WO2019011037A1 - 列车控制器输入电路的故障检测方法及装置 - Google Patents

列车控制器输入电路的故障检测方法及装置 Download PDF

Info

Publication number
WO2019011037A1
WO2019011037A1 PCT/CN2018/084390 CN2018084390W WO2019011037A1 WO 2019011037 A1 WO2019011037 A1 WO 2019011037A1 CN 2018084390 W CN2018084390 W CN 2018084390W WO 2019011037 A1 WO2019011037 A1 WO 2019011037A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
level signals
signal
response
switches
Prior art date
Application number
PCT/CN2018/084390
Other languages
English (en)
French (fr)
Inventor
耿超
穆大红
曾浩
牛茹茹
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2019011037A1 publication Critical patent/WO2019011037A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0208Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
    • G05B23/0213Modular or universal configuration of the monitoring system, e.g. monitoring system having modules that may be combined to build monitoring program; monitoring system that can be applied to legacy systems; adaptable monitoring system; using different communication protocols

Definitions

  • the present application relates to the field of vehicle engineering, and in particular, to a fault detection method and apparatus for a train controller input circuit.
  • the control system of the train uses devices such as controllers, relays, sensors, etc., in addition to being used as a switch to control the operation or disconnection of the actuator, the contact of the relay can also be provided as a feedback signal to the controller if the relay touches If the point does not provide a normal feedback signal to the controller, the controller will handle the fault.
  • the relay can only feedback its own working state, and it cannot detect the fault state of other devices or lines in the control system, especially the fault of the controller input. If the controller cannot know the fault at its input, it cannot make accurate control and is more prone to serious accidents.
  • the present application aims to solve at least one of the technical problems in the related art to some extent.
  • the first object of the present application is to provide a fault detection method for a train controller input circuit, so as to implement detection of a fault of a train controller input circuit, which is used to solve the problem that the controller cannot know the input in the prior art.
  • the problem of circuit failure is to provide a fault detection method for a train controller input circuit, so as to implement detection of a fault of a train controller input circuit, which is used to solve the problem that the controller cannot know the input in the prior art. The problem of circuit failure.
  • a second object of the present application is to provide a fault detecting device for a train controller input circuit.
  • the first aspect of the present application provides a fault detection method for a train controller input circuit, the controller having two signal input terminals, and each of the two signal input terminals One end of the response switch for performing an opening and closing operation according to the same train control signal, and the other ends of the two response switches are connected to the power source through a power supply line, and the power supply line is provided with a control switch;
  • the method includes:
  • the fault information is generated.
  • the second aspect of the present application provides a fault detecting apparatus for a train controller input circuit, the controller having two signal input ends, and each of the two signal input ends One end of the response switch for performing an opening and closing operation according to the same train control signal, and the other ends of the two response switches are connected to the power source through a power supply line, and the power supply line is provided with a control switch;
  • the device includes:
  • a shutdown command sending module configured to send a shutdown command to the control switch to disconnect the power supply line
  • a first level signal acquiring module configured to acquire two first level signals corresponding to the two signal input ends
  • a first level signal determining module configured to determine whether the two first level signals are all low levels, and triggering to be turned on when two of the two first level signals are low level An operation of the instruction transmitting module, and triggering an operation of the fault information generating module when at least one of the two first level signals is at a high level;
  • a fault information generating module configured to generate fault information
  • an instruction sending module configured to send a turn-on command to the control switch to turn on the power supply line
  • a second level signal acquiring module configured to acquire two second level signals corresponding to the two signal input ends
  • the hop rule determining module is configured to determine, according to the two second level signals, whether the hopping of the two response switches meets a hopping rule corresponding to each of the two response switches, and jump in the two response switches The operation of triggering the fault information generating module when at least one of the changes does not satisfy the corresponding hopping rule.
  • FIG. 1 is a flowchart of a method for detecting a fault of a train controller input circuit according to Embodiment 1 of the present application;
  • FIG. 2 is a schematic structural diagram of a train controller input circuit according to Embodiment 1 of the present application;
  • FIG. 3 is a schematic structural diagram of a train controller input circuit according to Embodiment 2 of the present application.
  • FIG. 4 is a schematic structural diagram of a train controller input circuit according to Embodiment 3 of the present application.
  • FIG. 5 is a flowchart of determining, according to a second level signal, whether a hop of a response switch satisfies a hopping rule according to a method for detecting a fault according to Embodiment 3 of the present application;
  • FIG. 6 is a schematic structural diagram of a train controller input circuit according to Embodiment 4 of the present application.
  • FIG. 7 is a flowchart of determining, according to a second level signal, whether a hop of a response switch satisfies a hopping rule according to a method for detecting a fault according to Embodiment 4 of the present application;
  • FIG. 8 is a schematic structural diagram of a fault detecting apparatus for a train controller input circuit according to Embodiment 5 of the present application;
  • FIG. 9 is a schematic structural diagram 1 of a hopping rule judging module in a fault detecting device for a train controller input circuit according to Embodiment 5 of the present application;
  • FIG. 10 is a schematic structural diagram 2 of a hopping rule judging module in a fault detecting apparatus for a train controller input circuit according to Embodiment 5 of the present application.
  • FIG. 1 is a flowchart of a method for detecting a fault of a train controller input circuit according to Embodiment 1 of the present application
  • FIG. 2 is a schematic structural diagram of a train controller input circuit according to Embodiment 1 of the present application.
  • the method provided by the embodiment of the present application may be performed by a fault detecting device of a train controller input circuit in a controller, and may be implemented by using software and/or hardware.
  • the train controller 1 provided in this embodiment has two signal input ends, and each of the two signal input ends is connected to a response switch, and the two response switches are used to perform an opening and closing action according to the same train control signal.
  • the two response switches are referred to as a first response switch 11 and a second response switch 12, respectively.
  • One end of the two response switches is respectively connected to the corresponding signal input end, and the other ends of the two response switches are connected to the power source through the power supply line, and the control circuit 13 is provided on the power supply line, and the control switch 13 can be based on the signal sent by the controller 1. Perform the corresponding opening and closing operations.
  • the fault detection method provided in this embodiment includes the following steps:
  • Step 101 The controller sends a shutdown command to the control switch to disconnect the power supply line where the two response switches are located.
  • the shutdown command is issued by the controller 1, and can be issued when the fault detection is required, or can be issued according to the set period, that is, the fault detection is performed every set period.
  • the controller 1 issues a shutdown command to the control switch 13 to cause the control switch 13 to operate, thereby turning off the power supply of the two response switches.
  • the corresponding signal input terminal of the controller should receive a low level signal under normal conditions.
  • Step 102 The controller acquires a first level signal received by a signal input end corresponding to the two response switches.
  • the controller 1 receives the first level signal from the two signal inputs, respectively. Under normal circumstances, the first level signals received by the two signal inputs are low.
  • Step 103 The controller determines whether the first level signals received by the two signal input terminals are all low level. If yes, step 105 is performed; if not, step 104 is performed.
  • Step 104 The controller generates fault information.
  • At least one of the first level signals received by the two signal inputs is not low, that is, one or both of them are high level, indicating that the corresponding connection line is faulty, and the controller 1 is faulty. information.
  • Step 105 The controller sends a turn-on command to the control switch to turn on the power supply line where the two response switches are located.
  • the controller 1 sends a turn-on command to the control switch 13 to restore the power supply of the first response switch 11 and the second response switch 12.
  • Step 106 The controller acquires a second level signal received by the signal input end corresponding to the two response switches.
  • the controller 3 acquires the second level signals received by the two signal inputs.
  • Step 107 The controller determines, according to the second level signal received by the two signal input ends, whether the hopping of the two response switches meets a hopping rule corresponding to each of the two response switches, and if not, generates the fault information.
  • the above two response switches may be both normally open switches or normally closed switches, or one of them is a normally open switch and the other is a normally closed switch.
  • the response switch is a normally open switch, the response switch is normally open before the response switch receives the train control signal, and the corresponding signal input terminal receives the low level signal; when the response switch receives the train control signal, the response switch When closed, the corresponding signal input receives a high level signal.
  • the response switch is a normally closed switch, when the response switch does not receive the train control signal, the response switch is normally closed, the corresponding signal input terminal receives a high level signal; when the response switch receives the train control signal, the response switch When disconnected, the corresponding signal input receives a low level signal.
  • the controller 1 determines whether the level jump meets the hopping rule corresponding to each response switch according to the second level signal received by the two signal input terminals. If it is satisfied, it indicates that no fault occurs; if not, it indicates that the connection is ok. If the line is faulty, controller 1 needs to generate fault information.
  • the technical solution provided by the embodiment determines whether the signal received by the two signal input terminals is low level by disconnecting the power supply of the response switch connected to the two signal input ends of the controller, and if not, indicating that the fault is generated. If yes, restore the power supply of the response switch connected to the two signal input ends of the controller, and continue to determine whether the level signal received by the two signal input terminals satisfies the jump rule corresponding to the response switch, and if not, indicates There is a fault in the connection line.
  • the embodiment provides a technical solution capable of detecting faults of the controller input circuit, so that the controller knows the fault state in time and performs corresponding fault processing to improve the reliability of the train control system, thereby improving the driving safety of the train.
  • FIG. 3 is a schematic structural diagram of a train controller input circuit according to Embodiment 2 of the present application. As shown in FIG. 3, the first response switch 11 and the second response switch 12 are both normally closed switches.
  • the controller determines, according to the second level signal received by the two signal input terminals, whether the hopping of the two response switches meets the hopping rule corresponding to each of the two response switches, and if not, generates the fault information. Specifically, it can be:
  • the controller determines whether the second level signals received by the two signal inputs are both high, and if so, indicates that the transition rules of the two response switches are met. If not, it indicates that the connection line that received the low level has a fault, and the controller generates a fault message.
  • FIG. 4 is a schematic structural diagram of a train controller input circuit according to Embodiment 3 of the present application. As shown in FIG. 4, the first response switch 11 and the second response switch 12 are both normally open switches.
  • FIG. 5 is a flowchart of determining whether a transition of a response switch satisfies a hopping rule according to a second level signal in a fault detection method according to Embodiment 3 of the present application.
  • the controller determines, according to the second level signal received by the two signal input terminals, whether the hopping of the two response switches meets the hopping rule corresponding to each of the two response switches, if If no, the fault information is generated, which may include the following steps:
  • Step 1071a The controller determines whether the second level signals received by the two signal input terminals are all low level. If yes, step 1073a is performed; if not, step 1072a is performed.
  • Step 1072a the controller generates fault information.
  • Step 1073a The controller acquires a third level signal received by the signal input end corresponding to the two response switches after the two response switches perform the opening and closing operation according to the same train control signal.
  • Step 1074a determining whether the third level signals received by the two signal input terminals are both high level, and if not, executing step 1072a.
  • step 1073 and step 1074 are required to be performed, after the normally open switch performs an opening and closing operation according to the same train control signal, it is determined whether the level received by the corresponding signal input terminal becomes a high level, and if so, the jump rule is satisfied. If not, it indicates that there is a fault in the corresponding connection line, and the controller 1 can generate fault information.
  • FIG. 6 is a schematic structural diagram of a train controller input circuit according to Embodiment 4 of the present application.
  • one of the two response switches is a normally open switch, and the other response switch is a normally closed switch.
  • the first response switch 11 is a normally open switch
  • the second response switch 12 is a normally closed switch.
  • FIG. 7 is a flowchart of determining whether a transition of a response switch satisfies a hopping rule according to a second level signal in a fault detection method according to Embodiment 4 of the present application. As shown in FIG. 7, in the above step 107, it is determined whether the hopping of the two response switches satisfies the hopping rule corresponding to each of the two response switches according to the second level signal received by the two signal input terminals, and if not, The fault information is generated, including the following steps:
  • Step 1071b The controller determines whether the second level signals received by the two signal inputs are different. If yes, step 1073b is performed; if not, step 1072b is performed.
  • the first response switch 11 is a normally open switch, and the second level signal received by the corresponding signal input terminal is at a low level before the train control signal is received. After the first response switch 11 is hopped according to the train control signal, the second level signal received by the corresponding signal input terminal is at a high level.
  • the second response switch 12 is a normally closed switch, and the second level signal received by the corresponding signal input terminal is at a high level before the train control signal is received. After the second response switch 12 is hopped according to the train control signal, the second level signal received by the corresponding signal input terminal is at a low level.
  • the second level signals received by the two signal inputs are different. If they are the same, it indicates that a fault has occurred.
  • Step 1072b the controller generates fault information.
  • Step 1073b The controller acquires a third level signal received by the signal input end corresponding to the two response switches after the two response switches perform the opening and closing operation according to the same train control signal.
  • Step 1074b The controller determines whether the third level signals received by the two signal inputs are different. If not, step 1072b is performed.
  • steps 1073b and 1074b may also be performed. After the two response switches perform the opening and closing according to the train control signal, under normal circumstances, the normally open switch is closed, and the normally closed switch is turned off. Therefore, the two signal inputs are received. The third level signal to the arrival is also different. If the two third level signals are the same, it indicates that a fault has occurred.
  • FIG. 8 is a schematic structural diagram of a fault detecting apparatus for a train controller input circuit according to Embodiment 5 of the present application.
  • the embodiment provides a fault detecting apparatus for a train controller input circuit, wherein the controller has two signal input ends, and two signal input ends are respectively used for performing the opening according to the same train control signal.
  • the response switch of the closing action is connected, and the front ends of the two response switches are connected to the power source through the power supply line, and the control circuit is provided with a control switch;
  • the fault detecting device includes: a shutdown command transmitting module 71, a first level signal acquiring module 72, a first level signal determining module 73, a fault information generating module 74, a turn-on command transmitting module 75, and a second level signal acquisition.
  • Module 76 and hop rule determination module 77 are included in The fault detecting device.
  • the shutdown command sending module 71 is configured to send a shutdown command to the control switch to disconnect the power supply line where the two response switches are located.
  • the first level signal acquisition module 72 is configured to acquire a first level signal received by the signal input end corresponding to the two response switches.
  • the first level signal determining module 73 is configured to determine whether the first level signals received by the two signal input terminals are all low level, and if so, trigger the operation of the command output sending module; if not, trigger the fault The operation of the information generation module.
  • the fault information generating module 74 is configured to generate fault information.
  • the turn-on command transmitting module 75 is configured to send a turn-on command to the control switch to turn on the power supply lines where the two responding switches are located.
  • the second level signal acquisition module 76 is configured to acquire a second level signal received by the signal input end corresponding to the two response switches.
  • the hop rule determining module 77 is configured to determine, according to the second level signal received by the two signal inputs, whether the hopping of the two response switches meets a hopping rule corresponding to each of the two response switches, and if not, triggering the fault The operation of the information generation module.
  • the technical solution provided by the embodiment determines whether the signal received by the two signal input terminals is low level by disconnecting the power supply of the response switch connected to the two signal input ends of the controller, and if not, indicating that the fault is generated. If yes, restore the power supply of the response switch connected to the two signal input ends of the controller, and continue to determine whether the level signal received by the two signal input terminals satisfies the jump rule corresponding to the response switch, and if not, indicates There is a fault in the connection line.
  • the embodiment provides a technical solution capable of detecting faults of the controller input circuit, so that the controller knows the fault state in time and performs corresponding fault processing to improve the reliability of the train control system, thereby improving the driving safety of the train.
  • shutdown command sending module 71 is specifically configured to send a shutdown command to the control switch according to the set period to disconnect the power supply line where the two response switches are located.
  • the jump rule determination module 77 is specifically configured to determine whether the second level signals received by the two signal input terminals are both high level, and if not, Trigger the operation of the fault information generation module.
  • FIG. 9 is a schematic structural diagram 1 of a hopping rule judging module in a fault detecting apparatus for a train controller input circuit according to Embodiment 5 of the present application.
  • the jump rule determination module 77 specifically includes: a first determining unit 771a, a third level signal acquiring unit 772a, and a second determining unit 773a.
  • the first determining unit 771a is configured to determine whether the second level signals received by the two signal input terminals are all low level, and if not, trigger the operation of the fault information generating module; if yes, trigger the third level The operation of the signal acquisition unit.
  • the third level signal acquisition unit 772a is configured to acquire a third level signal received by the signal input ends corresponding to the two response switches after the two response switches perform the opening and closing operation according to the same train control signal.
  • the second determining unit 773a is configured to determine whether the third level signals received by the two signal input terminals are both high level, and if not, trigger the operation of the fault information generating module.
  • FIG. 10 is a schematic structural diagram 2 of a hopping rule judging module in a fault detecting apparatus for a train controller input circuit according to Embodiment 5 of the present application.
  • the jump rule determination module 77 includes: a third determining unit 771b, a third power The flat signal acquisition unit 772b and the fourth determination unit 773b.
  • the third determining unit 771b is configured to determine whether the second level signals received by the two signal input terminals are different; if yes, triggering the operation of the third level signal receiving module; if not, triggering the fault information generating module Operation.
  • the third level signal acquisition unit 772b is configured to acquire a third level signal received by the signal input ends corresponding to the two response switches after the two response switches perform the opening and closing operation according to the same train control signal.
  • the fourth determining unit 773b is configured to determine whether the third level signals received by the two signal input terminals are different, and if not, trigger the operation of the fault information generating module.
  • the train controller may further have at least two signal inputs, and at least two signal inputs are respectively connected to one response switch, and each response switch It is used to perform an opening and closing action according to the same train control signal.
  • the controller has at least two signal inputs, and each of the at least two signal inputs is used to perform according to the same train control signal.
  • One end of the response switch of the opening and closing action is connected, and the other end of the at least two response switches is connected to the power source through a power supply line, and the control circuit is provided with a control switch; the method includes:
  • the fault information is generated if at least one of the transitions of each of the response switches does not satisfy the corresponding hopping rule.
  • the fault detecting device of the train controller input circuit of the present application has at least two signal inputs, and each of the at least two signal inputs is used for performing according to the same train control signal.
  • One end of the response switch of the opening and closing action is connected, and the other end of each of the response switches is connected to the power source through a power supply line, and the power supply line is provided with a control switch;
  • the device includes:
  • a shutdown command sending module configured to send a shutdown command to the control switch to disconnect the power supply line
  • a first level signal acquiring module configured to acquire each of the first level signals corresponding to each of the signal input ends
  • a first level signal determining module configured to determine whether each of the first level signals is a low level, and trigger the turn-on command sending module when each of the first level signals is at a low level Operating, and triggering operation of the fault information generating module when at least one of each of the first level signals is high;
  • a fault information generating module configured to generate fault information
  • an instruction sending module configured to send a turn-on command to the control switch to turn on the power supply line
  • a second level signal acquiring module configured to acquire each second level signal corresponding to each of the signal input ends
  • a hop rule determining module configured to determine, according to each of the second level signals, whether a hopping of each response switch satisfies a hopping rule corresponding to each of the response switches, and jumps in each of the response switches The operation of triggering the fault information generating module when at least one of the changes does not satisfy the corresponding hopping rule.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the application can be implemented in hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware and in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: discrete with logic gates for implementing logic functions on data signals Logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), and the like.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like. While the embodiments of the present application have been shown and described above, it is understood that the above-described embodiments are illustrative and are not to be construed as limiting the scope of the present application. The embodiments are subject to variations, modifications, substitutions and variations.

Abstract

一种列车控制器输入电路的故障检测方法,包括:断开两个信号输入端对应的两个响应开关所在的供电线路;获取两个信号输入端对应接收到的两个第一电平信号;判断两个第一电平信号是否均为低电平;若否,则产生故障信息;若是,则接通供电线路;获取两个信号输入端对应接收到的两个第二电平信号;根据两个第二电平信号判断两个响应开关的跳变是否满足两个响应开关各自所对应的跳变规则,若否,则产生故障信息。通过上述方法,能够及时得知故障状态,提高列车控制系统的可靠性。

Description

列车控制器输入电路的故障检测方法及装置
相关申请的交叉引用
本申请基于申请号为201710557574.2,申请日为2017年07月10日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及车辆工程领域,尤其涉及一种列车控制器输入电路的故障检测方法及装置。
背景技术
城市列车具有载客量大、行驶稳定等优点,越来越多的城市开始建设城市列车。由于列车的行驶速度较快,对于列车的控制系统的可靠性和安全性的要求较高。列车的控制系统采用了控制器、继电器、传感器等器件,其中,继电器的触点除了可作为开关用于控制执行器工作或断开之外,还可以作为反馈信号提供给控制器,若继电器触点没有提供正常的反馈信号给控制器,则控制器会做故障处理。
但是,继电器只能对自身的工作状态进行反馈,无法检测到控制系统中其它器件或线路的故障状态,尤其是无法检测到控制器输入端的故障。若控制器不能获知其输入端的故障,则无法做出准确的控制,较容易发生严重的事故。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的第一个目的在于提出一种列车控制器输入电路的故障检测方法,以实现对列车控制器输入电路的故障进行检测,用于解决现有技术中控制器无法得知输入电路出现故障的问题。
本申请的第二个目的在于提出一种列车控制器输入电路的故障检测装置。
为达上述目的,本申请第一方面实施例提出了一种列车控制器输入电路的故障检测方法,所述控制器具有两个信号输入端,所述两个信号输入端中的每个与一个用于根据相同列车控制信号执行开闭动作的响应开关的一端连接,两个响应开关的另一端均通过供电线路与电源连接,所述供电线路上设置有控制开关;
所述方法包括:
向所述控制开关发送关断指令,以断开所述供电线路;
获取所述两个信号输入端对应接收到的两个第一电平信号;
判断所述两个第一电平信号是否均为低电平;
如果所述两个第一电平信号中的至少一个为高电平,则产生故障信息;
如果所述两个第一电平信号中的两个均为低电平,则向所述控制开关发送接通指令,以接通所述供电线路;
获取所述两个信号输入端对应接收到的两个第二电平信号;
根据所述两个第二电平信号判断所述两个响应开关的跳变是否满足所述两个响应开关各自所对应的跳变规则;
如果所述两个响应开关的跳变中的至少一个没有满足对应的跳变规则,则产生故障信息。
为达上述目的,本申请第二方面实施例提出了一种列车控制器输入电路的故障检测装置,所述控制器具有两个信号输入端,所述两个信号输入端中的每个与一个用于根据相同列车控制信号执行开闭动作的响应开关的一端连接,两个响应开关的另一端均通过供电线路与电源连接,所述供电线路上设置有控制开关;
所述装置包括:
关断指令发送模块,用于向所述控制开关发送关断指令,以断开所述供电线路;
第一电平信号获取模块,用于获取所述两个信号输入端对应接收到的两个第一电平信号;
第一电平信号判断模块,用于判断所述两个第一电平信号是否均为低电平,并在所述两个第一电平信号中的两个均为低电平时触发接通指令发送模块的操作,以及在所述两个第一电平信号中的至少一个为高电平时触发故障信息产生模块的操作;
故障信息产生模块,用于产生故障信息;
接通指令发送模块,用于向所述控制开关发送接通指令,以接通所述供电线路;
第二电平信号获取模块,用于获取所述两个信号输入端对应接收到的两个第二电平信号;
跳变规则判断模块,用于根据所述两个第二电平信号判断两个响应开关的跳变是否满足两个响应开关各自所对应的跳变规则,并在所述两个响应开关的跳变中的至少一个没有满足对应的跳变规则时触发故障信息产生模块的操作。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请实施例一提供的列车控制器输入电路的故障检测方法的流程图;
图2为本申请实施例一提供的列车控制器输入电路的结构示意图;
图3为本申请实施例二提供的列车控制器输入电路的结构示意图;
图4为本申请实施例三提供的列车控制器输入电路的结构示意图;
图5为本申请实施例三提供的故障检测方法中根据第二电平信号判断响应开关的跳变是否满足跳变规则的流程图;
图6为本申请实施例四提供的列车控制器输入电路的结构示意图;
图7为本申请实施例四提供的故障检测方法中根据第二电平信号判断响应开关的跳变是否满足跳变规则的流程图;
图8为本申请实施例五提供的列车控制器输入电路的故障检测装置的结构示意图;
图9为本申请实施例五提供的列车控制器输入电路的故障检测装置中跳变规则判断模块的结构示意图一;
图10为本申请实施例五提供的列车控制器输入电路的故障检测装置中跳变规则判断模块的结构示意图二。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
实施例一
图1为本申请实施例一提供的列车控制器输入电路的故障检测方法的流程图,图2为本申请实施例一提供的列车控制器输入电路的结构示意图。本申请实施例提供的方法可以由控制器中的列车控制器输入电路的故障检测装置来执行,可以采用软件和/或硬件的方式来实现。
如图2所示,本实施例提供的列车控制器1具有两个信号输入端,两个信号输入端各自与一个响应开关相连,两个响应开关用于根据相同列车控制信号执行开闭动作。将两个响应开关分别称为:第一响应开关11和第二响应开关12。两个响应开关的一端分别与对应的信号输入端相连,两个响应开关的另一端均通过供电线路与电源连接,供电线路上设置有控制开关13,控制开关13可根据控制器1发出的信号执行相应的开闭操作。
根据上述控制器输入电路的结构,本实施例提供的故障检测方法包括如下几个步骤:
步骤101、控制器向控制开关发送关断指令,以断开两个响应开关所在的供电线路。
该关断指令由控制器1发出,可以在需要进行故障检测的时候发出,也可以按照设定周期发出,即:每隔设定周期进行一次故障检测。
控制器1向控制开关13发出关断指令,以使控制开关13动作,进而断开两个响应开关 的供电。控制开关13的供电断了,则控制器对应的信号输入端正常情况下应当接收到低电平信号。
步骤102、控制器获取与两个响应开关对应的信号输入端接收到的第一电平信号。
控制器1从两个信号输入端分别接收第一电平信号。正常情况下,两个信号输入端接收到的第一电平信号均为低电平。
步骤103、控制器判断两个信号输入端接收到的第一电平信号是否均为低电平,若是,则执行步骤105;若否,则执行步骤104。
步骤104、控制器产生故障信息。
若两个信号输入端接收到的第一电平信号中的至少一个不为低电平,即:其中一个或两个为高电平,则表明对应的连接线路出现故障,控制器1产生故障信息。
步骤105、控制器向控制开关发送接通指令,以接通两个响应开关所在的供电线路。
若两个信号输入端接收到的第一电平信号均为低电平,则控制器1向控制开关13发送接通指令,以恢复第一响应开关11和第二响应开关12的供电。
步骤106、控制器获取与两个响应开关对应的信号输入端接收到的第二电平信号。
当两条供电线路恢复供电之后,控制器3获取两个信号输入端接收到的第二电平信号。
步骤107、控制器根据两个信号输入端接收到的第二电平信号判断两个响应开关的跳变是否满足两个响应开关各自所对应的跳变规则,若否,则产生故障信息。
上述两个响应开关可以为均为常开开关或常闭开关,或者其中一个为常开开关,另一个为常闭开关。
常开开关和常闭开关均具有对应的跳变规则:
若响应开关为常开开关,当响应开关未接收到列车控制信号之前,响应开关为常开状态,对应的信号输入端接收到低电平信号;当响应开关接收到列车控制信号之后,响应开关闭合,则对应的信号输入端接收到高电平信号。
若响应开关为常闭开关,当响应开关未接收到列车控制信号之前,响应开关为常闭状态,对应的信号输入端接收到高电平信号;当响应开关接收到列车控制信号之后,响应开关断开,则对应的信号输入端接收到低电平信号。
控制器1根据两个信号输入端接收到的第二电平信号来判断电平跳变是否满足各响应开关对应的跳变规则,若满足,则表明无故障发生;若不满足,则表明连接线路有故障,控制器1需产生故障信息。
本实施例提供的技术方案,通过断开连接在控制器两个信号输入端的响应开关的供电,判断两个信号输入端所接收到的信号是否为低电平,若否,则表明有故障产生;若是,则恢复连接在控制器两个信号输入端的响应开关的供电,继续判断两个信号输入端所接收到的电平信号是否满足与响应开关对应的跳变规则,若不满足,则表明连接线路有故障产生。本实施例提供技术方案能够对控制器输入电路进行故障检测,以使控制器及时得知故障状态并进 行相应的故障处理,以提高列车控制系统的可靠性,进而提高列车行驶安全性。
实施例二
本实施例是在上述实施例的基础上,对列车控制器输入电路的故障检测方法进行优化:
图3为本申请实施例二提供的列车控制器输入电路的结构示意图。如图3所示,第一响应开关11和第二响应开关12均为常闭开关。
上述步骤107中,控制器根据两个信号输入端接收到的第二电平信号判断两个响应开关的跳变是否满足两个响应开关各自所对应的跳变规则,若否,则产生故障信息,具体可以为:
控制器判断两个信号输入端接收到的第二电平信号是否均为高电平,若是,则表明满足两个响应开关的跳变规则。若否,则表明接收到低电平的连接线路出现故障,则控制器产生故障信息。
进一步的,还可以获取两个响应开关在根据列车控制信号进行跳变之后,两个信号输入端接收到的第三电平信号,并判断两个第三电平信号是否为低电平,若是,则满足响应开关的跳变规则,若否,则表明连接线路有故障发生。
实施例三
本实施例是在上述实施例的基础上,对列车控制器输入电路的故障检测方法进行优化:
图4为本申请实施例三提供的列车控制器输入电路的结构示意图。如图4所示,第一响应开关11和第二响应开关12均为常开开关。
图5为本申请实施例三提供的故障检测方法中根据第二电平信号判断响应开关的跳变是否满足跳变规则的流程图。如图5所示,上述步骤107中,控制器根据两个信号输入端接收到的第二电平信号判断两个响应开关的跳变是否满足两个响应开关各自所对应的跳变规则,若否,则产生故障信息,具体可以包括如下几个步骤:
步骤1071a、控制器判断两个信号输入端接收到的第二电平信号是否均为低电平,若是,则执行步骤1073a;若否,则执行步骤1072a。
步骤1072a、控制器产生故障信息。
步骤1073a、控制器获取两个响应开关在根据相同列车控制信号执行开闭动作之后,与两个响应开关对应的信号输入端接收到的第三电平信号。
步骤1074a、判断两个信号输入端接收到的第三电平信号是否均为高电平,若否,则执行步骤1072a。
由于两个常开开关的供电线路断开后,对应信号输入端接收到的信号为低电平;而当供电线路恢复供电后,对应信号输入端接收到的信号仍然为低电平,此时是无法判断出两个响应开关所在的连接线路是否有故障。因此,需要执行步骤1073和步骤1074,在常开开关根据相同的列车控制信号执行开闭动作之后,判断对应信号输入端接收到的电平是否变为高电平,若是,则满足跳变规则;若否,则表明对应的连接线路有故障发生,控制器1可产生故障信息。
实施例四
本实施例是在上述实施例的基础上,对列车控制器输入电路的故障检测方法进行优化:
图6为本申请实施例四提供的列车控制器输入电路的结构示意图。如图4所示,两个响应开关中的其中一个响应开关为常开开关,另一个响应开关为常闭开关。例如:第一响应开关11为常开开关,第二响应开关12为常闭开关。
图7为本申请实施例四提供的故障检测方法中根据第二电平信号判断响应开关的跳变是否满足跳变规则的流程图。如图7所示,上述步骤107中,根据两个信号输入端接收到的第二电平信号判断两个响应开关的跳变是否满足两个响应开关各自所对应的跳变规则,若否,则产生故障信息,包括如下几个步骤:
步骤1071b、控制器判断两个信号输入端接收到的第二电平信号是否相异,若是,则执行步骤1073b;若否,则执行步骤1072b。
具体的,第一响应开关11为常开开关,在未接收到列车控制信号之前,对应信号输入端接收到的第二电平信号为低电平。第一响应开关11根据列车控制信号发生跳变之后,对应信号输入端接收到的第二电平信号为高电平。
第二响应开关12为常闭开关,在未接收到列车控制信号之前,对应信号输入端接收到的第二电平信号为高电平。第二响应开关12根据列车控制信号发生跳变之后,对应信号输入端接收到的第二电平信号为低电平。
则在正常情况下,两个信号输入端接收到的第二电平信号相异,若相同,则表明有故障发生。
步骤1072b、控制器产生故障信息。
步骤1073b、控制器获取两个响应开关在根据相同列车控制信号执行开闭动作之后,与两个响应开关对应的信号输入端接收到的第三电平信号。
步骤1074b、控制器判断两个信号输入端接收到的第三电平信号是否相异,若否,则执行步骤1072b。
进一步的,还可以执行步骤1073b和1074b,当两个响应开关根据列车控制信号执行开闭动作之后,在正常情况下,常开开关闭合,常闭开关断开,因此,两个信号输入端接收到的第三电平信号也是相异的。若两个第三电平信号相同,则表明有故障发生。
实施例五
图8为本申请实施例五提供的列车控制器输入电路的故障检测装置的结构示意图。如图8所示,本实施例提供一种列车控制器输入电路的故障检测装置,其中,控制器具有两个信号输入端,两个信号输入端各自与一个用于根据相同列车控制信号执行开闭动作的响应开关连接,两个响应开关的前端均通过供电线路与电源连接,供电线路上设置有控制开关;
上述故障检测装置包括:关断指令发送模块71、第一电平信号获取模块72、第一电平信号判断模块73、故障信息产生模块74、接通指令发送模块75、第二电平信号获取模块76 和跳变规则判断模块77。
其中,关断指令发送模块71用于向控制开关发送关断指令,以断开两个响应开关所在的供电线路。第一电平信号获取模块72用于获取与两个响应开关对应的信号输入端接收到的第一电平信号。第一电平信号判断模块73,用于判断两个信号输入端接收到的第一电平信号是否均为低电平,若是,则触发接通指令发送模块的操作;若否,则触发故障信息产生模块的操作。故障信息产生模块74用于产生故障信息。接通指令发送模块75用于向控制开关发送接通指令,以接通两个响应开关所在的供电线路。第二电平信号获取模块76用于获取与两个响应开关对应的信号输入端接收到的第二电平信号。跳变规则判断模块77用于根据两个信号输入端接收到的第二电平信号判断两个响应开关的跳变是否满足两个响应开关各自所对应的跳变规则,若否,则触发故障信息产生模块的操作。
本实施例提供的技术方案,通过断开连接在控制器两个信号输入端的响应开关的供电,判断两个信号输入端所接收到的信号是否为低电平,若否,则表明有故障产生;若是,则恢复连接在控制器两个信号输入端的响应开关的供电,继续判断两个信号输入端所接收到的电平信号是否满足与响应开关对应的跳变规则,若不满足,则表明连接线路有故障产生。本实施例提供技术方案能够对控制器输入电路进行故障检测,以使控制器及时得知故障状态并进行相应的故障处理,以提高列车控制系统的可靠性,进而提高列车行驶安全性。
进一步的,上述关断指令发送模块71,具体用于按照设定周期,向控制开关发送关断指令,以断开两个响应开关所在的供电线路。
进一步的,若两个响应开关均为常闭开关,则上述跳变规则判断模块77具体用于判断两个信号输入端接收到的第二电平信号是否均为高电平,若否,则触发故障信息产生模块的操作。
图9为本申请实施例五提供的列车控制器输入电路的故障检测装置中跳变规则判断模块的结构示意图一。如图9所示,若两个响应开关均为常开开关,则上述跳变规则判断模块77具体包括:第一判断单元771a、第三电平信号获取单元772a和第二判断单元773a。
其中,第一判断单元771a用于判断两个信号输入端接收到的第二电平信号是否均为低电平,若否,则触发故障信息产生模块的操作;若是,则触发第三电平信号获取单元的操作。第三电平信号获取单元772a用于获取两个响应开关在根据相同列车控制信号执行开闭动作之后,与两个响应开关对应的信号输入端接收到的第三电平信号。第二判断单元773a用于判断两个信号输入端接收到的第三电平信号是否均为高电平,若否,则触发故障信息产生模块的操作。
图10为本申请实施例五提供的列车控制器输入电路的故障检测装置中跳变规则判断模块的结构示意图二。如图10所示,若两个响应开关中的其中一个响应开关为常开开关,另一个响应开关为常闭开关,则上述跳变规则判断模块77包括:第三判断单元771b、第三电平信号获取单元772b和第四判断单元773b。
其中,第三判断单元771b用于判断两个信号输入端接收到的第二电平信号是否相异;若是,则触发第三电平信号接收模块的操作;若否,则触发故障信息产生模块的操作。第三电平信号获取单元772b用于获取两个响应开关在根据相同列车控制信号执行开闭动作之后,与两个响应开关对应的信号输入端接收到的第三电平信号。第四判断单元773b用于判断两个信号输入端接收到的第三电平信号是否相异,若否,则触发故障信息产生模块的操作。
本领域技术人员可以理解的是,在本申请的其他实施例中,所述列车控制器还可以具有至少两个信号输入端,至少两个信号输入端各自与一个响应开关相连,每个响应开关用于根据相同列车控制信号执行开闭动作。
具体的,本申请的列车控制器输入电路的故障检测方法,所述控制器具有至少两个信号输入端,所述至少两个信号输入端中的每个与一个用于根据相同列车控制信号执行开闭动作的响应开关的一端连接,至少两个响应开关的另一端均通过供电线路与电源连接,所述供电线路上设置有控制开关;所述方法包括:
向所述控制开关发送关断指令,以断开所述供电线路;
获取所述每个信号输入端对应接收到的第一电平信号;
判断所述每个第一电平信号是否均为低电平;
如果所述每个第一电平信号中的至少一个为高电平,则产生故障信息;
如果所述每个第一电平信号中均为低电平,则向所述控制开关发送接通指令,以接通所述供电线路;
获取所述每个信号输入端对应接收到的每个第二电平信号;
根据所述每个第二电平信号判断所述每个响应开关的跳变是否满足所述每个响应开关各自所对应的跳变规则;
如果所述每个响应开关的跳变中的至少一个没有满足对应的跳变规则,则产生故障信息。
具体的,本申请的列车控制器输入电路的故障检测装置,所述控制器具有至少两个信号输入端,所述至少两个信号输入端中的每个与一个用于根据相同列车控制信号执行开闭动作的响应开关的一端连接,每个响应开关的另一端均通过供电线路与电源连接,所述供电线路上设置有控制开关;所述装置包括:
关断指令发送模块,用于向所述控制开关发送关断指令,以断开所述供电线路;
第一电平信号获取模块,用于获取所述每个信号输入端对应接收到的每个第一电平信号;
第一电平信号判断模块,用于判断所述每个第一电平信号是否均为低电平,并在所述每个第一电平信号均为低电平时触发接通指令发送模块的操作,以及在所述每个第一电平信号 中的至少一个为高电平时触发故障信息产生模块的操作;
故障信息产生模块,用于产生故障信息;
接通指令发送模块,用于向所述控制开关发送接通指令,以接通所述供电线路;
第二电平信号获取模块,用于获取所述每个信号输入端对应接收到的每个第二电平信号;
跳变规则判断模块,用于根据所述每个第二电平信号判断每个响应开关的跳变是否满足每个响应开关各自所对应的跳变规则,并在所述每个响应开关的跳变中的至少一个没有满足对应的跳变规则时触发故障信息产生模块的操作。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的 介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (12)

  1. 一种列车控制器输入电路的故障检测方法,其特征在于,所述控制器具有两个信号输入端,所述两个信号输入端中的每个与一个用于根据相同列车控制信号执行开闭动作的响应开关的一端连接,两个响应开关的另一端均通过供电线路与电源连接,所述供电线路上设置有控制开关;所述方法包括:
    向所述控制开关发送关断指令,以断开所述供电线路;
    获取所述两个信号输入端对应接收到的两个第一电平信号;
    判断所述两个第一电平信号是否均为低电平;
    如果所述两个第一电平信号中的至少一个为高电平,则产生故障信息;
    如果所述两个第一电平信号中的两个均为低电平,则向所述控制开关发送接通指令,以接通所述供电线路;
    获取所述两个信号输入端对应接收到的两个第二电平信号;
    根据所述两个第二电平信号判断所述两个响应开关的跳变是否满足所述两个响应开关各自所对应的跳变规则;
    如果所述两个响应开关的跳变中的至少一个没有满足对应的跳变规则,则产生故障信息。
  2. 根据权利要求1所述的列车控制器输入电路的故障检测方法,其特征在于,向所述控制开关发送关断指令,以断开所述供电线路,包括:
    按照设定周期,向所述控制开关发送所述关断指令,以断开所述供电线路。
  3. 根据权利要求1或2所述的列车控制器输入电路的故障检测方法,其特征在于,所述两个响应开关均为常闭开关;
    根据所述两个第二电平信号判断所述两个响应开关的跳变是否满足所述两个响应开关各自所对应的跳变规则,如果所述两个响应开关的跳变中的至少一个没有满足对应的跳变规则,则产生故障信息,包括:
    判断所述两个第二电平信号是否均为高电平,如果所述两个第二电平信号中的至少一个为低电平,则产生故障信息。
  4. 根据权利要求1或2所述的列车控制器输入电路的故障检测方法,其特征在于,所述两个响应开关均为常开开关;
    根据所述两个第二电平信号判断所述两个响应开关的跳变是否满足所述两个响应开关各自所对应的跳变规则,如果所述两个响应开关的跳变中的至少一个没有满足对应的跳变规 则,则产生故障信息,包括:
    判断所述两个第二电平信号是否均为低电平;
    如果所述两个第二电平信号中的至少一个为高电平,则产生故障信息;
    如果所述两个第二电平信号中的两个都为低电平,则获取所述两个响应开关在根据相同列车控制信号执行开闭动作之后,所述两个信号输入端对应接收到的两个第三电平信号;
    判断所述两个第三电平信号是否均为高电平;
    如果所述两个第三电平信号中的至少一个为低电平,则产生故障信息。
  5. 根据权利要求1或2所述的列车控制器输入电路的故障检测方法,其特征在于,所述两个响应开关中的其中一个响应开关为常开开关,另一个响应开关为常闭开关;
    根据所述两个第二电平信号判断所述两个响应开关的跳变是否满足所述两个响应开关各自所对应的跳变规则,如果所述两个响应开关的跳变中的至少一个没有满足对应的跳变规则,则产生故障信息,包括:
    判断所述两个第二电平信号是否相异;
    如果所述两个第二电平信号相同,则产生故障信息;
    如果所述两个第二电平信号相异,则获取所述两个响应开关在根据相同列车控制信号执行开闭动作之后,所述两个信号输入端对应接收到的两个第三电平信号;
    判断所述两个第三电平信号是否相异;
    如果所述两个第二电平信号相同,则产生故障信息。
  6. 一种列车控制器输入电路的故障检测装置,其特征在于,所述控制器具有两个信号输入端,所述两个信号输入端中的每个与一个用于根据相同列车控制信号执行开闭动作的响应开关的一端连接,两个响应开关的另一端均通过供电线路与电源连接,所述供电线路上设置有控制开关;所述装置包括:
    关断指令发送模块,用于向所述控制开关发送关断指令,以断开所述供电线路;
    第一电平信号获取模块,用于获取所述两个信号输入端对应接收到的两个第一电平信号;
    第一电平信号判断模块,用于判断所述两个第一电平信号是否均为低电平,并在所述两个第一电平信号中的两个均为低电平时触发接通指令发送模块的操作,以及在所述两个第一电平信号中的至少一个为高电平时触发故障信息产生模块的操作;
    故障信息产生模块,用于产生故障信息;
    接通指令发送模块,用于向所述控制开关发送接通指令,以接通所述供电线路;
    第二电平信号获取模块,用于获取所述两个信号输入端对应接收到的两个第二电平信 号;
    跳变规则判断模块,用于根据所述两个第二电平信号判断两个响应开关的跳变是否满足两个响应开关各自所对应的跳变规则,并在所述两个响应开关的跳变中的至少一个没有满足对应的跳变规则时触发故障信息产生模块的操作。
  7. 根据权利要求6所述的列车控制器输入电路的故障检测装置,其特征在于,
    所述关断指令发送模块,具体用于按照设定周期,向所述控制开关发送所述关断指令,以断开所述供电线路。
  8. 根据权利要求6或7所述的列车控制器输入电路的故障检测装置,其特征在于,所述两个响应开关均为常闭开关;
    所述跳变规则判断模块,具体用于判断所述两个第二电平信号是否均为高电平,并在所述两个第二电平信号中的至少一个为低电平时触发故障信息产生模块的操作。
  9. 根据权利要求6或7所述的列车控制器输入电路的故障检测装置,其特征在于,所述两个响应开关均为常开开关;
    所述跳变规则判断模块包括:
    第一判断单元,用于判断所述两个第二电平信号是否均为低电平,并在所述两个第二电平信号中的至少一个为高电平时触发故障信息产生模块的操作;并在所述两个第二电平信号中的两个都为低电平时,触发第三电平信号获取单元的操作;
    第三电平信号获取单元,用于获取所述两个响应开关在根据相同列车控制信号执行开闭动作之后,所述两个信号输入端对应接收到的两个第三电平信号;
    第二判断单元,用于判断所述两个第三电平信号是否均为高电平,并在所述两个第三电平信号中的至少一个为低电平时触发故障信息产生模块的操作。
  10. 根据权利要求6或7所述的列车控制器输入电路的故障检测装置,其特征在于,所述两个响应开关中的其中一个响应开关为常开开关,另一个响应开关为常闭开关;
    所述跳变规则判断模块包括:
    第三判断单元,用于判断所述两个第二电平信号是否相异;并在所述两个第二电平信号相异时,触发第三电平信号接收模块的操作;并在所述两个第二电平信号相同时,触发故障信息产生模块的操作;
    第三电平信号获取单元,用于获取所述两个响应开关在根据相同列车控制信号执行开闭动作之后,所述两个信号输入端对应接收到的两个第三电平信号;
    第四判断单元,用于判断所述两个第三电平信号是否相异,并在所述两个第二电平信号相同时,触发故障信息产生模块的操作。
  11. 一种列车控制器输入电路的故障检测方法,其特征在于,所述控制器具有至少两个信号输入端,所述至少两个信号输入端中的每个与一个用于根据相同列车控制信号执行开闭动作的响应开关的一端连接,至少两个响应开关的另一端均通过供电线路与电源连接,所述供电线路上设置有控制开关;所述方法包括:
    向所述控制开关发送关断指令,以断开所述供电线路;
    获取所述每个信号输入端对应接收到的第一电平信号;
    判断所述每个第一电平信号是否均为低电平;
    如果所述每个第一电平信号中的至少一个为高电平,则产生故障信息;
    如果所述每个第一电平信号中均为低电平,则向所述控制开关发送接通指令,以接通所述供电线路;
    获取所述每个信号输入端对应接收到的每个第二电平信号;
    根据所述每个第二电平信号判断所述每个响应开关的跳变是否满足所述每个响应开关各自所对应的跳变规则;
    如果所述每个响应开关的跳变中的至少一个没有满足对应的跳变规则,则产生故障信息。
  12. 一种列车控制器输入电路的故障检测装置,其特征在于,所述控制器具有至少两个信号输入端,所述至少两个信号输入端中的每个与一个用于根据相同列车控制信号执行开闭动作的响应开关的一端连接,每个响应开关的另一端均通过供电线路与电源连接,所述供电线路上设置有控制开关;所述装置包括:
    关断指令发送模块,用于向所述控制开关发送关断指令,以断开所述供电线路;
    第一电平信号获取模块,用于获取所述每个信号输入端对应接收到的每个第一电平信号;
    第一电平信号判断模块,用于判断所述每个第一电平信号是否均为低电平,并在所述每个第一电平信号均为低电平时触发接通指令发送模块的操作,以及在所述每个第一电平信号中的至少一个为高电平时触发故障信息产生模块的操作;
    故障信息产生模块,用于产生故障信息;
    接通指令发送模块,用于向所述控制开关发送接通指令,以接通所述供电线路;
    第二电平信号获取模块,用于获取所述每个信号输入端对应接收到的每个第二电平信号;
    跳变规则判断模块,用于根据所述每个第二电平信号判断每个响应开关的跳变是否满足每个响应开关各自所对应的跳变规则,并在所述每个响应开关的跳变中的至少一个没有满足 对应的跳变规则时触发故障信息产生模块的操作。
PCT/CN2018/084390 2017-07-10 2018-04-25 列车控制器输入电路的故障检测方法及装置 WO2019011037A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710557574.2A CN109239571A (zh) 2017-07-10 2017-07-10 列车控制器输入电路的故障检测方法及装置
CN201710557574.2 2017-07-10

Publications (1)

Publication Number Publication Date
WO2019011037A1 true WO2019011037A1 (zh) 2019-01-17

Family

ID=65000942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084390 WO2019011037A1 (zh) 2017-07-10 2018-04-25 列车控制器输入电路的故障检测方法及装置

Country Status (2)

Country Link
CN (1) CN109239571A (zh)
WO (1) WO2019011037A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110219706B (zh) * 2019-06-21 2024-03-08 华北电力科学研究院有限责任公司 汽轮机组的给水泵汽源供汽控制电路、装置及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000172576A (ja) * 1998-12-04 2000-06-23 Nec Corp ディスクアレイ制御装置におけるi/oポート診断回路
JP2004362383A (ja) * 2003-06-06 2004-12-24 Hitachi Ltd プロセス入出力装置の故障診断装置
JP2007265157A (ja) * 2006-03-29 2007-10-11 Nec Corp I/o装置の障害検出システム、及び、方法
CN101349726A (zh) * 2007-07-17 2009-01-21 大唐移动通信设备有限公司 一种通用输入输出接口的故障检测方法及装置
CN201716718U (zh) * 2009-08-28 2011-01-19 深圳和而泰智能控制股份有限公司 单片机检测电路及其装置
CN102809967A (zh) * 2012-08-13 2012-12-05 海信(山东)空调有限公司 空调室内机控制板的自动检测方法
CN104297619A (zh) * 2014-10-13 2015-01-21 上海移为通信技术有限公司 一种芯片输入输出管脚测试装置
CN104407954A (zh) * 2014-11-24 2015-03-11 深圳市振邦智能科技有限公司 一种mcu中i/o接口故障的检测方法
CN104459514A (zh) * 2014-11-04 2015-03-25 兵器工业卫生研究所 一种i/o端口逻辑检测方法及检测系统
CN105467306A (zh) * 2015-12-25 2016-04-06 珠海格力电器股份有限公司 伺服驱动器数字接口电路的测试方法和测试设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000172576A (ja) * 1998-12-04 2000-06-23 Nec Corp ディスクアレイ制御装置におけるi/oポート診断回路
JP2004362383A (ja) * 2003-06-06 2004-12-24 Hitachi Ltd プロセス入出力装置の故障診断装置
JP2007265157A (ja) * 2006-03-29 2007-10-11 Nec Corp I/o装置の障害検出システム、及び、方法
CN101349726A (zh) * 2007-07-17 2009-01-21 大唐移动通信设备有限公司 一种通用输入输出接口的故障检测方法及装置
CN201716718U (zh) * 2009-08-28 2011-01-19 深圳和而泰智能控制股份有限公司 单片机检测电路及其装置
CN102809967A (zh) * 2012-08-13 2012-12-05 海信(山东)空调有限公司 空调室内机控制板的自动检测方法
CN104297619A (zh) * 2014-10-13 2015-01-21 上海移为通信技术有限公司 一种芯片输入输出管脚测试装置
CN104459514A (zh) * 2014-11-04 2015-03-25 兵器工业卫生研究所 一种i/o端口逻辑检测方法及检测系统
CN104407954A (zh) * 2014-11-24 2015-03-11 深圳市振邦智能科技有限公司 一种mcu中i/o接口故障的检测方法
CN105467306A (zh) * 2015-12-25 2016-04-06 珠海格力电器股份有限公司 伺服驱动器数字接口电路的测试方法和测试设备

Also Published As

Publication number Publication date
CN109239571A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
CN103336522A (zh) 车辆故障查询系统、控制器及车辆
JP2009201334A (ja) 二重系列車制御装置
US20230188129A1 (en) Aging protection techniques for power switches
WO2019011037A1 (zh) 列车控制器输入电路的故障检测方法及装置
JP5212887B2 (ja) 電流検出装置
CN109229142B (zh) 列车道岔控制系统及控制方法
JP2006223036A (ja) 電力変換制御システム
CN112713938B (zh) 光模块控制方法、装置和设备
US8631174B2 (en) Systems, methods, and apparatus for facilitating communications between an external controller and fieldbus devices
US20120074785A1 (en) Method for Operating a Redundant System and System Therefor
US8274771B2 (en) Safety switching device and modular failsafe control system
CN110949446A (zh) 电子道岔的控制电路及方法
JP5208454B2 (ja) 可変電圧可変周波数電源装置及びその待機系異常検出方法
JP4541241B2 (ja) プラント制御システム
US5977662A (en) Electronic switching device and circuits with a plurality of such switching devices
JP6344302B2 (ja) 組電池制御装置
KR102379558B1 (ko) 피드백 로직을 구비하는 차량의 드라이버 시스템 및 그것의 동작 방법
KR20140135031A (ko) 이중화 시스템 및 그의 제어 방법
KR20180104857A (ko) 전기 유압 액츄에이터를 위한 고장 관리 장치 및 그 방법
JP2018010331A (ja) 診断装置および診断方法
JP4597097B2 (ja) 系統連系装置
JP2017538913A (ja) エネルギー供給レベルを下回るパルスレベルによるエラー通報
JP4869800B2 (ja) 転轍制御回路、転轍制御装置及び鉄道運行管理システム
JP5353533B2 (ja) サーボ制御システムとその異常検出方法
CN108255525B (zh) 基于轨道交通的控制方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831750

Country of ref document: EP

Kind code of ref document: A1