WO2018121505A1 - 用于道岔系统的信号冗余控制系统和方法、以及计算机可读存储介质 - Google Patents

用于道岔系统的信号冗余控制系统和方法、以及计算机可读存储介质 Download PDF

Info

Publication number
WO2018121505A1
WO2018121505A1 PCT/CN2017/118530 CN2017118530W WO2018121505A1 WO 2018121505 A1 WO2018121505 A1 WO 2018121505A1 CN 2017118530 W CN2017118530 W CN 2017118530W WO 2018121505 A1 WO2018121505 A1 WO 2018121505A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
information
preset
signal acquisition
switch
Prior art date
Application number
PCT/CN2017/118530
Other languages
English (en)
French (fr)
Inventor
王洪涛
陈云
吴剑波
方悦
何鹏
刘先华
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to US16/475,001 priority Critical patent/US11501644B2/en
Publication of WO2018121505A1 publication Critical patent/WO2018121505A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L7/00Remote control of local operating means for points, signals, or track-mounted scotch-blocks
    • B61L7/06Remote control of local operating means for points, signals, or track-mounted scotch-blocks using electrical transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L5/00Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
    • B61L5/06Electric devices for operating points or scotch-blocks, e.g. using electromotive driving means
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/20Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles
    • G08G1/207Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles with respect to certain areas, e.g. forbidden or allowed areas with possible alerting when inside or outside boundaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D15/00Other railway vehicles, e.g. scaffold cars; Adaptations of vehicles for use on railways
    • B61D15/08Railway inspection trolleys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/002Control or safety means for heart-points and crossings of aerial railways, funicular rack-railway
    • B61L23/005Automatic control or safety means for points for operator-less railway, e.g. transportation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/04Indicating or recording train identities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/50Trackside diagnosis or maintenance, e.g. software upgrades
    • B61L27/53Trackside diagnosis or maintenance, e.g. software upgrades for trackside elements or systems, e.g. trackside supervision of trackside control system conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/023Determination of driving direction of vehicle or train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/028Determination of vehicle position and orientation within a train consist, e.g. serialisation

Definitions

  • the present invention relates to the field of traffic track technology, and more particularly to a signal redundancy control system and method for a switch system, and a computer readable storage medium.
  • the switch opening direction is driven by controlling the synchronous movement of a plurality of driving devices disposed under the ballast beam of the ballast system, wherein a plurality of driving devices are generated during movement
  • the pulse signal exhibits certain regular characteristics.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • an object of the present invention is to provide a signal redundancy control system for a ballast system, which can implement redundant control of signals of a plurality of driving devices in the collected switch system, and improve signal positioning in the switch system. Accuracy, effectively improve the reliability of the signal control of the switch system.
  • Another object of the present invention is to propose a signal redundancy control method for a switch system.
  • Another object of the present invention is to provide a computer readable storage medium.
  • a signal redundancy control system for a switch system includes: a plurality of first signal acquisition devices, each of which is disposed in a preset of the switch system.
  • each of the first signal acquisition devices is configured to collect dynamic information of the preset device in real time; and each of the preset devices is provided with a second signal acquisition device corresponding to the first signal acquisition device, each of the first The second signal collecting device is configured to collect dynamic information of the preset device in real time, and the first signal collecting device and the second signal collecting device disposed on the same preset device are mutually redundant;
  • the controller is used for acquiring The dynamic information of the preset device that is collected by each of the first signal acquisition devices, and determining, according to the dynamic information, whether the first signal acquisition device has fault information, and when determining that the fault information exists, The controller acquires dynamic information collected by the second signal acquisition device corresponding to the first signal acquisition device that generates the fault instead of generating Dynamic information acquired by the first signal acquisition
  • each first signal acquisition device collects dynamic information of a preset device in real time; and sets a preset on each preset device a second signal acquisition device corresponding to a signal acquisition device, wherein the first signal acquisition device and the second signal acquisition device disposed on the same preset device are mutually redundant; the controller acquires the information collected by each of the first signal acquisition devices
  • the dynamic information of the preset device is located, and the first signal collecting device is determined to have fault information according to the dynamic information.
  • the controller acquires the second signal collecting device corresponding to the first signal collecting device that generates the fault.
  • the collected dynamic information is substituted for the dynamic information acquired from the first signal acquisition device that generates the fault, and is based on the dynamic information acquired from the first signal acquisition device or the second signal acquisition device for each preset device.
  • Positioning, wherein each preset device is of the same type, and each preset device is in the switch system Different loading positions can be achieved for the signal acquisition system turnout to a plurality of redundant control drive apparatus, to enhance the accuracy of the positioning signals in the turnout system, effectively enhance the reliability of the control signal turnout system.
  • a signal redundancy control method for a switch system includes: acquiring dynamic information of a preset device that is collected by each first signal acquisition device, and Determining whether the first signal acquisition device has fault information, and determining that the fault information is acquired, acquiring dynamic information collected by the second signal acquisition device corresponding to the first signal acquisition device that generates the fault, Substituting dynamic information acquired from the first signal acquisition device that generates the fault; and positioning each of the preset devices according to dynamic information acquired from the first signal acquisition device or the second signal acquisition device; Wherein, each of the preset devices is respectively provided with a first signal collecting device and a second signal collecting device corresponding to the first signal collecting device, wherein the first signal collecting device and the second signal collecting device are used for real-time collecting Dynamic information of the preset device, the first signal acquisition device and the second signal acquisition device set on the same preset device Between the mutually redundant, the same type of each predetermined unit, and said each preset unit in the different mounting
  • the signal redundancy control method for the switch system proposed by the second aspect of the present invention obtains the dynamic information of the preset device that is collected by each first signal acquisition device, and determines the first signal collection according to the dynamic information. Whether the device has fault information; when it is determined that the fault information exists, acquiring the dynamic information collected by the second signal collecting device corresponding to the first signal collecting device that generates the fault, instead of acquiring the first signal collecting device from the faulty first signal collecting device Dynamic information; and positioning each preset device according to dynamic information collected from the first signal acquisition device or the second signal acquisition device, wherein each of the preset devices is respectively provided with a first signal acquisition
  • the device and the second signal collecting device corresponding to the first signal collecting device, the first signal collecting device and the second signal collecting device are both used for real-time collecting dynamic information of the preset device, and the first set on the same preset device
  • the signal acquisition device and the second signal acquisition device are redundant with each other, and each preset device has the same type Moreover, each preset device has different installation positions in
  • a computer readable storage medium includes computer instructions for causing execution of the above-described signal redundancy control method for a switch system when the computer instructions are executed.
  • FIG. 1 is a schematic structural diagram of a signal redundancy control system for a switch system according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a controller according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a controller according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a controller according to another embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of a signal redundancy control method for a switch system according to an embodiment of the present invention
  • FIG. 6 is a schematic flow chart of a signal redundancy control method for a switch system according to another embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of a signal redundancy control method for a switch system according to another embodiment of the present invention.
  • FIG. 8 is a schematic flow chart of a signal redundancy control method for a switch system according to another embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a signal redundancy control system for a switch system according to an embodiment of the present invention.
  • the signal redundancy control system 10 for a ballast system of the present invention realizes redundant control of signals of the collected ballast system by providing a redundant signal acquisition device for the ballast system in the rail transit field.
  • the signal redundancy control system 10 for the ballast system can be used to redundantly control the signals of the trolleys in the ballast system or the limit switches on the swing arms of the ballast arms in the ballast system.
  • the signal redundancy control system 10 for a switch system includes a plurality of first signal acquisition devices 101, a plurality of second signal acquisition devices 102, and a controller 103. among them,
  • the signal redundancy control system 10 for a switch system includes a plurality of first signal acquisition devices 101, each of which is disposed in a preset in the switch system. On the device, each first signal acquisition device 101 is configured to collect dynamic information of the preset device in its real time.
  • the number of preset devices in the switch system is the same as the number of the first signal acquisition devices 101, and each first signal acquisition device 101 is set in the switch system to collect dynamics.
  • the information corresponds to the pulse signal on the preset device.
  • the signal redundancy control system 10 for the switch system may include a plurality of first signal acquisition devices 101, wherein the first signal acquisition device 101 may be, for example, an encoder, which is not limited thereto. .
  • each preset device has the same type, and each preset device has a different installation position in the switch system.
  • the dynamic information of the preset device can be collected by the encoder in real time collecting the pulse signal generated by the motion of the preset device, and no limitation is imposed on the dynamic information of the preset device.
  • the preset device may be, for example, a trolley, or the preset device may also be, for example, a limit switch in a rotating position of the swing arm upper swing arm in the switch system, or may be a driving switch opening direction in the switch system. There are no other restrictions on other drive devices that are arranged in parallel.
  • the dynamic information is displacement information of the trolley.
  • the dynamic information is a time interval at which the limit switch issues a control signal twice.
  • the signal redundancy control system 10 for the switch system further includes: a second signal collection device 102 corresponding to the first signal acquisition device 101 disposed on each preset device, Each of the second signal collecting devices is configured to collect dynamic information of the preset device in real time, and the first signal collecting device 101 and the second signal collecting device 102 disposed on the same preset device are mutually redundant.
  • the switch opening direction is driven by controlling the synchronous movement of a plurality of driving devices disposed under the ballast beam of the ballast system, wherein the pulses generated when the plurality of driving devices are moving
  • the signal exhibits certain regular characteristics, for example, the difference of the pulse signals remains consistent, or within a certain preset range, and thus, in the embodiment of the present invention, each pre-turn in the turnout direction can be driven in the switch system.
  • the first signal acquisition device 101 and the second signal acquisition device 102 are mutually redundant, and the signals of the plurality of driving devices in the collected switch system are redundantly controlled to improve signal positioning in the switch system. Precision.
  • the first signal acquisition device 101 and the corresponding second signal collection device 102 can be simultaneously activated at an initial time, so that the corresponding second signal collection device 102 can collect the dynamics of the preset device in real time.
  • the number of the first signal acquisition device 101 and the second signal acquisition device 102 is the same.
  • the signal redundancy control system 10 for the switch system further includes: a controller 103, configured to acquire the preset of each of the first signal acquisition devices 101 Dynamic information of the device, and determining whether the first signal acquisition device 101 has fault information according to the dynamic information.
  • the controller 103 acquires the second signal collection device 102 corresponding to the first signal acquisition device 101 that generates the fault.
  • the collected dynamic information replaces the dynamic information acquired from the first signal acquisition device that generates the failure, and the dynamic information acquired from the first signal acquisition device 101 or the second signal acquisition device 102 for each preset device. Positioning.
  • the controller 103 can be, for example, a Programmable Logic Controller (PLC).
  • PLC Programmable Logic Controller
  • FIG. 2 is a schematic structural diagram of a controller 103 according to an embodiment of the present invention.
  • the controller 103 includes: a first acquiring module 201, and calculating Module 202, and first decision module 203.
  • the signal redundancy control system 10 for the switch system can perform signal redundancy control on the trolleys in the switch system.
  • the first obtaining module 201 is configured to acquire displacement information of the trolley collected by the plurality of first signal collecting devices 101.
  • the position coordinate of the vehicle when the motion is not generated may be used as a zero coordinate to establish a Cartesian coordinate system, and the position after the motion is based on the relative position coordinate of the zero coordinate in the Cartesian coordinate system as displacement information, or
  • the corresponding displacement information can be determined by collecting a pulse signal, which is not limited.
  • the first obtaining module 201 may acquire the displacement information of the trolley collected by each first signal collecting device 101 from the plurality of first signal collecting devices 101, and further, the acquiring The process can be a real-time acquisition process.
  • the signals of each trolley in the switch system can be redundantly controlled, thereby effectively ensuring the positioning accuracy of each trolley signal.
  • the calculation module 202 is configured to calculate alignment information between displacement information of two adjacent vehicles according to the displacement information.
  • the comparison information is the difference or ratio between the displacement information of two adjacent vehicles, and no limitation is imposed thereon.
  • the first determining module 203 is configured to compare the comparison information with a preset threshold, where the comparison information is greater than or equal to a preset threshold, and the trolley corresponding to the comparison information exceeding the preset threshold is in normal operation. In the state, it is determined that the first signal acquisition device 101 disposed on the carriage corresponding to the comparison information exceeding the preset threshold has failure information.
  • the preset threshold may be preset, that is, the error value of the pulse signal generated when the manufacturer of the switch system determines the motion between the different vehicles according to the performance thereof, and is pre-configured with reference to the error value.
  • the threshold is preset, or it can be configured by the user, which is not limited.
  • the first signal acquisition device 101 having the fault information is determined by comparing the comparison information between the displacement information of the adjacent two trolleys with the preset threshold, and the signals of each trolley can be redundant in time. Control, because the algorithm is simple and easy to implement, and the reliability is high, the computational resources consumed by the signal redundancy control system 10 can be saved, and the execution efficiency of the system can be improved.
  • FIG. 3 is a schematic structural diagram of a controller 103 according to another embodiment of the present invention.
  • the controller 103 includes: a second acquiring module 301. And a second decision module 302.
  • the signal redundancy control system 10 for the switch system can also perform signal redundancy control on the limit switches in the switch system.
  • the second obtaining module 301 is configured to acquire a time interval at which the limit switches collected by the plurality of first signal collecting devices 101 send out control signals.
  • a limit switch is installed in the rotating position of the upper arm of the ballast beam in the ballast system, and the gear motor drives the swing arm to drive the ball truss movement, and the touch limit during the swinging of the swing arm
  • the position switch sends a control signal to drive the ballast beam movement. Therefore, the signal of the limit switch can be redundantly controlled according to the time interval at which the control signal is issued twice for each limit switch.
  • the second obtaining module 301 can directly read the time interval at which the plurality of limit switches issue control signals from the first signal collecting device 101, wherein the time interval may be the first signal collecting device. 101 is determined by collecting a pulse signal, and no limitation is imposed thereon.
  • the second determining module 302 is configured to determine whether the time intervals of the plurality of limit switches to send the control signals are the same. In the plurality of limit switches, there is a time interval at which the limit switch sends out the control signal and the remaining limit switches send the control signals. The time interval is not the same, and when the one limit switch is in the normal running state, it is determined that the first signal collecting device 101 disposed on the one limit switch has fault information.
  • the time interval for issuing the control signal by any of the limit switches is different from the time interval for the other limit switches to send the control signal, and when any one of the limit switches is in the normal running state, the determination is set on the one of the limit switches.
  • the first signal acquisition device 101 has fault information, and can acquire the dynamic information of the limit switch collected by the second signal acquisition device 102 in real time, and can implement redundant control of the limit switch signal in the switch system, and improve the switch system. The accuracy of the position switch signal positioning.
  • FIG. 4 is a schematic structural diagram of a controller 103 according to another embodiment of the present invention.
  • the controller 103 in any of the embodiments shown in FIG. 2 or FIG. 3 may further include : Generate module 401.
  • the generating module 401 is configured to generate alarm information of the fault information of the first signal acquisition device 101 when the start-up control is performed on the switch motor, so as to prompt the user according to the alarm information.
  • the alarm information of the fault information of the first signal acquisition device 101 can also be generated to prompt the user according to the alarm information, so that the user can know the fault information in time for quick response. Improve the user experience and enhance the intelligent control effect of the signal redundancy control of the switch system.
  • each of the first signal collection devices collects dynamic information of the preset device in real time; and each of the preset devices is provided with a second signal acquisition device corresponding to the first signal acquisition device, and the same preset
  • the first signal acquisition device and the second signal acquisition device disposed on the device are mutually redundant; the controller obtains dynamic information of the preset device that is collected by each first signal acquisition device, and judges according to the dynamic information Whether the signal acquisition device has fault information, and when determining that the fault information exists, the controller acquires the dynamic information collected by the second signal acquisition device corresponding to the first signal acquisition device that generates the fault to replace the first signal from the fault.
  • each preset device Collecting dynamic information acquired by the device, and positioning each preset device according to dynamic information acquired from the first signal acquisition device or the second signal acquisition device, wherein each preset device has the same type, and Each preset device is installed in a different position in the switch system, and can realize more than the collected switch system.
  • Driving signal control equipment redundancy to improve positioning accuracy of the turnout system signals, effectively enhance the reliability of the control signal turnout system.
  • FIG. 5 is a schematic flow chart of a signal redundancy control method for a switch system according to an embodiment of the present invention.
  • the method includes:
  • S52 Acquire dynamic information of the preset device that is collected by each first signal acquisition device, and determine whether the first signal acquisition device has fault information according to the dynamic information.
  • a first signal acquisition device is disposed on each preset device, and the first signal acquisition device is configured to collect dynamic information of the preset device in the real time.
  • the preset device is a trolley, and when the preset device is a trolley, the dynamic information is displacement information of the trolley.
  • the preset device is a limit switch on the ballast beam in the ballast system, and the limit switch is in a rotating position of the swing arm.
  • the dynamic information is a time interval at which the limit switch issues a control signal twice.
  • S52 when the preset device is a trolley, S52 includes:
  • S61 Acquire displacement information of the trolley collected by the plurality of first signal acquisition devices.
  • S62 Calculate the comparison information between the displacement information of the adjacent two vehicles according to the displacement information.
  • the comparison information is a difference or ratio between displacement information of two adjacent trolleys.
  • S63 Comparing the comparison information with a preset threshold. When the comparison information is greater than or equal to a preset threshold, and the trolley corresponding to the comparison information exceeding the preset threshold is in a normal running state, determining the setting is over and over.
  • the first signal acquisition device on the trolley corresponding to the comparison information of the preset threshold has fault information.
  • S52 when the preset device is a limit switch, S52 includes:
  • S71 Obtain a time interval for the limit switch collected by the first signal acquisition device to send a control signal.
  • S72 determining whether the time intervals of the control signals sent by the plurality of limit switches are the same. In the plurality of limit switches, the time interval at which the limit switch sends out the control signal is different from the time interval at which the other limit switches send the control signals. Moreover, when the limit switch is in a normal running state, it is determined that the first signal acquisition device disposed on the one limit switch has fault information.
  • Each of the preset devices is provided with a second signal collecting device corresponding to the first signal collecting device, and each of the second signal collecting devices is configured to collect dynamic information of the preset device in real time, and is set on the same preset device.
  • the first signal acquisition device and the second signal acquisition device are mutually redundant.
  • S56 Locating each preset device according to the dynamic information acquired from the first signal acquisition device or the second signal acquisition device.
  • each preset device has the same type, and each preset device has a different installation position in the switch system.
  • the method further includes:
  • the dynamic information of the preset device that is collected by each first signal acquisition device is obtained, and whether the first signal acquisition device has fault information is determined according to the dynamic information; when it is determined that the fault information exists, the acquisition is performed.
  • the dynamic information acquired by the second signal collecting device is used to locate each preset device, wherein each of the preset devices is respectively provided with a first signal collecting device and a second signal collecting device corresponding to the first signal collecting device
  • the first signal collecting device and the second signal collecting device are both used for real-time collecting dynamic information of the preset device, and the first signal collecting device and the second signal collecting device disposed on the same preset device are mutually redundant.
  • Each preset device has the same type, and each preset device is installed in a different position in the switch system.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种用于道岔系统的信号冗余控制系统(10)包括:多个第一信号采集装置(101),用于实时采集其所在预设装置的动态信息;与第一信号采集装置(101)对应的第二信号采集装置(102),其设置在每个预设装置上,用于实时采集其所在预设装置的动态信息;控制器(103),用于判断第一信号采集装置(101)是否存在故障信息,在判定存在故障信息时,获取第二信号采集装置(102)所采集到的动态信息以替代第一信号采集装置(101)获取到的动态信息,以及根据第一或第二信号采集装置(101,102)获取到的动态信息对每个预设装置进行定位。还提供了一种用于道岔系统的信号冗余控制方法以及计算机可读存储介质。该系统(10)实现了冗余控制采集到的道岔系统中多个驱动设备的信号,提升了信号定位的精准度,提升了道岔系统信号控制的可靠性。

Description

用于道岔系统的信号冗余控制系统和方法、以及计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为2016112630612,申请日为2016年12月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及交通轨道技术领域,尤其涉及一种用于道岔系统的信号冗余控制系统和方法,以及计算机可读存储介质。
背景技术
在轨道交通技术领域中,根据列车轨道的道岔系统的工作原理,通过控制设置在道岔系统的道岔梁下的多个驱动设备的同步运动来驱动道岔开放方向,其中,多个驱动设备运动时产生的脉冲信号呈现一定的规律特性。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种用于道岔系统的信号冗余控制系统,能够实现对采集到的道岔系统中多个驱动设备的信号进行冗余控制,提升道岔系统中信号定位的精准度,有效提升道岔系统信号控制的可靠性。
本发明的另一个目的在于提出一种用于道岔系统的信号冗余控制方法。
本发明的另一个目的在于提出一种计算机可读存储介质。
为达到上述目的,本发明第一方面实施例提出的用于道岔系统的信号冗余控制系统,包括:多个第一信号采集装置,每个第一信号采集装置设置在道岔系统中的一个预设装置上,每个第一信号采集装置用于实时采集其所在预设装置的动态信息;在每个预设装置上设置有与第一信号采集装置对应的第二信号采集装置,每个第二信号采集装置用于实时采集其所在预设装置的动态信息,相同预设装置上设置的第一信号采集装置和第二信号采集装置之间相互冗余;控制器,所述控制器用于获取所述每个第一信号采集装置所采集的其所在预设装置的动态信息,并根据所述动态信息判断所述第一信号采集装置是否存在故障信息,在判定存在所述故障信息时,所述控制器获取与产生故障的第一信号采集装置对应的第二信号采集装置所采集到的动态信息以替代从产生故障的第一信号采集装置获取到的动态信息,以及根据 从所述第一信号采集装置或所述第二信号采集装置获取到的动态信息对所述每个预设装置进行定位,其中,每个预设装置的类型相同,且,所述每个预设装置在所述道岔系统中的安装位置不同。
本发明第一方面实施例提出的用于道岔系统的信号冗余控制系统,每个第一信号采集装置通过实时采集其所在预设装置的动态信息;在每个预设装置上设置有与第一信号采集装置对应的第二信号采集装置,相同预设装置上设置的第一信号采集装置和第二信号采集装置之间相互冗余;控制器通过获取每个第一信号采集装置所采集的其所在预设装置的动态信息,并根据动态信息判断第一信号采集装置是否存在故障信息,在判定存在故障信息时,控制器获取与产生故障的第一信号采集装置对应的第二信号采集装置所采集到的动态信息以替代从产生故障的第一信号采集装置获取到的动态信息,并根据从所述第一信号采集装置或第二信号采集装置获取到的动态信息对每个预设装置进行定位,其中,每个预设装置的类型相同,且,每个预设装置在道岔系统中的安装位置不同,能够实现对采集到的道岔系统中多个驱动设备的信号进行冗余控制,提升道岔系统中信号定位的精准度,有效提升道岔系统信号控制的可靠性。
为达到上述目的,本发明第二方面实施例提出的用于道岔系统的信号冗余控制方法,包括:获取每个第一信号采集装置所采集的其所在预设装置的动态信息,并根据所述动态信息判断所述第一信号采集装置是否存在故障信息;在判定存在所述故障信息时,获取与产生故障的第一信号采集装置对应的第二信号采集装置所采集到的动态信息,以替代从产生故障的第一信号采集装置获取到的动态信息;以及根据从所述第一信号采集装置或所述第二信号采集装置获取到的动态信息对所述每个预设装置进行定位;其中,在每个预设装置上分别设置有第一信号采集装置以及与第一信号采集装置对应的第二信号采集装置,第一信号采集装置和第二信号采集装置均用于实时采集其所在预设装置的动态信息,相同预设装置上设置的第一信号采集装置和第二信号采集装置之间相互冗余,每个预设装置的类型相同,且,所述每个预设装置在所述道岔系统中的安装位置不同。
本发明第二方面实施例提出的用于道岔系统的信号冗余控制方法,通过获取每个第一信号采集装置所采集的其所在预设装置的动态信息,并根据动态信息判断第一信号采集装置是否存在故障信息;在判定存在故障信息时,获取与产生故障的第一信号采集装置对应的第二信号采集装置所采集到的动态信息,以替代从产生故障的第一信号采集装置获取到的动态信息;以及根据从所述第一信号采集装置或第二信号采集装置采集到的动态信息对每个预设装置进行定位,其中,在每个预设装置上分别设置有第一信号采集装置以及与第一信号采集装置对应的第二信号采集装置,第一信号采集装置和第二信号采集装置均用于实时采集其所在 预设装置的动态信息,相同预设装置上设置的第一信号采集装置和第二信号采集装置之间相互冗余,每个预设装置的类型相同,且,每个预设装置在道岔系统中的安装位置不同,能够实现对采集到的道岔系统中多个驱动设备的信号进行冗余控制,提升道岔系统中信号定位的精准度,有效提升道岔系统信号控制的可靠性。
为达到上述目的,本发明第三方面实施例提出的计算机可读存储介质,包括计算机指令,当所述计算机指令被执行时,使得执行上述的用于道岔系统的信号冗余控制方法。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明一实施例提出的用于道岔系统的信号冗余控制系统的结构示意图;
图2为本发明一实施例提出控制器的结构示意图;
图3为本发明另一实施例提出控制器的结构示意图;
图4为本发明另一实施例提出控制器的结构示意图;
图5是本发明一实施例提出的用于道岔系统的信号冗余控制方法的流程示意图;
图6是本发明另一实施例提出的用于道岔系统的信号冗余控制方法的流程示意图;
图7是本发明另一实施例提出的用于道岔系统的信号冗余控制方法的流程示意图;
图8是本发明另一实施例提出的用于道岔系统的信号冗余控制方法的流程示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
图1是本发明一实施例提出的用于道岔系统的信号冗余控制系统的结构示意图。
本发明中的用于道岔系统的信号冗余控制系统10,通过对轨道交通领域的道岔系统设置冗余式的信号采集装置,实现对采集到的道岔系统的信号进行冗余控制。
具体地,该用于道岔系统的信号冗余控制系统10可以用于对道岔系统中的台车,或者,道岔系统中道岔梁上摆臂旋转位置上的限位开关的信号进行冗余控制。
参见图1,该用于道岔系统的信号冗余控制系统10包括:多个第一信号采集装置101、多个第二信号采集装置102,以及控制器103。其中,
在本发明中的一个实施例中,该用于道岔系统的信号冗余控制系统10包括:多个第一信号采集装置101,每个第一信号采集装置101设置在道岔系统中的一个预设装置上,每个第一信号采集装置101用于实时采集其所在预设装置的动态信息。
可以理解的是,在本发明的实施例中,道岔系统中预设装置的个数与第一信号采集装置101的个数相同,每个第一信号采集装置101设置在道岔系统中需要采集动态信息对应的脉冲信号的预设装置上。在本发明的实施例中,该用于道岔系统的信号冗余控制系统10可以包括多个第一信号采集装置101,其中,该第一信号采集装置101可以例如为编码器,对此不作限制。
其中,每个预设装置的类型相同,且,每个预设装置在道岔系统中的安装位置不同。
例如,在第一信号采集装置101为编码器时,可以通过编码器实时采集其所在预设装置运动所产生的脉冲信号的方式,来采集该预设装置的动态信息,对此不做限制。
进一步地,预设装置可以例如为台车,或者,预设装置也可以例如为道岔系统中道岔梁上摆臂旋转位置上的限位开关,或者,也可以为道岔系统中驱动道岔开放方向的其它并列设置的多个驱动设备,对此不作限制。
可选地,在预设装置为台车时,动态信息为台车的位移信息。
可选地,在预设装置为限位开关时,动态信息为限位开关两次发出控制信号的时间间隔。
在本发明中的一个实施例中,该用于道岔系统的信号冗余控制系统10还包括:在每个预设装置上设置的与第一信号采集装置101对应的第二信号采集装置102,每个第二信号采集装置用于实时采集其所在预设装置的动态信息,相同预设装置上设置的第一信号采集装置101和第二信号采集装置102之间相互冗余。
可以理解的是,根据列车轨道的道岔系统的工作原理,通过控制设置在道岔系统的道岔梁下的多个驱动设备的同步运动来驱动道岔开放方向,其中,多个驱动设备运动时产生的脉冲信号呈现一定的规律特性,例如,脉冲信号的差值保持一致,或者在一定的预设范围之内,因而,在本发明的实施例中,可以在道岔系统中驱动道岔开放方向的每个预设装置上,均设置相互冗余的第一信号采集装置101和第二信号采集装置102,实现对采集到的道岔系统中多个驱动设备的信号进行冗余控制,提升道岔系统中信号定位的精准度。
在本发明的实施例中,可以在初始时刻同时启动第一信号采集装置101和对应的第二信号采集装置102,以使对应的第二信号采集装置102可以实时采集其所在预设装置的动态信息,并在第一信号采集装置101存在故障时,实现热切换,无缝接替第一信号采集装置101 实时采集其所在预设装置的动态信息,实现信号高精度的冗余控制。
在本发明的实施例中,第一信号采集装置101和第二信号采集装置102的个数相同。
在本发明中的一个实施例中,该用于道岔系统的信号冗余控制系统10还包括:控制器103,控制器103用于获取每个第一信号采集装置101所采集的其所在预设装置的动态信息,并根据动态信息判断第一信号采集装置101是否存在故障信息,在判定存在故障信息时,控制器103获取与产生故障的第一信号采集装置101对应的第二信号采集装置102所采集到的动态信息以替代从产生故障的第一信号采集装置获取到的动态信息,以及根据从第一信号采集装置101或第二信号采集装置102获取到的动态信息对每个预设装置进行定位。
其中,控制器103可以例如为可编程逻辑控制器(Programmable Logic Controller,PLC)。
可选地,一些实施例中,参见图2,图2为本发明一实施例提出控制器103的结构示意图,在预设装置为台车时,控制器103包括:第一获取模块201、计算模块202,以及第一判定模块203。
在图2所示的实施例中,该用于道岔系统的信号冗余控制系统10可以对道岔系统中的台车进行信号冗余控制。
第一获取模块201,用于获取多个第一信号采集装置101所采集到的台车的位移信息。
其中,可以预先根据该台车的未产生运动时的位置坐标作为零坐标,建立直角坐标系,而将运动后的位置基于该直角坐标系中零坐标的相对位置坐标作为位移信息,或者,也可以通过采集脉冲信号的方式确定对应的位移信息,对此不作限制。
在本发明的实施例中,第一获取模块201可以从多个第一信号采集装置101中,分别获取每个第一信号采集装置101所采集到的台车的位移信息,进一步地,该获取过程可以是实时获取过程。
在本发明的实施例中,通过获取多辆台车的位移信息,可以实现对道岔系统中每个台车的信号均进行冗余控制,有效保证了每个台车信号定位精准度。
计算模块202,用于根据位移信息计算相邻两辆台车的位移信息之间的比对信息。
其中,比对信息为相邻两辆台车的位移信息之间的差值或者比值,对此不作限制。
第一判定模块203,用于将比对信息与预设阈值做比对,在比对信息大于或者等于预设阈值,且,与超出所述预设阈值的对比信息对应的台车处于正常运行状态时,判定设置在与超出所述预设阈值的对比信息对应的台车上的第一信号采集装置101存在故障信息。
其中,预设阈值可以是预先设定的,即,可以由道岔系统的生产厂商根据其性能确定其不同的台车之间的运动时产生的脉冲信号的误差值,并参考该误差值预先配置预设阈值,或 者,也可以由用户进行配置,对此不作限制。
通过根据相邻两辆台车的位移信息之间的比对信息与预设阈值做比对来确定存在故障信息的第一信号采集装置101,可以及时对每个台车的信号均进行冗余控制,由于算法简单易实现,且可靠性高,因而可以节约信号冗余控制系统10所耗的计算资源,提升该系统执行效率。
可选地,一些实施例中,参见图3,图3为本发明另一实施例提出控制器103的结构示意图,在预设装置为限位开关时,控制器103包括:第二获取模块301和第二判定模块302。
在图3所示的实施例中,该用于道岔系统的信号冗余控制系统10也可以对道岔系统中的限位开关进行信号冗余控制。
第二获取模块301,用于获取多个第一信号采集装置101所采集到的限位开关发出控制信号的时间间隔。
可以理解的是,根据列车轨道的道岔系统的工作原理,道岔系统中道岔梁上摆臂旋转位置安装了限位开关,减速电机带动摆臂旋转驱动道岔梁移动,摆臂旋转过程中触碰限位开关,限位开关发出控制信号以驱动道岔梁移动,因此,可以根据每个限位开关两次发出控制信号的时间间隔来触发对限位开关的信号进行冗余控制。
在本发明的实施例中,第二获取模块301可以实时从第一信号采集装置101处直接读取多个限位开关发出控制信号的时间间隔,其中,时间间隔可以是由第一信号采集装置101通过采集脉冲信号的方式确定的,对此不作限制。
第二判定模块302,用于判断多个限位开关发出控制信号的时间间隔是否相同,在多个限位开关中,存在一个限位开关发出控制信号的时间间隔与其余限位开关发出控制信号的时间间隔不相同,且,该一个限位开关处于正常运行状态时,判定设置在该一个限位开关上的第一信号采集装置101存在故障信息。
通过任一个限位开关发出控制信号的时间间隔与其余限位开关发出控制信号的时间间隔不相同,且,该任一个限位开关处于正常运行状态时,判定设置在该任一个限位开关上的第一信号采集装置101存在故障信息,可以及时获取第二信号采集装置102实时采集的限位开关的动态信息,能够实现对道岔系统中的限位开关信号的冗余控制,提升道岔系统中限位开关信号定位的精准度。
可选地,一些实施例中,参见图4,图4为本发明另一实施例提出控制器103的结构示意图,在图2或者图3任意所示实施例中的控制器103,还可以包括:生成模块401。
生成模块401,用于在对转辙电机进行启动控制时,生成第一信号采集装置101存在故障信息的报警信息,以根据报警信息对用户进行提示。
通过在道岔系统第一信号采集装置101存在故障信息之后,还可以生成第一信号采集装置101存在故障信息的报警信息,以根据报警信息对用户进行提示,能够使用户及时获知故障信息以便快速响应,提升用户使用体验度,并且提升道岔系统信号冗余控制的智能化控制效果。
本实施例中,每个第一信号采集装置通过实时采集其所在预设装置的动态信息;在每个预设装置上设置有与第一信号采集装置对应的第二信号采集装置,相同预设装置上设置的第一信号采集装置和第二信号采集装置之间相互冗余;控制器通过获取每个第一信号采集装置所采集的其所在预设装置的动态信息,并根据动态信息判断第一信号采集装置是否存在故障信息,在判定存在故障信息时,控制器获取与产生故障的第一信号采集装置对应的第二信号采集装置所采集到的动态信息以替代从产生故障的第一信号采集装置获取到的动态信息,以及根据从所述第一信号采集装置或第二信号采集装置获取到的动态信息对每个预设装置进行定位,其中,每个预设装置的类型相同,且,每个预设装置在道岔系统中的安装位置不同,能够实现对采集到的道岔系统中多个驱动设备的信号进行冗余控制,提升道岔系统中信号定位的精准度,有效提升道岔系统信号控制的可靠性。
图5是本发明一实施例提出的用于道岔系统的信号冗余控制方法的流程示意图。
参见图5,该方法包括:
S52:获取每个第一信号采集装置所采集的其所在预设装置的动态信息,并根据动态信息判断第一信号采集装置是否存在故障信息。
在每个预设装置上设置有第一信号采集装置,第一信号采集装置用于实时采集其所在预设装置的动态信息。
可选地,预设装置为台车,在预设装置为台车时,动态信息为台车的位移信息。
可选地,预设装置为道岔系统中道岔梁上,摆臂旋转位置上的限位开关,在预设装置为限位开关时,动态信息为限位开关两次发出控制信号的时间间隔。
可选地,一些实施例中,参见图6,在预设装置为台车时,S52包括:
S61:获取多个第一信号采集装置所采集到的台车的位移信息。
S62:根据位移信息计算相邻两辆台车的位移信息之间的比对信息。
可选地,比对信息为相邻两辆台车的位移信息之间的差值或者比值。
S63:将比对信息与预设阈值做比对,在比对信息大于或者等于预设阈值,且,与超出预设阈值的对比信息对应的台车处于正常运行状态时,判定设置在与超出预设阈值的对比信息对应的台车上的第一信号采集装置存在故障信息。
可选地,一些实施例中,参见图7,在预设装置为限位开关时,S52包括:
S71:获取多个第一信号采集装置所采集到的限位开关发出控制信号的时间间隔。
S72:判断多个限位开关发出控制信号的时间间隔是否相同,在多个限位开关中,存在一个限位开关发出控制信号的时间间隔与其余限位开关发出控制信号的时间间隔不相同,且,该一个限位开关处于正常运行状态时,判定设置在该一个限位开关上的第一信号采集装置存在故障信息。
S54:在判定存在故障信息时,获取与产生故障的第一信号采集装置对应的第二信号采集装置所采集到的动态信息以替代从产生故障的第一信号采集装置获取到的动态信息。
在每个预设装置上设置有与第一信号采集装置对应的第二信号采集装置,每个第二信号采集装置用于实时采集其所在预设装置的动态信息,相同预设装置上设置的第一信号采集装置和第二信号采集装置之间相互冗余。
S56:根据从第一信号采集装置或第二信号采集装置获取到的动态信息对每个预设装置进行定位。
其中,每个预设装置的类型相同,且,每个预设装置在道岔系统中的安装位置不同。
可选地,一些实施例中,参见图8,方法还包括:
S81:在对转辙电机进行启动控制时,生成第一信号采集装置存在故障信息的报警信息,以根据报警信息对用户进行提示。
需要说明的是,前述图1-图4实施例中对用于道岔系统的信号冗余控制系统实施例的解释说明也适用于该实施例的用于道岔系统的信号冗余控制方法,其实现原理类似,此处不再赘述。
本实施例中,通过获取每个第一信号采集装置所采集的其所在预设装置的动态信息,并根据动态信息判断第一信号采集装置是否存在故障信息;在判定存在故障信息时,获取与产生故障的第一信号采集装置对应的第二信号采集装置所采集到的动态信息,以替代从产生故障的第一信号采集装置获取到的动态信息;以及根据从所述第一信号采集装置或第二信号采集装置获取到的动态信息对每个预设装置进行定位,其中,在每个预设装置上分别设置有第一信号采集装置以及与第一信号采集装置对应的第二信号采集装置,第一信号采集装置和第二信号采集装置均用于实时采集其所在预设装置的动态信息,相同预设装置上设置的第一信号采集装置和第二信号采集装置之间相互冗余,每个预设装置的类型相同,且,每个预设装置在道岔系统中的安装位置不同,能够实现对采集到的道岔系统中多个驱动设备的信号进行冗余控制,提升道岔系统中信号定位的精准度,有效提升道岔系统信号控制的可靠性。
需要说明的是,在本发明的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含 义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (15)

  1. 一种用于道岔系统的信号冗余控制系统,其特征在于,包括:
    多个第一信号采集装置,每个第一信号采集装置设置在道岔系统中的一个预设装置上,每个第一信号采集装置用于实时采集其所在预设装置的动态信息;
    在每个预设装置上设置有与第一信号采集装置对应的第二信号采集装置,每个第二信号采集装置用于实时采集其所在预设装置的动态信息,相同预设装置上设置的第一信号采集装置和第二信号采集装置之间相互冗余;
    控制器,所述控制器用于获取所述每个第一信号采集装置所采集的其所在预设装置的动态信息,并根据所述动态信息判断所述第一信号采集装置是否存在故障信息,在判定存在所述故障信息时,所述控制器获取与产生故障的第一信号采集装置对应的第二信号采集装置所采集到的动态信息以替代从产生故障的第一信号采集装置获取到的动态信息,以及根据从所述第一信号采集装置或所述第二信号采集装置获取到的动态信息对所述每个预设装置进行定位,其中,每个预设装置的类型相同,且,所述每个预设装置在所述道岔系统中的安装位置不同。
  2. 如权利要求1所述的用于道岔系统的信号冗余控制系统,其特征在于,所述预设装置为台车,在所述预设装置为所述台车时,所述动态信息为所述台车的位移信息。
  3. 如权利要求2所述的用于道岔系统的信号冗余控制系统,其特征在于,在所述预设装置为所述台车时,所述控制器包括:
    第一获取模块,用于获取所述多个第一信号采集装置所采集到的台车的位移信息;
    计算模块,用于根据所述位移信息计算相邻两辆台车的位移信息之间的比对信息;
    第一判定模块,用于将所述比对信息与预设阈值做比对,在所述比对信息大于或者等于所述预设阈值,且,与超出所述预设阈值的对比信息对应的所述台车处于正常运行状态时,判定设置在与超出所述预设阈值的对比信息对应的台车上的所述第一信号采集装置存在所述故障信息。
  4. 如权利要求3所述的用于道岔系统的信号冗余控制系统,其特征在于,所述比对信息为所述相邻两辆台车的位移信息之间的差值或者比值。
  5. 如权利要求1所述的用于道岔系统的信号冗余控制系统,其特征在于,所述预设装置为所述道岔系统中道岔梁上的摆臂旋转位置上的限位开关,在所述预设装置为所述限位开关时,所述动态信息为所述限位开关两次发出控制信号的时间间隔。
  6. 如权利要求5所述的用于道岔系统的信号冗余控制系统,其特征在于,在所述预设 装置为所述限位开关时,所述控制器包括:
    第二获取模块,用于获取所述多个第一信号采集装置所采集到的限位开关发出控制信号的时间间隔;
    第二判定模块,用于判断多个限位开关的时间间隔是否相同,在所述多个限位开关中,当存在一个限位开关发出控制信号的时间间隔与其余限位开关发出控制信号的时间间隔不相同,且,所述一个限位开关处于正常运行状态时,判定设置在所述一个限位开关上的所述第一信号采集装置存在所述故障信息。
  7. 如权利要求3或6所述的用于道岔系统的信号冗余控制系统,其特征在于,所述控制器还包括:
    生成模块,用于在对转辙电机进行启动控制时,生成所述第一信号采集装置存在故障信息的报警信息,以根据所述报警信息对用户进行提示。
  8. 一种用于道岔系统的信号冗余控制方法,其特征在于,包括以下步骤:
    获取每个第一信号采集装置所采集的其所在预设装置的动态信息,并根据所述动态信息判断所述第一信号采集装置是否存在故障信息;
    在判定存在所述故障信息时,获取与产生故障的第一信号采集装置对应的第二信号采集装置所采集到的动态信息,以替代从产生故障的第一信号采集装置获取到的动态信息;以及
    根据从所述第一信号采集装置或所述第二信号采集装置获取到的动态信息对所述每个预设装置进行定位;
    其中,在每个预设装置上分别设置有第一信号采集装置以及与第一信号采集装置对应的第二信号采集装置,第一信号采集装置和第二信号采集装置均用于实时采集其所在预设装置的动态信息,相同预设装置上设置的第一信号采集装置和第二信号采集装置之间相互冗余,每个预设装置的类型相同,且,所述每个预设装置在所述道岔系统中的安装位置不同。
  9. 如权利要求8所述的用于道岔系统的信号冗余控制方法,其特征在于,所述预设装置为台车,在所述预设装置为所述台车时,所述动态信息为所述台车的位移信息。
  10. 如权利要求9所述的用于道岔系统的信号冗余控制方法,其特征在于,在所述预设装置为所述台车时,所述获取每个第一信号采集装置所采集的其所在预设装置的动态信息,并根据所述动态信息判断所述第一信号采集装置是否存在故障信息,包括:
    获取多个第一信号采集装置所采集到的台车的位移信息;
    根据所述位移信息计算相邻两辆台车的位移信息之间的比对信息;
    将所述比对信息与预设阈值做比对,在所述比对信息大于或者等于所述预设阈值,且,与超出所述预设阈值的对比信息对应的所述台车处于正常运行状态时,判定设置在与超出所 述预设阈值的对比信息对应的台车上的所述第一信号采集装置存在所述故障信息。
  11. 如权利要求10所述的用于道岔系统的信号冗余控制方法,其特征在于,所述比对信息为所述相邻两辆台车的位移信息之间的差值或者比值。
  12. 如权利要求8所述的用于道岔系统的信号冗余控制方法,其特征在于,所述预设装置为所述道岔系统中道岔梁上的摆臂旋转位置上的限位开关,在所述预设装置为所述限位开关时,所述动态信息为所述限位开关两次发出控制信号的时间间隔。
  13. 如权利要求12所述的用于道岔系统的信号冗余控制方法,其特征在于,在所述预设装置为所述限位开关时,所述获取每个第一信号采集装置所采集的其所在预设装置的动态信息,并根据所述动态信息判断所述第一信号采集装置是否存在故障信息,包括:
    获取多个第一信号采集装置所采集到的限位开关发出控制信号的时间间隔;
    判断多个限位开关发出控制信号的时间间隔是否相同,在所述多个限位开关中,存在一个限位开关的时间间隔与其余限位开关的发出控制信号时间间隔不相同,且,所述一个限位开关处于正常运行状态时,判定设置在所述一个限位开关上的所述第一信号采集装置存在所述故障信息。
  14. 如权利要求10或13所述的用于道岔系统的信号冗余控制方法,其特征在于,所述方法还包括:
    在对转辙电机进行启动控制时,生成所述第一信号采集装置存在故障信息的报警信息,以根据所述报警信息对用户进行提示。
  15. 一种计算机可读存储介质,包括计算机指令,当所述计算机指令被执行时,使得执行根据权利要求8-14中任一项所述的用于道岔系统的信号冗余控制方法。
PCT/CN2017/118530 2016-12-30 2017-12-26 用于道岔系统的信号冗余控制系统和方法、以及计算机可读存储介质 WO2018121505A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/475,001 US11501644B2 (en) 2016-12-30 2017-12-26 Signal redundancy control system and method used for turnout system and computer readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611263061.2A CN108263433B (zh) 2016-12-30 2016-12-30 用于道岔系统的信号冗余控制系统和方法
CN201611263061.2 2016-12-30

Publications (1)

Publication Number Publication Date
WO2018121505A1 true WO2018121505A1 (zh) 2018-07-05

Family

ID=62710159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118530 WO2018121505A1 (zh) 2016-12-30 2017-12-26 用于道岔系统的信号冗余控制系统和方法、以及计算机可读存储介质

Country Status (3)

Country Link
US (1) US11501644B2 (zh)
CN (1) CN108263433B (zh)
WO (1) WO2018121505A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109921949A (zh) * 2019-03-28 2019-06-21 郑州轨道交通信息技术研究院 一种灾备系统冗余机制的实现方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111447362B (zh) * 2020-04-02 2021-04-27 浙江大华技术股份有限公司 云台电机限位方法、装置、云台摄像机及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853065A (ja) * 1994-08-12 1996-02-27 Railway Technical Res Inst トングレールの転換方法とその装置並びに転てつ機のストローク検知器
CN2447248Y (zh) * 2000-11-08 2001-09-12 张文忠 铁路电动转辙机电子测控装置
CN101973288A (zh) * 2010-09-30 2011-02-16 河南辉煌科技股份有限公司 多机牵引道岔的电子模块化控制系统
CN201825067U (zh) * 2010-09-10 2011-05-11 河南辉煌科技股份有限公司 多机牵引道岔分表示显示装置
CN105235715A (zh) * 2015-11-16 2016-01-13 西安凯信铁路器材有限公司 一种在线检测一体化转辙机和监控方法
CN205022608U (zh) * 2015-07-08 2016-02-10 南京拓控信息科技股份有限公司 一种新型铁路传感器检测装置
CN106125544A (zh) * 2016-07-12 2016-11-16 浙江众合科技股份有限公司 一种适用于道岔控制器的温备冗余系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19817636C2 (de) * 1998-04-21 2001-11-22 Verkehrsbetr E Peine Salzgitte Elektrisch ortsbediente Weiche
US20050076716A1 (en) * 2003-09-05 2005-04-14 Steven Turner Method and apparatus for detecting guideway breaks and occupation
US9162691B2 (en) * 2012-04-27 2015-10-20 Transportation Technology Center, Inc. System and method for detecting broken rail and occupied track from a railway vehicle
US9168936B2 (en) * 2012-11-13 2015-10-27 Wabtec Holding Corp. System and method of transforming movement authority limits
US9434397B2 (en) * 2014-08-05 2016-09-06 Panasec Corporation Positive train control system and apparatus therefor
CN204355078U (zh) * 2014-12-30 2015-05-27 武汉烽火信息集成技术有限公司 一种轨道交通信号控制设备
DE102016111098A1 (de) * 2016-06-17 2017-12-21 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Datenübertragungsvorrichtung für Schienenfahrzeuge
CN106004933B (zh) * 2016-07-21 2018-01-02 通号万全信号设备有限公司 一种导轨电车安全型轨旁控制系统
CN206704212U (zh) * 2017-03-20 2017-12-05 北京智川科技发展有限公司 铁路道岔状态的识别装置及其系统
CN106864485B (zh) * 2017-03-20 2019-04-19 北京智川科技发展有限公司 铁路道岔状态的识别装置及其系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853065A (ja) * 1994-08-12 1996-02-27 Railway Technical Res Inst トングレールの転換方法とその装置並びに転てつ機のストローク検知器
CN2447248Y (zh) * 2000-11-08 2001-09-12 张文忠 铁路电动转辙机电子测控装置
CN201825067U (zh) * 2010-09-10 2011-05-11 河南辉煌科技股份有限公司 多机牵引道岔分表示显示装置
CN101973288A (zh) * 2010-09-30 2011-02-16 河南辉煌科技股份有限公司 多机牵引道岔的电子模块化控制系统
CN205022608U (zh) * 2015-07-08 2016-02-10 南京拓控信息科技股份有限公司 一种新型铁路传感器检测装置
CN105235715A (zh) * 2015-11-16 2016-01-13 西安凯信铁路器材有限公司 一种在线检测一体化转辙机和监控方法
CN106125544A (zh) * 2016-07-12 2016-11-16 浙江众合科技股份有限公司 一种适用于道岔控制器的温备冗余系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109921949A (zh) * 2019-03-28 2019-06-21 郑州轨道交通信息技术研究院 一种灾备系统冗余机制的实现方法

Also Published As

Publication number Publication date
CN108263433A (zh) 2018-07-10
US20190340930A1 (en) 2019-11-07
US11501644B2 (en) 2022-11-15
CN108263433B (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2018121505A1 (zh) 用于道岔系统的信号冗余控制系统和方法、以及计算机可读存储介质
JP6413422B2 (ja) 制振システム及び車両
WO2020129523A1 (ja) 電子制御装置および車載システム
CN105811846A (zh) 用霍尔传感器来计算电动机速度和转子位置的系统和方法
CN105227011B (zh) 电流控制的无刷马达中的无传感器的bemf测量
CN109229144B (zh) 道岔台车同步控制方法及装置
CN113581249B (zh) 基于位移传感器组的道岔转辙机位置“故障-安全”表示装置及其方法
CN101444915B (zh) 基于霍尔信号和电机轴z脉冲的机器人初始精确定位方法
CN109849046A (zh) 一种舵机转子的回零方法、回零系统、舵机及机器人
JP2016137731A (ja) 車両制御システム、車上装置、および地上装置
CN102270959A (zh) 电机位置控制器
US4134053A (en) Method and means for capturing magnetic tracks
US10129076B2 (en) Parallel fieldbus network-based motor control system
CN108263429A (zh) 道岔转辙控制方法及系统
CN108263443B (zh) 用于道岔系统的故障检测系统和方法
CN110884385B (zh) 托盘伸出定位方法和系统
CN109229145B (zh) 道岔台车同步检测方法及装置
TWI698081B (zh) 移動體及移動體系統
JP5986961B2 (ja) 自動列車運転装置
CN203580992U (zh) 轨道停车防溜器限界检查设备及轨道停车防溜器
CN103592954B (zh) 基于霍尔传感器定位的活动机构控制方法
TWI708658B (zh) 自動換刀系統及其控制方法
CA3110030C (en) Thermal lockout for a motor of a gate crossing mechanism
JP2020036468A (ja) 列車制御システムおよび列車制御方法
WO2019011037A1 (zh) 列车控制器输入电路的故障检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887193

Country of ref document: EP

Kind code of ref document: A1