WO2020052073A1 - 一种促进肝脏脂质代谢、抗炎降酶的提取物及其制备方法 - Google Patents

一种促进肝脏脂质代谢、抗炎降酶的提取物及其制备方法 Download PDF

Info

Publication number
WO2020052073A1
WO2020052073A1 PCT/CN2018/116632 CN2018116632W WO2020052073A1 WO 2020052073 A1 WO2020052073 A1 WO 2020052073A1 CN 2018116632 W CN2018116632 W CN 2018116632W WO 2020052073 A1 WO2020052073 A1 WO 2020052073A1
Authority
WO
WIPO (PCT)
Prior art keywords
inflammatory
extract
lipid metabolism
matsutake
liver
Prior art date
Application number
PCT/CN2018/116632
Other languages
English (en)
French (fr)
Inventor
徐菀羚
曹凤君
Original Assignee
长春健康未来医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春健康未来医药科技有限公司 filed Critical 长春健康未来医药科技有限公司
Publication of WO2020052073A1 publication Critical patent/WO2020052073A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/06Fungi, e.g. yeasts
    • A61K36/07Basidiomycota, e.g. Cryptococcus
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L31/00Edible extracts or preparations of fungi; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/10Preparation or pretreatment of starting material
    • A61K2236/19Preparation or pretreatment of starting material involving fermentation using yeast, bacteria or both; enzymatic treatment

Definitions

  • the invention belongs to the technical field of health products, and particularly relates to an extract that promotes liver lipid metabolism, anti-inflammatory and anti-inflammatory enzymes and a preparation method thereof.
  • the liver plays an important role in the metabolism of sugars, lipids, proteins, hormones, drugs, and poisons. Due to dietary habits, life pressure, and environmental pollution, more and more people are suffering from fatty liver.
  • Non-alcoholic fatty liver disease is a chronic liver metabolic disease with hepatic parenchymal cell steatosis, fat storage, and inflammatory responses as the main features, and no history of excessive drinking.
  • NAFLD can progress from simple fatty liver to non-alcoholic steatohepatitis, liver fibrosis, cirrhosis, and even liver cancer. Incidence and mortality have increased year by year. The age of onset is also increasing, and it is reported that the youngest patients with fatty liver are less than ten years old.
  • Fatty liver refers to the excessive deposition of fat in the liver.
  • Most lipid-lowering drugs can promote the transport of lipids in the blood to the liver for metabolic excretion.
  • the present invention provides a natural extract that promotes liver lipid metabolism, anti-inflammatory and anti-inflammatory enzymes, and a preparation method thereof.
  • a method for preparing an extract that promotes liver lipid metabolism and anti-inflammatory and degrading enzymes includes the following steps:
  • the matsutake mushroom is dried and pulverized to obtain a matsutake powder; the matsutake powder is mixed with distilled water, and left to stir to obtain a matsutake homogenate; the mushroom homogenate is centrifuged, and the supernatant is subjected to enzymatic hydrolysis to obtain a matsutake Solution
  • the yeast After the yeast is activated, it is cultured to obtain a seed liquid; the pine mushroom enzymatic hydrolysis solution of step (1) is added to the seed liquid, and the fermentation liquid is obtained by fermentation and culture; the fermentation liquid is subjected to solid-liquid separation to obtain a supernatant Liquid and yeast; the supernatant is spray-dried and sterilized in sequence to obtain the extract that promotes liver lipid metabolism and anti-inflammatory and degrading enzymes.
  • step (1) the drying temperature is 60-90 ° C, and the drying time is 2-4h.
  • step (1) the mass ratio of the matsutake powder to the distilled water is 2-4: 1-3; the standing time is 10-14h, and the standing temperature is 4-6 °C; the stirring speed is 40-60r / min, and the stirring time is 1-3h.
  • step (1) the rotation speed of the centrifugation is 5000-7000rpm, and the centrifugation time is 35-55min.
  • the enzyme for enzymolysis is a mixture of papain, cellulase, and pectinase; the time for performing the enzymolysis is 2-3 hours, and the temperature for performing the enzymolysis is 35-40 ° C.
  • step (1) the mass ratio of the papain, cellulase, and pectinase is 1-2: 1-2: 1-2.
  • step (2) the ratio of the volume of the seed liquid to the volume of the tricholoma matsutake hydrolysate is 1-2: 1-2.
  • step (2) the temperature of the fermentation culture is 28-32 ° C, the stirring rotation speed of the fermentation culture is 150-250 rpm, and the fermentation culture time is 32-40h.
  • step (2) the inlet temperature of the spray drying is 70-80 ° C, the water droplet velocity is 25-35mL / min, the hot air flow rate is 30-40m 3 / h, and the compressed air flow rate is 450-530L. / h, the feed rate is 3.0 ⁇ 180-5.0 ⁇ 180mL / h, and the outlet temperature is 75-80 ° C.
  • Tricholoma matsutake ranks first among the four famous bacteria (Cordyceps sinensis, Ganoderma lucidum, and morel), containing 18 amino acids, 14 essential trace elements in the human body, 49 active nutrients, 5 unsaturated fatty acids, 8 vitamins, 2 glycoproteins , Rich dietary fiber and a variety of active enzymes, and also contains 3 precious active substances, namely the double-chain tricholoma matsutake polysaccharide, tricholoma matsutake peptide and the world's only anti-cancer substance-tricholol. Matsutake mushrooms are white, tender and thick, with a fine texture and smooth texture.
  • Fresh matsutake contains 80-90g of water, 4.5-7.5g of crude protein, 4-7.5g of sugars, 0.5-1.2g of crude fiber, and 0.4-0. Sg of crude fat per 100g. And a variety of vitamins, amino acids and trace elements, etc., has a unique rich aroma. Tricholoma matsutake is well-balanced and adequate in nutrition, which has the functions of improving immunity, anti-cancer and anti-tumor, treating diabetes and cardiovascular diseases, anti-aging and beauty, and promoting gastrointestinal and liver protection.
  • the nutritional ratio of Matsutake mushrooms is reasonable and balanced, especially the content of 18 amino acids in all foods is closest to the standards proposed by the World Health Organization (WHO) and the Food and Agriculture Organization of the United Nations (FAO).
  • the nutritional content is sufficient.
  • the nutritional content of 100 grams of pine mushrooms is among the best in fungi. It has good absorptivity.
  • the main nutritional elements of Matsutake are active nutrients, which are small in molecule and easy to absorb. Safe, matsutake grows in a pollution-free environment and is recognized as a safe food in the world.
  • the method for preparing an extract for promoting liver lipid metabolism and anti-inflammatory and reducing enzymes according to the present invention, first extracting various active substances (matsutake polypeptide, matsutake alcohol, matsutake polysaccharide, amino acid) in matsutake, and then It is fermented and cultured with yeast, so that live yeast digests, absorbs, and converts it into organic forms that are closer to its original biological activity and nutrition (glucosamine-matsutake polypeptide, dextran-matsutake alcohol, dextran matsutake Polysaccharide, dextran amino acid chelate), thereby enhancing the absorption mechanism and increasing the biological titer.
  • active substances matsutake polypeptide, matsutake alcohol, matsutake polysaccharide, amino acid
  • the extract that promotes liver lipid metabolism and anti-inflammatory and degrading enzymes obtained by the preparation method of the present invention has been confirmed by animal experiments to have a positive effect on the regulation of blood lipid levels.
  • the invention can effectively reduce the serum triglyceride and total cholesterol levels of non-alcoholic fatty liver mice, significantly improve the high-density lipoprotein cholesterol level, increase the total antioxidant capacity of the liver, reduce malondialdehyde in liver tissue of NAFLD mice, and significantly improve Content of reduced glutathione in hepatocytes.
  • the extract that promotes liver lipid metabolism and anti-inflammatory and degrading enzymes obtained by the preparation method of the present invention has been confirmed by animal experiments.
  • the expression of TNF- ⁇ inflammatory factors is reduced, and TLR4 and Myd88 are reduced.
  • the expression level can inhibit the amplification of inflammatory signals, thereby improving liver lipid accumulation and inflammatory response, and then exerting its anti-inflammatory effect.
  • Liver lipid metabolism and anti-inflammatory and anti-inflammatory enzyme extracts obtained by the preparation method of the present invention have been confirmed by animal experiments to effectively reduce the content of aspartate aminotransferase and alanine aminotransferase in the serum of non-alcoholic fatty liver mice, and have the effect of reducing liver The role of cellular damage.
  • the preparation method of the present invention does not use chemical ingredients to extract the active ingredients of matsutake, and the preparation process is simple and meets the requirements of large-scale production.
  • FIG. 1 Serum alanine aminotransferase (GPT) and aspartate aminotransferase (GOT) contents of mice in each group
  • Figure 2 Expression levels of p-AMPK ⁇ , SREBP-1c, and FASN proteins in liver tissue of mice in each group;
  • FIG. 3 p-AMPK ⁇ protein expression in liver tissue of mice in each group
  • FIG. 4 Expression of SREBP-1c protein in liver tissue of mice in each group
  • FIG. 1 FASN protein expression in liver tissue of each group of mice
  • FIG. 6 TLR4 and MyD88 expression in each group of mice.
  • This embodiment provides an extract that promotes liver lipid metabolism and anti-inflammatory and degrading enzymes, and includes the following steps:
  • the matsutake is dried at a temperature of 60 ° C for 4 hours, and then pulverized to obtain a matsutake powder; the matsutake powder and distilled water are mixed at a mass ratio of 2: 1, and left at 4 ° C for 10 hours, and then stirred at a speed of 40 r / min. 3h, to obtain the matsutake homogenate; centrifuge the matsutake homogenate at 5000 rpm for 55min, add papain, cellulase and pectinase to the supernatant at a mass ratio of 1: 1: 1 Enzymolysis for 3h at a temperature of 35 ° C to obtain a tricholoma matsutake hydrolysate;
  • the yeast After the yeast is activated, it is cultured to obtain a seed liquid; 2000 mL of the seed liquid is added with 2000 mL of the mushroom fungus hydrolysate of step (1), and fermented and cultured at a temperature of 28 ° C and a speed of 150 rpm for 32 hours to obtain fermentation Liquid; solid-liquid separation of the fermentation broth to obtain a supernatant and a yeast body; the supernatant at an air inlet temperature of 70 ° C, a water droplet speed of 25 mL / min, and a hot air flow of 30 m 3 / h
  • the compressed air flow rate is 450L / h
  • the feed rate is 3.0 ⁇ 180mL / h
  • the outlet temperature is 75 ° C.
  • Spray drying is performed under the conditions of sterilization to obtain the extraction of liver lipid metabolism and anti-inflammatory enzymes. Thing.
  • This embodiment provides an extract that promotes liver lipid metabolism and anti-inflammatory and degrading enzymes, and includes the following steps:
  • the matsutake is dried at a temperature of 90 ° C for 2 hours, and then pulverized to obtain a matsutake powder; the matsutake powder and distilled water are mixed at a mass ratio of 4: 3, and left at 6 ° C for 14h, and then stirred at a speed of 60r / min. 1h, to obtain the pine mushroom homogenate; centrifuging the pine mushroom homogenate at 7000 rpm for 35 min, adding papain, cellulase and pectinase to the supernatant at a mass ratio of 1: 2: 2. Enzymolysis for 2h at a temperature of 40 ° C to obtain a tricholoma matsutake hydrolysate;
  • the yeast After the yeast is activated, it is cultured to obtain a seed solution; 1000 mL of the mushroom solution in step (1) is added to 500 mL of the seed solution, and fermented and cultured at a temperature of 32 ° C and a rotation speed of 250 rpm for 40 hours to obtain fermentation.
  • the fermentation liquid is subjected to solid-liquid separation to obtain a supernatant and yeast body; the supernatant is at an inlet air temperature of 80 ° C., a water droplet speed is 35 mL / min, and a hot air flow rate is 40 m 3 / h
  • the compressed air flow rate is 530L / h, the feed rate is 5.0 ⁇ 180mL / h, and the outlet temperature is 75 ° C.
  • Spray drying is performed under the conditions of sterilization, and then the liver lipid metabolism and anti-inflammatory and anti-inflammatory enzyme extraction are obtained Thing.
  • This embodiment provides an extract that promotes liver lipid metabolism and anti-inflammatory and degrading enzymes, and includes the following steps:
  • the matsutake is dried at a temperature of 80 ° C for 3 hours, and then pulverized to obtain a matsutake powder; the matsutake powder and distilled water are mixed at a mass ratio of 3: 2, and left at 5 ° C for 12 hours, and then stirred at a speed of 50 r / min.
  • step (1) After the yeast is activated, it is cultured to obtain a seed solution. 1000 mL of the mushroom solution in step (1) is added to 500 mL of the seed solution, and the fermentation is performed for 36 hours under agitation at a temperature of 30 ° C and a rotation speed of 200 rpm to obtain fermentation.
  • NAFLD non-alcoholic fatty liver
  • mice 75 Kunming mice were selected. All of them were male. They were randomly divided into 5 groups according to body weight, 15 in each group, blank group, non-alcoholic liver injury model group, and low (0.5 g / kg) in Example 3 of the present invention. Medium (1.5g / kg), high dose (4.5g / kg) group.
  • the blank group was fed with ordinary feed and given the same volume of normal saline for 12 weeks; the model group and the dose group were fed with high-fat feed and given the same volume of normal saline for 12 weeks.
  • the dose group was fed with stomach at around 3:00 pm every day Dosing once. The above operation was performed once a day, and the mice were sacrificed after 12 weeks. Liver tissue was taken from the mice at a distance of 5 mm from the edge of the largest lobe of the liver, and immediately stored in a low-temperature refrigerator at -80 ° C. Take 300 mg of liver tissue from each group of mice to make a tissue homogenate. Centrifuge at 3800 r / min and 5 ° C for 20 minutes and take the supernatant.
  • TG triglyceride
  • COD-PAP method was used to determine the total cholesterol (T-CHOL) content, see Table 1;
  • HDL-C high-density lipoprotein cholesterol
  • the MDA content was calculated according to the TEP standard curve using the Barbituric acid colorimetric method, as shown in Table 2;
  • RT-PCR was used to determine liver adenylate-activated protein kinase (AMPK) phosphorylation levels, sterol regulatory element binding protein (SREBP-1c), fat synthase (FASN), Toll receptor 4 (TLR4), and MyD88 expression ⁇ , see Figure 2- Figure 6.
  • AMPK liver adenylate-activated protein kinase
  • SREBP-1c sterol regulatory element binding protein
  • FASN fat synthase
  • TLR4 Toll receptor 4
  • MyD88 expression ⁇ see Figure 2- Figure 6-
  • Example 3 of the present invention can effectively reduce serum triglyceride (TG) and total cholesterol (T-CHOL) levels in NAFLD mice, significantly improve high-density lipoprotein cholesterol (HDL-C) levels, and increase total liver Antioxidant ability (T-AOC), reduces malondialdehyde (MDA) in liver tissue of NAFLD mice, and significantly reduces reduced glutathione (GSH) in liver cells.
  • MDA malondialdehyde
  • GSH glutathione
  • the present invention has a positive effect on regulating blood lipid levels.
  • Example 3 of the present invention can increase the expression of PPAR- ⁇ and inhibit the expression of NF- ⁇ B and I ⁇ B- ⁇ proteins.
  • PPAR- ⁇ plays an important role in liver fatty acid metabolism and lipid oxidation.
  • NF- ⁇ B plays a key role in apoptosis. When fatty liver develops, NF- ⁇ B is over-activated, which triggers cellular mechanisms and produces inflammation and immune responses.
  • Example 3 of the present invention can effectively reduce the degree of pathological damage to the liver tissue of the experimental mice, and has an anti-inflammatory effect.
  • Example 3 of the present invention can effectively reduce the content of aspartate aminotransferase (GOT) and alanine aminotransferase (GPT) in serum of NAFLD mice.
  • GOT and GPT are sensitive indicators of liver cell damage, both of which can reflect the degree of liver cell damage. Elevated levels of GOT and GPT in serum are indicators of liver injury and disturbance of normal liver function.
  • SREBP-1c sterol regulatory factor binding protein
  • TLR4 is an important factor that induces natural immunity and is widely distributed in immune and non-immune cells.
  • the main role is to recognize G-bacterial cell wall lipopolysaccharide, activate the body's innate immune system, activate NF- ⁇ B through a series of concatenation reactions, promote the release of tumor necrosis factor TNF- ⁇ and other various inflammatory factors, and cause inflammation.
  • MyD88 is a dependent TLR4 signaling pathway, which mainly transmits signals to the cell through TIK, activates c-Jun amino terminal protein kinase and nuclear factor, and causes the release of a variety of inflammatory cytokines and chemical factors, such as interleukin and tumor necrosis factor- ⁇ .
  • the reduced expression of TLR4 and MyD88 in mice taking Experimental Example 3 of the present invention indicates that the present invention has a precise anti-inflammatory effect.
  • Human umbilical vein endothelial cells were cultured in vitro, and the cells were divided into 6 groups, namely a blank control group, a H 2 O 2 injury group, a H 2 O 2 + Vit group, and a H 2 O 2 + dose of Example 3 of the present invention (1, 5 , 10 ⁇ mol / L) group. 750 ⁇ mol / L H 2 O 2 was added to Vit C and different concentrations of endothelial cells pre-cultured for 24 hours in Example 3 of the present invention, and continued to be cultured for 18 hours. The OD value and Value-added rate; Quantitatively detect the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in each experimental group. The experimental results are shown in Tables 6 and 7.
  • Group OD value Appreciation rate (%) Blank group control group 1.125 ⁇ 0.061 0 H 2 O 2 injury group 0.527 ⁇ 0.232 -53.2 H 2 O 2 + VitC group 0.628 ⁇ 0.163 -44.2 Low dose group 0.689 ⁇ 0.642 * -38.8 Middle dose group 0.761 ⁇ 0.076 ** -32.4 High dose group 0.821 ⁇ 0.052 ** -27.1
  • the absorbance (OD) of endothelial cells after H 2 O 2 injury was lower than that of the blank control group, and the OD value after pretreatment of the present invention increased and was dose-dependent; H 2 O 2 injury could cause significant cell SOD and GSH-Px activity.
  • the present invention can maintain and promote the activity of SOD and GSH-Px in a dose-dependent manner with significant differences in various indicators (P ⁇ 0.01), and inhibits the H 2 O 2 induced endothelial cells in a dose-dependent manner. Apoptosis. After intervention with Vit C and Example 3 of the present invention at different concentrations, the SOD and GSH-Px activities in the cells of each group gradually increased, which was significantly different from the H 2 O 2 injury group.
  • Example 3 of the present invention at different concentrations can promote the formation of MTT, increase cell activity, and inhibit H 2 O 2 induced endothelial cell damage.
  • the invention can inhibit the injury and apoptosis of vascular endothelial cells induced by H 2 O 2 , and its effect is related to the maintenance of SOD and GSH-Px activities.
  • the increase in intracellular SOD and GSH-Px activity indicates that the present invention improves the body's antioxidant protection mechanism, so that H 2 O 2 and oxygen free radicals can be removed in time, instead of accumulating in the cell, causing cell lipid peroxidation, Causes cell damage. It is suggested that the present invention can protect blood vessels, reduce free radical damage to blood vessels, delay vascular sclerosis and soften blood vessels.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Microbiology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medical Informatics (AREA)
  • Botany (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

一种促进肝脏脂质代谢、抗炎降酶的提取物及其制备方法,所述制备方法先将松茸内的的多种活性物质通过酶解提取出来,再将其与酵母混合发酵培养,使得活酵母消化、吸收,并将其转化为更接近其原始生物活性和营养的有机形式,从而增强吸收,提高生物效价。所得提取物对调节血脂水平有积极作用,能够抑制炎症信号放大,从而改善肝脏脂质堆积及炎症反应,发挥抗炎作用;可降低非酒精性脂肪肝小鼠血清谷草转氨酶和谷丙转氨酶的含量,减轻肝细胞损伤。

Description

一种促进肝脏脂质代谢、抗炎降酶的提取物及其制备方法 技术领域
本发明属于保健品技术领域,具体涉及一种促进肝脏脂质代谢、抗炎降酶的提取物及其制备方法。
背景技术
肝脏作为体内最为活跃的器官,对糖、脂类、蛋白质、激素、药物、毒物等的代谢都起重要作用。由于饮食习惯、生活压力、环境污染导致现在患有脂肪肝的人群越来越多。
非酒精性脂肪肝病(non-alcoholic fatty liver disease,NAFLD)是以肝实质细胞脂肪变性、脂肪贮积和炎症反应为主要特征,并且无过量饮酒史的慢性肝脏代谢性疾病。NAFLD从单纯性脂肪肝、可发展成为非酒精性脂肪肝炎、肝纤维化、肝硬化、甚至肝癌。发病率、死亡率已逐年升高。病发年龄也日趋提前,有报道,年龄最小的脂肪肝患者还不到十岁。脂肪肝是指脂肪在肝脏中的过度沉积。多数降脂药能促进血液当中的脂质运输至肝脏进行代谢排泄,而脂肪肝患者常伴有肝脏脂质代谢障碍,不止治疗性降低,也加剧肝脏负担。对NAFLD有效的产品显得尤其关键。目前迫切需要天然、草本的配方,来调理和治理脂肪肝。
发明内容
为了解决现有技术中存在的上述问题,本发明提供一种天然的促进肝脏脂质代谢、抗炎降酶的提取物及其制备方法。
本发明的技术方案为:
一种促进肝脏脂质代谢、抗炎降酶的提取物的制备方法,包括如下步骤:
(1)制备松茸酶解液
将松茸干燥后进行粉碎,得到松茸粉;将所述松茸粉与蒸馏水混合,静置后搅拌均匀,得到松茸匀浆;将所述松茸匀浆离心,取上清液进行酶解,得到松茸酶解液;
(2)制备促进肝脏脂质代谢、抗炎降酶的提取物
酵母菌活化后,经培养,得到种子液;向所述种子液中加入步骤(1)所述松茸酶解液,经发酵培养得到发酵液;将所述发酵液进行固液分离,得到上清液和酵母菌体;将所述上清液依次进行喷雾干燥、杀菌,即得所述促进肝脏脂质代谢、抗炎降酶的提取物。
进一步地,步骤(1)中,所述干燥的温度为60-90℃,所述干燥的时间为2-4h。
进一步地,步骤(1)中,所述松茸粉与所述蒸馏水的质量比为2-4:1-3;所述静置的时间为10-14h,所述静置的温度为4-6℃;所述搅拌的转速为40-60r/min,所述搅拌的时间为1-3h。
进一步地,步骤(1)中,所述离心的转速为5000-7000rpm,所述离心的时间为35-55min。
进一步地,步骤(1)中,所述进行酶解的酶为木瓜蛋白酶、纤维素酶和果胶酶的混合物;进行所述酶解的时间为2-3h,进行所述酶解的温度为35-40℃。
进一步地,步骤(1)中,所述木瓜蛋白酶、纤维素酶和果胶酶的质量比为1-2:1-2:1-2。
进一步地,步骤(2)中,所述种子液与所述松茸酶解液的体积之比为1-2:1-2。
进一步地,步骤(2)中,所述发酵培养的温度为28-32℃,所述发酵培养的搅拌转速为150-250rpm,所述发酵培养的时间为32-40h。
进一步地,步骤(2)中,所述喷雾干燥的进风温度为70-80℃,水滴速度 为25-35mL/min,热空气流量为30-40m 3/h,压缩空气流量为450-530L/h,进料速度为3.0×180-5.0×180mL/h,出水温度为75-80℃。
任一项所述方法制备得到的促进肝脏脂质代谢、抗炎降酶的提取物。
松茸位列四大名菌(冬虫夏草、灵芝、羊肚菌)之首,含有18种氨基酸、14种人体必需微量元素、49种活性营养物质、5种不饱和脂肪酸、8种维生素、2种糖蛋白、丰富的膳食纤维和多种活性酶,另含有3种珍贵的活性物质,分别是双链松茸多糖、松茸多肽和全世界独一无二的抗癌物质——松茸醇。松茸菌肉白嫩肥厚,质地细密,口感滑润,新鲜松茸每100g含有水分80~90g、粗蛋白4.5~7.5g、糖类4~7.5g、粗纤维0.5~1.2g、粗脂肪0.4~0.Sg以及多种维生素、氨基酸和微量元素等,具有独特的浓郁香气。松茸营养均衡、充足,具有提高免疫力、抗癌抗肿瘤、治疗糖尿病及心血管疾病、抗衰老养颜、促肠胃保肝脏等多种功效:
松茸营养结构配比合理均衡,特别是18种氨基酸的含量在所有食品中最接近于世界卫生组织(WHO)和联合国粮农组织(FAO)提出的标准。营养含量充足,松茸的百克营养含量,在菌类中名列前茅。吸收性好,松茸的主要营养元素为活性营养物质,分子小,极易吸收。安全,松茸生长在没有污染的环境中,是世界公认的安全食品。
常规的松茸类食品、保健品只是简单的将各种方法提取的松茸活性成分混合,但是这些活性成分提取出来以后,往往并不能被人体很好的吸收,由于其原始生物活性结构遭到一定程度破坏,其功效也成了未知。
本发明的有益效果为:
1、本发明所述的促进肝脏脂质代谢、抗炎降酶的提取物的制备方法,先将松茸内的的多种活性物质(松茸多肽、松茸醇、松茸多糖、氨基酸)提取出来,再将其与酵母混合发酵培养,使得活酵母消化、吸收,并将其转化为更接近其原始生物活性和营养的有机形式(葡聚搪-松茸多肽、葡聚糖-松茸醇、葡聚糖松茸多糖、葡聚糖氨基酸螯合物),从而增强了吸收机制,提高了生物效价。
2、本发明制备方法得到的促进肝脏脂质代谢、抗炎降酶的提取物,经动物实验证实,对调节血脂水平有积极作用,通过上调肝脏腺苷酸活化蛋白激酶磷酸化水平以抑制固醇调控元件结合蛋白的转录活性,进而抑制甘油三酯的合成。本发明可有效降低非酒精性脂肪肝小鼠血清甘油三酯、总胆固醇水平,显著改善高密度脂蛋白胆固醇水平,提高肝脏总抗氧化能力,降低NAFLD小鼠肝脏组织丙二醛,同时显著提高肝细胞中还原型谷胱甘肽的含量。
3、本发明制备方法得到的促进肝脏脂质代谢、抗炎降酶的提取物,经动物实验证实,通过阻断NF-κB信号通路,减少TNF-α炎症因子的表达,降低TLR4及Myd88的表达量,抑制炎症信号放大,从而改善肝脏脂质堆积及炎症反应,进而发挥其抗炎作用。
4、本发明制备方法得到的促进肝脏脂质代谢、抗炎降酶的提取物,经动物实验证实,可有效降低非酒精性脂肪肝小鼠血清谷草转氨酶和谷丙转氨酶的含量,具有减轻肝细胞损伤的作用。
5、本发明制备方法未使用化学成分提取松茸活性成分,制备工艺简单,符合大规模生产要求。
附图说明
图1:各组小鼠血清谷丙转氨酶(GPT)、谷草转氨酶(GOT)的含量
图2:各组小鼠肝组织p-AMPKα、SREBP-1c、FASN蛋白的表达量;
图3:各组小鼠肝组织中 p-AMPKα蛋白的表达量;
图4:各组小鼠肝组织中SREBP-1c蛋白的表达量;
图5:各组小鼠肝组织中FASN蛋白的表达量;
图6:各组小鼠TLR4和MyD88的表达量。
图中:1-TLR4表达量;2-MyD88表达量。
具体实施方式
下面通过具体实施例,对本发明作进一步说明。
实施例1
本实施例提供一种促进肝脏脂质代谢、抗炎降酶的提取物,包括如下步骤:
(1)制备松茸酶解液
将松茸在温度为60℃条件下干燥4h后进行粉碎,得到松茸粉;将所述松茸粉与蒸馏水按2:1的质量比混合,于4℃静置10h后,以40r/min的转速搅拌3h,得到松茸匀浆;将所述松茸匀浆以5000rpm的转速离心55min,向上清液中加入木瓜蛋白酶、纤维素酶和果胶酶以1:1:1的质量比混合而成的混合物在温度为35℃的条件下酶解3h,得到松茸酶解液;
(2)制备促进肝脏脂质代谢、抗炎降酶的提取物
酵母菌活化后,经培养,得到种子液;向1000mL所述种子液中加入2000mL步骤(1)所述松茸酶解液,在温度为28℃,转速为150rpm的搅拌条件下发酵培养32h得到发酵液;将所述发酵液进行固液分离,得到上清液和酵母菌体;将所述上清液在进风温度为70℃,水滴速度为25mL/min,热空气流量为30m 3/h,压缩空气流量为450L/h,进料速度为3.0×180mL/h,出水温度为75℃的条件下进行喷雾干燥,杀菌后,即得所述促进肝脏脂质代谢、抗炎降酶的提取物。
实施例2
本实施例提供一种促进肝脏脂质代谢、抗炎降酶的提取物,包括如下步骤:
(1)制备松茸酶解液
将松茸在温度为90℃条件下干燥2h后进行粉碎,得到松茸粉;将所述松茸粉与蒸馏水按4:3的质量比混合,于6℃静置14h后,以60r/min的转速搅拌1h,得到松茸匀浆;将所述松茸匀浆以7000rpm的转速离心35min,向上清液中加入木瓜蛋白酶、纤维素酶和果胶酶以1:2:2的质量比混合而成的混合物在温 度为40℃的条件下酶解2h,得到松茸酶解液;
(2)制备促进肝脏脂质代谢、抗炎降酶的提取物
酵母菌活化后,经培养,得到种子液;向500mL所述种子液中加入1000mL步骤(1)所述松茸酶解液,在温度为32℃,转速为250rpm的搅拌条件下发酵培养40h得到发酵液;将所述发酵液进行固液分离,得到上清液和酵母菌体;将所述上清液在进风温度为80℃,水滴速度为35mL/min,热空气流量为40m 3/h,压缩空气流量为530L/h,进料速度为5.0×180mL/h,出水温度为75℃的条件下进行喷雾干燥,杀菌后,即得所述促进肝脏脂质代谢、抗炎降酶的提取物。
实施例3
本实施例提供一种促进肝脏脂质代谢、抗炎降酶的提取物,包括如下步骤:
(1)制备松茸酶解液
将松茸在温度为80℃条件下干燥3h后进行粉碎,得到松茸粉;将所述松茸粉与蒸馏水按3:2的质量比混合,于5℃静置12h后,以50r/min的转速搅拌2h,得到松茸匀浆;将所述松茸匀浆以6000rpm的转速离心45min,向上清液中加入木瓜蛋白酶、纤维素酶和果胶酶以1:2:1的质量比混合而成的混合物在温度为38℃的条件下酶解2.5h,得到松茸酶解液;
(2)制备促进肝脏脂质代谢、抗炎降酶的提取物
酵母菌活化后,经培养,得到种子液;向500mL所述种子液中加入1000mL步骤(1)所述松茸酶解液,在温度为30℃,转速为200rpm的搅拌条件下发酵培养36h得到发酵液;将所述发酵液进行固液分离,得到上清液和酵母菌体;将所述上清液在进风温度为80℃,水滴速度为30mL/min,热空气流量为36m 3/h,压缩空气流量为490L/h,进料速度为4.0×180mL/h,出水温度为80℃的条件下进行喷雾干燥,杀菌后,即得所述促进肝脏脂质代谢、抗炎降酶的提取物。
实验例
1、小鼠非酒精性脂肪肝(NAFLD)的保护作用
1.1动物选择昆明种小鼠75只,均为雄性,按体重大小随机分成5组,每组15只,空白组、非酒精肝损伤模型组、本发明实施例3低(0.5g/kg)、中(1.5g/kg)、高剂量(4.5g/kg)组。
1.2实验方法空白组喂养普通饲料,给予同体积生理盐水,饲养12周;模型组和剂量组均喂养高脂饲料,给予同体积生理盐水,饲养12周,剂量组每天下午3:00左右灌胃给药一次。以上操作每天一次,12周后处死小鼠。从各组小鼠距肝脏最大叶边缘5mm处取肝组织,立即保存于-80℃低温冰箱中。取各组小鼠肝组织300mg,制成组织匀浆,在3800r/min、5℃条件下离心20min后取上清液。
1.3检测方法
采用磷酸甘油氧化酶法测定血清中甘油三酯(TG)的含量,见表1;
采用COD-PAP法测定总胆固醇(T-CHOL)的含量,见表1;
采用分光光度法测定高密度脂蛋白胆固醇(HDL-C)的含量,见表1;
采用Fe 2+菲啉类络合比色法测定肝脏总抗氧化能力活性(T-AOC),见表2;
采用琉代巴比妥酸比色法,根据TEP标准曲线计算丙二醛(MDA)含量,见表2;
采用ELISA试剂盒说明书的操作方法进行血浆GSH的测定,见表2。
采用Western Blot法检测各组小鼠肝组织CYP450 2E1(细胞色素P450 2E1),见表3;
采用Western Blot法检测各组小鼠肝组织PPAR-γ、NF-κB、IκB-α蛋白表达量,见表4;
采用ELISA试剂盒说明书操作方法测定肝组织匀浆中肿瘤坏死因子TNF-α的表达量,见表5;
采用2,4二硝基苯肼法测定血清谷丙转氨酶(GPT)、谷草转氨酶(GOT)的含量,见图1;
采用RT-PCR法测定肝脏腺苷酸活化蛋白激酶(AMPK)磷酸化水平、固醇调控元件结合蛋白(SREBP-1c)、脂肪合成酶(FASN)、Toll受体4(TLR4)和MyD88的表达量,见图2-图6。
1.4实验结果
实验数据以
Figure PCTCN2018116632-appb-000001
表示,结果用单因素方差分析,P<0.05表示有显著性差异,P<0.01表示有非常显著性差异,P>0.05表示无统计学意义,应用SPSS19.0统计软件分析数据。
表1各组小鼠TG、T-CHO、HDL-C的含量
Figure PCTCN2018116632-appb-000002
表2各组小鼠T-AOC、MDA、GSH的含量
Figure PCTCN2018116632-appb-000003
与空白组相比, #P<0.05, ##P<0.01;与模型组相比, *P<0.05, **P<0.01
结果表明,本发明实施例3剂量组可有效降低NAFLD小鼠血清甘油三酯(TG)、总胆固醇(T-CHOL)水平,显著改善高密度脂蛋白胆固醇(HDL-C) 水平,提高肝脏总抗氧化能力(T-AOC),降低NAFLD小鼠肝脏组织丙二醛(MDA),显著提高肝细胞中还原型谷胱甘肽(GSH)。其中,MDA作为脂质过氧化降解的产物之一,可以反映体内脂质过氧化的程度及细胞受自由基攻击的程度;GSH是体内重要保护因子,在保护生物膜及生物大分子免受自由基损伤方面起着重要作用。综上,说明本发明对调节血脂水平有积极作用。
表3各组小鼠肝组织CYP450 2E1蛋白表达的光密度积分值比较
Figure PCTCN2018116632-appb-000004
*P<0.05、**P<0.01
结果表明,与空白组相比,模型组肝组织CYP450 2E1水平显著升高;与模型组相比,服用了本发明实施例3的小鼠肝组织CYP450 2E1水平显著降低。
表4 PPAR-γ、NF-κB、IκB-α蛋白在各组小鼠肝组织中的表达量
Figure PCTCN2018116632-appb-000005
*P<0.05、**P<0.01
结果表明,模型组小鼠肝组织PPAR-γ值显著低于空白组,而NF-κB、IκB-α值显著高于空白组。服用本发明实施例3的小鼠肝组织PPAR-γ值显著高于模型组,而NF-κB、IκB-α值低于模型组。说明本发明实施例3可以增加PPAR-γ表达,抑制NF-κB、IκB-α蛋白表达。PPAR-γ在肝脏脂肪酸代谢及脂质氧化过程中扮演重要的角色。NF-κB在细胞凋亡中起关键作用。脂肪肝发病时,NF-κB过度活化,从而启动细胞机制,产生炎症、免疫等反应。
表5各组小鼠肝组织TNF-α的表达量(n=15,
Figure PCTCN2018116632-appb-000006
)
Figure PCTCN2018116632-appb-000007
*P<0.05、**P<0.01
结果表明,模型组肝组织与空白组比较,TNF-α表达量明显增加。服用本发明实施例3的各剂量组与模型组比较,有非常显著性差异。TNF-α是主要炎症介质之一。该实验说明本发明实施例3能有效减轻本实验小鼠肝组织病理损伤程度,具有抗炎的作用。
图1结果表明,本发明实施例3剂量组可有效降低NAFLD小鼠血清谷草转氨酶(GOT)和谷丙转氨酶(GPT)的含量。GOT和GPT是肝细胞损伤的敏感指标,均能反映肝细胞的损伤程度,血清中的GOT和GPT水平的升高是肝损伤和正常肝功能被扰乱的指标。
图2-图5结果表明,与空白组相比,模型组中p-AMPKα的蛋白表达水平显著降低,与模型组相比,服用本发明实施例3的剂量组p-AMPKα的蛋白表达水平显著升高;与空白组相比,模型组中SREBP-1c、FASN蛋白表达水平显著升高;与模型组相比,服用本发明实施例3的剂量组中SREBP-1c、FASN的蛋白表达水平显著降低。AMPK在肝脏脂质稳态调节中发挥重要作用,可通过调节脂肪代谢相关靶蛋白活性从而影响肝脏脂质代谢,由于AMPK的活性与其α亚基Thr-172点位的磷酸化(p-AMPKα)密切相关,所以通过检测p-AMPKα的蛋白表达量即可评估AMPK的活性。固醇调节元件结合蛋白(SREBP-1c)在肝脏表达高,能通过脂肪酸上调CYP450 2E1的表达而促进肝内氧化应激和脂质过氧化,诱导NAFLD发生。综上,说明本发明通过上调p-AMPKα,提高AMPK的活性而显著抑制固醇调节因子结合蛋白(SREBP-1c)的转录活性,进而抑制甘油三酯的合成。
图6结果表明,模型组中的TLR4、MyD88表达量升高,TLR4是诱发天然免疫的重要因子,广泛分布于免疫和非免疫细胞。主要作用是识别G-细菌细胞壁脂多糖,启动机体的固有免疫系统,通过一系列集联反应激活NF-κB,促进肿瘤坏死因子TNF-α和其他各类炎症因子释放,引起炎症反应。MyD88是依赖性的TLR4信号通路,主要通过TIK向胞内传递信号,激活c-Jun氨基端蛋白激酶和核因子,引起多种炎性细胞因子和化学因子的释放,如白介素和肿瘤坏死因子-α。服用本发明实验例3的小鼠TLR4、MyD88表达量降低,说明本发明起到确切的抗炎效果。
2、对过氧化氢诱导人脐静脉内皮细胞损伤的保护作用
体外培养人脐静脉内皮细胞,将细胞分为6组,即空白对照组、H 2O 2损伤组、H 2O 2+Vit组、H 2O 2+本发明实施例3剂量(1、5、10μmol/L)组。将750μmol/L H 2O 2作用于加入Vit C及不同浓度本发明实施例3预培养24h的内皮细胞,继续培养18h,采用四甲基偶氮唑盐比色法(MTT法)检测OD值和增值率;定量检测各实验组超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)的活力。实验结果见表6、表7。
统计学处理实验数据以
Figure PCTCN2018116632-appb-000008
表示,结果用单因素方差分析,P<0.05为有显著性差异,P<0.01为有非常显著性差异;P>0.05为无统计学意义。应用SPSS19.0统计软件分析数据。
表6各组OD和增值率
组别 OD值 增值率(%)
空白组对照组 1.125±0.061 0
H 2O 2损伤组 0.527±0.232 -53.2
H 2O 2+VitC组 0.628±0.163 -44.2
低剂量组 0.689±0.642* -38.8
中剂量组 0.761±0.076** -32.4
高剂量组 0.821±0.052** -27.1
表7各组SOD和GSH-Px
组别 SOD(nmol/mg) GSH-Px含量(g/L)
空白组对照组 16.28±2.19 14.28±2.19
H 2O 2损伤组 11.72±1.56 ## 2.18±0.60
H 2O 2+VitC组 13.82±1.29 6.39±2.18
低剂量组 12.93±1.28 3.37±0.86
中剂量组 14.27±1.52* 5.29±0.56
高剂量组 15.27±1.02** 12.48±2.15
与H 2O 2损伤组比较,*P<0.05
结果表明,内皮细胞H 2O 2损伤后吸光度(OD)低于空白对照组,本发明预处理后OD值增加且呈剂量依赖性;H 2O 2损伤可引起细胞SOD及GSH-Px活性明显降低,本发明能维持和促进SOD、GSH-Px的活性,且呈剂量依赖性,各指标差异有极显著性(P﹤0.01),并且呈剂量依赖性抑制H 2O 2诱导的内皮细胞的凋亡。用Vit C和不同浓度的本发明实施例3干预后,各组细胞内SOD和GSH-Px活性逐渐升高,与H 2O 2损伤组相比有显著差异。
H 2O 2使内皮细胞的MTT减少,细胞活性下降,而加入不同浓度的本发明实施例3可促进MTT形成,增加细胞活性,抑制H 2O 2诱导的内皮细胞损伤作用。
结论:本发明能抑制H 2O 2诱导的血管内皮细胞的损伤及凋亡,其作用与维持SOD、GSH-Px活性有关。胞内SOD和GSH-Px活性的升高表明本发明提高了机体抗氧化保护机制,使得H 2O 2与氧自由基能被及时清除,而非蓄积于细胞内,引发细胞脂质过氧化,导致细胞受损。提示本发明能保护血管,减少自由基对血管的伤害,延缓血管硬化和软化血管。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到 变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种促进肝脏脂质代谢、抗炎降酶的提取物的制备方法,其特征在于,包括如下步骤:
    (1)制备松茸酶解液
    将松茸干燥后进行粉碎,得到松茸粉;将所述松茸粉与蒸馏水混合,静置后搅拌均匀,得到松茸匀浆;将所述松茸匀浆离心,取上清液进行酶解,得到松茸酶解液;
    (2)制备促进肝脏脂质代谢、抗炎降酶的提取物
    酵母菌活化后,经培养,得到种子液;向所述种子液中加入步骤(1)所述松茸酶解液,经发酵培养得到发酵液;将所述发酵液进行固液分离,得到上清液和酵母菌体;将所述上清液依次进行喷雾干燥、杀菌,即得所述促进肝脏脂质代谢、抗炎降酶的提取物。
  2. 根据权利要求1所述的促进肝脏脂质代谢、抗炎降酶的提取物的制备方法,其特征在于,步骤(1)中,所述干燥的温度为60-90℃,所述干燥的时间为2-4h。
  3. 根据权利要求1所述的促进肝脏脂质代谢、抗炎降酶的提取物的制备方法,其特征在于,步骤(1)中,所述松茸粉与所述蒸馏水的质量比为2-4:1-3;
    所述静置的时间为10-14h,所述静置的温度为4-6℃;
    所述搅拌的转速为40-60r/min,所述搅拌的时间为1-3h。
  4. 根据权利要求1所述的促进肝脏脂质代谢、抗炎降酶的提取物的制备方法,其特征在于,步骤(1)中,所述离心的转速为5000-7000rpm,所述离心的时间为35-55min。
  5. 根据权利要求1所述的促进肝脏脂质代谢、抗炎降酶的提取物的制备方 法,其特征在于,步骤(1)中,进行所述酶解的酶为木瓜蛋白酶、纤维素酶和果胶酶的混合物;进行所述酶解的时间为2-3h,进行所述酶解的温度为35-40℃。
  6. 根据权利要求5所述的促进肝脏脂质代谢、抗炎降酶的提取物的制备方法,其特征在于,步骤(1)中,所述木瓜蛋白酶、纤维素酶和果胶酶的质量比为1-2:1-2:1-2。
  7. 根据权利要求1所述的促进肝脏脂质代谢、抗炎降酶的提取物的制备方法,其特征在于,步骤(2)中,所述种子液与所述松茸酶解液的体积之比为1-2:1-2。
  8. 根据权利要求1所述的促进肝脏脂质代谢、抗炎降酶的提取物的制备方法,其特征在于,步骤(2)中,所述发酵培养的温度为28-32℃,所述发酵培养的搅拌转速为150-250rpm,所述发酵培养的时间为32-40h。
  9. 根据权利要求1所述的促进肝脏脂质代谢、抗炎降酶的提取物的制备方法,其特征在于,步骤(2)中,所述喷雾干燥的进风温度为70-80℃,水滴速度为25-35mL/min,热空气流量为30-40m 3/h,压缩空气流量为450-530L/h,进料速度为3.0×180-5.0×180mL/h,出水温度为75-80℃。
  10. 权利要求1-9任一项所述方法制备得到的促进肝脏脂质代谢、抗炎降酶的提取物。
PCT/CN2018/116632 2018-09-13 2018-11-21 一种促进肝脏脂质代谢、抗炎降酶的提取物及其制备方法 WO2020052073A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811068775.7 2018-09-13
CN201811068775.7A CN109106730A (zh) 2018-09-13 2018-09-13 一种促进肝脏脂质代谢、抗炎降酶的提取物及其制备方法

Publications (1)

Publication Number Publication Date
WO2020052073A1 true WO2020052073A1 (zh) 2020-03-19

Family

ID=64859266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116632 WO2020052073A1 (zh) 2018-09-13 2018-11-21 一种促进肝脏脂质代谢、抗炎降酶的提取物及其制备方法

Country Status (2)

Country Link
CN (1) CN109106730A (zh)
WO (1) WO2020052073A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115678805B (zh) * 2022-11-02 2023-06-13 稀物集(广州)生物科技有限公司 一种具有修复抗衰功效的松茸酵母发酵液的制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103356716A (zh) * 2013-07-18 2013-10-23 吴炳新 多株益生菌与复合药食两用真菌发酵组合物及制备和应用
CN104286828A (zh) * 2014-09-24 2015-01-21 杜超峰 一种松茸维生素组合物及松茸醇、松茸多糖的制备方法
CN106376914A (zh) * 2016-08-25 2017-02-08 山东天博食品配料有限公司 一种利用松茸深层发酵菌丝体制备松茸精粉的方法
CN108251481A (zh) * 2018-02-28 2018-07-06 安徽精准医疗产业研究院有限公司 三酶一酵食用药用菌菌肽的生产方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106085792A (zh) * 2016-06-03 2016-11-09 西藏大学农牧学院 一种松茸菌丝体发酵型醋饮料的制备方法
CN108034544A (zh) * 2017-12-15 2018-05-15 山东惠民齐发果蔬有限责任公司 食药用菌的酒精饮料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103356716A (zh) * 2013-07-18 2013-10-23 吴炳新 多株益生菌与复合药食两用真菌发酵组合物及制备和应用
CN104286828A (zh) * 2014-09-24 2015-01-21 杜超峰 一种松茸维生素组合物及松茸醇、松茸多糖的制备方法
CN106376914A (zh) * 2016-08-25 2017-02-08 山东天博食品配料有限公司 一种利用松茸深层发酵菌丝体制备松茸精粉的方法
CN108251481A (zh) * 2018-02-28 2018-07-06 安徽精准医疗产业研究院有限公司 三酶一酵食用药用菌菌肽的生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, YANRONG: "Study and Application of the Critical Technology in the Comprehensive Utilization of Agaricus Blazei Murill", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 2008, Jilin Agricultural University, XP055692912 *

Also Published As

Publication number Publication date
CN109106730A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
CN101850010B (zh) 一种柑橘皮活性提取物及其提取工艺和应用
CN105641000A (zh) 一种含灰树花提取物的抗肿瘤组合物及其制备方法
CN102994305B (zh) 用蛹虫草、茧提取物制备保健食(疗)品之营养露酒的方法
WO2020052074A1 (zh) 一种提高肝脏排毒、解酒护肝的提取物及其制备方法
CN102613453B (zh) 一种用于糖尿病患者的海洋生物型肠内营养制剂及其制备方法和用途
CN101961367B (zh) 一种预防酒精性肝损伤的中药组合物
CN111657501A (zh) 一种具有增强免疫力功能的牡蛎肽虫草菌丝体组合物及其应用
WO2020052073A1 (zh) 一种促进肝脏脂质代谢、抗炎降酶的提取物及其制备方法
CN108815230A (zh) 用于治疗糖尿病的中药组合物及其制备方法和应用
CN102934769B (zh) 用于解酒的蜂花粉混合剂口含片
CN102940650B (zh) 用于解酒的蜂胶乙醇提取物、制备方法及在生产肠溶片中的应用
CN112586698A (zh) 一种保肝护肝组合物及制备方法
CN111357982A (zh) 沙棘复合发酵液及其制备方法、保健饮品、植物酵素
CN115053929B (zh) 一种适合脂肪肝人群的配方奶粉及其制备
CN106727902B (zh) 含冬虫夏草的解酒护肝中药组合物及其应用
CN102987405B (zh) 利用蛹虫草、茧提取物制备保健食品胶囊的方法
CN103054906A (zh) 用于解酒的蜂胶乙醇提取物、制备方法及在生产口含片中的应用
Cho et al. Single-and repeated-dose toxicities of aloe fermentation products in rats
CN102987408A (zh) 从蛹虫草废茧中提取游离氨基酸等营养成分的方法
CN116570633B (zh) 植物乳杆菌在缓解肝损伤中的应用
CN116473239B (zh) 一种缓解急性酒精性肝损伤的蛋白肽组合物及其制备方法
Fu et al. Effects of apple polyphenol on fat metabolism in mice
CN109275914A (zh) 黑木耳多肽功能食用组合物及其制备方法和应用
CN104000961B (zh) 一种含虫草多糖的组合物及其应用
CN116676240B (zh) 鼠李糖乳酪杆菌及其在预防或治疗酒精性肝病中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933138

Country of ref document: EP

Kind code of ref document: A1