WO2020059549A1 - 全固体二次電池及び全固体二次電池用負極シート - Google Patents

全固体二次電池及び全固体二次電池用負極シート Download PDF

Info

Publication number
WO2020059549A1
WO2020059549A1 PCT/JP2019/035315 JP2019035315W WO2020059549A1 WO 2020059549 A1 WO2020059549 A1 WO 2020059549A1 JP 2019035315 W JP2019035315 W JP 2019035315W WO 2020059549 A1 WO2020059549 A1 WO 2020059549A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
electrode active
solid
material layer
Prior art date
Application number
PCT/JP2019/035315
Other languages
English (en)
French (fr)
Inventor
昭人 福永
信 小澤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020548342A priority Critical patent/JP6948474B2/ja
Publication of WO2020059549A1 publication Critical patent/WO2020059549A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all-solid secondary battery and a negative electrode sheet for an all-solid secondary battery.
  • a lithium ion secondary battery is a storage battery having a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and capable of charging and discharging by reciprocating lithium ions between the two electrodes.
  • organic electrolytes have been used as electrolytes in lithium ion secondary batteries.
  • the organic electrolyte is liable to leak, and a short circuit may occur in the battery due to overcharging or overdischarging, causing ignition, and further improvement in safety and reliability is required. Under such circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has been receiving attention.
  • the all-solid-state secondary battery has a negative electrode, an electrolyte, and a positive electrode, all of which are solid, greatly improving the safety and reliability of batteries using organic electrolytes, and extending the life of the battery. It is said to be. Further, the all-solid-state secondary battery can have a laminated structure in which electrodes and electrolytes are directly arranged and arranged in series. Therefore, higher energy density can be achieved as compared with a secondary battery using an organic electrolyte, and application to various electronic devices, electric vehicles, large storage batteries, and the like is expected.
  • the basic layer configuration of an all solid state secondary battery is a laminated structure including a positive electrode layer, a solid electrolyte layer, and a negative electrode layer.
  • the positive electrode of an all solid state secondary battery generally has a configuration in which a positive electrode current collector layer made of a metal foil and a positive electrode active material layer are laminated, and the positive electrode active material layer is in contact with the solid electrolyte layer.
  • the negative electrode also generally has a structure in which a negative electrode current collector layer made of a metal foil and a negative electrode active material layer are laminated, and has a configuration in which the negative electrode active material layer is in contact with the solid electrolyte layer.
  • a material that can insert and release ions of a metal belonging to Group 1 or Group 2 of the periodic table (typically, lithium ion) is used.
  • a metal belonging to Group 1 or Group 2 of the periodic table typically, lithium ion
  • the negative electrode active material expands due to insertion of metal ions, and its volume increases.
  • electrons flow from the negative electrode side to the positive electrode side in the external circuit in order to eliminate a potential difference caused by charging.
  • metal ions are released from the negative electrode active material to the positive electrode side, and the released metal ions are inserted into the positive electrode active material, combine with electrons, and are reduced to the original state.
  • the negative electrode active material shrinks due to the release of metal ions and decreases in volume (returns to the volume before metal ions were inserted).
  • Patent Literature 1 has a problem that in a nonaqueous electrolyte battery, current is likely to concentrate near the outer peripheral portion of each active material during charging and discharging of the battery, and this current concentration causes an in-plane distribution in a change in volume of the active material.
  • these current concentration causes an in-plane distribution in a change in volume of the active material.
  • the volume change near the outer peripheral edge of the active material layer during charging / discharging of the battery is larger than that at the center, each of the active material layers near the outer peripheral edge of the active material layer along with the charging / discharging of the battery has There has been a problem that good bonding between the active material layer and the solid electrolyte layer cannot be maintained, and the discharge capacity is significantly reduced.
  • the negative electrode active material expands by inserting metal ions during charging, and contracts by discharging metal ions during discharging. That is, the volume change accompanying charge / discharge is large. This change in volume increases as the negative electrode active material has a higher metal ion storage capacity.
  • the negative electrode active material expands during charging, the solid electrolyte existing around the negative electrode active material is pushed outward.
  • the pushed solid electrolyte does not easily follow the contraction of the negative electrode active material. That is, a gap is formed between the negative electrode active material constituting the negative electrode active material layer and the solid electrolyte, the conduction path is interrupted, and the internal resistance increases.
  • the all-solid-state secondary battery In order to suppress the generation of the voids, the all-solid-state secondary battery is generally used by being sealed in a housing or the like with a high confining pressure.
  • This high-pressure sealing hinders miniaturization and weight reduction of the all-solid secondary battery.
  • the present invention is directed to an all-solid secondary battery capable of sufficiently suppressing the formation of voids in the negative electrode active material layer even by expansion and contraction of the negative electrode active material, and capable of sufficiently suppressing an increase in internal resistance due to repetition of charge / discharge. It is an object to provide a negative electrode sheet suitable as a constituent material of a secondary battery. Another object of the present invention is to provide an electronic device and an electric vehicle having the all-solid secondary battery.
  • An all-solid secondary battery having a stacked structure in which a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are stacked in this order,
  • the negative electrode active material layer has a solid particle region X containing a negative electrode active material and an inorganic solid electrolyte, and a polymer region Y formed of a polymer having a tensile modulus of 700 MPa or less,
  • the solid particle region X and the polymer region Y are arranged in the negative electrode active material layer in the laminating direction of the laminated structure, and are also arranged in one direction perpendicular to the laminating direction,
  • the solid particle regions X and the polymer regions Y are alternately arranged in contact with each other, and in the cross section,
  • An all-solid-state secondary battery in which the relationship between the widths of the
  • a negative electrode sheet for an all-solid secondary battery having a negative electrode active material layer has a solid particle region X containing a negative electrode active material and an inorganic solid electrolyte, and a polymer region Y formed of a polymer having a tensile modulus of 700 MPa or less,
  • the solid particle region X and the polymer region Y are arranged in the negative electrode active material layer in a direction perpendicular to the surface of the negative electrode active material layer, and also in one direction parallel to the surface of the negative electrode active material layer.
  • a negative electrode sheet for an all-solid secondary battery wherein the relationship between the widths of the solid particle region X and the polymer region Y adjacent to each other in the cross section satisfies the following expression. 0.01 ⁇ Y w / X w ⁇ 1.00 X w : width of solid particle region X Y w : width of polymer region Y
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
  • the all-solid-state secondary battery of the present invention voids are unlikely to be formed in the negative electrode active material layer even when the negative electrode active material expands and contracts, and the increase in internal resistance due to repeated charge and discharge can be sufficiently suppressed.
  • the all-solid-state secondary battery of the electronic device and the electric vehicle can suppress an increase in internal resistance due to repetition of charge and discharge, thereby realizing a longer battery life.
  • the negative electrode sheet for an all-solid secondary battery of the present invention is suitable as a material for forming the negative electrode layer of the all-solid secondary battery of the present invention.
  • FIG. 1 is a vertical cross-sectional view schematically illustrating a basic stacked configuration of an all solid state secondary battery.
  • FIG. 2 is a perspective view schematically illustrating the configuration of the negative electrode active material layer of the all solid state secondary battery of the present invention.
  • FIG. 3 is a cross-sectional view of the ABCD plane shown in FIG.
  • the all solid state secondary battery of the present invention has a laminated structure in which a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are laminated in this order.
  • FIG. 1 shows an example of a laminated structure of each functional layer in the all solid state secondary battery of the present invention.
  • FIG. 1 is a cross-sectional view schematically illustrating an all solid state secondary battery, and the illustration of a housing and the like is omitted.
  • the all-solid secondary battery 101 includes a negative electrode current collector layer 11, a negative electrode active material layer 12, a solid electrolyte layer 13, a positive electrode active material layer 14, and a positive electrode current collector layer 15 in this order.
  • Adjacent layers are in contact with each other.
  • electrons (e ⁇ ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated therein.
  • lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the operating portion 16.
  • a light bulb is employed as a model for the operating portion 16, and this is turned on by discharge. Note that FIG.
  • the all solid state secondary battery of the present invention is not limited to this mode.
  • An all-solid-state rechargeable battery (monopolar battery) having a configuration of a plurality of units in which a stacked structure is configured as one unit and a plurality of units are stacked on a current collector such as a metal foil so that the current collector layers do not contact each other.
  • Type or bipolar type all-solid secondary battery is also a preferred embodiment of the all-solid secondary battery of the present invention.
  • the battery is the all-solid secondary battery of the present invention.
  • the all-solid secondary battery having a monopolar or bipolar stacked structure it is preferable that all the negative electrode active material layers have the structure of the negative electrode active material layer specified in the present invention.
  • the negative electrode active material layer has a solid particle region X (hereinafter, also simply referred to as “region X”) containing the negative electrode active material and the inorganic solid electrolyte, and a tensile modulus of 700 MPa or less.
  • region X solid particle region containing the negative electrode active material and the inorganic solid electrolyte
  • tensile modulus 700 MPa or less.
  • region Y polymer region Y
  • the regions X and the regions Y are alternately adjacent to each other in the negative electrode active material layer. The arrangement of the region X and the region Y will be described with reference to FIG.
  • FIG. 2 is a perspective view showing one embodiment of the negative electrode active material layer constituting the all solid state secondary battery of the present invention shown in FIG.
  • Each of the region X (1a, 1b, 1c) and the region Y (2a, 2b) is arranged in the negative electrode active material layer in the stacking direction (L direction) in the stacked structure of the all solid state secondary battery shown in FIG. (Penetrating in the laminating direction (L direction)).
  • both the region X and the region Y are arranged side by side in the depth direction (Z direction) of the negative electrode active material layer (penetrating in the depth direction (Z direction)). Thereby, the expansion during charging of the negative electrode active material in the region X can be more reliably absorbed. As shown in FIG.
  • the regions X and the regions Y are arranged alternately in contact with each other.
  • the region X and the region Y are arranged in the negative electrode active material layer in the stacking direction (L direction) of each functional layer, and A structure in which the layers are arranged in one direction (Z direction in FIG. 2) perpendicular to the lamination direction is adopted.
  • the solid particle region X And the polymer region Y are alternately arranged in contact with each other.
  • FIG. 2 shows the shape of the negative electrode active material layer as a rectangular parallelepiped, the present invention is not limited to this form, and may have a desired shape such as a columnar shape.
  • FIG. 3 shows a cross section perpendicular to the Z direction in FIG.
  • the relationship between the widths of both the solid particle region X and the polymer region Y adjacent to each other satisfies 0.01 ⁇ Y w / X w ⁇ 1.00.
  • X w is the width of the solid particles region X in the cross section of FIG. 3 (1a, 1b, 1c)
  • Y w is the width of the polymeric regions Y (2a, 2b) in the cross section of FIG.
  • X w and Y w are (a ABCD plane, all the cross section parallel to the ABCD plane) all cross section perpendicular to the Z direction in satisfies 0.01 ⁇ Y w / X w ⁇ 1.00.
  • there are usually a plurality of pairs (pairs) of the solid particle region X and the polymer region Y adjacent to each other in FIGS. 2 and 3, four pairs of 1a and 2a, 2a and 1b, 1b and 2b, 2b and 1c). In all combinations of the solid particle region X and the polymer region Y adjacent to each other, 0.01 ⁇ Y w / X w ⁇ 1.00 is satisfied.
  • X w and Y w are determined as follows.
  • the cross section of the negative electrode active material layer perpendicular to the Z direction (the cross section shown in FIG. 3) is divided into six equal parts in the L direction and this cross section is divided into six regions.
  • the widths of both the solid particle region X and the polymer region Y were measured, and the average of the five measured values obtained for each of the solid particle region X and the polymer region Y was Xw and Let it be Y w .
  • This measurement can be performed by observing a cross section with a scanning electron microscope and measuring the width of five boundary portions.
  • Relationship between X w and Y w preferably satisfies 0.02 ⁇ Y w / X w ⁇ 0.80, and more preferably satisfies 0.02 ⁇ Y w / X w ⁇ 0.70.
  • a soft polymer region having a tensile modulus of 700 MPa or less effectively absorbs expansion of the negative electrode active material layer during charging, and contracts during discharging. And the polymer region returns to the original shape, so that voids are unlikely to be formed between the solid particles constituting the negative electrode active material layer. As a result, it is possible to sufficiently suppress an increase in internal resistance due to repetition of charging and discharging. Further, since the size of the polymer region is limited, a sufficient discharge capacity can be ensured.
  • the negative electrode active material layer usually has a plurality of regions X divided by regions Y, and similarly has a plurality of regions Y divided by regions X, as shown in FIGS.
  • the plurality of regions X may have the same size and composition, or may have different sizes.
  • the plurality of regions Y may have the same size and composition, or may have different sizes. It is preferable that the plurality of regions X have the same size and composition. Similarly, it is preferable that the plurality of regions Y have the same size and composition.
  • solid particle regions X and polymer regions Y are alternately arranged in a cross section perpendicular to the Z direction. The outermost region in this alternate arrangement is preferably a solid particle region X.
  • the size of the X w and Y w is not particularly limited if it meets the above relationship.
  • the X w can be 0.01 ⁇ 1000 mm, preferably 0.1 ⁇ 100mm, 1 ⁇ 50mm and more preferably.
  • the region X contains a negative electrode active material and an inorganic solid electrolyte as solid particles.
  • the negative electrode active material is an active material capable of inserting and releasing ions of a metal belonging to Group 1 or 2 of the periodic table.
  • the negative electrode active material those capable of reversibly inserting and / or releasing lithium ions are preferable.
  • the material is not particularly limited as long as it has the above-mentioned characteristics, and is not particularly limited, and may be a carbonaceous material, an oxide of a metal or metalloid element (including a composite oxide), a simple substance of lithium, a lithium alloy, or an alloy with lithium. Active material that can be converted (form an alloy with lithium).
  • carbonaceous materials, oxides of metalloid elements, metal composite oxides, and lithium alone are preferable.
  • An active material that can be alloyed with lithium is preferable in that the capacity of the all-solid secondary battery can be increased.
  • a carbonaceous material used as a negative electrode active material is a material substantially composed of carbon.
  • various synthetics such as petroleum pitch, carbon black such as acetylene black (AB), graphite (artificial graphite such as natural graphite and vapor-grown graphite), and PAN (polyacrylonitrile) -based resin or furfuryl alcohol resin.
  • a carbonaceous material obtained by firing a resin can be used.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber.
  • carbonaceous materials can be classified into non-graphitizable carbonaceous materials (also referred to as hard carbon) and graphite-based carbonaceous materials according to the degree of graphitization.
  • the carbonaceous material preferably has a plane spacing or a density and a crystallite size described in JP-A-62-22066, JP-A-2-6856, and JP-A-3-45473.
  • the carbonaceous material does not need to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like is used.
  • the carbonaceous material hard carbon or graphite is preferably used, and graphite is more preferably used.
  • the oxide of the metal or metalloid element applied as the negative electrode active material is not particularly limited as long as it is an oxide capable of occluding and releasing lithium.
  • An oxide of the metal element metal oxide
  • a composite of the metal element An oxide or a composite oxide of a metal element and a metalloid element (collectively, a metal composite oxide) and an oxide of a metalloid element (metalloid oxide) are given.
  • amorphous oxides are preferable, and chalcogenite which is a reaction product of a metal element and an element of Group 16 of the periodic table is also preferable.
  • the term “metalloid element” refers to an element having an intermediate property between a metal element and a nonmetalloid element, and usually includes six elements of boron, silicon, germanium, arsenic, antimony, and tellurium, and further includes selenium. , Polonium and astatine.
  • amorphous means an X-ray diffraction method using CuK ⁇ rays having a broad scattering band having an apex in a range of 20 ° to 40 ° in 2 ⁇ value. May have.
  • the strongest intensity of the crystalline diffraction lines observed in the range of 40 ° to 70 ° in the 2 ⁇ value is 100 times or less the intensity of the diffraction line at the top of the broad scattering band observed in the range of 20 ° to 40 ° in the 2 ⁇ value. It is more preferably 5 times or less, particularly preferably no crystalline diffraction line.
  • an amorphous oxide of a metalloid element or the above-mentioned chalcogenide is more preferable, and an element of group 13 (IIIB) to group 15 (VB) of the periodic table (for example, , Al, Ga, Si, Sn, Ge, Pb, Sb and Bi), a (composite) oxide composed solely or in combination of two or more thereof, or a chalcogenide is particularly preferred.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3, Sb 2 O 4, Sb 2 O 8 Bi 2 O 3, Sb 2 O 8 Si 2 O 3, Sb 2 O 5, Bi 2 O 3, Bi 2 O 4, SnSiO 3, GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 or SnSiS 3 are preferred.
  • Examples of the negative electrode active material that can be used in combination with the amorphous oxide negative electrode active material mainly composed of Sn, Si, and Ge include a carbonaceous material capable of inserting and / or releasing lithium ions or lithium metal, lithium alone, and lithium.
  • An alloy and an active material that can be alloyed with lithium are preferably used.
  • An oxide of a metal or metalloid element, particularly a metal (composite) oxide and the above-described chalcogenide preferably contain at least one of titanium and lithium as a component from the viewpoint of high current density charge / discharge characteristics.
  • the lithium-containing metal composite oxide include, for example, a composite oxide of lithium oxide and the metal (composite) oxide or the chalcogenide, more specifically, Li 2 SnO 2.
  • the negative electrode active material for example, a metal oxide also preferably includes a titanium atom (titanium oxide).
  • Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuations during occlusion and release of lithium ions, and suppresses electrode deterioration and suppresses lithium ion secondary This is preferable in that the life of the battery can be improved.
  • the lithium alloy as the negative electrode active material is not particularly limited as long as it is an alloy generally used as a negative electrode active material of a secondary battery, and examples thereof include a lithium aluminum alloy.
  • the active material that can be alloyed with lithium is not particularly limited as long as it is generally used as a negative electrode active material of a secondary battery.
  • each metal or metalloid such as Sn, Si, Al, and In
  • a silicon-based negative electrode active material for example, Si or SiO
  • SiO itself can be used as a negative electrode active material (semi-metal oxide).
  • an active material that can be alloyed with lithium (a precursor material thereof) ) can be used.
  • a silicon-based negative electrode active material is preferable, and Si is more preferable.
  • the negative electrode active material layer formed using an active material that can be alloyed with lithium has a large expansion and contraction due to charge and discharge.
  • a negative electrode active material layer carbon negative electrode
  • a carbon-based material such as graphite and acetylene black
  • the chemical formula of the compound obtained by the calcination method can be calculated from inductively coupled plasma (ICP) emission spectroscopy as a measuring method, and from the mass difference of powder before and after calcination as a simple method.
  • ICP inductively coupled plasma
  • the surface of the negative electrode active material may be coated with another metal oxide.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples include titanate spinel, tantalum-based oxide, niobium-based oxide, lithium niobate-based compound, and the like.
  • the surface of the electrode containing the negative electrode active material may be surface-treated with sulfur or phosphorus. Further, the surface of the particles of the negative electrode active material may be subjected to a surface treatment before or after the above-mentioned surface coating with an active ray or an active gas (plasma or the like).
  • the shape of the negative electrode active material is not particularly limited, but is preferably in the form of particles.
  • the average particle size of the negative electrode active material is not particularly limited, but is preferably 0.1 to 60 ⁇ m.
  • the average particle size of the negative electrode active material particles can be measured in the same manner as the average particle size of the inorganic solid electrolyte.
  • an ordinary pulverizer or a classifier is used. For example, a mortar, a ball mill, a sand mill, a vibration ball mill, a satellite ball mill, a planetary ball mill, a swirling air jet mill, a sieve, or the like is suitably used.
  • wet pulverization in the presence of water or an organic solvent such as methanol can also be performed.
  • Classification is preferably performed to obtain a desired particle size.
  • Classification is not particularly limited, and can be performed using a sieve, an air classifier, or the like. Classification can be performed both in a dry process and in a wet process.
  • the region X may contain one or more negative electrode active materials.
  • the content of the negative electrode active material in the region X is not particularly limited, and is preferably from 10 to 90% by mass, more preferably from 20 to 85% by mass, and still more preferably from 30 to 80% by mass. More preferably, it is 75% by mass.
  • the negative electrode active material layer of the present invention contains an inorganic solid electrolyte in the region X.
  • the inorganic solid electrolyte is an inorganic solid electrolyte
  • the solid electrolyte is a solid electrolyte in which ions can move inside. Since it does not contain an organic substance as a main ion conductive material, it is an organic solid electrolyte (a polymer electrolyte represented by polyethylene oxide (PEO) and the like; an organic represented by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) and the like) Electrolyte salt).
  • PEO polyethylene oxide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • the inorganic solid electrolyte is a solid in a steady state, it is not usually dissociated or released into cations and anions.
  • the electrolyte solution or the inorganic electrolyte salt LiPF 6 , LiBF 4 , lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.
  • the inorganic solid electrolyte is not particularly limited as long as it has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and generally has no electron conductivity.
  • the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
  • the inorganic solid electrolyte a solid electrolyte material usually used for an all-solid secondary battery can be appropriately selected and used.
  • Representative examples of the inorganic solid electrolyte include (i) a sulfide-based inorganic solid electrolyte and (ii) an oxide-based inorganic solid electrolyte.
  • a sulfide-based inorganic solid electrolyte is preferably used from the viewpoint that a better interface can be formed between the active material and the inorganic solid electrolyte.
  • the sulfide-based inorganic solid electrolyte contains a sulfur atom, has ionic conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Those having properties are preferred.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S, and P as elements and has lithium ion conductivity, but depending on the purpose or case, other than Li, S, and P, It may contain an element.
  • Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive inorganic solid electrolyte satisfying a composition represented by the following formula (1).
  • L a1 M b1 P c1 S d1 A e1 (1)
  • L represents an element selected from Li, Na and K, and Li is preferable.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • a1 is preferably 1 to 9, and more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3, more preferably 0 to 1.
  • d1 is preferably from 2.5 to 10, and more preferably from 3.0 to 8.5.
  • e1 is preferably from 0 to 5, more preferably from 0 to 3.
  • composition ratio of each element can be controlled by adjusting the compounding amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be non-crystalline (glass) or crystallized (glass-ceramic), or may be partially crystallized.
  • glass glass
  • glass-ceramic glass-ceramic
  • Li-PS-based glass containing Li, P and S, or Li-PS-based glass ceramic containing Li, P and S can be used.
  • Examples of the sulfide-based inorganic solid electrolyte include lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), elemental phosphorus, elemental sulfur, sodium sulfide, hydrogen sulfide, and lithium halide (for example, LiI, LiBr, LiCl) and at least two or more of sulfides (for example, SiS 2 , SnS, GeS 2 ) of the element represented by M can be produced.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • elemental phosphorus elemental sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide hydrogen sulfide
  • lithium halide for example, LiI, LiBr, LiCl
  • at least two or more of sulfides for example, SiS 2 , SnS,
  • the ratio of Li 2 S and P 2 S 5 is, Li 2 S: at a molar ratio of P 2 S 5, preferably 60: 40 ⁇ 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li 2 S—P 2 S 5 Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 —LiCl, Li 2 S—P 2 S 5 —H 2 S, Li 2 S—P 2 S 5 —H 2 S—LiCl, Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 SP—P 2 S 5 —P 2 O 5 , Li 2 SP—P 2 S 5 —SiS 2 , Li 2 SP—P 2 S 5 —SiS 2 -LiCl, Li 2 S-P 2 S 5 -SnS, Li 2 S-P 2 S 5 -Al 2 S 3, Li 2 S-G
  • the mixing ratio of each raw material does not matter.
  • an amorphization method can be mentioned.
  • the amorphization method include a mechanical milling method, a solution method, and a melt quenching method. This is because processing at normal temperature becomes possible, and the manufacturing process can be simplified.
  • the oxide-based inorganic solid electrolyte contains an oxygen atom, has ionic conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. Those having properties are preferred.
  • the oxide-based inorganic solid electrolyte has an ionic conductivity of preferably 1 ⁇ 10 ⁇ 6 S / cm or more, more preferably 5 ⁇ 10 ⁇ 6 S / cm or more, and more preferably 1 ⁇ 10 ⁇ 5 S / cm. / Cm or more is particularly preferable.
  • the upper limit is not particularly limited, but is practically 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li xa La ya TiO 3 [xa satisfies 0.3 ⁇ xa ⁇ 0.7, ya satisfies 0.3 ⁇ ya ⁇ 0.7. ] (LLT); Li xb La yb Zr zb M bb mb O nb (M bb is Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, one or more elements selected from In and Sn Xb satisfies 5 ⁇ xb ⁇ 10, yb satisfies 1 ⁇ yb ⁇ 4, zb satisfies 1 ⁇ zb ⁇ 4, mb satisfies 0 ⁇ mb ⁇ 2, and nb satisfies 5 ⁇ nb ⁇ 20.
  • Li xc B yc M cc zc O nc (M cc is C, S, Al, Si, Ga, Ge, is .xc is one or more elements selected from in and Sn 0 ⁇ xc ⁇ 5 , Yc satisfies 0 ⁇ yc ⁇ 1, zc satisfies 0 ⁇ zc ⁇ 1, and nc satisfies 0 ⁇ nc ⁇ 6.); Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md O nd (xd satisfies 1 ⁇ xd ⁇ 3, yd Satisfies 0 ⁇ yd ⁇ 1, zd satisfies 0 ⁇ zd ⁇ 2, ad satisfies 0 ⁇ ad ⁇ 1, md satisfies 1 ⁇ md ⁇ 7, and nd satisfies 3 ⁇ nd ⁇
  • Li 7 La 3 Zr 2 O 12 having a garnet-type crystal structure.
  • a phosphorus compound containing Li, P and O is also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON in which a part of oxygen of lithium phosphate is substituted with nitrogen
  • LiPOD 1 LiPON in which a part of oxygen of lithium phosphate is substituted with nitrogen
  • LiPOD 1 is preferably Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, and Au.
  • LiA 1 ON (A 1 is at least one element selected from Si, B, Ge, Al, C and Ga) and the like can also be preferably used.
  • the inorganic solid electrolyte is preferably particles.
  • the average particle size (volume average particle size) of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the measurement of the average particle size is performed according to the following procedure.
  • the inorganic solid electrolyte particles are diluted with water (heptane in the case of a substance unstable to water) to prepare a 1% by mass dispersion liquid in a 20 mL sample bottle.
  • the dispersion sample after dilution is irradiated with 1 kHz ultrasonic wave for 10 minutes and used immediately after the test.
  • data was taken 50 times at a temperature of 25 ° C. using a laser diffraction / scattering type particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA) using a quartz cell for measurement. Obtain the volume average particle size.
  • JIS Z 8828 2013 “Particle Size Analysis-Dynamic Light Scattering Method” as necessary. Five samples are prepared for each level, and the average value is adopted.
  • the content of the inorganic solid electrolyte in the region X can be, for example, 10 to 90% by mass, preferably 15 to 80% by mass, more preferably 20 to 70% by mass, and still more preferably 35 to 60% by mass.
  • the negative electrode active material layer of the present invention may have a binder in the region X.
  • the binder contained in the negative electrode active material layer can be composed of various organic high molecular compounds (polymers).
  • the binder enhances the binding properties between solid particles such as an inorganic solid electrolyte and an active material, and contributes to improvements in mechanical strength, ionic conductivity, and the like.
  • the organic polymer compound constituting the binder may include a particulate one or a non-particulate one. From the viewpoint of further improving ion conductivity, a particulate binder is preferable.
  • the particle size (volume average particle size) of the particulate binder is preferably from 10 to 1,000 nm, more preferably from 20 to 750 nm, further preferably from 30 to 500 nm, and still more preferably from 50 to 300 nm.
  • the binder may be composed of, for example, an organic polymer compound described below.
  • fluorinated resin examples include polytetrafluoroethylene (PTFE), polyvinylene difluoride (PVdF), and a copolymer of polyvinylene difluoride and hexafluoropropylene (PVdF-HFP).
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylene difluoride
  • PVdF-HFP a copolymer of polyvinylene difluoride and hexafluoropropylene
  • hydrocarbon thermoplastic resin examples include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile butadiene rubber, polybutadiene, and polyisoprene.
  • the (meth) acrylic resin examples include various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of two or more of these monomers.
  • copolymers with other vinyl monomers are also preferably used.
  • a copolymer of methyl (meth) acrylate and styrene, a copolymer of methyl (meth) acrylate and acrylonitrile, and a copolymer of butyl (meth) acrylate, acrylonitrile and styrene It is not limited to these.
  • the (meth) acrylic resin may have a component derived from a macromonomer.
  • the copolymer may be any of a statistical copolymer and a periodic copolymer, and is preferably a random copolymer.
  • -Other resins examples include polyurethane resins, polyurea resins, polyamide resins, polyimide resins, polyester resins, polyether resins, polycarbonate resins, and cellulose derivative resins.
  • the content of the binder in the region X can be 1 to 20% by mass, preferably 2 to 15% by mass, and more preferably 3 to 10% by mass.
  • a fluorine-containing resin, a hydrocarbon-based thermoplastic resin, a (meth) acrylic resin, a polyurethane resin, a polycarbonate resin, and a cellulose derivative resin are preferable, which have good affinity with an inorganic solid electrolyte, and A (meth) acrylic resin or a polyurethane resin is particularly preferred in that it has good flexibility and can show stronger binding with solid particles.
  • Commercially available products can be used as the above various resins.
  • it can also be prepared by a conventional method.
  • the number average molecular weight of the polymer constituting the binder is preferably from 1,000 to 1,000,000, and more preferably from 10,000 to 500,000, from the viewpoint of improving the binding between solid particles.
  • the organic polymer compound described above is an example, and the binder in the present invention is not limited to these forms.
  • the region Y is composed of a polymer having a tensile modulus of 700 MPa or less.
  • the region Y can be composed of one or more polymers having a tensile modulus of 700 MPa or less.
  • the region Y may contain an air region as long as the effect of the present invention is not impaired.
  • a polymer having a tensile modulus of 700 MPa or less (hereinafter, also referred to as “polymer Y”) has soft physical properties and absorbs expansion of the negative electrode active material layer in the region X during charging.
  • the tensile modulus of the polymer Y is not particularly limited as long as it is 700 MPa or less.
  • the elastic modulus of the polymer Y can be 10 to 700 MPa, preferably 20 to 600 MPa, more preferably 30 to 550 MPa, and particularly preferably 50 to 500 MPa.
  • the polymer Y is preferably an elastomer (a polymer exhibiting rubber elasticity at normal temperature (25 ° C.)).
  • the type of the polymer Y is not particularly limited, and examples thereof include a polyurethane elastomer, a styrene elastomer, an olefin elastomer, a vinyl chloride elastomer, a polyester elastomer, a polyamide elastomer, a silicone elastomer, and a fluorine elastomer. .
  • the polyurethane-based elastomer is an elastomer whose hard segment has a polyurethane structure.
  • Examples of the polyurethane-based elastomer include elastomers containing structural units of a hard segment composed of low-molecular glycol and diisocyanate and a soft segment composed of high-molecular (long-chain) diol and diisocyanate.
  • polystyrene resin polypropylene glycol, polytetramethylene oxide, poly (1,4-butylene adipate), poly (ethylene-1,4-butylene adipate), polycaprolactone, poly (1,6- Xylene carbonate), poly (1,6-hexylene / neopenthylene adipate) and the like.
  • the number average molecular weight of the high molecular (long chain) diol is preferably 500 or more and less than 10,000.
  • low molecular weight glycol short chain diols such as ethylene glycol, propylene glycol, 1,4-butanediol, and bisphenol A can be used.
  • the number average molecular weight of the short-chain diol is preferably 48 or more and less than 500.
  • -Styrene-based elastomer- Styrene-based elastomers are elastomers whose hard segments have a polystyrene structure.
  • examples of the styrene elastomer include styrene-butadiene block copolymer (SBR), hydrogenated styrene-butadiene block copolymer (SEB, styrene-ethylene / butylene block copolymer), and styrene-butadiene-styrene block copolymer.
  • SBS hydrogenated styrene-butadiene-styrene block copolymer
  • SEBS hydrogenated styrene-butadiene-styrene block copolymer
  • SIR styrene-isoprene block copolymer
  • SEP hydrogenated styrene-ethylene / propylene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SEPS hydrogenated styrene-isoprene-styrene block copolymer
  • SEPS hydrogenated styrene-isoprene-styrene block copolymer
  • SEPS hydrogenated styrene-isoprene-styrene block copolymer
  • SEPS hydrogenated styrene-isoprene-styrene block copolymer
  • SEPS hydrogenated styrene
  • the olefin-based elastomer is a crosslinked or non-crosslinked elastomer having a polyolefin structure.
  • the olefin-based elastomer include ethylene-propylene copolymer, ethylene-1-butene copolymer, ethylene- ⁇ -olefin copolymer, propylene-1-butene copolymer, and propylene- ⁇ -olefin copolymer , 1-butene- ⁇ -olefin copolymer, propylene-1-butene-ethylene copolymer, propylene- ⁇ -olefin-ethylene copolymer, propylene- ⁇ -olefin-1-butene copolymer, 1-butene Ethylene-propylene rubber dispersed in - ⁇ -olefin-ethylene copolymer, isoprene rubber (IR), cis-1,4-polybutadiene
  • the vinyl chloride elastomer is an elastomer whose hard segment has a polyvinyl chloride structure.
  • Examples of the vinyl chloride elastomer include polyvinyl chloride having a high degree of polymerization. Also, by using partially crosslinked polyvinyl chloride, an elastomer whose crosslinked portion functions as a hard segment and whose linear portion functions as a soft segment can be mentioned.
  • the polyester-based elastomer is an elastomer whose hard segment has a polyester structure.
  • a block copolymer composed of a high-melting polyester segment (hard segment) and a low-melting polymer segment (soft segment) having a molecular weight of about 400 to 6,000 described in JP-A-11-92636 or the like can be used.
  • the high melting point polyester segment include polybutylene terephthalate (PBT) and the like.
  • the low-melting polymer segment include an amorphous polyether having a glass transition temperature of -70 ° C., such as polytetramethylene ether glycol (PTMG).
  • the polyamide-based elastomer is an elastomer whose hard segment has a polyamide structure.
  • a multi-block copolymer in which the hard segment is polyamide and the soft segment is polyether or polyester can be given.
  • the hard segment include polyamides 6, 66, 610, 11, 12 and the like.
  • Polyethers in the soft segment include polyethylene glycol, diol poly (oxytetramethylene) glycol, poly (oxypropylene) glycol and the like.
  • Polyesters are poly (ethylene adipate) glycol and poly (butylene-1,4-adipate) glycol And the like.
  • the silicone-based elastomer is an elastomer having an organopolysiloxane structure.
  • a crosslinked structure is introduced into an organopolysiloxane, and for example, polydimethylsiloxane-based, polymethylphenylsiloxane-based, and polydiphenylsiloxane-based elastomers are known.
  • Specific examples of commercially available silicone-based silicone elastomers include KE series (manufactured by Shin-Etsu Chemical Co., Ltd.), SE series, CY series, and SH series (all manufactured by Toray Dow Corning Silicone Co., Ltd.).
  • the fluoroelastomer is an elastomer in which hard segments are formed of a fluororesin.
  • examples of the fluoroelastomer include tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-propylene copolymer, chlorotrifluoroethylene-ethylene copolymer, polyvinylidene fluoride, polyvinyl fluoride, and vinylidene fluoride-hexa.
  • Fluoropropylene copolymer tetrafluoroethylene-vinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene-vinylidene fluoride-perfluoroalkylvinyl ether copolymer, tetrafluoroethylene-vinylidene fluoride-propylene copolymer, Examples thereof include a tetrafluoroethylene-vinylidene fluoride-hexafluoropropylene copolymer.
  • the polymer Y is preferably a polyurethane elastomer.
  • the tensile modulus of the polymer is measured in accordance with JIS K6251: 2010 “vulcanized rubber and thermoplastic rubber”, and the dumbbell-shaped test piece is measured as No. 1 type.
  • the formation of the negative electrode active material layer constituting the all solid state secondary battery of the present invention is not particularly limited as long as the negative electrode active material layer satisfying the requirements of the present invention can be formed.
  • a coating solution (slurry) for forming the region X containing the constituent material of the region X and the dispersion medium, and a coating solution for forming the region Y in which the constituent material (polymer) of the region Y is dissolved are prepared.
  • a substrate a negative electrode current collector or a solid electrolyte layer, that is, a layer in contact with a negative electrode active material layer in an all solid state secondary battery
  • These coating solutions can be applied sequentially. Also, in consideration of production efficiency, application accuracy, and the like, it is preferable to apply them simultaneously.
  • a coating apparatus in which the number of nozzles corresponding to the number of the regions X and the regions Y to be formed are arranged in a line is prepared, and the coating liquid for forming the region X and the coating liquid for forming the region Y are prepared from each nozzle.
  • the nozzles arranged in a line can be moved over the base material while discharging them alternately and simultaneously so as to contact each other.
  • the negative electrode active material layer may be formed by a method such as self-organization, etching treatment, photo-imprinting, and ink-jet singly or in combination.
  • Examples of the dispersion medium used in the coating solution for forming the region X include alcohol compound solvents, ether compound solvents, amide compound solvents, amino compound solvents, ketone compound solvents, ester compound solvents, aromatic compound solvents, aliphatic compound solvents, and nitriles.
  • Compound solvents are mentioned.
  • Examples of the alcohol compound solvent include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, 1,3-butanediol, and 1,4- Butanediol.
  • ether compound solvent examples include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol dimethyl ether, Propylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol dibutyl ether, etc., dialkyl ethers (dimethyl ether, diethyl ether, dibutyl ether, etc.), tetrahydrofuran, and dioxane (1,2-, 1,3- Including 1,4-isomers) of the like.
  • alkylene glycol alkyl ethers ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether,
  • amide compound solvent examples include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N -Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, and hexamethylphosphoric triamide.
  • amino compound solvent examples include triethylamine and tributylamine.
  • ketone compound solvent examples include acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, dibutyl ketone, and diisobutyl ketone.
  • ester compound solvent examples include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, and propyl butyrate.
  • aromatic compound solvent examples include benzene, toluene, xylene, and mesitylene.
  • aliphatic compound solvent examples include hexane, heptane, cyclohexane, methylcyclohexane, ethylcyclohexane, decalin, octane, pentane, cyclopentane, and cyclooctane.
  • Examples of the penitrile compound solvent include acetonitrile, propylonitrile, and butyronitrile.
  • the above-mentioned coating solution for forming the region X itself can be prepared by a conventional method. Specifically, it can be prepared by mixing the constituent material of the region X and the dispersion medium. This mixing can be performed using various mixers. For example, a ball mill, a bead mill, a planetary mixer, a blade mixer, a roll mill, a kneader, a disk mill and the like can be mentioned.
  • the content of each constituent material in the coating liquid is not particularly limited as long as a coating film exhibiting a desired function can be formed, and is appropriately set in consideration of the film thickness, dispersibility, and the like.
  • the coating liquid for forming the region Y can be prepared by, for example, dissolving or dispersing the above-mentioned polymer having a tensile modulus of 700 MPa or less constituting the region Y in a solvent.
  • the solvent used for the coating solution for forming the region Y can be appropriately selected according to the type of the polymer used, the solubility, and the like.
  • the content of the polymer in the coating solution for forming the region Y can be appropriately set according to the purpose in consideration of the thickness of the layer to be formed and the like.
  • the drying temperature of the formed coating film is not particularly limited, and is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, and further preferably 80 ° C. or higher. Further, the drying temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower.
  • the solid electrolyte layer constituting the all-solid secondary battery of the present invention contains the above-mentioned inorganic solid electrolyte and, if necessary, contains the binder described in the above region X.
  • the content of each component in the solid electrolyte layer can be appropriately adjusted according to the purpose.
  • the content of the inorganic solid electrolyte in the solid electrolyte layer is preferably set to 50% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and further preferably 90% by mass or more.
  • the content of the binder in the solid content of the solid electrolyte composition can be 1 to 20% by mass, preferably 2 to 15% by mass, and more preferably 3 to 10% by mass.
  • the solid electrolyte layer constituting the all-solid secondary battery of the present invention is, for example, a solid electrolyte layer forming coating solution (slurry) containing the inorganic solid electrolyte, the binder as necessary, and the dispersion medium described above, Can be formed.
  • the solid electrolyte layer may contain a lithium salt (supporting electrolyte).
  • a lithium salt usually used for this kind of product is preferable, and there is no particular limitation.
  • lithium salts described in paragraphs 0082 to 0085 of JP-A-2015-088486 are preferable.
  • the content of the lithium salt is preferably at least 0.1 part by mass, more preferably at least 5 parts by mass, based on 100 parts by mass of the inorganic solid electrolyte. As a maximum, 50 mass parts or less are preferred, and 20 mass parts or less are more preferred.
  • the solid electrolyte layer may contain an ionic liquid in order to further improve ionic conductivity.
  • the ionic liquid is not particularly limited, but is preferably one that dissolves the above-described lithium salt from the viewpoint of effectively improving ionic conductivity.
  • a compound comprising a combination of the following cation and an anion is exemplified.
  • the positive electrode active material layer constituting the all solid state secondary battery of the present invention can be formed of a usual constituent material used in the all solid state secondary battery.
  • the positive electrode active material layer contains a positive electrode active material.
  • the positive electrode active material layer can have the same configuration as that of the above-described solid electrolyte layer except that the positive electrode active material layer includes the positive electrode active material.
  • the content of each component in the positive electrode active material layer can be appropriately adjusted according to the purpose.
  • the content of the positive electrode active material in the positive electrode active material layer can be 20 to 95% by mass, and more preferably 30 to 90% by mass.
  • a coating solution for forming a positive electrode active material layer in which the positive electrode active material is added to the above-described coating solution (slurry) for forming a solid electrolyte layer is prepared, and this is used as a substrate (current collector).
  • slurry coating solution
  • it can be formed by coating on a solid electrolyte layer, that is, a layer in contact with a positive electrode active material layer in an all solid state secondary battery.
  • the positive electrode active material is preferably one capable of reversibly inserting and / or releasing lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide or an element such as sulfur that can be combined with Li.
  • a transition metal oxide is preferably used as the positive electrode active material, and a transition metal oxide containing a transition metal element M a (at least one element selected from Co, Ni, Fe, Mn, Cu, and V). are more preferred.
  • the transition metal oxide includes an element M b (an element of Group 1 (Ia), an element of Group 2 (IIa), Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P and B).
  • the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%). That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt type structure, (MB) a transition metal oxide having a spinel type structure, (MC) a lithium-containing transition metal phosphate compound, (MD) And (ME) lithium-containing transition metal silicate compounds.
  • MA a transition metal oxide having a layered rock salt type structure
  • MB transition metal oxide having a spinel type structure
  • MC lithium-containing transition metal phosphate compound
  • MD And
  • ME lithium-containing transition metal silicate compounds.
  • transition metal oxide having a layered rock salt type structure LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0.1 . 05 O 2 (lithium nickel cobalt aluminum oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel manganese cobalt oxide [NMC]), LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickelate).
  • LCO lithium cobaltate
  • NCA lithium nickel cobalt aluminum oxide
  • NMC lithium nickel manganese cobalt oxide
  • LiNi 0.5 Mn 0.5 O 2 Lithium manganese nickelate
  • transition metal oxide having a spinel structure examples include LiMn 2 O 4 (LMO), LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8, and Li. 2 NiMn 3 O 8 .
  • the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , and LiCoPO 4. And monoclinic nasicon-type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And the like, such as cobalt fluorophosphates.
  • Li 2 FePO 4 F such fluorinated phosphorus iron salt
  • Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And the like, such as cobalt fluorophosphates.
  • Examples of the lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 , and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt type structure is preferable, and LCO or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but is preferably particulate.
  • the average particle size (sphere-converted average particle size) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 ⁇ m.
  • the average particle diameter of the positive electrode active material particles can be measured in the same manner as the above-mentioned average particle diameter of the inorganic solid electrolyte.
  • an ordinary pulverizer or a classifier is used similarly to the negative electrode active material.
  • the positive electrode active material obtained by the firing method may be used after washing with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the positive electrode active material may be surface-coated with the above-mentioned surface coating agent, sulfur or phosphorus, and further with the above-mentioned actinic ray or the like, similarly to the negative electrode active material.
  • the positive electrode active material may be used alone or in combination of two or more.
  • the mass (mg) (basis weight) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be determined appropriately according to the designed battery capacity. For example, it can be 1 to 100 mg / cm 2 .
  • the content of the positive electrode active material in the positive electrode active material layer is preferably from 10 to 97% by mass, more preferably from 30 to 95% by mass, further preferably from 40 to 93% by mass, and particularly preferably from 50 to 90% by mass.
  • each of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer is not particularly limited.
  • the thickness of each layer is preferably 10 ⁇ m to 500 ⁇ m, more preferably 20 to 400 ⁇ m, and still more preferably 20 to 200 ⁇ m, in consideration of the dimensions of a general all-solid secondary battery.
  • each of the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer may be a single layer or a multilayer. In the case of a multilayer, it is preferable that the thickness of the entire multilayer be within the above preferred range.
  • the positive electrode current collector and the negative electrode current collector are preferably electronic conductors.
  • the material for forming the positive electrode current collector in addition to aluminum, aluminum alloy, stainless steel, nickel and titanium, a material obtained by treating a surface of aluminum or stainless steel with carbon, nickel, titanium or silver (forming a thin film) Are preferred, and among them, aluminum and an aluminum alloy are more preferred.
  • the negative electrode current collector in addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium, etc., the surface of aluminum, copper, copper alloy or stainless steel is treated with carbon, nickel, titanium or silver.
  • aluminum, copper, copper alloy and stainless steel are more preferred.
  • a film sheet is usually used, but a net, a punched material, a lath, a porous material, a foam, a molded product of a fiber group, and the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m, more preferably 2 to 300 ⁇ m, and further preferably 2 to 200 ⁇ m.
  • the surface of the current collector be provided with irregularities by surface treatment.
  • the stacked configuration of the all solid state secondary battery of the present invention can be formed by a conventional method except that the configuration of the negative electrode active material layer is the configuration specified in the present invention described above.
  • the obtained laminate is usually housed in a suitable housing (enclosed in a housing or housed in a coin case or the like), and is pressurized to form an all-solid secondary battery.
  • the all-solid-state secondary battery according to the present invention absorbs the expansion of the negative electrode active material during charging, and the polymer region that follows the contraction of the negative electrode active material during discharging is provided in the negative electrode active material layer. Sufficient cycle characteristics can be realized even if the pressure of the pressure is made lower than before.
  • the housing may be made of metal or resin (plastic). When a metallic material is used, for example, an aluminum alloy or a stainless steel material can be used. It is preferable that the metallic casing is divided into a casing on the positive electrode side and a casing on the negative electrode side, and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for preventing short circuit.
  • ⁇ Initialization> It is preferable to initialize the all-solid-state secondary battery manufactured as described above after manufacturing or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charge / discharge in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all solid state secondary battery is reached.
  • the all-solid secondary battery obtained by the production method of the present invention can be applied to various uses.
  • an electronic device for example, a notebook computer, a pen input computer, a mobile computer, an electronic book player, a mobile phone, a cordless phone handset, a pager, a handy terminal, a mobile fax, and a mobile phone Copy, portable printer, headphone stereo, video movie, LCD television, handy cleaner, portable CD, mini disk, electric shaver, transceiver, electronic organizer, calculator, portable tape recorder, radio, backup power supply, memory card, and the like.
  • Other consumer applications include automobiles (electric vehicles, etc.), electric vehicles, motors, lighting fixtures, toys, game machines, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.). . Furthermore, it can be used for various military purposes and space applications. Further, it can be combined with a solar cell.
  • the negative electrode sheet for an all-solid secondary battery of the present invention (also referred to as the “negative electrode sheet of the present invention”) is a sheet suitable as a material constituting the negative electrode of the all-solid secondary battery of the present invention. That is, the negative electrode sheet of the present invention has a negative electrode active material layer, and the negative electrode active material layer is formed of a solid particle region X containing the negative electrode active material and the inorganic solid electrolyte, and a polymer having a tensile modulus of 700 MPa or less. And a polymer region Y.
  • the solid particle region X and the polymer region Y are arranged in the negative electrode active material layer in a direction perpendicular to the surface of the negative electrode active material layer (L direction) and in one direction parallel to the surface of the negative electrode active material layer (Z direction). ) Are also arranged side by side.
  • the solid particle regions X and the polymer regions Y are alternately arranged in contact with each other, relationship between the width Y w of width X w and polymer region Y of the solid particles region X that are adjacent to each other in the cross-section satisfies 0.01 ⁇ Y w / X w ⁇ 1.00.
  • Typical forms of the negative electrode sheet of the present invention include a two-layer structure in which the negative electrode active material layer is formed on a current collector, a positive electrode active material layer, a solid electrolyte layer, Examples of the form in which the material layers are laminated in this order are mentioned, but the negative electrode sheet of the present invention is not limited to these forms except for the provision in the present invention.
  • Preferred forms of the current collector, the negative electrode active material layer, the solid electrolyte layer, and the positive electrode active material layer that can constitute the negative electrode sheet of the present invention are the same as those described in the above-described all-solid secondary battery of the present invention. .
  • the sulfide-based inorganic solid electrolyte is manufactured by T.I. Ohtomo, A .; Hayashi, M .; Tatsusumisago, Y .; Tsuchida, S .; Hama, K .; Kawamoto, Journal of Power Sources, 233, (2013), pp 231-235 and A.I. Hayashi, S .; Hama, H .; Morimoto, M .; Tatsusumisago, T .; Minami, Chem. Lett. , (2001), pp872-873.
  • Li 2 S lithium sulfide
  • P 2 S diphosphorus pentasulfide
  • 66 zirconia beads having a diameter of 5 mm were placed in a 45 mL zirconia container (manufactured by Fritsch), and the entire mixture of lithium sulfide and diphosphorus pentasulfide was charged therein.
  • the container was sealed under an argon atmosphere.
  • the container was set in a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mechanical milling was performed at a temperature of 25 ° C. and a rotation speed of 510 rpm for 20 hours to obtain a yellow powdered sulfide-based inorganic solid electrolyte (Li-PS-based). Glass, also referred to as "LPS".) 6.20 g was obtained.
  • V-601 1.0 part by mass of V-601 was further added to the obtained mixture, and the mixture was stirred at 90 ° C. for 2 hours.
  • the resulting solution was diluted with heptane to obtain a binder B dispersion.
  • the volume average particle size of the binder B in this dispersion was 100 nm.
  • NMC LiNi 0.33 Co 0.33 Mn 0.33 O 2
  • acetylene black manufactured by Denka Corporation
  • Example 1 Preparation of All-Solid Secondary Battery [Positive Electrode Sheet for All-Solid Secondary Battery-Preparation of Solid Electrolyte Sheet]
  • the slurry for forming a positive electrode active material layer prepared above was applied to an aluminum foil (positive electrode current collector) having a thickness of 20 ⁇ m using an applicator (trade name: SA-201 Baker Applicator, manufactured by Tester Sangyo Co., Ltd.). After heating at 80 ° C. for 1 hour, further heating at 110 ° C. for 1 hour, the slurry for forming a positive electrode active material layer was dried.
  • a heat press machine pressure was applied (180 MPa, 1 minute) while heating (120 ° C.) to produce a positive electrode sheet for an all-solid secondary battery having a laminated structure of a positive electrode active material layer / aluminum foil.
  • the thickness of the positive electrode active material layer was 60 ⁇ m.
  • the slurry for forming a solid electrolyte layer prepared above is applied on the positive electrode active material layer of the positive electrode sheet obtained above using the above-mentioned baker-type applicator, heated at 80 ° C. for 1 hour, and further heated at 100 ° C. for 1 hour. Then, a solid electrolyte layer having a thickness of 20 ⁇ m was formed.
  • the slurry for forming the solid particle region X and the coating solution for forming the polymer region Y prepared above are arranged on a copper foil (negative electrode current collector) having a thickness of 20 ⁇ m, alternately in contact with each other, and in a straight line.
  • a coating apparatus having five nozzles arranged in a line was used. Specifically, the nozzles arranged in a line are moved in a straight line on the copper foil so that the slurry for forming the solid particle region X and the coating liquid for forming the polymer region Y are discharged from the nozzles adjacent to each other.
  • the slurry for forming the solid particle region X and the coating solution for forming the polymer region Y were simultaneously discharged, a coating film was formed.
  • the slurry for forming the solid particle region X is discharged from the outermost nozzle and the center nozzle (first, third, and fifth nozzles in order from the end), and the other nozzles (from the end) From the second and fourth nozzles), the coating liquid for forming the polymer region Y was discharged.
  • heating was further performed at 110 ° C. for 1 hour to dry the slurry or the coating solution.
  • the thickness of the negative electrode active material layer was 60 ⁇ m.
  • Examples 2 to 12, Comparative Examples 1 to 5 Production of all solid state secondary battery
  • the negative electrode active material, the inorganic solid electrolyte, the binder, and the type of the polymer forming the polymer region Y were changed as shown in the following table.
  • An all-solid secondary battery was manufactured in the same manner as in Example 1, except that the width of the solid particle region X and the width of the polymer region Y in the negative electrode active material layer were changed as shown in the following table.
  • the inorganic solid electrolyte and the binder were changed as shown in the following table in all of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer.
  • the amounts of the negative electrode active material, the inorganic solid electrolyte, the binder, and the polymer used to form the polymer region Y are the same as in Example 1.
  • the battery performance of the all solid state secondary battery was evaluated using a charge / discharge evaluation device “TOSCAT-3000” (trade name) manufactured by Toyo System Corporation. Specifically, the all-solid-state secondary battery was charged at a current value of 0.2 mA until the battery voltage reached 4.2 V, and then discharged at a current value of 2.0 mA until the battery voltage reached 3.0 V.
  • the battery voltage 10 seconds after the start of discharging was read according to the following criteria, and evaluated by applying the following criteria. The higher the battery voltage 10 seconds after the start of discharging, the lower the resistance.
  • C 3.90 V or more and less than 4.00 V
  • D Less than 3.90 V
  • E Short circuit occurred.
  • -Negative electrode active material- Si Silicon powder 1 to 5 ⁇ m (Alfa Aesar)
  • C Graphite (Showa Denko)
  • -Inorganic solid electrolyte- Sulfide Li-PS-based glass Oxide: LLZ: Li 7 La 3 Zr 2 O 12 (lithium lanthanum zirconate, average particle diameter 5.0 ⁇ m, Toshima Seisakusho)
  • binder- Particulate A dispersion of the binder B was used.
  • Solubility A binder solution obtained by dissolving styrene-butadiene rubber (styrene-butadiene block copolymer, manufactured by Zeon Corporation) in heptane was used.
  • -Polymer in polymer region Y- PU1 polyurethane elastomer (tensile modulus of elasticity 100 MPa, manufactured by BASF)
  • PU2 polyurethane elastomer (tensile modulus 500 MPa, manufactured by BASF)
  • PU3 polyurethane elastomer (tensile modulus 690 MPa, manufactured by BASF)
  • SBR Styrene butadiene rubber (styrene-butadiene block copolymer, soluble in heptane, tensile modulus 100 MPa, manufactured by JSR)
  • High-density PE high-density polyethylene (tensile modulus 1000 MPa, manufactured by BASF)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

負極活物質層と固体電解質層と正極活物質層とが積層された積層構造を有する全固体二次電池であって、 負極活物質層が、固体粒子領域Xと、引張弾性率が700MPa以下のポリマーで形成されたポリマー領域Yとを有し、 領域X及びYは、負極活物質層内を、上記積層構造の積層方向に並び、かつ、この積層方向に垂直な一の方向にも並んで配され、 負極活物質層の、上記の積層方向に垂直な一の方向に対して垂直な断面において、領域Xと領域Yとが交互に、互いに接して配され、上記断面において、互いに隣り合う領域Xと領域Yの各幅の関係が下記式を満たす、全固体二次電池。 0.01≦Y/X≦1.00 X:固体粒子領域Xの幅 Y:ポリマー領域Yの幅

Description

全固体二次電池及び全固体二次電池用負極シート
 本発明は、全固体二次電池及び全固体二次電池用負極シートに関する。
 リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電又は過放電により電池内部で短絡が生じ発火するおそれもあり、安全性と信頼性の更なる向上が求められている。
 このような状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は、負極、電解質及び正極の全てが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。更に、全固体二次電池は、電極と電解質を直接並べて直列に配した積層構造とすることができる。そのため、有機電解液を用いた二次電池に比べて高エネルギー密度化が可能となり、各種電子機器、電気自動車又は大型蓄電池等への応用が期待されている。
 全固体二次電池の基本的な層構成は、正極層と固体電解質層と負極層とからなる積層構造である。全固体二次電池の正極は、一般的には、金属箔からなる正極集電体層と正極活物質層とが積層され、正極活物質層が固体電解質層と接する構成をとる。負極も同様に、金属箔からなる負極集電体層と負極活物質層とが積層された構造が一般的であり、負極活物質層が固体電解質層と接する構成をとる。
 全固体二次電池の正極活物質層には、周期律表第1族または第2族に属する金属のイオン(代表的にはリチウムイオン)を挿入及び放出できる材料が用いられる。電池の充電時には、正極と負極を繋ぐ外部回路には正極側から負極側に向けて電子が流れ、これに伴い正極活物質から上記の金属イオンが負極側へと放出され、この金属イオンは負極活物質に挿入される。負極活物質は金属イオンの挿入により膨張し、体積が増加する。
 他方、放電時には充電により生じた電位差を解消するために、上記外部回路には負極側から正極側に向けて電子が流れる。これに伴い負極活物質から金属イオンが正極側へと放出され、放出された金属イオンは正極活物質に挿入されて電子と結合し、もとの状態へと還元される。負極活物質は金属イオンの放出により収縮し、体積が減少する(金属イオンが挿入される前の体積に戻る)。
 特許文献1には、非水電解質電池において、電池の充放電時に各活物質における外周縁部近傍に電流が集中しやすく、この電流集中が活物質の体積変化に面内分布を生じるという問題が記載されている。より詳細には、電池の充放電時における活物質層の外周縁部近傍の体積変化が中央部分に比べて大きいために、電池の充放電に伴って各活物質層の外周縁部近傍において各活物質層と固体電解質層との良好な接合が維持できなくなり、放電容量が大幅に低下してしまう問題が提起されている。
特開2013-16280号公報
 上述のように負極活物質は、充電時には金属イオンが挿入されて膨張し、放電時には金属イオンを放出して収縮する。つまり、充放電に伴う体積変化が大きい。この体積変化は、金属イオンの吸蔵能の高い負極活物質ほど大きくなる。
 充電時に負極活物質が膨張すると、その周りに存在する固体電解質は外側へと押しやられる。他方、放電時に負極活物質が収縮して元の状態に戻っても、押しやられた固体電解質は負極活物質の収縮には追従しにくい。つまり、負極活物質層を構成する負極活物質と固体電解質との間には空隙が生じ、伝導パスが途切れて内部抵抗が上昇してしまう。この空隙の発生を抑えるために、全固体二次電池は一般に、高い拘束圧で筐体等に封入されて使用される。しかし、この高圧封入は、全固体二次電池の小型化、軽量化等の妨げとなる。
 本発明は、負極活物質の膨張収縮によっても負極活物質層に空隙が生じにくく、充放電の繰り返しに伴う内部抵抗の上昇を十分に抑えることができる全固体二次電池、及びこの全固体二次電池の構成材料として好適な負極シートを提供することを課題とする。また本発明は、この全固体二次電池を有する電子機器及び電気自動車を提供することを課題とする。
 上記の課題は以下の手段により解決された。
〔1〕
 負極活物質層と固体電解質層と正極活物質層とがこの順に積層された積層構造を有する全固体二次電池であって、
 上記負極活物質層が、負極活物質と無機固体電解質とを含む固体粒子領域Xと、引張弾性率が700MPa以下のポリマーにより形成されたポリマー領域Yとを有し、
 上記固体粒子領域X及び上記ポリマー領域Yは、上記負極活物質層内を、上記積層構造の積層方向に並び、かつ、この積層方向に垂直な一の方向にも並んで配され、
 上記負極活物質層の、上記の積層方向に垂直な一の方向に対して垂直な断面において、上記固体粒子領域Xと上記ポリマー領域Yとが交互に、互いに接して配され、上記断面において、互いに隣り合う固体粒子領域Xとポリマー領域Yの両領域の幅の関係が下記式を満たす、全固体二次電池。
  0.01≦Y/X≦1.00
    X:固体粒子領域Xの幅
    Y:ポリマー領域Yの幅
〔2〕
 上記固体粒子領域Xが粒子状バインダーを含有する、〔1〕記載の全固体二次電池。
〔3〕
 上記負極活物質がケイ素系負極活物質である、〔1〕又は〔2〕記載の全固体二次電池。
〔4〕
 上記無機固体電解質が硫化物系無機固体電解質である、〔1〕~〔3〕のいずれか記載の全固体二次電池。
〔5〕
 上記の引張弾性率が700MPa以下のポリマーがエラストマーである、〔1〕~〔4のいずれか記載の全固体二次電池。
〔6〕
 〔1〕~〔5〕のいずれか記載の全固体二次電池を有する電子機器。
〔7〕
 〔1〕~〔5〕のいずれか記載の全固体二次電池を有する電気自動車。
〔8〕
 負極活物質層を有する全固体二次電池用負極シートであって、
 上記負極活物質層が、負極活物質と無機固体電解質とを含む固体粒子領域Xと、引張弾性率が700MPa以下のポリマーにより形成されたポリマー領域Yとを有し、
 上記固体粒子領域X及び上記ポリマー領域Yは、上記負極活物質層内を、上記負極活物質層表面に対して垂直方向に並び、かつ、負極活物質層表面に平行な一の方向にも並んで配され、
 上記負極活物質層の、上記の負極活物質層表面に平行な一の方向に対して垂直な断面において、上記固体粒子領域Xと上記ポリマー領域Yとが交互に、互いに接して配され、上記断面において、互いに隣り合う固体粒子領域Xとポリマー領域Yの両領域の幅の関係が下記式を満たす、全固体二次電池用負極シート。
  0.01≦Y/X≦1.00
    X:固体粒子領域Xの幅
    Y:ポリマー領域Yの幅
 本発明の説明において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明の全固体二次電池は、負極活物質の膨張収縮によっても負極活物質層に空隙が生じにくく、充放電の繰り返しに伴う内部抵抗の上昇を十分に抑えることができる。本発明の電子機器及び電気自動車は、これらが有する全固体二次電池が充放電の繰り返しに伴う内部抵抗の上昇が抑えられ、電池の長寿命化が実現される。本発明の全固体二次電池用負極シートは、本発明の全固体二次電池の負極層の形成材料として好適である。
図1は、全固体二次電池の基本的な積層構成を模式化して示す縦断面図である。 図2は、本発明の全固体二次電池の負極活物質層の構成を模式化して示す斜視図である。 図3は、図2に示したABCD面断面図である。
 本発明の全固体二次電池の好ましい実施形態を説明するが、本発明は、本発明で規定すること以外は、これらの形態に限定されるものではない。
[全固体二次電池]
 本発明の全固体二次電池は、負極活物質層と固体電解質層と正極活物質層とがこの順に積層された積層構造を有する。図1に、本発明の全固体二次電池における各機能層の積層構成の一例を示す。図1は、全固体二次電池を模式化して示す断面図であり、筐体等の記載は省略している。全固体二次電池101は、負極側からみて、負極集電体層11、負極活物質層12、固体電解質層13、正極活物質層14、正極集電体層15を、この順に有する。隣り合う各層はそれぞれ接触している。このような構造を採用することにより、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位16に電子が供給される。図示した例では、作動部位16に電球をモデル的に採用しており、放電によりこれが点灯するようにされている。
 なお、図1には、負極集電体層11、負極活物質層12、固体電解質層13、正極活物質層14、及び正極集電体層15からなる5層の積層構造を示したが、本発明の全固体二次電池はこの形態に限定されるものではない。例えば、正極活物質層、固体電解質層及び負極活物質層をこの順で積層した積層体と、この積層体の正極活物質層又は負極活物質層に接して配された集電体層とから構成される積層構造を1ユニットとして、このユニットを、金属箔等の集電体上に、集電体層同士が接しないように複数段積み上げた複数ユニットの構成の全固体二次電池(モノポーラ型又はバイポーラ型の積層構造を有する全固体二次電池)も、本発明の全固体二次電池の好ましい形態である。この場合、複数存在する負極活物質層の少なくとも1つが本発明で規定する負極活物質層の構成であれば、本発明の全固体二次電池である。モノポーラ型又はバイポーラ型の積層構造を有する全固体二次電池は、すべての負極活物質層が、本発明で規定する負極活物質層の構成であることが好ましい。
<負極活物質層>
 本発明の全固体二次電池において、負極活物質層は、負極活物質と無機固体電解質とを含む固体粒子領域X(以下、単に「領域X」とも称す)と、引張弾性率が700MPa以下のポリマー領域Y(以下、単に「領域Y」とも称す)とを有する。領域Xと領域Yは、負極活物質層中において交互に、隣り合って存在する。この領域Xと領域Yの配置について、図2を参照して説明する。
 図2は、図1に示した本発明の全固体二次電池を構成する負極活物質層の一形態を示す斜視図である。領域X(1a、1b、1c)と領域Y(2a、2b)はいずれも、負極活物質層内を、図1に示した全固体二次電池の積層構造における積層方向(L方向)に並んでいる(積層方向(L方向)に貫通している)。これにより、領域XをL方向に移動するイオンの伝導パスをより確実に確保することができる。また、領域Xと領域Yはいずれも、負極活物質層の奥行方向(Z方向)にも並んで配されている(奥行方向(Z方向)にも貫通している)。これにより、領域Xにおける負極活物質の充電時の膨張をより確実に吸収することができる。図2に示すように、領域Xと領域Yは交互に、互いに接して配されている。
 このように、本発明の全固体二次電池を構成する負極活物質層は、領域X及び領域Yが、負極活物質層内を、各機能層の積層方向(L方向)に並び、かつ、この積層方向に垂直な一の方向(図2ではZ方向)にも並んで配された構造をとる。また、上記負極活物質層の、各機能層の積層方向(L方向)に垂直な一の方向(図2ではZ方向)に対して垂直な断面(例えばABCD面)において、上記固体粒子領域Xと上記ポリマー領域Yとは交互に、互いに接して配されている。
 なお、図2は、負極活物質層が直方体の形状を示しているが、本発明はこの形態に限られず、例えば円柱形等の所望の形状とすることができる。
 図2のZ方向に対して垂直な断面を図3に示す。図3に示す断面において、互いに隣り合う固体粒子領域Xとポリマー領域Yの両領域の幅の関係は、0.01≦Y/X≦1.00を満たす。ここで、Xは図3の断面における固体粒子領域X(1a、1b、1c)の幅であり、Yは図3の断面におけるポリマー領域Y(2a、2b)の幅である。XとYは、Z方向に対して垂直なすべての断面(ABCD面と、ABCD面に平行なすべての断面)において、0.01≦Y/X≦1.00を満たす。また、互いに隣り合う固体粒子領域Xとポリマー領域Yの組み合わせ(ペア)は通常複数存在するが(図2及び3では、1aと2a、2aと1b、1bと2b、2bと1cの4ペア)、互いに隣り合う固体粒子領域Xとポリマー領域Yのすべての組み合わせにおいて、0.01≦Y/X≦1.00を満たす。
 XとYは次のように決定する。
 負極活物質層の、Z方向に対して垂直な断面(図3に示す断面)をL方向に6等分してこの断面を6つの領域に区切った場合を想定する。このとき、6つの各領域を分ける5つの境界部分が存在する。この5つの境界部分について、固体粒子領域Xとポリマー領域Yの両領域の幅を測定し、固体粒子領域Xとポリマー領域Yのそれぞれについて、得られた5つの測定値の平均を、XとYとする。この測定は、走査型電子顕微鏡により断面を観察し、5つの境界部分の幅を測定することにより行うことができる。
  XとYとの関係は、0.02≦Y/X≦0.80を満たすことが好ましく、0.02≦Y/X≦0.70を満たすことがより好ましい。
 負極活物質層をこのような構成とすることにより、引張弾性率が700MPa以下のやわらかなポリマー領域が、充電時における負極活物質層の膨張を効果的に吸収し、放電時には負極活物質の収縮に追従してポリマー領域が元の形状へと戻るため、負極活物質層を構成する固体粒子間には空隙が生じにくい。結果、充放電の繰り返しに伴う内部抵抗の上昇を十分に抑えることができる。また、ポリマー領域の大きさも限られているため、放電容量も十分に確保することができる。
 負極活物質層は、通常は図2及び3に示すように、領域Yにより分断された領域Xを複数有し、同様に領域Xにより分断された領域Yも複数有する。これら複数の領域Xは、互いにサイズ及び組成が同じでもよく、異なってもよい。また、複数の領域Yもまた、互いにサイズ及び組成が同じでもよく、異なってもよい。複数の領域Xは互いにサイズ及び組成が同じであることが好ましい。同様に、複数の領域Yも互いにサイズ及び組成が同じであることが好ましい。
 負極活物質層は、図2及び3に示されるように、固体粒子領域Xとポリマー領域YとがZ方向に対して垂直な断面において交互に配される。この交互の並びにおけるもっとも外側の領域は、固体粒子領域Xとすることが好ましい。
 上記負極活物質層において、XとYの大きさは、上記関係式を満たせば特に制限はない。例えば、Xを0.01~1000mmとすることができ、0.1~100mmが好ましく、1~50mmがより好ましい。
 続いて、上記負極活物質層の構成材料について説明する。
〔領域X〕
 本発明の全固体二次電池を構成する負極活物質層において、領域Xは、固体粒子として負極活物質と無機固体電解質とを含む。
(負極活物質)
 上記負極活物質は、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質である。
 負極活物質は、可逆的にリチウムイオンを挿入及び/又は放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、金属若しくは半金属元素の酸化物(複合酸化物を含む。)、リチウム単体、リチウム合金、又は、リチウムと合金化(リチウムとの合金を形成)可能な活物質等が挙げられる。中でも、信頼性の点では、炭素質材料、半金属元素の酸化物、金属複合酸化物又はリチウム単体が好ましい。全固体二次電池の大容量化が可能となる点では、リチウムと合金化可能な活物質が好ましい。
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー、平板状の黒鉛等を挙げることもできる。
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素質材料(ハードカーボンともいう。)と黒鉛系炭素質材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔又は密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。
 炭素質材料としては、ハードカーボン又は黒鉛が好ましく用いられ、黒鉛がより好ましく用いられる。
 負極活物質として適用される金属若しくは半金属元素の酸化物としては、リチウムを吸蔵及び放出可能な酸化物であれば特に制限されず、金属元素の酸化物(金属酸化物)、金属元素の複合酸化物若しくは金属元素と半金属元素との複合酸化物(纏めて金属複合酸化物という。)、半金属元素の酸化物(半金属酸化物)が挙げられる。これらの酸化物としては、非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく挙げられる。本発明において、半金属元素とは、金属元素と非半金属元素との中間の性質を示す元素をいい、通常、ホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン及びテルルの6元素を含み、更にはセレン、ポロニウム及びアスタチンの3元素を含む。また、非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°~70°に見られる結晶性の回折線の内最も強い強度が、2θ値で20°~40°に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物又は上記カルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素(例えば、Al、Ga、Si、Sn、Ge、Pb、Sb及びBi)から選択される1種単独若しくはそれらの2種以上の組み合わせからなる(複合)酸化物、又はカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Sb、Bi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb又はSnSiSが好ましく挙げられる。
 Sn、Si、Geを中心とする非晶質酸化物負極活物質に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵及び/又は放出できる炭素質材料、リチウム単体、リチウム合金、リチウムと合金化可能な活物質が好適に挙げられる。
 金属若しくは半金属元素の酸化物、とりわけ金属(複合)酸化物及び上記カルコゲナイドは、構成成分として、チタン及びリチウムの少なくとも一方を含有していることが、高電流密度充放電特性の観点で好ましい。リチウムを含有する金属複合酸化物(リチウム複合金属酸化物)としては、例えば、酸化リチウムと上記金属(複合)酸化物若しくは上記カルコゲナイドとの複合酸化物、より具体的には、LiSnOが挙げられる。
 負極活物質、例えば金属酸化物は、チタン原子を含有すること(チタン酸化物)も好ましく挙げられる。具体的には、LiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
 負極活物質としてのリチウム合金としては、二次電池の負極活物質として通常用いられる合金であれば特に制限されず、例えば、リチウムアルミニウム合金が挙げられる。
 リチウムと合金化可能な活物質としては、二次電池の負極活物質として通常用いられるものであれば特に制限されず、例えば、Sn、Si、Al及びIn等の各金属若しくは半金属、更には、構成元素にSi元素を含むケイ素系負極活物質(例えばSi若しくはSiO)が挙げられる。SiOは、それ自体を負極活物質(半金属酸化物)として用いることができ、また、全固体二次電池の稼働によりSiを生成するため、リチウムと合金化可能な活物質(その前駆体物質)として用いることができる。中でも、ケイ素系負極活物質が好ましく、Siがより好ましい。
 リチウムと合金化可能な活物質を用いて形成した負極活物質層は、上述のように充放電による膨張収縮が大きくなる。その一方で、一般的に、黒鉛及びアセチレンブラック等の炭素系材料を用いて形成した負極活物質層(炭素負極)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができ、バッテリー駆動時間を長くすることができるという利点がある。
 本発明において、焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
-負極活物質の被覆-
 負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi、Nb、Ta、W、Zr、Al、Si又はLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiO、SiO、TiO、ZrO、Al、B等が挙げられる。
 また、負極活物質を含む電極表面は硫黄又はリンで表面処理されていてもよい。
 更に、負極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていてもよい。
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の平均粒径は、特に制限されないが、0.1~60μmが好ましい。負極活物質粒子の平均粒径は、上記無機固体電解質の平均粒径と同様にして測定できる。負極活物質を所定の粒子径にするには、通常の粉砕機又は分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル又は篩などが好適に用いられる。粉砕時には水又はメタノール等の有機溶媒を共存させた湿式粉砕も行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級は、特に限定はなく、篩、風力分級機などを用いて行うことができる。分級は乾式及び湿式ともに用いることができる。
 領域Xには、負極活物質を1種又は2種以上含有させることができる。
 領域X中の負極活物質の含有量は、特に制限されず、10~90質量%であることが好ましく、20~85質量%がより好ましく、30~80質量%であることがより好ましく、40~75質量%であることが更に好ましい。
(無機固体電解質)
 本発明の負極活物質層は領域Xに無機固体電解質を含有する。
 本発明において、無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンに解離若しくは遊離している無機電解質塩(LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有するものであれば、特に限定されず、電子伝導性を有さないものが一般的である。本発明の全固体二次電池がリチウムイオン電池の場合、無機固体電解質は、リチウムイオンのイオン伝導性を有することが好ましい。
 上記無機固体電解質は、全固体二次電池に通常使用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は(i)硫化物系無機固体電解質と(ii)酸化物系無機固体電解質が代表例として挙げられる。本発明において、活物質と無機固体電解質との間により良好な界面を形成することができる観点から、硫化物系無機固体電解質が好ましく用いられる。
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
 硫化物系無機固体電解質としては、例えば、下記式(1)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 (1)
 
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mで表される元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
 酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に制限されないが、1×10-1S/cm以下であることが実際的である。
 具体的な化合物例としては、例えばLixaLayaTiO〔xaは0.3≦xa≦0.7を満たし、yaは0.3≦ya≦0.7を満たす。〕(LLT); LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In及びSnから選ばれる1種以上の元素である。xbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。); Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In及びSnから選ばれる1種以上の元素である。xcは0<xc≦5を満たし、ycは0<yc≦1を満たし、zcは0<zc≦1を満たし、ncは0<nc≦6を満たす。); Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xdは1≦xd≦3を満たし、ydは0≦yd≦1を満たし、zdは0≦zd≦2を満たし、adは0≦ad≦1を満たし、mdは1≦md≦7を満たし、ndは3≦nd≦13を満たす。); Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。); LixfSiyfzf(xfは1≦xf≦5を満たし、yfは0<yf≦3を満たし、zfは1≦zf≦10を満たす。); Lixgygzg(xgは1≦xg≦3を満たし、ygは0<yg≦2を満たし、zgは1≦zg≦10を満たす。); LiBO; LiBO-LiSO; LiO-B-P; LiO-SiO; LiBaLaTa12; LiPO(4-3/2w)(wはw<1); LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO; ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO; NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12; Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(xhは0≦xh≦1を満たし、yhは0≦yh≦1を満たす。); ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。
 またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO); リン酸リチウムの酸素の一部を窒素で置換したLiPON; LiPOD(Dは、好ましくは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt及びAuから選ばれる1種以上の元素である。)等が挙げられる。
 更に、LiAON(Aは、Si、B、Ge、Al、C及びGaから選ばれる1種以上の元素である。)等も好ましく用いることができる。
 無機固体電解質は粒子であることが好ましい。この場合、無機固体電解質の平均粒径(体積平均粒子径)は特に制限されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。平均粒径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJIS Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
 領域X中の無機固体電解質の含有量は、例えば、10~90質量%とすることができ、15~80質量が好ましく、20~70質量%がより好ましく、35~60質量%がさらに好ましい。
(バインダー)
 本発明の負極活物質層は領域Xにバインダーを有していても良い。
 上記負極活物質層に含まれるバインダーは、各種の有機高分子化合物(ポリマー)で構成することができる。バインダーは、無機固体電解質や活物質といった固体粒子間の結着性を高めて、機械強度、イオン伝導性等の向上に寄与する。バインダーを構成する有機高分子化合物は、粒子状のものを含んでもよいし、非粒子状のものを含んでもよい。イオン伝導性をより高める観点からは、粒子状バインダーが好ましい。粒子状バインダーは、粒径(体積平均粒子径)が10~1000nmが好ましく、20~750nmがより好ましく、30~500nmがさらに好ましく、50~300nmがさらに好ましい。
 バインダーは、例えば、以下に述べる有機高分子化合物で構成することができる。
-含フッ素樹脂-
 含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンとの共重合体(PVdF-HFP)が挙げられる。
-炭化水素系熱可塑性樹脂-
 炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエン、ポリイソプレンが挙げられる。
-(メタ)アクリル樹脂-
 (メタ)アクリル樹脂としては、各種の(メタ)アクリルモノマー、(メタ)アクリルアミドモノマー、及びこれらモノマーの2種以上の共重合体が挙げられる。
 また、その他のビニル系モノマーとの共重合体(コポリマー)も好適に用いられる。例えば、(メタ)アクリル酸メチルとスチレンとの共重合体、(メタ)アクリル酸メチルとアクリロニトリルとの共重合体、(メタ)アクリル酸ブチルとアクリロニトリルとスチレンとの共重合体が挙げられるが、これらに限定されるものではない。また、(メタ)アクリル樹脂はマクロモノマー由来の構成成分を有してもよい。本願明細書において、コポリマーは、統計コポリマー及び周期コポリマーのいずれでもよく、ランダムコポリマーが好ましい。
-その他の樹脂-
 その他の樹脂としては、例えば、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、セルロース誘導体樹脂等が挙げられる。
 領域Xがバインダーを含む場合、領域X中のバインダーの含有量は1~20質量%とすることができ、2~15質量%が好ましく、3~10質量%がさらに好ましい。
 上記の中でも、含フッ素樹脂、炭化水素系熱可塑性樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリカーボネート樹脂及びセルロース誘導体樹脂が好ましく、無機固体電解質との親和性が良好であり、また、樹脂自体の柔軟性が良好で、固体粒子とのより強固な結着性を示し得る点で、(メタ)アクリル樹脂又はポリウレタン樹脂が特に好ましい。
 上記各種の樹脂は、市販品を用いることができる。また、常法により調製することもできる。
 バインダーを構成する高分子の数平均分子量は、固体粒子間の結着性向上の観点から、1000~1000000であることが好ましく、10000~500000がより好ましい。
 なお、上記で説明した有機高分子化合物は一例であり、本発明におけるバインダーはこれらの形態に限定されるものではない。
〔領域Y〕
 本発明の全固体二次電池を構成する負極活物質層において、領域Yは引張弾性率が700MPa以下のポリマーにより構成される。領域Yは、引張弾性率が700MPa以下の、1種又は2種以上のポリマーで構成することができる。また、領域Yは、本発明の効果を損なわない範囲で、エアー域を含有してもよい。
(引張弾性率が700MPa以下のポリマー)
 引張弾性率が700MPa以下のポリマー(以下、「ポリマーY」とも称す。)は、柔らかな物性を有し、領域Xにおける充電時の負極活物質層の膨張を吸収する。
 ポリマーYの引張弾性率は700MPa以下であれば特に制限されない。例えばポリマーYの弾性率を10~700MPaとすることができ、20~600MPaとすることが好ましく、30~550MPaとすることがさらに好ましく、50~500MPaとすることが特に好ましい。
 ポリマーYはエラストマー(常温(25℃)でゴム弾性を示すポリマー)であることが好ましい。
 ポリマーYの種類も特に制限はなく、例えば、ポリウレタン系エラストマー、スチレン系エラストマー、オレフィン系エラストマー、塩化ビニル系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、シリコーン系エラストマー、及びフッ素系エラストマーを挙げることができる。
-ポリウレタン系エラストマー-
 ポリウレタン系エラストマーは、ハードセグメントがポリウレタン構造を有するエラストマーである。ポリウレタン系エラストマーとしては、例えば、低分子のグリコール及びジイソシアネートからなるハードセグメントと、高分子(長鎖)ジオールおよびジイソシアネートからなるソフトセグメントとの構造単位を含むエラストマーなどが挙げられる。
 高分子(長鎖)ジオールとしては、ポリプロピレングリコール、ポリテトラメチレンオキサイド、ポリ(1,4-ブチレンアジペート)、ポリ(エチレン-1,4-ブチレンアジペート)、ポリカプロラクトン、ポリ(1,6-ヘキシレンカーボネート)、ポリ(1,6-ヘキシレン・ネオペンチレンアジペート)などが挙げられる。高分子(長鎖)ジオールの数平均分子量は、500以上10,000未満が好ましい。
 低分子のグリコールとしては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ビスフェノールA等の短鎖ジオールを用いることができる。短鎖ジオールの数平均分子量は、48以上~500未満が好ましい。
-スチレン系エラストマー-
 スチレン系エラストマーは、ハードセグメントがポリスチレン構造を有するエラストマーである。スチレン系エラストマーとしては、例えば、スチレン-ブタジエンブロック共重合体(SBR)、水素添加スチレン-ブタジエンブロック共重合体(SEB、スチレン-エチレン/ブチレンブロック共重合体)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、水素添加スチレン-ブタジエン-スチレンブロック共重合体(SEBS、スチレン-エチレン/ブチレン-スチレンブロック共重合体)、スチレン-イソプレンブロック共重合体(SIR)、水素添加スチレン-イソプレンブロック共重合体(SEP、スチレン-エチレン/プロピレンブロック共重合体)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、水素添加スチレン-イソプレン-スチレンブロック共重合体(SEPS、スチレン-エチレン/プロピレン-スチレンブロック共重合体)等が挙げられ、これらの1種又は2種以上を用いることができる。
-オレフィン系エラストマー-
 オレフィン系エラストマーはポリオレフィン構造からなる、架橋又は非架橋構造のエラストマーである。オレフィン系エラストマーとしては、例えば、エチレン-プロピレン共重合体、エチレン-1-ブテン共重合体、エチレン-α-オレフィン共重合体、プロピレン-1-ブテン共重合体、プロピレン-α-オレフィン共重合体、1-ブテン-α-オレフィン共重合体、プロピレン-1-ブテン-エチレン共重合体、プロピレン-α-オレフィン-エチレン共重合体、プロピレン-α-オレフィン-1-ブテン共重合体、1-ブテン-α-オレフィン-エチレン共重合体、イソプレンゴム(IR)、シス-1,4-ポリブタジエン(BR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ポリプロピレンの中にエチレン-プロピレンゴムを分散させたエラストマー、ポリプロピレンの中にエチレン-プロピレン-ジエンゴムを分散させたエラストマー等が挙げられ、これらの1種又は2種以上を用いることができる。
-塩化ビニル系エラストマー-
 塩化ビニル系エラストマーは、ハードセグメントがポリ塩化ビニル構造を有するエラストマーである。塩化ビニル系エラストマーとしては、例えば、高重合度のポリ塩化ビニルが挙げられる。また、部分架橋のポリ塩化ビニルを用いることにより、架橋部がハードセグメント、直鎖部がソフトセグメントとして機能するエラストマーが挙げられる。
-ポリエステル系エラストマー-
 ポリエステル系エラストマーは、ハードセグメントがポリエステル構造を有するエラストマーである。例えば、特開平11-92636号公報などに記載された高融点ポリエステルセグメント(ハードセグメント)と分子量400~6,000程度の低融点ポリマーセグメント(ソフトセグメント)とからなるブロックコポリマーを用いることができる。高融点ポリエステルセグメントとしては、例えば、ポリブチレンテレフタレート(PBT)等を挙げることができる。また、低融点ポリマーセグメントとしては、例えば、ガラス転移温度が-70℃の非晶性ポリエーテル、例えば、ポリテトラメチレンエーテルグリコール(PTMG)等を挙げることができる。
-ポリアミド系エラストマー-
 ポリアミド系エラストマーは、ハードセグメントがポリアミド構造を有するエラストマーである。例えば、ハードセグメントがポリアミドであり、ソフトセグメントがポリエーテルやポリエステルを用いたマルチブロックコポリマーを挙げることができる。ハードセグメントとしては、例えば、ポリアミド6,66,610,11,12等が挙げられる。ソフトセグメントにおけるポリエーテルは、ポリエチレングリコール、ジオールポリ(オキシテトラメチレン)グリコール、ポリ(オキシプロピレン)グリコール等が挙げられ、ポリエステルは、ポリ(エチレンアジペート)グリコール、ポリ(ブチレン-1,4-アジペート)グリコール等が挙げられる。
-シリコーン系エラストマー-
 シリコーン系エラストマーとしては、オルガノポリシロキサン構造を有するエラストマーである。オルガノポリシロキサンに架橋構造を導入したものであり、例えば、ポリジメチルシロキサン系、ポリメチルフェニルシロキサン系、及びポリジフェニルシロキサン系のエラストマーが知られている。シリコーンシリコーン系エラストマーの市販品の具体例としては、KEシリーズ(信越化学工業社製)、SEシリーズ、CYシリーズ、SHシリーズ(いずれも東レダウコーニングシリコーン社製)などが挙げられる。
-フッ素系エラストマー-
 フッ素系エラストマーは、ハードセグメントがフッ素樹脂で形成されたエラストマーである。フッ素系エラストマーとしては、例えば、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-プロピレン共重合体、クロロトリフルオロエチレン-エチレン共重合体、ポリビニリデンフロライド、ポリビニルフロライド、ビニリデンフロライド-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-ビニリデンフロライド-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-ビニリデンフロライド-パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン-ビニリデンフロライド-プロピレン共重合体、テトラフルオロエチレン-ビニリデンフロライド-ヘキサフルオロプロピレン共重合体などが挙げられる。
 なかでもポリマーYはポリウレタン系エラストマーが好ましい。
 ポリマーの引張弾性率は、JIS K6251:2010「加硫ゴム及び熱可塑性ゴム」に従い、ダンベル状試験片は1号形として測定される。
<負極活物質層の形成>
 続いて、負極活物質層の形成について説明する。
 本発明の全固体二次電池を構成する負極活物質層の形成は、本発明の規定を満たす負極活物質層を形成できれば特に制限されない。例えば、領域Xの構成材料と分散媒とを含む領域X形成用塗布液(スラリー)と、領域Yの構成材料(ポリマー)を溶解した領域Y形成用塗布液を調製し、これらの塗布液を、基材(負極集電体又は固体電解質層、すなわち、全固体二次電池において負極活物質層と接する層)上に塗布し、必要により乾燥して形成することができる。これらの塗布液は逐次に塗布することができる。また、製造効率、塗布精度等を考慮すると、同時に塗布することが好ましい。この同時塗布は、例えば、形成する領域Xと領域Yの数に応じた数のノズルを一列に並べた塗布装置を用意し、各ノズルから領域X形成用塗布液と領域Y形成用塗布液を交互に、互いに接するように同時に吐出させながら、一列に並べたノズルを、基材上を移動させることにより行うことができる。
 また、上記負極活物質層は、自己組織化、エッチング処理、光インプリント、インクジェット等の方法を単独で、又は組み合わせて形成することもできる。
 領域X形成用塗布液に用いる分散媒として、例えば、アルコール化合物溶媒、エーテル化合物溶媒、アミド化合物溶媒、アミノ化合物溶媒、ケトン化合物溶媒、エステル化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒、及びニトリル化合物溶媒が挙げられる。
 アルコール化合物溶媒としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、1,3-ブタンジオール、及び1,4-ブタンジオールが挙げられる。
 エーテル化合物溶媒としては、例えば、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジブチルエーテル等)、テトラヒドロフラン、及びジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)が挙げられる。
 アミド化合物溶媒としては、例えば、N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、及びヘキサメチルホスホリックトリアミドが挙げられる。
 アミノ化合物溶媒としては、例えば、トリエチルアミン、及びトリブチルアミンが挙げられる。
 ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、ジブチルケトン、及びジイソブチルケトンが挙げられる。
 エステル化合物溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、酢酸ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸ブチル、イソ酪酸イソブチル、酪酸ペンチル、吉草酸メチル、吉草酸エチル、吉草酸プロピル、吉草酸ブチル、カプロン酸メチル、カプロン酸エチル、カプロン酸プロピル、及びカプロン酸ブチル等が挙げられる。
 芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、キシレン、及びメシチレンが挙げられる。
 脂肪族化合物溶媒としては、例えば、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、デカリン、オクタン、ペンタン、シクロペンタン、及びシクロオクタンが挙げられる。
 ニトリル化合物溶媒としては、例えば、アセトニトリル、プロピロニトリル、及びブチロニトリルが挙げられる。
 上記の領域X形成用塗布液それ自体は、常法により調製することができる。具体的には、領域Xの構成材料と分散媒とを混合し、調製することができる。この混合は、各種の混合機を用いて行うことができる。例えば、ボールミル、ビーズミル、プラネタリミキサ―、ブレードミキサ―、ロールミル、ニーダー、ディスクミル等が挙げられる。塗布液中の各構成材料の含有量は、所望の機能を発現する塗膜を形成できれば特に制限されず、膜厚、分散性等を考慮して適宜に設定される。
 領域Y形成用塗布液は、例えば、領域Yを構成する上述の、引張弾性率が700MPa以下のポリマーを溶媒に溶解し、あるいは溶媒中に分散させて調製することができる。領域Y形成用塗布液に用いる溶媒は、用いるポリマーの種類、溶解性等に応じて適宜に選択することができる。また、領域Y形成用塗布液中のポリマーの含有量も、形成する層の厚さ等を考慮して、目的に応じて適宜に設定することができる。
 形成した塗布膜の乾燥温度は特に制限されず、好ましくは30℃以上、より好ましくは60℃以上、さらに好ましくは80℃以上である。また、乾燥温度は300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。
 本発明の全固体二次電池の積層構造を構成する、負極活物質層以外の層について説明する。
<固体電解質層>
 本発明の全固体二次電池を構成する固体電解質層は、上述した無機固体電解質を含有し、必要により上記の領域Xにおいて説明したバインダーを含有する。固体電解質層の各成分含有量は、目的に応じて適宜に調整できる。例えば、固体電解質層中、無機固体電解質の含有量を50質量%以上とすることが好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上がさらに好ましい。
 固体電解質層がバインダーを含む場合、固体電解質組成物固形分中、バインダーの含有量は1~20質量%とすることができ、2~15質量%が好ましく、3~10質量%がさらに好ましい。
 本発明の全固体二次電池を構成する固体電解質層は、例えば、上記無機固体電解質と、必要によりバインダーと、上述した分散媒とを含む固体電解質層形成用塗布液(スラリー)を塗布し、形成することができる。
 固体電解質層は、リチウム塩(支持電解質)を含有してもよい。
 リチウム塩としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はなく、例えば、特開2015-088486の段落0082~0085記載のリチウム塩が好ましい。
 固体電解質含有層がリチウム塩を含む場合、リチウム塩の含有量は、無機固体電解質100質量部に対して、0.1質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
 固体電解質層は、イオン伝導度をより向上させるため、イオン液体を含有してもよい。イオン液体としては、特に限定されないが、イオン伝導度を効果的に向上させる観点から、上述したリチウム塩を溶解するものが好ましい。例えば、下記のカチオンと、アニオンとの組み合わせよりなる化合物が挙げられる。
<正極活物質層>
 本発明の全固体二次電池を構成する正極活物質層は、全固体二次電池において用いられる通常の構成材料で形成することができる。正極活物質層には正極活物質が含まれる。正極活物質層は、正極活物質を含むこと以外は、上述した固体電解質層の構成と同じ構成とすることができる。
 正極活物質層中の各成分含有量は、目的に応じて適宜に調整できる。例えば、正極活物質層中、正極活物質の含有量を20~95質量%とすることができ、30~90質量%がより好ましい。
 本発明において正極活物質層は、上述した固体電解質層形成用塗布液(スラリー)に、正極活物質を含有させた正極活物質層形成用塗布液を調製し、これを基材(集電体又は固体電解質層、すなわち、全固体二次電池において正極活物質層と接する層)に塗布して形成することができる。
(正極活物質)
 正極活物質は、可逆的にリチウムイオンを挿入及び/又は放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物、又は、硫黄などのLiと複合化できる元素などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P及びBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Mのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])、LiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO、LiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO又はNMCがより好ましい。
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の平均粒径(球換算平均粒子径)は特に制限されない。例えば、0.1~50μmとすることができる。正極活物質粒子の平均粒径は、上記無機固体電解質の平均粒径と同様にして測定できる。正極活物質を所定の粒子径にするには、負極活物質と同様に、通常の粉砕機若しくは分級機が用いられる。
 焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。
 正極活物質は、負極活物質と同様に、上記表面被覆剤、硫黄若しくはリンで、更には上記活性光線等により、表面被覆されていてもよい。
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができる。例えば、1~100mg/cmとすることができる。
 正極活物質層中の正極活物質の含有量は、10~97質量%が好ましく、30~95質量%がより好ましく、40~93質量が更に好ましく、50~90質量%が特に好ましい。
 本発明の全固体二次電池において、負極活物質層、固体電解質層及び正極活物質層の各層厚は特に制限されない。各層の厚さは、一般的な全固体二次電池の寸法を考慮すると、それぞれ、10μm~500μmが好ましく、20~400μmがより好ましく、20~200μmがさらに好ましい。また、負極活物質層、固体電解質層及び正極活物質層の各層は、単層であってもよく、複層としてもよい。複層の場合、複層全体の厚さを上記の好ましい範囲内とすることが好ましい。
<集電体>
 正極集電体及び負極集電体は、電子伝導体が好ましい。正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム、銅、銅合金又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に制限されないが、1~500μmが好ましく、2~300μmがより好ましく、2~200μmがさらに好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
[全固体二次電池の製造]
 本発明の全固体二次電池の積層構成は、負極活物質層の構成を、上述した本発明で規定する構成とすること以外は常法により形成することができる。例えば、特開2018-106844号公報、特開2016-181448号公報、特開2016-081822号公報等の記載を参照することができる。
 得られた積層体を、通常は、適当なハウジングに収めて(筐体に封入したり、コインケース等に収めたりして)、加圧状態として全固体二次電池とする。本発明に係る全固体二次電池は、充電時における負極活物質の膨張を吸収し、放電時における負極活物質の収縮にも追従するポリマー領域が負極活物質層に設けられているため、上記の加圧をこれまでよりも低圧条件としても、十分なサイクル特性を実現することができる。
 上記筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金又は、ステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
<初期化>
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化することが好ましい。初期化は、特に制限されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
[全固体二次電池の用途]
 本発明の製造方法で得られる全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
[全固体二次電池用負極シート]
 本発明の全固体二次電池用負極シート(「本発明の負極シート」とも称す。)は、本発明の全固体二次電池の負極を構成する材料として好適なシートである。
 すなわち、本発明の負極シートは、負極活物質層を有し、この負極活物質層が、負極活物質と無機固体電解質とを含む固体粒子領域Xと、引張弾性率が700MPa以下のポリマーにより形成されたポリマー領域Yとを有する。固体粒子領域X及び上記ポリマー領域Yは、負極活物質層内を、負極活物質層表面に対して垂直方向(L方向)に並び、かつ負極活物質層表面に平行な一の方向(Z方向)にも並んで配されている。負極活物質層の、上記の「負極活物質層表面に平行な一の方向」に対して垂直な断面において、固体粒子領域Xとポリマー領域Yとは、交互に、互いに接して配され、上記断面において互いに隣り合う固体粒子領域Xの幅Xとポリマー領域Yの幅Yとの関係が、0.01≦Y/X≦1.00を満たす。0.01≦Y/X≦1.00の解釈、Y及びXの決定方法、Y/Xの好ましい範囲は、本発明の全固体二次電池における負極活物質層の説明に記載した通りである。
 本発明の負極シートの代表的な形態としては、集電体上に上記負極活物質層が形成された2層構造の形態、集電体上に正極活物質層、固体電解質層、上記負極活物質層がこの順に積層された形態が挙げられるが、本発明の負極シートは本発明で規定すること以外は、これらの形態に限定されるものではない。
 本発明の負極シートを構成し得る集電体、負極活物質層、固体電解質層、及び正極活物質層の好ましい形態は、上述した本発明の全固体二次電池において説明した形態と同じである。
 以下に、実施例に基づき本発明についてさらに詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。
[硫化物系無機固体電解質(Li-P-S系ガラス)の合成]
 硫化物系無機固体電解質は、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235及びA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして合成した。
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42kg、五硫化二リン(P、Aldrich社製、純度>99%)3.90kgをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳鉢を用いて、5分間混合した。なお、LiS及びPはモル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、上記硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、温度25℃、回転数510rpmで20時間メカニカルミリングを行い、黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス、「LPS」とも称する。)6.20gを得た。
[バインダーBを構成するポリマーの合成例]
 還流冷却管、ガス導入コックを付した1Lの3つ口フラスコにヘプタンを200質量部加え、流速200mL/minにて窒素ガスを10分間導入した後に室温から80℃に昇温した。攪拌しているヘプタン中に、別容器にて調製した液(アクリル酸ブチル(和光純薬工業社製)90質量部、メタクリル酸メチル(上記例示化合物、和光純薬工業社製)20質量部、アクリル酸(和光純薬工業社製)10質量部、B-27(後記合成品)を20質量部、マクロモノマーMM-1(後記合成品)を60質量部(固形分量)、重合開始剤V-601(商品名、和光純薬工業社製)を2.0質量部混合した液)を2時間かけて滴下し、その後80℃で2時間攪拌した。その後、得られた混合物にV-601をさらに1.0質量部添加し、90℃で2時間攪拌した。得られた溶液をヘプタンで希釈することで、バインダーBの分散液を得た。この分散液中のバインダーBの体積平均粒径は100nmであった。
〔B-27の合成〕
 1Lの3つ口フラスコにコレステロール(東京化成工業社製)80g、こはく酸モノ(2-アクリロイルオキシエチル)(アルドリッチ社製)を50g、4-ジメチルアミノピリジン(東京化成工業社製)を5g、ジクロロメタンを500g加えた後、20℃で5分攪拌した。攪拌している溶液中に1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(東京化成工業社製)52gを30分かけて添加し、20℃で5時間攪拌した。その後0.1M塩酸で3回洗浄し、硫酸マグネシウムで乾燥し、減圧留去を行った。得られたサンプルをシリカゲルカラムクロマトグラフィーで精製することでB-27を得た。
Figure JPOXMLDOC01-appb-C000001
〔マクロモノマーMM-1の合成〕
 還流冷却管、ガス導入コックを付した1Lの3つ口フラスコにトルエンを190質量部加え、流速200mL/minにて窒素ガスを10分間導入した後に室温から80℃に昇温した。攪拌しているトルエン中に、別容器にて調製した液(下記処方α)を2時間かけて滴下し、80℃で2時間攪拌した。その後、V-601(和光純薬工業社製)を0.2質量部添加し、さらに95℃で2時間攪拌した。攪拌後95℃に保った溶液に2,2,6,6-テトラメチルピペリジン-1-オキシル(東京化成工業社製)を0.025質量部、メタクリル酸グリシジル(和光純薬工業社製)を13質量部、テトラブチルアンモニウムブロミド(東京化成工業社製)を2.5質量部加えて120℃で3時間攪拌した。得られた混合物を室温まで冷却したのちメタノールに加えて沈殿させ、沈殿物をろ取し、メタノールで2回洗浄後、ヘプタン300質量部を加えて溶解させた。得られた溶液を減圧下で濃縮することでマクロモノマーMM-1の溶液を得た。固形分濃度は43.4質量%、SP値は9.1、質量平均分子量は16,000であった。得られたマクロモノマーMM-1を以下に示す。
 (処方α)
 メタクリル酸ドデシル(和光純薬工業社製)       150質量部
 メタクリル酸メチル (和光純薬工業社製)        59質量部
 3-メルカプトイソ酪酸 (東京化成工業社製)       2質量部
 V-601 (和光純薬工業社製)           1.9質量部
Figure JPOXMLDOC01-appb-C000002
[固体電解質層形成用スラリーの調製]
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを130個投入し、上記で合成したLPSを3.0g、上記バインダーBの分散液を固形分換算で0.09g、分散媒としてトルエンを9.0g投入した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、温度25℃、回転数100rpmで30分混合し、粒径2.0μmのLPSを含有する、固体電解質層を形成するための固体電解質層形成用スラリーを調製した。
[正極活物質層形成用スラリーの調製]
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLPSを2.8g、上記バインダーBの分散液を固形分換算で0.1g、分散媒としてトルエン12.3gを投入した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、温度25℃、回転数300rpmで2時間混合した。その後、活物質としてNMC(LiNi0.33Co0.33Mn0.33(アルドリッチ社製))7.0g、導電助剤としてアセチレンブラック(デンカ(株)製)を0.2g容器に投入し、同様に、遊星ボールミルP-7に容器をセットし、温度25℃、回転数100rpmで10分間混合を続け、正極活物質層形成用スラリーを調製した。
[負極活物質層の固体粒子領域X形成用スラリーの調製]
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLPS4.7g、上記バインダーBの分散液を固形分換算で0.1g、分散媒としてヘプタン12.3gを投入した。フリッチュ社製遊星ボールミルP-7に容器をセットし、温度25℃、回転数300rpmで2時間混合した。その後、活物質としてシリコンパウダー1~5μm(Alfa Aesar社製)4.7g、導電助剤としてアセチレンブラック(デンカ社製)0.5gを容器に投入し、同様に、遊星ボールミルP-7に容器をセットし、温度25℃、回転数200rpmで15分間混合を続け、固体粒子領域X形成用スラリーを調製した。
[負極活物質層のポリマー領域Y形成用塗布液の調製]
 引張弾性率が100MPaのポリウレタンエラストマー(標準ウレタン高度95、ミスミ社より入手)4.5gをヘプタン5.5g中に添加し、マグネットスターラーを用いて回転数200rpmで、25℃で30分間混合した。こうしてポリウレタン樹脂が溶解してなるポリマー領域Y形成用塗布液を調製した。
[実施例1] 全固体二次電池の作製
〔全固体二次電池用正極シート-固体電解質シートの作製〕
 上記で調製した正極活物質層形成用スラリーを厚み20μmのアルミ箔(正極集電体)上に、アプリケーター(商品名:SA-201ベーカー式アプリケータ、テスター産業社製)により塗布した。80℃で1時間加熱後、さらに110℃で1時間加熱し、正極活物質層形成用スラリーを乾燥させた。その後、ヒートプレス機を用いて、加熱(120℃)しながら加圧し(180MPa、1分)、正極活物質層/アルミ箔の積層構造を有する全固体二次電池用正極シートを作製した。正極活物質層の厚みは60μmであった。
 上記で得られた正極シートの正極活物質層上に、上記で調製した固体電解質層形成用スラリーを、上記ベーカー式アプリケーターにより塗布し、80℃で1時間加熱後、さらに100℃で1時間加熱し、厚み20μmの固体電解質層を形成した。
〔全固体二次電池用負極シートの作製〕
 上記で調製した固体粒子領域X形成用スラリーと、ポリマー領域Y形成用塗布液とを、厚み20μmの銅箔(負極集電体)上に、互いに接して交互に、直線上に配されるように塗布した。この塗布にはノズル5個を一列に並べた塗布装置を用いた。具体的には、互いに隣り合うノズルから、固体粒子領域X形成用スラリーとポリマー領域Y形成用塗布液が吐出されるようにして、一列に並べたノズルを、銅箔上を直線上に移動させながら、固体粒子領域X形成用スラリーとポリマー領域Y形成用塗布液を同時に吐出することにより塗膜を形成した。5つのノズルのうち、最も外側に位置するノズルと中央に位置するノズル(端から順に1、3、5本目のノズル)からは固体粒子領域X形成用スラリーを吐出し、その他のノズル(端から2、4本目のノズル)からはポリマー領域Y形成用塗布液を吐出した。
 次いで、80℃で1時間加熱後、さらに110℃で1時間加熱し、スラリーないし塗布液を乾燥させた。その後、ヒートプレス機を用いて、加熱(120℃)しながら加圧し(120MPa、1分)、負極活物質層/銅箔の積層構造を有する全固体二次電池用負極シートを作製した。負極活物質層の厚みは60μmであった。形成した負極活物質層において、各ノズルに対応する固体粒子領域Xの幅Xはすべて40mm、各ノズルに対応するポリマー領域Yの幅Yはすべて0.4mmとした(Y/X=0.01)であった。
〔全固体二次電池の作製〕
 上記で作製した「全固体二次電池用正極シート-固体電解質シート」上に「全固体二次電池用負極シート」を、固体電解質層と負極活物質層とが接するように重ね、50MPaで10秒加圧した。得られた積層体を120mm角サイズにし、ラミネート内に真空封入することによって、全固体電池(ラミネートセル)を作製した。
[実施例2~12、比較例1~5] 全固体二次電池の作製
 使用する負極活物質、無機固体電解質、バインダー、及びポリマー領域Yを形成するポリマーの種類を下表に示す通りに変更し、また、負極活物質層における固体粒子領域Xの幅とポリマー領域Yの幅を下表に示す通りに変更したこと以外は、実施例1と同様にして全固体二次電池を作製した。無機固体電解質とバインダーについては、負極活物質層、正極活物質層及び固体電解質層のすべての層において、下表の通りに変更した。また、負極活物質、無機固体電解質、バインダー、及び、ポリマー領域Yを形成するポリマーの各使用量は、実施例1と同じである。
[電池性能の評価]
 全固体二次電池の電池性能を、東洋システム社製の充放電評価装置「TOSCAT-3000」(商品名)を用いて評価した。具体的には、全固体二次電池を電池電圧が4.2Vになるまで電流値0.2mAで充電した後、電池電圧が3.0Vになるまで電流値2.0mAで放電した。放電開始10秒後の電池電圧を以下の基準で読み取り、下記評価基準に当てはめ評価した。放電開始10秒後の電池電圧が高いほど、抵抗が低いことを意味する。
<電池性能(抵抗)評価基準>
AA:4.10V以上
A: 4.05V以上4.10V未満
B: 4.00V以上4.05V未満
C: 3.90V以上4.00V未満
D: 3.90V未満
E: 短絡が生じた。
[試験例] サイクル特性の評価
 全固体二次電池のサイクル特性を、東洋システム社製の充放電評価装置「TOSCAT-3000」(商品名)を用いて評価した。具体的には、上記で作製した電池を用い、30℃で充電電流値0.35mA、放電電流値0.7mAで4.2V~3.0Vの充放電を4回繰り返した。
 その後、サイクル試験として、30℃環境下、充放電電流値0.7mAの条件で4.2V~3.0Vの充放電を繰り返す試験を実施した。
 このサイクル試験において、1サイクル目の放電容量を100%としたときの、放電容量が80%となるサイクル数を、下記評価基準にあてはめ評価した。
 この試験により、4.2Vで電池を稼動した際の負極層における負極活物質の電子・イオンパスが維持できているかを把握することができる。
<サイクル特性評価基準>
AA:サイクル数200回以上
A: サイクル数100~199回
B: サイクル数50~99回
C: サイクル数21~49回
D: サイクル数11~20回
E: サイクル数0~10回
 結果を下表に示す。
Figure JPOXMLDOC01-appb-T000003
 上記表中の略称について以下に説明する。
-負極活物質-
 Si:シリコンパウダー1~5μm(Alfa Aesar社製)
 C:黒鉛(昭和電工社製)
-無機固体電解質-
 硫化物系:Li-P-S系ガラス
 酸化物系:LLZ:LiLaZr12(ランタンジルコン酸リチウム、平均粒子径5.0μm、豊島製作所)
-バインダー-
 粒子状:上記バインダーBの分散液を用いた。
 溶解性:スチレンブタジエンゴム(スチレン-ブタジエンブロック共重合体、日本ゼオン社製)をヘプタンに溶解したバインダー溶液を用いた。
-ポリマー領域Yのポリマー-
 PU1:ポリウレタンエラストマー(引張弾性率100MPa、BASF社製)
 PU2:ポリウレタンエラストマー(引張弾性率500MPa、BASF社製)
 PU3:ポリウレタンエラストマー(引張弾性率690MPa、BASF社製)
 SBR:スチレンブタジエンゴム(スチレン-ブタジエンブロック共重合体、ヘプタンに溶解性、引張弾性率100MPa、JSR社製)
 高密度PE:高密度ポリエチレン(引張弾性率1000MPa、BASF社製)
 上記表に示されるように、負極活物質層がポリマー領域を有さず、固体粒子領域のみで形成されている場合、サイクル特性に劣る結果となった(比較例1)。
 また、負極活物質層がポリマー領域を有していても、ポリマー領域を構成するポリマーの引張弾性率が本発明の規定(700MPa以下)よりも高いと、やはりサイクル特性に劣っていた(比較例5)。
 また、負極活物質層がポリマー領域を有し、このポリマー領域を構成するポリマーの引張弾性率が本発明の規定内にあっても、固体粒子領域の幅とポリマー領域の幅の関係(Y/X)が本発明の規定よりも小さい場合には、やはりサイクル特性に劣る結果となった(比較例2及び3)。逆に、Y/Xが本発明の規定より大きいと、サイクル特性には優れているが、電池抵抗が高く性能に劣るものとなった(比較例4)。
 これに対し、負極活物質層の構成が本発明の規定を満たす、本発明の全固体二次電池は、抵抗の上昇を抑えながら、サイクル特性に優れていた(実施例1~12)。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2018年9月20日に日本国で特許出願された特願2018-175752に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
101 全固体二次電池
11 負極集電体
12 負極活物質層
13 固体電解質層
14 正極活物質層
15 正極集電体層
16 作動部位
1a、1b、1c 固体粒子領域
2a、2b ポリマー領域
L 積層方向(負極活物質層表面に対して垂直方向)
Z 負極活物質層の奥行方向(負極活物質層表面に平行な一の方向)
 固体粒子領域の幅
 ポリマー領域の幅

Claims (8)

  1.  負極活物質層と固体電解質層と正極活物質層とがこの順に積層された積層構造を有する全固体二次電池であって、
     前記負極活物質層が、負極活物質と無機固体電解質とを含む固体粒子領域Xと、引張弾性率が700MPa以下のポリマーにより形成されたポリマー領域Yとを有し、
     前記固体粒子領域X及び前記ポリマー領域Yは、前記負極活物質層内を、前記積層構造の積層方向に並び、かつ、該積層方向に垂直な一の方向にも並んで配され、
     前記負極活物質層の、前記の積層方向に垂直な一の方向に対して垂直な断面において、前記固体粒子領域Xと前記ポリマー領域Yとが交互に、互いに接して配され、前記断面において、互いに隣り合う固体粒子領域Xとポリマー領域Yの両領域の幅の関係が下記式を満たす、全固体二次電池。
      0.01≦Y/X≦1.00
        X:固体粒子領域Xの幅
        Y:ポリマー領域Yの幅
  2.  前記固体粒子領域Xが粒子状バインダーを含有する、請求項1記載の全固体二次電池。
  3.  前記負極活物質がケイ素系負極活物質である、請求項1又は2記載の全固体二次電池。
  4.  前記無機固体電解質が硫化物系無機固体電解質である、請求項1~3のいずれか1項記載の全固体二次電池。
  5.  前記の引張弾性率が700MPa以下のポリマーがエラストマーである、請求項1~4のいずれか1項記載の全固体二次電池。
  6.  請求項1~5のいずれか1項記載の全固体二次電池を有する電子機器。
  7.  請求項1~5のいずれか1項記載の全固体二次電池を有する電気自動車。
  8.  負極活物質層を有する全固体二次電池用負極シートであって、
     前記負極活物質層が、負極活物質と無機固体電解質とを含む固体粒子領域Xと、引張弾性率が700MPa以下のポリマーにより形成されたポリマー領域Yとを有し、
     前記固体粒子領域X及び前記ポリマー領域Yは、前記負極活物質層内を、前記負極活物質層表面に対して垂直方向に並び、かつ、負極活物質層表面に平行な一の方向にも並んで配され、
     前記負極活物質層の、前記の負極活物質層表面に平行な一の方向に対して垂直な断面において、前記固体粒子領域Xと前記ポリマー領域Yとが交互に、互いに接して配され、前記断面において、互いに隣り合う固体粒子領域Xとポリマー領域Yの両領域の幅の関係が下記式を満たす、全固体二次電池用負極シート。
      0.01≦Y/X≦1.00
        X:固体粒子領域Xの幅
        Y:ポリマー領域Yの幅
     
PCT/JP2019/035315 2018-09-20 2019-09-09 全固体二次電池及び全固体二次電池用負極シート WO2020059549A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020548342A JP6948474B2 (ja) 2018-09-20 2019-09-09 全固体二次電池及び全固体二次電池用負極シート

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018175752 2018-09-20
JP2018-175752 2018-09-20

Publications (1)

Publication Number Publication Date
WO2020059549A1 true WO2020059549A1 (ja) 2020-03-26

Family

ID=69887407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035315 WO2020059549A1 (ja) 2018-09-20 2019-09-09 全固体二次電池及び全固体二次電池用負極シート

Country Status (2)

Country Link
JP (1) JP6948474B2 (ja)
WO (1) WO2020059549A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952094A (zh) * 2021-01-26 2021-06-11 宁德新能源科技有限公司 锂离子电池和电子装置
CN113851763A (zh) * 2021-09-15 2021-12-28 中汽创智科技有限公司 一种固态电池结构及其制备方法
CN114203962A (zh) * 2021-12-13 2022-03-18 珠海冠宇动力电池有限公司 极片、电芯及电池
WO2023087218A1 (zh) * 2021-11-18 2023-05-25 宁德时代新能源科技股份有限公司 负极极片及其制备方法、二次电池、电池模块、电池包和用电装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064460A (ja) * 2010-09-16 2012-03-29 Toyota Motor Corp 固体二次電池
JP2014049229A (ja) * 2012-08-30 2014-03-17 Toyota Motor Corp 全固体電池用負極体および全固体電池
JP2014116154A (ja) * 2012-12-07 2014-06-26 Samsung R&D Institute Japan Co Ltd 固体電池
WO2015029290A1 (ja) * 2013-08-29 2015-03-05 パナソニックIpマネジメント株式会社 全固体リチウム二次電池
JP2015191879A (ja) * 2014-03-31 2015-11-02 株式会社日立製作所 捲回型二次電池
CN105226323A (zh) * 2014-06-09 2016-01-06 宁德新能源科技有限公司 电芯及其制备方法
JP2017041439A (ja) * 2015-08-18 2017-02-23 パナソニックIpマネジメント株式会社 電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064460A (ja) * 2010-09-16 2012-03-29 Toyota Motor Corp 固体二次電池
JP2014049229A (ja) * 2012-08-30 2014-03-17 Toyota Motor Corp 全固体電池用負極体および全固体電池
JP2014116154A (ja) * 2012-12-07 2014-06-26 Samsung R&D Institute Japan Co Ltd 固体電池
WO2015029290A1 (ja) * 2013-08-29 2015-03-05 パナソニックIpマネジメント株式会社 全固体リチウム二次電池
JP2015191879A (ja) * 2014-03-31 2015-11-02 株式会社日立製作所 捲回型二次電池
CN105226323A (zh) * 2014-06-09 2016-01-06 宁德新能源科技有限公司 电芯及其制备方法
JP2017041439A (ja) * 2015-08-18 2017-02-23 パナソニックIpマネジメント株式会社 電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952094A (zh) * 2021-01-26 2021-06-11 宁德新能源科技有限公司 锂离子电池和电子装置
CN113851763A (zh) * 2021-09-15 2021-12-28 中汽创智科技有限公司 一种固态电池结构及其制备方法
WO2023087218A1 (zh) * 2021-11-18 2023-05-25 宁德时代新能源科技股份有限公司 负极极片及其制备方法、二次电池、电池模块、电池包和用电装置
CN114203962A (zh) * 2021-12-13 2022-03-18 珠海冠宇动力电池有限公司 极片、电芯及电池

Also Published As

Publication number Publication date
JPWO2020059549A1 (ja) 2021-02-18
JP6948474B2 (ja) 2021-10-13

Similar Documents

Publication Publication Date Title
JP6721669B2 (ja) 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
US11909034B2 (en) All-solid state secondary battery and method of manufacturing the same
WO2020059549A1 (ja) 全固体二次電池及び全固体二次電池用負極シート
US11670796B2 (en) All-solid state secondary battery, exterior material for all-solid state secondary battery, and method for manufacturing all-solid state secondary battery
WO2019208347A1 (ja) 固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法
JP7064613B2 (ja) 全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法
JP7165747B2 (ja) 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法
US11552331B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary
WO2018163976A1 (ja) 固体電解質含有シート、固体電解質組成物および全固体二次電池、ならびに、固体電解質含有シートおよび全固体二次電池の製造方法
JP7143433B2 (ja) 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池
JP7061728B2 (ja) 複合電極活物質、電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、複合電極活物質、全固体二次電池用電極シート及び全固体二次電池の製造方法
JP7292498B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7119214B2 (ja) 全固体二次電池及びその製造方法
JP7165750B2 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
JP2017162597A (ja) 電極用材料、これを用いた全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2020241837A1 (ja) 二次電池
WO2020067108A1 (ja) 全固体二次電池の負極用組成物、全固体二次電池用負極シート及び全固体二次電池、並びに、全固体二次電池用負極シート及び全固体二次電池の製造方法
WO2019098299A1 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池並びに固体電解質含有シート及び全固体二次電池の製造方法
WO2024143389A1 (ja) 全固体二次電池用電極シート及び全固体二次電池
WO2022202901A1 (ja) 固体電解質積層シート及び全固体二次電池、並びに、全固体二次電池の製造方法
JP7245847B2 (ja) 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法
JP2023135090A (ja) イオン伝導性固体状組成物および固体状二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862934

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548342

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862934

Country of ref document: EP

Kind code of ref document: A1