WO2020056940A1 - 多联机组、末端分配系统及其控制方法与分配器 - Google Patents

多联机组、末端分配系统及其控制方法与分配器 Download PDF

Info

Publication number
WO2020056940A1
WO2020056940A1 PCT/CN2018/120614 CN2018120614W WO2020056940A1 WO 2020056940 A1 WO2020056940 A1 WO 2020056940A1 CN 2018120614 W CN2018120614 W CN 2018120614W WO 2020056940 A1 WO2020056940 A1 WO 2020056940A1
Authority
WO
WIPO (PCT)
Prior art keywords
distribution
rotor
input pipe
flow rate
distribution system
Prior art date
Application number
PCT/CN2018/120614
Other languages
English (en)
French (fr)
Inventor
黄承杰
谷月明
胡乾龙
孟红武
袁占彪
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to RU2021100507A priority Critical patent/RU2756611C1/ru
Publication of WO2020056940A1 publication Critical patent/WO2020056940A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present application relates to the technical field of air-conditioning equipment, and in particular, to a multi-connection group, terminal distribution system, control method and distributor thereof.
  • the main mechanism For related multi-connected groups, that is, multi-connected cold and hot water units, usually the main mechanism first takes chilled water or hot water, and then sends them to the end through pipes for the user to adjust the air conditioning of the air.
  • the end of the multi-connected cold and hot water unit uses water for heat exchange and is mostly an external unit with multiple internal units or multiple external units with multiple internal units.
  • the terminal waterway system of the multi-connection group supplies water to multiple internal machines, there is a problem of uneven water flow distribution, which affects the comfortable operation of the internal machines.
  • a multi-line group and terminal distribution system capable of uniformly distributing water flow, and a control method and distributor thereof are provided to effectively solve the current problem of uneven water flow distribution and improve the comfort when using the terminal distribution system. Ensure the reliability of multiple online groups.
  • a dispenser for uniformly distributing fluids including:
  • a hollow housing having an input pipe and a plurality of output pipes respectively communicating with the input pipe;
  • a rotor rotatably disposed in the casing, the rotor having a distribution cavity, a distribution inlet, and a plurality of distribution outlets, the distribution cavity communicating the distribution inlet and a plurality of the distribution outlets, the input tube and the The distribution inlet is in communication, and the output pipe is in communication with the distribution outlet.
  • An end distribution system comprising a plurality of end pipes, an end heat exchanger provided at each of the end pipes, and a distributor according to any one of the above technical features;
  • a plurality of the end pipes are connected to a plurality of output pipes of the distributor.
  • a control method for an end distribution system which is applied to the end distribution system according to any of the above technical features, and includes the following steps:
  • the rotor of the distributor runs at the initial speed for a preset time
  • the rotation speed of the rotor is adjusted according to the end load and / or the flow velocity difference in the current state.
  • a multi-connection group including a host system and an end distribution system according to any one of the above technical features
  • the host system includes a compressor, a four-way valve, a first heat exchanger, a throttling device, a second heat exchanger, and a water pump.
  • the compressor is connected to the four-way valve, the four-way valve, the A first heat exchanger, the throttling device and the second heat exchanger are cyclically connected, and the second heat exchanger is further connected to the distributor inlet and the end pipeline of the end distribution system,
  • the water pump is located between the end pipe and the second heat exchanger.
  • the multi-line group, terminal distribution system, control method and distributor of the present application When the distributor distributes fluid, the fluid enters the housing through the input pipe, enters the rotor through the distribution inlet, and is distributed through the distribution cavity of the rotor from the distribution outlet. Send out the rotor and flow out of the distributor through the output pipe.
  • the rotor can rotate in the process of distributing fluid, so that the fluid can be uniformly entered into each output pipe under the action of centrifugal force, effectively solving the current problem of uneven distribution of water flow, ensuring that the amount of fluid output by each output pipe is the same, and achieving uniform distribution of fluid. Furthermore, the fluid distribution of the end distribution system is ensured to be uniform, the comfort of the end distribution system is improved, and the reliability of the multi-line group is guaranteed.
  • FIG. 1 is a schematic cross-sectional view of a distributor according to an embodiment of the present application.
  • FIG. 2 is an external view of the dispenser shown in FIG. 1;
  • Figure 3 is a side view of the dispenser shown in Figure 1;
  • FIG. 4 is a schematic diagram of the distributor shown in FIG. 1 applied to a multi-connection group
  • FIG. 5 is a control timing diagram of a rotor in the distributor shown in FIG. 1.
  • connection and “connection” in this application include direct and indirect connections (connections) unless otherwise specified.
  • the first feature "on” or “down” of the second feature may be the first and second features in direct contact, or the first and second features indirectly through an intermediate medium. contact.
  • the first feature is “above”, “above”, and “above” the second feature.
  • the first feature is directly above or obliquely above the second feature, or only indicates that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” of the second feature.
  • the first feature may be directly below or obliquely below the second feature, or it may simply indicate that the first feature is less horizontal than the second feature.
  • the present application provides a dispenser 110.
  • the dispenser 110 is used for uniformly distributing fluid.
  • the distributor 110 of the present application is mainly applied to the terminal distribution system 100 of a multi-connection group, and is used to achieve uniform configuration of the terminal water flow.
  • the distributor 110 may also be used in other occasions where uniform fluid distribution is required.
  • the dispenser 110 may dispense gas or other liquids in addition to water. In this embodiment, description is made only by using the distributor 110 to achieve a uniform configuration of water flow as an example.
  • the distributor 110 includes a housing 111 and a rotor 114.
  • the casing 111 is a hollow structure, and the rotor 114 is rotatably disposed in the casing 111.
  • the casing 111 includes an input pipe 112 and a plurality of output pipes 113 that are respectively connected to the input pipe 112.
  • the input pipe 112 is used to connect the heat exchange pipes 280 of the end distribution system 100, and the plurality of output pipes 113 are respectively connected to the plurality of end pipes 120 of the end distribution system 100.
  • the water in the heat exchange pipeline 280 enters the distributor 110 from the input pipe 112 of the casing 111, passes through the inner cavity of the casing 111, and then enters the corresponding end pipeline 120 from the output pipe 113 of the casing 111 and flows out of the distributor. 110.
  • the input pipe 112, the output pipe 113, and the casing 111 are integral structures, which can prevent water leakage and ensure the reliable operation of the distributor 110.
  • the input pipe 112, the output pipe 113, and the casing 111 in the present application may also be provided separately, as long as the sealing of the connection portion is ensured.
  • the casing 111 has a cylindrical structure.
  • the hole diameters of the output pipes 113 are the same, which can further ensure that the water flow output by the output pipes 113 is the same.
  • the distributor 110 of the present application is provided with a rotatable rotor 114 in the inner cavity of the housing 111, and the centrifugal force when the rotor 114 rotates is used to ensure that the water flows into the output pipes 113 are the same, thereby achieving a uniform configuration of the water flows.
  • the rotor 114 has a distribution cavity 1141, a distribution inlet 1142, and a plurality of distribution outlets 1143.
  • the distribution cavity 1141 communicates with the distribution inlet 1142 and a plurality of distribution outlets 1143, the input pipe 112 communicates with the distribution inlet 1142, and the output pipe 113 communicates with the distribution outlet 1143.
  • the rotor 114 is a rotatable cylinder. This can ensure that the rotor 114 rotates smoothly in the casing 111 and avoids interference.
  • the water entering from the input pipe 112 enters the distribution cavity 1141 of the rotor 114 through the distribution inlet 1142 of the rotor 114, and the water in the distribution cavity 1141 can uniformly flow out of the input outlet under the action of centrifugal force and enter the housing 111.
  • the output tube 113 sends out.
  • the distribution inlet 1142 is disposed adjacent to the input pipe 112, so that the water entry path can be reduced.
  • the distribution inlet 1142 corresponds to the input pipe 112, and the input pipe 112 can extend into the distribution inlet 1142, so that the water in the heat exchange pipe 280 directly enters the distribution cavity 1141 through the input pipe 112 to avoid water leakage.
  • the distribution outlet 1143 is arranged adjacent to the output pipe 113, so that the outflow path of water can be reduced, and the water flow output from each output pipe 113 is guaranteed to be uniform.
  • the fluid When the dispenser 110 of the present application dispenses fluid, the fluid enters the housing 111 through the input pipe 112, and enters the rotor 114 through the distribution inlet 1142. After being distributed through the distribution cavity 1141 of the rotor 114, it is sent out from the distribution outlet 1143 and is output The tube 113 flows out of the distributor 110.
  • the rotor 114 can rotate during the process of distributing fluid, so that the fluid can enter the output pipes 113 uniformly under the effect of centrifugal force, effectively solving the current problem of uneven distribution of water flow, ensuring that the amount of fluid output by each output pipe 113 is the same, and uniformity is achieved.
  • the fluid is distributed, thereby ensuring uniform fluid distribution in the terminal distribution system 100, improving the comfort during use of the terminal distribution system 100, and ensuring the reliability of the multi-line group.
  • the input pipe 112 and the plurality of output pipes 113 are disposed on opposite sides of the casing 111. That is, the input pipe 112 and the output pipe 113 are located on two non-adjacent surfaces of the casing 111, and water can enter from one end of the casing 111 and flow out from the other end. This can avoid problems such as short circuit of water flow and large pressure loss, and improve the distribution efficiency of the distributor 110.
  • the plurality of distribution outlets 1143 are located on the peripheral side of the rotation axis of the rotor 114. In this way, when the rotor 114 rotates, the water in the distribution cavity 1141 of the rotor 114 flows uniformly to the inner wall of the distribution cavity 1141 under the action of centrifugal force, and flows out from the distribution outlet 1143 on the outer peripheral side of the rotor 114 to ensure that the water uniformly flows from the distribution outlet 1143. It flows out and flows out through the output pipe 113.
  • the positions of the plurality of output tubes 113 on the casing 111 are located on the outer side of the rotor 114 in the circumferential direction. That is, a plurality of output tubes 113 are distributed on the outer ring of the rotor 114 as shown in FIGS. 1 and 3. In this way, the water sent from the distribution outlet 1143 on the periphery of the rotor 114 can be directly sent through the output pipe 113 to ensure that the water flow of the output pipe 113 is sufficient, the reliable operation of the end distribution system 100 is ensured, and the performance of the multi-line group is guaranteed. If the output pipe 113 is located inside the rotor 114 at the position of the casing 111, at this time, the rotor 114 will block water from entering the output pipe 113 and affect the water flow of the output pipe 113.
  • the distributor 110 further includes a driving member 115, which is disposed outside the casing 111 and is connected to the rotor 114.
  • the driving member 115 is a power source for rotating the rotor 114.
  • the driving member 115 is a motor.
  • the driving member 115 may also be other structures that can realize rotational driving.
  • the driving member 115 is an asynchronous motor.
  • the rotor 114 is driven to rotate by an asynchronous motor.
  • the driving member 115 is controlled by the control system of the multi-connection group. This can reduce the number of controllers, so that multiple online groups can centrally control their components for easy operation.
  • the control system of the multi-line group can control the start and stop of the asynchronous motor, and then control the rotation and stop of the rotor 114.
  • the control system of the on-line group can also adjust the output speed of the asynchronous motor, and then the speed of the rotor 114 to adjust the flow rate of water in the output pipe 113.
  • the water flow rate at the output pipe 113 of the distributor 110 is proportional to the rotation speed r of the rotor 114 in the distributor 110. That is, as the rotation speed r of the rotor 114 increases, the water flow rate at the output pipe 113 increases accordingly. On the other hand, the rotation speed r of the rotor 114 decreases, and the water flow rate at the output pipe 113 decreases accordingly. The adjustment of the rotation speed of the rotor 114 will be described in detail later.
  • the driving member 115 is located on a side of the casing 111 having the output tube 113. This facilitates the connection of the driving member 115 with the rotor 114 in the casing 111, and facilitates the rotational driving control of the rotor 114.
  • the rotation axis of the driving member 115 coincides with the rotation center line of the casing 111. This can ensure that the rotor 114 rotates smoothly in the casing 111.
  • an embodiment of the present application provides an end distribution system 100 including a plurality of end pipes 120, an end heat exchanger 130 disposed at each end pipe 120, and the distributor 110 in the above embodiment.
  • the plurality of end pipes 120 are connected to the plurality of output pipes 113 of the distributor 110.
  • the end distribution system 100 is used to perform heat exchange on the ends, where the ends refer to indoor spaces.
  • the terminal distribution system 100 performs heat exchange on the indoor space, and can realize the cooling or heat treatment of the indoor space, so as to avoid the demand of the user.
  • the end distribution system 100 of the present application uses the distributor 110 to achieve an even distribution of the incoming water flow, so that the hot and cold water of the hosts of multiple online groups can be evenly distributed, and the performance of the end distribution system 100 is guaranteed.
  • one end of the distributor 110 is connected to the host system 200 of the multi-connection group through an input pipe 112, and the other end of the distributor 110 is connected to multiple end pipes 120 through a plurality of output pipes 113, and each end pipe 120 is provided At least one end heat exchanger 130.
  • the end heat exchanger 130 is located in the indoor space, and the indoor space is cooled and heated by the end heat exchanger 130.
  • the indoor heat exchanger may be an air plate, a fin heat exchanger, a tube heat exchanger, or other types of end-of-end machines.
  • the distributor 110 is connected to four end pipes 120, and the end heat exchangers 130 on the four end pipes 120 are arranged in parallel.
  • the number of the end pipes 120 may be more or less, and the number of the end heat exchangers 130 is consistent with the number of the end pipes 120.
  • the end distribution system 100 further includes a plurality of temperature detecting members 140 respectively disposed on the plurality of end pipes 120 for detecting the ambient temperature of the end. That is, the temperature detecting element 140 can detect the temperature of the indoor space environment corresponding to the end heat exchanger 130 in real time.
  • the temperature detecting member 140 is electrically connected to the control system of the multi-connection group to transmit the terminal ambient temperature to the control system.
  • a preset temperature of the end environment is stored in the control system. After comparing the end environment temperature with the preset temperature, the temperature difference of the end environment can be determined, which is the end load. The control system adjusts the rotation speed of the rotor 114 through the end load.
  • the preset temperature of the end environment (that is, the set temperature) is T preset
  • the end environment temperature (that is, the actual temperature of the indoor space) is the temperature of the temperature detecting member 140, which is denoted as T room temperature
  • a large end load means that the temperature between the end environment and the preset temperature is large and requires more chilled or hot water for heat exchange. Conversely, the chilled water or hot water required for a small end load is also reduced.
  • the rotation speed r and ⁇ T of the rotor 114 have a positive correlation. In this way, the rotation speed r of the rotor 114 can be adjusted according to the demand of the actual end load ⁇ T to control the water flow rate of the output pipe 113 of the distributor 110.
  • the end distribution system 100 further includes a flow detection member 150 disposed at the input pipe 112 of the distributor 110 for detecting the actual flow rate of the fluid at the input pipe 112. That is, the flow detection member 150 can detect the input flow of the distributor 110. Because the cross-sectional area of the input pipe 112 is constant, the actual flow velocity of the water at the input pipe 112 can be calculated.
  • the flow detection member 150 is electrically connected to the control system of the multi-line group to transmit the actual flow rate of water in the input pipe 112 to the control system. The control system stores the rated flow rate of the water in the input pipe 112, and determines the rated flow rate of the water based on the rated flow rate.
  • the water flow rate difference at the input pipe 112 can be determined, and the control system adjusts through the flow rate difference.
  • the rotation speed of the rotor 114 This can prevent surges or blockages in the end dispensing system 100.
  • the rated flow rate of water at the input pipe 112 of the distributor 110 is Q rated
  • the actual flow rate of water at the input pipe 112 detected by the flow detection member 150 is Q actual
  • the cross-sectional area of the input pipe 112 is S.
  • the rotation speed r of the rotor 114 has a negative correlation with ⁇ V. In this way, the rotation speed r of the rotor 114 can be adjusted according to the requirement of the flow velocity difference ⁇ V to ensure the reliable operation of the end distribution system 100.
  • the temperature detecting member 140 may be a temperature sensing bag or a sensor.
  • the temperature detecting element 140 may also be another temperature sensing element that can implement temperature detection.
  • the flow detection element 150 is a flow meter or the like.
  • the rotation speed of the rotor 114 can be adjusted solely through the feedback of the end load, and the rotation speed of the rotor 114 can also be adjusted solely through the feedback of the difference in flow rate.
  • An embodiment of the present application further provides a control method of an end distribution system, which is applied to the end distribution system 100 in the foregoing embodiment, and includes the following steps:
  • the rotor 114 of the distributor 110 runs at an initial speed to a preset time
  • Detect the end ambient temperature in real time and calculate the end load of the end distribution system 100 according to the end ambient temperature; and / or, detect the actual flow in real time, and calculate the flow velocity difference at the input pipe 112 according to the actual flow;
  • the rotation speed of the rotor 114 is adjusted according to the end load and / or the flow velocity difference in the current state.
  • the terminal distribution system 100 When the terminal distribution system 100 is running, it can be divided into startup and control phases.
  • the start-up phase the asynchronous motor starts and drives the rotor 114 of the distributor 110 to initially rotate at an initial speed r, and runs to a preset time t 1 .
  • the temperature detecting element 140 detects the terminal ambient temperature T room temperature
  • the control system calculates the terminal load ⁇ T of the terminal distribution system 100 according to the terminal ambient temperature T room temperature
  • the flow detecting element 150 detects the actual flow of water at the input pipe 112.
  • the actual Q the control system calculates the actual velocity difference ⁇ V terminal Q of the dispensing system 100 according to the actual flow rate.
  • the rotation speed r of the rotor 114 is adjusted every predetermined time. Specifically, the rotation speed of the rotor 114 is adjusted according to the end load and / or the flow velocity difference in the current state. Understandably, the predetermined time may be several seconds or even tens of seconds, and so on.
  • the distributor 110 As shown in FIG. 5, during the start-up phase of the distributor 110, its rotor 114 initially moves at an initial speed r to a preset time t 1. In this process, the initial speed r is initially a constant speed.
  • the rotor 114 will adjust the rotation speed r of the rotor 114 according to the actual situation every predetermined time, so that the rotation speed r of the rotor 114 fluctuates up and down at the initial r to realize the adjustment of the water flow rate at the output pipe 113.
  • the steps of detecting the terminal ambient temperature in real time and calculating the terminal load of the terminal distribution system 100 according to the terminal ambient temperature include the following steps:
  • the end load increases, that is, ⁇ T increases, the water flow required by the end distribution system 100 increases, and the rotation speed of the rotor 114 in the distributor 110 needs to increase accordingly. In this way, the rotation speed r of the rotor 114 can be adjusted according to the demand of the actual end load ⁇ T to control the water flow rate of the output pipe 113 of the distributor 110.
  • the steps of detecting the actual flow rate in real time and calculating the difference in flow velocity at the input pipe 112 according to the actual flow rate include the following steps:
  • the relationship between the rotation speed of the rotor 114 and the difference between the end load and the flow velocity is:
  • r ⁇ ⁇ ⁇ T- ⁇ ⁇ ⁇ V + r initial, wherein, ⁇ , ⁇ is a constant, [Delta] T for the tip load, the flow velocity difference [Delta] V, R & lt initial initial speed of the rotor 114.
  • the control system can adjust the speed of the rotor 114 according to the feedback of the end load ⁇ T and the flow speed difference ⁇ V. In this way, the water flow of the output pipe 113 can be corrected according to the user's needs and the actual water flow to match the actual water flow at the end.
  • the surge or blockage of the end distribution system 100 can also be avoided, so as to ensure the performance of the end distribution system 100 and improve the user's comfort.
  • An embodiment of the present application further provides a multi-connection group, which includes a host system 200 and the terminal distribution system 100 in the foregoing embodiment.
  • the host system 200 includes a compressor 210, a four-way valve 220, a first heat exchanger 230, a throttle device 240, a second heat exchanger 250, and a water pump 260.
  • the compressor 210 is connected to the four-way valve 220, the four-way valve 220,
  • the first heat exchanger 230, the throttling device 240, and the second heat exchanger 250 are cyclically connected.
  • the second heat exchanger 250 is also connected to the inlet 110 and the end pipeline 120 of the end distribution system 100, and the water pump 260 is located at the end pipe. Between the circuit 120 and the second heat exchanger 250.
  • the host system 200 further includes a main pipe 270 and a heat exchange pipe 280.
  • the main pipeline 270 is cyclically connected to the four-way valve 220, the first heat exchanger 230, the throttling device 240, and the second heat exchanger 250.
  • the heat exchange pipeline 280 is cyclically connected to the end distribution system 100, the water pump 260, and the second heat exchanger 250.
  • the fluid in the main pipe 270 exchanges heat with the water in the heat exchange pipe 280 in the second heat exchanger 250, so that the heated or cooled water enters the end heat exchanger 130 to heat the indoor space. Or cooling.
  • the throttle device 240 is an electronic expansion valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)
  • Flow Control (AREA)

Abstract

多联机组、末端分配系统(100)及其控制方法与分配器(110)。分配器(110)用于均匀分配流体,包括:中空的壳体(111),壳体(111)具有输入管(112)及分别与输入管(112)相连通的多个输出管 (113);以及可转动设置于壳体(111)内的转子(114),转子(114)具有分配腔(1141)、分配入口(1142)以及多个分配出口(1143),分配腔(1141)连通分配入口(1142)与多个分配出口(1143),输入管(112)与分配入口(1142)连通,输出管(113)与分配出口(1143)连通。转子(114)在分配流体的过程中可转动,使得流体受到离心力作用可以均匀的进入各个输出管(113),保证各输出管(113)输出的流体量相同,实现均匀分配流体,进而保证末端分配系统(100)的流体分配均匀,提高末端分配系统(100)使用时的舒适性,保证多联机组的可靠性。

Description

多联机组、末端分配系统及其控制方法与分配器
相关申请
本申请要求2018年09月19日申请的,申请号为201811092658.4,名称为“多联机组、末端分配系统及其控制方法与分配器”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及空调设备技术领域,特别是涉及一种多联机组、末端分配系统及其控制方法与分配器。
背景技术
对于相关的多联机组即多联式冷热水机组而言,通常先由主机制取冷冻水或热水,再将其通过管道输送到末端供用户调节空气的空调。相对于氟系统多联机,多联式冷热水机组末端以水换热且多为一外机带多内机或者多外机带多内机。但是,多联机组的末端水路系对多台内机供水时,存在水流量分配不均的问题,影响内机的舒适性运行。
发明内容
基于此,提供一种可使水流量均匀分配的多联机组、末端分配系统及其控制方法与分配器,有效的解决目前水流量分配不均的问题,提高末端分配系统使用时的舒适性,保证多联机组的可靠性。
上述目的通过下述技术方案实现:
一种分配器,用于均匀分配流体,包括:
中空的壳体,所述壳体具有输入管及分别与所述输入管相连通的多个输出管;以及
可转动设置于所述壳体内的转子,所述转子具有分配腔、分配入口以及多个分配出口,所述分配腔连通所述分配入口与多个所述分配出口,所述输入管与所述分配入口连通,所述输出管与所述分配出口连通。
一种末端分配系统,包括多个末端管路、设置于每一所述末端管路的末端换热器以及上述任一技术特征所述的分配器;
多个所述末端管路连接于所述分配器的多个输出管。
一种末端分配系统的控制方法,应用于如上述任一技术特征所述末端分配系统,包括如下步骤:
分配器的转子以初始速度运行至预设时间;
实时检测末端环境温度,并根据所述末端环境温度计算所述末端分配系统的末端负荷;和/或,实时检测实际流量,并根据所述实际流量计算所述输入管处的流速差;
每隔预定时间,根据当前状态下所述末端负荷和/或所述流速差调节所述转子的转速。
一种多联机组,包括主机系统及如上述任一技术特征所述的末端分配系统;
所述主机系统包括压缩机、四通阀、第一换热器、节流装置、第二换热器及水泵,所述压缩机连接于所述四通阀,所述四通阀、所述第一换热器、所述节流装置及所述第二换热器循环连接,所述第二换热器还连接于所述末端分配系统的所述分配器入口及所述末端管路,所述水泵位于所述末端管路与所述第二换热器之间。
采用上述技术方案后,本申请至少具有如下技术效果:
本申请的多联机组、末端分配系统及其控制方法与分配器,分配器分配流体时,流体通过输入管进入壳体,并经分配入口进入转子,通过转子的分配腔分配后,从分配出口送出转子,并经输出管流出分配器。转子在分配流体的过程中可转动,使得流体受到离心力作用可以均匀的进入各个输出管,有效的解决目前水流量分配不均的问题,保证各输出管输出的流体量相同,实现均匀分配流体,进而保证末端分配系统的流体分配均匀,提高末端分配系统使用时的舒适性,保证多联机组的可靠性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本申请一实施例的分配器的截面示意图;
图2为图1所示的分配器的外观图;
图3为图1所示的分配器的侧视图;
图4为图1所示的分配器应用于多联机组的示意图;
图5为图1所示的分配器中转子的控制时序图。
附图标号说明
100-末端分配系统;
110-分配器;
111-壳体;
112-输入管;
113-输出管;
114-转子;
1141-分配腔;
1142-分配入口;
1143-分配出口;
115-驱动件;
120-末端管路;
130-末端换热器;
140-温度检测件;
150-流量检测件;
200-主机系统;
210-压缩机;
220-四通阀;
230-第一换热器;
240-节流装置;
250-第二换热器;
260-水泵;
270-主管路;
280-换热管路。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本申请的多联机组、末端分配系统及其控制方法与分配器进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示 的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
参见图1和图4,本申请提供一种分配器110。该分配器110用于均匀分配流体。本申请分配器110主要应用于多联机组的末端分配系统100中,用于实现末端水流量的均匀配置。当然,在本申请的其他实施方式中,分配器110也可以用于其他需要均匀分配流体的场合。而且,分配器110除分配水之外,还可分配气体或者其他液体。本实施例中,仅以分配器110用于实现水流量的均匀配置为例进行说明。
参见图1至图4,在一实施例中,分配器110包括壳体111以及转子114。壳体111为中空结构,转子114可转动地设置于壳体111内。壳体111具有输入管112及分别与输入管112相连通的多个输出管113。输入管112用于连接末端分配系统100的换热管路280,多个输出管113分别连接末端分配系统100的多个末端管路120。换热管路280中的水从壳体111的输入管112进入分配器110,经过壳体111的内腔后,再从壳体111的输出管113进入对应的末端管路120,流出分配器110。
可选的,输入管112、输出管113与壳体111为整体式结构,这样可以避免水泄露,保证分配器110可靠运行。当然,在本申请的输入管112、输出管113与壳体111也可以分体设置,只要保证连接处的密封性即可。又可选的,壳体111为圆柱形结构。可选的,各输出管113的孔径相同,这样可以进一步保证各输出管113输出的水流量相同。
当输入管112处输入的水流量较少或过多时,各输入管112可能会存在水流量配置不均匀的问题。因此,本申请的分配器110在壳体111的内腔中设置可转动的转子114,通过转子114转动时的离心力保证进入各输出管113的水流量相同,实现水流量的均匀配置。示例的,转子114具有分配腔1141、分配入口1142以及多个分配出口1143,分配腔1141连通分配入口1142与多个分配出口1143,输入管112与分配入口1142连通,输出管113与分配出口1143连通。可选的,转子114为可旋转的圆柱体。这样可以保证转子114在壳体111内平稳转动,避免发生干涉。
从输入管112进入的水经转子114的分配入口1142进入到转子114的分配腔1141,并且,分配腔1141中的水在离心力作用下可以均匀的从输入出口流出,并进入到壳体111的输出管113送出。而且,分配入口1142与输入管112邻近设置,这样可以减少水的进入路径。较佳地,分配入口1142与输入管112相对应,输入管112可伸入分配入口1142中,这样换热管路280中的水直接经输入管112进入分配腔1141中,避免水流泄露。分配出口1143与输出管113邻近设置,这样可以减少水的流出路径,保证各个输出管113输出的水流量均匀。
本申请的分配器110分配流体时,流体通过输入管112进入壳体111,并经分配入口1142进入转子114,通过转子114的分配腔1141分配后,从分配出口1143送出转子114,并经输出管113流出分配器110。转子114在分配流体的过程中可转动,使得流体受到离心力作用可以均匀的进入各个输出管113,有效的解决目前水流量分配不均的问题,保证各输出管113输出的流体量相同,实现均匀分配流体,进而保证末端分配系统100的流体分配均匀,提高末端分配系统100使用时的舒适性,保证多联机组的可靠性。
在一实施例中,输入管112与多个输出管113分设于壳体111相对的两侧。也就说,输入管112与输出管113位于壳体111两个不相邻的表面上,水可以从壳体111的一端进入,从另一端流出。这样可以避免水流短路问题以及压损大等问题,提高分配器110的分配效率。
在一实施例中,多个分配出口1143位于转子114转动轴线的周侧。这样,转子114转动时,转子114的分配腔1141内的水在离心力作用下会均匀的流向分配腔1141的内壁,并从转子114外周侧的分配出口1143流出,保证水均匀的从分配出口1143流出,并经输出管113流出。
在一实施例中,多个输出管113在壳体111上的位置位于转子114的周向外侧。也就是说,多个输出管113分布于转子114的外圈,如图1和图3所示。这样,从转子114周侧的分配出口1143送出的水可以直接经输出管113送出,保证输出管113的水流量充足,保证末端分配系统100可靠运行,进而保证多联机组的使用性能。若输出管113在壳体111的位置位于转子114的内侧,此时,转子114会阻挡水进入输出管113,影响输出管113的水流量。
在一实施例中,分配器110还包括驱动件115,设置于壳体111的外侧,并与转子114连接。驱动件115为转子114转动的动力源。可选的,驱动件115为电机,当然,驱动件115还可为其他可实现转动驱动的结构。本实施例中,驱动件115为异步电机。通过异步电机驱动转子114转动。
可以理解的,驱动件115由多联机组的控制系统控制。这样可以减少控制器的数量,使得多联机组可以对其部件进行集中控制,便于操作。多联机组的控制系统可以控制异步电机的启停,进而控制转子114的转动与停止。联机组的控制系统还可以调节异步电机的输出转速,进而调节转子114的转速,以调节输出管113中水的流速。
而且,分配器110的输出管113处的水流量与分配器110内转子114的转速r成正比。也就是说,转子114的转速r增加,输出管113处的水流量也相应的增加,反之,转子114的转速r减小,输出管113处的水流量也相应的减小。关于转子114转速的调节在后文详述。
在一实施例中,驱动件115位于壳体111具有输出管113的一侧。这样便于驱动件115与壳体111内的转子114连接,便于转子114的转动驱动控制。驱动件115的转动轴线与壳体111的转动中心线重合。这样可以保证转子114在壳体111内平稳转动。
参见图4,本申请一实施例提供了一种末端分配系统100,包括多个末端管路120、设置于每一末端管路120的末端换热器130以及上述实施例中的分配器110。多个末端管路120连接于分配器110的多个输出管113。末端分配系统100用于对末端进行换热,这里的末端是指室内空间。末端分配系统100对室内空间进行换热,可以实现对室内空间的制冷或制热处理,以免在用户的使用需求。本申请的末端分配系统100采用分配器110实现进水流量的均匀分配,使得多联机组的主机的冷热水可均匀分配,保证末端分配系统100的使用性能。
具体的,分配器110的一端通过输入管112连接多联机组的主机系统200,分配器110的另一端通过多个输出管113分别连接多个末端管路120,每个末端管路120上设置至少一个末端换热器130。末端换热器130位于室内空间中,通过末端换热器130对室内空间进行制冷制热。可选的,室内换热器可以为风盘、翅片换热器、管式换热器或者其他类型的末端内机。在本实施例中,分配器110连接四根末端管路120,四个末端管路120上的末端换热器130并联设置。当然,在本申请的其他实施方式中,末端管路120的数量可以更多或更少,末端换热器130的数量与末端管路120的数量相一致。
在一实施例中,末端分配系统100还包括多个温度检测件140,分别设置于多个末端管路120,用于检测末端环境温度。也就是说,温度检测件140可以实时检测末端换热器130对应的室内空间环境的温度。并且,温度检测件140与多联机组的控制系统电连接,以将末端环境温度传输到控制系统中。控制系统中存储有末端环境的预设温度,将末端环境温度与预设温度对比后,可以确定末端环境的温度差,即为末端负荷,控制系统通过末端负荷调节转子114的转速。
具体的,记末端环境的预设温度(即为设定温度)为T 预设,末端环境温度(即为室内空间的实际温度)为温度检测件140的温度,记为T 室温,末端负荷(即为末端环境的温度差)表示为ΔT=T 室温-T 预设。末端负荷大是指末端环境温度与预设温度的温度相差大,需要更多冷冻水或热水进行换热。反之,末端负荷小需要的冷冻水或热水也随之减小。
随着末端负荷的增加,即ΔT增加,则末端分配系统100需要的水流量增加,分配器110内转子114的转速需相应增加,以保证输出足够的水流量。因此,转子114的转速r与ΔT为正相关关系。这样,可以根据实际末端负荷ΔT的需求调节转子114转速r,以控制分配器110的输出管113的水流量。
在一实施例中,末端分配系统100还包括流量检测件150,设置于分配器110的输入管112处,用于检测输入管112处流体的实际流量。也就是说,流量检测件150可以检测分配器110的输入流量。由于输入管112的截面面积一定,进而可以计算出输入管112处水的实际流速。并且,流量检测件150与多联机组的控制系统电连接,以将输入管112中水的实际流速传输到控制系统中。控制系统中存储有输入管112中水的额定流量,并通过额定流量确定水的额定流速,将实际流速与额定流速对比后,可以确定输入管112处水的流速差,控制系统通过流速差调节转子114的转速。这样可以避免末端分配系统100出现喘振或堵塞现象。
具体的,分配器110的输入管112处水的额定流量为Q 额定,流量检测件150检测的输入管112处水的实际流量为Q 实际,输入管112处的截面面积为S。相应的,输入管112处水的额定流速为V 额定=Q 额定/S,输入管112处水的实际流速为V 实际=Q 实际/S。输入管112流速差ΔV=V 实际-V 额定
随着输入管112中的水流量增大,既ΔV增大,输出管113处的水流量也相应增大,容易造成末端分配系统100负荷波动。此时,分配器110内转子114的转速减小,稳定出水流量。因此,转子114的转速r与为ΔV负相关关系。这样,可以根据流速差ΔV的需求调节转子114转速r,以保证末端分配系统100可靠运行。
可选的,温度检测件140可以为感温包或传感器。当然,温度检测件140还可为其他可以实现温度检测的感温元件。流量检测件150为流量计等。
可以理解的,可以单独通过末端负荷的反馈调节转子114的转速,也可以单独通过流速差的反馈调节转子114的转速,当然,还可通过末端负荷和流速差的共同反馈调节转子114的转速。
本申请一实施例还提供了一种末端分配系统的控制方法,应用于上述实施例中的末端分配系统100,包括如下步骤:
分配器110的转子114以初始速度运行至预设时间;
实时检测末端环境温度,并根据末端环境温度计算末端分配系统100的末端负荷;和/或,实时检测实际流量,并根据实际流量计算输入管112处的流速差;
每隔预定时间,根据当前状态下末端负荷和/或流速差调节转子114的转速。
末端分配系统100在运行时,可以分为启动和控制阶段。在启动阶段,异步电机启动,并带动分配器110的转子114以初始速度r 初始转动,并运行至预设时间t 1。在控制阶段,温度检测件140检测末端环境温度T 室温,控制系统根据末端环境温度T 室温计算末端分配系统100的末端负荷ΔT,和/或,流量检测件150检测输入管112处水的实际流量Q 实际,控制系统根据实际流量Q 实际计算末端分配系统100的流速差ΔV。每隔预定时间调节转子114的转速r,具体的,根据当前状态下末端负荷和/或流速差调节转子114转速。可以理解的,预定时间可以为几秒甚至几十秒等等。
如图5所示,分配器110在启动阶段时,其转子114以初始速度r 初始运动至预设时间t 1,在此过程中,初始速度r 初始为恒定速度。当分配器110在控制阶段时,转子114每隔预定时间就会根据实际情况调节转子114的转速r,使得转子114的转速r在r 初始处上下波动,以实现输出管113处水流量的调节。
在一实施例中,实时检测末端环境温度,并根据末端环境温度计算末端分配系统100的末端负荷的步骤包括如下步骤:
获取末端换热器130所处环境的末端环境温度;
将末端环境温度与预设环境温度比较,确定末端负荷。
控制系统获取末端环境温度T 室温,控制系统中存储有末端环境的预设温度T 预设,将末端环境温度与预设环境温度比较即末端负荷ΔT=T 室温-T 预设。随着末端负荷的增加,即ΔT增加,则末端分配系统100需要的水流量增加,分配器110内转子114的转速需相应增加。这样,可以根据实际末端负荷ΔT的需求调节转子114转速r,以控制分配器110输出管113的水流量。
在一实施例中,实时检测实际流量,并根据实际流量计算输入管112处的流速差的步骤包括如下步骤:
获取分配器110的输入管112处的实际流量;
根据实际流量确定输入管112的实际流速;
根据输入管112处的额定流量确定输入管112的额定流速;
对比实际流速与额定流速确定流速差。
控制系统获取流量检测件150检测的输入管112处水的实际流量为Q 实际,输入管112 处的截面面积为S。控制系统通过实际流量确定输入管112的实际流速,V 实际=Q 实际/S。控制系统中存储有输入管112中水的额定流量Q 额定,并通过额定流量Q 额定确定水的额定流速V 额定=Q 额定/S。将实际流速与额定流速对比后,可以确定输入管112处水的流速差ΔV=V -V 额定,控制系统通过流速差调节转子114的转速。这样可以避免末端分配系统100出现喘振或堵塞现象。
在一实施例中,转子114的转速与末端负荷及流速差之间的关系为:
r=α×ΔT-β×ΔV+r 初始,其中,α、β为常数,ΔT为末端负荷,ΔV为流速差,r 初始为转子114的初始速度。
控制系统根据末端负荷ΔT和流速差ΔV共同反馈即可实现转子114转速的调节,这样,可以根据用户的需求以及实际水流量校正输出管113的水流量,以匹配末端实际需要的水流量,同时还可避免末端分配系统100发生喘振或堵塞,以保证末端分配系统100的使用性能,提高用户使用的舒适性。
本申请一实施例还提供一种多联机组,包括主机系统200及上述实施例中的末端分配系统100。主机系统200包括压缩机210、四通阀220、第一换热器230、节流装置240、第二换热器250及水泵260,压缩机210连接于四通阀220,四通阀220、第一换热器230、节流装置240及第二换热器250循环连接,第二换热器250还连接于末端分配系统100的分配器110入口及末端管路120,水泵260位于末端管路120与第二换热器250之间。
主机系统200还包括主管路270和换热管路280。主管路270循环连接四通阀220、第一换热器230、节流装置240及第二换热器250。换热管路280循环连接末端分配系统100、水泵260及第二换热器250。通过主管路270中的流体与换热管路280中的水在第二换热器250中进行换热,使得被加热或被冷却后的水进入末端换热器130,以对室内空间进行加热或冷却。本申请的多联机组采用上述的末端分配系统100后,可以在保证水流量均匀分配的同时,提高用户使用的舒适性。可选的,节流装置240为电子膨胀阀。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书的记载范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种分配器,其特征在于,用于均匀分配流体,包括:
    中空的壳体(111),所述壳体(111)具有输入管(112)及分别与所述输入管(112)相连通的多个输出管(113);以及
    可转动设置于所述壳体(111)内的转子(114),所述转子(114)具有分配腔(1141)、分配入口(1142)以及多个分配出口(1143),所述分配腔(1141)连通所述分配入口(1142)与多个所述分配出口(1143),所述输入管(112)与所述分配入口(1142)连通,所述输出管(113)与所述分配出口(1143)连通。
  2. 根据权利要求1所述的分配器,其特征在于,所述输入管(112)与多个所述输出管(113)分设于所述壳体(111)相对的两侧。
  3. 根据权利要求1所述的分配器,其特征在于,多个所述输出管(113)在所述壳体(111)上的位置位于所述转子(114)的周向外侧;
    和/或,多个所述分配出口(1143)位于所述转子(114)转动轴线的周侧。
  4. 根据权利要求1至3任一项所述的分配器(110),其特征在于,所述分配器(110)还包括驱动件(115),设置于所述壳体(111)的外侧,并与所述转子(114)连接。
  5. 根据权利要求4所述的分配器(110),其特征在于,所述驱动件(115)位于所述壳体(111)具有输出管(113)的一侧;
    所述驱动件(115)的转动轴线与所述壳体(111)的转动中心线重合。
  6. 一种末端分配系统,其特征在于,包括多个末端管路(120)、设置于每一所述末端管路(120)的末端换热器(130)以及如权利要求1至5任一项所述的分配器(110);
    多个所述末端管路(120)连接于所述分配器(110)的多个输出管(113)。
  7. 根据权利要求6所述的末端分配系统,其特征在于,所述末端分配系统(100)还包括多个温度检测件(140),分别设置于多个所述末端管路(120),用于检测末端环境温度。
  8. 根据权利要求6或7所述的末端分配系统,其特征在于,所述末端分配系统(100)还包括流量检测件(150),设置于所述分配器(110)的输入管(112)处,用于检测所述输入管(112)处流体的实际流量。
  9. 一种末端分配系统的控制方法,其特征在于,应用于如权利要求6至8任一项所述末端分配系统,包括如下步骤:
    分配器(110)的转子(114)以初始速度运行至预设时间;
    实时检测末端环境温度,并根据所述末端环境温度计算所述末端分配系统(100)的末端负荷;和/或,实时检测实际流量,并根据所述实际流量计算所述输入管(112)处的流速差;
    每隔预定时间,根据当前状态下所述末端负荷和/或所述流速差调节所述转子(114)的转速。
  10. 根据权利要求9所述的控制方法,其特征在于,所述实时检测末端环境温度,并根据所述末端环境温度计算所述末端分配系统(100)的末端负荷的步骤包括如下步骤:
    获取所述末端换热器(130)所处环境的所述末端环境温度;
    将所述末端环境温度与预设环境温度比较,确定所述末端负荷。
  11. 根据权利要求9所述的控制方法,其特征在于,所述实时检测实际流量,并根据所述实际流量计算所述输入管(112)处的流速差的步骤包括如下步骤:
    获取所述分配器(110)的所述输入管(112)处的所述实际流量;
    根据所述实际流量确定所述输入管(112)的实际流速;
    根据所述输入管(112)处的额定流量确定所述输入管(112)的额定流速;
    对比所述实际流速与所述额定流速确定所述流速差。
  12. 根据权利要求9所述的控制方法,其特征在于,所述转子(114)的转速与所述末端负荷及所述流速差之间的关系为:
    r=α×ΔT-β×ΔV+r 初始,其中,α、β为常数,ΔT为所述末端负荷,ΔV为所述流速差,r 初始为所述转子(114)的初始速度。
  13. 一种多联机组,其特征在于,包括主机系统(200)及如权利要求6至8任一项所述的末端分配系统(100);
    所述主机系统(200)包括压缩机(210)、四通阀(220)、第一换热器(230)、节流装置(240)、第二换热器(250)及水泵(260),所述压缩机(210)连接于所述四通阀(220),所述四通阀(220)、所述第一换热器(230)、所述节流装置(240)及所述第二换热器(250)循环连接,所述第二换热器(250)还连接于所述末端分配系统(100)的所述分配器(110)入口及所述末端管路(120),所述水泵(260)位于所述末端管路(120)与所述第二换热器(250)之间。
PCT/CN2018/120614 2018-09-19 2018-12-12 多联机组、末端分配系统及其控制方法与分配器 WO2020056940A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021100507A RU2756611C1 (ru) 2018-09-19 2018-12-12 Блок с множеством соединений, конечная распределительная система и способ управления ей и распределитель

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811092658.4A CN108954897B (zh) 2018-09-19 2018-09-19 多联机组、末端分配系统及其控制方法与分配器
CN201811092658.4 2018-09-19

Publications (1)

Publication Number Publication Date
WO2020056940A1 true WO2020056940A1 (zh) 2020-03-26

Family

ID=64471231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120614 WO2020056940A1 (zh) 2018-09-19 2018-12-12 多联机组、末端分配系统及其控制方法与分配器

Country Status (3)

Country Link
CN (1) CN108954897B (zh)
RU (1) RU2756611C1 (zh)
WO (1) WO2020056940A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108954897B (zh) * 2018-09-19 2024-05-21 珠海格力电器股份有限公司 多联机组、末端分配系统及其控制方法与分配器
CN109945431B (zh) * 2019-03-20 2020-11-24 珠海格力电器股份有限公司 温度调节方法、装置、系统及空调
CN110131863A (zh) * 2019-05-13 2019-08-16 珠海格力电器股份有限公司 调节器、流量调节方法及空调
CN110131931A (zh) * 2019-06-25 2019-08-16 北京鑫红苑制冷设备工程有限公司 螺旋离心式分液器
CN111780595B (zh) * 2020-06-23 2021-10-29 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) 一种换热板及微通道换热器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961016A (ja) * 1995-08-25 1997-03-07 Hitachi Ltd 冷媒分流器
US20100307190A1 (en) * 2007-06-19 2010-12-09 Danfoss A/S Refrigeration system
WO2012017799A1 (ja) * 2010-08-02 2012-02-09 ダイキン工業 株式会社 冷媒分流器、冷媒分流器一体型の膨張装置及び冷凍装置
CN102914093A (zh) * 2011-08-03 2013-02-06 珠海格力电器股份有限公司 干式蒸发器及其均分扰动装置
CN204373279U (zh) * 2014-12-29 2015-06-03 天津商业大学 一种具有均匀分液功能的透平膨胀机及制冷系统
CN205300060U (zh) * 2016-01-19 2016-06-08 诸暨市双姣制冷配件有限公司 一种旋转式分液头
CN105841254A (zh) * 2015-01-29 2016-08-10 富士通将军股份有限公司 空气调节装置的室外机和空气调节装置
CN207585156U (zh) * 2017-11-14 2018-07-06 青岛海尔空调电子有限公司 一种冷媒分液结构及多联机
CN108954897A (zh) * 2018-09-19 2018-12-07 珠海格力电器股份有限公司 多联机组、末端分配系统及其控制方法与分配器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305417A (en) * 1979-09-13 1981-12-15 Carrier Corporation Rotationally indexing valve
JPH06298364A (ja) * 1993-04-14 1994-10-25 Mitsubishi Heavy Ind Ltd 粉体加圧供給装置
RU2277207C2 (ru) * 2004-08-05 2006-05-27 Федеральное государственное унитарное предприятие "Конструкторское бюро общего машиностроения им. В.П. Бармина" Система поддержания температурно-влажностного режима
CN100504222C (zh) * 2005-01-18 2009-06-24 李凯峰 空调冷凝水雾化装置
DE102006006731A1 (de) * 2006-02-13 2007-08-16 Danfoss A/S Kühlanlage
RU2386086C2 (ru) * 2008-04-11 2010-04-10 Василий Иванович Мазий Система воздушного отопления, воздушного охлаждения помещений и способ получения чистого воздуха
CN101988778B (zh) * 2009-08-07 2012-01-18 约克广州空调冷冻设备有限公司 可调节式制冷剂分配器
RU2463524C1 (ru) * 2011-06-14 2012-10-10 Георгий Вадимович Харламов Способ автоматического управления системой кондиционирования воздуха по оптимальным режимам
JP2015178945A (ja) * 2014-03-18 2015-10-08 寛 ▲高▼田 冷媒分流器
EP3348937B1 (en) * 2015-09-09 2019-10-23 Mitsubishi Electric Corporation Air conditioner
DE102015223631B4 (de) * 2015-11-30 2017-06-08 Thyssenkrupp Ag Gebaute Rotorhohlwelle mit Kühlmediumverteilelement
CN105444452B (zh) * 2015-12-03 2018-04-13 珠海格力电器股份有限公司 空调系统
CN106765957B (zh) * 2016-12-23 2019-06-21 新智能源系统控制有限责任公司 基于负荷预测与舒适度反馈的供水变温度控制系统
CN208794778U (zh) * 2018-09-19 2019-04-26 珠海格力电器股份有限公司 多联机组、末端分配系统与分配器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961016A (ja) * 1995-08-25 1997-03-07 Hitachi Ltd 冷媒分流器
US20100307190A1 (en) * 2007-06-19 2010-12-09 Danfoss A/S Refrigeration system
WO2012017799A1 (ja) * 2010-08-02 2012-02-09 ダイキン工業 株式会社 冷媒分流器、冷媒分流器一体型の膨張装置及び冷凍装置
CN102914093A (zh) * 2011-08-03 2013-02-06 珠海格力电器股份有限公司 干式蒸发器及其均分扰动装置
CN204373279U (zh) * 2014-12-29 2015-06-03 天津商业大学 一种具有均匀分液功能的透平膨胀机及制冷系统
CN105841254A (zh) * 2015-01-29 2016-08-10 富士通将军股份有限公司 空气调节装置的室外机和空气调节装置
CN205300060U (zh) * 2016-01-19 2016-06-08 诸暨市双姣制冷配件有限公司 一种旋转式分液头
CN207585156U (zh) * 2017-11-14 2018-07-06 青岛海尔空调电子有限公司 一种冷媒分液结构及多联机
CN108954897A (zh) * 2018-09-19 2018-12-07 珠海格力电器股份有限公司 多联机组、末端分配系统及其控制方法与分配器

Also Published As

Publication number Publication date
CN108954897B (zh) 2024-05-21
RU2756611C1 (ru) 2021-10-04
CN108954897A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
WO2020056940A1 (zh) 多联机组、末端分配系统及其控制方法与分配器
US9951962B2 (en) Heat pump heating and hot-water system
US9500394B2 (en) Retro-fit energy exchange system for transparent incorporation into a plurality of existing energy transfer systems
US20060107683A1 (en) Air conditioning system and method for controlling the same
CN103140729B (zh) 载热体流量推测装置、热源机、及载热体流量推测方法
BR112012028619B1 (pt) aparelho de condicionamento de ar
CN102168899A (zh) 热泵系统及其控制方法
EP3614070A1 (en) Air conditioner
WO2014165497A1 (en) Air conditioning system and method for controlling air conditioning system
JP2002031376A (ja) 空調システム
KR102001933B1 (ko) 공기조화시스템 및 그 제어방법
JP2018017446A (ja) 空調システム及び運転制御方法
CN107741111A (zh) 冷水机组及其启动控制方法和装置
CN104296372B (zh) 家用常压热泵热水器及其控制方法
JP2004278884A (ja) 制御装置
JP2019163900A (ja) 温水暖房装置
WO2018087810A1 (ja) 暖房制御システムおよびヒートポンプ給湯暖房システム
JP2017110856A (ja) 空気調和装置
JP2009019842A (ja) 送水制御システム及び送水制御方法
CN103363834B (zh) 板式换热器及其流体分配器、板式换热器的控制方法
WO2023050827A1 (zh) 用于空调器的控制方法及空调器
CN113348326A (zh) 用于具有可变流动方向的液压分配系统的分配泵设备
CN208794778U (zh) 多联机组、末端分配系统与分配器
JP2013142476A (ja) チラーの連結運転方法及びシステム
US11619425B2 (en) Heat pump and method for controlling compressor based on operation of boiler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934173

Country of ref document: EP

Kind code of ref document: A1