WO2020052563A1 - 托盘伸出定位方法和系统 - Google Patents

托盘伸出定位方法和系统 Download PDF

Info

Publication number
WO2020052563A1
WO2020052563A1 PCT/CN2019/105188 CN2019105188W WO2020052563A1 WO 2020052563 A1 WO2020052563 A1 WO 2020052563A1 CN 2019105188 W CN2019105188 W CN 2019105188W WO 2020052563 A1 WO2020052563 A1 WO 2020052563A1
Authority
WO
WIPO (PCT)
Prior art keywords
tray
detection state
sensor
distance
distance signal
Prior art date
Application number
PCT/CN2019/105188
Other languages
English (en)
French (fr)
Inventor
张建平
陈志浩
陆文成
Original Assignee
奥动新能源汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥动新能源汽车科技有限公司 filed Critical 奥动新能源汽车科技有限公司
Priority to EP19859113.3A priority Critical patent/EP3851343B1/en
Publication of WO2020052563A1 publication Critical patent/WO2020052563A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the invention relates to a method and a system for positioning and positioning a tray.
  • the battery For electric vehicles of the exchange type, the battery needs to be replaced periodically or irregularly.
  • the power exchange equipment is fixed at a specified position, and the electric vehicle is stopped near the power exchange equipment for battery replacement under control.
  • the steps of battery replacement are generally that the tray of the power exchange equipment is extended in a linear motion to align with the battery support device on the electric vehicle, and finally the removal of the old battery and the placement of the new battery in the electric vehicle are finally realized.
  • the technical problem to be solved by the present invention is to overcome the defect that the tray may not be aligned with the electric vehicle when the tray is extended in the prior art, and provides a method and system for positioning the tray extension.
  • the first detection state is used to indicate whether the first sensor detects a first distance signal
  • the second detection state is used to indicate Whether the second sensor detects a second distance signal
  • the first distance signal is used to indicate a distance between a first position of the tray and a target
  • the second distance signal is used to indicate a distance of the tray A distance between a second position and the target; the first position and the second position are spaced apart;
  • the tray moves linearly toward the target at a positioning speed; if the first detection state is that the first distance signal is detected and the second detection state is that the second distance signal is not detected, driving The tray rotates in a forward rotation direction, so that the second position approaches the target faster than the first position; if the first detection state is that the first is not detected Distance signal and the second detection state is that the second distance signal is detected, the tray is driven to rotate in a reverse rotation direction opposite to the forward rotation direction, so that the first position is compared with The second position approaches the target faster.
  • the tray extension positioning method further includes:
  • the tray If the first detection state is that the first distance signal is not detected and the second detection state is that the second distance signal is not detected, driving the tray to move linearly toward the target at a traveling speed .
  • the linear movement of the tray toward the target at a traveling speed includes the following steps:
  • the second traveling speed is lower than the first traveling speed
  • the positioning speed is lower than the first traveling speed.
  • the tray can travel a preset distance at a higher first travel speed to approach the target, and then approach the target at a lower second travel speed, saving time without affecting the subsequent adjustment accuracy .
  • travel at a lower positioning speed which also avoids problems such as untimely adjustments caused by excessive speed.
  • the positioning speed can be the same as the second travel speed, or it can be higher or lower than the first. Two travel speeds.
  • the tray extension positioning method further includes the following steps:
  • the tray movement is stopped after receiving a termination instruction.
  • the tray can be stopped at any time according to the termination instruction, so that the tray can be stopped in time when a failure occurs or the tray is in place.
  • the tray extension positioning method further includes:
  • the third detection state is used to indicate whether the third sensor has detected a third distance signal;
  • the third distance signal is used to indicate a third position and position of the tray The distance between the objects;
  • the third position is located between the first position and the second position.
  • the first sensor, the second sensor, and the third sensor are all distance switches.
  • the distance switch can easily achieve distance detection.
  • the sensing distance of the first sensor and the second sensor is the same, and the sensing distance of the third sensor is smaller than the sensing distance of the first sensor.
  • the tray extension positioning method further comprises: judging whether a limit switch provided on the tray detects a limit position signal, and if so, generating the termination instruction.
  • a termination instruction is generated in time to stop the movement of the tray to avoid structural damage.
  • the first sensor is fixed at the first position
  • the second sensor is fixed at the second position.
  • a first acquisition module configured to acquire a first detection state of a first sensor and a second detection state of a second sensor; the first detection state is used to indicate whether the first sensor detects a first distance signal, and The second detection state is used to indicate whether the second sensor has detected a second distance signal; the first distance signal is used to indicate the distance between the first position of the tray and the target, and the second distance signal Used to indicate the distance between the second position of the tray and the target; the first position and the second position are spaced apart;
  • a first determination module configured to determine the first detection state and the second detection state, if the first detection state is that the first distance signal is detected and the second detection state is that the detected The second distance signal, the first driving module is called; if the first detection state is that the first distance signal is detected and the second detection state is that the second distance signal is not detected, the second distance signal is called A driving module; if the first detection state is that the first distance signal is not detected and the second detection state is that the second distance signal is detected, calling a third driving module;
  • the first driving module is configured to drive the tray to move linearly toward the target at a positioning speed
  • the second driving module is configured to drive the tray to rotate in a forward rotation direction, so that the second position approaches the target faster than the first position;
  • the third driving module is configured to drive the tray to rotate in a reverse rotation direction opposite to the forward rotation direction, so that the first position approaches the faster than the second position. Target.
  • the tray extension positioning system further includes a fourth driving module
  • the first determining module is further configured to determine that if the first detection state is that the first distance signal is not detected and the second detection state is that the second distance signal is not detected, calling the first Four drive modules;
  • the fourth driving module is configured to drive the tray to move linearly toward the target at a traveling speed.
  • the first judgment module includes a preset distance judgment module
  • the fourth drive module includes a first drive execution module and a second drive execution module
  • the preset distance judgment module is configured to determine whether the tray has traveled a preset distance during the linear movement of the tray toward the target at a traveling speed, and if not, call the first drive execution module; if so, Calling the second driver execution module;
  • the first drive execution module is configured to drive the tray to move linearly toward the target at a first traveling speed
  • the second drive execution module is configured to drive the tray to linearly move toward the target at a second traveling speed
  • the second traveling speed is lower than the first traveling speed
  • the positioning speed is lower than the first traveling speed.
  • the tray can be driven by the first drive execution module at a higher first travel speed for a preset distance to approach the target, and then driven by the second drive execution module at a lower speed.
  • the two travel speeds are close to the target, saving time without affecting the subsequent adjustment accuracy.
  • travel at a lower positioning speed under the action of the first drive module and also avoid problems such as untimely adjustment caused by excessive speed.
  • the positioning speed can be the same as the second travel speed. It can also be higher or lower than the second travel speed.
  • the tray extension positioning system further includes:
  • the stopping module is configured to stop the tray movement after receiving a termination instruction.
  • the tray can be stopped at any time under the action of the stop module, so that the tray can be stopped in time when a failure occurs or the tray is in place.
  • the tray extension positioning system further includes:
  • a second acquisition module configured to acquire a third detection state of a third sensor; the third detection state is used to indicate whether the third sensor detects a third distance signal; and the third distance signal is used to indicate the The distance between the third position of the tray and the target;
  • a second determination module configured to determine the third detection state, and if the third detection state is that the third distance signal is detected, generating the termination instruction
  • the third position is located between the first position and the second position.
  • the second judgment module when the tray moves in place, the second judgment module generates a termination instruction to complete the positioning of the tray extension.
  • the first sensor, the second sensor, and the third sensor are all distance switches.
  • the distance switch can easily achieve distance detection.
  • the sensing distance of the first sensor and the second sensor is the same, and the sensing distance of the third sensor is smaller than the sensing distance of the first sensor.
  • the tray extension positioning system further includes:
  • a third determination module is configured to determine whether a limit position signal is detected by a limit switch provided on the tray, and if yes, generate the termination instruction.
  • the first sensor is fixed at the first position
  • the second sensor is fixed at the second position.
  • the first position of the tray and the distance between the second position and the target can be determined by the first sensor and the second sensor, and by means of the first acquisition module and the first determination module , So as to determine whether the tray is aligned with the target, if it is, you can continue the linear movement; if not, you can rotate to alignment to avoid power failure.
  • FIG. 1 is a schematic flowchart of a part of a tray extension positioning method according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic flowchart of another part of the method for positioning and extending a tray according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic flowchart of a tray extension positioning process in a situation of Embodiment 1 of the present invention.
  • FIG. 4 is a schematic flowchart of a tray extension and positioning process in another situation of Embodiment 1 of the present invention.
  • FIG. 5 is a schematic flowchart of a tray extension positioning process in still another situation of Embodiment 1 of the present invention.
  • FIG. 6 is a block diagram of a tray extension positioning system according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural diagram of a tray, a first sensor, a second sensor, and a third sensor according to Embodiment 2 of the present invention.
  • 10 tray extension positioning system; 110: first acquisition module; 120: second acquisition module; 210: first judgment module; 211: preset distance judgment module; 220: second judgment module; 230: third judgment module 310: first drive module; 320: second drive module; 330: third drive module; 340: fourth drive module; 341: first drive execution module; 342: second drive execution module; 400: stop module; 20: tray; 31: first sensor; 32: second sensor; 33: third sensor
  • this embodiment discloses a method for positioning and positioning a tray. As shown in FIG. 1, the method for positioning and positioning the tray includes the following steps:
  • Step S10 Acquire a first detection state of the first sensor and a second detection state of the second sensor.
  • the first detection state is used to indicate whether the first sensor has detected the first distance signal
  • the second detection state is used to indicate whether the second sensor has detected the second distance signal.
  • the first distance signal is used to indicate the distance between the first position of the tray and the target
  • the second distance signal is used to indicate the distance between the second position of the tray and the target. The first position and the second position are spaced apart.
  • Step S20 determine the first detection state and the second detection state (specifically, step S21, determine the first detection state and steps S221 / S222, and determine the second detection state). If the first detection state is the detection of the first distance signal and the second detection state is the detection of the second distance signal, step S31 is executed to drive the tray to move linearly toward the target at the positioning speed. If the first detection state is that the first distance signal is detected and the second detection state is that the second distance signal is not detected, step S32 is executed to drive the tray to rotate in a forward rotation direction so that the second position is compared with the first position. A position approaches the target faster.
  • step S33 is performed: the tray is driven to rotate in a reverse rotation direction opposite to the forward rotation direction, so that the first One position approaches the target faster than the second position.
  • the first position of the tray and the distance between the second position and the target can be judged, so as to determine whether the tray is aligned with the target. If it is, then it can continue to move linearly, if not, it can be rotated to Align to avoid power failure.
  • step S21 is performed first, that is, the judgment of the first detection state is performed, and then steps S221 / S222 are performed, that is, the judgment of the second detection state is performed.
  • the judgment of the second detection state may be performed first, and then the judgment of the first detection state may be performed; or the judgment of the first detection state and the judgment of the second detection state may be performed simultaneously.
  • the tray extension positioning method further includes: if the first detection state is that no first distance signal is detected and the second detection state is that no second distance signal is detected, driving the tray at a traveling speed toward The target moves in a straight line.
  • the traveling speed includes a first traveling speed and a second traveling speed.
  • the linear movement of the tray toward the target at the traveling speed includes the following steps: Step S341, determining whether the tray has traveled a preset distance. If otherwise, step S342 is performed, and the tray moves linearly toward the target at the first traveling speed. If yes, step S343 is executed: the tray moves linearly toward the target at the second traveling speed. Among them, the second traveling speed is lower than the first traveling speed.
  • the positioning speed is lower than the first travel speed.
  • the tray can first travel a preset distance at a higher first travel speed to approach the target, and then approach the target at a lower second travel speed, saving time without affecting the subsequent adjustment accuracy.
  • travel at a lower positioning speed which also avoids problems such as untimely adjustments caused by excessive speed.
  • the positioning speed can be the same as the second travel speed, or it can be higher or lower than the first. Two travel speeds.
  • the traveling speed may not be divided into the first traveling speed and the second traveling speed, and may be a constant speed.
  • the tray extension positioning method further includes the following steps: after receiving a termination instruction, performing step S40 and stopping the tray movement. In this way, the tray can be stopped at any time according to the termination instruction, so that the tray can be stopped in time when a failure occurs or the tray is in place.
  • the tray extension positioning method further includes:
  • Step S50 Acquire a third detection state of the third sensor.
  • the third detection state is used to indicate whether the third sensor detects a third distance signal.
  • the third distance signal is used to indicate the distance between the third position of the tray and the target.
  • Step S60 Determine a third detection state. If the third detection state is that a third distance signal is detected, step S70 is executed to generate a termination instruction. If the third detection state is that no third distance signal is detected, step S60 is continuously performed. The third position is located between the first position and the second position. In this way, when the tray moves in place, a termination instruction is generated to complete the positioning of the tray extension. After step S70, step S40 is performed.
  • the first sensor, the second sensor, and the third sensor are all distance switches.
  • the distance switch can easily realize the distance detection.
  • the sensing distance of the first sensor and the second sensor is the same, and the sensing distance of the third sensor is smaller than the sensing distance of the first sensor.
  • the sensing distance of the first sensor and the second sensor may be 30mm, and the sensing distance of the third sensor may be 15mm; or the sensing distance of the first sensor and the second sensor may be 15mm, and the sensing distance of the third sensor may be 5mm .
  • the first detection state is the detection of the first distance signal; when the distance between the first sensor and the target is not within the range of the first sensor Within the sensing distance, the first detection state is that the first distance signal is not detected.
  • the second sensor is similar to the third sensor.
  • the first sensor, the second sensor, and the third sensor may also be other types of distance sensors, such as a laser distance sensor.
  • the first sensor, the second sensor, and the third sensor can output specific distance values.
  • the first detection state is the detection of the first distance signal; when the distance between the first sensor and the target is The distance between them is not within the set first threshold range, and the first detection state is that the first distance signal is not detected.
  • the second sensor is the same as the first sensor.
  • the second detection state is the detection of the second distance signal;
  • the distance between the sensor and the target is not within the set second threshold range, and the second detection state is that the second distance signal is not detected.
  • the third sensor is similar to the first sensor.
  • the third detection state is the detection of the third distance signal;
  • the distance between the three sensors and the target is not within the set third threshold range, and the third detection state is that the third distance signal is not detected.
  • the tray extension positioning method further includes: Step S90: Determine whether a limit switch provided on the tray detects a limit position signal. If yes, step S70 is executed to generate a termination instruction.
  • the detection state of the limit switch must be acquired first, that is, it includes the following steps: step S80, the limit detection state of the limit switch is acquired. Then, in step S90, if the limit switch provided on the tray does not detect the limit position signal, the process returns to step S80. In this way, when the tray moves to the set limit position, a termination instruction is generated in time to stop the movement of the tray to avoid structural damage.
  • the first sensor is fixed at the first position
  • the second sensor is fixed at the second position
  • the third sensor is fixed at the third position.
  • one or more of the first sensor, the second sensor, and the third sensor may also be fixed on the target, and the distance between the corresponding position of the tray and the target may also be detected.
  • the first sensor, the second sensor, the third sensor, and the limit switch are all monitored in real time, that is, continuously monitored during the operation of the tray. Furthermore, those skilled in the art should know that the method for positioning and extending the tray is divided into FIG. 1 and FIG. 2 for the convenience of illustration; those skilled in the art should know that no matter what the detection results of the first sensor and the second sensor are, Once the termination instruction is generated, step S40 is executed to stop the tray movement.
  • the tray is used to carry a battery and belongs to a part of a power exchange device; the target is a battery support device on an electric vehicle.
  • the tray extension positioning method can also be applied to any other situation where the tray needs to be aligned with the target.
  • the tray extension process includes the following steps: step S101, the tray starts; step S102, the tray moves linearly toward the target at the first travel speed until The tray travels a preset distance; step S103, the tray moves linearly toward the target at the second travel speed until the first detection state is the detection of the first distance signal and the second detection state is the detection of the second distance signal; step S104, The tray moves linearly toward the target at the positioning speed until the third detection state is that a third distance signal is detected; step S105, the tray stops moving.
  • the tray extension process includes the following steps: step S201, the tray starts; step S202, the tray advances in the first step The speed moves linearly toward the target until the tray travels a preset distance; step S203, the tray moves straight toward the target at the second travel speed until the first detection state is a first distance signal detected and the second detection state is undetected To the second distance signal; step S204, the tray rotates in a forward rotation direction so that the second position approaches the target faster than the first position until the first detection state is that the first distance signal is detected and the first The second detection state is that the second distance signal is detected; step S205, the tray moves linearly toward the target at the positioning speed until the third detection state is that the third distance signal is detected; step S206, the tray stops moving.
  • the tray extension process includes the following steps: step S301, the tray is started; step S302, the tray is toward the target at the first travel speed Move linearly until the tray travels a preset distance; step S303, the tray moves linearly toward the target at the second travel speed until the limit switch detects a limit position signal; step S304, the tray stops moving.
  • Figures 3-5 are just a few of the scenarios listed for illustrative purposes.
  • this embodiment discloses a tray extension positioning system 10, which includes a first obtaining module 110, a first determining module 210, a first driving module 310, a second driving module 320, and a first Three drive modules 330.
  • the first acquisition module 110 is configured to acquire a first detection state of the first sensor 31 and a second detection state of the second sensor 32.
  • the first detection state is used to indicate whether the first sensor 31 has detected a first distance signal
  • the second detection state is used to indicate whether the second sensor 32 has detected a second distance signal.
  • the first distance signal is used to indicate the distance between the first position of the tray 20 and the target
  • the second distance signal is used to indicate the distance between the second position of the tray 20 and the target.
  • the first position and the second position are spaced apart.
  • the first determination module 210 is configured to determine a first detection state and a second detection state. If the first detection state is the detection of the first distance signal and the second detection state is the detection of the second distance signal, the first driving module 310 is called. If the first detection state is that the first distance signal is detected and the second detection state is that the second distance signal is not detected, the second driving module 320 is called. If the first detection state is that the first distance signal is not detected and the second detection state is that the second distance signal is detected, the third driving module 330 is called.
  • the first driving module 310 is configured to drive the tray 20 to move linearly toward the target at a positioning speed.
  • the second driving module 320 is configured to drive the tray 20 to rotate in a forward rotation direction, so that the second position approaches the target faster than the first position.
  • the third driving module 330 is configured to drive the tray 20 to rotate in a reverse rotation direction opposite to the forward rotation direction, so that the first position approaches the target faster than the second position.
  • the first position of the tray 20 and the distance between the second position and the target can be determined, thereby determining whether the tray 20 is aligned with the target. Movement, otherwise it can be rotated to alignment to avoid power failure.
  • the tray extension positioning system 10 further includes a fourth driving module 340.
  • the first determination module 210 is further configured to determine that if the first detection state is that no first distance signal is detected and the second detection state is that no second distance signal is detected, then the fourth driving module 340 is called.
  • the fourth driving module 340 is used to drive the tray 20 to move linearly toward the target at the traveling speed.
  • the first determination module 210 includes a preset distance determination module 211.
  • the fourth driving module 340 includes a first driving execution module 341 and a second driving execution module 342.
  • the preset distance judgment module 211 is used to determine whether the tray 20 has traveled a preset distance during the linear movement of the tray 20 toward the target at the traveling speed. Otherwise, the first drive execution module 341 is called; if so, the second drive execution module is called. 342.
  • the first driving execution module 341 is configured to drive the tray 20 to move linearly toward the target at a first traveling speed.
  • the second driving execution module 342 is configured to drive the tray 20 to move linearly toward the target at the second traveling speed. Among them, the second traveling speed is lower than the first traveling speed.
  • the positioning speed is lower than the first travel speed.
  • the tray 20 can be driven by the first drive execution module 341 at a higher first travel speed for a preset distance to approach the target, and then driven by the second drive execution module 342 at a lower speed.
  • the second travel speed is close to the target, saving time without affecting the subsequent adjustment accuracy.
  • the positioning speed can be the same as the second travel speed , Or higher or lower than the second travel speed.
  • the tray extension positioning system 10 further includes a stopping module 400.
  • the stopping module 400 is used for stopping the movement of the tray 20 after receiving a termination instruction. In this way, the tray 20 can stop moving at any time under the action of the stop module 400, so that the tray 20 can be stopped in time when a failure occurs or the tray 20 is in place.
  • the tray extension positioning system 10 further includes: a second obtaining module 120 and a second determining module 220.
  • the second acquisition module 120 is configured to acquire a third detection state of the third sensor 33.
  • the third detection state is used to indicate whether the third distance signal is detected by the third sensor 33.
  • the third distance signal is used to indicate the distance between the third position of the tray 20 and the target.
  • the second determination module 220 is configured to determine a third detection state. If the third detection state is that a third distance signal is detected, a termination instruction is generated.
  • the third position is located between the first position and the second position. In this way, when the tray 20 moves in place, the second determination module 220 generates a termination instruction to complete the positioning of the tray 20 to extend.
  • the first sensor 31, the second sensor 32, and the third sensor 33 are all distance switches. The distance can be easily detected. Specifically, the sensing distance of the first sensor 31 and the second sensor 32 is the same, and the sensing distance of the third sensor 33 is smaller than the sensing distance of the first sensor 31.
  • the tray extension positioning system 10 further includes a third determination module 230.
  • the third determining module 230 is configured to determine whether a limit position signal is detected by the limit switch provided on the tray 20, and if so, a termination instruction is generated. When the tray 20 moves to the set limit position, a termination instruction can be generated in time to stop the movement of the tray 20 to avoid structural damage.
  • the second acquisition module 120 is further used to acquire the limit detection status of the limit switch of the tray 20; in an alternative embodiment, a third acquisition module may be additionally provided, and the third acquisition module is used to acquire the limit switch of the tray Limit detection status.
  • the first sensor 31 is fixed at the first position
  • the second sensor 32 is fixed at the second position.
  • the tray extension positioning system 10 of this embodiment 2 can be used to implement the tray extension positioning method in Embodiment 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Control Of Conveyors (AREA)

Abstract

一种托盘伸出定位方法和系统,托盘伸出定位方法包括:获取第一传感器(31)的第一检测状态及第二传感器(32)的第二检测状态;判断第一检测状态和第二检测状态;若第一检测状态为检测到第一距离信号并且第二检测状态为未检测到第二距离信号,则驱动托盘沿一顺旋转方向旋转运动;若第一检测状态为未检测到第一距离信号并且第二检测状态为检测到第二距离信号,则驱动托盘沿与顺旋转方向相反的一逆旋转方向旋转运动。该托盘伸出定位方法和系统可以判断托盘的第一位置以及第二位置与目标物的距离,从而判断托盘与目标物是否对齐,若是,则可以继续直线运动,若否则可以旋转至对齐,从而避免换电失败。

Description

托盘伸出定位方法和系统
本申请要求申请日为2018年9月10日的中国专利申请201811053013X的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种托盘伸出定位方法和系统。
背景技术
对于换电类的电动汽车,需要定期或不定期地更换电池。一般而言,换电设备固定于指定位置,电动汽车在操控下停在换电设备附近以进行电池更换。电池更换的步骤大体为换电设备的托盘以直线运动伸出以与电动汽车上的电池支撑装置对齐,最终实现电动汽车内旧电池的取出和新电池的安放。
但是,由于操作误差,电动汽车很难停到与换电设备完全平行的位置,也就是说,电动汽车相对于换电设备或多或少会有一些偏斜。但是现有技术中,托盘直线运动伸出,很容易导致托盘与电动汽车无法对齐,从而导致换电失败。
发明内容
本发明要解决的技术问题是为了克服现有技术中托盘伸出时可能与电动汽车无法对齐的缺陷,提供一种托盘伸出定位方法和系统。
本发明是通过下述技术方案来解决上述技术问题:
一种托盘伸出定位方法,其特点在于,其包括以下步骤:
获取第一传感器的第一检测状态及第二传感器的第二检测状态;所述第一检测状态用于表示所述第一传感器是否检测到第一距离信号,所述第二检测状态用于表示所述第二传感器是否检测到第二距离信号;所述第一距离信号用于表示所述托盘的第一位置和目标物之间的距离,所述第二距离信号用于表示所述托盘的第二位置和所述目标物之间的距离;所述第一位置和所述第二位置间隔设置;
判断所述第一检测状态和所述第二检测状态,若所述第一检测状态为检测到所述第一距离信号并且所述第二检测状态为检测到所述第二距离信号,则驱动所述托盘以定位速度向所述目标物直线运动;若所述第一检测状态为检测到所述第一距离信号并且所述第二检测状态为未检测到所述第二距离信号,则驱动所述托盘沿一顺旋转方向旋转运动, 以使得所述第二位置相较于所述第一位置更快地靠近所述目标物;若所述第一检测状态为未检测到所述第一距离信号并且所述第二检测状态为检测到所述第二距离信号,则驱动所述托盘沿与所述顺旋转方向相反的一逆旋转方向旋转运动,以使得所述第一位置相较于所述第二位置更快地靠近所述目标物。
较佳地,所述托盘伸出定位方法还包括:
若所述第一检测状态为未检测到所述第一距离信号并且所述第二检测状态为未检测到所述第二距离信号,则驱动所述托盘以行进速度向所述目标物直线运动。
较佳地,所述托盘以行进速度向所述目标物直线运动包括以下步骤:
判断所述托盘是否已经行进一预设距离,若否则所述托盘以第一行进速度向所述目标物直线运动;若是则所述托盘以第二行进速度向所述目标物直线运动;
其中,所述第二行进速度低于所述第一行进速度;
较佳地,所述定位速度低于所述第一行进速度。采用上述设置,托盘可以先以较高的第一行进速度行进一预设距离以靠近目标物,然后再以较低的第二行进速度靠近目标物,节省时间同时不会影响到后面的调整精度。同时,在进一步靠近目标物时,以较低的定位速度行进,同样避免由于速度过快带来的调整不及时等问题,定位速度可以与第二行进速度相同,也可以高于或低于第二行进速度。
较佳地,所述托盘伸出定位方法还包括以下步骤:
在接收到一终止指令后停止所述托盘运动。
采用上述设置,托盘可以在任何时间点根据终止指令停止运动,从而可以在出现故障或者托盘到位时及时停止托盘的运动。
较佳地,所述托盘伸出定位方法还包括:
获取第三传感器的第三检测状态;所述第三检测状态用于表示所述第三传感器是否检测到第三距离信号;所述第三距离信号用于表示所述托盘的第三位置和所述目标物之间的距离;
判断所述第三检测状态,若所述第三检测状态为检测到所述第三距离信号,则产生所述终止指令;
其中,所述第三位置位于所述第一位置和所述第二位置之间。
采用上述设置,在托盘运动到位时,产生终止指令,完成托盘的伸出定位。
较佳地,所述第一传感器、所述第二传感器和所述第三传感器均为距离开关。采用上述设置,距离开关可以方便地实现距离的检测。
较佳地,所述第一传感器与所述第二传感器的感应距离相同,所述第三传感器的感 应距离小于所述第一传感器的感应距离。
较佳地,所述托盘伸出定位方法还包括:判断设于所述托盘的极限开关是否检测到极限位置信号,若是,则产生所述终止指令。采用上述设置,在托盘运动到设定的极限位置时,及时产生终止指令以停止托盘的运动,避免产生结构损坏。
较佳地,所述第一传感器固设于所述第一位置,所述第二传感器固设于所述第二位置。采用上述设置,第一传感器和第二传感器的固定较为方便。
一种托盘伸出定位系统,其特点在于,其包括:
第一获取模块,用于获取第一传感器的第一检测状态及第二传感器的第二检测状态;所述第一检测状态用于表示所述第一传感器是否检测到第一距离信号,所述第二检测状态用于表示所述第二传感器是否检测到第二距离信号;所述第一距离信号用于表示所述托盘的第一位置和目标物之间的距离,所述第二距离信号用于表示所述托盘的第二位置和所述目标物之间的距离;所述第一位置和所述第二位置间隔设置;
第一判断模块,用于判断所述第一检测状态和所述第二检测状态,若所述第一检测状态为检测到所述第一距离信号并且所述第二检测状态为检测到所述第二距离信号,则调用第一驱动模块;若所述第一检测状态为检测到所述第一距离信号并且所述第二检测状态为未检测到所述第二距离信号,则调用第二驱动模块;若所述第一检测状态为未检测到所述第一距离信号并且所述第二检测状态为检测到所述第二距离信号,则调用第三驱动模块;
所述第一驱动模块,用于驱动所述托盘以定位速度向所述目标物直线运动;
所述第二驱动模块,用于驱动所述托盘沿一顺旋转方向旋转运动,以使得所述第二位置相较于所述第一位置更快地靠近所述目标物;
所述第三驱动模块,用于驱动所述托盘沿与所述顺旋转方向相反的一逆旋转方向旋转运动,以使得所述第一位置相较于所述第二位置更快地靠近所述目标物。
较佳地,所述托盘伸出定位系统还包括第四驱动模块;
所述第一判断模块还用于判断若所述第一检测状态为未检测到所述第一距离信号并且所述第二检测状态为未检测到所述第二距离信号,则调用所述第四驱动模块;
所述第四驱动模块用于驱动所述托盘以行进速度向所述目标物直线运动。
较佳地,所述第一判断模块包括预设距离判断模块,所述第四驱动模块包括第一驱动执行模块和第二驱动执行模块;
所述预设距离判断模块用于在所述托盘以行进速度向所述目标物直线运动过程中判断所述托盘是否已经行进一预设距离,若否则调用所述第一驱动执行模块;若是则调用 所述第二驱动执行模块;
所述第一驱动执行模块用于驱动所述托盘以第一行进速度向所述目标物直线运动;
所述第二驱动执行模块用于驱动所述托盘以第二行进速度向所述目标物直线运动;
其中,所述第二行进速度低于所述第一行进速度;
较佳地,所述定位速度低于所述第一行进速度。采用上述设置,托盘可以在第一驱动执行模块的驱动下先以较高的第一行进速度行进一预设距离以靠近目标物,然后再在第二驱动执行模块的驱动下以较低的第二行进速度靠近目标物,节省时间同时不会影响到后面的调整精度。同时,在进一步靠近目标物时,在第一驱动模块的作用下以较低的定位速度行进,同样避免由于速度过快带来的调整不及时等问题,定位速度可以与第二行进速度相同,也可以高于或低于第二行进速度。
较佳地,所述托盘伸出定位系统还包括:
停止模块,用于在接收到一终止指令后停止所述托盘运动。
采用上述设置,托盘可以在任何时间点在停止模块的作用下停止运动,从而可以在出现故障或者托盘到位时及时停止托盘的运动。
较佳地,所述托盘伸出定位系统还包括:
第二获取模块,用于获取第三传感器的第三检测状态;所述第三检测状态用于表示所述第三传感器是否检测到第三距离信号;所述第三距离信号用于表示所述托盘的第三位置和所述目标物之间的距离;
第二判断模块,用于判断所述第三检测状态,若所述第三检测状态为检测到所述第三距离信号,则产生所述终止指令;
其中,所述第三位置位于所述第一位置和所述第二位置之间。
采用上述设置,在托盘运动到位时,第二判断模块产生终止指令,完成托盘的伸出定位。
较佳地,所述第一传感器、所述第二传感器和所述第三传感器均为距离开关。采用上述设置,距离开关可以方便地实现距离的检测。
较佳地,所述第一传感器与所述第二传感器的感应距离相同,所述第三传感器的感应距离小于所述第一传感器的感应距离。
较佳地,所述托盘伸出定位系统还包括:
第三判断模块,用于判断设于所述托盘的极限开关是否检测到极限位置信号,若是,则产生所述终止指令。
采用上述设置,在托盘运动到设定的极限位置时,及时产生终止指令以停止托盘的 运动,避免产生结构损坏。
较佳地,所述第一传感器固设于所述第一位置,所述第二传感器固设于所述第二位置。采用上述设置,第一传感器和第二传感器的固定较为方便。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明的积极进步效果在于:
本发明公开的托盘伸出定位方法和系统中,通过第一传感器和第二传感器,借助于第一获取模块和第一判断模块,可以判断托盘的第一位置以及第二位置与目标物的距离,从而判断托盘与目标物是否对齐,若是,则可以继续直线运动,若否则可以旋转至对齐,从而避免换电失败。
附图说明
图1为本发明实施例1的托盘伸出定位方法的一部分流程示意图。
图2为本发明实施例1的托盘伸出定位方法的另一部分流程示意图。
图3为本发明实施例1的一种情形下的托盘伸出定位过程流程示意图。
图4为本发明实施例1的另一种情形下的托盘伸出定位过程流程示意图。
图5为本发明实施例1的再一种情形下的托盘伸出定位过程流程示意图。
图6为本发明实施例2的托盘伸出定位系统的框图。
图7为本发明实施例2的托盘、第一传感器、第二传感器和第三传感器的结构示意图。
附图标记说明:
10:托盘伸出定位系统;110:第一获取模块;120:第二获取模块;210:第一判断模块;211:预设距离判断模块;220:第二判断模块;230:第三判断模块;310:第一驱动模块;320:第二驱动模块;330:第三驱动模块;340:第四驱动模块;341:第一驱动执行模块;342:第二驱动执行模块;400:停止模块;20:托盘;31:第一传感器;32:第二传感器;33:第三传感器
具体实施方式
实施例1
如图1-5所示,本实施例公开了一种托盘伸出定位方法。如图1所示,托盘伸出定位方法包括以下步骤:
步骤S10、获取第一传感器的第一检测状态及第二传感器的第二检测状态。第一检测状态用于表示第一传感器是否检测到第一距离信号,第二检测状态用于表示第二传感器是否检测到第二距离信号。第一距离信号用于表示托盘的第一位置和目标物之间的距离,第二距离信号用于表示托盘的第二位置和目标物之间的距离。第一位置和第二位置间隔设置。
步骤S20、判断第一检测状态和第二检测状态(具体为步骤S21、判断第一检测状态和步骤S221/S222、判断第二检测状态)。若第一检测状态为检测到第一距离信号并且第二检测状态为检测到第二距离信号,则执行步骤S31、驱动托盘以定位速度向目标物直线运动。若第一检测状态为检测到第一距离信号并且第二检测状态为未检测到第二距离信号,则执行步骤S32、驱动托盘沿一顺旋转方向旋转运动,以使得第二位置相较于第一位置更快地靠近目标物。若第一检测状态为未检测到第一距离信号并且第二检测状态为检测到第二距离信号,则执行步骤S33:驱动托盘沿与顺旋转方向相反的一逆旋转方向旋转运动,以使得第一位置相较于第二位置更快地靠近目标物。
以上,通过第一传感器和第二传感器,可以判断托盘的第一位置以及第二位置与目标物的距离,从而判断托盘与目标物是否对齐,若是,则可以继续直线运动,若否则可以旋转至对齐,从而避免换电失败。
本实施例中,在图1中,为了示意方便,先执行步骤S21,即进行第一检测状态的判断,再执行步骤S221/S222,即进行第二检测状态的判断。可替代的实施例中,可以先进行第二检测状态的判断,再进行第一检测状态的判断;也可以第一检测状态的判断与第二检测状态的判断同时进行。
并且,如图1所示,托盘伸出定位方法还包括:若第一检测状态为未检测到第一距离信号并且第二检测状态为未检测到第二距离信号,则驱动托盘以行进速度向目标物直线运动。具体地,本实施例中,行进速度包括第一行进速度和第二行进速度。如图1所示,托盘以行进速度向目标物直线运动包括以下步骤:步骤S341、判断托盘是否已经行进一预设距离。若否则执行步骤S342、托盘以第一行进速度向目标物直线运动。若是则执行步骤S343:托盘以第二行进速度向目标物直线运动。其中,第二行进速度低于第一行进速度。定位速度低于第一行进速度。这样,托盘可以先以较高的第一行进速度行进一预设距离以靠近目标物,然后再以较低的第二行进速度靠近目标物,节省时间同时不会影响到后面的调整精度。同时,在进一步靠近目标物时,以较低的定位速度行进,同样避免由于速度过快带来的调整不及时等问题,定位速度可以与第二行进速度相同,也可以高于或低于第二行进速度。可替代的实施例中,行进速度也可以不分为第一行进速度 和第二行进速度,可以为不变的速度。
并且,如图1所示,上述步骤S32、步骤S33、步骤S342、步骤S343执行完成后,均回到步骤S21。
此外,如图2所示,托盘伸出定位方法还包括以下步骤:在接收到一终止指令后执行步骤S40、停止托盘运动。这样,托盘可以在任何时间点根据终止指令停止运动,从而可以在出现故障或者托盘到位时及时停止托盘的运动。
具体地,托盘伸出定位方法还包括:
步骤S50、获取第三传感器的第三检测状态。第三检测状态用于表示第三传感器是否检测到第三距离信号。第三距离信号用于表示托盘的第三位置和目标物之间的距离。
步骤S60、判断第三检测状态。若第三检测状态为检测到第三距离信号,则执行步骤S70、产生终止指令。若第三检测状态为未检测到第三距离信号,则继续执行步骤S60。其中,第三位置位于第一位置和第二位置之间。这样,在托盘运动到位时,产生终止指令,完成托盘的伸出定位。在步骤S70后,执行步骤S40。
并且,本实施例中,第一传感器、第二传感器和第三传感器均为距离开关。距离开关可以方便地实现距离的检测。第一传感器与第二传感器的感应距离相同,第三传感器的感应距离小于第一传感器的感应距离。例如,第一传感器与第二传感器的感应距离可以为30mm,第三传感器的感应距离可以为15mm;或者第一传感器与第二传感器的感应距离可以为15mm,第三传感器的感应距离可以为5mm。当第一传感器与目标物之间的距离在第一传感器的感应距离内,第一检测状态即为检测到第一距离信号;当第一传感器与目标物之间的距离未在第一传感器的感应距离内,第一检测状态即为未检测到第一距离信号。第二传感器与第三传感器也是类似的情况。
可替代的实施例中,第一传感器、第二传感器和第三传感器也可以为其他类型的距离传感器,如:激光距离传感器。这样,第一传感器、第二传感器和第三传感器可以输出具体的距离数值。此时,当第一传感器与目标物之间的距离在设定的第一阈值范围(如≤30mm)内,第一检测状态即为检测到第一距离信号;当第一传感器与目标物之间的距离不在设定的第一阈值范围内,第一检测状态即为未检测到第一距离信号。第二传感器同第一传感器,当第二传感器与目标物之间的距离在设定的第二阈值范围(如≤30mm)内,第二检测状态即为检测到第二距离信号;当第二传感器与目标物之间的距离不在设定的第二阈值范围内,第二检测状态即为未检测到第二距离信号。第三传感器与第一传感器类似,当第三传感器与目标物之间的距离在设定的第三阈值范围(如≤15mm)内,第三检测状态即为检测到第三距离信号;当第三传感器与目标物之间的距离不在设定的 第三阈值范围内,第三检测状态即为未检测到第三距离信号。
再次如图2所示,托盘伸出定位方法还包括:步骤S90、判断设于托盘的极限开关是否检测到极限位置信号。若是,则执行步骤S70、产生终止指令。当然,在步骤S90之前,必然先获取极限开关的检测状态,即包括以下步骤:步骤S80、获取极限开关的极限检测状态。并且,步骤S90中,若设于托盘的极限开关未检测到极限位置信号,则回到步骤S80。这样,在托盘运动到设定的极限位置时,及时产生终止指令以停止托盘的运动,避免产生结构损坏。
本实施例中,第一传感器固设于第一位置,第二传感器固设于第二位置。同时,第三传感器固设于第三位置。可替代的实施例中,第一传感器、第二传感器和第三传感器中的一个或多个也可以固设于目标物上,同样可以检测托盘的相应位置与目标物之间的距离。
本实施例中,第一传感器、第二传感器、第三传感器、极限开关均为实时监测,即在托盘运行的过程中持续监测。并且,本领域技术人员应当知晓:仅是为了示意方便而将托盘伸出定位方法分为图1和图2表示;本领域技术人员应当知晓:无论第一传感器、第二传感器的检测结果如何,一旦产生终止指令,就执行步骤S40、停止托盘运动。
本实施例中,托盘用于承载电池,属于换电设备的一部分;目标物为电动汽车上的电池支撑装置。可替代的实施例中,托盘伸出定位方法也可适用于任何其他托盘需要与目标物对齐的情形。
此外,为了更清晰地说明本方案,具体选取三种情形介绍托盘的伸出定位过程:
1)如图3所示,在托盘正常伸出且不偏斜的情形下,托盘伸出过程包括如下步骤:步骤S101、托盘启动;步骤S102、托盘以第一行进速度向目标物直线运动,直至托盘行进一预设距离;步骤S103、托盘以第二行进速度向目标物直线运动,直至第一检测状态为检测到第一距离信号且第二检测状态为检测到第二距离信号;步骤S104、托盘以定位速度向目标物直线运动,直至第三检测状态为检测到第三距离信号;步骤S105、托盘停止运动。
2)如图4所示,在托盘正常伸出且偏斜导致第一位置更靠近目标物的情形下,托盘伸出过程包括如下步骤:步骤S201、托盘启动;步骤S202、托盘以第一行进速度向目标物直线运动,直至托盘行进一预设距离;步骤S203、托盘以第二行进速度向目标物直线运动,直至第一检测状态为检测到第一距离信号且第二检测状态为未检测到第二距离信号;步骤S204、托盘沿一顺旋转方向旋转运动,以使得第二位置相较于第一位置更快地靠近目标物,直至第一检测状态为检测到第一距离信号且第二检测状态为检测到第二距 离信号;步骤S205、托盘以定位速度向目标物直线运动,直至第三检测状态为检测到第三距离信号;步骤S206、托盘停止运动。
3)如图5所示,在托盘正常伸出但是与目标物距离太远的情形下,托盘伸出过程包括如下步骤:步骤S301、托盘启动;步骤S302、托盘以第一行进速度向目标物直线运动,直至托盘行进一预设距离;步骤S303、托盘以第二行进速度向目标物直线运动,直至极限开关检测到极限位置信号;步骤S304、托盘停止运动。
本领域技术人员应当知晓,图3-5仅是出于说明的目的而列出的其中几种情形。
实施例2
如图6-7所示,本实施例公开了一种托盘伸出定位系统10,其包括:第一获取模块110、第一判断模块210、第一驱动模块310、第二驱动模块320和第三驱动模块330。
第一获取模块110用于获取第一传感器31的第一检测状态及第二传感器32的第二检测状态。第一检测状态用于表示第一传感器31是否检测到第一距离信号,第二检测状态用于表示第二传感器32是否检测到第二距离信号。第一距离信号用于表示托盘20的第一位置和目标物之间的距离,第二距离信号用于表示托盘20的第二位置和目标物之间的距离。第一位置和第二位置间隔设置。
第一判断模块210用于判断第一检测状态和第二检测状态。若第一检测状态为检测到第一距离信号并且第二检测状态为检测到第二距离信号,则调用第一驱动模块310。若第一检测状态为检测到第一距离信号并且第二检测状态为未检测到第二距离信号,则调用第二驱动模块320。若第一检测状态为未检测到第一距离信号并且第二检测状态为检测到第二距离信号,则调用第三驱动模块330。
第一驱动模块310用于驱动托盘20以定位速度向目标物直线运动。
第二驱动模块320用于驱动托盘20沿一顺旋转方向旋转运动,以使得第二位置相较于第一位置更快地靠近目标物。
第三驱动模块330用于驱动托盘20沿与顺旋转方向相反的一逆旋转方向旋转运动,以使得第一位置相较于第二位置更快地靠近目标物。
以上,借助于第一获取模块110和第一判断模块210,可以判断托盘20的第一位置以及第二位置与目标物的距离,从而判断托盘20与目标物是否对齐,若是,则可以继续直线运动,若否则可以旋转至对齐,从而避免换电失败。
本实施例中,如图6所示,托盘伸出定位系统10还包括第四驱动模块340。第一判断模块210还用于判断若第一检测状态为未检测到第一距离信号并且第二检测状态为未检测到第二距离信号,则调用第四驱动模块340。第四驱动模块340用于驱动托盘20以 行进速度向目标物直线运动。
此外,如图6所示,第一判断模块210包括预设距离判断模块211。第四驱动模块340包括第一驱动执行模块341和第二驱动执行模块342。预设距离判断模块211用于在托盘20以行进速度向目标物直线运动过程中判断托盘20是否已经行进一预设距离,若否则调用第一驱动执行模块341;若是则调用第二驱动执行模块342。第一驱动执行模块341用于驱动托盘20以第一行进速度向目标物直线运动。第二驱动执行模块342用于驱动托盘20以第二行进速度向目标物直线运动。其中,第二行进速度低于第一行进速度。定位速度低于第一行进速度。这样,托盘20可以在第一驱动执行模块341的驱动下先以较高的第一行进速度行进一预设距离以靠近目标物,然后再在第二驱动执行模块342的驱动下以较低的第二行进速度靠近目标物,节省时间同时不会影响到后面的调整精度。同时,在进一步靠近目标物时,在第一驱动模块310的作用下以较低的定位速度行进,同样避免由于速度过快带来的调整不及时等问题,定位速度可以与第二行进速度相同,也可以高于或低于第二行进速度。
此外,本实施例中,托盘伸出定位系统10还包括:停止模块400。停止模块400用于在接收到一终止指令后停止托盘20运动。这样,托盘20可以在任何时间点在停止模块400的作用下停止运动,从而可以在出现故障或者托盘20到位时及时停止托盘20的运动。
同时,如图6所示,托盘伸出定位系统10还包括:第二获取模块120和第二判断模块220。第二获取模块120用于获取第三传感器33的第三检测状态。第三检测状态用于表示第三传感器33是否检测到第三距离信号。第三距离信号用于表示托盘20的第三位置和目标物之间的距离。第二判断模块220用于判断第三检测状态,若第三检测状态为检测到第三距离信号,则产生终止指令。其中,第三位置位于第一位置和第二位置之间。这样,在托盘20运动到位时,第二判断模块220产生终止指令,完成托盘20的伸出定位。
并且,本实施例中,第一传感器31、第二传感器32和第三传感器33均为距离开关。可以方便地实现距离的检测。具体地,第一传感器31与第二传感器32的感应距离相同,第三传感器33的感应距离小于第一传感器31的感应距离。
此外,如图6所示,托盘伸出定位系统10还包括:第三判断模块230。第三判断模块230用于判断设于托盘20的极限开关是否检测到极限位置信号,若是,则产生终止指令。可以在托盘20运动到设定的极限位置时,及时产生终止指令以停止托盘20的运动,避免产生结构损坏。本实施例中,第二获取模块120还用于获取托盘20的极限开关的极 限检测状态;可替代的实施例中,可以另外设置第三获取模块,第三获取模块用于获取托盘的极限开关的极限检测状态。
本实施例中,如图7所示,第一传感器31固设于第一位置,第二传感器32固设于第二位置。本实施例2的托盘伸出定位系统10可用于实现实施例1中的托盘伸出定位方法,托盘伸出定位系统10的工作过程可参照实施例1的具体描述。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (14)

  1. 一种托盘伸出定位方法,其特征在于,其包括以下步骤:
    获取第一传感器的第一检测状态及第二传感器的第二检测状态;所述第一检测状态用于表示所述第一传感器是否检测到第一距离信号,所述第二检测状态用于表示所述第二传感器是否检测到第二距离信号;所述第一距离信号用于表示所述托盘的第一位置和目标物之间的距离,所述第二距离信号用于表示所述托盘的第二位置和所述目标物之间的距离;所述第一位置和所述第二位置间隔设置;
    判断所述第一检测状态和所述第二检测状态,若所述第一检测状态为检测到所述第一距离信号并且所述第二检测状态为检测到所述第二距离信号,则驱动所述托盘以定位速度向所述目标物直线运动;若所述第一检测状态为检测到所述第一距离信号并且所述第二检测状态为未检测到所述第二距离信号,则驱动所述托盘沿一顺旋转方向旋转运动,以使得所述第二位置相较于所述第一位置更快地靠近所述目标物;若所述第一检测状态为未检测到所述第一距离信号并且所述第二检测状态为检测到所述第二距离信号,则驱动所述托盘沿与所述顺旋转方向相反的一逆旋转方向旋转运动,以使得所述第一位置相较于所述第二位置更快地靠近所述目标物。
  2. 如权利要求1所述的托盘伸出定位方法,其特征在于,所述托盘伸出定位方法还包括:
    若所述第一检测状态为未检测到所述第一距离信号并且所述第二检测状态为未检测到所述第二距离信号,则驱动所述托盘以行进速度向所述目标物直线运动。
  3. 如权利要求2所述的托盘伸出定位方法,其特征在于,所述托盘以行进速度向所述目标物直线运动包括以下步骤:
    判断所述托盘是否已经行进一预设距离,若否则所述托盘以第一行进速度向所述目标物直线运动;若是则所述托盘以第二行进速度向所述目标物直线运动;
    其中,所述第二行进速度低于所述第一行进速度;
    较佳地,所述定位速度低于所述第一行进速度。
  4. 如权利要求1-3中至少一项所述的托盘伸出定位方法,其特征在于,所述托盘伸出定位方法还包括以下步骤:
    在接收到一终止指令后停止所述托盘运动。
  5. 如权利要求4所述的托盘伸出定位方法,其特征在于,所述托盘伸出定位方法还包括:
    获取第三传感器的第三检测状态;所述第三检测状态用于表示所述第三传感器是否检测到第三距离信号;所述第三距离信号用于表示所述托盘的第三位置和所述目标物之间的距离;
    判断所述第三检测状态,若所述第三检测状态为检测到所述第三距离信号,则产生所述终止指令;
    其中,所述第三位置位于所述第一位置和所述第二位置之间;
    较佳地,所述第一传感器、所述第二传感器和所述第三传感器均为距离开关;
    较佳地,所述第一传感器与所述第二传感器的感应距离相同,所述第三传感器的感应距离小于所述第一传感器的感应距离。
  6. 如权利要求4或5所述的托盘伸出定位方法,其特征在于,所述托盘伸出定位方法还包括:判断设于所述托盘的极限开关是否检测到极限位置信号,若是,则产生所述终止指令。
  7. 如权利要求1-6中至少一项所述的托盘伸出定位方法,其特征在于,所述第一传感器固设于所述第一位置,所述第二传感器固设于所述第二位置。
  8. 一种托盘伸出定位系统,其特征在于,其包括:
    第一获取模块,用于获取第一传感器的第一检测状态及第二传感器的第二检测状态;所述第一检测状态用于表示所述第一传感器是否检测到第一距离信号,所述第二检测状态用于表示所述第二传感器是否检测到第二距离信号;所述第一距离信号用于表示所述托盘的第一位置和目标物之间的距离,所述第二距离信号用于表示所述托盘的第二位置和所述目标物之间的距离;所述第一位置和所述第二位置间隔设置;
    第一判断模块,用于判断所述第一检测状态和所述第二检测状态,若所述第一检测状态为检测到所述第一距离信号并且所述第二检测状态为检测到所述第二距离信号,则调用第一驱动模块;若所述第一检测状态为检测到所述第一距离信号并且所述第二检测状态为未检测到所述第二距离信号,则调用第二驱动模块;若所述第一检测状态为未检测到所述第一距离信号并且所述第二检测状态为检测到所述第二距离信号,则调用第三驱动模块;
    所述第一驱动模块,用于驱动所述托盘以定位速度向所述目标物直线运动;
    所述第二驱动模块,用于驱动所述托盘沿一顺旋转方向旋转运动,以使得所述第二位置相较于所述第一位置更快地靠近所述目标物;
    所述第三驱动模块,用于驱动所述托盘沿与所述顺旋转方向相反的一逆旋转方向旋转运动,以使得所述第一位置相较于所述第二位置更快地靠近所述目标物。
  9. 如权利要求8所述的托盘伸出定位系统,其特征在于,所述托盘伸出定位系统还包括第四驱动模块;
    所述第一判断模块还用于判断若所述第一检测状态为未检测到所述第一距离信号并且所述第二检测状态为未检测到所述第二距离信号,则调用所述第四驱动模块;
    所述第四驱动模块用于驱动所述托盘以行进速度向所述目标物直线运动。
  10. 如权利要求9所述的托盘伸出定位系统,其特征在于,所述第一判断模块包括预设距离判断模块,所述第四驱动模块包括第一驱动执行模块和第二驱动执行模块;
    所述预设距离判断模块用于在所述托盘以行进速度向所述目标物直线运动过程中判断所述托盘是否已经行进一预设距离,若否则调用所述第一驱动执行模块;若是则调用所述第二驱动执行模块;
    所述第一驱动执行模块用于驱动所述托盘以第一行进速度向所述目标物直线运动;
    所述第二驱动执行模块用于驱动所述托盘以第二行进速度向所述目标物直线运动;
    其中,所述第二行进速度低于所述第一行进速度;
    较佳地,所述定位速度低于所述第一行进速度。
  11. 如权利要求8-10中至少一项所述的托盘伸出定位系统,其特征在于,所述托盘伸出定位系统还包括:
    停止模块,用于在接收到一终止指令后停止所述托盘运动。
  12. 如权利要求11所述的托盘伸出定位系统,其特征在于,所述托盘伸出定位系统还包括:
    第二获取模块,用于获取第三传感器的第三检测状态;所述第三检测状态用于表示所述第三传感器是否检测到第三距离信号;所述第三距离信号用于表示所述托盘的第三位置和所述目标物之间的距离;
    第二判断模块,用于判断所述第三检测状态,若所述第三检测状态为检测到所述第三距离信号,则产生所述终止指令;
    其中,所述第三位置位于所述第一位置和所述第二位置之间;
    较佳地,所述第一传感器、所述第二传感器和所述第三传感器均为距离开关;
    较佳地,所述第一传感器与所述第二传感器的感应距离相同,所述第三传感器的感应距离小于所述第一传感器的感应距离。
  13. 如权利要求11或12所述的托盘伸出定位系统,其特征在于,所述托盘伸出定位系统还包括:
    第三判断模块,用于判断设于所述托盘的极限开关是否检测到极限位置信号,若是, 则产生所述终止指令。
  14. 如权利要求8-13中至少一项所述的托盘伸出定位系统,其特征在于,所述第一传感器固设于所述第一位置,所述第二传感器固设于所述第二位置。
PCT/CN2019/105188 2018-09-10 2019-09-10 托盘伸出定位方法和系统 WO2020052563A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19859113.3A EP3851343B1 (en) 2018-09-10 2019-09-10 Tray extension positioning method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811053013.X 2018-09-10
CN201811053013.XA CN110884385B (zh) 2018-09-10 2018-09-10 托盘伸出定位方法和系统

Publications (1)

Publication Number Publication Date
WO2020052563A1 true WO2020052563A1 (zh) 2020-03-19

Family

ID=69745163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105188 WO2020052563A1 (zh) 2018-09-10 2019-09-10 托盘伸出定位方法和系统

Country Status (3)

Country Link
EP (1) EP3851343B1 (zh)
CN (4) CN114701396A (zh)
WO (1) WO2020052563A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111580656B (zh) * 2020-05-08 2023-07-18 安徽华米信息科技有限公司 可穿戴设备及其控制方法、装置
CN113858193B (zh) * 2021-09-13 2023-05-23 三一重工股份有限公司 电池抓取方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102059955A (zh) * 2009-11-16 2011-05-18 西门子公司 用于更换车辆内电池的方法和设备
CN102275573A (zh) * 2011-05-26 2011-12-14 山东鲁能智能技术有限公司 电动公交车电池快换系统
CN102407832A (zh) * 2011-09-28 2012-04-11 山东电力集团公司临沂供电公司 一种用于电动乘用车定位的换电平台系统
WO2012116916A2 (de) * 2011-02-28 2012-09-07 Continental Automotive Gmbh Batteriewechselvorrichtung
CN202641652U (zh) * 2012-06-29 2013-01-02 山东电力集团公司电力科学研究院 电动乘用车电池快换机器人的控制系统
CN102849043A (zh) * 2011-11-18 2013-01-02 山东电力研究院 电动公交车换电机器人系统及方法
CN206086670U (zh) * 2016-09-12 2017-04-12 北京新能源汽车股份有限公司 一种换电平台车

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612606A (en) * 1994-09-15 1997-03-18 David C. Guimarin Battery exchange system for electric vehicles
CN103140392B (zh) * 2011-01-31 2016-08-03 日本电产三协株式会社 电池更换机器人及电池更换系统
CN102303588B (zh) * 2011-05-27 2013-03-13 山东电力研究院 基于直角坐标机器人的电动乘用车底盘电池快换系统
CN102700513B (zh) * 2012-06-29 2015-02-04 山东鲁能智能技术有限公司 带有移动暂存架的换电机器人及换电方法
US10300804B2 (en) * 2015-04-29 2019-05-28 General Electric Company Apparatus and method for automated positioning of a vehicle
US10377008B2 (en) * 2015-10-30 2019-08-13 Transform Sr Brands Llc Position feedback control method and power tool
MX2019007908A (es) * 2016-12-30 2019-12-05 Shanghai Dianba New Energy Tech Co Ltd Plataforma movible de reemplazo de batería y sistema de reemplazo rápido.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102059955A (zh) * 2009-11-16 2011-05-18 西门子公司 用于更换车辆内电池的方法和设备
WO2012116916A2 (de) * 2011-02-28 2012-09-07 Continental Automotive Gmbh Batteriewechselvorrichtung
CN102275573A (zh) * 2011-05-26 2011-12-14 山东鲁能智能技术有限公司 电动公交车电池快换系统
CN102407832A (zh) * 2011-09-28 2012-04-11 山东电力集团公司临沂供电公司 一种用于电动乘用车定位的换电平台系统
CN102849043A (zh) * 2011-11-18 2013-01-02 山东电力研究院 电动公交车换电机器人系统及方法
CN202641652U (zh) * 2012-06-29 2013-01-02 山东电力集团公司电力科学研究院 电动乘用车电池快换机器人的控制系统
CN206086670U (zh) * 2016-09-12 2017-04-12 北京新能源汽车股份有限公司 一种换电平台车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3851343A4

Also Published As

Publication number Publication date
CN114834303A (zh) 2022-08-02
CN110884385B (zh) 2022-03-22
EP3851343B1 (en) 2024-03-06
CN114834300A (zh) 2022-08-02
CN114701396A (zh) 2022-07-05
EP3851343C0 (en) 2024-03-06
EP3851343A1 (en) 2021-07-21
EP3851343A4 (en) 2022-07-06
CN110884385A (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
CN109367501B (zh) 自动驾驶系统、车辆控制方法及装置
WO2020052563A1 (zh) 托盘伸出定位方法和系统
US9787240B2 (en) Controller and control method for motor
CN102183916A (zh) 有限转角伺服转台用位置寻零方法
CN103063153A (zh) 基于多点扫描距离检测技术的盾尾间隙测量方法和装置
WO2018180646A1 (ja) クレーンの制御システム及び制御方法
CN103671649A (zh) 检测开关元件的短路故障的制动器驱动控制装置
JP2013237308A (ja) 車両装置
WO2016091090A1 (zh) 一种三相开关磁阻电机位置传感器故障诊断与定位方法
CN104821101A (zh) 斜停泊车位检测方法和装置
US20150136304A1 (en) Method of friction welding and apparatus of friction welding
CN104079216B (zh) 三相有传感器bldc电机驱动系统及其驱动方法
JP2000250625A (ja) 故障診断装置
CN111240340A (zh) 巡检机器人、安全运行系统、安全运行方法及存储介质
JP2002354602A (ja) 自動車の高電圧系遮断装置
CN106272369B (zh) 龙门双驱动系统及其误差检测方法
US20190156677A1 (en) Driving assistance apparatus
WO2019001329A1 (zh) 电动车辆逆变器故障检测及处理方法、装置及存储介质
JPH0878506A (ja) 位置決め制御装置
WO2018121505A1 (zh) 用于道岔系统的信号冗余控制系统和方法、以及计算机可读存储介质
CN110597181B (zh) 基于原点设置的定位装置的控制方法、系统和存储介质
CN104442916B (zh) 下接触式地铁接触轨轨道检测系统
JP2021010291A (ja) 車両駆動装置
JP2007288829A (ja) 機械の異常検出方法およびその装置
KR101960137B1 (ko) 전장부품의 파손 감지방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019859113

Country of ref document: EP

Effective date: 20210412