WO2020054480A1 - 定圧液供給装置 - Google Patents

定圧液供給装置 Download PDF

Info

Publication number
WO2020054480A1
WO2020054480A1 PCT/JP2019/034439 JP2019034439W WO2020054480A1 WO 2020054480 A1 WO2020054480 A1 WO 2020054480A1 JP 2019034439 W JP2019034439 W JP 2019034439W WO 2020054480 A1 WO2020054480 A1 WO 2020054480A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
rotation speed
supply device
pump unit
parameter
Prior art date
Application number
PCT/JP2019/034439
Other languages
English (en)
French (fr)
Inventor
経博 竹内
Original Assignee
住友精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精密工業株式会社 filed Critical 住友精密工業株式会社
Priority to JP2020501410A priority Critical patent/JP6785394B2/ja
Publication of WO2020054480A1 publication Critical patent/WO2020054480A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures

Definitions

  • the technology disclosed herein relates to a constant-pressure liquid supply device that supplies a liquid to an object having a liquid ejection hole.
  • Patent Document 1 describes a coolant supply device for a machine tool.
  • This coolant supply device includes a pump, an electric motor, a pressure sensor, and a controller.
  • the pump discharges coolant.
  • the electric motor operates the pump.
  • the pressure sensor detects a discharge pressure of the coolant discharged from the pump.
  • the controller controls the frequency output by the inverter circuit to the motor based on the detection value of the pressure sensor so that the discharge pressure of the pump becomes the target pressure.
  • the coolant supply device described in Patent Document 1 performs feedback control based on the discharge pressure detected by the pressure sensor.
  • the present inventor has found that in the coolant supply device, the actual torque of the electric motor and the discharge pressure of the pump are in a proportional relationship. From this finding, the present inventor has proposed a coolant supply device that adjusts the discharge pressure of a pump based on the actual torque of an electric motor (see Patent Document 2).
  • the controller of the coolant supply device described in Patent Document 2 has a table or a relational expression that defines a relationship between the actual torque of the electric motor and the discharge pressure of the pump.
  • the controller controls the electric motor based on the table or the relational expression such that the actual torque of the electric motor becomes the target torque.
  • the discharge pressure of the pump becomes the target pressure.
  • the actual torque of the electric motor can be replaced with, for example, an output torque calculated from the output current of the inverter.
  • the coolant supply device described in Patent Literature 2 has an advantage that a pressure sensor is not required and the device configuration can be simplified.
  • the conventional coolant supply device uses a general-purpose motor as the electric motor.
  • General-purpose motors cannot continuously and stably output a constant torque in a low rotation speed range. For this reason, the conventional coolant supply apparatus limits the output frequency of the inverter so that the electric motor does not operate at a predetermined rotation speed or less.
  • inverter-dedicated motors are superior in constant torque characteristics in the low rotation speed range. If an inverter-dedicated motor is used for the coolant supply device, the pump can be operated in a low rotation speed range. When the pump is operated in the low rotation speed range, energy saving of the coolant supply device can be expected. Note that the inverter-dedicated motor includes an inverter-dedicated constant torque motor.
  • the cleaning device is a device that supplies a cleaning liquid of a predetermined pressure to a processed product in order to clean a processed product processed by a machine tool.
  • Both the coolant supply device and the cleaning liquid supply device are constant-pressure liquid supply devices that supply a liquid having a predetermined pressure to an object.
  • the technology disclosed herein relates to a constant-pressure liquid supply device that supplies a liquid to an object having a liquid ejection hole.
  • the constant pressure liquid supply device is A positive displacement pump body that discharges liquid, and a pump unit that is connected to the pump body and includes an electric motor that operates the pump body; An inverter that changes a rotation speed of the electric motor; A controller for controlling the pump unit through the inverter, The controller has a table or a relational expression that defines a relationship among a first parameter related to an actual torque of the electric motor, a second parameter that is a rotation speed of the pump unit, and a discharge pressure of the pump unit. And The controller controls the electric motor according to the table or the relational expression so that the discharge pressure of the pump unit becomes a target pressure while feeding back the first parameter and the second parameter.
  • the controller has a table or a relational expression that defines the relation between the first parameter, the second parameter, and the discharge pressure of the pump section.
  • the first parameter is related to the actual torque of the electric motor.
  • the second parameter is the rotation speed of the pump section.
  • the conventional device described in Patent Literature 2 has a table or a relational expression that defines the relationship between the actual torque of the electric motor and the discharge pressure of the pump section.
  • a second parameter, which is the rotation speed of the pump unit, is added to the table or the relational expression of the constant pressure liquid supply device as compared with the related art.
  • the rotation speed of the pump unit is the rotation speed of the electric motor and also the rotation speed of the pump body.
  • the characteristics of the positive displacement pump body are reflected in the table or the relational expression.
  • the characteristics of the pump main body are characteristics that the volume efficiency decreases as the rotation speed decreases.
  • the characteristics of the electric motor are also reflected in the table or the relational expression.
  • the characteristic of the electric motor is a characteristic that the output current value of the inverter is different between a case where the rotation speed is high and a case where the rotation speed is low, even if the electric motor outputs the same torque.
  • the controller can appropriately adjust the discharge pressure of the pump unit to the target pressure according to a table or a relational expression when operating the pump unit in the low rotation speed range.
  • the rotation speed of the pump unit as the second parameter can be substituted by the rotation speed of the electric motor calculated by the inverter. This eliminates the need for a new sensor and simplifies the configuration of the constant-pressure liquid supply device.
  • the first parameter may be an output torque of the inverter or a current value of the electric motor.
  • the controller can appropriately adjust the discharge pressure of the pump to the target pressure by using the output torque of the inverter or the current value of the electric motor.
  • the output torque of the inverter is an output torque calculated by the inverter.
  • the first parameter is the output torque of the inverter, no new sensor is required.
  • the configuration of the constant-pressure liquid supply device can be simplified.
  • the controller has a table or a relational expression that defines a relation between the first parameter, the second parameter, the third parameter, and a discharge pressure of the pump unit,
  • the controller controls the electric motor according to the table or the relational expression so that the discharge pressure of the pump unit becomes a target pressure while feeding back the first parameter, the second parameter, and the third parameter.
  • the third parameter may be at least one of a temperature of the liquid and an operation time of the electric motor.
  • the operation time of the electric motor is, for example, the total operation time.
  • the controller can more appropriately adjust the discharge pressure of the pump unit using the temperature of the liquid and / or the operation time of the electric motor.
  • the third parameter may be one or both of the temperature of the liquid and the operation time of the electric motor.
  • the operation area of the pump unit is divided into a plurality of rotation speed areas
  • the controller may have a plurality of relational expressions corresponding to each of the plurality of rotation speed ranges, and may control the electric motor according to a corresponding relational expression according to a rotation speed of the pump unit.
  • the inventor of the present application has found that it is sometimes preferable to set a relational expression when the rotation speed of the pump unit is high and a relational expression when the rotation speed is low.
  • the rotation speed of the pump unit is the rotation speed of the electric motor and the rotation speed of the pump body.
  • the controller has two relational expressions and selects the two relational expressions according to the rotation speed of the pump section.
  • the controller has a plurality of relational expressions and controls the electric motor according to a relational expression corresponding to the rotation speed of the pump section.
  • the controller can more appropriately adjust the discharge pressure of the pump unit to the target pressure.
  • the object may be a tool of a machine tool, and the liquid may be a coolant. That is, the constant pressure liquid supply device may be a coolant supply device for a machine tool.
  • the electric motor may be a motor dedicated to an inverter.
  • the torque of the inverter-dedicated motor is stable during continuous operation at a low rotation speed.
  • the electric motor is a motor dedicated to the inverter
  • the constant-pressure liquid supply device can operate the electric motor and the pump body in a low rotation speed range. By operating the electric motor and the pump body in the low rotation speed range, the constant-pressure liquid supply device saves energy.
  • the table or the relational expression includes the rotation speed of the electric motor, which is the second parameter.
  • the controller can appropriately adjust the discharge pressure of the pump unit to the target pressure when operating the electric motor and the pump body in the low rotation speed range.
  • the discharge pressure of the pump can be appropriately adjusted.
  • FIG. 1 is a circuit diagram illustrating the configuration of the coolant supply device.
  • FIG. 2 is a diagram illustrating a relational expression among the output torque of the inverter, the rotation speed of the pump unit, and the discharge pressure of the pump unit.
  • FIG. 3 is a diagram illustrating a relational expression different from FIG.
  • FIG. 1 shows a configuration example in which the constant-pressure liquid supply device disclosed herein is applied to a coolant supply device 1.
  • the coolant supply device 1 supplies coolant to the tool 21 of the machine tool 2.
  • the tool 21 may be of any type. As illustrated in FIG. 1, the tool 21 has an ejection hole 22 from which a coolant is ejected. The coolant is jetted to the processing location through the jet holes 22.
  • the tool 21 is an example of an object having a hole for ejecting a liquid.
  • a coolant supply line 23 is connected to the tool 21.
  • the supply line 23 is connected to the discharge line 3 in the coolant supply device 1 via the connection portion 20 of the coolant supply device 1.
  • the coolant is supplied to the tool 21 through the discharge line 3 and the supply line 23.
  • the pump section 4 is provided in the discharge line 3.
  • the pump section 4 discharges the coolant toward the tool 21.
  • the pump unit 4 includes a pump body 41 and an electric motor 42.
  • the pump body 41 is a fixed displacement positive displacement pump.
  • the pump main body 41 may be, specifically, a rotary pump such as a gear pump, a vane pump, or a screw pump.
  • the pump section 4 may also be a reciprocating pump such as a piston pump and a plunger pump.
  • the electric motor 42 is connected to the pump body 41.
  • the electric motor 42 may be, for example, a motor dedicated to an inverter.
  • the electric motor 42 may be a PM motor or a general-purpose motor.
  • the electric motor 42 is connected to the inverter 72.
  • Inverter 72 outputs a rotation speed command to electric motor 42.
  • the electric motor 42 can change the rotation speed according to the rotation speed command output from the inverter 72.
  • the controller 71 is connected to the inverter 72.
  • the controller 71 controls the electric motor 42 through the inverter 72. Since the required flow rate of the coolant constantly changes during machining in the machine tool 2, the controller 71 always controls the rotation speed of the electric motor 42 through the inverter 72.
  • the inverter 72 calculates the output torque to the electric motor 42 and the rotation speed of the electric motor 42. Although details will be described later, the inverter 72 outputs the output torque of the inverter 72 and the rotation speed of the electric motor 42 to the controller 71 as a feedback signal. The controller 71 performs feedback control of the electric motor 42 based on the output torque of the inverter 72 and the rotation speed of the electric motor 42. Note that the output torque of the inverter 72 is an example of a first parameter related to the torque of the electric motor 42. The rotation speed of the electric motor 42 is a second parameter.
  • a relief line 5 is connected between the connection part 20 and the pump part 4.
  • a relief valve 51 is provided in the relief line 5.
  • the relief valve 51 opens at a predetermined pressure. The relief valve 51 opens for safety when the flow rate of the coolant required for the tool 21 becomes extremely small and when an abnormality occurs in a control command output by the controller 71.
  • the relief line 5 is connected to a coolant tank 6. Excess coolant flowing through the relief line 5 returns to the tank 6. Although not shown, the coolant supplied to the tool 21 returns to the tank 6.
  • the pump unit 4 is connected to the tank 6. The pump unit 4 sucks the coolant in the tank 6.
  • the pressure gauge 31 indicating the pressure of the coolant is connected to the discharge line 3.
  • the controller 71 performs the feedback control of the electric motor 42 as described above.
  • the tool 21 to which the coolant is supplied has an ejection hole 22 from which the coolant is ejected. Therefore, when the flow rate of the coolant in the discharge line 3 and the supply line 23 increases, the discharge pressure of the pump unit 4 increases.
  • the rotation speed of the electric motor 42 and the discharge pressure of the pump unit 4 are in a proportional relationship.
  • the discharge pressure and the torque are in a proportional relationship.
  • the actual torque of the electric motor 42 corresponds to the output torque of the inverter 72. Therefore, the output torque of the inverter 72 and the discharge pressure of the pump section 4 are in a proportional relationship.
  • the controller 71 uses the output torque of the inverter 72 as a feedback signal.
  • the controller 71 controls the electric motor 42 so that the torque of the electric motor 42 becomes the target torque.
  • the controller 71 can control the pump unit 4 so that the discharge pressure of the pump unit 4 becomes the target pressure without using a pressure sensor that detects the discharge pressure of the pump unit 4. By omitting the pressure sensor, the configuration of the coolant supply device 1 can be simplified.
  • the controller 71 When the pressure in the discharge line 3 and the supply line 23 increases and a feedback signal of a predetermined torque or more is input to the controller 71, the controller 71 immediately reduces the rotation speed of the electric motor 42 to reduce the pressure. Since the amount of coolant ejected from the ejection holes 22 is adjusted, the relief valve 51 does not open when the coolant supply device 1 operates normally. Useless coolant does not flow to the relief line 5.
  • the inverter-dedicated motor has excellent constant torque characteristics in the low rotation speed range.
  • the electric motor 42 is a motor dedicated to the inverter
  • the pump section 4 can be operated in a low rotation speed range.
  • the coolant supply device 1 can save energy.
  • the volumetric efficiency of the positive displacement pump main body 41 rapidly decreases as the rotation speed decreases. For this reason, in the low rotation speed region, the above-described proportional relationship between the output torque of the inverter 72 and the discharge pressure of the pump unit 4 does not hold or hardly holds.
  • the inventor of the present application has found that the output current value of the inverter 72 differs between the case where the rotation speed is high and the case where the actual torque output by the motor is the same, when the rotation speed is high and when the rotation speed is low.
  • the total efficiency of the pump unit 4 includes a decrease in the volumetric efficiency of the pump body 41 and the relationship between the input current value of the electric motor 42 and the actual torque.
  • the total efficiency of the pump unit 4 is different between the case where the pump unit 4 operates in the low rotation speed region and the case where the pump unit 4 operates at a higher rotation speed than the low rotation speed region. Therefore, when operating the pump unit 4 in the low rotation speed range, the controller 71 controls the pump unit 4 based on only the relationship between the output torque of the inverter 72 and the discharge pressure of the pump unit 4 as described above. Difficult to control.
  • the controller 71 of the coolant supply device 1 determines the relationship between the first parameter related to the actual torque of the electric motor 42, the second parameter that is the rotation speed of the pump unit 4, and the discharge pressure of the pump unit 4. It has a predetermined table or relational expression, and controls the pump unit 4 based on the table or relational expression.
  • the first parameter is specifically the output torque of the inverter 72.
  • This relational expression can be set by performing a multivariate analysis on test results (see black circles in FIG. 2) obtained by operating the pump unit 4 including the pump body 41 and the electric motor 42 under various operating conditions.
  • a relational expression can be set by multiple regression analysis using torque (y) as a target variable and discharge pressure (x 1 ) and rotation speed (x 2 ) as explanatory variables.
  • the constants a 1 , a 2 , and b 1 of the linear relational expression may be set using, for example, the least square method (OLS). Note that the relational expression is not limited to a linear expression.
  • the relational expression may be a quadratic or a cubic.
  • the controller 71 can set the target output torque of the inverter 72 based on the target pressure of the pump unit 4, the rotation speed of the pump unit 4, and a relational expression.
  • the table defines the relationship among the output torque of the inverter 72, the rotation speed of the pump unit 4, and the discharge pressure of the pump unit 4 in the same manner as in the above relational expression.
  • the controller 71 can set the target output torque of the inverter 72 based on the target pressure of the pump unit 4, the rotation speed of the pump unit 4, and the table.
  • the controller 71 controls the pump unit 4 according to the table or the relational expression described above, using the output torque of the inverter 72 and the rotation speed of the pump unit 4 calculated by the inverter 72 as feedback signals.
  • the controller 71 has a table or a relational expression 711 and a subtractor 712 as functional blocks.
  • the controller 71 receives a signal of a target pressure designated by the machine tool 2.
  • the controller 71 also receives a signal of the rotation speed of the electric motor 42 output from the inverter 72.
  • the rotation speed of the electric motor 42 matches the rotation speed of the pump body 41.
  • the controller 71 sets a target output torque according to a table or a relational expression 711 based on the target pressure and the rotation speed.
  • the subtracter 712 calculates a deviation between the target output torque and the output torque of the inverter 72.
  • the output torque of the inverter 72 is a feedback signal output by the inverter 72.
  • the controller 71 outputs a control signal corresponding to the torque deviation to the inverter 72.
  • the inverter 72 operates the electric motor 42 so that the deviation of the torque is eliminated. As a result, the discharge pressure of the pump section 4 becomes the target pressure.
  • the pump unit 4 is controlled by the pump unit 4 to reduce the volumetric efficiency of the pump body 41 and the relationship between the input current value of the electric motor 42 and the actual torque to be output. Can be reflected in As a result, the controller 71 can appropriately adjust the discharge pressure of the pump unit 4 to the target pressure when the pump unit 4 operates in the low rotation speed range. By operating the pump unit 4 in the low rotation speed range, the coolant supply device 1 saves energy. Further, the controller 71 can appropriately adjust the discharge pressure of the pump unit 4 even when the pump unit 4 operates at a higher rotation speed than the low rotation speed range.
  • the feedback signal of the coolant supply device 1 is the output torque of the inverter 72 and the rotation speed of the pump unit 4 calculated by the inverter 72. There is no need to add a sensor for detecting the first parameter and the second parameter, which are feedback signals, to the coolant supply device 1.
  • the configuration of the coolant supply device 1 is simplified.
  • the table or the relational expression 711 includes the first parameter and the second parameter.
  • the table or relation 711 may further include coolant temperature as a third parameter.
  • coolant temperature As a third parameter, the viscosity of the coolant changes.
  • the relationship between the actual torque of the electric motor 42 and the discharge pressure of the pump body 41 also changes.
  • the coolant supply device 1 can more appropriately adjust the discharge pressure of the pump unit 4.
  • the third parameter may be the operation time of the electric motor 42.
  • the operation time of the electric motor 42 becomes longer, the characteristic of the actual torque of the electric motor 42 with respect to the input current value of the electric motor 42 may change. Therefore, by adding the operation time of the electric motor 42 to the table or the relational expression 711, the coolant supply device 1 can more appropriately adjust the discharge pressure of the pump unit 4.
  • the third parameter may be only the coolant temperature or only the operation time of the electric motor 42 as described above. Further, the third parameter may be both the coolant temperature and the operation time of the electric motor 42.
  • the first parameter may be a current value of the electric motor 42 instead of the output torque of the inverter 72.
  • the current value of the electric motor 42 may be detected by a sensor.
  • the first parameter may be a value proportional to the actual torque of the electric motor 42, which is a combination of the voltage value and the power value, instead of the output torque of the inverter 72.
  • FIG. 2 shows an example in which one relational expression is set for the entire operation region of the pump unit 4.
  • the inventor of the present application has noticed that it may be preferable to set a relational expression when the rotation speed of the pump unit 4 is high and a relational expression when the rotation speed is low.
  • the rotation speed of the pump unit 4 is the rotation speed of the electric motor 42 and the rotation speed of the pump body 41.
  • the controller 71 has two relational expressions, and selects two relational expressions according to the rotation speed of the pump unit 4.
  • FIG. 3 divides the operation region of the pump section 4 into a low rotation speed region and a high rotation speed region, and the controller 71 sets a relational expression corresponding to the low rotation speed region and a relational expression corresponding to the high rotation speed region. Is shown.
  • the dashed-dotted square shown in FIG. 3 indicates a virtual plane at a predetermined rotation speed N.
  • the low rotation speed region is a region below the predetermined rotation speed N
  • the high rotation speed region is a region exceeding the predetermined rotation speed N.
  • the relational expression has an inflection point.
  • the controller 71 controls the electric motor 42 according to the first relational expression. Further, when the rotation speed of the pump unit 4 is within the high rotation speed range, the controller 71 controls the electric motor 42 according to the second relational expression. By doing so, the controller 71 can more appropriately adjust the discharge pressure of the pump unit 4 to the target pressure regardless of whether the pump unit 4 has a low rotation speed or a high rotation speed.
  • the operation area of the pump unit 4 is not limited to being divided into two areas as shown in FIG.
  • the operation region of the pump section 4 may be divided into three or more regions.
  • the controller 71 may have a relational expression corresponding to each area.
  • the constant pressure liquid supply device disclosed herein is not limited to the coolant supply device.
  • the constant pressure liquid supply device disclosed herein may be, for example, a cleaning liquid supply device for a cleaning device.
  • the cleaning device ejects a cleaning liquid toward the workpiece in order to clean the workpiece processed by the machine tool.
  • the cleaning liquid supply device supplies a cleaning liquid at a predetermined pressure to the cleaning device.
  • Coolant supply device 21 Tool (object) 22 Injection hole 4 Pump section 41 Pump body 42 Electric motor 71 Controller 711 Table or relational expression 72 Inverter

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

定圧液供給装置は、容積式のポンプ本体(41)、及び、電動モータ(42)を含むポンプ部(4)と、インバータ(72)と、コントローラ(71)と、を備える。コントローラは、電動モータの実トルクに関連する第1パラメータと、ポンプ部4の回転速度である第2パラメータと、ポンプ部の吐出圧力と、の関係を定めたテーブル又は関係式を有している。コントローラは、第1パラメータと第2パラメータとをフィードバックしながら、ポンプの吐出圧力が目標圧力となるように、テーブル又は関係式に従い電動モータを制御する。

Description

定圧液供給装置
 ここに開示する技術は、液の噴出孔を有する対象物に、液を供給する定圧液供給装置に関する。
 特許文献1には、工作機械のクーラント供給装置が記載されている。このクーラント供給装置は、ポンプと、電動モータと、圧力センサと、コントローラとを備えている。ポンプは、クーラントを吐出する。電動モータは、ポンプを運転する。圧力センサは、ポンプが吐出したクーラントの吐出圧力を検出する。コントローラは、圧力センサの検出値に基づいて、ポンプの吐出圧力が目標圧力となるように、インバータ回路がモータへ出力する周波数を制御する。
 特許文献1に記載されたクーラント供給装置は、圧力センサが検出した吐出圧力に基づくフィードバック制御を行っている。本願発明者は、クーラント供給装置においては、電動モータの実トルクとポンプの吐出圧力とが比例関係にあることを見いだした。この知見から、本願発明者は、電動モータの実トルクに基づいて、ポンプの吐出圧力を調節するクーラント供給装置を提案している(特許文献2参照)。
 電動モータの回転速度が上昇し、それに伴い容積式のポンプの回転速度が上昇すると、ポンプの吐出流量が高まる。工作機械の工具は、クーラントが噴出する孔を有している。このため、ポンプの吐出流量が高まるに従い、ポンプの吐出圧力も高まる。容積式のポンプの吐出圧力が高まるに従い、電動モータの実トルクも高まる。従って、電動モータの実トルクとポンプの吐出圧力とは比例関係にある。
 特許文献2に記載されたクーラント供給装置のコントローラは、電動モータの実トルクとポンプの吐出圧力との関係を定めたテーブル又は関係式を有している。コントローラは、テーブル又は関係式に基づいて、電動モータの実トルクが目標トルクとなるように、電動モータを制御する。その結果、ポンプの吐出圧力が、目標圧力になる。電動モータの実トルクは、例えばインバータの出力電流から算出される出力トルクで代用できる。特許文献2に記載にされたクーラント供給装置は、圧力センサが不要であり、装置構成を簡略化できるという利点がある。
特開2004-36421号公報 特開2009-215935号公報
 特許文献2には明示されていないが、従来のクーラント供給装置は、電動モータとして汎用モータを用いていた。汎用モータは、低回転速度域において一定トルクを連続的に安定して出力できない。このため、従来のクーラント供給装置は、電動モータが所定回転速度以下で運転しないように、インバータの出力周波数を制限していた。
 汎用モータに対し、インバータ専用モータは、低回転速度域における定トルク特性に優れている。クーラント供給装置にインバータ専用モータを用いれば、ポンプを低回転速度域において運転できる。ポンプを低回転速度域において運転すると、クーラント供給装置の省エネ化が期待できる。尚、インバータ専用モータは、インバータ専用定トルクモータを含む。
 しかしながら、本願発明者の検討によると、インバータ専用モータを有するクーラント供給装置は、低回転速度域において、電動モータの実トルクに基づくフィードバック制御が難しいことがわかった。その理由は、容積式のポンプは、回転速度が低くなると容積効率が急激に低下してしまうためである。電動モータの実トルクとポンプの吐出圧力との間の比例関係は、特に低回転速度域においては、成立しない、又は、成立し難い。
 また、本願発明者の検討によると、インバータ専用モータは、実トルクが同一であっても、回転速度が高いときと低いときとでは、インバータの出力電流が相違することがわかった。そのため、インバータの出力電流から算出される出力トルクを利用してポンプの吐出圧力を調節する構成は、ポンプの吐出圧力を調節することが難しい。
 従って、特許文献2に記載されたクーラント供給装置は、電動モータ及びポンプを低回転速度域において運転しようとしても、ポンプの吐出圧力を適切に調節することが難しい。
 尚、この問題は、工作機械用のクーラント供給装置に限らず、洗浄装置用の洗浄液供給装置も同様に有している。洗浄装置とは、工作機械によって加工された加工品を洗浄するために、所定圧力の洗浄液を加工品に供給する装置である。クーラント供給装置及び洗浄液供給装置は共に、対象物に、所定圧力の液を供給する定圧液供給装置である。
 ここに開示する技術は、定圧液供給装置において、ポンプの吐出圧力を適切に調節する。
 具体的にここに開示する技術は、液の噴出孔を有する対象物に、液を供給する定圧液供給装置に係る。
 定圧液供給装置は、
 液を吐出する容積式のポンプ本体、及び 前記ポンプ本体に連結されかつ、前記ポンプ本体を運転する電動モータを含むポンプ部と、
 前記電動モータの回転速度を変更させるインバータと、
 前記インバータを通じて前記ポンプ部を制御するコントローラと、を備え、
 前記コントローラは、前記電動モータの実トルクに関連する第1パラメータと、前記ポンプ部の回転速度である第2パラメータと、前記ポンプ部の吐出圧力と、の関係を定めたテーブル又は関係式を有し、
 前記コントローラは、前記第1パラメータと前記第2パラメータとをフィードバックしながら、前記ポンプ部の吐出圧力が目標圧力となるように、前記テーブル又は前記関係式に従い前記電動モータを制御する。
 コントローラは、第1パラメータと、第2パラメータと、ポンプ部の吐出圧力との関係を定めたテーブル又は関係式を有している。第1パラメータは、電動モータの実トルクに関連する。第2パラメータは、ポンプ部の回転速度である。特許文献2に記載された従来の装置は、電動モータの実トルクとポンプ部の吐出圧力との関係を定めたテーブル又は関係式を有している。前記の定圧液供給装置のテーブル又は関係式には、従来と比較して、ポンプ部の回転速度である第2パラメータが追加されている。尚、ポンプ部の回転速度は、電動モータの回転速度であると共に、ポンプ本体の回転速度である。
 ポンプ部の回転速度をテーブル又は関係式に加えることによって、容積式のポンプ本体の特性が、テーブル又は関係式に反映される。ポンプ本体の特性とは、前述したように、回転速度が低くなると容積効率が低下するという特性である。また、電動モータの特性も、テーブル又は関係式に反映される。電動モータの特性とは、前述したように、電動モータが同一トルクを出力していても、回転速度が高い場合と低い場合とでは、インバータの出力電流値が相違するという特性である。コントローラは、ポンプ部を低回転速度域で運転する場合に、テーブル又は関係式に従って、ポンプ部の吐出圧力を、目標圧力に、適切に調節できる。
 尚、第2パラメータとしてのポンプ部の回転速度は、インバータが演算する電動モータの回転速度によって代用できる。そうすれば、新たなセンサが不要であり、定圧液供給装置の構成が簡略になる。
 前記第1パラメータは、前記インバータの出力トルク、又は、前記電動モータの電流値である、としてもよい。
 コントローラは、インバータの出力トルク、又は、電動モータの電流値を用いて、ポンプの吐出圧力を、目標圧力に、適切に調節できる。インバータの出力トルクは、インバータが演算する出力トルクである。特に、第1パラメータがインバータの出力トルクであれば、新たなセンサは不要である。定圧液供給装置の構成が簡略化できる。
 前記コントローラは、前記第1パラメータと、前記第2パラメータと、第3パラメータと、前記ポンプ部の吐出圧力との関係を定めたテーブル又は関係式を有し、
 前記コントローラは、前記第1パラメータと前記第2パラメータと前記第3パラメータとをフィードバックしながら、前記ポンプ部の吐出圧力が目標圧力となるように、前記テーブル又は前記関係式に従い前記電動モータを制御し、
 前記第3パラメータは、前記液の温度、及び、前記電動モータの運転時間の少なくとも一つである、としてもよい。
 液の温度が変化すると液の粘度が変化する。このため、液の温度が変化すると、電動モータの実トルクとポンプ部の吐出圧力との関係が変化する。また、電動モータの運転時間が長くなると、電動モータの入力電流値に対する電動モータの実トルクの特性が変化する場合がある。電動モータの運転時間は、例えば、総運転時間である。コントローラは、液の温度、及び/又は、電動モータの運転時間を用いて、ポンプ部の吐出圧力をより適切に調節できる。
 尚、第3パラメータは、前記液の温度、及び、前記電動モータの運転時間のうちの、いずれか一方又は両方としてもよい。
 前記ポンプ部の運転領域は、複数の回転速度域に分けられ、
 前記コントローラは、前記複数の回転速度域のそれぞれに対応する複数の関係式を有しかつ、前記ポンプ部の回転速度に応じて、対応する関係式に従い前記電動モータを制御する、としてもよい。
 本願発明者は、ポンプ部の回転速度が高い場合の関係式と、低い場合の関係式とをそれぞれ設定した方が好ましい場合があることに気づいた。ポンプ部の回転速度は、電動モータの回転速度であると共に、ポンプ本体の回転速度である。例えばポンプ部の回転速度が低い場合は、電動モータの特性が関係式に強く反映され、ポンプ部の回転速度が高い場合は、ポンプ本体の特性が関係式に強く反映される場合がある。この場合、コントローラは二つの関係式を有しかつ、ポンプ部の回転速度に応じて二つの関係式を選択する。
 コントローラが、複数の関係式を有しかつ、ポンプ部の回転速度に対応する関係式に従い電動モータを制御する。このことによって、コントローラは、ポンプ部の吐出圧力を、目標圧力に、より適切に調節できる。
 前記対象物は、工作機械の工具であり、前記液は、クーラントである、としてもよい。つまり、定圧液供給装置は、工作機械のクーラント供給装置としてもよい。
 前記電動モータは、インバータ専用モータである、としてもよい。
 インバータ専用モータは、低回転速度で連続運転をする時にトルクが安定している。電動モータがインバータ専用モータであれば、定圧液供給装置は、電動モータ及びポンプ本体を低回転速度域において運転できる。電動モータ及びポンプ本体を低回転速度域で運転することによって、定圧液供給装置が省エネ化する。前述したように、テーブル又は関係式は、第2パラメータである電動モータの回転速度を含んでいる。コントローラは、電動モータ及びポンプ本体を低回転速度域で運転する場合に、ポンプ部の吐出圧力を、目標圧力に、適切に調節できる。
 以上説明したように、前記の定圧液供給装置によると、ポンプの吐出圧力を適切に調節できる。
図1は、クーラント供給装置の構成を例示する回路図である。 図2は、インバータの出力トルクと、ポンプ部の回転速度と、ポンプ部の吐出圧力と、の関係式を例示する図である。 図3は、図2とは異なる関係式を例示する図である。
 以下、定圧液供給装置の実施形態を図面に基づいて詳細に説明する。以下の説明は、定圧液供給装置の一例である。
 (クーラント供給装置の構成)
 図1は、ここに開示する定圧液供給装置が、クーラント供給装置1に適用された構成例を示している。
 クーラント供給装置1は、工作機械2における工具21に、クーラントを供給する。工具21は、どのようなものであってもよい。工具21には、図1に例示するように、クーラントが噴出する噴出孔22が形成されている。クーラントは、この噴出孔22を通じて加工箇所へ噴出する。工具21は、液を噴出する孔を有する対象物の一例である。
 工具21には、クーラントの供給ライン23が接続されている。供給ライン23は、クーラント供給装置1の接続部20を介して、クーラント供給装置1における吐出ライン3に接続されている。クーラントは、吐出ライン3及び供給ライン23を通じて、工具21へ供給される。
 吐出ライン3には、ポンプ部4が配設されている。ポンプ部4は、クーラントを工具21に向けて吐出する。ポンプ部4は、ポンプ本体41と電動モータ42とを含む。
 ポンプ本体41は、定容量の容積式ポンプである。ポンプ本体41は、具体的には、歯車ポンプ、ベーンポンプ、ねじポンプなどの回転ポンプとしてもよい。ポンプ部4はまた、ピストンポンプ、プランジャーポンプなどの往復動ポンプとしてもよい。
 電動モータ42は、ポンプ本体41に連結されている。電動モータ42は、例えばインバータ専用モータとしてもよい。電動モータ42は、PMモータや汎用モータであってもよい。
 電動モータ42は、インバータ72に接続されている。インバータ72は、電動モータ42に回転速度指令を出力する。電動モータ42は、インバータ72が出力する回転速度指令によって回転速度を変えることができる。
 インバータ72には、コントローラ71が接続されている。コントローラ71は、インバータ72を通じて、電動モータ42を制御する。工作機械2において加工を行っている最中に必要なクーラントの流量は常に変化するので、コントローラ71は、インバータ72を通じて、電動モータ42の回転速度を常時制御する。
 インバータ72は、電動モータ42への出力トルク及び電動モータ42の回転速度を演算する。詳細は後述するが、インバータ72は、インバータ72の出力トルク及び電動モータ42の回転速度を、フィードバック信号として、コントローラ71に出力する。コントローラ71は、インバータ72の出力トルク及び電動モータ42の回転速度に基づいて、電動モータ42をフィードバック制御する。尚、インバータ72の出力トルクは、電動モータ42のトルクに関連する第1パラメータの一例である。電動モータ42の回転速度は、第2パラメータである。
 吐出ライン3において、接続部20とポンプ部4との間には、リリーフライン5が接続されている。リリーフライン5には、リリーフ弁51が配設されている。リリーフ弁51は、所定の圧力で開弁する。リリーフ弁51は、工具21に必要なクーラントの流量が極端に少なくなった場合、及び、コントローラ71が出力する制御指令に異常が発生した場合に、安全のために開弁する。
 リリーフライン5は、クーラントのタンク6に接続されている。リリーフライン5を流れる余剰のクーラントは、タンク6に戻る。また、図示は省略するが、工具21に供給されたクーラントはタンク6に戻る。ポンプ部4は、タンク6に接続されている。ポンプ部4は、タンク6のクーラントを吸い込む。
 尚、吐出ライン3には、クーラントの圧力を示す圧力計31が接続されている。
 (クーラント供給装置の運転制御)
 次に、クーラント供給装置1の運転について説明する。コントローラ71は、前述したように、電動モータ42のフィードバック制御を行う。
 クーラントが供給される工具21は、クーラントが噴出する噴出孔22を有している。このため、吐出ライン3及び供給ライン23におけるクーラントの流量が増えると、ポンプ部4の吐出圧力が高くなる。電動モータ42の回転速度とポンプ部4の吐出圧力とは比例関係にある。また、定容量型の容積式のポンプ本体41において、吐出圧力とトルクとは比例関係にある。電動モータ42の実トルクはインバータ72の出力トルクに相当する。このため、インバータ72の出力トルクとポンプ部4の吐出圧力とは比例関係にある。コントローラ71は、インバータ72の出力トルクをフィードバック信号として用いる。コントローラ71は、電動モータ42のトルクが目標トルクとなるように、電動モータ42を制御する。コントローラ71は、ポンプ部4の吐出圧力を検知する圧力センサを用いなくても、ポンプ部4の吐出圧力が目標圧力となるように、ポンプ部4を制御できる。圧力センサを省略することにより、クーラント供給装置1の構成を簡略化できる。
 吐出ライン3及び供給ライン23の圧力が高くなって、所定のトルク以上のフィードバック信号がコントローラ71に入力された場合、コントローラ71は、速やかに電動モータ42の回転速度を低下させて圧力を下げる。噴出孔22から噴出するクーラントの量が調節されるため、クーラント供給装置1の正常動作時には、リリーフ弁51が開弁しない。リリーフライン5に無駄なクーラントが流れない。
 ここで、インバータ専用モータは、低回転速度域における定トルク特性に優れている。電動モータ42がインバータ専用モータであれば、ポンプ部4は低回転速度域で運転できる。ポンプ部4が低回転速度域で運転することよって、クーラント供給装置1は省エネ化できる。しかしながら、容積式のポンプ本体41は回転速度が低くなると容積効率が急激に低下する。このため、低回転速度域においては、前述したインバータ72の出力トルクとポンプ部4の吐出圧力との間の比例関係が、成立しない、又は,成立し難い。
 また、本願発明者は、インバータ専用モータは、回転速度が高いときと低いときとでは、モータが出力する実トルクが同一であってもインバータ72の出力電流値が相違することを見つけた。
 ポンプ部4の全効率は、ポンプ本体41の容積効率の低下と、電動モータ42の入力電流値及び実トルクの関係と、を含む。ポンプ部4が低回転速度域で運転する場合と、ポンプ部4が低回転速度域よりも高回転速度で運転する場合とにおいて、ポンプ部4の全効率は相違する。そのため、コントローラ71は、ポンプ部4を低回転速度域で運転する場合には、前述したようにインバータ72の出力トルクとポンプ部4の吐出圧力との間の関係のみに基づいてポンプ部4を制御することが難しい。
 そこで、このクーラント供給装置1のコントローラ71は、電動モータ42の実トルクに関連する第1パラメータと、ポンプ部4の回転速度である第2パラメータと、ポンプ部4の吐出圧力と、の関係を定めたテーブル又は関係式を有していて、当該テーブル又は関係式に基づいて、ポンプ部4を制御する。第1パラメータは、具体的にはインバータ72の出力トルクである。
 図2は、インバータ72の出力トルク(y)と、ポンプ部4の吐出圧力(x)と、ポンプ部4の回転速度(x)との関係を定めた関係式(y=a+a+b)を例示している。この関係式は、ポンプ本体41と電動モータ42とを含むポンプ部4について、様々な運転条件で運転を行った試験結果(図2における黒丸参照)について、多変量解析を行うことによって設定できる。例えば、トルク(y)を目的変数とし、吐出圧力(x)と回転速度(x)とを説明変数とした重回帰分析により、関係式は設定できる。一次式とした関係式の各定数a、a、bは、例えば最小二乗法(ordinary least square:OLS)を用いて設定してもよい。尚、関係式は、一次式に限定されない。関係式は、二次式、又は、三次式でもよい。コントローラ71は、ポンプ部4の目標圧力と、ポンプ部4の回転速度と、関係式とに基づいて、インバータ72の目標出力トルクを設定できる。
 尚、図示は省略するが、テーブルは、前記の関係式と同様に、インバータ72の出力トルクと、ポンプ部4の回転速度と、ポンプ部4の吐出圧力と、の関係を定める。コントローラ71は、ポンプ部4の目標圧力と、ポンプ部4の回転速度と、テーブルとに基づいて、インバータ72の目標出力トルクを設定できる。
 コントローラ71は、インバータ72の出力トルクと、インバータ72が演算したポンプ部4の回転速度と、をフィードバック信号とし、前記のテーブル又は関係式に従って、ポンプ部4を制御する。図1に示すように、コントローラ71は、機能ブロックとして、テーブル又は関係式711と減算器712とを有している。コントローラ71は、工作機械2が指定する目標圧力の信号を受ける。コントローラ71はまた、インバータ72が出力する、電動モータ42の回転速度の信号を受ける。電動モータ42の回転速度とポンプ本体41の回転速度とは一致する。コントローラ71は、目標圧力と回転速度とに基づき、テーブル又は関係式711に従って、目標の出力トルクを設定する。
 減算器712は、目標の出力トルクと、インバータ72の出力トルクとの偏差を演算する。インバータ72の出力トルクは、インバータ72が出力するフィードバック信号である。コントローラ71は、トルクの偏差に応じた制御信号を、インバータ72に出力する。インバータ72は、トルクの偏差が無くなるように、電動モータ42を運転する。その結果、ポンプ部4の吐出圧力が目標圧力となる。
 ポンプ部4の回転速度をテーブル又は関係式711に加えることにより、ポンプ本体41の容積効率の低下、及び、電動モータ42の入力電流値と出力する実トルクとの関係を、ポンプ部4の制御に反映できる。その結果、コントローラ71は、ポンプ部4が低回転速度域において運転する場合に、ポンプ部4の吐出圧力を、目標圧力に、適切に調節できる。ポンプ部4が低回転速度域において運転することによって、クーラント供給装置1は省エネ化する。また、コントローラ71は、ポンプ部4が、低回転速度域よりも高い回転速度で運転する場合も、ポンプ部4の吐出圧力を適切に調節できる。
 クーラント供給装置1のフィードバック信号は、インバータ72の出力トルク、及び、インバータ72が演算したポンプ部4の回転速度である。フィードバック信号である第1パラメータ及び第2パラメータを検知するセンサを、クーラント供給装置1に追加する必要がない。クーラント供給装置1の構成が簡略になる。
 尚、前記の構成のクーラント供給装置1では、テーブル又は関係式711が、第1パラメータ及び第2パラメータを含んでいる。テーブル又は関係式711は、クーラントの温度を第3パラメータとしてさらに含んでもよい。クーラントの温度が変わると、クーラントの粘度が変わる。クーラントの粘度が変わると、電動モータ42の実トルクとポンプ本体41の吐出圧力との関係も変化する。そこで、クーラントの温度を第3パラメータとしてテーブル又は関係式711に追加することにより、クーラント供給装置1は、ポンプ部4の吐出圧力を、より適切に調節できる。この場合、インバータ72の出力トルク(y)と、ポンプ部4の吐出圧力(x)と、ポンプ部4の回転速度(x)と、クーラントの温度(x)と、の関係を定めた関係式の一例は、y=a+a+a+bとなる。
 さらに、第3パラメータは、電動モータ42の運転時間としてもよい。電動モータ42の運転時間が長くなると、電動モータ42の入力電流値に対する電動モータ42の実トルクの特性が変化する場合がある。そこで、電動モータ42の運転時間をテーブル又は関係式711に追加することにより、クーラント供給装置1は、ポンプ部4の吐出圧力を、より適切に調節できる。
 尚、第3パラメータは、前述のように、クーラントの温度のみであってもよいし、電動モータ42の運転時間のみであってもよい。また、第3パラメータは、クーラントの温度及び電動モータ42の運転時間の両方であってもよい。
 第1パラメータは、インバータ72の出力トルクに代えて、電動モータ42の電流値としてもよい。電動モータ42の電流値は、センサが検知してもよい。
 また、第1パラメータは、インバータ72の出力トルクに代えて、電圧値と電力値を組み合わせた、電動モータ42の実トルクに比例する値としてもよい。
 (関係式の変形例)
 図2は、ポンプ部4の運転領域の全体について、一つの関係式を設定した例を示している。本願発明者は、ポンプ部4の回転速度が高い場合の関係式と、低い場合の関係式とをそれぞれ設定した方が好ましい場合があることに気づいた。ポンプ部4の回転速度は、電動モータ42の回転速度であると共に、ポンプ本体41の回転速度である。例えばポンプ部4の回転速度が低い場合は、電動モータ42の特性が関係式に強く反映され、ポンプ部4の回転速度が高い場合は、ポンプ本体41の特性が関係式に強く反映される場合がある。この場合、コントローラ71は二つの関係式を有しかつ、ポンプ部4の回転速度に応じて二つの関係式を選択する。
 図3は、ポンプ部4の運転領域を、低回転速度域と高回転速度域とに分け、コントローラ71が、低回転速度域に対応した関係式と、高回転速度域に対応した関係式とを有する例を示している。尚、図3に示す一点鎖線の四角は、所定回転速度Nにおける仮想平面を示している。低回転速度域は、所定回転速度N以下の領域であり、高回転速度域は、所定回転速度Nを超える領域である。図3の例では、第1関係式(y=a+a+b)は、低回転速度域に対応し、第2関係式(y=a+a+b)は、高回転速度域に対応する。所定回転速度Nにおいて、関係式は変曲点を有している。
 コントローラ71は、ポンプ部4の回転速度が低回転速度域内にある場合は、第1関係式に従い電動モータ42を制御する。また、コントローラ71は、ポンプ部4の回転速度が高回転速度域内にある場合は、第2関係式に従い電動モータ42を制御する。こうすることによって、コントローラ71は、ポンプ部4が低回転速度の場合も、高回転速度の場合も、ポンプ部4の吐出圧力を、目標圧力に、より適切に調節できる。
 尚、ポンプ部4の運転領域は、図3に示すように二つの領域に分けることに限らない。ポンプ部4の運転領域は、三つ以上の領域に分けてもよい。コントローラ71は、各領域に対応する関係式を有すればよい。
 ここに開示する定圧液供給装置は、クーラント供給装置に限らない。図示は省略するが、ここに開示する定圧液供給装置は、例えば洗浄装置用の洗浄液供給装置であってもよい。洗浄装置は、工作機械によって加工された加工品を洗浄するために、洗浄液を加工品に向かって噴出する。洗浄液供給装置は、洗浄装置に所定圧力の洗浄液を供給する。
1 クーラント供給装置
21 工具(対象物)
22 噴出孔
4 ポンプ部
41 ポンプ本体
42 電動モータ
71 コントローラ
711 テーブル又は関係式
72 インバータ
 

Claims (5)

  1.  液の噴出孔を有する対象物に、液を供給する定圧液供給装置であって、
     液を吐出する容積式のポンプ本体、及び 前記ポンプ本体に連結されかつ、前記ポンプ本体を運転する電動モータを含むポンプ部と、
     前記電動モータの回転速度を変更させるインバータと、
     前記インバータを通じて前記ポンプ部を制御するコントローラと、を備え、
     前記コントローラは、前記電動モータの実トルクに関連する第1パラメータと、前記ポンプ部の回転速度である第2パラメータと、前記ポンプ部の吐出圧力と、の関係を定めたテーブル又は関係式を有し、
     前記コントローラは、前記第1パラメータと前記第2パラメータとをフィードバックしながら、前記ポンプ部の吐出圧力が目標圧力となるように、前記テーブル又は前記関係式に従い前記電動モータを制御する定圧液供給装置。
  2.  請求項1に記載の定圧液供給装置において、
     前記第1パラメータは、前記インバータの出力トルク、又は、前記電動モータの電流値である定圧液供給装置。
  3.  請求項1又は2に記載の定圧液供給装置において、
     前記コントローラは、前記第1パラメータと、前記第2パラメータと、第3パラメータと、前記ポンプ部の吐出圧力との関係を定めたテーブル又は関係式を有し、
     前記コントローラは、前記第1パラメータと前記第2パラメータと前記第3パラメータとをフィードバックしながら、前記ポンプ部の吐出圧力が目標圧力となるように、前記テーブル又は前記関係式に従い前記電動モータを制御し、
     前記第3パラメータは、前記液の温度、及び、前記電動モータの運転時間の少なくとも一つである定圧液供給装置。
  4.  請求項1~3のいずれか1項に記載の定圧液供給装置において、
     前記ポンプ部の運転領域は、複数の回転速度域に分けられ、
     前記コントローラは、前記複数の回転速度域のそれぞれに対応する複数の関係式を有しかつ、前記ポンプ部の回転速度に応じて、対応する関係式に従い前記電動モータを制御する定圧液供給装置。
  5.  請求項1~4のいずれか1項に記載の定圧液供給装置において、
     前記電動モータは、インバータ専用モータである定圧液供給装置。
     
PCT/JP2019/034439 2018-09-12 2019-09-02 定圧液供給装置 WO2020054480A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020501410A JP6785394B2 (ja) 2018-09-12 2019-09-02 定圧液供給装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-170952 2018-09-12
JP2018170952 2018-09-12

Publications (1)

Publication Number Publication Date
WO2020054480A1 true WO2020054480A1 (ja) 2020-03-19

Family

ID=69778258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034439 WO2020054480A1 (ja) 2018-09-12 2019-09-02 定圧液供給装置

Country Status (3)

Country Link
JP (1) JP6785394B2 (ja)
TW (1) TWI730404B (ja)
WO (1) WO2020054480A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144020A (ja) * 2002-10-24 2004-05-20 Daikin Ind Ltd 高圧クーラント供給装置
JP2009215935A (ja) * 2008-03-10 2009-09-24 Sumitomo Precision Prod Co Ltd 液圧制御装置
JP2012106292A (ja) * 2010-11-15 2012-06-07 Toyota Motor Corp クーラント供給装置及びクーラント供給方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451336C (zh) * 2006-03-07 2009-01-14 太原理工大学 低空转能耗液压动力源
JP5907712B2 (ja) * 2011-12-07 2016-04-26 日立アプライアンス株式会社 モータ駆動装置、およびこれを用いた機器
JP6013031B2 (ja) * 2012-06-08 2016-10-25 ナブテスコ株式会社 三相交流モータの駆動制御装置及びアクチュエータの油圧システム
JP5464247B1 (ja) * 2012-09-26 2014-04-09 ダイキン工業株式会社 制御装置
JP6360442B2 (ja) * 2015-01-14 2018-07-18 株式会社日立製作所 永久磁石同期モータ、巻線切替モータ駆動装置、及び、それらを用いた冷凍空調機器、電動車両

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144020A (ja) * 2002-10-24 2004-05-20 Daikin Ind Ltd 高圧クーラント供給装置
JP2009215935A (ja) * 2008-03-10 2009-09-24 Sumitomo Precision Prod Co Ltd 液圧制御装置
JP2012106292A (ja) * 2010-11-15 2012-06-07 Toyota Motor Corp クーラント供給装置及びクーラント供給方法

Also Published As

Publication number Publication date
TW202020307A (zh) 2020-06-01
JP6785394B2 (ja) 2020-11-18
TWI730404B (zh) 2021-06-11
JPWO2020054480A1 (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
JP6285880B2 (ja) ポンプ装置
EP1965083B1 (en) Hydraulic unit and method of controlling speed of motor in hydraulic unit
KR100615808B1 (ko) 펌프 유닛
JP5651196B2 (ja) 容積式ポンプの動作制御装置、ポンプシステム、およびこれらの作動方法
CN112128178A (zh) 压力补偿式液压泵、转速控制系统及控制方法和工程机械
US4208256A (en) Fluid pumping control method and apparatus for machine tools
JP2013253674A (ja) 流体圧ユニット
JP4517587B2 (ja) クーラントポンプ装置
JP2000213466A (ja) 液体加圧装置
JP2011224644A (ja) 押出プレス装置
WO2020054480A1 (ja) 定圧液供給装置
JP2009022993A (ja) 押出プレス及び押出プレスの制御方法
JP4250999B2 (ja) クーラントポンプ装置およびドリル装置
US20030147708A1 (en) High pressure coolant system
JP2004144020A (ja) 高圧クーラント供給装置
KR20100098716A (ko) 합류 제어 시스템
JP2000027764A (ja) 液体加圧装置
EP2711119A2 (en) Wire electric discharge machine having shaft feed control system discriminating function
JP7285173B2 (ja) 定圧液供給装置
JP2015136768A (ja) ワイヤ放電加工機の加工液供給制御装置
JP6956032B2 (ja) 定圧液供給装置
CN102638218A (zh) 根据电源特性限制电动机的输出的电动机驱动控制装置
JP2013091070A (ja) 押出プレスの制御方法
JP5968019B2 (ja) ワイヤ放電加工装置
JP6575385B2 (ja) 押出プレスの押出速度立上げ制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020501410

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858993

Country of ref document: EP

Kind code of ref document: A1