WO2020064288A1 - Procede de selection d'un etat de chaine cinematique en fonction de contraintes d'acceleration - Google Patents

Procede de selection d'un etat de chaine cinematique en fonction de contraintes d'acceleration Download PDF

Info

Publication number
WO2020064288A1
WO2020064288A1 PCT/EP2019/073636 EP2019073636W WO2020064288A1 WO 2020064288 A1 WO2020064288 A1 WO 2020064288A1 EP 2019073636 W EP2019073636 W EP 2019073636W WO 2020064288 A1 WO2020064288 A1 WO 2020064288A1
Authority
WO
WIPO (PCT)
Prior art keywords
accel
cst
acceleration
pot
bkpt
Prior art date
Application number
PCT/EP2019/073636
Other languages
English (en)
Inventor
Aurélien LEFEVRE
Original Assignee
Renault S.A.S
Nissan Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S, Nissan Motor Co., Ltd. filed Critical Renault S.A.S
Priority to EP19765683.8A priority Critical patent/EP3857097A1/fr
Priority to CN201980061461.0A priority patent/CN112739938B/zh
Priority to KR1020217009182A priority patent/KR20210060493A/ko
Priority to JP2021516478A priority patent/JP2022514138A/ja
Publication of WO2020064288A1 publication Critical patent/WO2020064288A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/48Inputs being a function of acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H2059/142Inputs being a function of torque or torque demand of driving resistance calculated from weight, slope, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0096Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method using a parameter map
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • TITLE METHOD FOR SELECTING A STATUS OF A DRIVE CHAIN BASED ON ACCELERATION CONSTRAINTS
  • the present invention relates to the control of kinematic chains of vehicles, in particular hybrid vehicles, having several states involving the transmission of the torque of one or more traction machines towards the wheels of the vehicle, on different gear ratios.
  • This invention finds a preferred, but not limiting, application on hydride vehicle transmissions grouping the movement of several sources of traction, on own gear ratios, towards the vehicle wheels. However, it applies under similar conditions, on any vehicle equipped with an automatic transmission with discrete reports.
  • the software function of choosing a kinematic state as target can be defined as a combination of coupler (s) ( s) and reducer (s) specific to a given vehicle architecture.
  • This target state is "chosen” or selected, then established, or “achieved” by the transmission, at the end of one or more operations modifying the combination of couplers involved.
  • the automatic transmission takes into account a certain number of constraints when choosing its target.
  • constraints of acoustic comfort noise, vibrations, shocks
  • constraints of direction of travel Force, Reverse, Parking, etc.
  • a first order constraint in the choice of a kinematic chain state as target is performance. This constraint guarantees that the state chosen makes it possible to respond to the required power train load, either by the driver through his accelerator pedal, or by another software function (cruise control, etc.).
  • the present invention aims to define the performance constraint to be respected by a state of the kinematic chain to be chosen as target by the transmission.
  • the performance constraint imposed is expressed in terms of acceleration. This solution has the advantage of requiring few adjustment parameters. Its use results in a gain substantial on-board memory, and simplifies the tuning of the vehicle.
  • FIG. 1 is a flow diagram of the strategy developed.
  • FIG. 2 is a flow diagram of a function F2.
  • FIG. 3 illustrates the function F2.
  • FIG. 4 illustrates the function F2.
  • FIG. 5 illustrates the function F2.
  • the method of selection of state target by the transmission which is proposed, can be part of a broader method of controlling changes of kinematic chain states, or more simply of gear changes, on an automatic transmission or automated, integrated into a hybrid GMP or not. Its implementation is broken down into different stages, leading to determining an acceleration constraint to be respected by the transmission in the selection of a state of the kinematic chain, eligible as target, and achievable by the transmission.
  • the performance constraints expected by the driver are not the same, depending on the choice of an "economical”, “dynamic” or other driving mode. Furthermore, the level of resistive forces, slope, wind, etc., also has an influence on the behavior and on the level of performance of the vehicle.
  • the primary function F1 defines different “types of behavior”, corresponding to the driver's expectations and the vehicle performance.
  • the behavior types take values from 1 to X, according to two main parameters RES FORC LEVEE and DLS_TGT_FCT_TYP.
  • the DLS TGT FCT TYP parameter takes values from 1 to Z, depending on the driver's driving mode (Economic, Neutral, Dynamic, etc.), and according to pollution control constraints (for example, during heating phases of catalyst in progress, etc.), or according to other needs.
  • the RES FORC LEVEE parameter corresponds to the actual level of resistive forces of the vehicle, depending on the driving conditions. It takes values from 1 to Y depending on the resistant forces encountered: slight climb, significant climb, descent, headwind, load, etc.
  • These two parameters are introduced a two-dimensional logic table [Y, Z] determining a type of ACCEL CST TYP acceleration, used by the following functions F2 and F3.
  • the types of behavior can be listed according to the driving mode adopted by the vehicle, pollution abatement constraints, and / or a usual level of resistive force of the vehicle, determined under usual (current) driving conditions.
  • the F2 functions calculate X acceleration constraints. All F2 functions contain the same functional content. Only the setting parameters differ. Each function F2 corresponds to a type of behavior. It is active, if the ACCEL CST TYP type determined by the function F1 corresponds to its own.
  • the input data of the F2 functions are:
  • the load of the PWT FORC LOAD powertrain determined according to the percentage of force required by the driver (or a cruise control), compared to the minimum force and the maximum force that developed by the powertrain under driving conditions encountered.
  • Table A CST produces a raw acceleration level RAW ACCEL CST, from a VEH BKPT TABLE speed axis and a LOAD BKPT TABLE propulsion group load axis.
  • Table A OFS introduces a correction from its VEH BKPT TABLE 2 speed axes and additional resistive force ADD_RES_FORC_BKPT_TABLE.
  • Each F2 function is broken down into several stages and sub-functions, allowing the acceleration constraint to be developed: a) development of a raw acceleration constraint RAW ACCEL CST (step 1), from the load of the PWT powertrain FORC LOAD and the vehicle speed VEH SPD, entered in the acceleration constraint table A_CST;
  • the LOAD BKPT TABLE load axis introduced into the acceleration table A CST, makes it possible to obtain all the acceleration constraints at all load levels, at the current vehicle speed VEH SPD; a LOAD BKPT ACCEL CST stream is obtained at the output, in the form of an acceleration level vector, of the same dimension as the LOAD BKPT TABLE load axis; one retains a raw potential acceleration constraint RAW POT ACCEL CST, which is the smallest value of the vector LOAD_BKPT_ACCEL_CST.
  • the correction value ACCEL OFS CST is calculated by the table A OFS, whose inputs are the additional resistive force ADD_RES_FORC, and the vehicle speed VEH_SPD.
  • ACCEL_OFS_CST is added to the raw acceleration value RAW POT ACCEL CST to obtain the potential acceleration constraint POT ACCEL CST.
  • the latter is the theoretical consolidated value of minimum acceleration that a state of the kinematic chain should respect in order to be chosen as a target, regardless of the PWT FORC LOAD load level of the powertrain.
  • LOAD_BKPT_ACCEL_CST are equal to RAW_POT_ACCEL_CST, we select the coordinate LOAD BKPT ACCEL CST which has the highest axis value. This value is transmitted following the F2 function, under the name POT ACCEL BKPT. The following coordinate gives an axis value called NEXT POT ACCEL BKPT.
  • function F22 calculates an interpolated acceleration constraint INTERP ACCEL CST, using the following formula:
  • the function F23 proceeds to an arbitration between the set of acceleration constraints calculated upstream in the function F2 to obtain the acceleration constraint linked to the typing of the function F2.
  • the constraint ACCEL CST X final acceleration is equal to the maximum value between the raw acceleration stress RAW ACCEL CST and the potential acceleration constraint POT ACCEL CST,
  • the ACCEL CST X final acceleration constraint is equal to the value of interpolated acceleration constraint INTERP ACCEL CST,
  • the ACCEL CST X final acceleration stress is equal to the potential POT ACCEL CST stress value
  • the ACCEL CST X final acceleration stress is equal to the raw acceleration RAW ACCEL CST stress value.
  • each calculated stress level X ACCEL CST is the result of an arbitration between:
  • an interpolated acceleration constraint INTERP ACCEL CST calculated as a function of the potential acceleration constraint PWT FORC LOAD, the load level of the POT ACCEL CST propulsion unit, and two acceleration constraints POT_ACCEL_BKPT_CST and NEXT_POT_ACCEL_BKPT_CST.
  • the function F3 selects one of the acceleration constraints resulting from the functions F2, according to the type of acceleration constraint ACCEL CST TYP elaborated in the function Fl. If the behavior type ACCEL CST TYP is equal to B, the constraint final acceleration FINAL ACCEL CST is equal to the acceleration constraint of type B of function F2, ACCEL CST B.
  • the FINAL ACCEL CST final acceleration constraint selected by function F3 defines the kinematic chain states eligible to become the target of the automatic transmission.
  • FIG. 4 illustrates the calculation of the potential acceleration, with the following assumptions:
  • VEH_SPD 30 km / h
  • the ACCEL OFS CST correction value can be read from table A OFS. It is equal to 0.17 m / s 2 , in accordance with the VEH SPD and ADD RES FORC inputs.
  • the raw potential acceleration constraint RAW POT ACCEL CST is the smallest value of LOAD BKPT ACCEL CST. It is equal to 1.14 m / s 2 .
  • the potential acceleration constraint POT_ACCEL_CST which is the sum of RAW_POT_ACCEL_CST and ACCEL_OFS_CST, is equal to 1.31 m / s 2 .
  • the arbitration of the function F23 between the acceleration constraints takes place in the following manner: the correction value ACCEL OFS CST being greater than zero, the value of the ACCEL CST X acceleration stress is equal to the maximum value, between the raw acceleration stress RAW ACCEL CST value and the potential acceleration constraint POT_ACCEL_CST:
  • the raw acceleration stress RAW_ACCEL_CST is equal to 1.59 m / s 2 .
  • the value of POT_ACCEL_CST being equal to 1.31 m / s 2
  • the acceleration stress ACCEL CST X is equal to 1.59 m / s 2 .
  • FIG. 5 illustrates the calculation of the potential acceleration, based on the following assumptions:
  • the ACCEL OFS CST correction value from table A OFS is equal to - 0.17 m / s 2 , according to the VEH SPD and ADD RES FORC inputs.
  • the vector of acceleration constraints is deduced from table A CST. It contains all the values of the column, for a value of VEH SPD equal to 30 km / h, in accordance with the entries VEH SPD and LOAD BKPT TABLE.
  • the raw potential acceleration constraint RAW POT ACCEL CST is the smallest value of LOAD BKPT ACCEL CST, i.e. 1.14 m / s 2 .
  • the potential acceleration constraint POT_ACCEL_CST equal to the sum of RAW_POT_ACCEL_CST and ACCEL_OFS_CST, is 0.97 m / s 2 .
  • the interpolated acceleration constraint is obtained as follows.
  • Function F21 is used to define the value of the axes NEXT_POT_ACCEL_BKPT and POT_ACCEL_BKPT. These values are calculated as follows:
  • NEXT_POT_ACCEL_BKPT being the value of the LOAD_BKPT_TABLE axis according to POT_ACCEL_BKPT
  • NEXT_POT_ACCEL_BKPT takes the value 0.4: with this value, the associated acceleration stress, NEXT POT ACCE1 BKPT CST has a value of 1.27 m / s 2 , in accordance at table A CST, in accordance with the entries NEXT_POT_ACCEL_BKPT and VEH_SPD.
  • the interpolated acceleration constraint INTERP ACCEL CST therefore has a value of 1.12 m / s 2 for a load PWT_FORC_LOAD of 0.35.
  • the final acceleration constraint ACCEL CST X is equal to the interpolated acceleration stress value INTERP ACCEL CST which is 1.12 m / s 2 .
  • the final acceleration stress ACCEL CST X is equal to the value of potential acceleration stress POT ACCEL CST, which is 0.97 m / s 2 .
  • the final acceleration constraint ACCEL CST X is equal to the gross acceleration constraint value RAW ACCEL CST, which is 1.59 m / s 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

Procédé de sélection d'une cible d'état de chaîne cinématique par la transmission d'un groupe motopropulseur (GMP) de véhicule, caractérisé en ce qu'on applique à la transmission une contrainte de niveau d'accélération minimal (FINAL_ACCEL_CST) à respecter dans la sélection de sa cible, avec les étapes suivantes : - identification du type de comportement (ACCEL_CST_TYP) du véhicule parmi plusieurs types de comportement répertoriés, - calcul de plusieurs niveaux de contrainte d'accélération, (ACCEL_CST_X) en fonction de la vitesse courante, de la charge du GMP, et d'une force résistive additionnelle liée aux conditions particulières de roulage, - sélection parmi les différents niveaux de contrainte calculés, du niveau appliqué à la transmission (FINAL_ACCEL_CST), selon type de comportement identifié (ACCEL_CST_TYP).

Description

DESCRIPTION
TITRE : PROCEDE DE SELECTION D'UN ETAT DE CHAINE CINEMATIQUE EN FONCTION DE CONTRAINTES D'ACCELERATION
La présente invention se rapporte au contrôle des chaînes cinématiques de véhicules, en particulier de véhicules hybrides, disposant de plusieurs états impliquant la transmission du couple d'une ou plusieurs machines de traction en direction des roues du véhicule, sur différents rapports de démultiplication.
Plus précisément, elle a pour objet un procédé de sélection d'une cible d'état de chaîne cinématique par la transmission d'un groupe motopropulseur de véhicule.
Cette invention trouve une application privilégiée, mais non limitative, sur des transmissions de véhicule hydride regroupant le mouvement de plusieurs sources de traction, sur des rapports de démultiplication propres, en direction des roues des véhicule. Elle s'applique cependant dans des conditions analogues, sur tout véhicule équipé d'une transmission automatique à rapports discrets .
Sur un véhicule équipé d'une transmission automatique à rapports discrets, qu'il soit électrique/hybride ou thermique, la fonction logicielle du choix d'un état de chaîne cinématique comme cible, peut être définie comme une combinaison de (s) coupleur (s) et de réducteur (s) spécifiques à une architecture véhicule donnée. Cet état cible est « choisi » ou sélectionné, puis établi, ou « réalisé » par la transmission, à l'issue d'une ou plusieurs opérations modifiant la combinaison de coupleurs impliqués. La transmission automatique prend en considération un certain nombre de contraintes, dans le choix de sa cible.
Ces contraintes peuvent être :
des contraintes de fiabilité (régimes minimal/maximal des organes de traction) ,
des contraintes de confort acoustique (bruits, vibrations, chocs), des contraintes de sens de marche (Marche avant, Marche Arrière, Parking, etc . ) .
Une contrainte de premier ordre dans le choix d'un état de chaîne cinématique comme cible, est la performance. Cette contrainte garantit que l'état choisi permette de répondre à la charge du groupe motopropulseur requise, soit par le conducteur au travers de sa pédale d'accélération, soit par une autre fonction logicielle (régulateur de vitesse, etc.) .
Par la publication FR 2 992 040, on connaît un procédé dédié au contrôle d'une boîte de vitesses automatisée d'un véhicule muni d'un groupe motopropulseur et d'un régulateur de vitesse. Il consiste à déterminer le rapport à engager dans la boîte, en fonction de l'accélération maximale sur ce rapport, de la vitesse de déplacement du véhicule, et de la consigne de vitesse programmée par le calculateur. Le choix du rapport s'effectue alors en fonction des contraintes d'accélération imposées par le régulateur .
Cette publication décrit une stratégie de choix de rapport de boîte en fonction de contraintes d'accélération, sans prévoir l'élaboration de celles-ci.
La présente invention vise à définir la contrainte de performance à respecter par un état de la chaîne cinématique pour être choisi comme cible par la transmission.
Dans ce but, elle propose qu'on applique à la transmission une contrainte de niveau d'accélération minimal à respecter dans la sélection de sa cible, avec les étapes suivantes :
identification du type de comportement du véhicule, parmi plusieurs types de comportement répertoriés,
- calcul de plusieurs niveaux de contrainte d'accélération, en fonction de la vitesse courante, de la charge du groupe moto propulseur, et d'une force résistive additionnelle liée aux conditions particulières de roulage, et
- sélection, parmi les différents niveaux de contrainte calculés, du niveau appliqué à la transmission, selon type de comportement identifié .
La contrainte de performance imposée, s'exprime en niveau d'accélération. Cette solution a l'avantage de nécessiter peu de paramètres de réglage. Son utilisation se traduit par un gain substantiel de mémoire embarquée, et simplifie la mise au point du véhicule.
La présente invention sera mieux comprise à la lecture de la description suivante d'un mode de réalisation non limitatif de l'invention, en se reportant aux dessins annexés.
[Fig. 1] est un logigramme de la stratégie développée.
[Fig. 2] est un logigramme d'une fonction F2.
[Fig. 3] illustre la fonction F2.
[Fig. 4] illustre la fonction F2.
[Fig. 5] illustre la fonction F2.
Le procédé de sélection de cible d'état par la transmission, qui est proposé, peut s'inscrire dans un procédé plus large de commande de changements d'états de chaîne cinématique, ou plus simplement de changements de rapports, sur une transmission automatique ou automatisée, intégrée dans un GMP hybride ou non. Sa mise en œuvre se décompose en différentes étapes, conduisant à déterminer une contrainte d'accélération à respecter par la transmission dans la sélection d'un état de la chaîne cinématique, éligible comme cible, et réalisable par la transmission.
Les étapes principales du procédé sont :
l'identification du type de comportement (ACCEL CST TYP) du véhicule parmi plusieurs types de comportement répertoriés,
- le calcul de plusieurs niveaux de contrainte d'accélération, (ACCEL CST X) en fonction de la vitesse courante, de la charge du GMP, et d'une force résistive additionnelle liée aux conditions particulières de roulage, et
la sélection parmi les différents niveaux de contrainte calculés, du niveau appliqué à la transmission (FINAL ACCEL CST) , selon type de comportement identifié (ACCEL CST TYP) .
Les contraintes de performances attendues par le conducteur, ne sont pas les mêmes, selon le choix d'un mode de conduite « économique », « dynamique », ou autre. Par ailleurs, le niveau des efforts résistifs, pente, vent, etc., a également une influence sur le comportement et sur le niveau de performances du véhicule. La fonction première Fl définit différents des « types de comportement », correspondant aux attentes du conducteur et aux performances du véhicule.
Les types de comportement prennent des valeurs de 1 à X, en fonction de deux paramètres principaux RES FORC LEVEE et DLS_TGT_FCT_TYP.
Le paramètre DLS TGT FCT TYP prend des valeurs de 1 à Z, en fonction du mode de conduite du conducteur (Economique, Neutre, Dynamique, etc.), et en fonction de contraintes de dépollution (par exemple, pendant des phases de chauffage de catalyseur en cours, etc.), ou encore en fonction d'autres besoins. Le paramètre RES FORC LEVEE correspond au niveau réel de forces résistives du véhicule, selon les conditions de roulage. Il prend des valeurs de 1 à Y en fonction des efforts résistants rencontrés : montée légère, montée importante, descente, vent de face, charge, etc. Ces deux paramètres sont introduits une table logique à deux dimensions [Y, Z] déterminant un type d'accélération ACCEL CST TYP, exploité par les fonctions suivantes F2 et F3. En résumé les types de comportement peuvent être répertoriés en fonction du mode de conduite adopté par le véhicule, de contraintes de dépollution, et/ou d'un niveau habituel de force résistive du véhicule, déterminé dans des conditions de roulage habituelles (courantes) .
Les fonctions F2 calculent X contraintes d'accélération. Toutes les fonctions F2 contiennent le même contenu fonctionnel. Seuls les paramètres de réglage diffèrent. Chaque fonction F2 correspond à un type de comportement. Elle est active, si le type ACCEL CST TYP déterminé par la fonction Fl correspond au sien.
Les données d'entrée des fonctions F2 sont :
- la vitesse courante du véhicule VEH SPD,
- la charge du groupe motopropulseur PWT FORC LOAD déterminée en fonction du pourcentage de force requis par le conducteur (ou un régulateur de vitesse) , par rapport à la force minimale et à la force maximale que développée par le groupe motopropulseur dans les conditions de roulage rencontrées.
la force résistive additionnelle ADD RES FORC rencontrée en roulage, par rapport à une force résistive théorique observée sur le plat, sans vent, avec une masse de véhicule moyenne, etc. Les paramètres de réglage des fonctions F2 sont introduits dans les tables A CST et A OFS . La table A CST produit un niveau d'accélération brute RAW ACCEL CST, à partir d'un axe de vitesse VEH BKPT TABLE et d'un axe de charge du groupe moto propulseur LOAD BKPT TABLE. La table A OFS introduit une correction à partir de ses axes de vitesses VEH BKPT TABLE 2 et de force résistive additionnelle ADD_RES_FORC_BKPT_TABLE.
Chaque fonction F2 se décompose en plusieurs étapes et sous fonctions, permettant d'élaborer la contrainte d'accélération : a) élaboration d'une contrainte d'accélération brute RAW ACCEL CST (étape 1) , à partir de la charge du groupe motopropulseur PWT FORC LOAD et de la vitesse de déplacement du véhicule VEH SPD, introduits dans la table de contrainte d'accélération A_CST ;
b) élaboration d'une contrainte d'accélération potentielle. (étape
2) : l'axe de charges LOAD BKPT TABLE, introduit dans la table d'accélération A CST permet d'obtenir l'ensemble des contraintes d'accélérations à tous les niveaux de charge, à la vitesse véhicule courante VEH SPD ; on obtient en sortie un flux LOAD BKPT ACCEL CST, sous la forme d'un vecteur de niveau d'accélération, de même dimension que l'axe de charges LOAD BKPT TABLE ; on retient une contrainte d'accélération potentielle brute RAW POT ACCEL CST, qui est la plus petite valeur du vecteur LOAD_BKPT_ACCEL_CST.
La valeur de correction ACCEL OFS CST est calculée par la table A OFS, dont les entrées sont la force résistive additionnelle ADD_RES_FORC, et la vitesse du véhicule VEH_SPD. ACCEL_OFS_CST est ajoutée à la valeur brute d'accélération RAW POT ACCEL CST pour obtenir la contrainte d' accélération potentielle POT ACCEL CST. Cette dernière est la valeur consolidée théorique d'accélération minimale que devrait respecter un état de la chaîne cinématique pour être choisi comme cible, quel que soit le niveau de charge PWT FORC LOAD du groupe motopropulseur.
c) élaboration d'une contrainte d'accélération interpolée (étape
3) : lorsque la contrainte potentielle d'accélération POT ACCEL CST est plus faible que toute les valeurs présentes dans la cartographie A CST pour une vitesse donnée du véhicule, la correction ACCEL OFS CST prend une valeur négative. ; cette particularité donne lieu à une phase d'interpolation, qui garantit la continuité et la cohérence, de la valeur de contrainte finale calculée, pour calculer une valeur de charge donnée du groupe motopropulseur .
On commence par extraire la valeur de l'axe de charge LOAD BKPT TABLE correspondant à d'accélération potentielle brute RAW POT ACCEL CST (fonction F21) . Cette extraction est effectuée en comparant la valeur RAW POT ACCEL CST au vecteur
LOAD BKPT ACCEL CST, afin d'identifier sur l'axe, les coordonnées qui sont identiques . Si plusieurs coordonnées du vecteur
LOAD_BKPT_ACCEL_CST sont égales à RAW_POT_ACCEL_CST, on sélectionne la coordonnée LOAD BKPT ACCEL CST qui a la valeur d'axe la plus élevée. Cette valeur est transmise à la suite de la fonction F2 , sous le nom POT ACCEL BKPT. La coordonnée suivante donne une valeur d'axe intitulée NEXT POT ACCEL BKPT.
Dans un deuxième temps, la valeur NEXT POT ACCEL BKPT et la vitesse du véhicule VEH SPD sont introduites dans la table A CST, pour obtenir la contrainte d'accélération correspondante,
NEXT_POT_ACCE1_BKPT_CST.
Dans un troisième temps, lorsque la charge du groupe motopropulseur PWT FORC LOAD se trouve entre les valeurs d'axe POT_ACCEL_BKPT et NEXT_POT_ACCEL_BKPT, la fonction F22 calcule une contrainte d'accélération interpolée INTERP ACCEL CST, à l'aide de la formule suivante :
INTERP_ACCEL_CST = POT_ACCEL_CST + (PWT_FORC_LOAD
POT_ACCEL_BKPT) * (NEXT_P0T_ACCE1_BKPT_CST
POT_ACCEL_CST) / (NEXT_POT_ACCEL_BKPT-POT_ACCEL_BKPT)
Dans un dernier temps, la fonction F23 procède à un arbitrage entre l'ensemble des contraintes d'accélération calculées en amont dans la fonction F2 pour obtenir la contrainte d'accélération lié au typage de la fonction F2. Plusieurs cas peuvent alors se présenter avec l'ordre de priorisation suivant :
si la valeur de correction de contrainte d' accélération ACCEL OFS CST est supérieure ou égale à 0, la contrainte d'accélération finale ACCEL CST X est égale à la valeur maximale entre la valeur brute de contrainte d' accélération RAW ACCEL CST et la contrainte d'accélération potentielle POT ACCEL CST,
si la charge du groupe motopropulseur PWT FORC LOAD est inférieure ou égale à la valeur de charge NEXT POT ACCEL BKPT et supérieure ou égale à la valeur de charge POT ACCEL BKPT, la contrainte d'accélération finale ACCEL CST X est égale à la valeur de contrainte d' accélération interpolée INTERP ACCEL CST,
si la charge du groupe motopropulseur PWT FORC LOAD est inférieure ou égale à la valeur de charge POT ACCEL BKPT, la contrainte d'accélération finale ACCEL CST X est égale à la valeur de contrainte potentielle POT ACCEL CST, et
si la charge du groupe motopropulseur PWT FORC LOAD est supérieure ou égale à la valeur de charge NEXT POT ACCEL BKPT, la contrainte d'accélération finale ACCEL CST X est égale à la valeur brute de contrainte d' accélération RAW ACCEL CST.
En résumé, chaque niveau de contrainte calculé X ACCEL CST est le résultat d'un arbitrage entre :
- une valeur brute de contrainte d' accélération RAW ACCEL CST dépendant uniquement de la charge du GMP et de la vitesse du véhicule ,
une contrainte d' accélération potentielle POT ACCEL CST correspondant à l'accélération minimale que doit respecter le GMP sur la cible, quel que soit son niveau de charge PWT FORC LOAD, et
une contrainte d'accélération interpolée INTERP ACCEL CST, calculée en fonction de la contrainte d'accélération potentielle PWT FORC LOAD, du niveau de charge du groupe moto propulseur POT ACCEL CST, et de deux contraintes d'accélération POT_ACCEL_BKPT_CST et NEXT_POT_ACCEL_BKPT_CST.
La fonction F3 sélectionne une des contraintes d'accélération issues des fonctions F2 , en fonction du type de contrainte d'accélération ACCEL CST TYP élaboré dans la fonction Fl. Si le type de comportement ACCEL CST TYP est égal à B, la contrainte d'accélération finale FINAL ACCEL CST est égale à la contrainte d'accélération du type B de la fonction F2, ACCEL CST B. La contrainte d' accélération finale FINAL ACCEL CST sélectionnée par la fonction F3 permet de définir les états de la chaîne cinématique éligibles à devenir la cible de la transmission automatique.
[Fig. 4] illustre le calcul de l'accélération potentielle, avec les hypothèses suivantes :
VEH_SPD = 30 km/h
ADD_RES_FORC = 500 N
La valeur de correction ACCEL OFS CST se lit sur la table A OFS. Elle est égale à 0.17 m/s2, en accord avec les entrées VEH SPD et ADD RES FORC. Le vecteur des contraintes d'accélération est donné par la table A CST. Il regroupe les valeurs de la colonne VEH SPD = 30 km/h, en accord avec les entrées VEH SPD et LOAD BKPT TABLE. La contrainte d'accélération potentielle brute RAW POT ACCEL CST est la plus petite valeur de LOAD BKPT ACCEL CST. Elle est égale à 1,14 m/s2. La contrainte d'accélération potentielle POT_ACCEL_CST, qui est la somme de RAW_POT_ACCEL_CST et de ACCEL_OFS_CST, est égale à 1,31 m/s2.
Dans le cas où la valeur de correction est supérieure ou égale à zéro, l'arbitrage de la fonction F23 entre les contraintes d' accélération intervient de la manière suivante : la valeur de correction ACCEL OFS CST étant supérieur à zéro, la valeur de la contrainte d'accélération ACCEL CST X est égale à la valeur maximale, entre la valeur brute de contrainte d'accélération RAW ACCEL CST et la contrainte d'accélération potentielle POT_ACCEL_CST :
si PWT FORC LOAD = 0,2, la contrainte d'accélération brute RAW_ACCEL_CST est égale à l,14m/s2. La valeur de POT_ACCEL_CST étant égale à 1,31 m/s2 alors la contrainte d'accélération ACCEL CST X est égale à 1,31 m/ s 2.
si PWT FORC LOAD = 0,5, la contrainte d'accélération brute RAW_ACCEL_CST est égale à 1,59 m/s2. La valeur de POT_ACCEL_CST étant égale à 1,31 m/s2, la contrainte d'accélération ACCEL CST X est égale à 1,59 m/s2.
[Fig. 5] illustre le calcul de l'accélération potentielle, à partir des hypothèses suivantes :
VEH SPD = 30 km/h - ADD_RES_FORC = - 500 N
La valeur de correction ACCEL OFS CST issue de la table A OFS est égale à - 0,17 m/s2, selon les entrées VEH SPD et ADD RES FORC. Le vecteur des contraintes d'accélération se déduit de la table A CST. Il contient toutes valeurs de la colonne, pour une valeur de VEH SPD égale à 30 km/h, en accord avec les entrées VEH SPD et LOAD BKPT TABLE. La contrainte d'accélération potentielle brute RAW POT ACCEL CST est la plus petite valeur de LOAD BKPT ACCEL CST, soit 1,14 m/s 2. La contrainte d'accélération potentielle POT_ACCEL_CST, égale à la somme de RAW_POT_ACCEL_CST et de ACCEL_OFS_CST, est de 0,97 m/s2.
L'obtention de la contrainte d'accélération interpolée s'effectue comme suit. La fonction F21 permet de définir la valeur des axes NEXT_POT_ACCEL_BKPT et POT_ACCEL_BKPT. Ces valeurs sont calculées comme suit :
- LOAD BKPT TABLE a quatre valeurs [0 0,1 0,2 0,3] permettant d'obtenir la valeur de RAW POT ACCEL CST dans la vecteur LOAD BKPT ACCEL CST. : la valeur la plus élevée étant 0,3, c'est celle que prend POT ACCEL BKPT.
- NEXT_POT_ACCEL_BKPT étant la valeur de l'axe LOAD_BKPT_TABLE suivant POT_ACCEL_BKPT, NEXT_POT_ACCEL_BKPT prend la valeur 0,4 : avec cette valeur, la contrainte d'accélération associée, NEXT POT ACCE1 BKPT CST possède une valeur de 1,27 m/s 2 , conformément à la table A CST, en accord avec les entrées NEXT_POT_ACCEL_BKPT et VEH_SPD.
En prenant l'hypothèse que la charge du groupe moto propulseur PWT FORC LOAD est égale à 0,35, le calcul d'interpolation est le suivant : INTERP_ACCEL_CST = 0, 97 + (0,35 - 0,3) *(1,27 - 0, 97) / (0,4 - 0,3) = 1,12 m/s2. La contrainte d'accélération interpolée INTERP ACCEL CST a donc une valeur de 1,12 m/s2 pour une charge PWT_FORC_LOAD de 0,35.
Dans le cas où la valeur de correction est inférieure à zéro, l'arbitrage de la fonction F23 intervient de la manière suivante.
- si la charge du groupe moto propulseur PWT FORC LOAD est égale à 0,35 (donc inférieure à NEXT POT ACCEL BKPT = 0,4, et supérieure à POT ACCEL BKPT = 0,3) la contrainte d'accélération finale ACCEL CST X est égale à la valeur de contrainte d' accélération interpolée INTERP ACCEL CST qui est de 1,12 m/s 2.
- si la charge du groupe moto propulseur PWT FORC LOAD est égale à 0.25 (donc inférieure à POT ACCEL BKPT = 0,3), la contrainte d'accélération finale ACCEL CST X est égale à la valeur de contrainte d'accélération potentielle POT ACCEL CST, qui est de 0,97 m/s 2.
- si la charge du groupe moto propulseur PWT FORC LOAD est égale à 0.5 (donc supérieure à NEXT POT ACCEL BKPT 0, 4), la contrainte d' accélération finale ACCEL CST X est égale à la valeur brute de contrainte d'accélération RAW ACCEL CST, qui est de 1,59 m/s2.

Claims

REVENDICATIONS
[Revendication 1] Procédé de sélection d'une cible d'état de chaîne cinématique par la transmission d'un groupe motopropulseur (GMP) de véhicule, selon lequel on applique à la transmission une contrainte de niveau d'accélération minimale ( FINAL ACCEL CST) à respecter dans la sélection de la cible, avec les étapes suivantes :
identification du type de comportement (ACCEL CST TYP) du véhicule parmi plusieurs types de comportement répertoriés,
calcul de plusieurs niveaux de contrainte d'accélération, (ACCEL CST X) , en fonction de la vitesse courante, de la charge du GMP, et d'une force résistive additionnelle liée aux conditions particulières de roulage,
- sélection parmi les différents niveaux de contrainte calculés, du niveau appliqué à la transmission (FINAL ACCEL CST) , selon type de comportement identifié (ACCEL CST TYP) ,
caractérisé en ce que chaque niveau de contrainte calculé (ACCEL CST X) est le résultat d'un arbitrage entre :
- une valeur brute de contrainte d'accélération (RAW ACCEL CST) dépendant uniquement de la charge du GMP et de la vitesse du véhicule
une contrainte d'accélération potentielle ( POT ACCEL CST) correspondant à l'accélération minimale que doit respecter le GMP sur la cible, quel que soit son niveau de charge (PWT FORC LOAD) ,
- une contrainte d'accélération interpolée ( INTERP ACCEL CST), calculée en fonction de la contrainte d'accélération potentielle ( POT_ACCEL_CST) , du niveau de charge du GMP ( PWT_FORC_LOAD) , et de deux contraintes d'accélération (POT ACCEL BKPT CST) et (NEXT_POT_ACCEL_BKPT_CST) .
[Revendication 2] Procédé de sélection d'une cible d'état selon la revendication 1, caractérisé en ce que les types de comportement sont répertoriés en fonction du mode de conduite adopté par le véhicule .
[Revendication 3] Procédé de sélection d'une cible d'état selon la revendication 1 ou 2, caractérisé en ce que les types de comportement sont répertoriés en fonction de contraintes de dépollution .
[Revendication 4] Procédé de sélection d'une cible d'état selon la revendication 1, 2 ou 3, caractérisé en ce que les types de comportement sont répertoriés en fonction d'un niveau habituel de force résistive du véhicule, déterminé dans des conditions de roulage rencontrées.
[Revendication 5] Procédé de sélection d'une cible d'état selon l'une des revendications précédentes, caractérisé en ce que les deux contraintes d'accélération (POT ACCEL BKPT CST) et (NEXT POT ACCEL BKPT CST) correspondent à deux valeurs de charge ( POT_ACCEL_BKPT) et (NEXT_POT_ACCEL_BKPT) .
[Revendication 6] Procédé de sélection d'une cible d'état selon la revendication 5, caractérisé en ce que, si la valeur de correction de contrainte d'accélération (ACCEL OFS CST) est supérieure ou égale à 0, la contrainte d'accélération finale (ACCEL CST X) est égale à la valeur maximale entre la valeur brute de contrainte d' accélération (RAW ACCEL CST) et la contrainte d'accélération potentielle ( POT ACCEL CST).
[Revendication 7] Procédé de sélection d'une cible d'état selon la revendication 5 ou 6, caractérisé en ce que, si la charge du groupe motopropulseur (PWT FORC LOAD) est inférieure ou égale à la valeur de charge (NEXT POT ACCEL BKPT) et supérieure ou égale à la valeur de charge ( POT ACCEL BKPT) , la contrainte d'accélération calculée (ACCEL CST X) est égale à la valeur de contrainte d' accélération interpolée INTERP ACCEL CST.
[Revendication 8] Procédé de sélection d'une cible d'état selon la revendication 5, 6 ou 7, caractérisé en ce que, si la charge du groupe motopropulseur (PWT FORC LOAD) est inférieure ou égale à la valeur de charge ( POT ACCEL BKPT) , la contrainte d'accélération calculée (ACCEL CST X) est égale à la valeur de contrainte potentielle ( POT ACCEL CST).
[Revendication 9] Procédé de sélection d'une cible d'état selon l'une des revendications précédentes, caractérisé en ce que, si la charge du groupe motopropulseur (PWT FORC LOAD) est supérieure ou égale à la valeur de charge (NEXT POT ACCEL BKPT) , la contrainte d'accélération calculée est égale à la valeur brute de contrainte d'accélération (RAW ACCEL CST).
PCT/EP2019/073636 2018-09-24 2019-09-05 Procede de selection d'un etat de chaine cinematique en fonction de contraintes d'acceleration WO2020064288A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19765683.8A EP3857097A1 (fr) 2018-09-24 2019-09-05 Procede de selection d'un etat de chaine cinematique en fonction de contraintes d'acceleration
CN201980061461.0A CN112739938B (zh) 2018-09-24 2019-09-05 用于基于加速度约束选择传动系状态的方法
KR1020217009182A KR20210060493A (ko) 2018-09-24 2019-09-05 가속 제약들에 기초하여 구동트레인 상태를 선택하는 방법
JP2021516478A JP2022514138A (ja) 2018-09-24 2019-09-05 加速度制約に基づいてドライブトレインステータスを選択するための方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1871078 2018-09-24
FR1871078A FR3086362B1 (fr) 2018-09-24 2018-09-24 Procede de selection d’un etat de chaine cinematique en fonction de contraintes d’acceleration

Publications (1)

Publication Number Publication Date
WO2020064288A1 true WO2020064288A1 (fr) 2020-04-02

Family

ID=65244356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/073636 WO2020064288A1 (fr) 2018-09-24 2019-09-05 Procede de selection d'un etat de chaine cinematique en fonction de contraintes d'acceleration

Country Status (6)

Country Link
EP (1) EP3857097A1 (fr)
JP (1) JP2022514138A (fr)
KR (1) KR20210060493A (fr)
CN (1) CN112739938B (fr)
FR (1) FR3086362B1 (fr)
WO (1) WO2020064288A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3123866B1 (fr) * 2021-06-14 2023-05-26 Renault Sas Procédé de commande d’une transmission automatique en cas de baisse de performance du groupe motopropulseur

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2992040A1 (fr) 2012-06-18 2013-12-20 Peugeot Citroen Automobiles Sa Procede et dispositif de controle de la vitesse engagee d'une boite de vitesses automatisee de vehicule, en fonction d'une acceleration demandee par un systeme de controle de vitesse
FR3005920A1 (fr) * 2013-05-27 2014-11-28 Peugeot Citroen Automobiles Sa Procede et dispositif de gestion de boite de vitesses d'un vehicule automobile prenant en compte un critere d'acceleration minimum
FR3030425A1 (fr) * 2014-12-22 2016-06-24 Renault Sa Procede de commande d'une boite de vitesses automatique pour vehicule automobile.
DE102016205260A1 (de) * 2016-03-31 2017-10-05 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur automatisierten Anpassung der Geschwindigkeit eines Fahrzeugs

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8370032B2 (en) * 2007-07-12 2013-02-05 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for shift control for vehicular transmission
FR3029155B1 (fr) * 2014-12-02 2016-12-02 Renault Sa Procede de controle des changements etat d'une chaine cinematique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2992040A1 (fr) 2012-06-18 2013-12-20 Peugeot Citroen Automobiles Sa Procede et dispositif de controle de la vitesse engagee d'une boite de vitesses automatisee de vehicule, en fonction d'une acceleration demandee par un systeme de controle de vitesse
FR3005920A1 (fr) * 2013-05-27 2014-11-28 Peugeot Citroen Automobiles Sa Procede et dispositif de gestion de boite de vitesses d'un vehicule automobile prenant en compte un critere d'acceleration minimum
FR3030425A1 (fr) * 2014-12-22 2016-06-24 Renault Sa Procede de commande d'une boite de vitesses automatique pour vehicule automobile.
DE102016205260A1 (de) * 2016-03-31 2017-10-05 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur automatisierten Anpassung der Geschwindigkeit eines Fahrzeugs

Also Published As

Publication number Publication date
CN112739938B (zh) 2022-12-20
FR3086362B1 (fr) 2020-12-04
EP3857097A1 (fr) 2021-08-04
FR3086362A1 (fr) 2020-03-27
CN112739938A (zh) 2021-04-30
JP2022514138A (ja) 2022-02-10
KR20210060493A (ko) 2021-05-26

Similar Documents

Publication Publication Date Title
JP4063744B2 (ja) ハイブリッド車輌の制御装置
FR2870174A1 (fr) Systeme de commande de la deceleration et procede de commande de la deceleration pour vehicule
SE534828C2 (sv) Metod för bestämning av växlingspunkter
JP2010248956A (ja) パワートレーンのエンジン回転速度制御装置
CN107914699A (zh) 混合动力电动车辆的控制方法
SE0950668A1 (sv) Metod för bestämning av växlingspunkter
CN101130364A (zh) 车辆行驶控制装置
CN102563023B (zh) 无级变速器的控制装置
Fu et al. Gear shift optimization for off-road construction vehicles
EP3857097A1 (fr) Procede de selection d'un etat de chaine cinematique en fonction de contraintes d'acceleration
US11529876B2 (en) Control method for generating virtual sensation of gear shifting of electric vehicle
EP3237260A1 (fr) Procede de commande d'une boite de vitesses automatique pour vehicule automobile
SE1250775A1 (sv) Förfarande och system vid framförande av fordon ii
JP5917866B2 (ja) 車両の制御装置
EP1791715B1 (fr) Procede de commande a plusieurs modes de fonctionnement d'une transmission automatisee pour un vehicule automobile, notamment pour un avancement au ralenti du vehicule automobile avec frein active et dispositif correspondant
WO2018207834A1 (fr) Dispositif et procédé de commande de véhicule
JP6536430B2 (ja) 駆動力制御装置
FR2875202A1 (fr) Procede de commande a plusieurs modes de fonctionnement d'une transmission automatisee pour un vehicule automobile, notamment pour un avancement au ralenti du vehicule automobile sans activation du frein du vehicule automobile
US7844381B2 (en) Method for producing a setpoint adapted to a cornering situation for a motor vehicle engine-transmission unit transmission device and corresponding device
EP3065982B1 (fr) Procédé de contrôle de l'état d'un chaîne de transmission cinématique, système de transmission cinématique et véhicule automobile associé
JP2018130987A (ja) 車両の駆動力制御装置
JP2017206110A (ja) ハイブリッド自動車
CN107250622A (zh) 自动变速器的控制装置
SE1050099A1 (sv) Förfarande och system för styrning av en växellåda
JP5217017B2 (ja) 無段変速機の変速制御装置および変速制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19765683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516478

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019765683

Country of ref document: EP

Effective date: 20210426