランジスタの閾値であり、Viniは、前記初期化電圧供給線の電圧であり、Cstは、前記保持キャパシタの容量値であり、Roffは、オフ状態の前記初期化スイッチング素子の抵抗値であり、Ctは、前記駆動トランジスタの前記閾値制御端子におけるゲート絶縁膜容量の値であり、Cbは、前記駆動トランジスタの前記主制御端子におけるゲート絶縁膜容量の値である。 - 前記代表値は、各閾値制御線につき同一の値が決定される、 請求項5に記載の表示装置。
- 前記代表値は、各閾値制御線につき決定される値であって、当該閾値制御線に対応する走査信号線に接続された画素回路に書き込むべきデータ電圧の平均値に相当する値である、請求項5に記載の表示装置。
- 前記複数のデータ信号線にそれぞれ沿って配設された複数の閾値制御線を更に備え、
前記複数の閾値制御線のそれぞれは、当該閾値制御線に対応するデータ信号線に接続された画素回路における前記駆動トランジスタの前記閾値制御端子に接続されており、
前記閾値制御回路は、前記複数の画素回路における前記駆動トランジスタの前記閾値制御端子に与えるべき閾値制御電圧として前記複数の閾値制御線につき共通の閾値制御電圧を前記複数の画素回路の外部で生成し、当該共通の閾値制御電圧を前記複数の閾値制御線を介して前記複数の画素回路に供給する、請求項2に記載の表示装置。 - 前記表示装置は、前記複数の走査信号線を順次に選択して前記複数の画素回路にデータ電圧を書き込むリフレッシュ期間が繰り返されるように前記走査信号線駆動回路および前記データ信号線駆動回路を駆動する通常駆動モードと、前記リフレッシュ期間と前記複数の走査信号線を非選択状態として前記複数の画素回路へのデータ電圧の書き込みを停止する非リフレッシュ期間とが交互に現れるように前記走査信号線駆動回路および前記データ信号線駆動回路を駆動する休止駆動モードとを有し、
前記閾値制御回路は、
前記通常駆動モードでは、各画素回路における前記駆動トランジスタの前記閾値制御端子に前記閾値制御電圧として一定電圧を与え、
前記休止駆動モードでは、各画素回路において、前記表示素子の発光期間に、当該画素回路内の漏れ電流による前記保持キャパシタの保持電圧の変化を補償するように前記駆動トランジスタの閾値を変化させる閾値制御電圧を前記閾値制御端子に与える、請求項1から8のいずれか1項に記載の表示装置。 - 前記閾値制御回路は、前記休止駆動モードでは、各画素回路につき、前記表示素子の発光期間において、前記保持キャパシタの保持電圧の変化による前記主制御端子の電位変化に対して前記閾値制御端子の電位を逆方向に変化させる電圧を前記閾値制御電圧として前記閾値制御端子に与える、請求項9に記載の表示装置。
- 前記駆動トランジスタは、前記主制御端子としての第1ゲート電極と、前記閾値制御端子としての第2ゲート電極と、第1および第2絶縁膜とを有し、
前記第1ゲート電極は、前記駆動トランジスタのチャネル領域に相当する半導体層の一方の面と前記第1絶縁膜を介して対向するように配置されており、
前記第2ゲート電極は、前記チャネル領域に相当する前記半導体層の他方の面と前記第2絶縁膜を介して対向するように配置されている、請求項1から10のいずれか1項に記載の表示装置。 - 前記第2ゲート電極と前記半導体層との前記第2絶縁膜を介した容量が、前記第1ゲート電極と前記半導体層との前記第1絶縁膜を介した容量よりも大きい、請求項11に記載の表示装置。
- 各画素回路は、前記閾値制御回路を更に含み、
前記閾値制御回路は、閾値制御スイッチング素子と、閾値制御キャパシタと、閾値制御抵抗素子とを有し、
前記駆動トランジスタの前記閾値制御端子は、前記閾値制御キャパシタを介して前記第1電源線に接続され、かつ、前記閾値制御スイッチング素子を介して前記初期化電圧供給線に接続され、かつ、前記閾値制御抵抗素子を介して前記第1電源線に接続されており、
前記閾値制御回路は、前記閾値制御スイッチング素子が、前記閾値制御回路を含む画素回路におけるデータ電圧の書込時点毎にオフ状態からオン状態に変化するように構成されている、請求項2に記載の表示装置。 - 各画素回路における前記閾値制御スイッチング素子の制御端子は、当該画素回路に対応する走査信号線または当該対応する走査信号線の直前に選択される走査信号線に接続されている、請求項13に記載の表示装置。
- 前記駆動トランジスタは、前記主制御端子としての第1ゲート電極と、前記閾値制御端子としての第2ゲート電極と、第1および第2絶縁膜とを有し、
前記第1ゲート電極は、前記駆動トランジスタのチャネル領域に相当する半導体層の一方の面と前記第1絶縁膜を介して対向するように配置されており、
前記第2ゲート電極は、前記チャネル領域に相当する前記半導体層の他方の面と前記第2絶縁膜を介して対向するように配置されている、請求項13または14に記載の表示装置。 - 前記第2ゲート電極と前記半導体層との前記第2絶縁膜を介した容量が、前記第1ゲート電極と前記半導体層との前記第1絶縁膜を介した容量よりも小さい、請求項15に記載の表示装置。
- 前記駆動トランジスタは、Pチャネル型トランジスタであり、
前記第1電源線の電圧は、前記第2電源線の電圧よりも高い、請求項1から16のいずれか1項に記載の表示装置。 - 複数のデータ信号線と、前記複数のデータ信号線に交差する複数の走査信号線と、第1および第2電源線と、前記複数のデータ信号線および前記複数の走査信号線に沿ってマトリクス状に配置された複数の画素回路とを有する表示装置の駆動方法であって、
前記複数のデータ信号線を駆動するデータ信号線駆動ステップと、
前記複数の走査信号線を選択的に駆動する走査信号線駆動ステップと、
前記複数の画素回路に含まれる駆動トランジスタの閾値を制御する閾値制御ステップと
を備え、
各画素回路は、
前記複数の走査信号線のいずれか1つに対応するとともに前記複数のデータ信号線のいずれか1つに対応し、
電流によって駆動される表示素子と、保持キャパシタと、前記駆動トランジスタとを含み、
前記駆動トランジスタは、それに流れる電流を制御するための主制御端子と、その閾値を制御するための閾値制御端子とを有し、
前記駆動トランジスタの前記主制御端子は、前記保持キャパシタを介して前記第1電源線に接続されており、
各画素回路は、
対応する走査信号線が選択されたときに、対応するデータ信号線の電圧がデータ電圧として前記保持キャパシタに書き込まれ、
前記表示素子の発光期間では、前記第1電源線から前記駆動トランジスタおよび前記表示素子を介して前記第2電源線に至る経路に前記表示素子の駆動電流が流れ、前記保持キャパシタに保持された電圧に応じて前記駆動トランジスタにより当該駆動電流が制御されるように構成されており、
前記閾値制御ステップでは、各画素回路につき、前記表示素子の発光期間において、当該画素回路内の漏れ電流による前記保持キャパシタの保持電圧の変化を補償するように前記駆動トランジスタの閾値を変化させる閾値制御電圧が前記閾値制御端子に与えられる、駆動方法。 - 前記表示装置は、初期化電圧供給線を更に備え、
各画素回路は、初期化スイッチング素子を更に含み
前記駆動トランジスタの前記主制御端子は、前記初期化スイッチング素子を介して前記初期化電圧供給線に接続されており、
前記表示素子の発光期間において前記保持キャパシタの保持電圧を変化させる前記漏れ電流は、オフ状態の前記初期化スイッチング素子の漏れ電流を含む、請求項18に記載の駆動方法。 - 前記表示装置は、前記複数の走査信号線にそれぞれ対応する複数の閾値制御線を更に備え、
前記複数の閾値制御線のそれぞれは、対応する走査信号線に接続された画素回路における前記駆動トランジスタの前記閾値制御端子に接続されており、
前記閾値制御ステップでは、前記複数の画素回路における前記駆動トランジスタの前記閾値制御端子に与えるべき閾値制御電圧が前記複数の画素回路の外部で生成され、前記複数の閾値制御線を介して前記複数の画素回路に供給される、請求項19に記載の駆動方法。 - 前記表示装置は、前記複数の走査信号線を順次に選択して前記複数の画素回路にデータ電圧を書き込む表示画像のリフレッシュが繰り返されるように前記走査信号線駆動ステップおよび前記データ信号線駆動ステップが実行される通常駆動モードと、前記表示画像のリフレッシュを行うリフレッシュ期間と前記複数の走査信号線を非選択状態として前記表示画像のリフレッシュを停止する非リフレッシュ期間とが交互に現れるように前記走査信号線駆動ステップおよび前記データ信号線駆動ステップが実行される休止駆動モードとを有し、
前記閾値制御ステップは、
前記通常駆動モードで、各画素回路における前記駆動トランジスタの前記閾値制御端子に前記閾値制御電圧として一定電圧を与えるステップと、
前記休止駆動モードで、各画素回路において、前記表示素子の発光期間に、当該画素回路内の漏れ電流による前記保持キャパシタの保持電圧の変化を補償するように前記駆動トランジスタの閾値を変化させる閾値制御電圧を前記閾値制御端子に与えるステップとを含む、請求項18から20のいずれか1項に記載の駆動方法。 - 各画素回路は、閾値制御スイッチング素子と、閾値制御キャパシタと、閾値制御抵抗素子とを更に含み、
前記駆動トランジスタの前記閾値制御端子は、前記閾値制御キャパシタを介して前記第1電源線に接続され、かつ、前記閾値制御スイッチング素子を介して前記初期化電圧供給線に接続され、かつ、前記閾値制御抵抗素子を介して前記第1電源線に接続されており、
前記閾値制御ステップでは、前記閾値制御スイッチング素子が、前記閾値制御回路を含む画素回路におけるデータ電圧の書込時点毎にオフ状態からオン状態に変化することにより、前記駆動トランジスタの前記閾値制御端子に与えるべき前記閾値制御電圧が生成される、請求項19に記載の駆動方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/036597 WO2020066024A1 (ja) | 2018-09-28 | 2018-09-28 | 表示装置およびその駆動方法 |
CN201880098066.5A CN112771603B (zh) | 2018-09-28 | 2018-09-28 | 显示装置及其驱动方法 |
US17/280,124 US11557251B2 (en) | 2018-09-28 | 2018-09-28 | Display device and drive method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/036597 WO2020066024A1 (ja) | 2018-09-28 | 2018-09-28 | 表示装置およびその駆動方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020066024A1 true WO2020066024A1 (ja) | 2020-04-02 |
Family
ID=69951287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/036597 WO2020066024A1 (ja) | 2018-09-28 | 2018-09-28 | 表示装置およびその駆動方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11557251B2 (ja) |
CN (1) | CN112771603B (ja) |
WO (1) | WO2020066024A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220064624A (ko) * | 2020-11-12 | 2022-05-19 | 엘지디스플레이 주식회사 | 표시패널과 이를 이용한 표시장치 |
CN114765007A (zh) * | 2021-01-04 | 2022-07-19 | 京东方科技集团股份有限公司 | 显示装置、像素电路及其驱动方法 |
WO2023209943A1 (ja) * | 2022-04-28 | 2023-11-02 | シャープディスプレイテクノロジー株式会社 | 画素回路、表示装置、および表示装置の駆動方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102629530B1 (ko) * | 2018-12-18 | 2024-01-26 | 삼성디스플레이 주식회사 | 화소 회로 및 이를 포함하는 유기 발광 표시 장치 |
KR102667950B1 (ko) * | 2019-12-24 | 2024-05-21 | 엘지디스플레이 주식회사 | 유기 전계발광 표시장치 및 그의 구동방법 |
CN111179851A (zh) * | 2020-02-25 | 2020-05-19 | 合肥鑫晟光电科技有限公司 | 像素电路及其驱动方法、和显示装置 |
CN113314073B (zh) * | 2021-05-17 | 2022-04-08 | 上海天马微电子有限公司 | 显示面板及显示装置 |
CN115512631A (zh) * | 2021-06-22 | 2022-12-23 | 荣耀终端有限公司 | 像素驱动电路及其驱动方法、显示面板及终端设备 |
CN115547219B (zh) * | 2021-06-30 | 2023-10-24 | 荣耀终端有限公司 | 显示控制装置、显示装置以及电子设备 |
CN114743500B (zh) * | 2022-04-25 | 2023-07-25 | 福建华佳彩有限公司 | 一种高解析度的5t2c ltpo内部补偿电路及其控制方法 |
CN117396944A (zh) * | 2022-05-12 | 2024-01-12 | 京东方科技集团股份有限公司 | 显示基板及其驱动方法、显示装置 |
KR20240029669A (ko) * | 2022-08-26 | 2024-03-06 | 삼성디스플레이 주식회사 | 표시 장치 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012014136A (ja) * | 2010-06-30 | 2012-01-19 | Samsung Mobile Display Co Ltd | 有機電界発光表示装置用画素及びこれを利用した有機電界発光表示装置 |
JP2013003568A (ja) * | 2011-06-22 | 2013-01-07 | Sony Corp | 画素回路、表示装置、電子機器、及び、画素回路の駆動方法 |
JP2015014763A (ja) * | 2013-07-08 | 2015-01-22 | ソニー株式会社 | 表示装置、表示装置の駆動方法、及び、電子機器 |
WO2015037331A1 (ja) * | 2013-09-10 | 2015-03-19 | シャープ株式会社 | 表示装置およびその駆動方法 |
US20180144685A1 (en) * | 2016-11-23 | 2018-05-24 | Lg Display Co., Ltd. | Display device and method of compensating for deterioration of the same |
US20180158406A1 (en) * | 2016-12-05 | 2018-06-07 | Samsung Display Co., Ltd. | Display device and method for driving the same |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4638117B2 (ja) * | 2002-08-22 | 2011-02-23 | シャープ株式会社 | 表示装置およびその駆動方法 |
TWI253614B (en) * | 2003-06-20 | 2006-04-21 | Sanyo Electric Co | Display device |
TWI330726B (en) * | 2005-09-05 | 2010-09-21 | Au Optronics Corp | Display apparatus, thin-film-transistor discharge method and electrical driving method therefor |
JP2013003569A (ja) | 2011-06-22 | 2013-01-07 | Sony Corp | 画素回路、表示装置、電子機器、及び、画素回路の駆動方法 |
CN102346999B (zh) * | 2011-06-27 | 2013-11-06 | 昆山工研院新型平板显示技术中心有限公司 | Amoled像素电路及其驱动方法 |
JP5998458B2 (ja) * | 2011-11-15 | 2016-09-28 | セイコーエプソン株式会社 | 画素回路、電気光学装置、および電子機器 |
US9786223B2 (en) * | 2012-12-11 | 2017-10-10 | Ignis Innovation Inc. | Pixel circuits for AMOLED displays |
CN104575367B (zh) * | 2013-10-15 | 2017-10-13 | 昆山工研院新型平板显示技术中心有限公司 | 一种像素电路及其驱动方法和应用 |
CN104715712B (zh) * | 2013-12-11 | 2018-05-25 | 昆山工研院新型平板显示技术中心有限公司 | 一种像素电路及其驱动方法和应用 |
KR102190161B1 (ko) * | 2014-06-23 | 2020-12-14 | 삼성디스플레이 주식회사 | 화소, 표시 패널 및 이를 포함하는 유기 발광 표시 장치 |
KR102241704B1 (ko) * | 2014-08-07 | 2021-04-20 | 삼성디스플레이 주식회사 | 화소 회로 및 이를 포함하는 유기 발광 표시 장치 |
KR102221761B1 (ko) * | 2014-10-14 | 2021-03-03 | 삼성디스플레이 주식회사 | 화소, 이를 포함하는 표시 장치용 기판 및 표시 장치 |
KR102288351B1 (ko) * | 2014-10-29 | 2021-08-11 | 삼성디스플레이 주식회사 | 표시장치 및 그 구동방법 |
CN104464630B (zh) * | 2014-12-23 | 2018-07-20 | 昆山国显光电有限公司 | 像素电路及其驱动方法和有源矩阵有机发光显示器 |
CN104658484B (zh) * | 2015-03-18 | 2018-01-16 | 上海和辉光电有限公司 | 显示装置、像素驱动电路及其驱动方法 |
EP3098805B1 (en) * | 2015-05-28 | 2018-07-25 | LG Display Co., Ltd. | Organic light emitting display and circuit thereof |
CN105139807B (zh) * | 2015-10-22 | 2019-01-04 | 京东方科技集团股份有限公司 | 一种像素驱动电路、显示装置及其驱动方法 |
KR20170049735A (ko) | 2015-10-28 | 2017-05-11 | 삼성디스플레이 주식회사 | 표시 장치 |
US10388219B2 (en) * | 2016-06-30 | 2019-08-20 | Lg Display Co., Ltd. | Organic light emitting display device and driving method of the same |
CN106531074B (zh) * | 2017-01-10 | 2019-02-05 | 上海天马有机发光显示技术有限公司 | 有机发光像素驱动电路、驱动方法以及有机发光显示面板 |
KR102344964B1 (ko) * | 2017-08-09 | 2021-12-29 | 엘지디스플레이 주식회사 | 표시장치, 전자기기 및 바디 바이어싱 회로 |
KR102462008B1 (ko) * | 2017-09-22 | 2022-11-03 | 삼성디스플레이 주식회사 | 유기 발광 표시 장치 |
-
2018
- 2018-09-28 US US17/280,124 patent/US11557251B2/en active Active
- 2018-09-28 CN CN201880098066.5A patent/CN112771603B/zh active Active
- 2018-09-28 WO PCT/JP2018/036597 patent/WO2020066024A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012014136A (ja) * | 2010-06-30 | 2012-01-19 | Samsung Mobile Display Co Ltd | 有機電界発光表示装置用画素及びこれを利用した有機電界発光表示装置 |
JP2013003568A (ja) * | 2011-06-22 | 2013-01-07 | Sony Corp | 画素回路、表示装置、電子機器、及び、画素回路の駆動方法 |
JP2015014763A (ja) * | 2013-07-08 | 2015-01-22 | ソニー株式会社 | 表示装置、表示装置の駆動方法、及び、電子機器 |
WO2015037331A1 (ja) * | 2013-09-10 | 2015-03-19 | シャープ株式会社 | 表示装置およびその駆動方法 |
US20180144685A1 (en) * | 2016-11-23 | 2018-05-24 | Lg Display Co., Ltd. | Display device and method of compensating for deterioration of the same |
US20180158406A1 (en) * | 2016-12-05 | 2018-06-07 | Samsung Display Co., Ltd. | Display device and method for driving the same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220064624A (ko) * | 2020-11-12 | 2022-05-19 | 엘지디스플레이 주식회사 | 표시패널과 이를 이용한 표시장치 |
KR102663028B1 (ko) * | 2020-11-12 | 2024-05-07 | 엘지디스플레이 주식회사 | 표시패널과 이를 이용한 표시장치 |
US12051374B2 (en) | 2020-11-12 | 2024-07-30 | Lg Display Co., Ltd. | Display panel and display device using the same |
CN114765007A (zh) * | 2021-01-04 | 2022-07-19 | 京东方科技集团股份有限公司 | 显示装置、像素电路及其驱动方法 |
US11587501B2 (en) | 2021-01-04 | 2023-02-21 | Boe Technology Group Co., Ltd. | Display apparatuses, pixel circuits and methods of driving pixel circuit |
WO2023209943A1 (ja) * | 2022-04-28 | 2023-11-02 | シャープディスプレイテクノロジー株式会社 | 画素回路、表示装置、および表示装置の駆動方法 |
Also Published As
Publication number | Publication date |
---|---|
US20210343238A1 (en) | 2021-11-04 |
US11557251B2 (en) | 2023-01-17 |
CN112771603B (zh) | 2023-07-11 |
CN112771603A (zh) | 2021-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020066024A1 (ja) | 表示装置およびその駆動方法 | |
US11398187B2 (en) | Display device and method for driving same | |
JP5176522B2 (ja) | 自発光型表示装置およびその駆動方法 | |
TWI436334B (zh) | 顯示器裝置 | |
CN111886644B (zh) | 显示装置及其驱动方法 | |
JP2010008521A (ja) | 表示装置 | |
US11189235B2 (en) | Display device and method for driving same | |
US11996044B2 (en) | Display device and method for driving same | |
US11114031B2 (en) | Display device and method for driving same | |
KR101446679B1 (ko) | 유기전계 발광 디스플레이 장치 | |
WO2022162941A1 (ja) | 画素回路および表示装置 | |
WO2021152823A1 (ja) | 画素回路、表示装置、および、その駆動方法 | |
US11854483B2 (en) | Display device, pixel circuit, and method for driving same | |
KR102705805B1 (ko) | 표시 장치 | |
US20240355287A1 (en) | Display device and method for driving same | |
JP7512444B2 (ja) | 画素回路、表示装置、および、その駆動方法 | |
WO2024166236A1 (ja) | 表示装置およびその駆動方法 | |
WO2023053328A1 (ja) | 表示装置およびその駆動方法 | |
WO2024116334A1 (ja) | 表示装置、画素回路、および、画素回路の駆動方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18935851 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18935851 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |