WO2020063393A1 - 一种时间同步的方法和装置 - Google Patents

一种时间同步的方法和装置 Download PDF

Info

Publication number
WO2020063393A1
WO2020063393A1 PCT/CN2019/106111 CN2019106111W WO2020063393A1 WO 2020063393 A1 WO2020063393 A1 WO 2020063393A1 CN 2019106111 W CN2019106111 W CN 2019106111W WO 2020063393 A1 WO2020063393 A1 WO 2020063393A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
reference signal
time
positioning
sent
Prior art date
Application number
PCT/CN2019/106111
Other languages
English (en)
French (fr)
Inventor
王艺
史桢宇
于莹洁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19865912.0A priority Critical patent/EP3832913A4/en
Publication of WO2020063393A1 publication Critical patent/WO2020063393A1/zh
Priority to US17/213,827 priority patent/US12004105B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • G01S1/042Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/765Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted with exchange of information between interrogator and responder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/008Timing of allocation once only, on installation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • the present invention relates to communication technology, and in particular, to a method and device for time synchronization in a wireless communication system.
  • Positioning is an important function in mobile communication systems, which requires the system to be able to provide the user's location information in real time.
  • the 5th generation mobile communication networks (5G, 5th generation, wireless systems, 5G) system put forward high-precision positioning requirements for positioning, requiring outdoor positioning errors to be less than 10 meters and indoor positioning errors to be less than 1 meter.
  • the positioning technology of a mobile communication system is to estimate the position of a terminal device based on the distance from the terminal device to one base station or multiple base stations.
  • TOA time of arrival
  • TDOA time difference of arrival
  • the positioning algorithm based on TDOA measurement is a commonly used positioning algorithm, and its principle is: when there are three or more base stations in the system, the positioning reference signals (Positioning Reference Signal) (PRS) of the downlink / uplink transmission of different base stations can be The sounding reference signal (SRS) reference signal arrival time difference (RSTD) determines the position of the terminal device.
  • the positioning reference signals Positioning Reference Signal
  • PRS Positioning Reference Signal
  • SRS sounding reference signal
  • RSTD reference signal arrival time difference
  • the TDOA positioning technology requires time synchronization between multiple base stations and time synchronization between the base station and the terminal equipment, and the positioning accuracy depends on the synchronization accuracy between the base stations.
  • certain synchronization errors are allowed between base stations to reduce the difficulty of realizing high-precision synchronization in actual systems.
  • LTE long term evolution
  • ns the time synchronization error between base stations is in nanoseconds (ns)
  • the error range is [-130ns, 130ns], that is, the error range is -130ns to 130ns.
  • Synchronization error will cause distance measurement error.
  • the 130ns time synchronization error is equivalent to a distance error of 39 meters. Therefore, when there is a synchronization error between the base stations or an error in the time synchronization between the base station and the terminal equipment, a large positioning error will result, which cannot meet the 5G positioning requirements.
  • Embodiments of the present application provide a method and device for time synchronization in a wireless communication system, which solves the problem of a timing error between one or more base stations and a target terminal in the wireless communication system.
  • a method for time synchronization in a wireless communication system includes a first node and a second node.
  • the method includes: a first node sending a first reference signal to the second node, and receiving a first node.
  • the signal arrival time t 2 , the second reference signal transmission time t 3 , the transmission time t 1 at which the first node transmits the first reference signal, and the arrival time t 4 at which the second node receives the first reference signal calculate the arrival delay TOA and timing The error T offset .
  • the arrival delay TOA and the timing error T offset can be determined through calculation to effectively eliminate synchronization between the base station and the target terminal. To improve positioning accuracy.
  • the arrival delay TOA is determined according to the following formula:
  • the timing error T offset is determined according to the following formula:
  • the first node uses a physical downlink shared channel PDSCH, or a physical uplink shared channel PUSCH, or a media access control layer control signaling MAC CE, or a radio resource control message RRC, or
  • the long-term evolution positioning protocol LPP / new air interface positioning protocol receives a first reference signal arrival time t 2 and a second reference signal transmission time t 3 .
  • the first reference signal includes at least one of the following information: a positioning reference signal PRS, a channel state information reference signal CSI-RS, a phase tracking reference signal PTRS, and a demodulation reference signal DMRS or synchronization signal block SSB;
  • the second reference signal includes at least one of the following reference signals: a sounding reference signal SRS or a demodulation reference signal DMRS.
  • the first reference signal includes at least one of the following information: a sounding reference signal SRS or a demodulation reference signal DMRS;
  • the second reference signal includes at least one of the following reference signals : Positioning reference signal PRS, channel state information reference signal CSI-RS, phase tracking reference signal PTRS, demodulation reference signal DMRS or synchronization signal block SSB.
  • the first node sends the timing error T offset to the second node, and the timing error T offset is used for the second node to compensate for timing.
  • the second node can improve synchronization accuracy with the base station, and improve data transmission performance and positioning accuracy.
  • the first node performs compensation timing on the first node according to a timing error T offset .
  • T offset a timing error
  • the timing is actively compensated through the calculated timing error to improve timing accuracy, thereby improving data transmission performance and positioning accuracy.
  • the first node sends a time type indication to the second node, and the time type indication is used to instruct the second node to report an absolute time or a conversion time.
  • the time type indication is used to clarify the type of time, so that the above technical solution can flexibly support applications in different scenarios.
  • the method further includes: the first node further obtains a sum of processing delays of the radio frequency channels of the first node and the second node; and the first node calculates the arrival delay according to the following formula:
  • the first node calculates the timing error according to the following formula:
  • R bs is the processing delay of the radio frequency channel of the base station
  • R ue is the processing delay of the radio frequency channel of the target terminal.
  • the processing delay of the radio frequency channel of the first node and the second node is considered, thereby reducing the positioning error caused by the processing delay of the radio frequency channel during the transmission of the wireless device, and further improving the positioning accuracy.
  • the first node receives a radio frequency channel processing delay sent by the second node, and the radio frequency channel processing delay is used by the first node to perform a distance calculation.
  • the positioning accuracy can be improved by acquiring the processing delay of the radio frequency channel of the second node.
  • a first node is provided, where the first node is configured to implement a function of a time synchronization method provided by any one of the possible implementation manners of the first aspect, and the function may be implemented by hardware. Implementation can also be implemented by hardware executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • the structure of the first node includes a processor, and the processor is configured to support the user equipment to execute the time provided by the first aspect or any one of the possible implementation manners of the first aspect.
  • Method of synchronization the first node may further include a memory and a communication interface.
  • the memory stores codes and data, the memory is coupled to the processor, and the communication interface is coupled to the processor or the memory.
  • a computer-readable storage medium stores instructions, and when the computer-readable storage medium runs on a computer, the computer causes the computer to execute the first aspect or the first aspect.
  • a method for time synchronization provided by any possible implementation manner.
  • a computer program product containing instructions which when run on a computer, causes the computer to execute the time provided by the first aspect or any possible implementation manner of the first aspect.
  • a communication system includes multiple devices, and the multiple devices include a first node and a second node.
  • the first node is the first node provided in the foregoing aspects.
  • an apparatus where the apparatus is a processor, an integrated circuit, or a chip, and is configured to execute the steps performed by the processing unit of the first node in the embodiment of the present invention, for example, determining an arrival delay
  • the method of positioning error has been described in the other aspects or embodiments described above, and is not repeated here.
  • time synchronization method and device provided above the computer storage medium, or the computer program product are all used to execute the corresponding methods provided above. Therefore, for the beneficial effects that can be achieved, refer to the corresponding methods provided above. The beneficial effects in the method are not repeated here.
  • FIG. 1 is a positioning system provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a time synchronization method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a radio frequency channel processing delay notification according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a possible structure of a first node according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a possible logical structure of a first node according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a possible structure of a second node according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a possible logical structure of a second node according to an embodiment of the present application.
  • new radio uses positioning as a standardization target for release 16. Improving positioning accuracy is a basic goal of 5G positioning.
  • FIG. 1 is a schematic structural diagram of a communication system applicable to an embodiment of the present application.
  • the communication system mentioned in the embodiments of the present application includes, but is not limited to, a narrowband-internet of things (NB-IoT) system, a wireless local area network (WLAN) system, an LTE system, Next-generation 5G mobile communication systems or communication systems after 5G, such as NR, device-to-device (D2D) communication systems.
  • NB-IoT narrowband-internet of things
  • WLAN wireless local area network
  • LTE Long Term Evolution
  • Next-generation 5G mobile communication systems or communication systems after 5G such as NR
  • D2D device-to-device
  • a positioning system 100 includes at least a target terminal 101, a base station (BS) 102, and a positioning server (LS) 106.
  • the positioning server LS 106 may be a physical entity or a logical entity. It obtains measurements and other position information from one or more positioning units to manage positioning for the target terminal 101, and also provides auxiliary data to the positioning unit to determine the position.
  • LS 106 may include secure user plane location (SUPL) positioning platform (SUPL location location platform (SLP) 108) and enhanced service mobile positioning center (enhanced mobile location center (E-SMLC) 107, of which SLP 108 For user plane positioning, E-SMLC 107 is used for control plane positioning.
  • the positioning system 100 may further include a serving gateway (S-GW) 103 and a packet gateway (P-GW) 104 for user plane positioning, and a mobility management entity (control entity for control plane positioning). , MME) 105.
  • S-GW serving gateway
  • P-GW packet gateway
  • MME mobility management entity
  • the target terminal 101 in the above positioning system includes, but is not limited to: user equipment (UE), mobile station, access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile device, terminal, wireless Communication equipment, user agents, stations (ST), cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loops (wireless local loops) in wireless local area networks (WLAN) loop (WLL) station, personal digital processing (PDA), handheld devices with wireless communication functions, computing devices, other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, mobile in future 5G networks Any terminal in a public land mobile network (PLMN) network that will evolve in the future.
  • the target terminal may also be referred to as a terminal device, which is not described in detail below.
  • the base station 102 includes, but is not limited to, an evolved node B (eNB), a radio network controller (RNC), a node B (NB), and a base station controller (BSC).
  • eNB evolved node B
  • RNC radio network controller
  • NB node B
  • BSC base station controller
  • Base station base transceiver station (BTS), home base station (e.g. home evolved NodeB, or home node B, HNB), baseband unit (BBU), eLTE (evolved LTE, eLTE) base station, NR base station ( next generation node B, gNB) and so on.
  • BTS base transceiver station
  • HNB home evolved NodeB, or home node B, HNB
  • BBU baseband unit
  • eLTE evolved LTE, eLTE
  • NR base station next generation node B, gNB
  • control plane positioning is mainly used for emergency services.
  • the positioning message is transmitted between the E-SMLC and the target terminal 101 through a signaling connection.
  • User plane positioning uses a data link to transmit positioning messages.
  • SLP 108 processes SULP messages and interfaces with E-SMLC to obtain auxiliary data.
  • SULP messages are routed on the data link through the P-GW and S-GW.
  • the message transmission between the target terminal 101 and the LS 106 is transmitted via the LTE positioning protocol (LPP).
  • LTE positioning protocol LTE positioning protocol
  • the OTDOA positioning method is that multiple base stations send positioning pilots (PRS) to a target terminal, and the target terminal measures the downlink PRS.
  • PRS positioning pilots
  • the time difference between the arrival of different base stations to the target terminal is TDOA.
  • the target terminal feeds back the measured TDOA to the positioning center, and the positioning center estimates the position of the UE.
  • the measured TDOA is the time difference between the PRS sent by the serving base station and the PRS sent by one or more neighboring cells, and is referred to as a Reference Signal Time Difference (RSTD).
  • RSTD Reference Signal Time Difference
  • the network needs the position of the transmitting antenna of the base station and the timing synchronization of each cell.
  • timing between the base stations is not synchronized, this positioning method will be a great challenge. Generally, there is a certain error in timing synchronization between the base stations, and there is also a timing synchronization error between the base station and the target terminal, which causes the actual measured TDOA value to be inaccurate.
  • this embodiment adopts a method for time synchronization in a wireless communication system, including: a first node sends a first reference signal to the second node, and receives a first reference signal sent by the second node to reach a first The arrival time t 2 of the two nodes; the first node receives the second reference signal sent by the second node and the sending time t 3 of the second reference signal; the first node receives the second reference signal t 2 , the second reference signal a reference signal transmission time t 3, the first transmission time point t of the first reference signal and calculates the arrival time of a second reference signal t 4 of the first node receives a time delay of TOA and timing error T offset, time delay of TOA comprising The difference between the time when the second node sends the first signal to the first node receiving the first signal sent by the second node or the time when the first node sends the second signal to the second node receiving the second signal sent by the first node And the timing error includes the deviation of
  • the arrival delay TOA is determined according to the following formula:
  • the timing error T offset is determined according to the following formula:
  • the first node obtains the sum of the processing delays of the radio frequency channels of the first node and the second node; the first node calculates the arrival delay according to the following formula:
  • R bs is the processing delay of the radio frequency channel of the base station
  • R ue is the processing delay of the radio frequency channel of the target terminal, where the first node is the base station and the second node is the target terminal.
  • FIG. 2 is a flowchart of a time synchronization method according to an embodiment of the present application.
  • the first node in FIG. 2 may be a base station or a target terminal. If the first node is a base station, the second node is a target terminal. If the first node is the target terminal, then the second node is the base station. I will not repeat them below.
  • Figure 2 includes the following steps:
  • the times t 1 at the first node transmits a first reference signal to the second node.
  • the first node When the first node sends the first reference signal, it records the time t 1 when the first reference signal is sent.
  • the reference signal sent by the first node is a downlink reference signal.
  • the downlink reference signal includes a positioning reference signal (PRS), and a channel-specific status information reference signal (CSI).
  • -RS channel-specific status information reference signal
  • PTRS phase tracking reference signal
  • DMRS demodulation reference signal
  • SSB synchronization signal block
  • the uplink reference signal sent by the first node includes at least one of a sounding reference signal (SRS) and a demodulation reference signal DMRS.
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • the above-mentioned downlink reference signal refers to the reference signal sent by the network to the terminal device
  • the uplink reference signal refers to the reference signal sent by the terminal device to the network
  • the second node receives the first reference signal at time t 2 and records the time t 2 of the first reference signal.
  • the second node transmits a second reference signal t 3 to the first node at a time.
  • the second node After receiving the first reference signal sent by the first node, the second node sends the second reference signal to the first node, and records the sending time t 3 of the second reference signal.
  • the second reference signal includes at least one of a sounding reference signal SRS and a demodulation reference signal DMRS.
  • the second reference signal at this time includes: a positioning reference signal PRS, a channel state information reference signal CSI-RS, a phase tracking reference signal PTRS, and a demodulation reference signal DMRS. At least one of the synchronization signal blocks SSB.
  • the first node is a base station or a target terminal, that is, if the first node is a base station in step S201, the first node is also a base station in step S202. If the first node is a base station, the first reference signal is a downlink reference signal and the second reference signal is an uplink reference signal.
  • the first node After the first node receives the second reference signal, it records the reception time t 4 of the second reference signal.
  • S203 The second node sends reference signal (RS) time information to the first node.
  • RS reference signal
  • the RS time information includes a reception time t 2 of the first reference signal and / or a transmission time t 3 of the second reference signal. It should be understood that the RS time information here is only a name, and this application does not limit this name, or the transmission manner of the reception time t 2 of the first reference signal and / or the transmission time t 3 of the second reference signal.
  • the second node may also directly encapsulate the reception time t 2 of the first reference signal and / or the transmission time t 3 of the second reference signal in a message for transmission.
  • the second node may send RS time information to the first node through uplink transmission, and the uplink transmission includes uplink data transmission and uplink signaling transmission.
  • Uplink data transmission is usually transmitted to the first node through a data channel, such as a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the RS time information may be included in the control signaling (CE) of the media access control (MAC) layer.
  • CE control signaling
  • MAC media access control
  • the specific MAC and CE format is not limited in this application. It may also be transmitted through a positioning protocol.
  • the positioning protocol may be an NR positioning protocol (NRPP) or an LTE positioning protocol (LTE positioning protocol, LPP), which depends on the implementation, and is not limited in this application.
  • the uplink data transmission is not limited to the PUSCH, but also includes an uplink small data transmission channel, such as a data channel for grant-free transmission.
  • Scheduling-free transmission refers to uplink data transmission without the need for centralized scheduling signaling for resource allocation. It is also commonly referred to as scheduling-free uplink transmission without grant. This application does not limit the data channel for uplink transmission.
  • the RS time information may also be encapsulated in a radio resource control (radio resource control (RRC) message), and the RRC message is transmitted as data in the PUSCH.
  • RRC radio resource control
  • the uplink signaling may include a physical uplink control channel (physical uplink control channel, PUCCH).
  • PUCCH physical uplink control channel
  • SR scheduling request
  • the second node sends RS time information to the first node through downlink transmission.
  • downlink transmission includes downlink data transmission and downlink signaling transmission.
  • RS time information can be transmitted in the MAC CE or sent to the target terminal through an RRC message. It may also be transmitted through a positioning protocol.
  • the positioning protocol may be an NR positioning protocol (NRPP) or an LTE positioning protocol (LTE positioning protocol, LPP), which depends on the implementation, and is not limited in this application.
  • the PDCCH may further include an indication of receiving a reference signal or an indication of sending the reference signal.
  • the indication of receiving the reference signal indicates that the PDCCH transmits the time information of the first reference signal received, and the indication of sending the reference signal indicates that the PDCCH transmits the second reference signal sent by the base station. Time information.
  • the foregoing RS time information may be expressed in an absolute time or a conversion time.
  • the absolute time is a time representation accurate to the nanosecond level. It should be understood that the absolute time here refers to the time measured by the second node, which is relative to the current time slot of the base station or the start position of the subframe. Delay.
  • Conversion time is another expression obtained by changing the absolute time through some mathematical transformation.
  • the conversion time is to convert the absolute time in order to reduce the number of bits transmitted in absolute time and express it in another way, thereby reducing the transmission overhead.
  • the conversion time t trans t abs mod T, where t abs represents an absolute time, and T is a preset time constant.
  • the conversion time is the remainder obtained by modulo T with absolute time. Therefore, the value of t trans is an integer between 0 and T, including 0 and not including T.
  • the physical layer measurement parameters can be expressed in N bits, where N is an integer, and the value of T is greater than the error of network time synchronization and the propagation delay from the base station to the target terminal.
  • the above absolute time expression method is suitable for the case where the network is completely asynchronous, that is, the absolute time and slot time of different base stations are not aligned, and the message length required to send the absolute time is large; the conversion time method is suitable for the network to do synchronization but there are certain synchronization errors In the case of a reference signal time message, the required message length is relatively small.
  • the first node calculates an arrival delay and a timing error.
  • the first node After the first node receives the first reference signal reception time t 2 and the second reference signal transmission time t 3 sent by the second node, the first node according to the first reference signal arrival time t 2 and the second reference signal transmission time t 3, the first node sends a first reference signal time t 1, the arrival time of the second reference signal t 4 of the receiving node calculates the arrival delay and the TOA timing error T offset.
  • the timing error calculated by the above formula eliminates the synchronization error between the base station and the target terminal.
  • the first node After obtaining the above-mentioned arrival delay and timing error, the first node sends the arrival delay and / or timing error to a positioning server (or positioning center) through a positioning protocol (PP).
  • the positioning protocol may be an NR positioning protocol (NRPP) or an LTE positioning protocol (LTEPP), which depends on the implementation, and is not limited in this application.
  • the first node may further include: sending a timing error to the second node.
  • the first node sends the calculated timing error to the target terminal.
  • the target terminal compensates the timing according to the received timing error T offset , and the compensation timing is a timing adjustment process to more accurately synchronize with the base station.
  • the first node sends the timing error to the second node through an RRC message or a MAC CE, and the specific message format is not limited in this application. It should be understood that the timing error may be a positive number or a negative number.
  • the first node If the first node is the target terminal, the first node will compensate the timing according to the calculated timing error T offset to obtain more accurate timing.
  • the first node if the first node is a base station, the first node sends a time type indication to the second node.
  • the first node since the first reference signal reception time t 2 and the second reference signal transmission time t 3 sent by the second node to the first node may be absolute time or conversion time, the first node may configure the first Whether the two nodes send absolute time or conversion time. Specifically, the first node sends a time type indication to the second node, and the time type indication is used to instruct the second node to report an absolute time or a conversion time.
  • the second node includes a time type indication in the time type indication sent to the first node to indicate whether the transmitted first reference signal reception time t 2 and the second reference signal transmission time t 3 are relative time or transition time. .
  • it can be represented by 1 bit.
  • the first node if the first node is a target terminal, the first node receives a time type indication sent by the second node.
  • the specific time type indication is as described above and will not be described again. Since the terminal can calculate the arrival delay TOA and the timing error T offset after receiving the second reference signal sent by the second node, the first node sends the time type indication to the positioning center through the positioning protocol.
  • the first node may receive the first reference signal sent from multiple base stations, and the first node measures the first reference signal of each base station and obtains one for each base station (the first reference signal receiving time t 2 , The second reference signal transmission time t 3 ) pair, the second node sends the measured (first reference signal reception time t 2 , second reference signal transmission time t 3 ) pair of each base station measured to the first node
  • the (the first reference signal reception time t 2 and the second reference signal transmission time t 3 ) is a part of the RS time information.
  • the RS time information may further include base station information corresponding to each (first reference signal reception time t 2 and second reference signal transmission time t 3 ).
  • the base station information includes: a cell identifier (CID) ), One of a base station identification and a reference signal identification.
  • CID cell identifier
  • the time information may also include the foregoing time type indication.
  • the time type indication of each base station may be the same or different, which is not limited in this application.
  • the first node may also perform timing compensation on the second node by using the timing error measurement method described above, or the first node may compensate the timing according to the timing error obtained by the calculation, thereby improving the timing accuracy with the second node.
  • the improvement of timing accuracy can be beneficial to the performance improvement of data transmission, and improve the frequency efficiency and resource utilization of air interface transmission.
  • the second node sends the reception time t 2 of the first reference signal and the transmission time t 3 of the second reference signal to the first node.
  • the first node can calculate the TOA and can eliminate the first node and the first node.
  • the synchronization error between two nodes allows a certain synchronization error between different base stations, which simplifies the system design.
  • the timing error obtained through calculation can further adjust the timing of the first node or the second node, making the synchronization between the nodes more accurate and improving the positioning accuracy.
  • the timing accuracy can be improved and the data transmission effectiveness.
  • the time measured in the foregoing embodiment is the time when the second node receives the first reference signal.
  • signal processing is done in the baseband processor. Therefore, the obtained time is when the baseband signal processing is completed.
  • the signal is usually received from the antenna and transmitted to the baseband via the RF channel, which takes a certain amount of time. Therefore, the actual transmission time on the air interface is shorter than the actual measurement time, because the measurement time includes the transmission time of the RF channel, and this time is usually tens to hundreds of nanoseconds, depending on the performance of the hardware implementation. Therefore, to achieve more accurate distance measurement, the above embodiment can be further optimized.
  • the transmission delay of the radio frequency channel is considered to further improve the accuracy of ranging.
  • the first node receives a processing delay of the radio frequency channel sent by the second node, and the processing delay of the radio frequency channel is used by the first node for distance calculation.
  • the specific method is: the second node sends a radio frequency channel processing capability to the first node.
  • RF channel processing capabilities include RF channel processing time.
  • the processing capability of the radio frequency channel may be sent to the first node through the capability information, or sent to the first node through the RS time information.
  • the second node may send the processing time of the radio frequency channel to the first node, that is, the base station through capability reporting. If the radio channel processing time is sent to the first node through the capability report, an RRC message may be used, for example, the UECapabilityInformation message is used for transmission. This application does not limit specific RRC messages.
  • the second node may also send the RF channel processing time to the first node in the RS time information.
  • the second node may broadcast the radio frequency channel processing time to the target terminal through a system message.
  • the notification may be performed in a positioning system message.
  • the positioning system message may be an independent system message block (SIB), or may form a SIB with other system messages, which is not limited in this application.
  • SIB independent system message block
  • FIG. 3 includes a plurality of second nodes. Since positioning may be performed by using multiple base stations, the first node may obtain positioning system messages of multiple second nodes.
  • the first node sends a system message request to the second node.
  • the system message request is used by a first node to request a second node to send a positioning system message, where the positioning system message includes a radio channel processing time of the second node, and a radio channel processing time of the second node is recorded as R bs .
  • a system message request may be sent to each second node separately.
  • the system message request method is the same as the system message request defined by 5G, which is not described in this application.
  • the first node only sends a system message request to a serving node, and the serving node is one of a plurality of second nodes.
  • the serving node further sends a positioning system cell request indication to a neighboring base station (adjacent second node).
  • the neighboring base station sends a system message request response to the serving base station, and the system message request response may include information of a positioning system message.
  • the serving node sends a system message request response message to the first node, which may include information of a positioning system message of an adjacent base station.
  • the information of the positioning system message includes at least one of the duration of the positioning system message, the starting frame number of the positioning system message, and the CID of the positioning system message.
  • the first node only sends a system message request to a serving node, and the serving node is one of a plurality of second nodes.
  • the serving node further sends a positioning system cell request indication to a neighboring base station (adjacent second node).
  • the neighboring base station sends a system message request response to the serving base station, and the system message request response may include information of a positioning system message.
  • the serving node sends a positioning system message of the serving base station and the neighboring base station to the first node.
  • the positioning system message includes the RF channel processing time of each second node and the information of the base station.
  • the base station information includes CID or base station identification.
  • the positioning system message may also include the duration of the positioning system message and / or the starting frame number of the positioning system message.
  • the second node sends a positioning system message to the first node.
  • the positioning system message includes the processing time of the radio frequency channel of the second node.
  • the first node stores a positioning system message.
  • the first node performs ranging according to the positioning system message.
  • the ranging through the positioning system message may include multiple ranging methods, such as TOA, TDOA, etc., which is not limited in this application.
  • the first node obtains the sum of the radio channel processing delays of the first node and the second node, and the value of the arrival delay TOA does not include the radio channel processing delays of the first node and the second node. sum.
  • the first node After the first node receives the first reference signal reception time t 2 and the second reference signal transmission time t 3 from the second node, according to the first reference signal reception time t 2 and the second reference signal transmission time t 3 , The time t 1 when the first node sends the first reference signal, the time t 4 when the second reference signal is received by the first node, and the RF channel processing time R bs of the second node included in the positioning system message.
  • the first node The RF channel processing time R ue calculates the arrival delay TOA and the timing error T offset .
  • the calculation method is as follows:
  • (R bs + R ue ) is the sum of the processing delays of the radio frequency channels of the first node and the second node.
  • the value of the TOA of the delay does not include the sum of the processing delays of the RF channels of the first node and the second node. Calculate the arrival delay.
  • the first node may not need to obtain the processing delay of the radio frequency channel of the second node through the positioning system message. Instead, the position information of the global positioning system (GPS) of the second node is obtained to estimate the total processing delay of the radio frequency channels of the first node and the second node. This process can be performed at any time, and need not be limited to when starting the positioning service.
  • GPS global positioning system
  • the GPS channel processing delay of the first node and the second node is determined by acquiring GPS information of the target terminal and the time when the second node receives the first reference signal and the time when the second reference signal is transmitted. Sum. The specific method is described later, and is not repeated here.
  • the second node determines the sum of the processing delays of the radio frequency channels of the first node and the second node by the same method, and sums the processing delays of the radio frequency channels of the first node and the second node. Sent to the target terminal, which can be sent to the target terminal through proprietary signaling, and this application does not restrict the specific signaling. It should be understood that if the sum of the processing delays of the radio frequency channels of the first node and the second node is obtained through this method, it is not necessary to rely on system messages.
  • the first node acquires multiple positioning system messages of the second node, where the positioning system message includes the radio channel processing time of the second node, and the multiple second nodes include at least one serving node.
  • the first node receives reference signals sent by multiple second nodes, and at least one serving node among the multiple second nodes sending reference signals.
  • the first node calculates the difference between the arrival times of the one or more second nodes and the serving node according to the radio channel processing time of each second node.
  • the first node when it moves from one cell to another cell, it obtains a positioning system message again.
  • the first node may periodically update the positioning system message, or may update the positioning system message aperiodically, depending on the specific implementation.
  • the second node when the positioning system message changes, the second node actively sends information to the first node, triggering the first node to update the positioning system message.
  • step S302 does not depend on step S301.
  • the second node may actively send a positioning system message.
  • Step S304 does not depend on step S302. Ranging may be performed according to the stored positioning system message.
  • the above method for obtaining the processing time of the radio frequency channel of the second node by using the positioning system message may be implemented independently of the foregoing embodiment, and the positioning system message may be used to broadcast the radio frequency channel processing time to further improve the positioning accuracy of multiple positioning methods .
  • the processing time of the radio frequency channel may be obtained by various methods.
  • the following embodiments specifically describe how to obtain the processing time of the radio frequency channel.
  • the first node or the second node passes the device test or obtains the processing time of the RF channel, which is stored in the device as an attribute of the device itself.
  • the first node or the second node directly uses this parameter as the RF channel processing time for use.
  • the base station receives position information from the target terminal, such as global positioning system (GPS) information, and the base station calculates the GPS position of the target terminal and the The distance between the two channels can be calculated to obtain the sum of the RF channel processing time of the base station and the RF channel processing time of the target terminal.
  • position information such as global positioning system (GPS) information
  • GPS global positioning system
  • the base station can determine a more accurate TOA by calculating the sum of the radio channel processing time of the base station and the radio channel processing time of the target terminal.
  • the calculation method is based on the aforementioned formula Calculate, no more details.
  • the target terminal sends GPS information (x 1 , y 1 ) to the base station.
  • the GPS coordinates of the base station are (x 2 , y 2 )
  • the base station can The total of the RF channel processing time of the base station and the RF channel processing time of the target terminal is calculated according to the following formula:
  • C is the constant light speed and is 3 ⁇ 10 8 meters / second (m / s).
  • the base station may send the calculated sum of the radio channel processing time of the base station and the radio channel processing time of the target terminal to the target terminal so that the target terminal can calculate a more accurate TOA.
  • the calculation method is as described above. ,No longer.
  • the target terminal sends the calculated TOA to the positioning server through LPP or NRPP. The method is the same as described above, and is not repeated here.
  • a relatively simple method for calculating the processing time of the RF channel is the average method or the proportional allocation method.
  • the averaging method considers that the radio frequency channel processing time of the base station and the radio frequency channel processing time of the target terminal are equal, so it is easy to obtain the radio frequency channel processing time.
  • the proportional allocation method is to allocate the calculated sum of the radio frequency channel processing time of the base station and the target terminal's radio frequency channel processing time to the base station and the target terminal in a certain proportion. This allocation may be based on experience. For example, the radio channel processing time of the base station is 60% of the sum of the radio channel processing time of the base station and the target terminal.
  • the above method can effectively improve the positioning accuracy and reduce the error caused by the processing time of the RF channel by acquiring the processing time of the RF channel.
  • each network element such as the first node and the second node, includes a hardware structure and / or a software module corresponding to each function.
  • this application can be implemented in hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • the first node and the second node may be divided into functional modules according to the foregoing method example.
  • the functional modules may be divided into functional modules, or two or more functions may be integrated into one processing module.
  • the above integrated modules may be implemented in the form of hardware or software functional modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 4 is a schematic diagram of a possible structure of a first node involved in the foregoing embodiment provided by this application.
  • the first node includes a receiving unit 401 and a processing unit 402.
  • the receiving unit 401 is configured to support the first node to execute S202 or S203 in FIG. 2 and S302 in FIG. 3;
  • the processing unit 402 is configured to support the first node to execute S204 in FIG. 2 or S303 or S304 in FIG.
  • the first node further includes a sending unit 403 for supporting the first node to execute S201 in FIG. 2 and S301 in FIG. 3.
  • the receiving unit 401 may be a receiver, and the sending unit 402 may be a transmitter, or the receiving unit 401 and the sending unit 402 may be combined into a transceiver.
  • the receiver and the transmitter are integrated in the communication unit to form a communication interface. .
  • FIG. 5 is a schematic diagram of a possible logical structure of a first node involved in the foregoing embodiment provided by an embodiment of the present application.
  • the first node includes: a processor 502.
  • the processor 502 is configured to control and manage the action of the first node.
  • the processor 502 is configured to support the first node to execute S204 in FIG. 2 and S303 in FIG. 3 in the foregoing embodiment.
  • the processor 502 is further configured to support the first node to perform processing on the message received or sent by the communication unit in the foregoing embodiment, for example, baseband processing on the received reference signal, and RRC or MAC on the received Data processing, and protocol processing on the received system messages.
  • the first node may further include: a memory 501 and a communication interface 503; the processor 502, the communication interface 503, and the memory 501 may be connected to each other or to each other through a bus 504.
  • the communication interface 503 is configured to support the first node for communication
  • the memory 501 is configured to store program code and data of the first node.
  • the processor 502 calls the code stored in the memory 501 for control and management.
  • the memory 501 may be coupled with the processor or not coupled.
  • the processor 502 may be a central processing unit, a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination including one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the bus 504 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, or the like.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • FIG. 6 is a schematic diagram of a possible structure of a second node involved in the foregoing embodiment provided by this application.
  • the second node may be a target terminal or a base station.
  • the second node includes a processing unit 602 and a sending unit 603.
  • the sending unit 603 is configured to support the second node to perform S202 or S203 in FIG. 2 and step S302 in FIG. 3;
  • the processing unit 602 is configured to support the second node in the foregoing embodiment to determine the reception time of the first reference signal.
  • the second node may further include a receiving unit 601 for supporting the second node to perform S201 in FIG. 2 and step S301 in FIG. 3.
  • the receiving unit 601 may be a receiver
  • the sending unit 603 may be a transmitter.
  • the receiver and the transmitter are integrated in the communication unit to form a communication interface.
  • FIG. 7 is a schematic diagram of a possible logical structure of a second node involved in the foregoing embodiment provided by an embodiment of the present application.
  • the second node includes: a processor 702.
  • the processor 702 is configured to control and manage the action of the second node.
  • the processor 702 is configured to support the second node to execute the determination of the first reference signal by the second node in the foregoing embodiment.
  • the receiving time and the sending time of the second reference signal are used to support the second node to generate RS time information and determine the sending of the system message.
  • the second node may further include: a memory 701 and a communication interface 703; the processor 702, the communication interface 703, and the memory 701 may be connected to each other or to each other through a bus 704.
  • the communication interface 703 is configured to support communication of the second node, and the memory 701 is configured to store program code and data of the second node.
  • the processor 702 calls the code stored in the memory 701 for control management.
  • the memory 701 may be coupled with the processor or not coupled.
  • the processor 702 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination including one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the bus 704 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, or the like.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • a readable storage medium stores computer-executable instructions.
  • a device which may be a single-chip microcomputer, a chip, or the like
  • a processor executes FIG. 2 or FIG. 3
  • the steps of the first node or the second node are provided in the time synchronization method, the computer executes instructions in the storage medium.
  • the foregoing readable storage medium may include: various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk, or an optical disk.
  • a computer program product includes computer-executable instructions stored in a computer-readable storage medium; at least one processor of the device may be The storage medium reads the computer execution instruction, and at least one processor executes the computer execution instruction to cause the device to implement the steps of the first node and the second node in the time synchronization method provided in FIG. 2 or FIG. 3.
  • a communication system is further provided.
  • the communication system includes at least a first node and a second node.
  • the first node may be the first node provided in FIG. 4 or FIG. 5, and is configured to perform the steps of the first node in the time synchronization method provided in FIG. 2 or FIG. 3; and / or, the second node may be
  • the second node provided in FIG. 6 or FIG. 7 is a step performed by the second node in the method for performing time synchronization provided in FIG. 2 or FIG. 3.
  • the communication system may include a plurality of second nodes, and the first node may perform distance measurement on the plurality of second nodes at the same time, and maintain time synchronization with the serving nodes therein.
  • the sending time of the second reference signal may be based on the receiving time of the first reference signal and the sending time of the second reference signal.
  • the time when the first node sends the first reference signal, and the time when the first node receives the second reference signal determines the arrival delay and timing error, which solves the problem of wireless positioning system due to the imprecise timing between the base station and the target terminal.
  • the problem of positioning errors Furthermore, by measuring the processing delay of the radio frequency channels of the first node and the second node, the positioning accuracy can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种时间同步的方法及装置,涉及通信技术领域,用于无线通信系统中对目标终端进行定位和/或定时误差测量,避免由于目标终端和基站之间由于存在定时误差而导致的定位误差较大。所述方法应用于无线定位系统,无线定位系统包括第一节点和第二节点,包括:第一节点接收第二节点发送的第一参考信号到达时间t 2和第二参考信号发送时间t 3,第一参考信号为第一节点发送的,第二参考信号为第二节点发送的;第一节点根据第一参考信号到达时间t 2,第二参考信号发送时间t 3,第一节点发送第一参考信号的时间t 1,第一节点接收的第二参考信号的到达时间t 4计算到达时延TOA和定时误差T offset

Description

一种时间同步的方法和装置 技术领域
本发明涉及通信技术,具体涉及无线通信系统中时间同步的方法和装置。
背景技术
定位是移动通信系统中的重要功能,要求系统能够实时的提供用户的位置信息。第五代移动通信(5th generation mobile networks or 5th generation wireless systems,5G)系统对定位提出了高精度的定位需求,要求室外的定位误差小于10米,室内定位误差小于1米。
移动通信系统的定位技术是基于终端设备到一个基站或者多个基站的距离来估计终端设备的位置。距离测量有两种主要的技术:一种是终端设备到基站的空中传播时间,叫做到达时延(time of arrival,TOA);另一种是到达时间差(time difference of arrival,TDOA)。
基于TDOA测量的定位算法是常用的定位算法,其原理是:当系统中存在三个或三个以上的基站时,可以根据不同基站下行/上行传输的定位参考信号(Positioning Reference Signal,PRS)/探测参考信号(Sounding Reference Signal,SRS)的参考信号到达时间差(Reference Signal Time Difference,RSTD)确定终端设备的位置。
为了计算终端设备的位置,TDOA定位技术要求多个基站之间在时间上同步以及基站与终端设备之间的时间同步,而且定位的精度取决于基站之间的同步精度。而实际系统中,基站之间是允许有一定的同步误差,以降低实际系统实现高精度同步的难度。例如,长期演进(long term evolution,LTE)系统要求基站之间的时间同步误差以纳秒(nanosecond,ns)为单位,误差范围在[-130ns,130ns],即误差范围在-130ns到130ns。同步误差会导致距离测量产生误差,130ns的时间同步误差等效为39米的距离误差。因此,在基站之间存在同步误差,或者基站和终端设备之间的时间同步存在误差时,会导致较大的定位误差,不能满足5G定位要求。
发明内容
本申请的实施例提供一种无线通信系统中时间同步的方法及装置,解决了无线通信系统中一个或多个基站和目标终端之间存在定时误差的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种无线通信系统中的时间同步的方法,所述无线通信系统包括第一节点和第二节点,包括:第一节点发送第一参考信号到所述第二节点,接收第二节点发送的第一参考信号到达第二节点的到达时间t 2;第一节点接收第二节点发送的第二参考信号和发送第二参考信号的发送时间t 3;第一节点根据第一参考信号到达时间t 2、第二参考信号发送时间t 3、第一节点发送第一参考信号的发送时间t 1以及第一节点接收的第二参考信号的到达时间t 4计算到达时延TOA和定时误差T offset。上述技术方案中,通过第一参考信号的接收和发送时间以及第二参考信号的接收和发送时间,通过计算确定到达时延TOA以及定时误差T offset,可以有效消除基站和目标终端之间的同步以提升定位精度。
在第一方面的一种可能的实现方式中,到达时延TOA根据以下公式确定:
Figure PCTCN2019106111-appb-000001
所述定时误差T offset根据以下公式确定:
Figure PCTCN2019106111-appb-000002
在第一方面的一种可能的实现方式中,第一节点通过物理下行共享信道PDSCH,或者物理上行共享信道PUSCH,或者媒体接入控制层控制信令MAC CE,或者无线资源控制消息RRC,或者长期演进定位协议LPP/新空口定位协议接收第一参考信号到达时间t 2和第二参考信号发送时间t 3
在第一方面的一种可能的实现方式中,第一参考信号包括以下信息中的至少一种:定位参考信号PRS,信道状态信息参考信号CSI-RS,相位跟踪参考信号PTRS,解调参考信号DMRS或同步信号块SSB;第二参考信号包括以下参考信号中的至少一种:探测参考信号SRS或解调参考信号DMRS。
在第一方面的一种可能的实现方式中,第一参考信号包括以下信息中的至少一种:探测参考信号SRS或解调参考信号DMRS;第二参考信号包括以下参考信号中的至少一种:定位参考信号PRS,信道状态信息参考信号CSI-RS,相位跟踪参考信号PTRS,解调参考信号DMRS或同步信号块SSB。
在第一方面的一种可能的实现方式中,第一节点向第二节点发送所述定时误差T offset,定时误差T offset用于第二节点补偿定时。上述技术方案中,第二节点通过补偿定时可以提高和基站的同步精度,提升数据传输性能以及定位的精度。
在第一方面的一种可能的实现方式中,第一节点根据定时误差T offset对第一节点进行补偿定时。上述技术方案中,第一节点为目标终端时,通过计算得到的定时误差主动对定时进行补偿,提高的定时精度,从而提升数据传输的性能以及定位的精度。
在第一方面的一种可能的实现方式中,第一节点向第二节点发送时间类型指示,时间类型指示用于指示第二节点上报绝对时间或者转换时间。上述技术方案中,通过时间类型指示,明确时间的类型,使得上述技术方案可以灵活支持不同场景中的应用。
在第一方面的一种可能的实现方式中,进一步包括:第一节点进一步获得第一节点和第二节点的射频通道处理时延的总和;第一节点根据以下公式计算到达时延:
Figure PCTCN2019106111-appb-000003
第一节点根据以下公式计算定时误差:
Figure PCTCN2019106111-appb-000004
其中,R bs为基站的射频通道处理时延,R ue为目标终端的射频通道处理时延。上述技术方案中,考虑第一节点和第二节点的射频通道处理时延,降低了无线设备发送过程中由于射频通道的处理时延而导致的定位误差,进一步提高了定位精度。
在第一方面的一种可能的实现方式中,第一节点接收第二节点发送的射频通道处理时延,射频通道处理时延用于第一节点进行测距计算。上述技术方案中,通过获取第二节点的射频通道处理时延,可以提升定位精度。
在本申请的又一方面,提供了一种第一节点,第一节点用于实现上述第一方面的任一种可能的实现方式所提供的时间同步的方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的单元。
在一种可能的实现方式中,第一节点的结构中包括处理器,该处理器被配置为支持该用户设备执行上述第一方面或第一方面的任一种可能的实现方式所提供的时间同步的方法。可选的,第一节点还可以包括存储器和通信接口,该存储器中存储代码和数据,该存储器与处理器耦合,通信接口与处理器或存储器耦合。
本申请的又一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得该计算机执行上述第一方面或第一方面的任一种可能的实现方式所提供的时间同步的方法。
本申请的又一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得该计算机执行上述第一方面或第一方面的任一种可能的实现方式所提供的时间同步的方法。
本申请的又一方面,提供一种通信系统,该通信系统包括多个设备,该多个设备包括第一节点、第二节点;其中,第一节点为上述各方面所提供的第一节点,用于支持第一节点执行上述第一方面或第一方面的任一种可能的实现方式所提供的时间同步的方法。
在申请的又一方面,提供一种装置,所述装置为一个处理器、集成电路或者芯片,用于执行本发明实施例中由第一节点的处理单元执行的步骤,例如,确定到达时延以及定位误差的方法在前述其它方面或实施例中已经描述过,此处不再赘述。
可以理解,上述提供的时间同步的方法和装置、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的定位系统;
图2为本申请实施例提供的时间同步的方法示意图;
图3为本申请实施例提供的射频通道处理时延通知的示意图;
图4为本申请实施例提供的第一节点的一种可能的结构示意图;
图5为本申请实施例提供的第一节点的一种可能的逻辑结构示意图;
图6为本申请实施例提供的第二节点的一种可能的结构示意图;
图7为本申请实施例提供的第二节点的一种可能的逻辑结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本申请中所有节点、消息的名称仅仅是本申请为描述方便而设定的名称,在实际网络中的名称可能不同,不应理解本申请限定各种节点、消息的名称,相反,任何具有和本申请中用到的节点或消息具有相同或类似功能的名称都视作本申请的方法或等效替换,都在本申请的保护范围之内,以下不再赘述。
在5G系统中,新空口(new radio,NR)将定位作为版本(release)16的标准化目标,提高定位精度是5G定位的一个基本目标。
为了更好地理解本发明实施例公开的一种时间同步的方法及装置,下面先对本发明实施例使用的网络架构进行描述。请参阅图1,图1为本申请实施例所适用的通信系统的结构示意图。
需要说明的是,本申请实施例提及的通信系统包括但不限于:窄带物联网(narrowband-internet of things,NB-IoT)系统、无线局域网(wireless local access network,WLAN)系统、LTE系统、下一代5G移动通信系统或者5G之后的通信系统,如NR、设备到设备(device to device,D2D)通信系统。
在图1所示的通信系统中,给出了传统的定位系统架构100。一个定位系统100至少包括目标终端101,基站(base station,BS)102以及定位服务器(location server,LS)106。其中定位服务器LS 106可以是一个物理实体或逻辑实体,通过从一个或多个定位单元获得测量和其他位置信息来为目标终端101管理定位,还为定位单元提供辅助数据以确定位置。LS 106可以包括安全用户面定位(secure user plane location,SUPL)定位平台(SUPL location platform,SLP)108和增强的服务移动定位中心(enhanced serving mobile location centre,E-SMLC)107,其中SLP 108用于用户面定位,E-SMLC 107用于控制面定位。定位系统100还可以包括用于用户面定位的服务网关(serving gateway,S-GW)103和分组网关(packet gateway,P-GW)104,以及用于控制面定位的移动管理实体(mobility management entity,MME)105。
上述定位系统中的目标终端101包括但不限于:用户设备(user equipment,UE)、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、终端、无线通信设备、用户代理、无线局域网(wireless local access network,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的移动台以及未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等中的任意一种。目标终端也可以称为终端设备,以下不再赘述。
基站102包括但不限于:演进型节点B(evolved node base,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home node B,HNB)、基带单元(baseband Unit,BBU)、eLTE(evolved LTE,eLTE)基站、NR基站(next generation node B,gNB)等。
在定位系统100中,控制面定位主要用于紧急业务。定位消息通过信令连接在E-SMLC和目标终端101之间传输。用户面定位使用数据链路传输定位消息。SLP 108处理SULP消息,并与E-SMLC接口以获得辅助数据。SULP消息在数据链路上通过P-GW和S-GW进行路由。目标终端101和LS 106之间的消息传输通过LTE定位协议(LTE positioning protocol,LPP)传输。
在LTE系统中,支持观测到达时间差(Observed Time Difference Of Arrival,OTDOA),OTDOA定位方法是多个基站向某个目标终端发送定位导频(positioning reference signal,PRS),目标终端通过下行的PRS测量不同基站到达目标终端的到达时间差TDOA。目标终端把测量到的TDOA反馈给定位中心,由定位中心估计UE的位置。其中,测量到的TDOA是服务基站发送的PRS和一个或多个相邻小区发送的PRS的时间差,被称为参考信号时间差(Reference Signal Time Difference,RSTD)。为了计算目标终端的位置,网络需要基站的发射天线的位置以及每个小区的定时同步。如果基站之间的定时不同步,这种定位方法将会是极大的挑战。而通常基站之间在定时同步上存在一定的误差,基站与目标终端之间也存在定时同步误差,导致实际测量的TDOA值不准确。
为解决上述问题,本实施例采用一种无线通信系统中的时间同步的方法,包括:第一节点发送第一参考信号到所述第二节点,接收第二节点发送的第一参考信号到达第二节点的到达时间t 2;第一节点接收第二节点发送的第二参考信号和发送所述第二参考信号的发送时间t 3;第一节点根据第一参考信号到达时间t 2、第二参考信号发送时间t 3、第一节点发送第一参考信号的时间t 1以及第一节点接收的第二参考信号的到达时间t 4计算到达时延TOA和定时误差T offset,到达时延TOA包括第二节点发送第一信号到第一节点收到第二节点发送的第一信号的时间的差值或第一节点发送第二信号到第二节点收到第一节点发送的第二信号的时间的差值,定时误差包括第一节点和第二节点的帧或时隙同步的 偏差,其中,第一信号包括第二参考信号,第二信号包括第二参考信号。
具体地,到达时延TOA根据以下公式确定:
Figure PCTCN2019106111-appb-000005
所述定时误差T offset根据以下公式确定:
Figure PCTCN2019106111-appb-000006
为进一步提高定位精度,第一节点获得第一节点和第二节点的射频通道处理时延的总和;第一节点根据以下公式计算到达时延:
Figure PCTCN2019106111-appb-000007
根据以下公式计算定时误差:
Figure PCTCN2019106111-appb-000008
其中R bs为基站的射频通道处理时延,R ue为目标终端的射频通道处理时延,其中,第一节点为基站,第二节点为目标终端。
图2为本申请实施例提供的时间同步的方法流程图。图2中的第一节点可以是基站也可以是目标终端。如果第一节点为基站,那么第二节点则为目标终端。如果第一节点为目标终端,那么第二节点则为基站。以下不再赘述。
图2包括以下步骤:
S201、第一节点在时间t 1向第二节点发送第一参考信号。
第一节点在发送第一参考信号时,记录第一参考信号发送的时间t 1。当第一节点为基站时,第一节点发送的参考信号为下行参考信号,下行参考信号包括定位参考信号(positioning reference signal,PRS),信道状态信息参考信号(cell-specific status information reference signal,CSI-RS),相位跟踪参考信号(phase tracing reference signal,PTRS),解调参考信号(demodulation reference signal,DMRS),同步信号块(synchronization signal block,SSB)中的至少一种。
当第一节点为目标终端时,第一节点发送的上行参考信号包括:探测参考信号(sounding reference signal,SRS),解调参考信号DMRS中的至少一种。
应理解,上述下行参考信号是指网络发送给终端设备的参考信号,上行参考信号是指终端设备发送给网络的参考信号。
第二节点在时间t 2接收到第一参考信号,并记录第一参考信号的时间t 2
S202、第二节点在时间t 3向第一节点发送第二参考信号。
第二节点在接收到第一节点发送的第一参考信号后,向第一节点发送第二参考信号,并记录第二参考信号的发送时间t 3
当第一节点为基站时,第二节点为目标终端,此时第二参考信号包括:探测参考信号SRS,解调参考信号DMRS中的至少一种。
当第一节点为目标终端时,第二节点为基站,此时的第二参考信号包括:定位参考信号PRS,信道状态信息参考信号CSI-RS,相位跟踪参考信号PTRS,解调参考信号DMRS,同步信号块SSB中的至少一种。
应理解,上述步骤S201和步骤S202中,第一节点为基站还是目标终端是保持一致的,即,如果步骤S201中第一节点为基站,那么步骤S202中第一节点也为基站。如果第一节点为基站,那么第一参考信号为下行参考信号,第二参考信号为上行参考信号。
第一节点接收到第二参考信号后,记录第二参考信号的接收时间t 4
S203、第二节点向第一节点发送参考信号(reference signal,RS)时间信息。
其中RS时间信息包括第一参考信号的接收时间t 2和/或第二参考信号的发送时间t 3。应理解,这里RS时间信息只是一个名称,本申请并不限定这一名称,或者限定第一参考信号的接收时间t 2和/或第二参考信号的发送时间t 3的发送方式。第二节点也可以直接将第一参考信号的接收时间t 2和/或第二参考信号的发送时间t 3封装在消息中进行传输。
具体地,如果第一节点是基站,那么,第二节点为目标终端。此时,第二节点可以通过上行传输向第一节点发送RS时间信息,上行传输包括上行数据传输和上行信令传输。上行数据传输通常通过数据通道,如物理上行共享信道(physical uplink sharing channel,PUSCH)向第一节点进行传输。通过PUSCH进行传输时,RS时间信息可以包含在媒体接入控制(media access control,MAC)层的控制信令(control element,CE)中,具体的MAC CE的格式本申请不做限定。也可以是通过定位协议来进行传输,定位协议可以是NR定位协议(NR positioning protocol,NRPP)或LTE定位协议(LTE positioning protocol,LPP),具体依赖于实现,本申请不做限定。
应理解,上行数据传输不局限于PUSCH,还包括上行小数据传输通道,如,免调度(grant free)传输的数据通道。免调度传输是指不需要集中的调度信令进行资源的分配即可进行上行数据传输,通常又被称为免调度的上行传输(uplink transmission without grant)。本申请对上行传输的数据通道不做限定。
另外,通过上行数据通道进行传输时,RS时间信息还可以封装在无线资源控制(radio resource control,RRC)消息中,RRC消息被作为数据在PUSCH中传输。
如果通过上行信令传输,上行信令可以包括物理上行控制信道(physical uplink control channel,PUCCH)。由于传统的PUCCH用于其他的上行信令传输,如调度请求(scheduling request,SR),因此,如果通过PUCCH进行传输,则应该通过类型指示,或者另外独立配置一个PUCCH进行RS时间信息的传输。本申请对具体的PUCCH的格式或配置不做约束。
如果第一节点为目标终端,第二节点为基站,那么第二节点通过下行传输向第一节点发送RS时间信息。类似地,下行传输包括下行数据传输和下行信令传输。
如果是下行数据传输,通常通过物理下行共享信道(physical downlink sharing channel,PDSCH)进行传输,具体地,可以通过在MAC CE中进行RS时间信息的传输,或者通过RRC消息发送给目标终端。也可以是通过定位协议来进行传输,定位协议可以是NR定位协议(NR positioning protocol,NRPP)或LTE定位协议(LTE positioning protocol,LPP),具体依赖于实现,本申请不做限定。
如果是下行信令传输,则可以通过物理下行控制信道(physical downlink control channel,PDCCH)来进行传输。由于PDCCH传输的控制信息比特数较少,因此,需要考虑对现有的PDCCH控制信令进行扩展。例如,通过分开的两个PDCCH分别进行第一参考信号和第二参考信号的传输。PDCCH中还可以包括接收参考信号或发送参考信号指示,接收参考信号指示表示PDCCH传输的是接收到的第一参考信号的时间信息,发送参考信号指示表示PDCCH传输的是基站发送的第二参考信号的时间信息。
上述RS时间信息的表示方式可以是绝对时间,也可以是转换时间。按照5G定位的精度要求,绝对时间是精确到纳秒级的时间表示。应理解,这里的绝对时间是指第二节点测量得到的时间,是相对基站的当前时隙或子帧的起始位置而言,测量得到的第一参考信号的首径或者最强劲的达到时延。
转换时间是指将绝对时间通过某种数学变换而得到的另一表达方式。转换时间是为了减小绝对时间传输的比特数而将绝对时间进行转化,用另一种方式进行表达的时间,从而减小传输开销。
作为实施例,转化时间t trans=t abs mod T,其中,t abs表示绝对时间,T为预设的时间常数。转换时间即为绝对时间对T取模而得到的余数。因此t trans的取值是在0到T之间的某个整数,包括0而不包括T。
在一种可能的实现中,对转换时间,物理层测量参数可以用N比特表示,N为整数,T取值要大于网络时间同步的误差和基站到目标终端的传播时延。TDD系统的时间同步误差最大是10微秒(microsecond,us);空中传播距离按照最大3公里(kilometer,km),对应10微秒的传播时延;那么T=20us;按照100MHz带宽,采样率f s=153.6MHz,每个采样点的时间T s=1/f s=65ns;以一个T s为最小时间粒度,那么转化时间t trans取值范围为[-20us,20us],等效为[-307.7,+307.7]*T s;这个范围用N>log 2(307.7*2)个bit就可以完全描述,因此N=10满足该情况下转换时间的传输。
应理解,上述方法只是转换时间计算的一个实例,本申请不限制转换时间的具体实现方法。
上述绝对时间的表示方法适合网络完全异步的情况,即不同基站的绝对时间和时隙时间没有对准,发送绝对时间需要的消息长度大;转换时间的方法适合网络做了同步但是存在一定同步误差的情况,发送的参考信号时间消息需要的消息长度相对较小。
S204、第一节点计算到达时延和定时误差。
第一节点接收到第二节点发送的第一参考信号接收时间t 2和第二参考信号的发送时间t 3后,第一节点根据第一参考信号到达时间t 2,第二参考信号发送时间t 3,第一节点发送第一参考信号的时间t 1,第一节点接收的第二参考信号的到达时间t 4计算到达时延TOA和定时误差T offset。方法如下:
根据公式:
Figure PCTCN2019106111-appb-000009
计算到达时延;
根据公式:
Figure PCTCN2019106111-appb-000010
计算定时误差。
通过上述公式计算得到的定时误差消除了基站和目标终端之间的同步误差。
获得上述到达时延和定时误差后,第一节点将到达时延和/或定时误差通过定位协议(positioning protocol,PP)发送给定位服务器(或定位中心)。定位协议可以是NR定位协议(NR positioning protocol,NRPP)或LTE定位协议(LTE positioning protocol,LPP),具体依赖于实现,本申请不做限定。
如果第一节点是基站,第一节点还可以进一步包括:向第二节点发送定时误差。第一节点将计算获得的定时误差发送给目标终端。目标终端根据接收到的定时误差T offset补偿定时,补偿定时是一个定时调整的过程,以更精确地和基站进行同步。具体地,第一节点通过RRC消息或者MAC CE将定时误差发送给第二节点,具体的消息格式本申请不做限定。应理解,上述定时误差可以是正数,也可以是负数。
如果第一节点是目标终端,第一节点将根据计算得到的定时误差T offset补偿定时,以获得更精确的定时。
在一种可能的实现中,如果第一节点是基站,第一节点向第二节点发送时间类型指示。如上所述,由于第二节点向第一节点发送的第一参考信号接收时间t 2和第二参考信号的发送时间t 3可以是绝对时间,也可以是转换时间,第一节点可以提前配置第二节点是发送绝对时间还是转换时间。具体地,第一节点向第二节点发送时间类型指示,时间类型指示用于指示第二节点上报绝对时间或者转换时间。因此,第二节点在向第一节点发送的时间类型指示中包括时间类型指示,以指示所发送的第一参考信号接收时间t 2和第二参考信号的发送时间t 3是相对时间还是转换时间。例如,可以用1比特来进行表示。
在一种可能的实现中,如果第一节点是目标终端,第一节点接收第二节点发送的时间类型指示。具体的时间类型指示如上所述,不再赘述。由于终端在收到第二节点发送第二参考信号后,可以计算得到到达时延TOA和定时误差T offset,第一节点将通过定位协议发送时间类型指示到定位中心。
在一种可能的实现中,如果第一节点是基站,第二节点是目标终端。此时,第一节点可能会接收来自多个基站发送的第一参考信号,第一节点对各个基站的第一参考信号进行测量,针对每个基站都会获得一个(第一参考信号接收时间t 2,第二参考信号的发送时间t 3)对,第二节点将测量得到的每个基站的(第一参考信号接收时间t 2,第二参考信号的发送时间t 3)对发送给第一节点,(第一参考信 号接收时间t 2,第二参考信号的发送时间t 3)对是RS时间信息的一部分。此时,RS时间信息还可以包括每个(第一参考信号接收时间t 2,第二参考信号的发送时间t 3)对所对应的基站信息,基站信息包括:小区识别符(cell identifier,CID),基站标识,参考信号标识中的一种。当然,时间信息还可以包括前述时间类型指示。每个基站的时间类型指示可以相同也可以不同,本申请不做限定。
应理解,上述方案中,到达时延和定时误差不必是必须同时使用的。第一节点也可以通过上述定时误差测量的方法,单独对第二节点进行定时补偿,或者第一节点根据计算获得的定时误差对定时进行补偿,从而提高和第二节点之间的定时精度。定时精度的提高可以有利于数据传输时性能的提升,提高空口传输的频率效率以及资源利用率。
上述实施例中,第二节点将第一参考信号的接收时间t 2和第二参考信号的发送时间t 3发送给第一节点,第一节点可以计算得到TOA,并能消除第一节点和第二节点间的同步误差,允许不同基站之间具有一定的同步误差,简化了系统设计。同时通过计算得到定时误差可以进一步调整第一节点或第二节点的定时,使得节点间的同步更加精确,提高了定位的精度,同时,通过对定时进行补偿,可以提高定时精度,提升数据传输的效率。
上述实施例测量得到的时间,例如t 2是第二节点接收到第一参考信号的时间。但是,通常,信号处理是在基带处理器完成的。因此,得到的时间是基带信号处理完成后得到的时候。而信号通常是从天线接收到,经过射频通道传输到基带,这需要一定的时间。因此,实际在空口传输的时间比实际测量得到的时间要短,因为测量得到的时间包括射频通道的传输时间,而这个时间通常在几十到几百个纳秒,依赖于硬件实现的性能。因此,要实现更精确的测距,上述实施例可以进一步优化。
本申请实施例中,考虑射频通道的传输时延,进一步提升测距的精度。第一节点接收第二节点发送的射频通道处理时延,射频通道处理时延用于所述第一节点进行测距计算。
具体方法是:第二节点向第一节点发送射频通道处理能力。射频通道处理能力包括射频通道处理时间。射频通道处理能力可以通过能力信息发送给第一节点,或者通过RS时间信息发送给第一节点。
当第一节点为基站,第二节点为目标终端时,第二节点可以通过能力上报将射频通道处理时间发送给第一节点,即基站。如果通过能力上报将射频通道处理时间发送给第一节点,则可以采用RRC消息,例如,通过UECapabilityInformation消息来进行传输。本申请对具体的RRC消息不做限制。
第二节点也可以在RS时间信息中发送射频通道处理时间给第一节点。
当第一节点为目标终端,第二节点为基站时,第二节点可以通过系统消息将射频通道处理时间广播给目标终端。具体地,可以在定位系统消息中来进行通知。具体的定位系统消息名称本申请不做限定。定位系统消息可以是一个独立的系统消息块(system information block,SIB),也可以是和其他的系统消息一起形成一个SIB,本申请不做限定。以下是通过系统消息获取射频通道处理时间的方法如图3所示。图3中包括多个第二节点。由于定位可能要借助于多个基站来进行定位测量,因此,第一节点可以获取多个第二节点的定位系统消息。
S301、第一节点向第二节点发送系统消息请求。系统消息请求用于第一节点请求第二节点发送定位系统消息,所述定位系统消息包括所述第二节点的射频通道处理时间,第二节点的射频通道处理时间记为R bs
在一种可能的实现中,第一节点向第二节点发送定位系统消息时,可以分别向每个第二节点发送系统消息请求。系统消息请求的方式同5G定义的系统消息请求相同,本申请不再赘述。
在一种可能的实现中,第一节点仅向服务节点发送系统消息请求,服务节点是多个第二节点中的一个。服务节点进而向相邻的基站(相邻的第二节点)发送定位系统小区请求指示。相邻的基站向服务基站发送系统消息请求响应,系统消息请求响应中可以包括定位系统消息的信息。服务节点向第一 节点发送系统消息请求响应消息,其中可以包括相邻的基站的定位系统消息的信息。定位系统消息的信息包括定位系统消息的持续时间,定位系统消息的起始帧号,定位系统消息的CID中的至少一种。
在一种可能的实现中,第一节点仅向服务节点发送系统消息请求,服务节点是多个第二节点中的一个。服务节点进而向相邻的基站(相邻的第二节点)发送定位系统小区请求指示。相邻的基站向服务基站发送系统消息请求响应,系统消息请求响应中可以包括定位系统消息的信息。服务节点向第一节点发送服务基站以及相邻的基站的定位系统消息。定位系统消息包括每个第二节点的射频通道处理时间以及基站的信息。基站的信息包括CID或基站标识。定位系统消息还可以包括定位系统消息的持续时间和/或定位系统消息的起始帧号。
S302、第二节点向第一节点发送定位系统消息。
定位系统消息中包括第二节点的射频通道处理时间,如上,不再赘述。
S303、第一节点存储定位系统消息。
S304、第一节点根据定位系统消息进行测距。
通过定位系统消息进行测距可以包括多种测距方法,如TOA,TDOA等,本申请不做限定。
在一种可能的实现中,第一节点获得第一节点和第二节点的射频通道处理时延的总和,到达时延TOA的值不包括第一节点和第二节点的射频通道处理时延的总和。
当第一节点接收到第二节点发送第一参考信号接收时间t 2和第二参考信号的发送时间t 3后,根据第一参考信号接收时间t 2,第二参考信号的发送时间t 3,第一节点发送第一参考信号的时间t 1,第一节点接收的第二参考信号的到达时间t 4,所述定位系统消息中包含的第二节点的射频通道处理时间R bs,第一节点的射频通道处理时间R ue计算到达时延TOA和定时误差T offset。计算方法如下:
到达时延:
Figure PCTCN2019106111-appb-000011
定时误差:
Figure PCTCN2019106111-appb-000012
其中,(R bs+R ue)为第一节点和第二节点的射频通道处理时延的总和。到达时延TOA的值不包括第一节点和第二节点的射频通道处理时延的总和是指根据上述公式
Figure PCTCN2019106111-appb-000013
Figure PCTCN2019106111-appb-000014
计算到达时延。
在一种可能的实现中,第一节点也可以不需要通过定位系统消息获取第二节点的射频通道处理时延。而是通过获取第二节点的全球定位系统(global positioning system,GPS)的位置信息,估算第一节点和第二节点的射频通道处理时延的总和。这一过程可以在任何时候进行,而不必局限于在启动定位业务时才需要。当第一节点作为基站时,通过获取目标终端的GPS信息以及第二节点接收第一参考信号的时间和发送第二参考信号的时间,从而确定第一节点和第二节点的射频通道处理时延的总和。具体方法在后面进行说明,此处不再赘述。如果第一节点是目标终端,则第二节点通过同样的方法确定第一节点和第二节点的射频通道处理时延的总和,并将第一节点和第二节点的射频通道处理时延的总和发送给目标终端,可以通过专有信令发送给目标终端,本申请对具体的信令不做约束。应理解,如果通过这一方法获取第一节点和第二节点的射频通道处理时延的总和,不必依赖于系统消息。
在一种可能的实现中,第一节点获取多个第二节点的定位系统消息,定位系统消息包含第二节点的射频通道处理时间,所述多个第二节点至少包含一个服务节点。第一节点接收多个第二节点发送的参考信号,发送参考信号的多个第二节点中至少有一个服务节点。第一节点根据每个第二节点的射频通道处理时间计算一个或多个第二节点和服务节点的到达时间差。
在一种可能的实现中,当第一节点从一个小区移动到另一个小区时,重新获取定位系统消息。或者,第一节点可以周期性更新定位系统消息,还可以是非周期性更新定位系统消息,依赖于具体的实现。例如,当定位系统消息变更时,第二节点会主动发送信息给第一节点,触发第一节点进行定位系统消息更新。
应理解,上述步骤S301-S304并不具有必然的依赖关系。例如,步骤S302并不依赖于步骤S301。第二节点可以主动发送定位系统消息。而步骤S304也不依赖于步骤S302,可以根据存储的定位系统消息进行测距等。
应理解,上述通过定位系统消息来获取第二节点的射频通道处理时间的方法可以不依赖于前述实施例来实施,可以通过定位系统消息广播射频通道处理时间来进一步提高多种定位方法的定位精度。
上述实施例中,射频通道处理时间可以通过多种方法获得。以下实施例具体说明射频通道处理时间的获取方式。
在一种可能的实现中,第一节点或第二节点通过设备测试或获得射频通道的处理时间,作为设备本身的一个属性而存储在设备中。第一节点或第二节点直接使用该参数作为射频通道处理时间进行使用。
在一种可能的实现中,如果第一节点是目标终端,基站接收来自目标终端的位置信息,如全球定位系统(global positioning system,GPS)的信息,基站通过计算目标终端的GPS位置和基站之间的距离,并可以计算得到基站的射频通道处理时间和目标终端的射频通道处理时间的总和。
如果第一节点是基站,那么基站就可以通过计算得到的基站的射频通道处理时间和目标终端的射频通道处理时间的总和确定更精确的TOA,计算方法通过前述公式
Figure PCTCN2019106111-appb-000015
Figure PCTCN2019106111-appb-000016
进行计算,不再赘述。
具体地,假定第一节点是基站,第二节点为目标终端,目标终端将GPS信息(x 1,y 1)发送给基站,假定基站的GPS坐标为(x 2,y 2),那么基站可以根据下述公式计算得到基站的射频通道处理时间和目标终端的射频通道处理时间的总和:
Figure PCTCN2019106111-appb-000017
或者:
Figure PCTCN2019106111-appb-000018
其中C是光速常量,为3×10 8米/秒(m/s)。
如果第一节点是目标终端,基站可以将计算得到的基站的射频通道处理时间和目标终端的射频通道处理时间的总和发送给目标终端,目标终端从而可以计算更精确的TOA,计算方法如上所述,不再赘述。目标终端将计算得到的TOA通过LPP或NRPP发送给定位服务器,方法如前所述,不再赘述。
一种相对简单的计算射频通道处理时间的方法是均值法或者按比例分配法。均值法是认为基站的射频通道处理时间和目标终端的射频通道处理时间相等,因此很容易得到射频通道处理时间。按比例分配法就是将计算得到的基站的射频通道处理时间和目标终端的射频通道处理时间的总和按一定比例分配给基站和目标终端,这种分配可能是基于经验的方法。例如,基站的射频通道处理时间是基站和目标终端的射频通道处理时间总和60%。
应理解,以上只是一个示例性的射频通道处理时间的计算方法,本申请并不限定获得射频通道处理时间的实现。
上述方法通过获取射频通道处理时间,可以有效提高定位精度,减小射频通道处理时间造成的误差。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如第一节点、第二节点,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的网元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算 机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一节点、第二节点进行功能模块的划分,例如,可以划分成各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图4为本申请的提供的上述实施例中所涉及的第一节点的一种可能的结构示意图。第一节点包括接收单元401,处理单元402。接收单元401,用于支持第一节点执行图2中S202或S203、图3中的S302;处理单元402,用于支持第一节点执行图2中的S204、图3中的S303或S304。第一节点还包括发送单元403,用于支持第一节点执行图2中的S201、图3中的S301。
在硬件实现上,上述接收单元401可以为接收器,发送单元402可以为发送器,也可以是接收单元401和发送单元402合并为收发器,接收器和发送器集成在通信单元中构成通信接口。
图5为本申请的实施例提供的上述实施例中所涉及的第一节点的一种可能的逻辑结构示意图。第一节点包括:处理器502。在本申请的实施例中,处理器502用于对该第一节点的动作进行控制管理,例如,处理器502用于支持第一节点执行前述实施例中图2中的S204、图3中S303或S304,所述处理器502还用于支持第一节点执行对前述实施例中通信单元接收或发送的消息的处理,例如,对接收的参考信号进行基带处理,对接收的包括RRC或MAC CE的数据进行处理,对接收的系统消息进行协议处理。可选的,第一节点还可以包括:存储器501和通信接口503;处理器502、通信接口503以及存储器501可以相互连接或者通过总线504相互连接。其中,通信接口503用于支持该第一节点进行通信,存储器501用于存储第一节点的程序代码和数据。处理器502调用存储器501中存储的代码进行控制管理。该存储器501可以跟处理器耦合在一起,也可以不耦合在一起。
其中,处理器502可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线504可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图6为本申请的提供的上述实施例中所涉及的第二节点的一种可能的结构示意图。在本申请中,第二节点可以为目标终端或基站。第二节点包括:处理单元602和发送单元603。其中,发送单元603用于支持第二节点执行图2中的S202或S203、图3中的步骤S302;处理单元602,用于支持前述实施例中第二节点执行确定第一参考信号的接收时间以及第二参考信号的发送时间,以及用于支持第二节点生成RS时间信息以及确定系统消息的发送。第二节点还可以包括:接收单元601用于支持第二节点执行图2中的S201、图3中的步骤S301。
在硬件实现上,上述接收单元601可以为接收器,发送单元603可以为发送器,接收器和发送器集成在通信单元中构成通信接口。
图7为本申请的实施例提供的上述实施例中所涉及的第二节点的一种可能的逻辑结构示意图。第二节点包括:处理器702。在本申请的实施例中,处理器702用于对该第二节点的动作进行控制管理,例如,处理器702用于支持第二节点执行前述实施例中第二节点执行确定第一参考信号的接收时间以及第二参考信号的发送时间,以及用于支持第二节点生成RS时间信息以及确定系统消息的发送。可 选的,第二节点还可以包括:存储器701和通信接口703;处理器702、通信接口703以及存储器701可以相互连接或者通过总线704相互连接。其中,通信接口703用于支持该第二节点进行通信,存储器701用于存储第二节点的程序代码和数据。处理器702调用存储器701中存储的代码进行控制管理。该存储器701可以跟处理器耦合在一起,也可以不耦合在一起。
其中,处理器702可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线704可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请的另一实施例中,还提供一种可读存储介质,可读存储介质中存储有计算机执行指令,当一个设备(可以是单片机,芯片等)或者处理器执行图2或图3所提供的时间同步的方法中第一节点或第二节点的步骤时,读取存储介质中的计算机执行指令。前述的可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备实施图2或图3所提供的时间同步的方法中第一节点、第二节点的步骤。
在本申请的另一实施例中,还提供一种通信系统,该通信系统至少包括第一节点、第二节点。其中,第一节点可以为图4或图5所提供的第一节点,用于执行图2或图3所提供的时间同步的方法中第一节点的步骤;和/或,第二节点可以为图6或图7所提供的第二节点,且用于执行图2或图3所提供的时间同步的方法中由第二节点执行的步骤。应理解,该通信系统可以包括多个第二节点,第一节点可以同时对多个第二节点进行测距,并保持和其中的服务节点进行时间同步。
在本申请实施例中,当第一节点从第二节点获得第一参考信号的接收时间和第二参考信号的发送时间后,可以根据第一参考信号的接收时间,第二参考信号的发送时间,以及第一节点发送第一参考信号的时间,第一节点接收第二参考信号的时间确定到达时延以及定时误差,解决了无线定位系统中由于基站和目标终端之间的定时不严格同步而带来的定位误差的问题。更进一步,通过对第一节点和第二节点的射频通道处理时延的测量,可以进一步提高定位精度。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种无线通信系统中的时间同步方法,所述无线通信系统包括第一节点和第二节点,其特征在于,包括:
    所述第一节点发送第一参考信号到所述第二节点,接收所述第二节点发送的所述第一参考信号到达所述第二节点的到达时间t 2
    所述第一节点接收所述第二节点发送的第二参考信号和发送所述第二参考信号的发送时间t 3
    所述第一节点根据所述第一参考信号到达时间t 2、所述第二参考信号发送时间t 3、所述第一节点发送所述第一参考信号的发送时间t 1以及所述第一节点接收的所述第二参考信号的到达时间t 4计算到达时延TOA和定时误差T offset
    所述到达时延TOA包括所述第二节点发送第一信号到所述第一节点收到所述第二节点发送的所述第一信号的时间的差值或所述第一节点发送第二信号到所述第二节点收到所述第一节点发送的所述第二信号的时间的差值,所述定时误差T offset包括所述第一节点和所述第二节点的帧或时隙同步的偏差,所述第一信号包括所述第二参考信号,所述第二信号包括所述第二参考信号。
  2. 根据权利要求1所述的方法,其特征在于,所述到达时延TOA根据以下公式确定:
    Figure PCTCN2019106111-appb-100001
    所述定时误差T offset根据以下公式确定:
    Figure PCTCN2019106111-appb-100002
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一节点通过物理下行共享信道PDSCH,或者物理上行共享信道PUSCH,或者媒体接入控制层控制信令MAC CE,或者无线资源控制消息RRC,或者长期演进定位协议LPP/新空口定位协议NRPP接收所述第一参考信号到达时间t 2和所述第二参考信号发送时间t 3
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一参考信号包括以下中的至少一种:定位参考信号PRS,信道状态信息参考信号CSI-RS,相位跟踪参考信号PTRS,解调参考信号DMRS或同步信号块SSB;
    所述第二参考信号包括以下参考信号中的至少一种:探测参考信号SRS或解调参考信号DMRS。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一参考信号包括以下中的至少一种:探测参考信号SRS或解调参考信号DMRS;
    所述第二参考信号包括以下参考信号中的至少一种:定位参考信号PRS,信道状态信息参考信号CSI-RS,相位跟踪参考信号PTRS,解调参考信号DMRS或同步信号块SSB。
  6. 根据权利要求4所述的方法,其特征在于,包括:
    所述第一节点向所述第二节点发送所述定时误差T offset,所述定时误差T offset用于所述第二节点补偿定时。
  7. 根据权利要求5所述的方法,其特征在于,包括:
    所述第一节点根据所述定时误差T offset对所述第一节点进行补偿定时。
  8. 根据权利要求1-4或6任一项所述的方法,其特征在于,包括:
    所述第一节点向所述第二节点发送时间类型指示,所述时间类型指示用于指示所述第二节点上报绝对时间或者转换时间。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,包括:
    所述第一节点进一步获得所述第一节点和所述第二节点的射频通道处理时延的总和;
    所述第一节点根据以下公式计算所述到达时延:
    Figure PCTCN2019106111-appb-100003
    所述第一节点根据以下公式计算所述定时误差:
    Figure PCTCN2019106111-appb-100004
    其中R bs为基站的射频通道处理时延,R ue为目标终端的射频通道处理时延,所述第一节点为基站,所述第二节点为目标终端。
  10. 根据权利要求1-8任一项所述的方法,其特征在于,包括:
    所述第一节点接收所述第二节点发送的射频通道处理时延,所述射频通道处理时延用于所述第一节点进行测距计算。
  11. 一种第一节点,其特征在于,包括:
    接收单元,用于接收第二节点发送的第一参考信号到达时间t 2和第二参考信号发送时间t 3,所述第一参考信号为第一节点发送的,所述第二参考信号为第二节点发送的;
    处理单元,用于根据所述第一参考信号到达时间t 2,所述第二参考信号发送时间t 3,所述第一节点发送所述第一参考信号的时间t 1,所述第一节点接收的所述第二参考信号的到达时间t 4计算到达时延TOA和定时误差T offset
  12. 根据权利要求11所述的第一节点,其特征在于,所述到达时延TOA根据以下公式确定:
    Figure PCTCN2019106111-appb-100005
    所述定时误差T offset根据以下公式确定:
    Figure PCTCN2019106111-appb-100006
  13. 根据权利要求11或12所述的第一节点,其特征在于,所述第一节点通过物理层共享信道PDSCH,或者媒体接入控制层控制信令MAC CE,或者无线资源控制消息RRC接收所述第一参考信号到达时间t 2和所述第二参考信号发送时间t 3
  14. 根据权利要求11-13任一项所述的第一节点,其特征在于,所述第一参考信号包括以下信息中的至少一种:定位参考信号PRS,信道状态信息参考信号CSI-RS,相位跟踪参考信号PTRS,解调参考信号DMRS,同步信号块SSB;
    所述第二参考信号包括以下参考信号中的至少一种:探测参考信号SRS,解调参考信号DMRS。
  15. 根据权利要求11-13任一项所述的第一节点,其特征在于,所述第一参考信号包括以下信息中的至少一种:探测参考信号SRS,解调参考信号DMRS;
    所述第二参考信号包括以下参考信号中的至少一种:定位参考信号PRS,信道状态信息参考信号CSI-RS,相位跟踪参考信号PTRS,解调参考信号DMRS,同步信号块SSB。
  16. 根据权利要求14所述的第一节点,其特征在于,还包括:
    发送单元,用于向所述第二节点发送所述定时误差T offset,所述定时误差T offset用于所述第二节点补偿定时。
  17. 根据权利要求14所述的第一节点,其特征在于,所述处理单元,还用于根据所述定时误差T offset对所述第一节点补偿定时。
  18. 根据权利要求11-14任一项所述的第一节点,其特征在于,还包括:
    发送单元,用于向所述第二节点发送时间类型指示,所述时间类型指示用于指示所述第二节点上报绝对时间或者转换时间。
  19. 根据权利要求11-14任一项所述的第一节点,其特征在于,所述接收单元,还用于接收所述第二节点发送的射频通道处理时延,所述射频通道处理时延用于所述第一节点进行测距计算。
  20. 一种设备,其特征在于,所述设备包括存储器、处理器,所述存储器中存储代码和数据,所述存储器与所述处理器耦合,所述处理器运行所述存储器中的代码使得所述设备执行权利要求1-10任一项所述的时间同步的方法。
  21. 一种可读存储介质,其特征在于,所述可读存储介质中存储有指令,当所述可读存储介质在设备上运行时,使得所述设备执行权利要求1-10任一项所述的时间同步的方法。
  22. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行权利要求1-10任一项所述的时间同步的方法。
PCT/CN2019/106111 2018-09-28 2019-09-17 一种时间同步的方法和装置 WO2020063393A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19865912.0A EP3832913A4 (en) 2018-09-28 2019-09-17 TIME SYNCHRONIZATION PROCESS AND DEVICE
US17/213,827 US12004105B2 (en) 2018-09-28 2021-03-26 Time synchronization method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811137936.3 2018-09-28
CN201811137936.3A CN110971326B (zh) 2018-09-28 2018-09-28 一种时间同步的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/213,827 Continuation US12004105B2 (en) 2018-09-28 2021-03-26 Time synchronization method and apparatus

Publications (1)

Publication Number Publication Date
WO2020063393A1 true WO2020063393A1 (zh) 2020-04-02

Family

ID=69951187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106111 WO2020063393A1 (zh) 2018-09-28 2019-09-17 一种时间同步的方法和装置

Country Status (3)

Country Link
EP (1) EP3832913A4 (zh)
CN (1) CN110971326B (zh)
WO (1) WO2020063393A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022055772A3 (en) * 2020-09-11 2022-05-05 Qualcomm Incorporated Methods and apparatus for enhanced time difference of arrival based positioning for user equipment
WO2022211906A1 (en) * 2021-03-31 2022-10-06 Qualcomm Incorporated Embedding timing group information in reference signals for positioning
EP4175375A4 (en) * 2020-06-29 2023-12-06 Datang Mobile Communications Equipment Co., Ltd. POSITIONING METHOD AND APPARATUS

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111447674A (zh) * 2020-04-03 2020-07-24 南京大鱼半导体有限公司 节点的同步方法、装置、存储介质和节点
CN114071692B (zh) * 2020-08-07 2023-08-01 大唐移动通信设备有限公司 发送通道时延的校正方法、装置及存储介质
CN112333643B (zh) * 2020-11-16 2021-12-31 武汉大学 5g下行信号的无线定位方法、系统、介质及智能终端
CN115119256A (zh) * 2021-03-18 2022-09-27 维沃移动通信有限公司 时间误差组指示方法、装置、终端及网络侧设备
CN115175303A (zh) * 2021-04-02 2022-10-11 大唐移动通信设备有限公司 定位方法、装置及可读存储介质
WO2022236208A2 (en) * 2021-05-05 2022-11-10 Qualcomm Incorporated Signaling details for timing error group (teg) reporting
CN113438727B (zh) * 2021-06-28 2022-06-21 展讯通信(上海)有限公司 基于ssb和trs的时偏估计方法、装置、终端和存储介质
DE102021116893A1 (de) * 2021-06-30 2023-01-05 Sennheiser Electronic Gmbh & Co. Kg Verfahren und Vorrichtung zur drahtlosen Synchronisation von Mobilgeräten
CN116699513A (zh) * 2022-02-28 2023-09-05 华为技术有限公司 测距方法、装置、系统及可读存储介质
CN115914989A (zh) * 2022-06-10 2023-04-04 中兴通讯股份有限公司 定位方法、系统、设备、存储介质及程序产品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123468A (zh) * 2006-08-08 2008-02-13 大唐移动通信设备有限公司 一种实现基站间空口同步的方法及系统
CN105682225A (zh) * 2016-03-28 2016-06-15 广东顺德中山大学卡内基梅隆大学国际联合研究院 超宽带室内定位方法与系统
CN105954744A (zh) * 2016-04-21 2016-09-21 北京科技大学 一种双向测距方法及系统
US20170195109A1 (en) * 2016-01-06 2017-07-06 Alcatel-Lucent Usa Inc. Method and apparatus for over-the-air anchor-anchor synchronization
CN107105498A (zh) * 2016-02-22 2017-08-29 华为技术有限公司 定位方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030026182A1 (en) * 2001-08-06 2003-02-06 Fischer Michael C. Method and system for write clock synchronization in a data storage system
US20120246265A1 (en) * 2009-08-13 2012-09-27 Nokia Corporation Time synchronization in wireless networks
US9432809B2 (en) * 2013-07-12 2016-08-30 Qualcomm Incorporated Providing OTDOA PRS assistance data
CN104349450A (zh) * 2013-07-30 2015-02-11 上海贝尔股份有限公司 一种时钟同步的方法及装置
WO2016032308A1 (ko) * 2014-08-29 2016-03-03 엘지전자 주식회사 무선 통신 시스템에서 otdoa 관련 동작 수행 방법
EP3255449B1 (en) * 2015-05-29 2019-08-07 Huawei Technologies Co., Ltd. Acquisition method and device of time of arrival for positioning mobile terminal
US11567164B2 (en) * 2016-12-01 2023-01-31 U-Blox Ag Intercepting an uplink signal to assist in timing or positioning calculations
CN106488550B (zh) * 2016-12-20 2019-11-12 华为技术有限公司 确定终端与基站时钟时间偏差的方法与装置
CN108988972B (zh) * 2017-06-02 2020-04-28 华为技术有限公司 一种时钟同步方法及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123468A (zh) * 2006-08-08 2008-02-13 大唐移动通信设备有限公司 一种实现基站间空口同步的方法及系统
US20170195109A1 (en) * 2016-01-06 2017-07-06 Alcatel-Lucent Usa Inc. Method and apparatus for over-the-air anchor-anchor synchronization
CN107105498A (zh) * 2016-02-22 2017-08-29 华为技术有限公司 定位方法和装置
CN105682225A (zh) * 2016-03-28 2016-06-15 广东顺德中山大学卡内基梅隆大学国际联合研究院 超宽带室内定位方法与系统
CN105954744A (zh) * 2016-04-21 2016-09-21 北京科技大学 一种双向测距方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3832913A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4175375A4 (en) * 2020-06-29 2023-12-06 Datang Mobile Communications Equipment Co., Ltd. POSITIONING METHOD AND APPARATUS
WO2022055772A3 (en) * 2020-09-11 2022-05-05 Qualcomm Incorporated Methods and apparatus for enhanced time difference of arrival based positioning for user equipment
WO2022211906A1 (en) * 2021-03-31 2022-10-06 Qualcomm Incorporated Embedding timing group information in reference signals for positioning

Also Published As

Publication number Publication date
US20210219254A1 (en) 2021-07-15
EP3832913A1 (en) 2021-06-09
CN110971326A (zh) 2020-04-07
EP3832913A4 (en) 2021-10-27
CN110971326B (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2020063393A1 (zh) 一种时间同步的方法和装置
US20220321293A1 (en) Signal communication method and device
WO2020164334A1 (zh) 信号传输的方法与装置
WO2020119727A1 (zh) 一种测量上报的方法及装置
US20230194648A1 (en) Method for positioning, terminal, and network-side device
WO2017190274A1 (zh) 一种资源分配方法、网络侧设备和终端设备
CN111082907B (zh) 一种确定参考信号的测量值的方法及装置
TWI801768B (zh) 時鐘偏差確定方法及裝置
WO2014056172A1 (zh) 定位方法和装置
US11949621B2 (en) System and method for phase noise-based signal design for positioning in a communication system
TWI760931B (zh) 資訊傳輸方法、裝置及電腦存儲介質
CN115278765A (zh) 信号传输方法及装置
WO2024087612A1 (zh) 用于定位的方法及装置
WO2020156343A1 (zh) 一种时钟同步方法及设备
WO2021046820A1 (zh) 一种测量上报方法及装置
WO2020029873A1 (zh) 通信方法、装置和通信系统
CN111586833A (zh) 一种定位方法、装置、终端、基站及管理功能实体
US12004105B2 (en) Time synchronization method and apparatus
WO2021159262A1 (zh) 定时提前量的阈值调整方法及装置
KR20210147023A (ko) 포지셔닝 측정치를 결정하기 위한 방법 및 장치
CN114503703A (zh) 基于前导码的定位方法和设备
WO2024031590A1 (zh) 用于定位的无线通信方法、装置、设备、系统及存储介质
WO2023045741A1 (zh) 定位方法及装置、可读存储介质
WO2023221931A1 (zh) 用于定位的方法和装置
TWI784342B (zh) 時鐘偏差確定方法、計算設備及電腦存儲介質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865912

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019865912

Country of ref document: EP

Effective date: 20210303

NENP Non-entry into the national phase

Ref country code: DE