WO2020059080A1 - 電池パック - Google Patents
電池パック Download PDFInfo
- Publication number
- WO2020059080A1 WO2020059080A1 PCT/JP2018/034824 JP2018034824W WO2020059080A1 WO 2020059080 A1 WO2020059080 A1 WO 2020059080A1 JP 2018034824 W JP2018034824 W JP 2018034824W WO 2020059080 A1 WO2020059080 A1 WO 2020059080A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- heat
- heat shield
- battery stack
- stack
- Prior art date
Links
- 238000009413 insulation Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 27
- 238000010438 heat treatment Methods 0.000 abstract 3
- 239000004744 fabric Substances 0.000 description 22
- 239000000463 material Substances 0.000 description 21
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 10
- 230000020169 heat generation Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000004378 air conditioning Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 239000003779 heat-resistant material Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000011491 glass wool Substances 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/658—Means for temperature control structurally associated with the cells by thermal insulation or shielding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/617—Types of temperature control for achieving uniformity or desired distribution of temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/209—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/298—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the wiring of battery packs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
- H01M50/317—Re-sealable arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
- H01M50/505—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a battery pack.
- a battery pack having a plurality of battery stacks in which a plurality of battery cells are fixed and integrated, and a case for accommodating the plurality of battery stacks.
- One battery stack in the battery pack may generate heat due to an internal short circuit of the battery cell. Heat generated from one battery stack is transmitted to an adjacent battery stack, and the battery stack in the case may generate heat one after another. Therefore, it is important to suppress the chain of the exothermic reaction between the battery stacks.
- Patent Literature 1 discloses a configuration in which each battery stack is surrounded by a heat absorbing member from the viewpoint of suppressing a chain of exothermic reactions between the battery stacks.
- An object of the present invention is to provide a battery pack that can suppress a chain of exothermic reactions.
- the battery pack of the present invention for achieving the above object has a plurality of battery stacks, a case, and a first heat shield.
- the case houses the plurality of battery stacks.
- the first heat shielding member is arranged to expose an outer surface of at least one battery stack of the plurality of battery stacks in the case, and to cover an outer surface of a battery stack adjacent to the exposed battery stack. Is done.
- the battery stack exposed from the first heat shield member has a greater difference than the battery stack covered by the first heat shield member when the amount of heat removed from the amount of heat generated when heat is generated is subtracted.
- FIG. 2 is an exploded perspective view of the battery pack according to the first embodiment of the present invention, showing a state where a heat shield cover does not cover the battery stack. It is a figure showing an example of a battery cell, a battery module, and a battery stack. It is a top view in the state where the upper case of the battery pack concerning a 1st embodiment of the present invention was removed.
- FIG. 2 is an exploded perspective view of the battery pack according to the first embodiment of the present invention, showing a state where a heat shield cover covers the battery stack.
- FIG. 2 is a perspective view showing a heat shield cover of the battery pack according to the first embodiment of the present invention.
- FIG. 2 is a perspective view showing a partial heat shield cover of the battery pack according to the first embodiment of the present invention. It is a perspective view showing the heat shielding sheet of the battery pack concerning a 1st embodiment of the present invention.
- FIG. 9 is a sectional view taken along lines 9-9 in FIG.
- FIG. 2 is a perspective view showing a bus bar of the battery pack and a support member of the bus bar according to the first embodiment of the present invention. It is a perspective view which shows the support member of FIG. It is a top view in the state where the upper case of the battery pack concerning a 2nd embodiment of the present invention was removed.
- FIG. 1 is a perspective view showing a battery pack 10 according to the first embodiment of the present invention.
- the battery pack 10 according to the first embodiment can be applied, for example, as a power source for a vehicle such as an electric vehicle.
- the battery pack 10 according to the first embodiment will be described by dividing into a “basic configuration”, a “high-power circuit configuration”, and a “heat shielding configuration”.
- a direction corresponding to the front side of the vehicle in the battery pack 10 is indicated by an arrow FR, and is referred to as a front side FR.
- a direction corresponding to the rear side of the vehicle in the battery pack 10 is indicated by an arrow RR, and is referred to as a rear side RR.
- a direction corresponding to the right side of the vehicle in the battery pack 10 is indicated by an arrow R, and is referred to as a right side R.
- a direction corresponding to the left side of the vehicle in the battery pack 10 is indicated by an arrow L, and is referred to as a left side L.
- FIG. 2 is an exploded perspective view of the battery pack 10 according to the first embodiment of the present invention, showing a state where the heat shield cover 60 does not cover the battery stack 30.
- FIG. 2 shows the heat shield cover 60 in a simplified manner.
- battery pack 10 includes case 20, a plurality of battery stacks 30, an SD switch 41, a junction box 42, and a controller 43.
- SD switch 41 a switch 41 for controlling the battery pack 10
- junction box 42 a controller 43.
- the case 20 includes a lower case 21 having a bottomed box shape with an upper opening, and an upper case 22 having a bottomed box with a lower opening. As shown in FIGS. 1 and 2, the opening edge 21a of the lower case 21 and the opening edge 22a of the upper case 22 are joined via a seal portion (not shown). Accordingly, the case 20 can prevent rainwater, dust, and the like from entering the case 20 from the outside of the case 20.
- a charge / discharge connector terminal 23 and an air conditioning connector terminal 24 are provided on the side surface of the lower case 21 on the front side FR in this embodiment.
- the air conditioning connector terminal 24 is electrically connected to a PTC heater (not shown) constituting an air conditioning system in the vehicle compartment.
- Gas generated due to an internal short circuit or the like of the battery cell C constituting the battery stack 30 is discharged to the outside of the battery pack 10 on the rear side RR on both sides in the vehicle width direction (left-right direction) of the upper case 22.
- Gas relief valves 25 and 26 are provided.
- a material for forming the case 20 is not particularly limited, and for example, a metal material such as iron can be used.
- FIG. 3 is a diagram illustrating an example of the battery cell C, the battery module M, and the battery stack 30.
- battery stack 30 refers to a structure in which a plurality of battery modules M are fixed and integrated at a manufacturing stage before being incorporated in case 20.
- battery module M means a plurality of battery cells C fixed and integrated.
- the “battery cell C” means a power generation element including an electrode and an electrolyte layer housed in an exterior body.
- the battery stack 30 is not particularly limited as long as a plurality of battery modules M are fixed and integrated in a manufacturing stage before being assembled into the case 20.
- the battery stack 30 may be configured by, for example, a single stacked body S in which a plurality of battery modules M are stacked and fixed, or a plurality of stacked bodies S on a plate P, as illustrated in FIG. It may be constituted by a fixed and integrated one.
- the method for fixing the battery modules M and the method for fixing the stacked bodies S are not particularly limited.
- each of the plurality of battery stacks 30 is hereinafter referred to as a first battery stack 31, a second battery stack 32, and a third battery stack 33.
- the first battery stack 31 is arranged on the rear side RR of the lower case 21.
- the first battery stack 31 is configured by a single stacked body in which a plurality of battery modules M are stacked (vertically stacked) in a vehicle width direction (lateral direction) and fixed.
- the first battery stack 31 has 96 battery cells C in the present embodiment.
- the second battery stack 32 is disposed on the front side FR and the right side R of the lower case 21.
- the second battery stack 32 includes a first stacked body 32a, a second stacked body 32b, a third stacked body 32c, and a fourth stacked body 32d.
- the first stacked body 32a to the fourth stacked body 32d are arranged from the front side FR toward the rear RR.
- the first stacked body 32a to the fourth stacked body 32d are fixed while being mounted on the plate P (see FIG. 3) and are integrated.
- each of the stacked bodies 32a to 32d is formed by stacking a plurality of battery modules M in the vertical direction of the vehicle (flat stack) and fixed.
- the second battery stack 32 has 48 battery cells C.
- the third battery stack 33 is disposed on the front side FR and the left side L of the lower case 21.
- the third battery stack 33 has a first stacked body 33a, a second stacked body 33b, a third stacked body 33c, and a fourth stacked body 33d.
- the first to fourth stacked bodies 33a to 33d are arranged from the front side FR to the rear RR.
- the first stacked body 33a to the fourth stacked body 33d are fixed while being mounted on the plate P (see FIG. 3) and are integrated.
- Each of the stacked bodies 33a to 33d is fixed in a state where a plurality of battery modules M are stacked (flat-stacked) in the vertical direction of the vehicle.
- the third battery stack 33 has 48 battery cells C in the present embodiment.
- the number of the stacked bodies constituting each of the battery stacks 30 and the number of the battery cells C constituting each of the battery stacks 30 are merely examples, and can be appropriately changed according to a desired battery capacity.
- each battery cell C is formed of a flat type lithium ion secondary battery.
- Each battery cell C may be a stacked battery cell in which an electrode and an electrolyte layer are stacked in an outer package, or a wound battery in which the electrode and the electrolyte layer stacked in the outer package are wound. It may be a cell.
- a stacked battery cell when an internal short circuit or the like occurs, heat or a high-temperature gas blows out from the entire circumference in a plane direction intersecting the stacking direction, whereas the wound battery cell causes an internal short circuit or the like. In this case, heat or high-temperature gas is blown out from the direction of the winding shaft.
- the direction in which heat or high-temperature gas is blown out is limited in a wound battery cell as compared with a stacked battery cell. Therefore, in the wound battery cell, heat or high-temperature gas is likely to be locally concentrated, and an exothermic reaction is likely to be linked to the adjacent battery cell C or the battery stack 30. Therefore, in the wound battery cell, the problem of the present invention becomes even more remarkable.
- the SD switch 41 is a switch that manually switches ON / OFF of a high-power circuit described later in “Strong Power Circuit Configuration”.
- the SD switch 41 is arranged between the second battery stack 32 and the third battery stack 33 in the lower case 21.
- the position of the SD switch 41 in the case 20 is not particularly limited.
- junction box 42 supplies, cuts off, and distributes strong electric power by a relay circuit.
- the junction box 42 is disposed between the second battery stack 32 and the third battery stack 33 in the lower case 21 and on the front side FR of the SD switch 41.
- the position of the junction box 42 in the case 20 is not particularly limited.
- the controller 43 is a control device that manages the capacity, temperature, voltage, and the like of the battery stack 30.
- the controller 43 is disposed on the left side L of the first battery stack 31 in the lower case 21.
- the arrangement of the controller 43 is not particularly limited. In the present embodiment, the number of the controllers 43 included in the battery pack 10 is one, but the battery pack 10 may include a plurality of controllers.
- FIG. 4 is a plan view of the battery pack 10 according to the first embodiment of the present invention with the upper case 22 removed.
- the high-power circuit includes a plurality of bus bars 52 to 56, 58a, 58b, 59 for electrically connecting the plurality of battery stacks 30, the SD switch 41, and the junction box 42, and the high-power harness 51. , 57.
- bus bars 52 to 56, 58a, 58b, 59 for electrically connecting the plurality of battery stacks 30, the SD switch 41, and the junction box 42, and the high-power harness 51. , 57.
- the first battery stack 31 is electrically connected to the SD switch 41 by the high-power harness 51.
- the SD switch 41 is electrically connected to the third battery stack 33 by a bus bar 52.
- the first stacked body 33a and the second stacked body 33b of the third battery stack 33 are electrically connected to the third stacked body 33c and the fourth stacked body 33d by the bus bar 53.
- the third battery stack 33 is electrically connected to the second battery stack 32 by the bus bar 54.
- the first stacked body 32a and the second stacked body 32b of the second battery stack 32 are electrically connected to the third stacked body 32c and the fourth stacked body 32d by the bus bar 55.
- the second battery stack 32 is electrically connected to the junction box 42 by a bus bar 56.
- the junction box 42 is electrically connected to the first battery stack 31 by the high-power harness 57.
- the junction box 42 is electrically connected to the charging / discharging connector terminal 23 by the bus bars 58a and 58b. In the present embodiment, the junction box 42 is electrically connected to the air conditioning connector terminal 24 by a bus bar 59.
- the high-power circuit also includes an electrical connection between the controller 43 for measuring the voltage of each battery stack 30 and each battery stack 30, and the like, but detailed description and illustration are omitted here. . Note that the above-described high-power circuit is merely an example, and the electrical connection relationship between the components can be changed as appropriate.
- FIG. 5 is an exploded perspective view of the battery pack 10 according to the first embodiment of the present invention, showing a state where the heat shield cover 60 covers the battery stack 30.
- the heat shield cover 60 is shown in a simplified manner.
- the battery cells C constituting the battery stack 30 may generate heat due to an internal short circuit or the like. Further, a high-temperature gas may be generated from the heated battery cell C.
- the battery pack 10 according to the present embodiment has a heat shielding structure in order to prevent each component of the battery pack 10 from being damaged by heat or high-temperature gas generated by an internal short circuit or the like. As shown in FIG.
- the battery pack 10 includes a plurality of heat shield covers 60 (corresponding to a first heat shield member), a partial heat shield cover 70 (corresponding to a third heat shield member), It has a heat sheet 80 (corresponding to a second heat shield member), a covering member 91 and a support member 92.
- a plurality of heat shield covers 60 corresponding to a first heat shield member
- a partial heat shield cover 70 corresponding to a third heat shield member
- It has a heat sheet 80 (corresponding to a second heat shield member), a covering member 91 and a support member 92.
- Each heat shield cover 60 is arranged so that the outer surface of at least one battery stack (first battery stack 31 in the present embodiment) of the plurality of battery stacks 30 is exposed inside the case 20.
- each of the plurality of heat shield covers 60 is referred to as a first heat shield cover 61, a second heat shield cover 62, a third heat shield cover 63, and a fourth heat shield cover 64.
- the first heat shield cover 61 and the second heat shield cover 62 are arranged to cover the outer surface of the second battery stack 32 adjacent to the exposed first battery stack 31.
- the first heat shield cover 61 covers the outer surfaces of the first stacked body 32a and the second stacked body 32b.
- the second heat shield cover 62 covers the outer surfaces of the third stacked body 32c and the fourth stacked body 32d.
- the second battery stack 32 may be covered by a single heat shield cover.
- the third heat shield cover 63 and the fourth heat shield cover 64 are arranged so as to cover the outer surface of the third battery stack 33 adjacent to the exposed first battery stack 31.
- the third heat shield cover 63 covers the outer surfaces of the first laminate 33a and the second laminate 33b.
- the fourth heat shield 64 covers the outer surfaces of the third stacked body 33c and the fourth stacked body 33d.
- the third battery stack 33 may be covered by a single heat shield cover.
- the heat shield cover 60 is arranged to cover the outer surfaces of the second battery stack 32 and the third battery stack 33 adjacent to the exposed first battery stack 31. Therefore, the heat shield cover 60 can suppress transmission of heat or high-temperature gas generated from the second battery stack 32 and the third battery stack 33 to the adjacent first battery stack 31. In addition, the heat shield cover 60 can suppress transmission of heat or high-temperature gas generated from the first battery stack 31 to the adjacent second battery stack 32 and third battery stack 33. That is, the heat shield cover 60 has both a function of protecting the adjacent battery stack from heat generation of the covering battery stack and a function of protecting the covering battery stack 30 from heat generation of the adjacent battery stack. Therefore, according to the heat shield cover 60, when any one of the plurality of battery stacks 30 generates heat, a chain of exothermic reactions between the battery stacks 30 can be suppressed.
- the difference between the first battery stack 31 exposed from the heat shield cover 60 and the second battery stack 32 and the third battery stack 33 covered by the heat shield cover 60 obtained by subtracting the amount of heat removed from the amount of heat generated when heat is generated.
- the “heat removal amount” means the amount of heat that escapes from the inside of the battery stack 30 to the outside. Therefore, the “difference obtained by subtracting the heat removal amount from the heat generation amount” corresponds to the heat amount stored inside the battery stack 30.
- the first battery stack 31 has a larger number of battery cells C than the second battery stack 32 and the third battery stack 33. Therefore, the first battery stack 31 generates a larger amount of heat when it generates heat than the second battery stack 32 and the third battery stack 33. Further, the first battery stack 31 is configured by a single stacked body, and has an exposed area of the battery cell C as compared with the second battery stack 32 and the third battery stack 33 configured by a plurality of stacked bodies. Small, so it is difficult to radiate heat. Therefore, when the first battery stack 31 generates heat, the generated heat hardly escapes to the outside of the first battery stack 31. Therefore, the first battery stack 31 has a smaller heat removal amount than the second battery stack 32 and the third battery stack 33. As described above, the first battery stack 31 has a larger amount of heat stored inside the battery stack 30 when generating heat than the second battery stack 32 and the third battery stack 33.
- the difference (heat amount stored in the battery stack 30) obtained by subtracting the heat removal amount from the heat generation amount is not particularly limited, but can be evaluated by, for example, an experimental method as described below.
- all the battery stacks 30 are arranged at predetermined positions in the case 20.
- at least one battery cell C in the battery stack 30 to be evaluated is forcibly internally short-circuited.
- the amount of heat stored in the battery stack 30, or the amount of heat generated and the amount of heat removed are measured.
- these calories are not particularly limited, they can be evaluated using, for example, a thermometer or a calorimeter.
- These heat quantities are not particularly limited, but can be evaluated based on, for example, a maximum value within a certain time, an average value within a certain time, a median value within a certain time, and the like.
- the heat shield cover 60 exposes the battery stack 31 in which the amount of heat stored inside the battery stack 30 when generating heat is larger than that of the adjacent battery stacks 32 and 33. Therefore, it is possible to suppress a large amount of heat from being trapped inside the battery stack 31 and a chain of exothermic reactions between the battery cells C inside the battery stack 31.
- the battery stack 30 covered with the heat shield cover 60 in accordance with the degree of stagnation of heat into the battery stack 30, not only the chain of the exothermic reaction between the battery stacks 30 but also the battery cells C In consideration of the suppression of the chain of the exothermic reaction, the chain of the exothermic reaction can be suppressed in the battery pack 10 as a whole.
- the battery pack 10 according to the present embodiment can suppress a chain of exothermic reactions between the battery cells C constituting the first battery stack 31, the amount of generated heat and gas can be reduced. Further, the battery pack 10 according to the present embodiment is superior in workability during manufacturing and maintenance compared to a battery pack in which all the battery stacks are covered by the heat shield cover. Further, the battery pack 10 according to the present embodiment can reduce the weight and the number of parts as compared with a battery pack in which all the battery stacks are covered by the heat shield cover.
- FIG. 6 is a perspective view showing the heat shield cover 60 of the battery pack 10 according to the first embodiment of the present invention.
- the first heat shield cover 61 includes a heat shield cloth 61a and a bracket 61b for fixing the heat shield cloth 61a to the lower case 21.
- the heat shielding cloth 61a is formed by joining a plurality of sheets so as to form a box-shaped outer shape with a bottom opening.
- the heat shield cloth 61a may be constituted by one sheet.
- An opening 61c for leading the bus bar 54 (see FIG. 4) to the outside of the first heat shield cover 61 is formed in the heat shield cloth 61a.
- An opening 61d for leading the bus bar 55 (see FIG. 4) to the outside of the first heat shield cover 61 is formed in the heat shield cloth 61a.
- the bracket 61b is disposed on the front side FR of the heat shield cloth 61a.
- the position of the bracket 61b is not particularly limited.
- the second heat shield cover 62 includes a heat shield cloth 62a and at least two brackets 62b and 62c for fixing the heat shield cloth 62a to the lower case 21.
- the heat shield cloth 62a is formed by joining a plurality of sheets so as to form a box-shaped outer shape with a bottom opening.
- the heat shield cloth 62a may be constituted by one sheet.
- the heat shield cloth 62a is formed with an opening 62d for leading the bus bar 55 (see FIG. 4) to the outside of the second heat shield cover 62.
- An opening 62e for leading the bus bar 56 (see FIG. 4) to the outside of the second heat shield cover 62 is formed in the heat shield cloth 62a.
- the brackets 62b and 62c are arranged on the front side FR and the rear side RR of the heat shield cloth 62a in this embodiment.
- the positions of the brackets 62b and 62c are not particularly limited.
- the height of the third stacked body 32c and the fourth stacked body 32d is smaller than the height of the first stacked body 32a and the second stacked body 32b. Therefore, when a high-temperature gas is generated inside the second heat-insulating cover 62 and the internal pressure is increased, the second heat-insulating cover 62 is hardly caught by the third stacked body 32c and the fourth stacked body 32d, and easily comes off.
- the second heat shield cover 62 has at least two brackets 62b and 62c. Therefore, when a high-temperature gas is generated inside and the internal pressure is increased, the second heat shield cover 62 is formed. The state where the heat cover 62 covers the outer surfaces of the third stacked body 32c and the fourth stacked body 32d can be maintained.
- the number of brackets forming the second heat shield cover 62 is not particularly limited.
- the material for forming the heat-insulating cloths 61a and 62a is not particularly limited as long as heat transmission between the inside and the outside of the heat-insulating cover 60 can be suppressed. Further, it is preferable that the heat shield cloths 61a and 62a have heat resistance to such an extent that they do not melt when a high-temperature gas or the like is directly hit. Examples of such a material include, but are not particularly limited to, a composite material of aramid and glass wool.
- the method of joining a plurality of sheets constituting the heat shield cloths 61a and 62a is preferably a method capable of maintaining the joined state when a high-temperature gas is directly hit. Examples of such a method include, but are not particularly limited to, a method of sewing with a heat-resistant thread such as a composite material of aramid and glass wool.
- the brackets 61b, 62b, 62c are fixed to the lower case 21 by fastening members such as bolts. It is preferable that the brackets 61b, 62b, 62c and the fastening member have heat resistance to such an extent that they do not melt when a high-temperature gas is hit directly. Examples of such a material include, but are not particularly limited to, a metal material such as iron.
- the configuration of the third heat shield cover 63 and the fourth heat shield cover 64 is the same as the first heat shield cover 61 and the second heat shield cover 62 except for the configuration of the bus bar and the opening for wiring. Therefore, regarding the configuration of the third heat shield cover 63 and the fourth heat shield cover 64, only the configuration of the opening will be described.
- the third heat shield cover 63 has an opening 63 c for leading the bus bar 54 (see FIG. 4) to the outside of the third heat shield cover 63.
- the third heat shield cover 63 has an opening 63d for leading the bus bar 53 (see FIG. 4) to the outside of the third heat shield cover 63.
- the fourth heat shield cover 64 has an opening 64d for leading the bus bar 53 (see FIG. 4) to the outside of the fourth heat shield cover 64.
- an opening 64e for leading the bus bar 52 (see FIG. 4) to the outside of the fourth heat shield cover 64 is formed.
- the configuration of the heat shield cover 60 is not particularly limited as long as it can cover the outer surface of the battery stack 30.
- the heat shield cover may have a structure in which the heat shield cloth is directly fixed to the case 20 without the bracket.
- the case 20 has a gas relief valve 25 at a position facing the first battery stack 31 exposed from the heat shield cover 60.
- “facing” includes not only a form in which the battery stack 30 and the gas relief valve 25 face each other without any member but also a form in which the battery stack 30 and the gas relief valve 25 face each other via a member such as the controller 43 as shown in FIG. It is.
- FIG. 7 is a perspective view showing a partial heat shield cover 70 of the battery pack 10 according to the first embodiment of the present invention.
- the partial heat shield cover 70 is disposed between the first battery stack 31 exposed from the heat shield cover 60 and the gas relief valve 25, and is exposed from the heat shield cover 60. Partially covers the outer surface of the first battery stack 31. Therefore, the partial heat-insulating cover 70 can prevent the high-temperature gas generated from the first battery stack 31 from flowing into the gas relief valve 25 at a high temperature and damaging equipment outside the case 20.
- a gas relief valve for preventing a direct hit of a high-temperature gas by the partial heat shield 70 according to the directivity of the gas is used. May be determined.
- the partial heat shield cover is provided between the first battery stack 31 and the gas relief valve 25 on the left side L.
- the partial heat shield 70 It can be arranged between the gas relief valves 25 and 26.
- a partial heat shield cover may be arranged between the battery stack exposed from the heat shield cover and all gas reliefs facing the battery stack.
- the partial heat-insulating cover 70 has a heat-insulating cloth 71 and a bracket 72 for fixing the heat-insulating cloth 71 to the first battery stack 31.
- the heat shield cloth 71 is disposed so as to cover a part of the upper surface of the first battery stack 31 and a part of the upper surface and the left side surface of the controller 43 by bending one sheet.
- the heat insulating cloth 71 may be arranged so as to cover a part of the upper surface of the first battery stack 31 and a part of the upper surface and the left side surface of the controller 43 by joining the two sheets.
- the material for forming the heat shielding cloth 71 the same material as the material for forming the heat shielding cloth 61a described above can be used.
- the bracket 72 has a frame 72a and a fixing portion 72b protruding from the frame 72a.
- the fixing portion 72b is not particularly limited as long as it can be fixed to the first battery stack 31, but can be fixed to, for example, a channel member 31a provided in the first battery stack 31 using a fastening member such as a bolt.
- the material for forming the bracket 72 the same material as the material for forming the bracket 61b described above can be used.
- FIG. 8 is a perspective view showing the heat shield sheet 80 attached to the inner surface of the case 20 of the battery pack 10 according to the first embodiment of the present invention.
- the upper case 22 is omitted.
- FIG. 9 is a sectional view taken along the line 9-9 in FIG.
- the heat shield sheet 80 is provided on the inner surface of the case 20 in a region exposed to heat when the first battery stack 31 exposed from the heat shield cover 60 generates heat (hereinafter referred to as heat exposure). (Referred to as regions 27a and 27b).
- the “heat-exposed area” is defined as a state in which heat or gas generated from the first battery stack 31 exposed from the heat-shielding cover 60 on the inner surface of the case 20 is hot enough to damage the case 20 and its peripheral devices. The area directly hits the case 20 as it is.
- the battery cells C constituting the first battery stack 31 when the battery cells C constituting the first battery stack 31 generate heat due to an internal short circuit or the like, as shown in FIG. , And the heat exposure regions 27a and 27b.
- heat or high-temperature gas is blown out from the plurality of openings MC1 and MC2 of the module case MC accommodating the battery cells C. .
- the opening MC2 on the rear side RR has a smaller opening area, a smaller number of openings, and a shorter distance to the inner surface of the case 20, as compared with the opening MC1 on the front side FR. Directly hit the vicinity of the opening MC2 of the case 20 while maintaining the high temperature. Therefore, the vicinity of the opening MC2 of the case 20 becomes the heat exposure regions 27a and 27b.
- the above-described heat-exposed areas 27a and 27b are merely examples, and the heat-exposed areas are determined according to the position and direction of the heat or high-temperature gas jet in the battery stack, the relative distance between the battery stack and the case, and the like. Change as appropriate.
- the size, position, and the like of the opening of the module case MC are not particularly limited.
- the heat shield sheet 80 includes a first heat shield sheet 81 attached to the inner surface of the lower case 21 and a second heat shield sheet 82 attached to the inner surface of the upper case 22.
- the second heat shield sheet 82 is attached to the inner surface of the case 20 so as to expose the gas relief valves 25 and 26, as shown in FIG. Therefore, it is possible to prevent the second heat shield sheet 82 from interfering with the functions of the gas relief valves 25 and 26.
- the first heat shield sheet 81 and the second heat shield sheet 82 are not particularly limited, but can be attached to the inner surface of the case 20 by, for example, bonding to the inner surface of the case 20 with an adhesive. Even if the bonding function of the adhesive is reduced by heat or a high-temperature gas, the first heat shield sheet 81 and the second heat shield sheet 82 are pressed against the case 20 by the gas pressure. Therefore, it is possible to prevent the first heat shield sheet 81 and the second heat shield sheet 82 from falling off from the inner surface of the case 20.
- the method of attaching the heat shield sheet 80 to the inner surface of the case 20 is not particularly limited.
- the second heat shield sheet 82 is sandwiched between the protrusion 21 b formed on the opening edge 21 a of the lower case 21 and the inner surface of the upper case 22 when the case 20 is closed.
- the second heat shielding sheet 82 can be prevented from dropping.
- the material for forming the first heat shield sheet 81 and the second heat shield sheet 82 is not particularly limited.
- the same material as the material for forming the above-described heat shield cloth 61a can be used.
- the covering member 91 covers the outer surfaces of the high-voltage harnesses 51 and 57.
- the covering member 91 has insulating properties and heat resistance. Therefore, the coating member 91 can prevent the outer surfaces of the high-power harnesses 51 and 57 from melting due to heat or high-temperature gas generated from the battery stack 30 and prevent the high-power circuit from being grounded or short-circuited.
- the coating member 91 is not particularly limited, but preferably has, for example, an electric resistance on the order of 10 ⁇ 5 ⁇ or more.
- “having heat resistance” means that it is not melted by heat or high-temperature gas generated from the battery stack 30.
- the coating member 91 is not particularly limited, but, for example, preferably does not melt even at a temperature of about 200 degrees or more.
- the covering member 91 is formed by mixing an insulating material and a heat-resistant material having lower heat resistance than the insulating material but having high heat resistance.
- the insulating material is not particularly limited, and examples thereof include resin materials such as polybutadiene terephthalate (PBT), silicon, and polyimide.
- the heat-resistant material is not particularly limited, and examples thereof include ceramic powder and glass fiber.
- the covering member 91 is not a mixture of an insulating material and a heat-resistant material, but may be composed of an outer layer made of an insulating material and an inner layer made of a heat-resistant material. In addition, the covering member 91 may be made of a single material having both insulating properties and heat resistance.
- FIG. 10 is a perspective view showing the bus bar 55 of the battery pack 10 and the support member 92 of the bus bar 55 according to the first embodiment of the present invention.
- FIG. 11 is a perspective view showing the support member 92 of FIG.
- the support member 92 supports the bus bar 55 attached to the second battery stack 32 and the bus bar 53 attached to the third battery stack 33.
- the support member 92 has insulation and heat resistance.
- the support member 92 supporting the bus bar 55 attached to the second battery stack 32 and the support member 92 supporting the bus bar 53 attached to the third battery stack 33 have the same configuration. Therefore, the configuration of the support member 92 will be described below by taking the support member 92 that supports the bus bar 55 attached to the second battery stack 32 as an example.
- bus bar 55 extends over the plurality of stacked bodies 32b, 32c, and 32d constituting the second battery stack 32. Therefore, bus bar 55 is longer than other bus bars in battery pack 10. As described above, when the long bus bar 55 is bent by heat or gas generated from the second battery stack 32, it may come into contact with a conductive member such as the case 20, and a strong current circuit may be grounded. On the other hand, since the support member 92 supports the bus bar 55 without melting even when exposed to the heat or gas generated from the second battery stack 32, the support member 92 comes into contact with a conductive member such as the case 20 and the strong electric circuit is grounded. Entanglement can be prevented.
- the support member 92 is provided with a mounting surface 92 a mounted on the lower case 21, and protrudes upward from the mounting surface 92 a and holds the bus bar 55. And a portion 92b.
- the shape and position of the support member 92 are not particularly limited as long as contact between the bus bar 5 and a conductive member such as the case 20 can be prevented.
- the same material as the material for forming the covering member 91 can be used.
- the battery pack 10 includes the plurality of battery stacks 30, the case 20, and the heat shield cover 60.
- the case 20 houses a plurality of battery stacks 30.
- the heat shield cover 60 exposes the outer surface of at least one battery stack 31 of the plurality of battery stacks 30 in the case 20 and covers the outer surfaces of the battery stacks 32 and 33 adjacent to the exposed battery stack 31. Placed in The battery stack 31 exposed from the heat shield cover 60 has a greater difference than the battery stacks 32 and 33 covered by the heat shield cover 60 in that the amount of heat removed from the amount of heat generated when heat is generated is subtracted.
- the heat shield cover 60 can suppress a chain of exothermic reactions between the battery stacks 30 when one of the plurality of battery stacks 30 generates heat. Further, the heat shield cover 60 exposes the battery stack 31 in which the amount of heat stored inside the battery stack 30 when generating heat is larger than the adjacent battery stacks 32 and 33. For this reason, it is possible to suppress a large amount of heat from being stored inside the battery stack 31 and a chain of exothermic reactions between the battery cells C in the battery stack 31.
- the battery pack 10 is superior in workability at the time of manufacturing and maintenance as compared with a battery pack in which all the battery stacks are covered by the heat shield cover.
- the battery pack 10 can reduce the weight and the number of parts as compared with a battery pack in which all the battery stacks are covered by the heat shield cover.
- the battery stack 31 exposed from the heat shield cover 60 has a larger number of battery cells C than the battery stacks 32 and 33 covered by the heat shield cover 60.
- the greater the number of battery cells C the greater the amount of heat generated.
- the larger the heat value the larger the amount of heat stored inside the battery stack 31 when heat is generated. Therefore, by exposing the battery stack 31 having a large number of battery cells C from the heat shield cover 60, a large amount of heat is stored inside the battery stack 31, and it is possible to suppress a chain of exothermic reactions between the battery cells C. Further, since the exothermic reaction can be prevented from being chained between the battery cells C, the amount of generated heat and gas can be reduced.
- the battery pack 10 further includes a heat-insulating sheet 80 attached to the inner surface of the case 20 in regions 27a and 27b that are exposed to heat when the battery stack 31 exposed from the heat-insulating cover 60 generates heat. Therefore, it is possible to suppress the case 20 from being heated by the heat generated from the battery stack 31 exposed from the heat shield cover 60 or the high-temperature gas, and from damaging the case 20 and peripheral devices.
- the case 20 has a gas relief valve 25 at a position facing the battery stack 31 exposed from the heat shield cover 60, and the heat shield sheet 80 is provided on the inner surface of the case 20 so as to expose the gas relief valve 25. Installed. Therefore, it is possible to prevent the heat shield sheet 80 from interfering with the function of the gas relief valve 25.
- the battery pack 10 is disposed between the battery stack 31 exposed from the heat shield cover 60 and the gas relief valve 25, and partially covers the outer surface of the battery stack 31 exposed from the heat shield cover 60. It further has a heat shield cover 70.
- the partial heat-insulating cover 70 can prevent gas generated when the first battery stack 31 generates heat from flowing into the gas relief valve 25 at a high temperature and damaging equipment outside the case 20.
- the battery pack 10 further includes the high-power harnesses 51 and 57 and a covering member 91 having insulation and heat resistance and covering the outer surfaces of the high-power harnesses 51 and 57. Therefore, the coating member 91 can prevent the outer surfaces of the high-power harnesses 51 and 57 from melting due to heat or high-temperature gas generated from the battery stack 30 and prevent the high-power circuit from being grounded or short-circuited.
- the battery pack 10 has bus bars 53 and 55 electrically connected to at least one of the battery stacks 32 and 33 of the plurality of battery stacks 30, and has insulation and heat resistance, and supports the bus bars 53 and 55. And a support member 92. Since the support member 92 can support the bus bar 55 even when exposed to heat or gas generated by an internal short circuit or the like of the battery cell C, the bus bar 55 bends and comes into contact with a conductive member such as the case 20, thereby causing a ground fault to occur. Can be prevented.
- FIG. 12 is a plan view of the battery pack 100 according to the second embodiment of the present invention with the upper case removed.
- the battery pack 100 according to the second embodiment is different from the battery pack 10 according to the first embodiment in the configuration of the battery stack 130, the heat shield cover 160, the partial heat shield cover 170, and the heat shield sheet 180.
- the battery pack 100 according to the second embodiment will be described.
- the same components as those of the battery pack 10 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
- the battery pack 100 has nine battery stacks 130 in the present embodiment.
- the number of battery cells C constituting each battery stack 130 is the same.
- each of the nine battery stacks 130 may be referred to as a first battery stack 131, a second battery stack 132, a third battery stack 133, a fourth battery stack 134, a fifth battery stack 135, a sixth battery stack 136, and a seventh battery.
- the stack 137, the eighth battery stack 138, and the ninth battery stack 139 are referred to.
- the first to ninth battery stacks 131 to 139 form three rows from the front side FR to the rear side RR, and form three rows from the right side R to the left side L. It is arranged in a shape.
- the first battery stack 131 is disposed substantially at the center of the lower case 21.
- the second to fifth battery stacks 132 to 135 are arranged so as to surround the first battery stack 131.
- the sixth battery stack 136 is disposed adjacent to the second battery stack 132 and the third battery stack 133.
- the seventh battery stack 137 is disposed adjacent to the second battery stack 132 and the fourth battery stack 134.
- the eighth battery stack 138 is disposed adjacent to the third battery stack 133 and the fifth battery stack 135.
- the ninth battery stack 139 is disposed so as to be adjacent to the fourth battery stack 134 and the fifth battery stack 135.
- the first battery stack 131 is adjacent to the four battery stacks.
- Each of the second to fifth battery stacks 132 to 135 is adjacent to the three battery stacks.
- the battery pack 100 has four heat shield covers 160 in this embodiment.
- Each heat shield cover 160 exposes the outer surface of at least one battery stack 131 of the plurality of battery stacks 130 in the case 20, and covers the outer surfaces of the battery stacks 132 to 135 adjacent to the exposed battery stack 131.
- each heat shield cover 160 is arranged so as to expose other battery stacks 136 to 139 surrounded by the battery stacks 132 to 135 covered by the heat shield cover 160.
- Each of the four heat shield covers 160 is hereinafter referred to as a first heat shield cover 161, a second heat shield cover 162, a third heat shield cover 163, and a fourth heat shield cover 164.
- the first heat shield cover 161 is arranged to cover the outer surface of the second battery stack 132 adjacent to the exposed first battery stack 131.
- the second heat shield cover 162 is disposed so as to cover the outer surface of the third battery stack 133 adjacent to the exposed first battery stack 131.
- the third heat shield cover 163 is disposed so as to cover the outer surface of the fourth battery stack 134 adjacent to the exposed first battery stack 131.
- the fourth heat shield cover 164 is disposed so as to cover the outer surface of the fifth battery stack 135 adjacent to the exposed first battery stack 131.
- each heat shield cover 160 transmits heat or high-temperature gas generated from the second to fifth battery stacks 132 to 135 to the adjacent first battery stack 131 and sixth to ninth battery stacks 136 to 139. Can be suppressed. Further, the heat shield cover 160 can suppress transmission of heat or high-temperature gas generated from the first battery stack 131 or the sixth to ninth battery stacks 136 to 139 to the second to fifth battery stacks 132 to 135. . As described above, according to the heat shield cover 160, when any one of the plurality of battery stacks 130 generates heat, it is possible to suppress a chain of exothermic reactions between the battery stacks 130.
- the first battery stack 131 exposed from the heat shield cover 160 has the largest number of adjacent battery stacks.
- the greater the number of adjacent battery stacks 130 the smaller the amount of heat removed when heat is generated.
- the first to ninth battery stacks 131 to 139 have the same number of battery cells C and the same amount of heat generation. Therefore, the smaller the heat removal amount of the battery stack 130, the more the battery stack 130 becomes inside the battery stack 130 when heat is generated. The amount of heat stored is large. Therefore, the first battery stack 131 has the largest amount of heat stored inside the battery stack 131 when generating heat.
- the heat shield cover 160 exposes the battery stack 131 having the largest amount of heat stored inside the battery stack 130 when generating heat. Therefore, it is possible to suppress a large amount of heat from being trapped inside the battery stack 131 and a chain of exothermic reactions between the battery cells C inside the battery stack 131.
- the heat shield cover 160 is arranged so that the other battery stacks 136 to 139 surrounded by the battery stacks 132 to 135 covered by the heat shield cover 160 are also exposed. Therefore, in the other battery stacks 136 to 139, the chain of the exothermic reactions between the battery cells C can be suppressed.
- each heat shield cover 160 has the same configuration as the heat shield cover 60 according to the first embodiment, a detailed description of the configuration will be omitted.
- the battery pack 100 has two partial heat shield covers 170 in the present embodiment.
- each of the two partial heat shield covers 170 is referred to as a first partial heat shield cover 171 and a second partial heat shield cover 172.
- two gas relief valves are provided on the rear side RR on both side surfaces in the vehicle width direction (lateral direction) of the upper case. (See FIG. 5). Further, in the battery pack 100 according to the second embodiment, a case where there is no difference in the ease of gas flow between the two gas relief valves will be described as an example.
- the first partial heat shield cover 171 is disposed between the eighth battery stack 138 exposed from the heat shield cover 160 and the gas relief valve, and partially covers the outer surface of the eighth battery stack 138.
- the second partial heat shield cover 172 is disposed between the ninth battery stack exposed from the heat shield cover 160 and the gas relief valve, and partially covers the outer surface of the ninth battery stack 139. Therefore, the partial heat shield 170 prevents gas generated when the eighth and ninth battery stacks 138 and 139 generate heat from flowing into the gas relief valve at a high temperature and damaging equipment outside the case 20. Can be suppressed.
- the partial heat shield 170 has the same configuration as the partial heat shield 70 according to the first embodiment, a detailed description of the configuration will be omitted.
- the battery pack 100 has four first heat shield sheets 180.
- Each heat shield sheet 180 is attached to an area (heat exposure area) of the inner surface of the case 20 which is exposed to heat when the battery stacks 136 to 139 exposed from the heat shield cover 160 generate heat.
- each of the four heat shield sheets 180 is referred to as a first heat shield sheet 181, a second heat shield sheet 182, a third heat shield sheet 183, and a fourth heat shield sheet 184.
- the first heat shield sheet 181 is provided on the inner surface of the case 20 in a heat exposure area facing the sixth battery stack 136.
- the second heat shield sheet 182 is provided in a heat-exposed region of the inner surface of the case 20 facing the seventh battery stack 137.
- the third heat shield sheet 183 is provided in a heat-exposed area of the inner surface of the case 20 facing the eighth battery stack 138.
- the fourth heat shield sheet 184 is provided in a heat-exposed area of the inner surface of the case 20 facing the ninth battery stack 139.
- a material for forming the heat shield sheet 180 is not particularly limited, and for example, the same material as the material for forming the heat shield sheet 80 according to the above-described first embodiment can be used.
- the battery stack 131 exposed from the heat shield cover 160 is closer to the adjacent battery stacks than the battery stacks 132 to 135 covered by the heat shield cover 160.
- the greater the number of adjacent battery stacks 130 the smaller the amount of heat that escapes to the outside of the battery stacks 130.
- the smaller the heat removal amount is, the larger the heat amount stored inside the battery stack 130 is. Therefore, by exposing the battery stack 131 having a large number of the adjacent battery stacks 130 from the heat shield cover 160, a large amount of heat is stored inside the battery stack 131, and a chain of exothermic reactions between the battery cells C is suppressed. it can. Further, since the exothermic reaction can be prevented from being chained between the battery cells C, the amount of generated heat and gas can be reduced.
- the description of the high-power circuit in the battery pack 100 is omitted, but the battery pack 100 according to the second embodiment is similar to the battery pack 10 according to the first embodiment.
- a strong electric harness a covering member having an edge and heat resistance and covering the outer surface of the strong electric harness, and a supporting member having insulating and heat resistance and supporting the bus bar.
- the present invention is not limited to the above-described embodiment and its modification.
- the present invention can be variously modified based on the configurations described in the claims, and these are also within the scope of the present invention.
- the battery pack mounted on the vehicle has been described as an example, but the present invention can also be applied to a battery pack used as a power source for other applications.
- the battery pack has a heat shield configuration, a heat shield cover, a partial heat shield cover, a heat shield sheet, a covering member, and a support member as a heat shield configuration.
- the pack only needs to have at least a heat shield cover as a heat shield configuration.
- the number of battery stacks included in the battery pack are not limited to the configuration of the above embodiment.
- both the number of battery cells of each battery stack and the number of adjacent battery stacks of each battery stack may be different.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Mounting, Suspending (AREA)
- Gas Exhaust Devices For Batteries (AREA)
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
【課題】発熱反応の連鎖を抑制できる電池パックを提供する。 【解決手段】電池パック10は、複数の電池スタック30と、ケース20と、遮熱カバー60と、を有する。ケースは、複数の電池スタックを収容する。遮熱カバーは、複数の電池スタックのうち少なくとも1つの電池スタック31の外面をケース内で露出させ、かつ、露出させた電池スタックに隣接する電池スタック32、33の外面を覆うように配置される。遮熱カバーから露出させた電池スタックは、遮熱カバーに覆われた電池スタックよりも、発熱した際の発熱量から抜熱量を差し引いた差分が大きい。
Description
本発明は、電池パックに関する。
複数の電池セルを固定して一体化した複数の電池スタックと、複数の電池スタックを収容するケースと、を有する電池パックが知られている。
電池パック内の一の電池スタックは、電池セルの内部短絡等によって発熱する場合がある。一の電池スタックから生じた熱は、隣接する電池スタックに伝わり、ケース内の電池スタックが次々に発熱する可能性がある。そのため、電池スタック間の発熱反応の連鎖を抑制することが重要である。
例えば、下記特許文献1には、電池スタック間の発熱反応の連鎖を抑制する観点から各電池スタックを吸熱部材によって囲む構成が開示されている。
しかしながら、上記特許文献1のような構成では、吸熱部材が発生した熱を十分に吸熱できずに、吸熱部材内側に熱がこもり、吸熱部材の内側の電池セル間で発熱反応が連鎖する可能性がある。したがって、電池スタック間の発熱反応の連鎖の抑制だけでなく、電池セル間の発熱反応の連鎖の抑制も考慮して、電池パック全体として発熱の連鎖を抑制することが重要である。
本発明の目的は、発熱反応の連鎖を抑制できる電池パックを提供することである。
上記目的を達成するための本発明の電池パックは、複数の電池スタックと、ケースと、第1遮熱部材と、を有する。前記ケースは、前記複数の電池スタックを収容する。前記第1遮熱部材は、前記複数の電池スタックのうち少なくとも1つの電池スタックの外面を前記ケース内で露出させ、かつ、露出させた前記電池スタックに隣接する電池スタックの外面を覆うように配置される。前記第1遮熱部材から露出させた前記電池スタックは、前記第1遮熱部材に覆われた前記電池スタックよりも、発熱した際の発熱量から抜熱量を差し引いた差分が大きい。
以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、以下の説明は特許請求の範囲に記載される技術的範囲や用語の意義を限定するものではない。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
<第1実施形態>
図1は、本発明の第1実施形態に係る電池パック10を示す斜視図である。第1実施形態に係る電池パック10は、例えば、電気自動車等の車両の電源として適用できる。以下、第1実施形態に係る電池パック10について、「基本構成」、「強電回路構成」、および「遮熱構成」に分けて説明する。
図1は、本発明の第1実施形態に係る電池パック10を示す斜視図である。第1実施形態に係る電池パック10は、例えば、電気自動車等の車両の電源として適用できる。以下、第1実施形態に係る電池パック10について、「基本構成」、「強電回路構成」、および「遮熱構成」に分けて説明する。
なお、以下の説明では、図1に示すように、電池パック10において車両の前方側にあたる方向を矢印FRで示し、前方側FRと称する。また、電池パック10において車両の後方側にあたる方向を矢印RRで示し、後方側RRと称する。また、電池パック10において車両の右側にあたる方向を矢印Rで示し、右側Rと称する。また、電池パック10において車両の左側にあたる方向を矢印Lで示し、左側Lと称する。
[基本構成]
図2は、本発明の第1実施形態に係る電池パック10の分解斜視図であって、遮熱カバー60が電池スタック30を覆っていない状態を示す図である。なお、図2では、遮熱カバー60を簡略化して示している。図2を参照して、電池パック10は、ケース20と、複数の電池スタック30と、SDスイッチ41と、ジャンクションボックス42と、コントローラ43と、を有する。以下、各部について詳述する。
図2は、本発明の第1実施形態に係る電池パック10の分解斜視図であって、遮熱カバー60が電池スタック30を覆っていない状態を示す図である。なお、図2では、遮熱カバー60を簡略化して示している。図2を参照して、電池パック10は、ケース20と、複数の電池スタック30と、SDスイッチ41と、ジャンクションボックス42と、コントローラ43と、を有する。以下、各部について詳述する。
(ケース)
図2に示すように、ケース20は、上方が開口した有底箱状のロアケース21と、下方が開口した有底箱状のアッパーケース22と、を有する。図1および図2に示すように、ロアケース21の開口縁21aとアッパーケース22の開口縁22aとは、シール部(図示省略)を介して接合される。これによって、ケース20は、ケース20の外部からケース20の内部に雨水や塵埃等が侵入することを抑制できる。
図2に示すように、ケース20は、上方が開口した有底箱状のロアケース21と、下方が開口した有底箱状のアッパーケース22と、を有する。図1および図2に示すように、ロアケース21の開口縁21aとアッパーケース22の開口縁22aとは、シール部(図示省略)を介して接合される。これによって、ケース20は、ケース20の外部からケース20の内部に雨水や塵埃等が侵入することを抑制できる。
図2に示すようにロアケース21の前方側FRの側面には、本実施形態では、充放電用コネクタ端子23と、空調コネクタ端子24と、が設けられている。空調コネクタ端子24は、車室内の空調システムを構成するPTCヒータ(図示省略)に電気的に接続される。
アッパーケース22の車幅方向(左右方向)の両側面の後方側RRには、電池スタック30を構成する電池セルCの内部短絡等に起因して生じたガスを電池パック10の外部に放出するガスリリーフ弁25、26が設けられている。
ケース20の形成材料は、特に限定されないが、例えば、鉄等の金属材料を用いることができる。
(電池スタック)
図3は、電池セルC、電池モジュールM、および電池スタック30の一例を示す図である。ここで「電池スタック30」とは、図3を参照して、ケース20に組み込まれる前の製造段階で、複数の電池モジュールMを固定して一体化したものを意味する。ここで、「電池モジュールM」とは、複数の電池セルCを固定して一体化したものを意味する。ここで、「電池セルC」とは、電極と電解質層とを含む発電要素が外装体に収容されたものを意味する。
図3は、電池セルC、電池モジュールM、および電池スタック30の一例を示す図である。ここで「電池スタック30」とは、図3を参照して、ケース20に組み込まれる前の製造段階で、複数の電池モジュールMを固定して一体化したものを意味する。ここで、「電池モジュールM」とは、複数の電池セルCを固定して一体化したものを意味する。ここで、「電池セルC」とは、電極と電解質層とを含む発電要素が外装体に収容されたものを意味する。
なお、電池スタック30は、ケース20に組み込まれる前の製造段階で、複数の電池モジュールMを固定して一体化したものであれば、特に限定されない。電池スタック30は、例えば、図3に示すように、複数の電池モジュールMを積層した状態で固定した単一の積層体Sによって構成してもよいし、プレートP上に複数の積層体Sを固定して一体化したものによって構成されていてもよい。なお、電池モジュールM同士を固定する方法、積層体S同士を固定する方法は特に限定されない。
図2に示すように、複数の電池スタック30のそれぞれを、以下、第1電池スタック31、第2電池スタック32、および第3電池スタック33と称する。
第1電池スタック31は、ロアケース21の後方側RRに配置されている。第1電池スタック31は、本実施形態では、複数の電池モジュールMを車幅方向(左右方向)に積層(縦積み)した状態で固定した単一の積層体によって構成している。第1電池スタック31は、本実施形態では、96枚の電池セルCを有する。
第2電池スタック32は、ロアケース21の前方側FR、かつ、右側Rに配置されている。第2電池スタック32は、本実施形態では、第1積層体32a、第2積層体32b、第3積層体32c、および第4積層体32dを有する。第1積層体32a~第4積層体32dは、前方側FRから後方RRに向かって整列している。第1積層体32a~第4積層体32dは、本実施形態では、プレートP(図3参照)上に載置された状態で固定され、一体化している。
図2に示すように、各積層体32a~32dは、複数の電池モジュールMを車両の上下方向に積層(平積み)した状態で固定してなる。第2電池スタック32は、本実施形態では、48枚の電池セルCを有する。
第3電池スタック33は、ロアケース21の前方側FR、かつ、左側Lに配置されている。第3電池スタック33は、本実施形態では、第1積層体33a、第2積層体33b、第3積層体33c、および第4積層体33dを有する。第1積層体33a~第4積層体33dは、前方側FRから後方RRに向かって整列している。第1積層体33a~第4積層体33dは、本実施形態では、プレートP(図3参照)上に載置された状態で固定され、一体化している。
各積層体33a~33dは、複数の電池モジュールMを車両の上下方向に積層(平積み)した状態で固定してなる。第3電池スタック33は、本実施形態では、48枚の電池セルCを有する。
なお、上述した各電池スタック30を構成する積層体の個数および各電池スタック30を構成する電池セルCの枚数等は、あくまで一例であり、所望の電池容量に応じて適宜変更可能である。
各電池セルCは、本実施形態では、扁平型のリチウムイオン二次電池からなる。各電池セルCは、外装体内で電極と電解質層とが積層された積層式の電池セルであってもよいし、外装体内で積層された電極および電解質層が巻回された巻回式の電池セルであってもよい。なお、積層式の電池セルは、内部短絡等した場合、積層方向と交差する面方向の全周から熱や高温のガスが吹出すのに対し、巻回式の電池セルは、内部短絡等した場合、巻回軸の方向から熱や高温のガスが吹出す。このように、巻回式の電池セルは、積層式の電池セルと比較して、熱や高温のガスが吹出す方向が限られている。そのため、巻回式の電池セルは、局所的に熱や高温のガスが集中しやすく、隣接する電池セルCや電池スタック30に発熱反応が連鎖しやすい。したがって、巻回式の電池セルでは、本願発明の課題がより一層顕著となる。
(SDスイッチ)
図2に示すように、SDスイッチ41は、「強電回路構成」で後述する強電回路のON/OFFを手動により切り替えるスイッチである。SDスイッチ41は、本実施形態では、ロアケース21において、第2電池スタック32と第3電池スタック33との間に配置されている。ただし、ケース20内におけるSDスイッチ41の位置は、特に限定されない。
図2に示すように、SDスイッチ41は、「強電回路構成」で後述する強電回路のON/OFFを手動により切り替えるスイッチである。SDスイッチ41は、本実施形態では、ロアケース21において、第2電池スタック32と第3電池スタック33との間に配置されている。ただし、ケース20内におけるSDスイッチ41の位置は、特に限定されない。
(ジャンクションボックス)
ジャンクションボックス42は、リレー回路により強電の供給/遮断/分配を行う。ジャンクションボックス42は、本実施形態では、ロアケース21において、第2電池スタック32と第3電池スタック33との間、かつ、SDスイッチ41よりも前方側FRに配置されている。ただし、ケース20内におけるジャンクションボックス42の位置は、特に限定されない。
ジャンクションボックス42は、リレー回路により強電の供給/遮断/分配を行う。ジャンクションボックス42は、本実施形態では、ロアケース21において、第2電池スタック32と第3電池スタック33との間、かつ、SDスイッチ41よりも前方側FRに配置されている。ただし、ケース20内におけるジャンクションボックス42の位置は、特に限定されない。
(コントローラ)
コントローラ43は、電池スタック30の容量、温度、電圧等の管理を行う制御装置である。コントローラ43は、ロアケース21において、第1電池スタック31の左側Lに配置している。ただし、コントローラ43の配置は、特に限定されない。また、本実施形態では、電池パック10の備えるコントローラ43の数は1個であるが、電池パック10は、複数のコントローラを有していてもよい。
コントローラ43は、電池スタック30の容量、温度、電圧等の管理を行う制御装置である。コントローラ43は、ロアケース21において、第1電池スタック31の左側Lに配置している。ただし、コントローラ43の配置は、特に限定されない。また、本実施形態では、電池パック10の備えるコントローラ43の数は1個であるが、電池パック10は、複数のコントローラを有していてもよい。
[強電回路構成]
図4は、本発明の第1実施形態に係る電池パック10のアッパーケース22を取り外した状態における平面図である。図4に示すように、強電回路は、複数の電池スタック30と、SDスイッチ41と、ジャンクションボックス42と、を電気的に接続する複数のバスバ52~56、58a、58b、59および強電ハーネス51、57により形成される。以下、強電回路の一例を説明する。
図4は、本発明の第1実施形態に係る電池パック10のアッパーケース22を取り外した状態における平面図である。図4に示すように、強電回路は、複数の電池スタック30と、SDスイッチ41と、ジャンクションボックス42と、を電気的に接続する複数のバスバ52~56、58a、58b、59および強電ハーネス51、57により形成される。以下、強電回路の一例を説明する。
第1電池スタック31は、本実施形態では、強電ハーネス51により、SDスイッチ41に電気的に接続されている。SDスイッチ41は、バスバ52により、第3電池スタック33に電気的に接続されている。第3電池スタック33の第1積層体33aおよび第2積層体33bと、第3積層体33cおよび第4積層体33dとは、バスバ53により電気的に接続されている。
第3電池スタック33は、本実施形態では、バスバ54により、第2電池スタック32に電気的に接続されている。第2電池スタック32の第1積層体32aおよび第2積層体32bと、第3積層体32cおよび第4積層体32dとは、バスバ55により、電気的に接続されている。第2電池スタック32は、バスバ56により、ジャンクションボックス42に電気的に接続されている。ジャンクションボックス42は、強電ハーネス57により、第1電池スタック31に電気的に接続されている。
ジャンクションボックス42は、本実施形態では、バスバ58a、58bにより、充放電用コネクタ端子23に電気的に接続されている。ジャンクションボックス42は、本実施形態では、バスバ59により、空調コネクタ端子24に電気的に接続されている。
強電回路には、上記の他に、各電池スタック30の電圧を測定するためのコントローラ43と各電池スタック30との電気的な接続等も含まれるが、ここでは詳細な説明および図示を省略する。なお、上記の強電回路はあくまで一例であり、各構成要素の電気的な接続関係は、適宜変更可能である。
[遮熱構成]
図5は、本発明の第1実施形態に係る電池パック10の分解斜視図であって、遮熱カバー60が電池スタック30を覆っている状態を示す図である。なお、図5では、遮熱カバー60を簡略化して示している。電池スタック30を構成する電池セルCは、内部短絡等によって発熱する場合がある。また、発熱した電池セルCから高温のガスが生じる場合がある。内部短絡等によって生じた熱や高温のガスによって電池パック10の各構成要素が損傷するのを抑制すべく、本実施形態に係る電池パック10は、遮熱構成を有する。図5に示すように、電池パック10は、本実施形態では、複数の遮熱カバー60(第1遮熱部材に相当)、部分的遮熱カバー70(第3遮熱部材に相当)、遮熱シート80(第2遮熱部材に相当)、被覆部材91および支持部材92、を有している。以下、各部について詳述する。
図5は、本発明の第1実施形態に係る電池パック10の分解斜視図であって、遮熱カバー60が電池スタック30を覆っている状態を示す図である。なお、図5では、遮熱カバー60を簡略化して示している。電池スタック30を構成する電池セルCは、内部短絡等によって発熱する場合がある。また、発熱した電池セルCから高温のガスが生じる場合がある。内部短絡等によって生じた熱や高温のガスによって電池パック10の各構成要素が損傷するのを抑制すべく、本実施形態に係る電池パック10は、遮熱構成を有する。図5に示すように、電池パック10は、本実施形態では、複数の遮熱カバー60(第1遮熱部材に相当)、部分的遮熱カバー70(第3遮熱部材に相当)、遮熱シート80(第2遮熱部材に相当)、被覆部材91および支持部材92、を有している。以下、各部について詳述する。
(遮熱カバー)
各遮熱カバー60は、複数の電池スタック30のうち少なくとも1つの電池スタック(本実施形態では、第1電池スタック31)の外面をケース20内で露出させるように配置している。以下、複数の遮熱カバー60のそれぞれを、第1遮熱カバー61、第2遮熱カバー62、第3遮熱カバー63、および第4遮熱カバー64と称する。
各遮熱カバー60は、複数の電池スタック30のうち少なくとも1つの電池スタック(本実施形態では、第1電池スタック31)の外面をケース20内で露出させるように配置している。以下、複数の遮熱カバー60のそれぞれを、第1遮熱カバー61、第2遮熱カバー62、第3遮熱カバー63、および第4遮熱カバー64と称する。
図4に示すように、第1遮熱カバー61および第2遮熱カバー62は、露出させた第1電池スタック31に隣接する第2電池スタック32の外面を覆うように配置される。第1遮熱カバー61は、第1積層体32aおよび第2積層体32bの外面を覆う。第2遮熱カバー62は、第3積層体32cおよび第4積層体32dの外面を覆う。なお、単一の遮熱カバーによって、第2電池スタック32を覆ってもよい。
第3遮熱カバー63および第4遮熱カバー64は、露出させた第1電池スタック31に隣接する第3電池スタック33の外面を覆うように配置される。第3遮熱カバー63は、第1積層体33aおよび第2積層体33bの外面を覆う。第4遮熱カバー64は、第3積層体33cおよび第4積層体33dの外面を覆う。なお、単一の遮熱カバーによって、第3電池スタック33を覆ってもよい。
このように、遮熱カバー60は、露出させた第1電池スタック31に隣接する第2電池スタック32および第3電池スタック33の外面を覆うように配置される。そのため、遮熱カバー60は、第2電池スタック32および第3電池スタック33から生じた熱や高温のガスが、隣接する第1電池スタック31に伝わることを抑制できる。また、遮熱カバー60は、第1電池スタック31から生じた熱や高温のガスが、隣接する第2電池スタック32および第3電池スタック33に伝わることを抑制できる。すなわち、遮熱カバー60は、覆っている電池スタックの発熱から隣接する電池スタックを保護する機能、および覆っている電池スタック30を隣接する電池スタックの発熱から保護する機能の両方を有する。したがって、遮熱カバー60によれば、複数の電池スタック30のうちいずれかが発熱した際に、電池スタック30間で発熱反応が連鎖することを抑制できる。
なお、ここで「遮熱カバー60が電池スタック30の外面を覆う」とは、電池スタック30の外面のうちケース20への固定面等を除いた外面が、電池スタック30間の発熱の連鎖を抑制できる程度に覆われていることを意味する。したがって、遮熱カバー60には、後述するようにバスバや配線等の電気的な接続部材等を挿通させるための開口部等が形成されていてもよい。
遮熱カバー60から露出させた第1電池スタック31は、遮熱カバー60に覆われた第2電池スタック32および第3電池スタック33よりも、発熱した際の発熱量から抜熱量を差し引いた差分が大きい。ここで、「抜熱量」とは、電池スタック30の内部から外部に抜ける熱量を意味する。したがって、「発熱量から抜熱量を差し引いた差分」とは、電池スタック30の内部にこもる熱量に相当する。
本実施形態では、第1電池スタック31は、第2電池スタック32および第3電池スタック33に比べて構成する電池セルCの数が多い。そのため、第1電池スタック31は、発熱した際の発熱量が、第2電池スタック32および第3電池スタック33に比べて大きい。また、第1電池スタック31は、単一の積層体によって構成しており、複数の積層体によって構成された第2電池スタック32や第3電池スタック33と比較して、電池セルCの露出面積が小さいため、放熱し難い。そのため、第1電池スタック31は、発熱した場合、生じた熱は第1電池スタック31の外部に抜けにくい。そのため、第1電池スタック31は、第2電池スタック32および第3電池スタック33に比べて抜熱量が小さい。以上より、第1電池スタック31は、第2電池スタック32および第3電池スタック33よりも、発熱した際に電池スタック30の内部にこもる熱量が大きい。
発熱量から抜熱量を差し引いた差分(電池スタック30の内部にこもる熱量)は、特に限定されないが、例えば、下記に示すような実験的な方法によって評価できる。例えば、全ての電池スタック30をケース20内の所定の位置に配置する。次に、評価対象の電池スタック30内の少なくとも一枚の電池セルCを強制的に内部短絡させる。そして、電池スタック30の内部にこもる熱量、または、発熱量および抜熱量を測定する。これらの熱量は、特に限定されないが、例えば、温度計や熱量計等を用いて評価できる。これらの熱量は、特に限定されないが、例えば、一定時間内の最大値、一定時間内の平均値、一定時間内の中央値等に基づいて評価できる。
このように遮熱カバー60は、発熱した際に電池スタック30の内部にこもる熱量が隣接する電池スタック32、33と比較して大きい電池スタック31を露出させる。そのため、多量の熱が電池スタック31の内部にこもり、電池スタック31の内部の電池セルC間で発熱反応が連鎖することを抑制できる。このように、電池スタック30の内部への熱のこもりやすさに応じて遮熱カバー60で覆う電池スタック30を定めることによって、電池スタック30間の発熱反応の連鎖だけでなく、電池セルC間の発熱反応の連鎖の抑制を考慮して、電池パック10全体として発熱反応の連鎖を抑制できる。
また、本実施形態に係る電池パック10は、第1電池スタック31を構成する電池セルC間で発熱反応が連鎖することを抑制できるため、生じる熱およびガスの量を低減できる。また、本実施形態に係る電池パック10は、遮熱カバーによって全ての電池スタックが覆われている電池パックと比較して、製造時や整備時の作業性に優れている。また、本実施形態に係る電池パック10は、遮熱カバーによって全ての電池スタックが覆われている電池パックと比較して、重量・部品点数を低減できる。
図6は、本発明の第1実施形態に係る電池パック10の遮熱カバー60を示す斜視図である。図6に示すように、第1遮熱カバー61は、本実施形態では、遮熱布61aと、遮熱布61aをロアケース21に固定するブラケット61bと、を有する。
遮熱布61aは、本実施形態では、下方が開口した有底箱状の外形形状を形成するように、複数枚のシートを接合してなる。ただし遮熱布61aは1枚のシートによって構成されていてもよい。遮熱布61aには、バスバ54(図4参照)を第1遮熱カバー61の外部に導出するための開口部61cが形成されている。また、遮熱布61aには、バスバ55(図4参照)を第1遮熱カバー61の外部に導出するための開口部61dが形成されている。
ブラケット61bは、本実施形態では、遮熱布61aの前方側FRに配置されている。ただし、ブラケット61bの位置は、特に限定されない。
第2遮熱カバー62は、本実施形態では、遮熱布62aと、遮熱布62aをロアケース21に固定する少なくとも2つのブラケット62b、62cと、を有する。
遮熱布62aは、本実施形態では、下方が開口した有底箱状の外形形状を形成するように、複数枚のシートを接合してなる。ただし遮熱布62aは1枚のシートによって構成されていてもよい。遮熱布62aには、バスバ55(図4参照)を第2遮熱カバー62の外部に導出するための開口部62dが形成されている。また、遮熱布62aには、バスバ56(図4参照)を第2遮熱カバー62の外部に導出するための開口部62eが形成されている。
図6に示すように、ブラケット62b、62cは、本実施形態では、遮熱布62aの前方側FRおよび後方側RRに配置されている。ただし、ブラケット62b、62cの位置は特に限定されない。図2に示すように、第3積層体32cおよび第4積層体32dの高さは、第1積層体32aおよび第2積層体32bの高さよりも小さい。そのため、第2遮熱カバー62の内部で高温のガスが発生して内圧が高まった際に、第2遮熱カバー62は第3積層体32cおよび第4積層体32dに引っ掛かり難く、外れ易い。これに対し、本実施形態では、第2遮熱カバー62は、少なくとも2つのブラケット62b、62cを有しているため、内部で高温のガスが発生して内圧が高まった際に、第2遮熱カバー62が第3積層体32cおよび第4積層体32dの外面を覆った状態を維持できる。ただし、第2遮熱カバー62を構成するブラケットの個数は、特に限定されない。
遮熱布61a、62aの形成材料は、遮熱カバー60の内部と外部との間の熱の伝わりを抑制できる限り特に限定されない。また遮熱布61a、62aは、高温のガス等が直撃した際に溶融しない程度の耐熱性を備えることが好ましい。そのような材料としては、特に限定されないが、例えば、アラミドおよびグラスウールの複合材料等が挙げられる。また、遮熱布61a、62aを構成する複数枚のシートを接合する方法は、高温のガスが直撃した際に接合状態を維持できる方法であるが好ましい。そのような方法としては、特に限定されないが、例えば、アラミドおよびグラスウールの複合材料等の耐熱性の糸によって縫製加工する方法が挙げられる。
ブラケット61b、62b、62cは、ボルト等の締結部材等によって、ロアケース21に固定されている。ブラケット61b、62b、62cおよび締結部材は、高温のガスが直撃した際に溶融しない程度の耐熱性を備えることが好ましい。そのような材料としては、特に限定されないが、例えば、鉄等の金属材料が挙げられる。
第3遮熱カバー63および第4遮熱カバー64の構成は、バスバや配線用の開口部の構成を除き、第1遮熱カバー61および第2遮熱カバー62と同様である。そのため、第3遮熱カバー63および第4遮熱カバー64の構成については、開口部の構成についてのみ説明する。
第3遮熱カバー63には、バスバ54(図4参照)を第3遮熱カバー63の外部に導出するための開口部63cが形成されている。また、第3遮熱カバー63には、バスバ53(図4参照)を第3遮熱カバー63の外部に導出するための開口部63dが形成されている。第4遮熱カバー64には、バスバ53(図4参照)を第4遮熱カバー64の外部に導出するための開口部64dが形成されている。また、第4遮熱カバー64には、バスバ52(図4参照)を第4遮熱カバー64の外部に導出するための開口部64eが形成されている。
なお、遮熱カバー60の構成は、電池スタック30の外面を覆うことができる限り特に限定されない。例えば、遮熱カバーは、ブラケットを有さず、遮熱布を直接的にケース20に固定するように構成されていてもよい。
(部分的遮熱カバー)
図5に示すように、ケース20は、遮熱カバー60から露出させた第1電池スタック31に対向する位置にガスリリーフ弁25を有している。なお、ここで「対向する」とは、電池スタック30とガスリリーフ弁25とが部材を介さずに向かい合う形態だけでなく、図5のように、コントローラ43等の部材を介して向かい合う形態も含まれる。
図5に示すように、ケース20は、遮熱カバー60から露出させた第1電池スタック31に対向する位置にガスリリーフ弁25を有している。なお、ここで「対向する」とは、電池スタック30とガスリリーフ弁25とが部材を介さずに向かい合う形態だけでなく、図5のように、コントローラ43等の部材を介して向かい合う形態も含まれる。
図7は、本発明の第1実施形態に係る電池パック10の部分的遮熱カバー70を示す斜視図である。図5および図7に示すように、部分的遮熱カバー70は、遮熱カバー60から露出させた第1電池スタック31とガスリリーフ弁25との間に配置され、遮熱カバー60から露出させた第1電池スタック31の外面を部分的に覆う。そのため、部分的遮熱カバー70は、第1電池スタック31から生じた高温のガスが、高温のままガスリリーフ弁25に流れ込み、ケース20の外部の機器を損傷することを抑制できる。
なお、本実施形態のようにケース20が複数のガスリリーフ弁25、26を有する場合、ガスの指向性に応じて、部分的遮熱カバー70によって高温のガスの直撃を防止するガスリリーフ弁を定めてもよい。例えば、図5に示すように、第1電池スタック31から左側Lに向かってガスが噴き出しやすい場合、部分的遮熱カバー70は、第1電池スタック31と左側Lのガスリリーフ弁25との間に配置できる。また、図示省略するが、第1電池スタック31からの車幅方向(左右方向)へのガスの噴き出しやすさに差がない場合、部分的遮熱カバー70は、第1電池スタック31と2つのガスリリーフ弁25、26との間に配置できる。なお、ガスの指向性に関わらず、遮熱カバーから露出させた電池スタックと、当該電池スタックに対向する全てのガスリリーフとの間に、部分的遮熱カバーを配置してもよい。
図7に示すように、部分的遮熱カバー70は、本実施形態では、遮熱布71と、遮熱布71を第1電池スタック31に固定するブラケット72と、を有する。
遮熱布71は、本実施形態では、一枚のシートを折り曲げることによって、第1電池スタック31の上面の一部およびコントローラ43の上面および左側面一部を覆うように配置されている。ただし、遮熱布71は、2枚のシートを接合することによって、第1電池スタック31の上面の一部およびコントローラ43の上面および左側面一部を覆うように配置されていてもよい。遮熱布71の形成材料は、上述した遮熱布61aの形成材料と同様の材料を用いることができる。
ブラケット72は、枠部72aと、枠部72aから突出する固定部72bと、を有する。固定部72bは、第1電池スタック31に固定可能である限り特に限定されないが、例えば、第1電池スタック31に設けられたチャネル部材31a等に、ボルト等の締結部材を用いて固定できる。ブラケット72の形成材料は、上述したブラケット61bの形成材料と同様の材料を用いることができる。
(遮熱シート)
図8は、本発明の第1実施形態に係る電池パック10のケース20の内面に取り付けられる遮熱シート80を示す斜視図である。なお、図8では、アッパーケース22を省略して示している。図9は、図1の9-9線に沿う断面図である。図8および図9に示すように、遮熱シート80は、ケース20の内面において、遮熱カバー60から露出させた第1電池スタック31が発熱した際に熱に晒される領域(以下、熱被曝領域27a、27bと称する)に取り付けられる。
図8は、本発明の第1実施形態に係る電池パック10のケース20の内面に取り付けられる遮熱シート80を示す斜視図である。なお、図8では、アッパーケース22を省略して示している。図9は、図1の9-9線に沿う断面図である。図8および図9に示すように、遮熱シート80は、ケース20の内面において、遮熱カバー60から露出させた第1電池スタック31が発熱した際に熱に晒される領域(以下、熱被曝領域27a、27bと称する)に取り付けられる。
ここで「熱被曝領域」とは、ケース20の内面において、遮熱カバー60から露出させた第1電池スタック31から生じた熱やガスが、ケース20およびその周辺機器が損傷する程度に高温のままケース20に直撃する領域を意味する。
例えば、本実施形態では、第1電池スタック31を構成する電池セルCが内部短絡等に起因して発熱した場合、図9に示すように、ケース20の後方側RRの点線で囲んだ領域が、熱被曝領域27a、27bに相当する。これは、以下に示す理由による。第1電池スタック31を構成する電池セルCが内部短絡等に起因して発熱した場合、熱や高温のガスは、電池セルCを収容するモジュールケースMCの複数の開口部MC1、MC2から吹出す。後方側RRの開口部MC2は、前方側FRの開口部MC1と比較して、開口面積が小さい、開口部の数が少ない、ケース20内面までの距離が小さい等の理由により、熱やガスが高温のままケース20の開口部MC2の近辺に直撃する。そのため、ケース20の開口部MC2の近辺が、熱被曝領域27a、27bとなる。
なお、上記の熱被曝領域27a、27bは、あくまで一例であり、熱被曝領域は、電池スタックにおいて熱や高温のガスの噴き出す位置や方向、電池スタックとケースとの相対的な距離等に応じて適宜変わる。また、モジュールケースMCの開口部の大きさ、位置等は特に限定されない。
図8に示すように、遮熱シート80は、本実施形態では、ロアケース21の内面に取り付けられる第1遮熱シート81と、アッパーケース22の内面に取り付けられる第2遮熱シート82と、を有する。第2遮熱シート82は、図5に示すように、ガスリリーフ弁25、26を露出するようにケース20の内面に取り付けられている。そのため、第2遮熱シート82が、ガスリリーフ弁25、26の機能を阻害することを防止できる。
第1遮熱シート81および第2遮熱シート82は、特に限定されないが、例えば、接着剤によってケース20の内面に接着することによって、ケース20の内面に取り付けることができる。なお、仮に熱や高温のガスによって接着剤の接着機能が低下したとしても、第1遮熱シート81および第2遮熱シート82は、ガスの圧力によってケース20に押付けられる。そのため、第1遮熱シート81および第2遮熱シート82が、ケース20の内面から脱落することを抑制できる。ただし、遮熱シート80のケース20の内面への取付方法は、特に限定されない。
また、図9に示すように、第2遮熱シート82は、ケース20を閉じた状態において、ロアケース21の開口縁21aに形成された突起21bと、アッパーケース22の内面との間に挟み込まれるように配置されている。これによって、仮に熱や高温のガスによって接着剤の接着機能が低下したとしても、第2遮熱シート82が落下することを防止できる。
第1遮熱シート81および第2遮熱シート82の形成材料は特に限定されないが、例えば、上述した遮熱布61aの形成材料と同様の材料を用いることができる。
(被覆部材)
図4に示すように、被覆部材91は、強電ハーネス51、57の外表面を覆う。被覆部材91は、絶縁性および耐熱性を備えている。そのため、被覆部材91は、電池スタック30から生じた熱や高温のガスによって、強電ハーネス51、57の外表面が溶融し、強電回路が地絡または短絡することを防止できる。
図4に示すように、被覆部材91は、強電ハーネス51、57の外表面を覆う。被覆部材91は、絶縁性および耐熱性を備えている。そのため、被覆部材91は、電池スタック30から生じた熱や高温のガスによって、強電ハーネス51、57の外表面が溶融し、強電回路が地絡または短絡することを防止できる。
なお、ここで「絶縁性を備える」とは、電池スタック30から生じた熱や高温のガスによる高温下でも、強電回路が地絡または短絡しない程度の電気抵抗を有していることを意味する。被覆部材91は、特に限定されないが、例えば、10-5Ω以上のオーダーの電気抵抗を有することが好ましい。また、ここで「耐熱性を備える」とは、電池スタック30から生じた熱や高温のガスによって溶融しないことを意味する。被覆部材91は、特に限定されないが、例えば、約200度以上の温度でも溶融しないことが好ましい。
被覆部材91は、本実施形態では、絶縁材料と、絶縁材料よりも絶縁性は低いが高い耐熱性を備える耐熱材料と、を混合することによって構成している。絶縁材料としては、特に限定されないが、例えば、ポリブタジエンテレフタラート(PBT)、シリコン、ポリイミド等の樹脂材料が挙げられる。耐熱材料としては、特に限定されないが、例えば、セラミック粉やガラス繊維等が挙げられる。なお、被覆部材91は、絶縁材料と耐熱材料とを混合したものではなく、絶縁材料からなる外層と耐熱材料からなる内層と、によって構成されていてもよい。また、被覆部材91は、絶縁性および耐熱性の両方を備える単一の材料によって構成されていてもよい。
(支持部材)
図10は、本発明の第1実施形態に係る電池パック10のバスバ55およびバスバ55の支持部材92を示す斜視図である。図11は、図10の支持部材92を示す斜視図である。図5および図10に示すように、支持部材92は、本実施形態では、第2電池スタック32に取り付けられたバスバ55、および、第3電池スタック33に取り付けられたバスバ53を支持する。支持部材92は、絶縁性および耐熱性を備えている。
図10は、本発明の第1実施形態に係る電池パック10のバスバ55およびバスバ55の支持部材92を示す斜視図である。図11は、図10の支持部材92を示す斜視図である。図5および図10に示すように、支持部材92は、本実施形態では、第2電池スタック32に取り付けられたバスバ55、および、第3電池スタック33に取り付けられたバスバ53を支持する。支持部材92は、絶縁性および耐熱性を備えている。
第2電池スタック32に取り付けられたバスバ55を支持する支持部材92と、第3電池スタック33に取り付けられたバスバ53を支持する支持部材92と、は同様の構成を有する。そこで、以下では、第2電池スタック32に取り付けられたバスバ55を支持する支持部材92を例に、支持部材92の構成を説明する。
図10に示すように、バスバ55は、第2電池スタック32を構成する複数の積層体32b、32c、32dにまたがって延在している。そのため、バスバ55は、電池パック10内の他のバスバと比較して長尺である。このように長尺のバスバ55は、第2電池スタック32から生じた熱やガスによって撓んだ際に、ケース20等の導電部材に接触し、強電回路が地絡する可能性がある。これに対し、支持部材92は、第2電池スタック32から生じた熱やガスに晒されても溶融せずにバスバ55を支持するため、ケース20等の導電部材に接触し、強電回路が地絡することを防止できる。
図11に示すように、支持部材92は、本実施形態では、ロアケース21上に載置される載置面92aと、載置面92aから上方に向かって突出するとともに、バスバ55を挟持する挟持部92bと、を有している。ただし、支持部材92の形状および位置は、バスバ5とケース20等の導電部材との接触を防止できる限り、限り特に限定されない。
支持部材92形成材料は、被覆部材91の形成材料と同様の材料を用いることができる。
[作用・効果]
以上説明したように、本実施形態に係る電池パック10は、複数の電池スタック30と、ケース20と、遮熱カバー60と、を有する。ケース20は、複数の電池スタック30を収容する。遮熱カバー60は、複数の電池スタック30のうち少なくとも1つの電池スタック31の外面をケース20内で露出させ、かつ、露出させた電池スタック31に隣接する電池スタック32、33の外面を覆うように配置される。遮熱カバー60から露出させた電池スタック31は、遮熱カバー60に覆われた電池スタック32、33よりも、発熱した際の発熱量から抜熱量を差し引いた差分が大きい。
以上説明したように、本実施形態に係る電池パック10は、複数の電池スタック30と、ケース20と、遮熱カバー60と、を有する。ケース20は、複数の電池スタック30を収容する。遮熱カバー60は、複数の電池スタック30のうち少なくとも1つの電池スタック31の外面をケース20内で露出させ、かつ、露出させた電池スタック31に隣接する電池スタック32、33の外面を覆うように配置される。遮熱カバー60から露出させた電池スタック31は、遮熱カバー60に覆われた電池スタック32、33よりも、発熱した際の発熱量から抜熱量を差し引いた差分が大きい。
上記電池パック10によれば、遮熱カバー60は、複数の電池スタック30のうちいずれかが発熱した際に、電池スタック30間で発熱反応が連鎖することを抑制できる。また、遮熱カバー60は、発熱した際に電池スタック30の内部にこもる熱量が隣接する電池スタック32、33と比較して大きい電池スタック31を露出させる。そのため、電池スタック31の内部に多量の熱がこもり、電池スタック31内の電池セルC間で発熱反応が連鎖することを抑制できる。このように、電池スタック30の内部への熱のこもりやすさに応じて遮熱カバー60で覆う電池スタック30を定めることによって、電池スタック間の発熱反応の連鎖だけでなく、電池セルC間の発熱反応の連鎖の抑制を考慮して、電池パック10全体として発熱反応の連鎖を抑制できる。
また、電池スタック31を構成する電池セルC間で発熱反応が連鎖することを抑制できるため、生じる熱およびガスの量を低減できる。また、上記電池パック10は、遮熱カバーによって全ての電池スタックが覆われている電池パックと比較して、製造時や整備時の作業性に優れている。また、上記電池パック10は、遮熱カバーによって全ての電池スタックが覆われている電池パックと比較して、重量・部品点数を低減できる。
また、遮熱カバー60から露出させた電池スタック31は、遮熱カバー60に覆われた電池スタック32、33に比べて構成する電池セルCの数が多い。電池セルCの数が多いほど、発熱量は大きくなる。発熱量が大きいほど、発熱した際に電池スタック31の内部にこもる熱量が大きくなる。したがって、電池セルCの数が多い電池スタック31を遮熱カバー60から露出させることで、電池スタック31の内部に多量の熱がこもり、電池セルC間で発熱反応が連鎖することを抑制できる。また、電池セルC間で発熱反応が連鎖することを抑制できるため、生じる熱およびガスの量を低減できる。
また、電池パック10は、ケース20の内面において、遮熱カバー60から露出させた電池スタック31が発熱した際に熱に晒される領域27a、27bに取り付けられる遮熱シート80をさらに有する。そのため、ケース20が、遮熱カバー60から露出させた電池スタック31から生じた熱や高温のガスによって高温になり、ケース20や周辺機器が損傷することを抑制できる。
また、ケース20は、遮熱カバー60から露出させた電池スタック31と対向する位置にガスリリーフ弁25を有し、遮熱シート80は、ガスリリーフ弁25を露出するようにケース20の内面に取り付けられている。そのため、遮熱シート80が、ガスリリーフ弁25の機能を阻害することを防止できる。
また、電池パック10は、遮熱カバー60から露出させた電池スタック31とガスリリーフ弁25との間に配置され、遮熱カバー60から露出させた電池スタック31の外面を部分的に覆う部分的遮熱カバー70をさらに有する。部分的遮熱カバー70は、第1電池スタック31が発熱した際に生じたガスが、高温のままガスリリーフ弁25に流れ込み、ケース20の外部の機器を損傷することを防止できる。
また、電池パック10は、強電ハーネス51、57と、絶縁性および耐熱性を備え、強電ハーネス51、57の外表面を覆う被覆部材91と、をさらに有する。そのため、被覆部材91は、電池スタック30から生じた熱や高温のガスによって、強電ハーネス51、57の外表面が溶融し、強電回路が地絡または短絡することを防止できる。
また、電池パック10は、複数の電池スタック30のうち少なくとも一つの電池スタック32、33に電気的に接続されるバスバ53、55と、絶縁性および耐熱性を備え、バスバ53、55を支持する支持部材92と、をさらに有する。支持部材92は、電池セルCの内部短絡等によって生じた熱やガスに晒されてもバスバ55を支持できるため、バスバ55が撓み、ケース20等の導電部材に接触し、強電回路が地絡することを防止できる。
<第2実施形態>
図12は、本発明の第2実施形態に係る電池パック100のアッパーケースを取り外した状態における平面図である。
図12は、本発明の第2実施形態に係る電池パック100のアッパーケースを取り外した状態における平面図である。
第2実施形態に係る電池パック100は、電池スタック130、遮熱カバー160、部分的遮熱カバー170、および遮熱シート180の構成において第1実施形態に係る電池パック10と相違する。以下、第2実施形態に係る電池パック100について説明する。なお、第2実施形態に係る電池パック100において、第1実施形態に係る電池パック10と同様の構成については、同一の符号を付しその説明を省略する。
(電池スタック)
電池パック100は、本実施形態では、9つの電池スタック130を有している。各電池スタック130を構成する電池セルCの数は同一である。
電池パック100は、本実施形態では、9つの電池スタック130を有している。各電池スタック130を構成する電池セルCの数は同一である。
以下、9つの電池スタック130のそれぞれを、第1電池スタック131、第2電池スタック132、第3電池スタック133、第4電池スタック134、第5電池スタック135、第6電池スタック136、第7電池スタック137、第8電池スタック138、第9電池スタック139と称する。
第1電池スタック131~第9電池スタック139は、前方側FRから後方側RRにむかって3つの列を形成し、かつ、右側Rから左側Lに向かって3つの列を形成するように、格子状に配置されている。
第1電池スタック131は、ロアケース21の略中央に配置している。第2~5電池スタック132~135は、第1電池スタック131を取り囲むように配置している。第6電池スタック136は、第2電池スタック132および第3電池スタック133と隣接するように配置している。第7電池スタック137は、第2電池スタック132および第4電池スタック134と隣接するように配置している。第8電池スタック138は、第3電池スタック133および第5電池スタック135と隣接するように配置している。第9電池スタック139は、第4電池スタック134および第5電池スタック135と隣接するように配置している。
第1電池スタック131は、4個の電池スタックに隣接している。第2~5電池スタック132~135のそれぞれは、3個の電池スタックに隣接している。
(遮熱カバー)
電池パック100は、本実施形態では、4つの遮熱カバー160を有する。各遮熱カバー160は、複数の電池スタック130のうち少なくとも1つの電池スタック131の外面をケース20内で露出させ、かつ、露出させた電池スタック131に隣接する電池スタック132~135の外面を覆うように配置される。また、各遮熱カバー160は、本実施形態では、遮熱カバー160に覆われた電池スタック132~135に囲まれた他の電池スタック136~139を露出するように配置されている。
電池パック100は、本実施形態では、4つの遮熱カバー160を有する。各遮熱カバー160は、複数の電池スタック130のうち少なくとも1つの電池スタック131の外面をケース20内で露出させ、かつ、露出させた電池スタック131に隣接する電池スタック132~135の外面を覆うように配置される。また、各遮熱カバー160は、本実施形態では、遮熱カバー160に覆われた電池スタック132~135に囲まれた他の電池スタック136~139を露出するように配置されている。
4つの遮熱カバー160のそれぞれを、以下、第1遮熱カバー161、第2遮熱カバー162、第3遮熱カバー163、および第4遮熱カバー164と称する。
第1遮熱カバー161は、露出させた第1電池スタック131に隣接する第2電池スタック132の外面を覆うように配置される。第2遮熱カバー162は、露出させた第1電池スタック131に隣接する第3電池スタック133の外面を覆うように配置される。第3遮熱カバー163は、露出させた第1電池スタック131に隣接する第4電池スタック134の外面を覆うように配置される。第4遮熱カバー164は、露出させた第1電池スタック131に隣接する第5電池スタック135の外面を覆うように配置される。
そのため、各遮熱カバー160は、第2~第5電池スタック132~135から生じた熱や高温のガスが、隣接する第1電池スタック131や第6~第9電池スタック136~139に伝わることを抑制できる。また、遮熱カバー160は、第1電池スタック131や第6~第9電池スタック136~139から生じた熱や高温のガスが、第2~第5電池スタック132~135に伝わることを抑制できる。このように、遮熱カバー160によれば、複数の電池スタック130のうちいずれかが発熱した際に、電池スタック130間で発熱反応が連鎖することを抑制できる。
本実施形態では、遮熱カバー160から露出させた第1電池スタック131は、隣接する電池スタックの数が最も多い。隣接する電池スタック130の数が多いほど、発熱した際の抜熱量が小さい。第1~第9電池スタック131~139は、電池セルCの数が同一であり、発熱量が同程度であるから、抜熱量が小さい電池スタック130ほど、発熱した際に電池スタック130の内部にこもる熱量が大きい。したがって、第1電池スタック131は、発熱した際に電池スタック131の内部にこもる熱量が最も大きい。
このように、遮熱カバー160は、発熱した際に電池スタック130の内部にこもる熱量が最も大きい電池スタック131を露出させる。そのため、多量の熱が電池スタック131の内部にこもり、電池スタック131の内部の電池セルC間で発熱反応が連鎖することを抑制できる。
また、遮熱カバー160は、本実施形態では、遮熱カバー160に覆われた電池スタック132~135に囲まれた他の電池スタック136~139も露出するように配置されている。そのため、他の電池スタック136~139において、電池セルC間で発熱反応が連鎖することを抑制できる。
各遮熱カバー160は、第1実施形態に係る遮熱カバー60と同様に構成しているため、詳細な構成の説明を省略する。
(部分的遮熱カバー)
電池パック100は、本実施形態では、2つの部分的遮熱カバー170を有する。以下、2つの部分的遮熱カバー170のそれぞれを第1部分的遮熱カバー171、および第2部分的遮熱カバー172と称する。
電池パック100は、本実施形態では、2つの部分的遮熱カバー170を有する。以下、2つの部分的遮熱カバー170のそれぞれを第1部分的遮熱カバー171、および第2部分的遮熱カバー172と称する。
第1実施形態に係る電池パック10と同様に、第2実施形態に係る電池パック100では、アッパーケースの車幅方向(左右方向)の両側面の後方側RRに2つのガスリリーフ弁が設けられている(図5参照)。また、第2実施形態に係る電池パック100では、2つのガスリリーフ弁へのガスの流れやすさに差はない場合を例として説明する。
第1部分的遮熱カバー171は、遮熱カバー160から露出させた第8電池スタック138とガスリリーフ弁との間に配置され、第8電池スタック138の外面を部分的に覆う。第2部分的遮熱カバー172は、遮熱カバー160から露出させた第9電池スタックと
ガスリリーフ弁との間に配置され、第9電池スタック139の外面を部分的に覆う。そのため、部分的遮熱カバー170は、第8電池スタック138および第9電池スタック139が発熱した際に生じたガスが、高温のままガスリリーフ弁に流れ込み、ケース20の外部の機器を損傷することを抑制できる。
ガスリリーフ弁との間に配置され、第9電池スタック139の外面を部分的に覆う。そのため、部分的遮熱カバー170は、第8電池スタック138および第9電池スタック139が発熱した際に生じたガスが、高温のままガスリリーフ弁に流れ込み、ケース20の外部の機器を損傷することを抑制できる。
部分的遮熱カバー170は、第1実施形態に係る部分的遮熱カバー70と同様に構成しているため、詳細な構成の説明を省略する。
(遮熱シート)
電池パック100は、本実施形態では、4つの第1遮熱シート180を有する。各遮熱シート180は、ケース20の内面のうち、遮熱カバー160から露出させた電池スタック136~139が発熱した際に熱に晒される領域(熱被曝領域)に取り付けられる。以下、4つの遮熱シート180のそれぞれを、第1遮熱シート181、第2遮熱シート182、第3遮熱シート183、および第4遮熱シート184と称する。
電池パック100は、本実施形態では、4つの第1遮熱シート180を有する。各遮熱シート180は、ケース20の内面のうち、遮熱カバー160から露出させた電池スタック136~139が発熱した際に熱に晒される領域(熱被曝領域)に取り付けられる。以下、4つの遮熱シート180のそれぞれを、第1遮熱シート181、第2遮熱シート182、第3遮熱シート183、および第4遮熱シート184と称する。
第1遮熱シート181は、ケース20の内面のうち、第6電池スタック136と対向する熱被曝領域に設けられている。第2遮熱シート182は、ケース20の内面のうち、第7電池スタック137と対向する熱被曝領域に設けられている。第3遮熱シート183は、ケース20の内面のうち、第8電池スタック138と対向する熱被曝領域に設けられている。第4遮熱シート184は、ケース20の内面のうち、第9電池スタック139と対向する熱被曝領域に設けられている。
遮熱シート180の形成材料は特に限定されないが、例えば、上述した第1実施形態に係る遮熱シート80の形成材料と同様の材料を用いることができる。
以上説明したように、第2実施形態に係る電池パック100では、遮熱カバー160から露出させた電池スタック131は、遮熱カバー160に覆われた電池スタック132~135に比べて隣接する電池スタック130の数が多い。隣接する電池スタック130の数が多いほど、電池スタック130の外部へ逃げる抜熱量は、小さくなる。抜熱量が小さいほど、電池スタック130の内部にこもる熱量が大きい。したがって、隣接する電池スタック130の数が多い電池スタック131を遮熱カバー160から露出させることで、電池スタック131の内部に多量の熱がこもり、電池セルC間で発熱反応が連鎖することを抑制できる。また、電池セルC間で発熱反応が連鎖することを抑制できるため、生じる熱およびガスの量を低減できる。
なお、上記第2実施形態の説明では、電池パック100内の強電回路の説明を省略したが、第1実施形態に係る電池パック10と同様に、第2実施形態に係る電池パック100は、バスバおよび強電ハーネスと、縁性および耐熱性を備え、強電ハーネスの外表面を覆う被覆部材と、絶縁性および耐熱性を備え、バスバを支持する支持部材と、を有していてもよい。
以上、本発明の実施形態およびその変形例に係る電池パックについて説明したが、本発明は上述した実施形態およびその変形例に限定されない。本発明は特許請求の範囲に記載された構成に基づき様々な改変が可能であり、それらについても本発明の範疇である。
例えば、上記実施形態では、車両に搭載される電池パックを例として説明したが、本発明は他の用途の電源として使用される電池パックにも適用することができる。
また、例えば、上記実施形態では、電池パックは、遮熱構成として、遮熱カバー、部分的遮熱カバー、遮熱シート、被覆部材、および支持部材を有していたが、本発明に係る電池パックは、遮熱構成として少なくとも遮熱カバーを有していればよい。
また、例えば、電池パックの備える電池スタック数、各電池スタックを構成する電池セル数、各電池スタックの配置、各電池スタックに隣接する電池スタック数等は、上記実施形態の構成に限定されない。例えば、各電池スタックの電池セル数と各電池スタックの隣接する電池スタック数の両方が異なっていてもよい。
10、100 電池パック、
20 ケース、
25、26 ガスリリーフ弁、
27a、27b 熱被曝領域(熱に晒される領域)、
30、130 電池スタック、
31 遮熱カバーから露出させた電池スタック、
32、33 遮熱カバーに覆われた電池スタック、
51、57 強電ハーネス、
53、55 支持部材に支持されたバスバ、
60、160 遮熱カバー(第1遮熱部材)、
70、170 部分的遮熱カバー(第3遮熱部材)、
80、180 遮熱シート(第2遮熱部材)、
91 被覆部材、
92 支持部材。
20 ケース、
25、26 ガスリリーフ弁、
27a、27b 熱被曝領域(熱に晒される領域)、
30、130 電池スタック、
31 遮熱カバーから露出させた電池スタック、
32、33 遮熱カバーに覆われた電池スタック、
51、57 強電ハーネス、
53、55 支持部材に支持されたバスバ、
60、160 遮熱カバー(第1遮熱部材)、
70、170 部分的遮熱カバー(第3遮熱部材)、
80、180 遮熱シート(第2遮熱部材)、
91 被覆部材、
92 支持部材。
Claims (8)
- 複数の電池スタックと、
前記複数の電池スタックを収容するケースと、
前記複数の電池スタックのうち少なくとも1つの電池スタックの外面を前記ケース内で露出させ、かつ、露出させた前記電池スタックに隣接する電池スタックの外面を覆うように配置される第1遮熱部材と、を有し、
前記第1遮熱部材から露出させた前記電池スタックは、前記第1遮熱部材に覆われた前記電池スタックよりも、発熱した際の発熱量から抜熱量を差し引いた差分が大きい、電池パック。 - 前記第1遮熱部材から露出させた前記電池スタックは、前記第1遮熱部材に覆われた前記電池スタックに比べて構成するセルの数が多い、請求項1に記載の電池パック。
- 前記第1遮熱部材から露出させた前記電池スタックは、前記第1遮熱部材に覆われた前記電池スタックに比べて隣接する電池スタックの数が多い、請求項1または請求項2に記載の電池パック。
- 前記ケースの内面において、前記第1遮熱部材から露出させた前記電池スタックが発熱した際に熱に晒される領域に取り付けられる第2遮熱部材をさらに有する、請求項1~3のいずれか一項に記載の電池パック。
- 前記ケースは、前記第1遮熱部材から露出させた前記電池スタックに対向する位置にガスリリーフ弁を有し、
前記第2遮熱部材は、前記ガスリリーフ弁を露出させるように前記ケースの内面に取り付けられている、請求項4に記載の電池パック。 - 前記第1遮熱部材から露出させた前記電池スタックと前記ガスリリーフ弁との間に配置され、前記第1遮熱部材から露出させた前記電池スタックの外面を部分的に覆う第3遮熱部材とさらに有する、請求項5に記載の電池パック。
- 前記第1遮熱部材から露出させた前記電池スタックに隣接する強電ハーネスと、
絶縁性および耐熱性を備え、前記強電ハーネスの外表面を覆う被覆部材と、をさらに有する、請求項1~6のいずれか一項に記載の電池パック。 - 前記複数の電池スタックのうち少なくとも一つの電池スタックに電気的に接続されるバスバと、
絶縁性および耐熱性を備え、前記バスバを支持する支持部材と、をさらに有する、請求項1~7のいずれか一項に記載の電池パック。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020547546A JP7060103B2 (ja) | 2018-09-20 | 2018-09-20 | 電池パック |
PCT/JP2018/034824 WO2020059080A1 (ja) | 2018-09-20 | 2018-09-20 | 電池パック |
CN201880097685.2A CN112714977B (zh) | 2018-09-20 | 2018-09-20 | 电池组 |
US17/271,670 US11557802B2 (en) | 2018-09-20 | 2018-09-20 | Vehicle battery pack |
EP18934158.9A EP3855557A4 (en) | 2018-09-20 | 2018-09-20 | BATTERY KIT |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/034824 WO2020059080A1 (ja) | 2018-09-20 | 2018-09-20 | 電池パック |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020059080A1 true WO2020059080A1 (ja) | 2020-03-26 |
Family
ID=69888571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/034824 WO2020059080A1 (ja) | 2018-09-20 | 2018-09-20 | 電池パック |
Country Status (5)
Country | Link |
---|---|
US (1) | US11557802B2 (ja) |
EP (1) | EP3855557A4 (ja) |
JP (1) | JP7060103B2 (ja) |
CN (1) | CN112714977B (ja) |
WO (1) | WO2020059080A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113471588A (zh) * | 2021-06-30 | 2021-10-01 | 中国第一汽车股份有限公司 | 一种上箱体总成、电池总成及电动车辆 |
EP4057424A1 (en) * | 2021-03-11 | 2022-09-14 | Nio Technology (Anhui) Co., Ltd | Traction battery pack with heat-insulating assembly |
JP7548175B2 (ja) | 2021-09-24 | 2024-09-10 | トヨタ自動車株式会社 | 電池パック |
JP7553199B2 (ja) | 2020-06-23 | 2024-09-18 | コンテンポラリー アンペレックス テクノロジー(ホンコン)リミテッド | 電池パック及び該電池パックを電源として用いた装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022187311A (ja) * | 2021-06-07 | 2022-12-19 | トヨタ自動車株式会社 | 電池パック |
WO2024057745A1 (ja) * | 2022-09-16 | 2024-03-21 | パナソニックエナジー株式会社 | 電池パック |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010098067A1 (ja) | 2009-02-24 | 2010-09-02 | パナソニック株式会社 | 電池モジュールとそれを用いた電池モジュール集合体 |
JP2011081981A (ja) * | 2009-10-06 | 2011-04-21 | Toshiba Corp | 二次電池モジュール |
JP2013251127A (ja) * | 2012-05-31 | 2013-12-12 | Sanyo Electric Co Ltd | 電源装置 |
JP2014093208A (ja) * | 2012-11-05 | 2014-05-19 | Nissan Motor Co Ltd | バッテリ温調装置 |
JP2014090782A (ja) * | 2012-11-01 | 2014-05-19 | Hochiki Corp | 電力貯蔵システム |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008181822A (ja) * | 2007-01-25 | 2008-08-07 | Sanyo Electric Co Ltd | 電池パック及びその製造方法 |
JP2010062093A (ja) * | 2008-09-05 | 2010-03-18 | Panasonic Corp | 電池パック |
WO2012066874A1 (ja) * | 2010-11-16 | 2012-05-24 | 本田技研工業株式会社 | バッテリの冷却構造 |
JP2012113896A (ja) * | 2010-11-23 | 2012-06-14 | Denso Corp | 組電池 |
JP5512505B2 (ja) * | 2010-12-24 | 2014-06-04 | 三洋電機株式会社 | 電源装置及びこれを備える車両 |
JP2015088380A (ja) * | 2013-10-31 | 2015-05-07 | 日立マクセル株式会社 | 電池パック |
JP6355347B2 (ja) * | 2014-01-30 | 2018-07-11 | 日立建機株式会社 | ハイブリッド式建設機械 |
JP6252313B2 (ja) | 2014-03-31 | 2017-12-27 | 株式会社Gsユアサ | 蓄電装置 |
JP6299513B2 (ja) * | 2014-07-31 | 2018-03-28 | 株式会社Gsユアサ | 電源パック |
JP6375779B2 (ja) * | 2014-08-26 | 2018-08-22 | 三菱自動車工業株式会社 | 電池パックの放熱構造 |
DE102014018752A1 (de) | 2014-12-16 | 2016-06-16 | Daimler Ag | Batterievorrichtung mit Korkisolierung |
JP6115558B2 (ja) * | 2014-12-26 | 2017-04-19 | トヨタ自動車株式会社 | 電池パック |
US11258104B2 (en) * | 2015-06-30 | 2022-02-22 | Faraday & Future Inc. | Vehicle energy-storage systems |
KR102390607B1 (ko) * | 2016-04-20 | 2022-04-25 | 코버스 에너지 인코포레이티드 | 배터리 시스템 내의 열폭주 가스를 관리하기 위한 방법 및 장치 |
JP3215153U (ja) * | 2017-12-18 | 2018-03-01 | ティ・アール・エイ株式会社 | バッテリーパック |
-
2018
- 2018-09-20 EP EP18934158.9A patent/EP3855557A4/en active Pending
- 2018-09-20 CN CN201880097685.2A patent/CN112714977B/zh active Active
- 2018-09-20 US US17/271,670 patent/US11557802B2/en active Active
- 2018-09-20 JP JP2020547546A patent/JP7060103B2/ja active Active
- 2018-09-20 WO PCT/JP2018/034824 patent/WO2020059080A1/ja unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010098067A1 (ja) | 2009-02-24 | 2010-09-02 | パナソニック株式会社 | 電池モジュールとそれを用いた電池モジュール集合体 |
JP2011081981A (ja) * | 2009-10-06 | 2011-04-21 | Toshiba Corp | 二次電池モジュール |
JP2013251127A (ja) * | 2012-05-31 | 2013-12-12 | Sanyo Electric Co Ltd | 電源装置 |
JP2014090782A (ja) * | 2012-11-01 | 2014-05-19 | Hochiki Corp | 電力貯蔵システム |
JP2014093208A (ja) * | 2012-11-05 | 2014-05-19 | Nissan Motor Co Ltd | バッテリ温調装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3855557A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7553199B2 (ja) | 2020-06-23 | 2024-09-18 | コンテンポラリー アンペレックス テクノロジー(ホンコン)リミテッド | 電池パック及び該電池パックを電源として用いた装置 |
EP4057424A1 (en) * | 2021-03-11 | 2022-09-14 | Nio Technology (Anhui) Co., Ltd | Traction battery pack with heat-insulating assembly |
CN113471588A (zh) * | 2021-06-30 | 2021-10-01 | 中国第一汽车股份有限公司 | 一种上箱体总成、电池总成及电动车辆 |
JP7548175B2 (ja) | 2021-09-24 | 2024-09-10 | トヨタ自動車株式会社 | 電池パック |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020059080A1 (ja) | 2021-08-30 |
CN112714977A (zh) | 2021-04-27 |
EP3855557A1 (en) | 2021-07-28 |
US20210320346A1 (en) | 2021-10-14 |
US11557802B2 (en) | 2023-01-17 |
JP7060103B2 (ja) | 2022-04-26 |
CN112714977B (zh) | 2024-06-18 |
EP3855557A4 (en) | 2021-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020059080A1 (ja) | 電池パック | |
CN103636029B (zh) | 具有改进的安全性的电池组 | |
US20200335737A1 (en) | Thermal runaway mitigation system for high capacity energy cell | |
JP7292654B2 (ja) | 電池モジュールおよびこれを含む電池パック | |
US20220314772A1 (en) | Underbody for vehicle | |
JP5939007B2 (ja) | 蓄電装置 | |
JP2012113896A (ja) | 組電池 | |
JP2013533579A (ja) | 新規構造を有するバッテリーモジュール | |
JP6627709B2 (ja) | 電池装置 | |
CN110024172A (zh) | 继电器单元 | |
JP7326494B2 (ja) | バスバープレートを含むバッテリーモジュール、それを含むバッテリーパック及び電子デバイス | |
EP2685782A1 (en) | Heater module | |
EP2662922B1 (en) | Battery pack provided with stable measurement means | |
WO2017150088A1 (ja) | 配線モジュール | |
CN112332032A (zh) | 电池组以及使用电池组作为电源的装置 | |
JP7306617B2 (ja) | バッテリーモジュール、それを含むバッテリーパック及び自動車 | |
CN116114107A (zh) | 蓄电装置 | |
US11075430B2 (en) | Wiring module | |
JP2018063914A (ja) | 電池ユニット | |
EP4109649A1 (en) | Battery module and battery pack including same | |
KR102514511B1 (ko) | 배터리 팩 및 배터리 팩의 제조 방법 | |
JP2024527416A (ja) | 内部発火時にコネクタからガスや火炎の放出を抑制できるバッテリーモジュール | |
JP2019186034A (ja) | 電池モジュール及び組電池 | |
CN109713176B (zh) | 电动汽车动力电池系统 | |
KR20220011431A (ko) | 전지 모듈 및 이를 포함하는 전지팩 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18934158 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020547546 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018934158 Country of ref document: EP Effective date: 20210420 |