WO2020062802A1 - 显示面板及像素电路的驱动方法 - Google Patents

显示面板及像素电路的驱动方法 Download PDF

Info

Publication number
WO2020062802A1
WO2020062802A1 PCT/CN2019/078925 CN2019078925W WO2020062802A1 WO 2020062802 A1 WO2020062802 A1 WO 2020062802A1 CN 2019078925 W CN2019078925 W CN 2019078925W WO 2020062802 A1 WO2020062802 A1 WO 2020062802A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
signal
scan signal
scan
emission control
Prior art date
Application number
PCT/CN2019/078925
Other languages
English (en)
French (fr)
Inventor
朱正勇
贾溪洋
朱晖
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Publication of WO2020062802A1 publication Critical patent/WO2020062802A1/zh
Priority to US16/846,398 priority Critical patent/US10916199B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel and a driving method of a pixel circuit.
  • An organic light emitting display is a display that uses an organic light-emitting diode (OLED) as a light-emitting device. Compared with Thin Film Transistor-Liquid Crystal Display (TFT-LCD), organic light-emitting displays have the advantages of high contrast, wide viewing angle, low power consumption, and small size.
  • the brightness of an OLED is determined by the amount of current generated by a Thin Film Transistor (TFT) circuit.
  • An active matrix organic light emitting diode (Active-Matrix Organic Light Emitting Diode, AMOLED for short) can be driven by a driving circuit outputting a data voltage, and the data voltage is directly written into the pixel circuit to control the brightness of the pixel.
  • AMOLED Active-Matrix Organic Light Emitting Diode
  • the present application provides a driving method for a display panel and a pixel circuit.
  • a display panel includes:
  • a scan driver for supplying a scan signal to a corresponding scan signal line;
  • the scan signal includes a first scan signal, a second scan signal, and a third scan signal;
  • a light emission control driver for supplying a light emission control signal to a corresponding light emission control signal line
  • a data driver for supplying a data voltage Vdata to a data signal line
  • a pixel unit is provided at a crossing position of the scanning signal line, the light emission control signal line, and the data signal line.
  • the pixel unit includes a plurality of pixels and a pixel circuit corresponding to each pixel; each pixel circuit Including a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor, a sixth transistor, a seventh transistor, a capacitor, and an organic light emitting diode;
  • a control terminal of the fourth transistor is used to input the first scanning signal, and a first pole of the fourth transistor is connected to a second pole of the third transistor, a control terminal of the first transistor, and the capacitor. One end of the capacitor, and the other end of the capacitor is connected to the first pole of the fifth transistor; the second pole of the fourth transistor is used to input a first reference voltage;
  • a control terminal of the fifth transistor is used to input the light emission control signal; a first pole of the fifth transistor is used to input the first power supply voltage; a second pole of the fifth transistor is connected to the first A first pole of a transistor and a second pole of the second transistor;
  • a second pole of the first transistor is connected to a first pole of the third transistor and a first pole of the sixth transistor; a control terminal of the third transistor is used to input the second scanning signal;
  • a control terminal of the second transistor is used to input the second scan signal, and a first electrode of the second transistor is used to input the data voltage Vdata;
  • a control terminal of the sixth transistor is used to input the light emission control signal, and a second pole of the sixth transistor is connected to a first pole of the seventh transistor;
  • a control terminal of the seventh transistor is used to input the third scanning signal, a first pole of the seventh transistor is connected to an anode of the organic light emitting diode; a second pole of the seventh transistor is used to input a second Reference voltage
  • the cathode of the organic light emitting diode is used to input a second power supply voltage.
  • the first scan signal is provided by a first scan drive circuit in the scan driver
  • the second scan signal is provided by a second scan drive circuit in the scan driver.
  • the three scan signals are provided by a third scan driving circuit in the scan driver.
  • the second pole of the fourth transistor is connected to the second pole of the seventh transistor, and the first reference voltage is equal to the second reference voltage.
  • the second reference voltage is smaller than the second power voltage.
  • the first scan signal, the second scan signal, and the third scan signal have different timings from each other; the low-level of the light emission control signal and the first scan signal There is no overlap in the duration; and there is overlap in the low-level duration of the light emission control signal and the third scan signal.
  • the first transistor, the second transistor, the third transistor, the fourth transistor, the fifth transistor, the sixth transistor, and the seventh transistor are all P-type thin film transistors.
  • the capacitor is an energy storage capacitor.
  • the second transistor, the third transistor, the fourth transistor, the fifth transistor, the sixth transistor, and the seventh transistor are all switching transistors, and the first transistor is a driving transistor.
  • the plurality of pixels are arranged in an array.
  • control terminal of each transistor is the gate of the transistor, the source of the first pole of each transistor, and the drain of the second pole of each transistor.
  • the first transistor, the second transistor, the third transistor, the fourth transistor, the fifth transistor, the sixth transistor, and the seventh transistor include a low temperature polysilicon thin film transistor, an oxide semiconductor thin film transistor, and Any of amorphous silicon thin film transistors.
  • a driving method of a pixel circuit the pixel circuit being a pixel circuit in a display panel according to claim 1, the driving method comprising:
  • the first scanning signal and the second scanning signal are set as high-level signals, and the third scanning signal and the light-emitting control signal are set as low-level signals;
  • the first scan signal, the second scan signal, and the light emission control signal are set as high-level signals, and the third scan signal is set as a low-level signal;
  • the first scan signal is set as a low-level signal, and the second scan signal, the third scan signal, and the light-emission control signal are set as high-level signals;
  • the first reference voltage initializes the first A control terminal of a transistor;
  • the first scan signal, the third scan signal, and the light emission control signal are set as high-level signals, and the second scan signal is set as a low-level signal;
  • the data voltage Vdata writes the compensation voltage capacitance;
  • the first scan signal, the second scan signal, and the third scan signal are set as high-level signals, and the light-emission control signal is set as a low-level signal; a first power supply voltage is provided to the organic A light emitting diode to make the organic light emitting diode emit light.
  • a seventh transistor is turned on by the third scan signal, and a second reference voltage initializes an anode of the organic light emitting diode.
  • the fifth transistor is turned off by the light emission control signal
  • the second transistor is turned on by the second scan signal
  • the control terminal of the first transistor and the capacitance of The potentials of the second plates connected to the control terminal of the first transistor are all equal to Vdata-
  • a driving method of a pixel circuit the pixel circuit being a pixel circuit in a display panel according to claim 1, the driving method comprising:
  • the first scanning signal is set as a low-level signal, and the second scanning signal, the third scanning signal, and the light emission control signal are set as high-level signals;
  • the first reference voltage initializes the control terminal of the first transistor;
  • the first scan signal, the third scan signal, and the light emission control signal are set as high-level signals, and the second scan signal is set as a low-level signal;
  • the data voltage Vdata writes a compensation voltage capacitance;
  • the first scan signal, the second scan signal, and the light emission control signal are set as high-level signals, and the third scan signal is set as a low-level signal;
  • the first scan signal and the second scan signal are set as high-level signals, and the third scan signal and the light emission control signal are set as low-level signals;
  • the first scan signal, the second scan signal, and the third scan signal are set as high-level signals, and the light-emission control signal is set as a low-level signal; a first power supply voltage is provided to the organic A light emitting diode to make the organic light emitting diode emit light.
  • the fifth transistor is turned off by the light emission control signal
  • the second transistor is turned on by the second scan signal
  • the control terminal of the first transistor and the capacitance of The potentials of the second plates connected to the control terminal of the first transistor are all equal to Vdata-
  • a seventh transistor is turned on by the third scan signal, and a second reference voltage initializes an anode of the organic light emitting diode.
  • the display panel includes a scan driver, a light emission control driver, a data driver, and a pixel unit provided at a crossing position of the scan signal line, the light emission control signal line, and the data signal line.
  • the pixel unit includes A plurality of pixels and a pixel circuit corresponding to each pixel.
  • Each pixel circuit includes a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor, a sixth transistor, a seventh transistor, a capacitor, and an organic light emitting diode.
  • the first scan signal applied to the control terminal of the fourth transistor, the second scan signal applied to the control terminal of the second transistor, and the third scan signal applied to the control terminal of the seventh transistor may be provided by different scan driving circuits in the scan driver, respectively. .
  • the seventh transistor is turned on by the third scanning signal, and the second reference voltage initializes the anode of the organic light emitting diode; the fifth transistor is turned off by the light emitting control signal so that no current flows through the first transistor Therefore, the technical problem of rapid aging of the driving thin film transistor is solved, and the power consumption of the circuit is reduced and the service life of the driving thin film transistor is increased.
  • FIG. 1 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • FIG. 2 is a circuit diagram of a pixel circuit in an embodiment of the present application.
  • FIG. 3 is a circuit diagram of a pixel circuit using a P-type thin film transistor in an embodiment of the present application
  • FIG. 4 is a timing diagram of a driving method in an embodiment of the present application.
  • FIG. 5 is a timing diagram of a driving method in another embodiment of the present application.
  • the present application provides a display panel including:
  • the scan driver 110 is configured to provide a scan signal to a corresponding scan signal line; the light emission control driver 120 is configured to provide a light control signal to a corresponding light control signal line; and the data driver 130 is configured to provide a data voltage to a corresponding Data signal line.
  • the display panel further includes a pixel unit, which is disposed at the intersection of the scanning signal line, the light emission control signal line, and the data signal line.
  • the pixel unit includes a plurality of pixels and a pixel circuit corresponding to each pixel.
  • the scan driver 110 connects a plurality of pixels PX11 to PXnm arranged in a matrix form through the scan signal lines S1 to Sn.
  • the pixels PX11 to PXnm are also connected to the light emission control signal lines E1 to En, and are connected to the light emission control driver 120 through the light emission control signal lines E1 to En.
  • the pixels PX11 to PXnm are also connected to the data signal lines D1 to Dm, and are connected to the data driver 130 through the data signal lines D1 to Dm.
  • the light emission control signal lines E1 to En are substantially parallel to the scanning signal lines S1 to Sn.
  • the light emission control signal lines E1 to En are substantially perpendicular to the data signal lines D1 to Dm.
  • each pixel circuit includes a first transistor T1, a second transistor T2, a third transistor T3, a fourth transistor T4, a fifth transistor T5, a sixth transistor T6, a seventh transistor T7, a capacitor C1, and an organic light emitting diode.
  • Diode OLED The first to seventh transistors T1 to T7 each include a control terminal, a first electrode, and a second electrode.
  • the control terminal of the fourth transistor T4 is used to input a first scanning signal.
  • the first pole of the fourth transistor T4 is connected to the second pole of the third transistor T3, the control terminal of the first transistor T1, and the capacitor C1, and the capacitor C1.
  • the other end is connected to the first pole of the fifth transistor T5; the second pole of the fourth transistor T4 is used to input the first reference voltage Vref1.
  • the control terminal of the fifth transistor T5 is used to input the light-emitting control signal; the first pole of the fifth transistor T5 is used to input the first power supply voltage VDD; the second pole of the fifth transistor T5 is connected to the first pole and the first pole of the first transistor T1. The second pole of the two transistor T2.
  • the second pole of the first transistor T1 is connected to the first pole of the third transistor T3 and the first pole of the sixth transistor T6; the control terminal of the third transistor T3 is used to input a second scanning signal.
  • the control terminal of the second transistor T2 is used to input a second scan signal, and the first pole of the second transistor T2 is used to input a data voltage Vdata.
  • the control terminal of the sixth transistor T6 is used to input a light-emitting control signal, and the second pole of the sixth transistor T6 is connected to the first pole of the seventh transistor T7.
  • the control terminal of the seventh transistor T7 is used to input a third scanning signal.
  • the first electrode of the seventh transistor T7 is connected to the anode of the organic light emitting diode OLED.
  • the second electrode of the seventh transistor T7 is used to input the second reference voltage Vref2.
  • the cathode of the organic light emitting diode OLED is used to input a second power supply voltage VSS.
  • the first scan signal, the second scan signal, and the third scan signal are respectively provided by different scan driving circuits in the scan driver.
  • the first scan signal is provided by a first scan drive circuit in the scan driver
  • the second scan signal is provided by a second scan drive circuit in the scan driver
  • the third scan signal is provided by A third scan driving circuit is provided in the scan driver.
  • the second transistor T2, the third transistor T3, the fourth transistor T4, the fifth transistor T5, the sixth transistor T6, and the seventh transistor T7 are switching transistors in a pixel circuit.
  • the first transistor T1 is a driving transistor in a pixel circuit.
  • the capacitor C1 is an energy storage capacitor, and is connected between the control terminal of the first transistor T1 and the first pole of the first transistor T1.
  • the first scan signal SCAN1 controls the off or on of the fourth transistor T4
  • the third scan signal SCAN3 controls the off or on of the seventh transistor T7
  • the second scan signal SCAN2 controls the second transistor T2
  • the first The three transistors T3 are turned off or on.
  • the light emission control signal EM controls the fifth transistor T5 and the sixth transistor T6 to be turned off or on.
  • the fourth transistor T4 is turned on
  • the first reference voltage Vref1 initializes the control terminal of the first transistor T1 via the fourth transistor T4.
  • the second reference voltage Vref2 initializes the anode of the organic light emitting diode OLED via the seventh transistor T7.
  • the first power supply voltage VDD is applied to the organic light emitting diode OLED via the fifth transistor T5, the first transistor T1, and the sixth transistor T6, and the organic light emitting diode OLED emits light.
  • the second reference voltage Vref2 initializes the anode of the organic light emitting diode OLED.
  • the fifth transistor T5 is turned off by the light emission control signal, so a current path from the power supply terminal supplying the first power supply voltage VDD through the first transistor T1 to the power supply terminal supplying the second reference voltage Vref2 is not formed, thereby reducing the circuit power consumption and delaying
  • the aging of the first transistor T1 further solves the technical problem of rapid aging of the driving thin film transistor.
  • the first scan signal applied to the control terminal of the fourth transistor T4, the second scan signal applied to the control terminal of the second transistor T2, and the third scan signal applied to the control terminal of the seventh transistor T7 are different from each other in the scan driver.
  • the scan drive circuit is provided, thereby reducing the output load of different scan drive circuits in the scan driver, and ensuring the accuracy of the scan signals output by each scan drive circuit.
  • the second pole of the fourth transistor T4 is connected to the second pole of the seventh transistor T7, and the first reference voltage Vref1 is equal to the second reference voltage Vref2. Then, the signal line transmitting the first reference voltage Vref1 and the signal line transmitting the second reference voltage Vref2 can share the same signal line, thereby reducing routing.
  • the first transistor T1, the second transistor T2, the third transistor T3, the fourth transistor T4, the fifth transistor T5, the sixth transistor T6, and the seventh transistor T7 are a low-temperature polysilicon thin film transistor and an oxide semiconductor thin film. Any of a transistor and an amorphous silicon thin film transistor.
  • the first transistor T1, the second transistor T2, the third transistor T3, the fourth transistor T4, the fifth transistor T5, the sixth transistor T6, and the seventh transistor T7 may be a P-type thin film transistor or an N-type thin film transistor.
  • a low-level signal is input to the control terminal of the transistor that needs to be turned on; when an N-type thin film transistor is used as a transistor in the pixel circuit, the transistor that needs to be turned on The control terminal inputs a high-level signal.
  • the first transistor T1, the second transistor T2, the third transistor T3, the fourth transistor T4, the fifth transistor T5, the sixth transistor T6, and the The seven transistors T7 are all P-type thin film transistors.
  • the control terminals of the first to seventh transistors T1 to T7 may be the gate of the transistor, the first pole may be the source of the transistor, and the second pole may be the drain of the transistor.
  • the second reference voltage Vref2 is lower than the second power supply voltage VSS.
  • the first power supply voltage VDD is applied to the organic light emitting diode OLED through the fifth transistor T5, the first transistor T1, and the sixth transistor T6, and the organic light emitting diode OLED emits light.
  • the forward current flowing through the organic light emitting diode OLED causes accumulation of holes and the movement of indium ions in indium tin oxide, which accelerates the aging of the organic light emitting diode OLED.
  • the initialization phase by setting the second reference voltage Vref2 to be lower than the second power signal VSS, reverse biasing the organic light emitting diode OLED, which compensates for the aging of the organic light emitting diode OLED during the light emitting stage, thereby extending the life of the organic light emitting diode OLED .
  • the first scan signal SCAN1, the second scan signal SCAN2, and the third scan signal SCAN3 have different timings from each other. There is no overlap between the emission control signal EM and the low-level duration of the first scan signal SCAN1. When the fourth transistor T4 is in an on state, the fifth transistor T5 is in an off state. Therefore, when the control terminal of the first transistor T1 is initialized, a current path from the power supply terminal supplying the first power supply voltage VDD through the first transistor T1 to the power supply terminal supplying the second reference voltage Vref2 is not formed, thereby reducing the circuit power consumption. . There is an overlap between the emission control signal EM and the low-level duration of the third scan signal SCAN3. This reduces the pulse current flowing through the organic light emitting diode OLED during the initialization process, reduces flicker, and delays the aging of the organic light emitting diode OLED.
  • the third scan signal SCAN3 and the first scan signal SCAN1 are separately designed, that is, provided by different scan driving circuits in the scan driver, which makes the circuit design more flexible.
  • the third scan signal SCAN3 may be designed to be the same as the first scan signal SCAN1 according to actual needs, and the third scan signal SCAN3 may be designed to be the same as the second scan signal SCAN2.
  • the timing signals of the third scanning signal SCAN3, the first scanning signal SCAN1, and the second scanning signal SCAN2 may be different from each other.
  • the first scanning signal SCAN1, The second scan signal SCAN2 and the third scan signal SCAN3 can be provided by different scan drive circuits, thereby reducing the output load of the scan drive circuit, ensuring the accuracy of the scan signals output by it, and effectively improving the delay problem of the scan signals, which solves the problem of large delays.
  • the present application provides a driving method based on a pixel moving circuit of a display panel in any of the above embodiments, and the driving method includes:
  • the first scan signal SCAN1 and the second scan signal SCAN2 are both high-level signals
  • the third scan signal SCAN3 and the light emission control signal EM are low-level signals.
  • the first scan signal SCAN1, the second scan signal SCAN2, and the light emission control signal EM are high-level signals
  • the third scan signal SCAN3 is a low-level signal.
  • the first scan signal SCAN1 is a low-level signal
  • the second scan signal SCAN2 the third scan signal SCAN3, and the light emission control signal EM are all high-level signals.
  • the first reference voltage Vref1 initializes the control terminal of the first transistor T1.
  • the first scan signal SCAN1, the third scan signal SCAN3, and the light emission control signal EM are all high-level signals, and the second scan signal SCAN2 is a low-level signal; the data voltage Vdata writes the compensation voltage into the capacitor C1.
  • the first scan signal SCAN1, the second scan signal SCAN2, and the third scan signal SCAN3 are all high-level signals, and the light-emission control signal EM is a low-level signal.
  • the first power supply voltage VDD is provided to the organic light emitting diode OLED, and the organic light emitting diode OLED emits light.
  • FIG. 4 is a signal timing diagram corresponding to the driving method, wherein the signal timing diagram includes a first initialization stage t1, a second initialization stage t2, a third initialization stage t3, a storage stage t4, and a light emitting stage t5.
  • the specific working process is as follows:
  • the first scan signal SCAN1 and the second scan signal SCAN2 are high-level signals, and the second transistor T2, the third transistor T3, and the fourth transistor T4 are turned off.
  • the third scan signal SCAN3 is a low-level signal, the seventh transistor T7 is turned on, and the second reference voltage Vref2 initializes the anode of the organic light emitting diode OLED.
  • the light emission control signal EM is a low-level signal, and the fifth transistor T5 and the sixth transistor T6 are turned on.
  • the seventh transistor T7, the fifth transistor T5, and the sixth transistor T6 are turned on, the fifth transistor T5, the first transistor T1, the sixth transistor T6, and the seventh transistor T7 are formed from the power supply terminal supplying the first power voltage VDD.
  • the first scan signal SCAN1 and the second scan signal SCAN2 are both high-level signals, and the second transistor T2, the third transistor T3, and the fourth transistor T4 are turned off.
  • the third scan signal SCAN3 is a low-level signal, and the seventh transistor T7 is turned on.
  • the light emission control signal EM is a high-level signal, and the fifth transistor T5 and the sixth transistor T6 are turned off.
  • the light-emitting control signal EM is changed from a low-level signal to a high-level signal. Due to capacitive coupling, the potential of the anode of the organic light emitting diode OLED becomes high.
  • a current may be generated. Pulse current through organic light emitting diode OLED. However, because the seventh transistor T7 is turned on, and the second reference voltage Vref2 is lower than the second power supply voltage VSS, no current flows through the organic light emitting diode OLED, so there is no pulse current flowing through the organic light emitting diode OLED, which reduces one frame. Flicker of the brightness of the organic light emitting diode OLED in the pixel time, and delay the OLED aging.
  • the first scan signal SCAN1 is a low-level signal
  • the fourth transistor T4 is turned on
  • the first reference voltage Vref1 initializes the control terminal of the first transistor T1.
  • the first plate of capacitor C1 is connected to the power supply terminal providing the first power voltage VDD
  • the second plate of capacitor C1 is connected to the control terminal of first transistor T1
  • the potential of the first plate of capacitor C1 is equal to VDD
  • the first electrode of capacitor C1 is equal to VDD.
  • the potential of the bipolar plate is equal to Vref1.
  • the second scan signal SCAN2, the third scan signal SCAN3, and the light emission control signal EM are high-level signals
  • the second transistor T2, the third transistor T3, the fifth transistor T5, the sixth transistor T6, and the seventh transistor T7 are turned off.
  • the first scan signal SCAN1, the third scan signal SCAN3, and the light emission control signal EM are all high-level signals, and the fourth transistor T4, the fifth transistor T5, the sixth transistor T6, and the seventh transistor T7 are turned off.
  • the second scan signal SCAN2 is a low-level signal, and the second transistor T2 and the third transistor T3 are turned on.
  • the data voltage Vdata writes the compensation voltage into the capacitor C1.
  • the fifth transistor T5 is turned off by the light emission control signal EM
  • the second transistor T2 is turned on by the second scan signal SCAN2, and the potential of the first electrode of the first transistor T1 is equal to the data voltage Vdata.
  • the potential of the control terminal of the first transistor T1 is equal to Vdata-
  • the control terminal of the first transistor T1 is connected to the second plate of the capacitor C1, and the potential of the second plate of the capacitor C1 is equal to Vdata-
  • the first scan signal SCAN1, the second scan signal SCAN2, and the third scan signal SCAN3 are all high-level signals
  • the fourth transistor T4 and the seventh transistor T7 are turned off
  • the second transistor T2 and the third transistor T3 are turned off.
  • the light-emitting control signal EM is a low-level signal.
  • the fifth transistor T5 and the sixth transistor T6 are turned on.
  • the first power supply voltage VDD is applied to the organic light emitting diode OLED via the fifth transistor T5, the first transistor T1, and the sixth transistor T6.
  • the organic light emitting diode OLED emits light.
  • the present application provides a driving method based on a pixel moving circuit of a display panel in any of the above embodiments, and the driving method includes:
  • the first scan signal SCAN1 is a low-level signal
  • the second scan signal SCAN2, the third scan signal SCAN3, and the light emission control signal EM are high-level signals
  • the first reference voltage Vref1 initializes the first transistor T1 Control side.
  • the first scan signal SCAN1, the third scan signal SCAN3, and the light emission control signal EM are all high-level signals, and the second scan signal SCAN2 is a low-level signal; the data voltage Vdata writes the compensation voltage into the capacitor C1.
  • the first scan signal SCAN1, the second scan signal SCAN2, and the light emission control signal EM are high-level signals, and the third scan signal SCAN3 is a low-level signal.
  • the first scan signal SCAN1 and the second scan signal SCAN2 are both high-level signals, and the third scan signal SCAN3 and the light emission control signal EM are low-level signals.
  • the first scan signal SCAN1, the second scan signal SCAN2, and the third scan signal SCAN3 are all high-level signals, and the light-emission control signal EM is a low-level signal;
  • the first power supply voltage VDD is provided to the organic light emitting diode OLED, The organic light emitting diode OLED emits light.
  • FIG. 5 is a signal timing diagram corresponding to the driving method.
  • the signal timing diagram includes a first initialization phase t1, a storage phase t2, a second initialization phase t3, a third initialization phase t4, and a light emitting phase t5.
  • the specific working process is as follows:
  • the first scan signal SCAN1 is a low-level signal
  • the fourth transistor T4 is turned on
  • the first reference voltage Vref1 initializes the control terminal of the first transistor T1.
  • the first plate of capacitor C1 is connected to the power supply terminal providing the first power voltage VDD
  • the second plate of capacitor C1 is connected to the control terminal of first transistor T1
  • the potential of the first plate of capacitor C1 is equal to VDD
  • the first electrode of capacitor C1 is equal to VDD.
  • the potential of the bipolar plate is equal to Vref1.
  • the second scan signal SCAN2, the third scan signal SCAN3, and the light emission control signal EM are high-level signals
  • the second transistor T2, the third transistor T3, the fifth transistor T5, the sixth transistor T6, and the seventh transistor T7 are turned off.
  • the first scan signal SCAN1, the third scan signal SCAN3, and the light emission control signal EM are all high-level signals, and the fourth transistor T4, the fifth transistor T5, the sixth transistor T6, and the seventh transistor T7 are turned off.
  • the second scan signal SCAN2 is a low-level signal, and the second transistor T2 and the third transistor T3 are turned on.
  • the data voltage Vdata writes the compensation voltage into the capacitor C1.
  • the fifth transistor T5 is turned off by the light emission control signal EM
  • the second transistor T2 is turned on by the second scan signal SCAN2, and the potential of the first electrode of the first transistor T1 is equal to the data voltage Vdata.
  • the potential of the control terminal of the first transistor T1 is equal to Vdata-
  • the control terminal of the first transistor T1 is connected to the second plate of the capacitor C1, and the potential of the second plate of the capacitor C1 is equal to Vdata-
  • the first scan signal SCAN1 and the second scan signal SCAN2 are both high-level signals, and the second transistor T2, the third transistor T3, and the fourth transistor T4 are turned off.
  • the third scan signal SCAN3 is a low-level signal, the seventh transistor T7 is turned on, and the second reference voltage Vref2 initializes the anode of the organic light emitting diode OLED.
  • the light emission control signal EM is a high-level signal, and the fifth transistor T5 and the sixth transistor T6 are turned off.
  • the first scan signal SCAN1 and the second scan signal SCAN2 are high-level signals, and the second transistor T2, the third transistor T3, and the fourth transistor T4 are turned off.
  • the third scan signal SCAN3 is a low-level signal, the seventh transistor T7 is turned on, and the second reference voltage Vref2 continues to initialize the anode of the organic light emitting diode OLED.
  • the light-emitting control signal EM is a low-level signal, and the fifth transistor T5 and the sixth transistor T6 are turned on, so that a power supply terminal supplying the first power supply voltage VDD is formed through the fifth transistor T5, the first transistor T1, the sixth transistor T6, and A current path from the seventh transistor T7 to the power supply terminal supplying the second reference voltage Vref2.
  • No driving current flows through the organic light emitting diode OLED, so the light emitting diode OLED does not emit light, which prolongs the service life of the organic light emitting diode OLED.
  • the first scan signal SCAN1, the second scan signal SCAN2, and the third scan signal SCAN3 are all high-level signals
  • the fourth transistor T4 and the seventh transistor T7 are turned off
  • the second transistor T2 and the third transistor T3 are turned off.
  • the light-emitting control signal EM is a low-level signal.
  • the fifth transistor T5 and the sixth transistor T6 are turned on.
  • the first power supply voltage VDD is applied to the organic light emitting diode OLED via the fifth transistor T5, the first transistor T1, and the sixth transistor T6.
  • the organic light emitting diode OLED emits light.
  • FIG. 5 is a signal timing diagram corresponding to the driving method, and the signal timing diagram includes a first initialization stage t1, a storage stage t2, a second initialization stage t3, and a third The initialization phase t4 and the light emitting phase t5.
  • the specific working process is as follows:
  • the first scan signal SCAN1 is a low-level signal
  • the fourth transistor T4 is turned on
  • the first reference voltage Vref1 initializes the gate of the first transistor T1.
  • the first plate of the capacitor C1 is connected to the power supply terminal providing the first power voltage VDD
  • the second plate of the capacitor C1 is connected to the gate of the first transistor T1
  • the potential of the first plate of the capacitor C1 is equal to VDD
  • the first The potential of the bipolar plate is equal to Vref1.
  • the second scan signal SCAN2, the third scan signal SCAN3, and the light emission control signal EM are all high-level signals
  • the second transistor T2, the third transistor T3, the fifth transistor T5, the sixth transistor T6, and the seventh transistor T7 are turned off.
  • the first scan signal SCAN1 is a low-level signal
  • the light emission control signal EM is a high-level signal.
  • the first scan signal SCAN1 and the light emission control signal EM do not overlap, that is, the gate of the first transistor T1 is initialized.
  • the fifth transistor T5 is in an off state, and no current flows through the first transistor T1, thereby reducing the power consumption of the circuit.
  • the resistance of the first transistor T1 is small.
  • the first scan signal SCAN1 and the light emission control signal EM overlap, for example, the first scan signal SCAN1 and the light emission control signal EM are both at a low level, then the first The loop current formed by the power supply terminal of the power supply voltage VDD through the first transistor T1 to the power supply terminal supplying the second reference voltage Vref2 is relatively large, which easily causes the aging of the first transistor T1 and increases the power consumption of the circuit.
  • the first scan signal SCAN1, the third scan signal SCAN3, and the light emission control signal EM are all high-level signals, and the fourth transistor T4, the fifth transistor T5, the sixth transistor T6, and the seventh transistor T7 are turned off.
  • the second scan signal SCAN2 is a low-level signal, and the second transistor T2 and the third transistor T3 are turned on.
  • the data voltage Vdata is applied to the source of the first transistor T1 via the second transistor T2 until the first transistor T1 is in a critical state.
  • the potential of the source of the first transistor T1 is equal to the data voltage Vdata and the potential of the gate of the first transistor T1. Equal to Vdata-
  • the gate voltage of the first transistor T1 is Vdata-
  • the first scan signal SCAN1 is a high-level signal
  • the fourth transistor T4 is turned off.
  • the second scan signal SCAN2 is a high-level signal
  • the second transistor T2 and the third transistor T3 are turned off.
  • the third scan signal SCAN3 is a low-level signal
  • the seventh transistor T7 is turned on
  • the second reference voltage Vref2 initializes the anode of the organic light emitting diode OLED.
  • the light emission control signal EM is a high-level signal
  • the fifth transistor T5 and the sixth transistor T6 are turned off.
  • the first scan signal SCAN1 and the second scan signal SCAN2 are high-level signals, and the second transistor T2, the third transistor T3, and the fourth transistor T4 are turned off.
  • the third scan signal SCAN3 is a low-level signal, the seventh transistor T7 is turned on, and the second reference voltage Vref2 continues to initialize the anode of the organic light emitting diode OLED.
  • the light emission control signal EM is a low-level signal, and the fifth transistor T5 and the sixth transistor T6 are turned on.
  • the seventh transistor T7, the fifth transistor T5, and the sixth transistor T6 are turned on, the fifth transistor T5, the first transistor T1, the sixth transistor T6, and the seventh transistor T7 are formed from the power supply terminal supplying the first power voltage VDD.
  • the third scanning signal SCAN3 is a low-level signal
  • the lighting control signal EM is changed from a high-level signal to a low-level signal
  • a low-level overlap is set between the third scanning signal SCAN3 and the lighting control signal EM. Due to capacitive coupling, the potential of the anode of the organic light emitting diode OLED becomes high, and there is a voltage difference between the anode and the cathode of the organic light emitting diode OLED, and a pulse current may flow through the organic light emitting diode OLED.
  • the first scan signal SCAN1, the second scan signal SCAN2, and the third scan signal SCAN3 are all high-level signals
  • the fourth transistor T4 and the seventh transistor T7 are turned off
  • the second transistor T2 and the third transistor T3 are turned off.
  • the light-emitting control signal EM is a low-level signal.
  • the fifth transistor T5 and the sixth transistor T6 are turned on.
  • the first power supply voltage VDD is applied to the organic light emitting diode OLED via the fifth transistor T5, the first transistor T1, and the sixth transistor T6.
  • the organic light emitting diode OLED emits light.
  • Vgs Vg-Vs
  • Vgs Vdata + Vth-VDD
  • K 1/2 * ⁇ * Cox * W / L.
  • is the electron mobility of the first transistor
  • Cox is the gate oxide capacitance per unit area of the first transistor
  • W is the channel width of the first transistor
  • L is the channel length of the first transistor.
  • the driving current in the first transistor T1 is:
  • the magnitude of the driving current in the first transistor T1 has nothing to do with the magnitude of the threshold voltage Vth of the first transistor T1, so that the threshold voltage compensation is implemented to stabilize the brightness of the organic light emitting diode OLED.
  • the present application provides a display device including the display panel in the above embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

本申请提供一种显示面板及像素电路的驱动方法。该显示面板包括扫描驱动器、发光控制驱动器、数据驱动器和像素单元。所述像素单元包括多个像素及与每个像素对应的像素电路。每个像素电路包括第一至第七晶体管、电容和有机发光二极管。所述第四晶体管的控制端用于输入所述第一扫描信号,第一极连接所述第三晶体管的第二极、所述第一晶体管的控制端及所述电容一端。所述电容的另一端连接所述第五晶体管的第一极。所述第四晶体管的第二极用于输入第一参考电压。所述第五晶体管的控制端用于输入发光控制信号,第一极用于输入所述第一电源电压,第二极连接所述第一晶体管的第一极、所述第二晶体管的第二极。所述第一晶体管的第二极连接所述第三晶体管的第一极及所述第六晶体管的第一极。所述第三晶体管的控制端用于输入第二扫描信号。所述第二晶体管的控制端用于输入所述第二扫描信号,第一极用于输入数据电压Vdata。所述第六晶体管的控制端用于输入所述发光控制信号,第二极连接所述第七晶体管的第一极。所述第七晶体管的控制端用于输入所述第三扫描信号,第一极连接所述有机发光二极管的阳极,第二极用于输入第二参考电压。所述有机发光二极管的阴极用于连接第二电源电压。

Description

显示面板及像素电路的驱动方法 技术领域
本申请涉及显示技术领域,特别是涉及一种显示面板及像素电路的驱动方法。
背景技术
有机发光显示器是一种应用有机发光二极管(Organic Light-Emitting Diode,简称OLED)作为发光器件的显示器。相比于薄膜晶体管液晶显示器(Thin Film Transistor-Liquid Crystal Display,简称TFT-LCD),有机发光显示器具有高对比度、广视角、低功耗、体积薄等优点。OLED的亮度由驱动薄膜晶体管(Thin Film Transistor,简称TFT)电路产生的电流大小决定。
有源矩阵有机发光二极管(Active-Matrix Organic Light Emitting Diode,简称AMOLED)的驱动方式可以是由驱动电路输出数据电压,数据电压被直接写入像素电路,从而控制像素的亮度。
申请人发现,驱动薄膜晶体管存在快速老化的技术问题。
发明内容
本申请提供一种显示面板及像素电路的驱动方法。
一种显示面板,包括:
扫描驱动器,用于将扫描信号供应到对应的扫描信号线;所述扫描信号包括第一扫描信号、第二扫描信号和第三扫描信号;
发光控制驱动器,用于将发光控制信号供应到对应的发光控制信号线;
数据驱动器,用于将数据电压Vdata供应到数据信号线;
像素单元,设置在所述扫描信号线、所述发光控制信号线及所述数据信号线的交叉位置处,所述像素单元包括多个像素及与每个像素对应的像素电路;每个像素电路包括第一晶体管、第二晶体管、第三晶体管、第四晶体管、第五晶体管、第六晶体管、第七晶体管、电容和有机发光二极管;
所述第四晶体管的控制端用于输入所述第一扫描信号,所述第四晶体管的第一极连接所述第三晶体管的第二极、所述第一晶体管的控制端及所述电容的一端,所述电容的另一端连接所述第五晶体管的第一极;所述第四晶体管的第二极用于输入第一参考电压;
所述第五晶体管的控制端用于输入所述发光控制信号;所述第五晶体管的第一极用于输入所述第一电源电压;所述第五晶体管的第二极连接所述第一晶体管的第一极、所述第二晶体管的第二极;
所述第一晶体管的第二极连接所述第三晶体管的第一极及所述第六晶体管的第一极;所述第三晶体管的控制端用于输入所述第二扫描信号;
所述第二晶体管的控制端用于输入所述第二扫描信号,所述第二晶体管的第一极用于输入 所述数据电压Vdata;
所述第六晶体管的控制端用于输入所述发光控制信号,所述第六晶体管的第二极连接所述第七晶体管的第一极;
所述第七晶体管的控制端用于输入所述第三扫描信号,所述第七晶体管的第一极连接所述有机发光二极管的阳极;所述第七晶体管的第二极用于输入第二参考电压;
所述有机发光二极管的阴极用于输入第二电源电压。
在其中一个实施例中,所述第一扫描信号由所述扫描驱动器中的第一扫描驱动电路提供,所述第二扫描信号由所述扫描驱动器中的第二扫描驱动电路提供,所述第三扫描信号由所述扫描驱动器中的第三扫描驱动电路提供。
在其中一个实施例中,所述第四晶体管的第二极连接所述第七晶体管的第二极,所述第一参考电压等于所述第二参考电压。
在其中一个实施例中,所述第二参考电压小于所述第二电源电压。
在其中一个实施例中,所述第一扫描信号、所述第二扫描信号、所述第三扫描信号具有互不相同的时序;所述发光控制信号与所述第一扫描信号的低电平持续时段不存在交叠;并且,所述发光控制信号与所述第三扫描信号的低电平持续时段存在交叠。
在其中一个实施例中,所述第一晶体管、第二晶体管、第三晶体管、第四晶体管、第五晶体管、第六晶体管、所述第七晶体管均为P型薄膜晶体管。
在其中一个实施例中,所述电容是储能电容。
在其中一个实施例中,所述第二晶体管、第三晶体管、第四晶体管、第五晶体管、第六晶体管、所述第七晶体管均为开关晶体管,所述第一晶体管为驱动晶体管。
在其中一个实施例中,所述多个像素呈阵列排布。
在其中一个实施例中,每个晶体管的控制端为晶体管的栅极,每个晶体管的第一极为晶体管的源极,每个晶体管的第二极为晶体管的漏极。
在其中一个实施例中,所述第一晶体管、第二晶体管、第三晶体管、第四晶体管、第五晶体管、第六晶体管、所述第七晶体管包括低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管以及非晶硅薄膜晶体管中的任一种。
一种像素电路的驱动方法,所述像素电路为如权利要求1所述的显示面板中的像素电路,所述驱动方法包括:
第一初始化阶段,设置第一扫描信号及第二扫描信号为高电平信号,设置第三扫描信号及发光控制信号为低电平信号;
第二初始化阶段,设置所述第一扫描信号、所述第二扫描信号及所述发光控制信号为高电平信号,设置所述第三扫描信号为低电平信号;
第三初始化阶段,设置所述第一扫描信号为低电平信号,设置所述第二扫描信号、所述第三扫描信号及所述发光控制信号为高电平信号;第一参考电压初始化第一晶体管的控制端;
存储阶段,设置所述第一扫描信号、所述第三扫描信号及所述发光控制信号为高电平信号, 设置所述第二扫描信号为低电平信号;数据电压Vdata将补偿电压写入电容;
发光阶段,设置所述第一扫描信号、所述第二扫描信号及所述第三扫描信号为高电平信号,设置所述发光控制信号为低电平信号;将第一电源电压提供给有机发光二极管以使所述有机发光二极管发光。
在其中一个实施例中,在所述第一初始化阶段,第七晶体管由所述第三扫描信号导通,第二参考电压初始化所述有机发光二极管的阳极。
在其中一个实施例中,在所述存储阶段,第五晶体管由所述发光控制信号截止,第二晶体管由所述第二扫描信号导通,所述第一晶体管的控制端及所述电容的与该第一晶体管的控制端相连的第二极板的电位均等于Vdata-|Vth|,其中,Vth为所述第一晶体管T1的阈值电压。
一种像素电路的驱动方法,所述像素电路为如权利要求1所述的显示面板中的像素电路,所述驱动方法包括:
第一初始化阶段,设置第一扫描信号为低电平信号,设置第二扫描信号、第三扫描信号及发光控制信号为高电平信号;第一参考电压初始化第一晶体管的控制端;
存储阶段,设置所述第一扫描信号、所述第三扫描信号及所述发光控制信号为高电平信号,设置所述第二扫描信号为低电平信号;数据电压Vdata将补偿电压写入电容;
第二初始化阶段,设置所述第一扫描信号、所述第二扫描信号及所述发光控制信号为高电平信号,设置所述第三扫描信号为低电平信号;
第三初始化阶段,设置所述第一扫描信号及所述第二扫描信号为高电平信号,设置所述第三扫描信号及所述发光控制信号为低电平信号;
发光阶段,设置所述第一扫描信号、所述第二扫描信号及所述第三扫描信号为高电平信号,设置所述发光控制信号为低电平信号;将第一电源电压提供给有机发光二极管以使所述有机发光二极管发光。
在其中一个实施例中,在所述存储阶段,第五晶体管由所述发光控制信号截止,第二晶体管由所述第二扫描信号导通,所述第一晶体管的控制端及所述电容的与该第一晶体管的控制端相连的第二极板的电位均等于Vdata-|Vth|,其中,Vth为所述第一晶体管T1的阈值电压。
在其中一个实施例中,在所述第二初始化阶段,第七晶体管由所述第三扫描信号导通,第二参考电压初始化所述有机发光二极管的阳极。
在上述显示面板及像素电路的驱动方法中,显示面板包括扫描驱动器、发光控制驱动器、数据驱动器以及设置在扫描信号线、发光控制信号线及数据信号线的交叉位置处的像素单元,像素单元包括多个像素及与每个像素对应的像素电路。每个像素电路包括第一晶体管、第二晶体管、第三晶体管、第四晶体管、第五晶体管、第六晶体管、第七晶体管、电容和有机发光二极管。加至第四晶体管的控制端的第一扫描信号、加至第二晶体管的控制端的第二扫描信号、加至第七晶体管的控制端的第三扫描信号可以分别由扫描驱动器中不同的扫描驱动电路提供。在第一初始化阶段或第二初始化阶段,第七晶体管由第三扫描信号导通,第二参考电压初始化有机发光二极管的阳极;第五晶体管由发光控制信号截止以使没有电流流经第一晶体管,从而 解决驱动薄膜晶体管快速老化的技术问题,并降低了电路功耗及增加驱动薄膜晶体管的使用寿命。
附图说明
图1为本申请一个实施例中显示面板的结构示意图;
图2为本申请一个实施例中的像素电路的电路图;
图3为本申请一个实施例中采用P型薄膜晶体管的像素电路的电路图;
图4为本申请一个实施例中驱动方法的时序图;
图5为本申请另一个实施例中驱动方法的时序图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细地说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在一个实施例中,参见图1,本申请提供一种显示面板,该显示面板包括:
扫描驱动器110,用于将扫描信号提供给对应的扫描信号线;发光控制驱动器120,用于将发光控制信号提供给对应的发光控制信号线;数据驱动器130,用于将数据电压提供给对应的数据信号线。该显示面板还包括像素单元,设置在扫描信号线、发光控制信号线及数据信号线的交叉位置处。像素单元包括多个像素及与每个像素对应的像素电路。具体地,扫描驱动器110通过扫描信号线S1至Sn连接矩阵形式排列的多个像素PX11至PXnm。像素PX11至PXnm也连接到发光控制信号线E1至En,并通过发光控制信号线E1至En连接发光控制驱动器120。像素PX11至PXnm也连接到数据信号线D1至Dm,并通过数据信号线D1至Dm连接数据驱动器130。其中,发光控制信号线E1至En大致平行于扫描信号线S1至Sn。发光控制信号线E1至En大致垂直于数据信号线D1至Dm。
请参见图2,每个像素电路包括第一晶体管T1、第二晶体管T2、第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6、第七晶体管T7、电容C1和有机发光二极管OLED。其中,第一晶体管T1至第七晶体管T7均包括控制端、第一极和第二极。
具体地,第四晶体管T4的控制端用于输入第一扫描信号,第四晶体管T4的第一极连接第三晶体管T3的第二极、第一晶体管T1的控制端及电容C1一端,电容C1的另一端连接第五晶体管T5的第一极;第四晶体管T4的第二极用于输入第一参考电压Vref1。
第五晶体管T5的控制端用于输入发光控制信号;第五晶体管T5的第一极用于输入第一电源电压VDD;第五晶体管T5的第二极连接第一晶体管T1的第一极、第二晶体管T2的第二极。
第一晶体管T1的第二极连接第三晶体管T3的第一极及第六晶体管T6的第一极;第三晶 体管T3的控制端用于输入第二扫描信号。
第二晶体管T2的控制端用于输入第二扫描信号,第二晶体管T2的第一极用于输入数据电压Vdata。
第六晶体管T6的控制端用于输入发光控制信号,第六晶体管T6的第二极连接第七晶体管T7的第一极。
第七晶体管T7的控制端用于输入第三扫描信号,第七晶体管T7的第一极连接有机发光二极管OLED的阳极;第七晶体管T7的第二极用于输入第二参考电压Vref2。
有机发光二极管OLED的阴极用于输入第二电源电压VSS。
在本实施例中,第一扫描信号、第二扫描信号及第三扫描信号分别由扫描驱动器中不同的扫描驱动电路提供。具体地,所述第一扫描信号由所述扫描驱动器中的第一扫描驱动电路提供,所述第二扫描信号由所述扫描驱动器中的第二扫描驱动电路提供,所述第三扫描信号由所述扫描驱动器中的第三扫描驱动电路提供。
在本实施例中,第二晶体管T2、第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6及第七晶体管T7是像素电路中的开关晶体管。第一晶体管T1是像素电路中的驱动晶体管。电容C1是储能电容,连接于第一晶体管T1的控制端和第一晶体管T1的第一极之间。
在本实施例中,第一扫描信号SCAN1控制第四晶体管T4的截止或者导通,第三扫描信号SCAN3控制第七晶体管T7的截止或者导通,第二扫描信号SCAN2控制第二晶体管T2、第三晶体管T3的截止或者导通。发光控制信号EM控制第五晶体管T5、第六晶体管T6的截止或者导通。当第四晶体管T4导通时,第一参考电压Vref1经第四晶体管T4初始化第一晶体管T1的控制端。当第七晶体管T7导通时,第二参考电压Vref2经第七晶体管T7初始化有机发光二极管OLED的阳极。当第五晶体管T5及第六晶体管T6导通时,第一电源电压VDD经第五晶体管T5、第一晶体管T1及第六晶体管T6加至有机发光二极管OLED,有机发光二极管OLED发光。
在本实施例中,第七晶体管T7由第三扫描信号导通时,第二参考电压Vref2初始化有机发光二极管OLED的阳极。第五晶体管T5由发光控制信号截止,则没有形成从供应第一电源电压VDD的电源端经第一晶体管T1至供应第二参考电压Vref2的电源端的电流通路,从而减少了电路功耗,并且延缓第一晶体管T1的老化,进而解决驱动薄膜晶体管快速老化的技术问题。进一步地,加至第四晶体管T4的控制端的第一扫描信号、加至第二晶体管T2的控制端的第二扫描信号与加至第七晶体管T7的控制端的第三扫描信号分别由扫描驱动器中不同的扫描驱动电路提供,从而降低扫描驱动器中不同的扫描驱动电路的输出负载,保证各扫描驱动电路输出的扫描信号的准确性。
在一个实施例中,第四晶体管T4的第二极连接第七晶体管T7的第二极,第一参考电压Vref1等于第二参考电压Vref2。则传输第一参考电压Vref1的信号线与传输第二参考电压Vref2的信号线可以共用同一根信号线,从而减少走线。
在一个实施例中,第一晶体管T1、第二晶体管T2、第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6及第七晶体管T7为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管以及非晶硅薄膜晶体管中的任一种。第一晶体管T1、第二晶体管T2、第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6及第七晶体管T7可以采用P型薄膜晶体管,也可以采用N型薄膜晶体管。在采用P型薄膜晶体管作为像素电路中的晶体管时,对需要导通的晶体管的控制端输入低电平信号;在采用N型薄膜晶体管作为像素电路中的晶体管时,对需要导通的晶体管的控制端输入高电平信号。
在一个实施例中,请参见图3,本申请提供的像素电路采用的第一晶体管T1、第二晶体管T2、第三晶体管T3、第四晶体管T4、第五晶体管T5、第六晶体管T6及第七晶体管T7均为P型薄膜晶体管。第一晶体管T1至第七晶体管T7的控制端可以是晶体管的栅极,第一极可以是晶体管的源极,第二极可以是晶体管的漏极。
在一个实施例中,第二参考电压Vref2低于第二电源电压VSS。在发光阶段,第一电源电压VDD经第五晶体管T5、第一晶体管T1及第六晶体管T6加至有机发光二极管OLED,有机发光二极管OLED发光。在流过有机发光二极管OLED的正向电流的作用下,会造成空穴积累以及氧化铟锡中铟离子移动,加速了有机发光二极管OLED的老化。在初始化阶段,通过设置第二参考电压Vref2低于第二电源信号VSS,对有机发光二极管OLED进行反向偏置,补偿了发光阶段有机发光二极管OLED的老化,进而延长了有机发光二极管OLED的寿命。
在一个实施例中,第一扫描信号SCAN1、第二扫描信号SCAN2、第三扫描信号SCAN3具有互不相同的时序。发光控制信号EM与第一扫描信号SCAN1的低电平持续时段不存在交叠,当第四晶体管T4处于导通状态,第五晶体管T5处于截止状态。因此,在初始化第一晶体管T1的控制端时,不会形成从供应第一电源电压VDD的电源端经第一晶体管T1到供应第二参考电压Vref2的电源端的电流通路,从而减少了电路功耗。发光控制信号EM与第三扫描信号SCAN3的低电平持续时段存在交叠。从而减小初始化过程中流过有机发光二极管OLED的脉冲电流,降低闪烁(flicker)并延缓有机发光二极管OLED老化。
本实施例中,第三扫描信号SCAN3与第一扫描信号SCAN1分离设计,即分别由扫描驱动器中不同的扫描驱动电路提供,使电路设计更加灵活。可以根据实际需要设计第三扫描信号SCAN3与第一扫描信号SCAN1相同,也可以设计第三扫描信号SCAN3与第二扫描信号SCAN2相同。此外,在大尺寸的显示屏中,为减小扫描电路输出端的阻抗,第三扫描信号SCAN3、第一扫描信号SCAN1与第二扫描信号SCAN2的时序信号可以互不相同,第一扫描信号SCAN1、第二扫描信号SCAN2及第三扫描信号SCAN3可由不同的扫描驱动电路提供,从而减小扫描驱动电路的输出负载,保证其输出的扫描信号的准确性,并有效改善扫描信号的延迟问题,解决大尺寸、高分辨率显示面板中的技术难题。
在一个实施例中,本申请提供基于上述任一实施例中显示面板的像素动电路的驱动方法,该驱动方法包括:
第一初始化阶段t1,第一扫描信号SCAN1及第二扫描信号SCAN2均为高电平信号,第 三扫描信号SCAN3及发光控制信号EM均为低电平信号。
第二初始化阶段t2,第一扫描信号SCAN1、第二扫描信号SCAN2及发光控制信号EM为高电平信号,第三扫描信号SCAN3为低电平信号。
第三初始化阶段t3,第一扫描信号SCAN1为低电平信号,第二扫描信号SCAN2、第三扫描信号SCAN3及发光控制信号EM均为高电平信号。第一参考电压Vref1初始化第一晶体管T1的控制端。
存储阶段t4,第一扫描信号SCAN1、第三扫描信号SCAN3及发光控制信号EM均为高电平信号,第二扫描信号SCAN2为低电平信号;数据电压Vdata将补偿电压写入电容C1。
发光阶段t5,第一扫描信号SCAN1、第二扫描信号SCAN2及第三扫描信号SCAN3均为高电平信号,发光控制信号EM为低电平信号。第一电源电压VDD提供给有机发光二极管OLED,有机发光二极管OLED发光。
请参见图4,图4为该驱动方法对应的信号时序图,其中,信号时序图包括第一初始化阶段t1、第二初始化阶段t2、第三初始化阶段t3、存储阶段t4及发光阶段t5。具体的工作过程如下:
在第一初始化阶段t1,第一扫描信号SCAN1、第二扫描信号SCAN2均为高电平信号,第二晶体管T2、第三晶体管T3、第四晶体管T4截止。第三扫描信号SCAN3为低电平信号,第七晶体管T7导通,则第二参考电压Vref2初始化有机发光二极管OLED的阳极。发光控制信号EM为低电平信号,第五晶体管T5、第六晶体管T6导通。由于第七晶体管T7、第五晶体管T5及第六晶体管T6导通,形成了从供应第一电源电压VDD的电源端经第五晶体管T5、第一晶体管T1、第六晶体管T6和第七晶体管T7到供应第二参考电压Vref2的电源端的电流通路。没有驱动电流流经有机发光二极管OLED,因此有机发光二极管OLED没有发光,延长了有机发光二极管OLED的使用寿命。
在第二初始化阶段t2,第一扫描信号SCAN1及第二扫描信号SCAN2均为高电平信号,第二晶体管T2、第三晶体管T3、第四晶体管T4截止。第三扫描信号SCAN3为低电平信号,第七晶体管T7导通。发光控制信号EM为高电平信号,第五晶体管T5及第六晶体管T6截止。发光控制信号EM由低电平信号变为高电平信号,由于电容耦合,有机发光二极管OLED的阳极的电位变高,有机发光二极管OLED的阳极与阴极之间产生一个电压差,则可能产生流经有机发光二极管OLED的脉冲电流。但是,由于第七晶体管T7导通,且第二参考电压Vref2低于第二电源电压VSS,因此没有电流流经有机发光二极管OLED,从而没有流过有机发光二极管OLED的脉冲电流,减少了一帧像素时间内有机发光二极管OLED发光亮度的闪烁(Flicker),并延缓OLED老化。
在第三初始化阶段t3,第一扫描信号SCAN1为低电平信号,第四晶体管T4导通,第一参考电压Vref1初始化第一晶体管T1的控制端。电容C1的第一极板连接提供第一电源电压VDD的电源端,电容C1的第二极板连接第一晶体管T1的控制端,电容C1的第一极板的电位等于VDD,电容C1的第二极板的电位等于Vref1。第二扫描信号SCAN2、第三扫描信号 SCAN3及发光控制信号EM均为高电平信号,第二晶体管T2、第三晶体管T3、第五晶体管T5、第六晶体管T6、第七晶体管T7截止。
在存储阶段t4,第一扫描信号SCAN1、第三扫描信号SCAN3及发光控制信号EM均为高电平信号,第四晶体管T4、第五晶体管T5、第六晶体管T6及第七晶体管T7截止。第二扫描信号SCAN2为低电平信号,第二晶体管T2和第三晶体管T3导通。数据电压Vdata将补偿电压写入电容C1。
具体地,第五晶体管T5由发光控制信号EM截止,第二晶体管T2由第二扫描信号SCAN2导通,第一晶体管T1的第一极的电位等于数据电压Vdata。第一晶体管T1的控制端的电位等于Vdata-|Vth|,其中,Vth为第一晶体管T1的阈值电压。第一晶体管T1的控制端连接电容C1的第二极板,电容C1第二极板的电位等于Vdata-|Vth|,从而补偿电压|Vth|写入电容C1。
在发光阶段t5,第一扫描信号SCAN1、第二扫描信号SCAN2及第三扫描信号SCAN3均为高电平信号,第四晶体管T4、第七晶体管T7截止,第二晶体管T2、第三晶体管T3截止。发光控制信号EM为低电平信号,第五晶体管T5、第六晶体管T6导通,第一电源电压VDD经第五晶体管T5、第一晶体管T1及第六晶体管T6加至有机发光二极管OLED,使得有机发光二极管OLED发光。
在一个实施例中,本申请提供基于上述任一实施例中显示面板的像素动电路的驱动方法,该驱动方法依次包括:
第一初始化阶段t1,第一扫描信号SCAN1为低电平信号,第二扫描信号SCAN2、第三扫描信号SCAN3及发光控制信号EM均为高电平信号;第一参考电压Vref1初始化第一晶体管T1的控制端。
存储阶段t2,第一扫描信号SCAN1、第三扫描信号SCAN3及发光控制信号EM均为高电平信号,第二扫描信号SCAN2为低电平信号;数据电压Vdata将补偿电压写入电容C1。
第二初始化阶段t3,第一扫描信号SCAN1、第二扫描信号SCAN2及发光控制信号EM为高电平信号,第三扫描信号SCAN3为低电平信号。
第三初始化阶段t4,第一扫描信号SCAN1及第二扫描信号SCAN2均为高电平信号,第三扫描信号SCAN3及发光控制信号EM均为低电平信号。
发光阶段t5,第一扫描信号SCAN1、第二扫描信号SCAN2及第三扫描信号SCAN3均为高电平信号,发光控制信号EM为低电平信号;第一电源电压VDD提供给有机发光二极管OLED,有机发光二极管OLED发光。
图5为该驱动方法对应的信号时序图。信号时序图包括第一初始化阶段t1、存储阶段t2、第二初始化阶段t3、第三初始化阶段t4、及发光阶段t5。具体的工作过程如下:
在第一初始化阶段t1,第一扫描信号SCAN1为低电平信号,第四晶体管T4导通,第一参考电压Vref1初始化第一晶体管T1的控制端。电容C1的第一极板连接提供第一电源电压VDD的电源端,电容C1的第二极板连接第一晶体管T1的控制端,电容C1的第一极板的电位等于VDD,电容C1的第二极板的电位等于Vref1。第二扫描信号SCAN2、第三扫描信号 SCAN3及发光控制信号EM均为高电平信号,第二晶体管T2、第三晶体管T3、第五晶体管T5、第六晶体管T6、第七晶体管T7截止。
在存储阶段t2,第一扫描信号SCAN1、第三扫描信号SCAN3及发光控制信号EM均为高电平信号,第四晶体管T4、第五晶体管T5、第六晶体管T6及第七晶体管T7截止。第二扫描信号SCAN2为低电平信号,第二晶体管T2和第三晶体管T3导通。数据电压Vdata将补偿电压写入电容C1。
具体地,第五晶体管T5由发光控制信号EM截止,第二晶体管T2由第二扫描信号SCAN2导通,第一晶体管T1的第一极的电位等于数据电压Vdata。第一晶体管T1的控制端的电位等于Vdata-|Vth|。第一晶体管T1的控制端接电容C1的第二极板,电容C1第二极板的电位等于Vdata-|Vth|,从而补偿电压|Vth|被写入电容C1。
在第二初始化阶段t3,第一扫描信号SCAN1及第二扫描信号SCAN2均为高电平信号,第二晶体管T2、第三晶体管T3、第四晶体管T4截止。第三扫描信号SCAN3为低电平信号,第七晶体管T7导通,第二参考电压Vref2初始化有机发光二极管OLED的阳极。发光控制信号EM为高电平信号,第五晶体管T5及第六晶体管T6截止。
在第三初始化阶段t4,第一扫描信号SCAN1、第二扫描信号SCAN2均为高电平信号,第二晶体管T2、第三晶体管T3、第四晶体管T4截止。第三扫描信号SCAN3为低电平信号,第七晶体管T7导通,则第二参考电压Vref2继续初始化有机发光二极管OLED的阳极。发光控制信号EM为低电平信号,第五晶体管T5、第六晶体管T6导通,形成了从供应第一电源电压VDD的电源端经第五晶体管T5、第一晶体管T1、第六晶体管T6和第七晶体管T7到供应第二参考电压Vref2的电源端的电流通路。没有驱动电流流经有机发光二极管OLED,因此发光二极管OLED没有发光,延长了有机发光二极管OLED的使用寿命。
在发光阶段t5,第一扫描信号SCAN1、第二扫描信号SCAN2及第三扫描信号SCAN3均为高电平信号,第四晶体管T4、第七晶体管T7截止,第二晶体管T2、第三晶体管T3截止。发光控制信号EM为低电平信号,第五晶体管T5、第六晶体管T6导通,第一电源电压VDD经第五晶体管T5、第一晶体管T1及第六晶体管T6加至有机发光二极管OLED,使得有机发光二极管OLED发光。
在一个实施例中,请参见图3和图5,其中,图5为该驱动方法对应的信号时序图,信号时序图包括第一初始化阶段t1、存储阶段t2、第二初始化阶段t3、第三初始化阶段t4及发光阶段t5。具体的工作过程如下:
在第一初始化阶段t1,第一扫描信号SCAN1为低电平信号,第四晶体管T4导通,第一参考电压Vref1初始化第一晶体管T1的栅极。电容C1的第一极板连接提供第一电源电压VDD的电源端,电容C1的第二极板连接第一晶体管T1的栅极,电容C1的第一极板的电位等于VDD,电容C1的第二极板的电位等于Vref1。第二扫描信号SCAN2、第三扫描信号SCAN3及发光控制信号EM均为高电平信号,第二晶体管T2、第三晶体管T3、第五晶体管T5、第六晶体管T6、第七晶体管T7截止。
具体地,第一扫描信号SCAN1为低电平信号,发光控制信号EM为高电平信号,第一扫描信号SCAN1与发光控制信号EM没有交叠,即在对第一晶体管T1的栅极进行初始化的过程中,第五晶体管T5处于截止状态,则没有形成流经第一晶体管T1的电流,从而减少了电路功耗。具体地,第一晶体管T1的电阻较小,若第一扫描信号SCAN1与发光控制信号EM存在交叠,例如第一扫描信号SCAN1与发光控制信号EM同时均为低电平,则从供应第一电源电压VDD的电源端经第一晶体管T1至供应第二参考电压Vref2的电源端形成的回路电流比较大,易引起第一晶体管T1的老化,并且增大了电路功耗。
在存储阶段t2,第一扫描信号SCAN1、第三扫描信号SCAN3、发光控制信号EM均为高电平信号,第四晶体管T4、第五晶体管T5、第六晶体管T6及第七晶体管T7截止。第二扫描信号SCAN2为低电平信号,第二晶体管T2和第三晶体管T3导通。数据电压Vdata经第二晶体管T2加至第一晶体管T1的源极,直至第一晶体管T1处于临界状态,第一晶体管T1的源极的电位等于数据电压Vdata,第一晶体管T1的栅极的电位等于Vdata-|Vth|。由于第一晶体管T1的栅极连接电容C1的第二极板,因此补偿电压|Vth|被写入电容C1。
此时,第一晶体管T1的栅极电压为Vdata-|Vth|,其中,Vth为第一晶体管T1的阈值电压,且该阈值电压的值为负值,则第一晶体管T1的栅极电压Vdata+Vth。
在第二初始化阶段t3,第一扫描信号SCAN1为高电平信号,第四晶体管T4截止。第二扫描信号SCAN2为高电平信号,第二晶体管T2、第三晶体管T3截止。第三扫描信号SCAN3为低电平信号,第七晶体管T7导通,第二参考电压Vref2初始化有机发光二极管OLED的阳极。发光控制信号EM为高电平信号,第五晶体管T5及第六晶体管T6截止。
在第三初始化阶段t4,第一扫描信号SCAN1、第二扫描信号SCAN2均为高电平信号,第二晶体管T2、第三晶体管T3、第四晶体管T4截止。第三扫描信号SCAN3为低电平信号,第七晶体管T7导通,则第二参考电压Vref2继续初始化有机发光二极管OLED的阳极。发光控制信号EM为低电平信号,第五晶体管T5、第六晶体管T6导通。由于第七晶体管T7、第五晶体管T5及第六晶体管T6导通,形成了从供应第一电源电压VDD的电源端经第五晶体管T5、第一晶体管T1、第六晶体管T6和第七晶体管T7到供应第二参考电压Vref2的电源端的电流通路。没有驱动电流流经,因此有机发光二极管OLED没有发光,延长了有机发光二极管OLED的使用寿命。
具体地,第三扫描信号SCAN3为低电平信号,发光控制信号EM由高电平信号变为低电平信号,第三扫描信号SCAN3与发光控制信号EM之间设置低电平交叠。由于电容耦合,有机发光二极管OLED的阳极的电位变高,有机发光二极管OLED的阳极与阴极之间存在一个电压差,则可能产生流经有机发光二极管OLED的脉冲电流。但是,由于第七晶体管T7导通,且第二参考电压Vref2低于第二电源电压VSS,没有电流流经有机发光二极管OLED,降低了一帧像素时间内有机发光二极管OLED发光亮度的闪烁(Flicker),并延缓OLED老化。
在发光阶段t5,第一扫描信号SCAN1、第二扫描信号SCAN2、第三扫描信号SCAN3均为高电平信号,第四晶体管T4、第七晶体管T7截止,第二晶体管T2、第三晶体管T3截止。 发光控制信号EM为低电平信号,第五晶体管T5、第六晶体管T6导通,第一电源电压VDD经第五晶体管T5、第一晶体管T1及第六晶体管T6加至有机发光二极管OLED,使得有机发光二极管OLED发光。
第一晶体管T1的栅极源极压降为:Vgs=Vg-Vs;
Vgs=Vdata+Vth-VDD;
第一晶体管T1中的驱动电流大小:
I=K*(Vgs-Vth) 2=K*(VDD-Vdata) 2
其中,K=1/2*μ*Cox*W/L。μ是第一晶体管的电子迁移率,Cox是第一晶体管单位面积的栅氧化层电容,W是第一晶体管的沟道宽度,L是第一晶体管的沟道长度。
因此,可以得到第一晶体管T1中的驱动电流大小为:
I=1/2*μ*C ox*W/L*(VDD-Vdata) 2
从上述公式中可以得到,第一晶体管T1中的驱动电流大小与第一晶体管T1的阈值电压Vth大小无关,从而实现阈值电压补偿,以使有机发光二极管OLED的亮度稳定。
在一个实施例中,本申请提供一种显示装置,该显示装置包括上述实施例中的显示面板。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (17)

  1. 一种显示面板,包括:
    扫描驱动器,用于将扫描信号供应到对应的扫描信号线;所述扫描信号包括第一扫描信号、第二扫描信号和第三扫描信号;
    发光控制驱动器,用于将发光控制信号供应到对应的发光控制信号线;
    数据驱动器,用于将数据电压Vdata供应到数据信号线;
    像素单元,设置在所述扫描信号线、所述发光控制信号线及所述数据信号线的交叉位置处,所述像素单元包括多个像素及与每个像素对应的像素电路;每个像素电路包括第一晶体管、第二晶体管、第三晶体管、第四晶体管、第五晶体管、第六晶体管、第七晶体管、电容和有机发光二极管;
    所述第四晶体管的控制端用于输入所述第一扫描信号,所述第四晶体管的第一极连接所述第三晶体管的第二极、所述第一晶体管的控制端及所述电容的一端,所述电容的另一端连接所述第五晶体管的第一极;所述第四晶体管的第二极用于输入第一参考电压;
    所述第五晶体管的控制端用于输入所述发光控制信号;所述第五晶体管的第一极用于输入所述第一电源电压;所述第五晶体管的第二极连接所述第一晶体管的第一极、所述第二晶体管的第二极;
    所述第一晶体管的第二极连接所述第三晶体管的第一极及所述第六晶体管的第一极;所述第三晶体管的控制端用于输入所述第二扫描信号;
    所述第二晶体管的控制端用于输入所述第二扫描信号,所述第二晶体管的第一极用于输入所述数据电压Vdata;
    所述第六晶体管的控制端用于输入所述发光控制信号,所述第六晶体管的第二极连接所述第七晶体管的第一极;
    所述第七晶体管的控制端用于输入所述第三扫描信号,所述第七晶体管的第一极连接所述有机发光二极管的阳极;所述第七晶体管的第二极用于输入第二参考电压;
    所述有机发光二极管的阴极用于输入第二电源电压。
  2. 根据权利要求1所述的显示面板,其中,所述第一扫描信号由所述扫描驱动器中的第一扫描驱动电路提供,所述第二扫描信号由所述扫描驱动器中的第二扫描驱动电路提供,所述第三扫描信号由所述扫描驱动器中的第三扫描驱动电路提供。
  3. 根据权利要求1所述的显示面板,其中,所述第四晶体管的第二极连接所述第七晶体管的第二极,所述第一参考电压等于所述第二参考电压。
  4. 根据权利要1至3中任一项所述的显示面板,其中,所述第二参考电压小于所述第二电源电压。
  5. 根据权利要求1所述的显示面板,其中,所述第一扫描信号、所述第二扫描信号、所述第三扫描信号具有互不相同的时序;
    所述发光控制信号与所述第一扫描信号的低电平持续时段不存在交叠;并且
    所述发光控制信号与所述第三扫描信号的低电平持续时段存在交叠。
  6. 根据权利要求1所述的显示面板,其中,所述第一晶体管至所述第七晶体管均为P型薄膜晶体管。
  7. 根据权利要求1所述的显示面板,其中,所述电容是储能电容。
  8. 根据权利要求1所述的显示面板,其中,所述第二晶体管至所述第七晶体管均为开关晶体管,所述第一晶体管为驱动晶体管。
  9. 根据权利要求1所述的显示面板,其中,所述多个像素呈阵列排布。
  10. 根据权利要求1所述的显示面板,其中,每个晶体管的控制端为晶体管的栅极,每个晶体管的第一极为晶体管的源极,每个晶体管的第二极为晶体管的漏极。
  11. 根据权利要求1所述的显示面板,其中,所述第一晶体管至所述第七晶体管包括低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管以及非晶硅薄膜晶体管中的任一种。
  12. 一种像素电路的驱动方法,所述像素电路为如权利要求1所述的显示面板中的像素电路,所述驱动方法包括:
    第一初始化阶段,设置第一扫描信号及第二扫描信号为高电平信号,设置第三扫描信号及发光控制信号为低电平信号;
    第二初始化阶段,设置所述第一扫描信号、所述第二扫描信号及所述发光控制信号为高电平信号,设置所述第三扫描信号为低电平信号;
    第三初始化阶段,设置所述第一扫描信号为低电平信号,设置所述第二扫描信号、所述第三扫描信号及所述发光控制信号为高电平信号;第一参考电压初始化第一晶体管的控制端;
    存储阶段,设置所述第一扫描信号、所述第三扫描信号及所述发光控制信号为高电平信号,设置所述第二扫描信号为低电平信号;数据电压Vdata将补偿电压写入电容;
    发光阶段,设置所述第一扫描信号、所述第二扫描信号及所述第三扫描信号为高电平信号,设置所述发光控制信号为低电平信号;将第一电源电压提供给有机发光二极管以使所述有机发光二极管发光。
  13. 根据权利要求12所述的驱动方法,其中,在所述第一初始化阶段,第七晶体管由所述第三扫描信号导通,第二参考电压初始化所述有机发光二极管的阳极。
  14. 根据权利要求13所述的驱动方法,其中,在所述存储阶段,第五晶体管由所述发光控制信号截止,第二晶体管由所述第二扫描信号导通,所述第一晶体管的控制端及所述电容的与该第一晶体管的控制端相连的第二极板的电位均等于Vdata-|Vth|,其中,Vth为所述第一晶体管T1的阈值电压。
  15. 一种像素电路的驱动方法,所述像素电路为如权利要求1所述的显示面板中的像素电路,所述驱动方法包括:
    第一初始化阶段,设置第一扫描信号为低电平信号,设置第二扫描信号、第三扫描信号及发光控制信号为高电平信号;第一参考电压初始化第一晶体管的控制端;
    存储阶段,设置所述第一扫描信号、所述第三扫描信号及所述发光控制信号为高电平信号,设置所述第二扫描信号为低电平信号;数据电压Vdata将补偿电压写入电容;
    第二初始化阶段,设置所述第一扫描信号、所述第二扫描信号及所述发光控制信号为高电平信号,设置所述第三扫描信号为低电平信号;
    第三初始化阶段,设置所述第一扫描信号及所述第二扫描信号为高电平信号,设置所述第三扫描信号及所述发光控制信号为低电平信号;
    发光阶段,设置所述第一扫描信号、所述第二扫描信号及所述第三扫描信号为高电平信号,设置所述发光控制信号为低电平信号;将第一电源电压提供给有机发光二极管以使所述有机发光二极管发光。
  16. 根据权利要求15所述的驱动方法,其中,在所述存储阶段,第五晶体管由所述发光控制信号截止,第二晶体管由所述第二扫描信号导通,所述第一晶体管的控制端及所述电容的与该第一晶体管的控制端相连的第二极板的电位均等于Vdata-|Vth|,其中,Vth为所述第一晶体管T1的阈值电压。
  17. 根据权利要求16所述的驱动方法,其中,在所述第二初始化阶段,第七晶体管由所述第三扫描信号导通,第二参考电压初始化所述有机发光二极管的阳极。
PCT/CN2019/078925 2018-09-28 2019-03-20 显示面板及像素电路的驱动方法 WO2020062802A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/846,398 US10916199B2 (en) 2018-09-28 2020-04-12 Display panel and driving method of pixel circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811139920.6A CN109243369A (zh) 2018-09-28 2018-09-28 显示面板、像素电路的驱动方法及显示装置
CN201811139920.6 2018-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/846,398 Continuation US10916199B2 (en) 2018-09-28 2020-04-12 Display panel and driving method of pixel circuit

Publications (1)

Publication Number Publication Date
WO2020062802A1 true WO2020062802A1 (zh) 2020-04-02

Family

ID=65057907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078925 WO2020062802A1 (zh) 2018-09-28 2019-03-20 显示面板及像素电路的驱动方法

Country Status (3)

Country Link
US (1) US10916199B2 (zh)
CN (1) CN109243369A (zh)
WO (1) WO2020062802A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109243369A (zh) 2018-09-28 2019-01-18 昆山国显光电有限公司 显示面板、像素电路的驱动方法及显示装置
KR102482335B1 (ko) * 2018-10-04 2022-12-29 삼성디스플레이 주식회사 표시 장치 및 이를 이용한 표시 패널의 구동 방법
KR102583819B1 (ko) * 2018-12-18 2023-10-04 삼성디스플레이 주식회사 표시 장치 및 이를 이용한 표시 패널의 구동 방법
CN110322850B (zh) * 2019-05-06 2020-12-08 惠科股份有限公司 显示装置
CN110223633B (zh) * 2019-06-05 2021-09-28 上海天马有机发光显示技术有限公司 显示面板和显示装置
TWI720655B (zh) * 2019-10-17 2021-03-01 友達光電股份有限公司 畫素電路及其驅動方法
CN111354307B (zh) * 2020-04-09 2022-02-15 武汉天马微电子有限公司 一种像素驱动电路及驱动方法、有机发光显示面板
JP2023533092A (ja) * 2020-05-06 2023-08-02 京東方科技集團股▲ふん▼有限公司 表示基板及びその駆動方法、表示装置
US11562698B2 (en) * 2020-06-12 2023-01-24 Chengdu Boe Optoelectronics Technology Co., Ltd. Display panel, driving method thereof and display apparatus
CN111724746B (zh) * 2020-07-21 2021-11-19 京东方科技集团股份有限公司 像素电路及其老化工艺方法、阵列基板
CN111739471B (zh) * 2020-08-06 2022-02-22 武汉天马微电子有限公司 一种显示面板、驱动方法及显示装置
CN111968581B (zh) * 2020-09-09 2021-11-23 京东方科技集团股份有限公司 像素电路的驱动方法
CN112086059A (zh) * 2020-09-15 2020-12-15 合肥维信诺科技有限公司 像素电路和显示面板
CN112289264B (zh) * 2020-11-27 2022-09-16 武汉天马微电子有限公司 一种像素电路及其驱动方法、显示面板和显示装置
TWI771895B (zh) * 2021-02-03 2022-07-21 友達光電股份有限公司 畫素電路及其驅動方法
CN113436583B (zh) * 2021-06-30 2022-10-14 昆山国显光电有限公司 显示面板及其驱动方法
CN113724654B (zh) * 2021-08-31 2023-12-12 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示装置
CN115206231B (zh) * 2022-09-06 2023-03-07 禹创半导体(深圳)有限公司 一种适用于模拟PWM驱动的Micro LED扫描驱动电路
CN118098146A (zh) * 2022-11-25 2024-05-28 京东方科技集团股份有限公司 像素电路、驱动方法和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004287046A (ja) * 2003-03-20 2004-10-14 Sharp Corp 表示装置
CN106991964A (zh) * 2017-04-14 2017-07-28 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
CN107358917A (zh) * 2017-08-21 2017-11-17 上海天马微电子有限公司 一种像素电路、其驱动方法、显示面板及显示装置
CN107610652A (zh) * 2017-09-28 2018-01-19 京东方科技集团股份有限公司 像素电路、其驱动方法、显示面板及显示装置
CN109243369A (zh) * 2018-09-28 2019-01-18 昆山国显光电有限公司 显示面板、像素电路的驱动方法及显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859542B (zh) * 2010-05-11 2012-05-23 友达光电股份有限公司 有机发光二极管显示装置及其有机发光二极管像素电路
KR101152466B1 (ko) 2010-06-30 2012-06-01 삼성모바일디스플레이주식회사 화소 및 이를 이용한 유기전계발광 표시장치
CN102122490A (zh) * 2011-03-18 2011-07-13 华南理工大学 一种有源有机发光二极管显示器的交流驱动电路及其方法
CN105096819B (zh) * 2015-04-21 2017-11-28 北京大学深圳研究生院 一种显示装置及其像素电路
CN106128360B (zh) 2016-09-08 2018-11-13 京东方科技集团股份有限公司 像素电路、显示面板、显示设备及驱动方法
KR102652882B1 (ko) * 2016-11-23 2024-03-29 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그의 구동 방법
CN108630141B (zh) * 2017-03-17 2019-11-22 京东方科技集团股份有限公司 像素电路、显示面板及其驱动方法
CN107154239B (zh) * 2017-06-30 2019-07-05 武汉天马微电子有限公司 一种像素电路、驱动方法、有机发光显示面板及显示装置
CN207217082U (zh) * 2017-09-30 2018-04-10 京东方科技集团股份有限公司 像素电路及显示装置
CN108428434B (zh) * 2018-02-27 2020-06-23 上海天马有机发光显示技术有限公司 像素电路、有机发光显示面板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004287046A (ja) * 2003-03-20 2004-10-14 Sharp Corp 表示装置
CN106991964A (zh) * 2017-04-14 2017-07-28 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
CN107358917A (zh) * 2017-08-21 2017-11-17 上海天马微电子有限公司 一种像素电路、其驱动方法、显示面板及显示装置
CN107610652A (zh) * 2017-09-28 2018-01-19 京东方科技集团股份有限公司 像素电路、其驱动方法、显示面板及显示装置
CN109243369A (zh) * 2018-09-28 2019-01-18 昆山国显光电有限公司 显示面板、像素电路的驱动方法及显示装置

Also Published As

Publication number Publication date
US20200243014A1 (en) 2020-07-30
US10916199B2 (en) 2021-02-09
CN109243369A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2020062802A1 (zh) 显示面板及像素电路的驱动方法
US10565929B2 (en) Organic light emitting display
US11881164B2 (en) Pixel circuit and driving method thereof, and display panel
CN110223636B (zh) 像素驱动电路及其驱动方法、显示装置
WO2020001635A1 (zh) 驱动电路及其驱动方法、显示装置
WO2023005621A1 (zh) 像素电路及其驱动方法、显示面板
JP4915195B2 (ja) 表示装置
US8941309B2 (en) Voltage-driven pixel circuit, driving method thereof and display panel
WO2016011711A1 (zh) 像素电路、像素电路的驱动方法和显示装置
WO2019037499A1 (zh) 像素电路及其驱动方法、显示装置
US10366655B1 (en) Pixel driver circuit and driving method thereof
WO2019041818A1 (zh) 像素电路及其驱动方法、显示基板及其驱动方法、显示装置
WO2017117939A1 (zh) 像素补偿电路及amoled显示装置
WO2018032899A1 (zh) 像素电路及其驱动方法、显示面板和显示装置
WO2017117983A1 (zh) 像素补偿电路及amoled显示装置
WO2018219209A1 (zh) 像素补偿电路及补偿方法、显示装置
WO2015188533A1 (zh) 像素驱动电路、驱动方法、阵列基板及显示装置
US10235940B2 (en) Pixel-driving circuit, the driving method thereof, and display device
WO2015085699A1 (zh) Oled像素电路及驱动方法、显示装置
WO2016023311A1 (zh) 像素驱动电路及其驱动方法和显示装置
KR20160071354A (ko) 픽셀 회로, 유기 전계 발광 표시 패널, 표시 장치 및 그 구동 방법
WO2014153815A1 (zh) Amoled像素单元及其驱动方法、显示装置
WO2020062813A1 (zh) 像素电路、其驱动方法及显示装置
CN108172171B (zh) 像素驱动电路及有机发光二极管显示器
WO2016078282A1 (zh) 像素单元驱动电路和方法、像素单元和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866210

Country of ref document: EP

Kind code of ref document: A1