WO2020050004A1 - 伝送装置、伝送時間変動補償方法および伝送時間変動補償プログラムを格納した非一時的なコンピュータ可読媒体 - Google Patents

伝送装置、伝送時間変動補償方法および伝送時間変動補償プログラムを格納した非一時的なコンピュータ可読媒体 Download PDF

Info

Publication number
WO2020050004A1
WO2020050004A1 PCT/JP2019/032387 JP2019032387W WO2020050004A1 WO 2020050004 A1 WO2020050004 A1 WO 2020050004A1 JP 2019032387 W JP2019032387 W JP 2019032387W WO 2020050004 A1 WO2020050004 A1 WO 2020050004A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave signal
time
correction value
signal
standby time
Prior art date
Application number
PCT/JP2019/032387
Other languages
English (en)
French (fr)
Inventor
中山 直也
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US17/272,421 priority Critical patent/US11558085B2/en
Publication of WO2020050004A1 publication Critical patent/WO2020050004A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/212Time-division multiple access [TDMA]
    • H04B7/2125Synchronisation
    • H04B7/2126Synchronisation using a reference station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0828Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with delay elements in antenna paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • H04L25/0218Channel estimation of impulse response with detection of nulls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03038Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a non-recursive structure

Definitions

  • the present invention relates to a transmission device, a transmission time variation compensation method, and a transmission time variation compensation program, and more particularly, to a transmission device, a transmission time variation compensation method, and a transmission time variation compensation program that compensate for variation in transmission time of radio signals.
  • Multipath fading is a phenomenon in which a direct wave and an indirect wave interfere with each other to cause intersymbol interference as shown in FIG.
  • an inter-carrier interference canceller disclosed in Patent Document 1 estimates a delay profile based on a received signal, and calculates an arrival wave of a calculation target based on the delay profile. It is intended to suppress the intersymbol interference by calculating a window function by calculating a time variation of the amplitude and the phase, and multiplying the effective data of the received signal by the window function.
  • an object of the present invention is to provide a transmission device, a transmission time variation compensation method, and a transmission time variation compensation program that can compensate for a variation in transmission time of a radio signal that can occur due to a change in the environment of a radio propagation path.
  • the transmission device corrects an initial standby time of the direct wave signal or the indirect wave signal based on a reception time of the direct wave signal and a reception time of an indirect wave signal subsequent to the direct wave signal.
  • a correction value calculating unit for calculating a correction value to be calculated, and a transmission time for correcting the initial standby time using the correction value to calculate a standby time, and for waiting the direct wave signal or the indirect wave signal according to the standby time.
  • the correction value calculation unit when the intensity of the direct wave signal is greater than the intensity of the indirect wave signal, calculates a correction value for extending the standby time of the direct wave signal, When the intensity of the indirect wave signal is higher than the intensity of the direct wave signal, a correction value for shortening the standby time of the indirect wave signal is calculated.
  • a transmission device a transmission time variation compensation method, and a transmission time variation compensation program that can compensate for a variation in transmission time of a radio signal that can occur due to a change in the environment of a radio wave propagation path.
  • FIG. 2 is a block diagram illustrating a detailed configuration of a transmission device according to the first embodiment of the present invention.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a transmission device according to a first embodiment of the present invention. It is a figure showing an example of a signal space diagram.
  • FIG. 7 is a diagram illustrating an example of a tap coefficient when multipath fading does not occur. It is a figure showing an example of a tap coefficient in case multipath fading of direct wave dominance occurs. It is a figure which shows an example of the tap coefficient at the time of the multipath fading which has an indirect wave dominance.
  • 5 is a flowchart illustrating a process executed by the transmission device according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a transmission time calculation process executed by the transmission device according to the first embodiment of the present invention.
  • FIG. 9 is a block diagram illustrating a detailed configuration of a transmission device according to a second embodiment of the present invention.
  • FIG. 3 is a conceptual diagram illustrating multipath fading in a wireless propagation path.
  • FIG. 4 is a diagram illustrating an example of mapping of a constellation of a modulation scheme used by the transmission device according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example of signal points S hard-decided by the transmission device according to the first embodiment of the present invention and data mapped to the signal points S.
  • FIG. 3 is a diagram illustrating a method of estimating the amplitude and phase of a radio signal employed by the transmission device according to the first embodiment of the present invention.
  • FIG. 1 is a block diagram illustrating a detailed configuration of the transmission device according to the first embodiment of the present invention.
  • the transmission device 10 includes an antenna 100, a multiplexing unit 110, a receiving unit 120, a correction value calculating unit 130, a transmission time variation compensating unit 140, a transmission time calculating unit 150, a time measuring unit 160, a time synchronizing unit 170 and a transmission unit 180.
  • the antenna 100 is a device that receives a radio wave propagating in a space and transmits a radio wave to the space.
  • the antenna 100 supplies a signal based on the radio wave (hereinafter, referred to as “radio signal”) to the multiplexing unit 110.
  • the transmission target signal received from multiplexing section 110 is transmitted to space as a radio signal.
  • the multiplexing unit 110 is a logic circuit that multiplexes a plurality of transmission target signals. When multiplexing the signal to be transmitted, multiplexing section 110 supplies the multiplexed signal to be transmitted to antenna 100. The multiplexing unit 110 supplies the radio signal received from the antenna 100 to the receiving unit 120.
  • the receiving unit 120 is a logic circuit that processes the radio signal output from the multiplexing unit 110, and includes a transversal equalizer 121 and a demodulation unit 126.
  • the transversal equalizer 121 includes an FIR filter (Finite @ Impulse @ Response) 122, a signal point identification unit 123, an error signal generation unit 124, and a tap coefficient generation unit 125.
  • FIR filter Finite @ Impulse @ Response
  • the FIR filter 122 is a logic circuit that removes intersymbol interference due to multipath fading from a radio signal using a tap coefficient output by a tap coefficient generator 125 described later.
  • the FIR filter 122 can remove intersymbol interference by convolving the tap coefficient with the radio signal.
  • the signal point specifying unit 123 determines that the transmission apparatus 10 actually receives the signal point from a plurality of signal points indicating an ideal radio signal in a constellation of the same modulation method as that used by the modulation unit 181 of the transmission unit 180. This is a logic circuit that performs a hard decision that specifies a signal point at which the Euclidean distance from the obtained radio signal is minimum at the sampling period T. For example, when the modulation section 181 uses 16 QAM (Quadrature ⁇ Amplitude ⁇ Modulation) as a modulation method, the signal point specifying section 123 selects, from the 16 ideal radio signals, the actual radio signal as shown in FIG. The signal point S at which the Euclidean distance with the minimum is determined.
  • QAM Quadrature ⁇ Amplitude ⁇ Modulation
  • the signal point specifying unit 123 supplies information indicating the specified signal point S to the error signal generating unit 124, and supplies information indicating the signal point S and a radio signal to the demodulation unit 126.
  • 16QAM is adopted as a modulation scheme, but another modulation scheme may be adopted.
  • the sampling period T can be an arbitrary period capable of sampling the direct wave signal and the indirect wave signal related to the direct wave.
  • the error signal generation unit 124 is a logic circuit that generates an error signal vector E at a sampling period T using the radio signal output by the FIR filter 122 and the information indicating the signal point S output by the signal point identification unit 123. .
  • the error signal vector E is a vector indicating an error between the signal point S and the actual radio signal, and is composed of an amplitude direction error vector and a position direction error vector.
  • the error signal generation unit 124 generates an error signal vector E from the position information of the radio signal in the signal space and the position information of the signal point S, and supplies the error signal vector E to the tap coefficient generation unit 125.
  • the tap coefficient generation unit 125 uses the radio signal output from the multiplexing unit 110 and the error signal vector E output from the error signal generation unit 124 to generate a tap coefficient indicating the intensity of the radio signal at a sampling period T. It is.
  • a method of calculating the tap coefficient for example, a method of calculating the correlation between the error signal vector E and the radio signal, integrating the value, and setting the sign obtained by reversing the sign of the obtained value as the tap coefficient can be considered. This makes it possible to realize a transversal filter using the LMS (Least Mean Square) algorithm.
  • the difference time can be expressed as a positive or negative multiple of the sampling period T.
  • the tap coefficient generator 125 supplies these tap coefficients and the difference time related to the tap coefficients to the FIR filter 122 and the correction value calculator 130.
  • FIG. 4 is a diagram illustrating tap coefficients when multipath fading does not occur.
  • the strength of the direct wave signal is maximum, a tap coefficient generation unit 125, a reception time of the direct wave signal as a reference time t 0, to calculate the difference time for each tap coefficient.
  • multipath fading does not occur, that is, when the transmission apparatus 10 receives only a direct wave and does not receive an indirect wave, as shown in FIG. only exceeds the threshold value, the value of the other tap coefficients, the same value before and after the reference time t 0.
  • FIG. 5 is a diagram illustrating tap coefficients when a direct wave dominant multipath fading in which the intensity of the direct wave signal is greater than the intensity of the indirect wave signal has occurred.
  • the strength of the direct wave signal is maximum
  • a tap coefficient generation unit 125 calculates the difference time for each tap coefficient.
  • the tap coefficient related to the direct wave signal and the tap coefficient related to the indirect wave signal Exceeds.
  • the presence of indirect waves reaching the transmission device 10 after the reference time t 0 the value of the tap coefficients after the reference time t 0 is larger than the value of the reference time t 0 before the tap coefficients.
  • FIG. 6 is a diagram illustrating tap coefficients when multipath fading in which indirect wave dominance occurs in which the intensity of the indirect wave signal is greater than the intensity of the direct wave signal.
  • the strength of the indirect wave signal is maximum
  • a tap coefficient generation unit 125 calculates the difference time for each tap coefficient.
  • the tap coefficient related to the direct wave signal and the tap coefficient related to the indirect wave signal Exceeds.
  • the presence of the direct wave reaching the transmission device 10 prior to the reference time t 0 the value of the reference time t 0 before the tap coefficients becomes greater than the value of the tap coefficients after the reference time t 0.
  • the demodulation unit 126 is a logic circuit that demodulates a radio signal in the same modulation scheme as the modulation scheme used by the modulation unit 181 at the sampling period T based on the signal points identified by the signal point identification unit 123. For example, when the modulation section 181 uses the constellation modulation scheme shown in FIG. 11, the demodulation section 126 is mapped to the signal point S identified by the hard decision by the signal point identification section 123 as shown in FIG. The radio signal is demodulated by reproducing the data (1, 0, 1, 0). When demodulating the radio signal, the demodulation unit 126 supplies the demodulated radio signal to the transmission time fluctuation compensation unit 140.
  • the correction value calculation unit 130 calculates a correction value for correcting the initial standby time of the direct wave signal or the indirect wave signal based on the reception time of the direct wave signal and the reception time of the indirect wave signal subsequent to the direct wave signal. It is a logic circuit.
  • the correction value calculation unit 130 waits for a direct wave signal or an indirect wave signal related to the largest tap coefficient among the tap coefficients output from the tap coefficient generation unit 125, that is, for the direct wave signal or the indirect wave signal having the largest signal strength. A correction value for deriving time is calculated.
  • the correction value calculating unit 130 calculates the correction value using the reception time of the direct wave signal or the indirect wave signal related to these tap coefficients. For example, when the number of tap coefficients is two, the correction value calculation unit 130 can calculate the correction value using the following Equation 1.
  • the earliest radio signal among radio signals related to the tap coefficient exceeding the threshold value is set as a direct wave signal.
  • the threshold for example, a value indicating the strength of a radio signal exceeding the noise level can be adopted.
  • “0” is substituted into the reference time t 0 as the reception time of the direct wave signal or the indirect wave signal related to the largest tap coefficient among the tap coefficients exceeding the threshold value.
  • the correction value calculation unit 130 determines that the largest tap coefficient among the tap coefficients exceeding the threshold value The difference time is calculated for each tap coefficient exceeding the threshold, with the reception time of the related radio signal, that is, the radio signal having the highest signal strength as the reference time. Then, the correction value calculation unit 130 can calculate the correction value by dividing the sum of these difference times by the number of tap coefficients exceeding the threshold.
  • a method of calculating the correction value will be specifically described with reference to FIGS.
  • FIG. 5 shows an example of tap coefficients in a case where multipath fading with a direct wave dominance occurs.
  • FIG. 5A shows tap coefficients when multipath fading in which direct wave dominance has a small degree of delay of the indirect wave signal has occurred.
  • the correction value calculation unit 130 sets the reception time of the direct wave signal related to the largest tap coefficient to the reference time t 0 , substitutes “0” for t 0 , and relates to the second largest tap coefficient.
  • the difference time “+ 1T” of the indirect wave signal is substituted for t 1 to calculate a correction value (+ / T).
  • FIG. 5B shows tap coefficients in a case where multipath fading in which direct wave dominance is large, in which the degree of delay of the indirect wave signal is large.
  • the correction value calculation unit 130 sets the reception time of the direct wave signal related to the largest tap coefficient to the reference time t 0 , substitutes “0” for t 0 , and relates to the second largest tap coefficient. substituted difference time of the indirect wave signal "+ 3 / 2T" to t 1, and calculates a correction value (+ 3 / 4T).
  • the correction value calculation unit 130 sets the reception time of the direct wave signal as the reference time. Therefore, the reception time of the indirect wave signal that is a delayed wave becomes a positive value, and the correction value calculation unit 130 calculates a positive correction value, that is, a correction value that increases the initial standby time.
  • the correction value calculation unit 130 calculates a correction value that increases the degree of increase in the initial standby time.
  • the correction value calculation unit 130 calculates a correction value that reduces the degree of increase in the initial standby time.
  • FIG. 6 shows an example of tap coefficients when multipath fading in which indirect wave dominance occurs is shown.
  • FIG. 6A shows tap coefficients when indirect wave dominant multipath fading occurs in which the degree of delay of the indirect wave signal is small.
  • the correction value calculation unit 130 a reception time of the indirect wave signals associated with the largest tap coefficient as a reference time t 0, while "0" is substituted for the t 0, associated with the large tap coefficient to the second The difference time “ ⁇ 1T” of the direct wave signal is substituted for t 1 to calculate a correction value ( ⁇ / T).
  • FIG. 6B shows tap coefficients when indirect wave dominant multipath fading occurs in which the degree of delay of the indirect wave signal is large.
  • the correction value calculation unit 130 a reception time of the indirect wave signals associated with the largest tap coefficient as a reference time t 0, while "0" is substituted for the t 0, associated with the large tap coefficient to the second
  • the difference time “ ⁇ 3 / 2T” of the direct wave signal is substituted for t 1 to calculate a correction value ( ⁇ 3 / 4T).
  • the correction value calculation unit 130 sets the reception time of the indirect-wave signal as the reference time. For this reason, the reception time of the direct wave signal preceding the indirect wave becomes a negative value, and the correction value calculation unit 130 calculates a negative correction value, that is, a correction value that reduces the initial standby time. Then, when the degree of delay of the indirect wave signal is large, the correction value calculation unit 130 calculates a correction value that increases the degree of decrease in the initial standby time. On the other hand, when the degree of delay of the indirect wave signal is small, the correction value calculation unit 130 calculates a correction value that reduces the degree of decrease in the initial standby time.
  • the transmission time fluctuation compensating unit 140 calculates the standby time by correcting the initial standby time using the correction value output from the correction value calculating unit 130, and causes the direct wave signal or the indirect wave signal to wait according to the standby time. It is. In the present embodiment, the transmission time fluctuation compensating unit 140 calculates the standby time by adding the initial standby time to the correction value output from the correction value calculating unit 130.
  • the transmission time fluctuation compensating unit 140 sets the correction value (+ 1 / 2T) to the initial standby time. ) Is added to calculate the standby time of the direct wave signal.
  • the transmission time fluctuation compensating unit 140 sets the correction value (+ 3 / 4T) to the initial standby time. ) Is added to calculate the standby time of the direct wave signal.
  • the transmission time fluctuation compensating unit 140 corrects the initial standby time using a positive correction value, so that the standby time of the direct wave signal becomes longer. . If the degree of delay of the indirect wave signal is large, the transmission time fluctuation compensating section 140 corrects the initial standby time using the correction value (+ 3 / 4T) in which the degree of increase in the standby time of the direct wave signal is large. Then, the standby time is calculated, and the direct wave signal is made to wait according to the standby time.
  • the transmission time fluctuation compensating unit 140 corrects the initial standby time using the correction value (+ / T) in which the degree of increase in the standby time of the direct wave signal is small. Then, the standby time is calculated, and the direct wave signal is made to wait according to the standby time. In this way, the transmission time fluctuation compensating section 140 can adjust the degree of increase in the initial standby time according to the degree of delay of the indirect wave signal.
  • the transmission time fluctuation compensating unit 140 sets the correction value ( ⁇ 1 / 2T) is added to calculate the standby time of the indirect wave signal.
  • the transmission time fluctuation compensating unit 140 sets the correction value ( ⁇ 3 / 4T) to calculate the standby time of the indirect wave signal.
  • the transmission time fluctuation compensating unit 140 corrects the initial standby time using the negative correction value, so that the standby time of the indirect wave signal is reduced. . If the degree of delay of the indirect wave signal is large, the transmission time fluctuation compensating unit 140 sets the initial standby time using the correction value ( ⁇ 3 / 4T) in which the degree of reduction of the standby time of the indirect wave signal is large. The standby time is calculated by correcting the indirect wave signal according to the standby time.
  • the transmission time fluctuation compensating section 140 uses the correction value ( ⁇ / T) with a small degree of decrease in the standby time of the indirect wave signal to reduce the initial standby time.
  • the standby time is calculated by correcting the indirect wave signal according to the standby time. In this way, the transmission time fluctuation compensating section 140 can adjust the degree of decrease in the initial standby time according to the degree of delay of the indirect wave signal.
  • the transmission time fluctuation compensating unit 140 sets the initial standby time as the standby time.
  • the initial standby time may be a time such that an added value obtained by adding the minimum correction value (negative value) that can be calculated by the correction value calculation unit 130 to the initial standby time becomes a positive value. it can. In order to enhance the real-time property of wireless communication, it is preferable that the initial standby time is short.
  • the transmission time fluctuation compensating section 140 waits for the radio signal according to the standby time calculated by the above-described method, and then supplies the radio signal to the transmission time calculating section 150.
  • the transmission time calculation unit 150 is a logic circuit that executes a transmission time calculation process for calculating a data transmission time between the transmission device 10 and another transmission device. In the transmission time calculation process, the transmission time calculation unit 150 calculates a transmission time when a response request is transmitted to another transmission device and a reception time when a response to the response request is received from the other transmission device. The transmission time between the transmission device 10 and another transmission device is calculated using the transmission time. The transmission time calculation process will be described later in more detail with reference to FIG.
  • the time measurement unit 160 is a logic circuit that measures the current time.
  • the time measurement unit 160 provides information indicating the current time in response to a request from the transmission time calculation unit 150 and the time synchronization unit 170.
  • the time synchronization unit 170 transmits the information indicating the current time measured by the transmission device 10 and the transmission time calculated by the transmission time calculation unit 150 to another transmission device, and calculates the time measured by the other transmission device. This is a logic circuit that synchronizes with the time measured by the transmission device 10.
  • the time synchronization unit 170 transmits a transmission time calculated by the transmission time calculation unit 150 together with a time synchronization request to another transmission device that is a slave device, and the time measurement unit 160 The time information (transmission time information) indicating the provided current time is transmitted.
  • the transmission device 10 functions as a slave device
  • the time synchronization unit 170 receives a time synchronization request from another transmission device that is the master device
  • the time synchronization unit 170 transmits the time synchronization request at the time indicated by the transmission time information received together with the time synchronization request.
  • the time is calculated by adding the time.
  • the time synchronization unit 170 supplies the calculated time to the time measurement unit 160 together with the time change request.
  • the time measurement unit 160 changes the time measured by the time measurement unit 160 to the calculated time.
  • the transmission unit 180 is a logic circuit that processes data to be transmitted, and includes a modulation unit 181.
  • the modulation section 181 modulates data to be transmitted by a constellation modulation scheme as shown in FIG.
  • FIG. 2 is a block diagram showing main components of the transmission device 10 according to the first embodiment.
  • the transmission device 10 includes the above-described correction value calculation unit 130 and transmission time fluctuation compensation unit 140 as main components.
  • FIG. 7 is a flowchart showing processing executed by the transmission device 10 according to the first embodiment of the present invention.
  • the process illustrated in FIG. 7 starts from step S100 when signal point identifying section 123 receives a radio signal from FIR filter 122.
  • the signal point specifying unit 123 specifies a signal point S from signal points indicating ideal radio signals in a constellation of a modulation method.
  • the error signal generation unit 124 generates an error signal vector E using the radio signal actually received by the transmission apparatus 10 and the signal point S specified by the signal point specification unit 123.
  • the tap coefficient generation unit 125 calculates a tap coefficient using the radio signal and the error signal vector E generated by the error signal generation unit 124.
  • step S104 the correction value calculation unit 130 determines the number of tap coefficients exceeding the threshold. If the number of tap coefficients exceeding the threshold is 0, the process ends in step S108. If the number of tap coefficients exceeding the threshold is one, the process proceeds to step S107. If the number of tap coefficients exceeding the threshold is two or more, that is, if multipath fading has occurred, the process proceeds to step S105.
  • step S105 the correction value calculation unit 130 calculates a correction value using the reception time of the radio signal related to the tap coefficient exceeding the threshold.
  • the correction value calculation unit 130 calculates the correction value using the above-described Expression 1.
  • the correction value calculation unit 130 sets the time of reception of the radio signal having the maximum signal strength as the reference time as described above, and calculates the difference time for each tap coefficient exceeding the threshold value. Is calculated. Then, the correction value calculation unit 130 calculates a correction value by dividing the sum of these difference times by the number of tap coefficients exceeding the threshold.
  • step S106 the transmission time fluctuation compensating section 140 corrects the initial standby time using the correction value output from the correction value calculating section 130, and calculates the standby time.
  • the initial standby time is set as the standby time.
  • step S107 the transmission time fluctuation compensating unit 140 waits for the radio signal having the highest signal strength according to the standby time, and then outputs the radio signal to the transmission time calculation unit 150, and the process ends in step S108. .
  • FIG. 8 is a flowchart showing one embodiment of the transmission time calculation process.
  • the process illustrated in FIG. 8 starts from step S200, and in step S201, the transmission time calculation unit 150 adds a time stamp indicating the current time (transmission time) to a response request to another transmission device.
  • step S202 the transmission time calculation unit 150 transmits the response request to which the time stamp is added to another transmission device via the transmission unit 180, the multiplexing unit 110, and the antenna 100.
  • step S203 the transmission time calculation unit 150 determines whether a response to the response request has been received. If a response to the response request has not been received (NO), the process of step S203 is executed again. On the other hand, if a response to the response request has been received (YES), the process proceeds to step S204.
  • the response request includes the time stamp added in step S201.
  • step S204 the transmission time calculation unit 150 acquires the current time from the time measurement unit 160.
  • step S205 the transmission time calculation unit 150 calculates a difference time between the current time and the transmission time indicated by the time stamp included in the response request, calculates one half of the difference time as the transmission time, and proceeds to step S206. Ends the processing.
  • the transmission time calculation unit 150 calculates the transmission time using the transmission time indicated by the time stamp added to the response request. In other embodiments, the transmission time calculation unit 150 calculates the transmission time by using the transmission time. The transmission time may be held, and a difference time between the transmission time and the time when a response is received from another transmission apparatus may be calculated, and 1/2 of the time may be used as the transmission time.
  • the correction value calculation unit 130 calculates a correction value for increasing the initial standby time. Then, the transmission time fluctuation compensating section 140 calculates the standby time of the direct wave signal by correcting the initial standby time using the correction value, and outputs the direct wave signal after making it standby according to the standby time. On the other hand, when indirect wave dominant multipath fading has occurred, the correction value calculation unit 130 calculates a correction value for reducing the initial standby time.
  • the transmission time fluctuation compensating unit 140 calculates the standby time of the indirect wave signal by correcting the initial standby time using the correction value, and outputs the indirect wave signal after waiting according to the standby time.
  • the transmission device 10 increases the standby time of the direct wave signal or shortens the standby time of the indirect wave signal according to the change in the environment of the radio wave propagation path. Therefore, it is possible to compensate for the fluctuation of the transmission time of the radio signal that may occur.
  • the correction value calculation unit 130 calculates a correction value in which the degree of increase in the initial standby time is large. Then, the transmission time fluctuation compensating unit 140 calculates the standby time by correcting the initial standby time using the correction value, and causes the direct wave signal to wait according to the standby time. On the other hand, when multipath fading with direct wave dominance in which the degree of delay of the indirect wave signal is small occurs, the correction value calculation unit 130 calculates a correction value in which the degree of increase in the initial standby time is small.
  • the transmission time fluctuation compensating unit 140 calculates the standby time by correcting the initial standby time by using a correction value with a small increase in the initial standby time, and causes the direct wave signal to wait according to the standby time.
  • the transmission device 10 can adjust the degree of increase in the standby time of the direct wave signal according to the degree of delay of the indirect wave signal.
  • the correction value calculation unit 130 calculates a correction value in which the degree of reduction in the initial standby time is large. Then, the transmission time fluctuation compensating unit 140 calculates the standby time by correcting the initial standby time using the correction value, and causes the indirect wave signal to wait according to the standby time. On the other hand, when indirect wave dominant multipath fading occurs in which the degree of delay of the indirect wave signal is small, the correction value calculation unit 130 calculates a correction value in which the degree of decrease in the initial standby time is small.
  • the transmission time fluctuation compensating unit 140 calculates the standby time by correcting the initial standby time by using a correction value having a small degree of decrease in the standby time of the indirect wave signal, and causes the indirect wave signal to wait according to the standby time. . Thereby, the transmission device 10 can adjust the degree of reduction of the standby time of the indirect wave signal according to the degree of delay of the indirect wave signal.
  • the correction value calculation unit 130 sets the reception time of the radio signal having the maximum signal strength as a reference time, and for each tap coefficient exceeding a threshold value. Calculate the difference time. Then, the correction value calculation unit 130 calculates a correction value by dividing the sum of these difference times by the number of tap coefficients exceeding the threshold. Next, the transmission time fluctuation compensating unit 140 calculates the standby time by correcting the initial standby time using the correction value, and causes the radio signal having the highest signal strength to wait according to the standby time. For this reason, the transmission device 10 can compensate for the variation in the transmission time of the radio signal even when multipath fading occurs due to one direct wave and a plurality of indirect waves.
  • the transmission time calculation unit 150 executes the transmission time calculation process in a state where the fluctuation of the transmission time that may occur due to the change in the environment of the radio wave propagation path is performed, and performs the transmission time calculation process between the transmission apparatus 10 and another transmission apparatus. , The transmission time in which the fluctuation has been compensated can be calculated. Then, the time synchronization unit 170 transmits the transmission time and time information measured by the own device to another transmission device to synchronize the time, so that the transmission device 10 and the other transmission device perform time synchronization accuracy. Is improved.
  • FIG. 9 is a block diagram illustrating a detailed configuration of the transmission device according to the second embodiment of the present invention.
  • a description will be given of a transmission apparatus 20 according to the second embodiment, focusing on differences from the transmission apparatus 10 according to the first embodiment.
  • the transmission device 20 includes an antenna 100, a multiplexing unit 110, a receiving unit 220, a correction value calculating unit 130, a transmission time fluctuation compensating unit 140, a transmission time calculating unit 150, a time measuring unit 160, a time synchronizing unit 170, a transmission unit 180, and an estimation unit 200.
  • the antenna 100, the multiplexing unit 110, the transmission time fluctuation compensating unit 140, the transmission time calculating unit 150, the time measuring unit 160, the time synchronizing unit 170, and the transmitting unit 180 have the same functions as the corresponding functional units included in the transmission device 10.
  • the receiving unit 220 includes the FIR 122 and the demodulating unit 126 (not shown), but does not include the signal point specifying unit 123, the error signal generating unit 124, and the tap coefficient generating unit 125 included in the transmission device 10.
  • the estimation unit 200 is a logic circuit for estimating the time response of the amplitude and phase of a radio signal that can change in a radio wave propagation path. More specifically, as shown in FIG. 13, the estimating unit 200 receives a known radio signal periodically transmitted by the transmission apparatus on the transmitting side, and determines the phase and amplitude of the received radio signal and the known radio signal. By comparing the original phase and amplitude of the signal and calculating the fluctuation difference (phase fluctuation and amplitude fluctuation), the time response of the amplitude and phase of the radio signal can be estimated. The estimating unit 200 supplies the correction value calculating unit 130 with the amplitude value of the radio signal thus estimated and time information indicating the reception time of the radio signal.
  • the correction value calculation unit 130 calculates a correction value using the amplitude value of the radio signal output from the estimation unit 200 and time information indicating the reception time of the radio signal. Specifically, the correction value calculation unit 130 specifies a radio signal that exceeds the threshold value among the amplitude values among the radio signals output by the estimation unit 200. As the threshold, for example, a value indicating the strength of a radio signal exceeding the noise level can be adopted. Then, the correction value calculation unit 130, a reception time of the radio wave signal amplitude value of the radio signal exceeding the threshold value is maximum as a reference time t 0, the reception time of the radio signal, the other radio signal exceeding the threshold value The difference time from the reception time is calculated. Then, the correction value calculation unit 130, by substituting the reference time t 0 and the difference time the equation (1) can calculate the correction value.
  • the second embodiment has the following advantages as in the first embodiment. That is, when multipath fading with direct wave dominance occurs, the correction value calculation unit 130 calculates a correction value for increasing the initial standby time based on the time information of the estimated amplitude value. Then, the transmission time fluctuation compensating unit 140 calculates the standby time by correcting the initial standby time using the correction value, and outputs the radio signal after making it wait according to the standby time. On the other hand, when indirect wave dominant multipath fading has occurred, the correction value calculation unit 130 calculates a correction value for reducing the initial standby time based on the time information of the estimated amplitude value.
  • the transmission time fluctuation compensating unit 140 calculates the standby time by correcting the initial standby time using the correction value, and outputs the radio signal after making the radio signal standby according to the standby time.
  • the transmission device 10 increases the standby time of the direct wave signal or shortens the standby time of the indirect wave signal according to the change in the environment of the radio wave propagation path. Therefore, it is possible to compensate for the fluctuation of the transmission time of the radio signal that may occur.
  • the equation used by the correction value calculation unit 130 to calculate the correction value is not limited to Equation 1, and the standby time of the direct wave signal is increased when multipath fading with a direct wave dominance occurs, and
  • the correction value can be calculated by using an arbitrary formula that can shorten the standby time of the indirect wave signal when the indirect wave superior multipath fading occurs.
  • the transmission time fluctuation compensating unit 140 may cause the indirect wave signal to wait according to the initial standby time.
  • the correction value calculation unit 130 calculates a correction value that increases the initial standby time, and the transmission time fluctuation compensation unit 140 calculates the correction value.
  • the waiting time is calculated using the waiting time, and the direct wave signal is caused to wait according to the waiting time.
  • the transmission time fluctuation compensating section 140 causes the radio signal demodulated by the demodulation section 126 to wait, but in other embodiments, the transmission time fluctuation compensating section 140 After receiving the signal and waiting for the radio signal, the radio signal may be supplied to the demodulation unit 126.
  • the signal point specifying unit 123, the error signal generating unit 124, the tap coefficient generating unit 125, the correction value calculating unit 130, the transmission time fluctuation compensating unit 140, the transmission time calculating unit 150, the time measuring unit 160, The time synchronizing unit 170 and the estimating unit 200 are realized by a logic circuit.
  • the CPU Central Processing Unit
  • the transmission time fluctuation compensating unit 140 stores the radio signal in the storage element for a certain period of time.
  • the change of the transmission time may be compensated by rewriting the time stamp. In this case, since it is not necessary to store the radio signal in the storage element for a certain period of time, hardware resources can be reduced.
  • Non-transitory computer readable media include various types of tangible storage media. Examples of non-transitory computer readable media are magnetic recording media (eg, flexible disk, magnetic tape, hard disk drive), magneto-optical recording media (eg, magneto-optical disk), CD-ROM, CD-R, CD-R / W, semiconductor memory (eg, mask ROM, PROM (Programmable @ ROM), EPROM (Erasable @ PROM), flash ROM, RAM).
  • the program may be provided to the computer by various types of transitory computer readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves. Transitory computer readable media can provide the program to a computer via a wired communication line such as an electric wire and an optical fiber, or a wireless communication line.
  • Reference Signs List 10 transmission device 100 antenna 123 signal point identification unit 124 error signal generation unit 125 tap coefficient generation unit 130 correction value calculation unit 140 transmission time fluctuation compensation unit 150 transmission time calculation unit 160 time measurement unit 170 time synchronization unit

Abstract

本発明の伝送装置(10)は、直接波信号の受信時刻と、直接波信号に後続する間接波信号の受信時刻に基づき、直接波信号または間接波信号の初期待機時間を補正する補正値を算出する補正値算出部(130)と、補正値を用いて初期待機時間を補正して待機時間を算出し、待機時間に従って直接波信号または間接波信号を待機させる伝送時間変動補償部(140)とを備える。補正値算出部(130)は、直接波信号の待機時間を長くし、または、間接波信号の待機時間を短くするための補正値を算出する。これにより、電波伝搬路の環境の変化によって起こり得る電波信号の伝送時間の変動を補償することができる。

Description

伝送装置、伝送時間変動補償方法および伝送時間変動補償プログラムを格納した非一時的なコンピュータ可読媒体
 本発明は伝送装置、伝送時間変動補償方法および伝送時間変動補償プログラムに関し、特に、電波信号の伝送時間の変動を補償する伝送装置、伝送時間変動補償方法および伝送時間変動補償プログラムに関する。
 従来、電波を利用した無線通信では、電波伝搬路の環境が変化することにより、送信側装置と受信側装置との間の電波の経路が変化し、遅延波である間接波(反射波や屈折波)が生じることよって電波信号の伝送時間が変動することが知られている。このような電波信号の伝送時間の変動に関する問題として、マルチパスフェージングという現象がある。マルチパスフェージングとは、図10に示すように、直接波と間接波が干渉して符号間干渉を起こす現象である。
 このような符号間干渉を抑制する技術の一例として、特許文献1が開示するキャリア間干渉除去装置では、受信信号に基づいて遅延プロファイルを推定し、当該遅延プロファイルに基づいて計算対象の到来波の振幅および位相の時間変動量を計算して窓関数を算出し、受信信号の有効データに当該窓関数を乗算することにより、符号間干渉を抑制することを意図している。
特開2011-49937号公報
 しかしながら、特許文献1が開示するキャリア間干渉除去装置は、符号間干渉を抑制することを意図するものであるため、上述した電波伝搬路の環境の変化によって起こり得る電波信号の伝送時間の変動を補償することができないという問題があった。
 本発明の目的は、上述した課題を鑑み、電波伝搬路の環境の変化によって起こり得る電波信号の伝送時間の変動を補償することができる伝送装置、伝送時間変動補償方法および伝送時間変動補償プログラムを提供することにある。
 本発明の一態様に係る伝送装置は、直接波信号の受信時刻と、前記直接波信号に後続する間接波信号の受信時刻に基づき、前記直接波信号または前記間接波信号の初期待機時間を補正する補正値を算出する補正値算出部と、前記補正値を用いて前記初期待機時間を補正して待機時間を算出し、前記待機時間に従って前記直接波信号または前記間接波信号を待機させる伝送時間変動補償部とを備え、前記補正値算出部は、前記直接波信号の強度が前記間接波信号の強度よりも大きい場合、前記直接波信号の待機時間を長くするための補正値を算出し、前記間接波信号の強度が前記直接波信号の強度よりも大きい場合、前記間接波信号の待機時間を短くするための補正値を算出する。
 本発明により、電波伝搬路の環境の変化によって起こり得る電波信号の伝送時間の変動を補償することができる伝送装置、伝送時間変動補償方法および伝送時間変動補償プログラムを提供することができる。
本発明の第1の実施形態に係る伝送装置の詳細な構成を示すブロック図である。 本発明の第1の実施形態に係る伝送装置の概略的な構成を示すブロック図である。 信号空間ダイヤグラムの一例を示す図である。 マルチパスフェージングが発生していない場合のタップ係数の一例を示す図である。 直接波優位のマルチパスフェージングが発生している場合のタップ係数の一例を示す図である。 間接波優位のマルチパスフェージングが発生している場合のタップ係数の一例を示す図である。 本発明の第1の実施形態に係る伝送装置が実行する処理を示すフローチャートである。 本発明の第1の実施形態に係る伝送装置が実行する伝送時間算出処理を示すフローチャートである。 本発明の第2の実施形態に係る伝送装置の詳細な構成を示すブロック図である。 無線伝搬路におけるマルチパスフェージングを示す概念図である。 本発明の第1の実施形態に係る伝送装置が使用する変調方式のコンスタレーションのマッピングの一例を示す図である。 本発明の第1の実施形態に係る伝送装置が硬判定した信号点Sと、当該信号点Sにマッピングされたデータの一例を示す図である。 本発明の第1の実施形態に係る伝送装置が採用する電波信号の振幅および位相の推定方法を示す図である。
 <第1の実施形態>
 以下、図面を参照して本発明の実施形態について説明する。図1は、本発明の第1の実施形態に係る伝送装置の詳細な構成を示すブロック図である。伝送装置10は、アンテナ100と、多重部110と、受信部120と、補正値算出部130と、伝送時間変動補償部140と、伝送時間算出部150と、時刻計測部160と、時刻同期部170と、送信部180とを含む。
 アンテナ100は、空間内を伝搬する電波を受信すると共に、空間へ電波を送信する装置である。アンテナ100は、電波を受信すると、当該電波に基づく信号(以下、「電波信号」とする。)を多重部110に供給する。また、多重部110から受信した送信対象の信号を、電波信号として空間へ送信する。
 多重部110は、複数の送信対象の信号を多重化する論理回路である。多重部110は、送信対象の信号を多重化すると、多重化した送信対象の信号をアンテナ100に供給すする。また、多重部110は、アンテナ100から受信した電波信号を受信部120に供給する。
 受信部120は、多重部110が出力した電波信号を処理する論理回路であり、トランスバーサル等化器121と、復調部126とを備える。トランスバーサル等化器121は、FIRフィルタ(Finite Impulse Response)122と、信号点特定部123と、誤差信号生成部124と、タップ係数生成部125とを備える。
 FIRフィルタ122は、後述するタップ係数生成部125が出力したタップ係数を用いて、マルチパスフェージングによる符号間干渉を電波信号から除去する論理回路である。FIRフィルタ122は、電波信号にタップ係数を畳み込むことにより、符号間干渉を除去することができる。
 信号点特定部123は、送信部180の変調部181が使用する変調方式と同じ変調方式のコンスタレーションにおいて、理想的な電波信号を示す複数の信号点の中から、伝送装置10が実際に受信した電波信号とのユークリッド距離が最小となる信号点を、サンプリング周期Tで特定する硬判定を行う論理回路である。例えば、変調部181が16QAM(Quadrature Amplitude Modulation)を変調方式として使用する場合、信号点特定部123は、図3に示すように、16個の理想的な電波信号の中から、実際の電波信号とのユークリッド距離が最小となる信号点Sを特定する。信号点特定部123は、特定した信号点Sを示す情報を誤差信号生成部124に供給すると共に、当該信号点Sを示す情報と電波信号を復調部126に供給する。本実施形態では、変調方式として16QAMを採用するが、他の変調方式を採用してもよい。また、本実施形態では、サンプリング周期Tは、直接波信号と、当該直接波に関連する間接波信号とをサンプリング可能な任意の周期とすることができる。
 誤差信号生成部124は、FIRフィルタ122が出力した電波信号と、信号点特定部123が出力した信号点S示す情報とを用いて、サンプリング周期Tで誤差信号ベクトルEを生成する論理回路である。図3に示すように、誤差信号ベクトルEは、信号点Sと実際の電波信号との誤差を示すベクトルであり、振幅方向誤差ベクトルと位置方向誤差ベクトルで構成される。誤差信号生成部124は、信号空間における電波信号の位置情報と、信号点Sの位置情報から誤差信号ベクトルEを生成し、当該誤差信号ベクトルEをタップ係数生成部125に供給する。
 タップ係数生成部125は、多重部110が出力した電波信号と、誤差信号生成部124が出力した誤差信号ベクトルEを用いて、サンプリング周期Tで電波信号の強度を示すタップ係数を生成する論理回路である。タップ係数の算出方法として、例えば、誤差信号ベクトルEと電波信号の相関を計算し、その値を積分した後、得られた値の符号を逆にしたものをタップ係数とする方法が考えられる。これにより、LMS(Least Mean Square)アルゴリズムを用いたトランスバーサルフィルタを実現することができる。
 タップ係数生成部125は、タップ係数を生成すると、これらのタップ係数の値を比較し、その値が最大となるタップ係数に関連する電波信号、すなわち、信号強度が最大の電波信号を特定する。そして、タップ係数生成部125は、当該電波信号の受信時刻を基準時刻t(t=0)とし、当該電波信号の受信時刻と、各タップ係数に関連する電波信号の受信時刻との差分時間を算出する。当該差分時間は、サンプリング周期Tの正負の倍数として表すことができる。タップ係数生成部125は、これらのタップ係数と、当該タップ係数に関連する差分時間を、FIRフィルタ122および補正値算出部130に供給する。
 図4は、マルチパスフェージングが発生していない場合のタップ係数を示す図である。図4に示す例では、直接波信号の強度が最大であるため、タップ係数生成部125は、当該直接波信号の受信時刻を基準時刻tとして、各タップ係数について差分時間を算出する。マルチパスフェージングが発生していない場合、すなわち、伝送装置10が、直接波のみを受信し、間接波を受信していない場合、本図に示すように、直接波信号に関連する1のタップ係数のみが閾値を超え、その他のタップ係数の値は、基準時刻tの前後で同等の値となる。
 図5は、直接波信号の強度が間接波信号の強度よりも大きい直接波優位のマルチパスフェージングが発生している場合のタップ係数を示す図である。図5に示す例では、直接波信号の強度が最大であるため、タップ係数生成部125は、直接波信号の受信時刻を基準時刻tとして、各タップ係数について差分時間を算出する。直接波および間接波の2波による直接波優位のマルチパスフェージングが発生している場合、本図に示すように、直接波信号に関連するタップ係数と、間接波信号に関連するタップ係数が閾値を超える。また、基準時刻tの後に伝送装置10に到達する間接波の存在により、基準時刻t後のタップ係数の値は、基準時刻t前のタップ係数の値よりも大きくなる。
 図6は、間接波信号の強度が直接波信号の強度よりも大きい間接波優位のマルチパスフェージングが発生している場合のタップ係数を示す図である。図6に示す例では、間接波信号の強度が最大であるため、タップ係数生成部125は、間接波信号の受信時刻を基準時刻tとして、各タップ係数について差分時間を算出する。直接波および間接波の2波による間接波優位のマルチパスフェージングが発生している場合、本図に示すように、直接波信号に関連するタップ係数と、間接波信号に関連するタップ係数が閾値を超える。また、基準時刻tの前に伝送装置10に到達する直接波の存在により、基準時刻t前のタップ係数の値は、基準時刻t後のタップ係数の値よりも大きくなる。
 復調部126は、信号点特定部123が特定した信号点に基づき、サンプリング周期Tで、変調部181が使用する変調方式と同一の変調方式で電波信号を復調する論理回路である。例えば、変調部181が、図11に示すコンスタレーションの変調方式を使用する場合、復調部126は、図12に示すように、信号点特定部123が硬判定によって特定した信号点Sにマッピングされているデータ(1,0,1,0)を再生することにより、電波信号を復調する。復調部126は、電波信号を復調すると、復調した電波信号を伝送時間変動補償部140に供給する。
 補正値算出部130は、直接波信号の受信時刻と、当該直接波信号に後続する間接波信号の受信時刻に基づき、直接波信号または間接波信号の初期待機時間を補正する補正値を算出する論理回路である。補正値算出部130は、タップ係数生成部125が出力したタップ係数のうち最大のタップ係数に関連する直接波信号または間接波信号、すなわち、信号強度が最大の直接波信号または間接波信号の待機時間を導出するための補正値を算出する。
 具体的には、補正値算出部130は、閾値を超えるタップ係数が2以上の場合、これらのタップ係数に関連する直接波信号または間接波信号の受信時刻を用いて補正値を算出する。例えば、タップ係数の数が2つの場合、補正値算出部130は、下記数式1を用いて補正値を算出することができる。本実施形態では、閾値を超えるタップ係数に関連する電波信号のうち最先の電波信号を直接波信号とする。なお、当該閾値として、例えば、ノイズレベルを超える電波信号の強度を示す値を採用することができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、基準時刻tには、閾値を超えたタップ係数のうち最大のタップ係数に関連する直接波信号または間接波信号の受信時刻として「0」が代入される。tには、閾値を超えたタップ係数のうち2番目に大きいタップ係数に関連する直接波信号または間接波信号の受信時刻と、最大のタップ係数に関連する直接波信号または間接波信号の受信時刻との差分時間が代入される。
 タップ係数の数が3以上の場合、すなわち、直接波と複数の間接波によってマルチパスフェージングが発生している場合、補正値算出部130は、閾値を超えたタップ係数のうち最大のタップ係数に関連する電波信号、すなわち、信号強度が最大の電波信号の受信時刻を基準時刻として、閾値を超えた各タップ係数について差分時間を算出する。そして、補正値算出部130は、これらの差分時間の和を、閾値を超えたタップ係数の数で除算することにより、補正値を算出することができる。以下、図5および図6を参照して、補正値の算出方法について具体的に説明する。
 図5は、直接波優位のマルチパスフェージングが発生している場合のタップ係数の一例を示す。図5(A)は、間接波信号の遅延の程度が小さい直接波優位のマルチパスフェージングが発生している場合のタップ係数を示す。この場合、補正値算出部130は、最大のタップ係数に関連する直接波信号の受信時刻を基準時刻tとし、tに「0」を代入すると共に、2番目に大きいタップ係数に関連する間接波信号の差分時間「+1T」をtに代入し、補正値(+1/2T)を算出する。
 図5(B)は、間接波信号の遅延の程度が大きい直接波優位のマルチパスフェージングが発生している場合のタップ係数を示す。この場合、補正値算出部130は、最大のタップ係数に関連する直接波信号の受信時刻を基準時刻tとし、tに「0」を代入すると共に、2番目に大きいタップ係数に関連する間接波信号の差分時間「+3/2T」をtに代入し、補正値(+3/4T)を算出する。
 このように、直接波優位のマルチパスフェージングが発生している場合、補正値算出部130は、直接波信号の受信時刻を基準時刻とする。このため、遅延波である間接波信号の受信時刻が正の値となり、補正値算出部130は、正の補正値、すなわち、初期待機時間を増加させる補正値を算出する。そして、間接波信号の遅延の程度が大きい場合には、補正値算出部130は、初期待機時間の増加の程度を大きくする補正値を算出する。一方、間接波信号の遅延の程度が小さい場合には、補正値算出部130は、初期待機時間の増加の程度を小さくする補正値を算出する。
 図6は、間接波優位のマルチパスフェージングが発生している場合のタップ係数の一例を示す。図6(A)は、間接波信号の遅延の程度が小さい間接波優位のマルチパスフェージングが発生している場合のタップ係数を示す。この場合、補正値算出部130は、最大のタップ係数に関連する間接波信号の受信時刻を基準時刻tとし、tに「0」を代入すると共に、2番目に大きいタップ係数に関連する直接波信号の差分時間「-1T」をtに代入し、補正値(-1/2T)を算出する。
 図6(B)は、間接波信号の遅延の程度が大きい間接波優位のマルチパスフェージングが発生している場合のタップ係数を示す。この場合、補正値算出部130は、最大のタップ係数に関連する間接波信号の受信時刻を基準時刻tとし、tに「0」を代入すると共に、2番目に大きいタップ係数に関連する直接波信号の差分時間「-3/2T」をtに代入し、補正値(-3/4T)を算出する。
 このように、間接波優位のマルチパスフェージングが発生している場合、補正値算出部130は、間接波信号の受信時刻を基準時刻とする。このため、間接波に先行する直接波信号の受信時刻が負の値となり、補正値算出部130は、負の補正値、すなわち、初期待機時間を減少させる補正値を算出する。そして、間接波信号の遅延の程度が大きい場合には、補正値算出部130は、初期待機時間の減少の程度を大きくする補正値を算出する。一方、間接波信号の遅延の程度が小さい場合には、補正値算出部130は、初期待機時間の減少の程度を小さくする補正値を算出する。
 伝送時間変動補償部140は、補正値算出部130が出力した補正値を用いて初期待機時間を補正して待機時間を算出し、当該待機時間に従って直接波信号または間接波信号を待機させる論理回路である。本実施形態では、伝送時間変動補償部140は、補正値算出部130が出力した補正値に初期待機時間を加算することによって待機時間を算出する。
 例えば、図5(A)に示す間接波信号の遅延の程度が小さい直接波優位のマルチパスフェージングが発生している場合、伝送時間変動補償部140は、初期待機時間に補正値(+1/2T)を加算して、直接波信号の待機時間を算出する。一方、図5(B)に示す間接波信号の遅延の程度が大きい直接波優位のマルチパスフェージングが発生している場合、伝送時間変動補償部140は、初期待機時間に補正値(+3/4T)を加算して、直接波信号の待機時間を算出する。
 このように、直接波優位のマルチパスフェージングが発生している場合、伝送時間変動補償部140は、正の補正値を用いて初期待機時間を補正するため、直接波信号の待機時間が長くなる。そして、間接波信号の遅延の程度が大きい場合には、伝送時間変動補償部140は、直接波信号の待機時間の増加の程度が大きい補正値(+3/4T)を用いて初期待機時間を補正して待機時間を算出し、当該待機時間に従って直接波信号を待機させる。一方、間接波信号の遅延の程度が小さい場合には、伝送時間変動補償部140は、直接波信号の待機時間の増加の程度が小さい補正値(+1/2T)を用いて初期待機時間を補正して待機時間を算出し、当該待機時間に従って直接波信号を待機させる。このようにして、伝送時間変動補償部140は、間接波信号の遅延の程度に応じて、初期待機時間の増加の程度を調整することができる。
 一方、図6(A)に示す間接波信号の遅延の程度が小さい間接波優位のマルチパスフェージングが発生している場合、伝送時間変動補償部140は、初期待機時間に補正値(-1/2T)を加算して、間接波信号の待機時間を算出する。一方、図6(B)に示す間接波信号の遅延の程度が大きい間接波優位のマルチパスフェージングが発生している場合、伝送時間変動補償部140は、初期待機時間に補正値(-3/4T)を加算して、間接波信号の待機時間を算出する。
 このように、間接波優位のマルチパスフェージングが発生している場合、伝送時間変動補償部140は、負の補正値を用いて初期待機時間を補正するため、間接波信号の待機時間が短くなる。そして、間接波信号の遅延の程度が大きい場合には、伝送時間変動補償部140は、間接波信号の待機時間の減少の程度が大きい補正値(-3/4T)を用いて初期待機時間を補正して待機時間を算出し、当該待機時間に従って間接波信号を待機させる。一方、間接波信号の遅延の程度が小さい場合には、伝送時間変動補償部140は、間接波信号の待機時間の減少の程度が小さい補正値(-1/2T)を用いて初期待機時間を補正して待機時間を算出し、当該待機時間に従って間接波信号を待機させる。このようにして、伝送時間変動補償部140は、間接波信号の遅延の程度に応じて、初期待機時間の減少の程度を調整することができる。
 マルチパスフェージングが発生していない場合、伝送時間変動補償部140は、初期待機時間を待機時間とする。初期待機時間は、補正値算出部130が算出し得る最小の補正値(負の値)を当該初期待機時間に加算して得られる加算値が、正の値となるような時間とすることができる。無線通信のリアルタイム性を高めるため、初期待機時間は、短い方が好適である。伝送時間変動補償部140は、上述した方法によって算出した待機時間に従って電波信号を待機させた後、電波信号を伝送時間算出部150に供給する。
 伝送時間算出部150は、伝送装置10と他の伝送装置との間のデータの伝送時間を算出する伝送時間算出処理を実行する論理回路である。伝送時間算出処理では、伝送時間算出部150は、他の伝送装置に対して応答要求を送信したときの送信時刻と、当該他の伝送装置から応答要求に対する応答を受信したときの受信時刻とを用いて、伝送装置10と他の伝送装置との間の伝送時間を算出する。伝送時間算出処理については、図8を参照してより詳細に後述する。
 時刻計測部160は、現在の時刻を計測する論理回路である。時刻計測部160は、伝送時間算出部150および時刻同期部170の要求に応じて、現在の時刻を示す情報を提供する。
 時刻同期部170は、伝送装置10が計測する現在の時刻を示す情報と、伝送時間算出部150が算出した伝送時間を他の伝送装置に送信し、当該他の伝送装置が計測する時刻を、伝送装置10が計測する時刻に同期させる論理回路である。
 伝送装置10がマスター装置として機能する場合、時刻同期部170は、スレーブ装置である他の伝送装置に対し、時刻同期要求と共に、伝送時間算出部150が算出した伝送時間と、時刻計測部160が提供した現在の時刻を示す時刻情報(送信時刻情報)を送信する。一方、伝送装置10がスレーブ装置として機能する場合、時刻同期部170は、マスター装置である他の伝送装置から時刻同期要求を受信すると、時刻同期要求と共に受信した送信時刻情報が示す時刻に当該伝送時間を加算して時刻を算出する。そして、時刻同期部170は、算出した時刻を、時刻変更要求と共に時刻計測部160に供給する。時刻計測部160は、時刻同期部170から時刻変更要求を受信すると、時刻計測部160が計測している時刻を、当該算出した時刻に変更する。
 送信部180は、送信対象のデータを処理する論理回路であり、変調部181を備える。変調部181は、図11に示すようなコンスタレーションの変調方式で送信対象のデータを変調し、多重部110に供給する。
 図2は、第1の実施形態に係る伝送装置10が有する主要な構成要素を示すブロック図である。伝送装置10は、主要な構成要素として、上述した補正値算出部130と、伝送時間変動補償部140とを備える。
 図7は、本発明の第1の実施形態に係る伝送装置10が実行する処理を示すフローチャートである。図7に示す処理は、信号点特定部123が、FIRフィルタ122から電波信号を受信することにより、ステップS100から開始する。ステップS101では、信号点特定部123は、変調方式のコンスタレーションにおいて理想的な電波信号を示す信号点の中から信号点Sを特定する。ステップS102では、誤差信号生成部124が、伝送装置10が実際に受信した電波信号と、信号点特定部123が特定した信号点Sを用いて、誤差信号ベクトルEを生成する。ステップS103では、タップ係数生成部125が、当該電波信号と、誤差信号生成部124が生成した誤差信号ベクトルEを用いて、タップ係数を算出する。
 ステップS104では、補正値算出部130が、閾値を超えるタップ係数の数を判定する。閾値を超えるタップ係数の数が0の場合、ステップS108で処理が終了する。閾値を超えるタップ係数の数が1つである場合、ステップS107に処理が進む。閾値を超えるタップ係数の数が2以上である場合、すなわち、マルチパスフェージングが発生している場合、ステップS105に処理が進む。
 ステップS105では、補正値算出部130は、閾値を超えるタップ係数に関連する電波信号の受信時刻を用いて補正値を算出する。ここで、閾値を超えるタップ係数の数が2つの場合、補正値算出部130は、上述した数式1を用いて補正値を算出する。閾値を超えるタップ係数の数が3以上の場合、補正値算出部130は、上述したように、信号強度が最大の電波信号の受信時刻を基準時刻として、閾値を超えた各タップ係数について差分時間を算出する。そして、補正値算出部130は、これらの差分時間の和を、閾値を超えたタップ係数の数で除算することにより、補正値を算出する。
 ステップS106では、伝送時間変動補償部140が、補正値算出部130の出力した補正値を用いて初期待機時間を補正して、待機時間を算出する。ここで、閾値を超えるタップ係数の数が1つの場合、初期待機時間を待機時間とする。ステップS107では、伝送時間変動補償部140は、当該待機時間に従い、信号強度が最大の電波信号を待機させた後、当該電波信号を伝送時間算出部150に出力し、ステップS108で処理が終了する。
 図8は、伝送時間算出処理の一実施形態を示すフローチャートである。図8に示す処理は、ステップS200から開始し、ステップS201では、伝送時間算出部150が、現在の時刻(送信時刻)を示すタイムスタンプを、他の伝送装置に対する応答要求に付加する。ステップS202では、伝送時間算出部150は、送信部180、多重部110およびアンテナ100を介して、当該タイムスタンプが付加された応答要求を他の伝送装置に送信する。
 ステップS203では、伝送時間算出部150は、当該応答要求に対する応答を受信したか否か判断する。当該応答要求に対する応答を受信していない場合(NO)、ステップS203の処理を再び実行する。一方、当該応答要求に対する応答を受信した場合(YES)、ステップS204に処理が進む。当該応答要求には、ステップS201で付加されたタイムスタンプが含まれる。
 ステップS204では、伝送時間算出部150は、時刻計測部160から現在の時刻を取得する。ステップS205では、伝送時間算出部150は、当該現在の時刻と、当該応答要求に含まれるタイムスタンプが示す送信時刻との差分時間を算出し、その1/2を伝送時間として算出し、ステップS206で処理が終了する。本実施形態では、伝送時間算出部150は、応答要求に付加されたタイムスタンプが示す送信時刻を用いて伝送時間を算出するが、他の実施形態では、伝送時間算出部150が、送信時刻を保持しておき、当該送信時刻と、他の伝送装置からと応答を受信したときの時刻との差分時間を算出し、その1/2を伝送時間としてもよい。
 第1の実施形態では、受信側の伝送装置10のみが下記機能部を備えることにより、以下の効果を奏する。すなわち、直接波優位のマルチパスフェージングが発生している場合、補正値算出部130が、初期待機時間を増加させる補正値を算出する。そして、伝送時間変動補償部140が、当該補正値を用いて初期待機時間を補正して直接波信号の待機時間を算出し、当該待機時間に従って直接波信号を待機させてから出力する。一方、間接波優位のマルチパスフェージングが発生している場合、補正値算出部130は、初期待機時間を減少させる補正値を算出する。そして、伝送時間変動補償部140は、当該補正値を用いて初期待機時間を補正して間接波信号の待機時間を算出し、当該待機時間に従って間接波信号を待機させてから出力する。このように、伝送装置10は、電波伝搬路の環境の変化に応じて、直接波信号の待機時間を長くし、または、間接波信号の待機時間を短くするため、電波伝搬路の環境の変化によって起こり得る電波信号の伝送時間の変動を補償することができる。
 また、間接波信号の遅延の程度が大きい直接波優位のマルチパスフェージングが発生している場合、補正値算出部130が、初期待機時間の増加の程度が大きい補正値を算出する。そして、伝送時間変動補償部140が、当該補正値を用いて初期待機時間を補正して待機時間を算出し、当該待機時間に従って直接波信号を待機させる。一方、間接波信号の遅延の程度が小さい直接波優位のマルチパスフェージングが発生している場合には、補正値算出部130は、初期待機時間の増加の程度が小さい補正値を算出する。そして、伝送時間変動補償部140は、初期待機時間の増加の程度が小さい補正値を用いて初期待機時間を補正して待機時間を算出し、当該待機時間に従って直接波信号を待機させる。これにより、伝送装置10は、間接波信号の遅延の程度に応じて、直接波信号の待機時間の増加の程度を調整することができる。
 さらに、間接波信号の遅延の程度が大きい間接波優位のマルチパスフェージングが発生している場合、補正値算出部130が、初期待機時間の減少の程度が大きい補正値を算出する。そして、伝送時間変動補償部140が、当該補正値を用いて初期待機時間を補正して待機時間を算出し、当該待機時間に従って間接波信号を待機させる。一方、間接波信号の遅延の程度が小さい間接波優位のマルチパスフェージングが発生している場合には、補正値算出部130は、初期待機時間の減少の程度が小さい補正値を算出する。そして、伝送時間変動補償部140は、間接波信号の待機時間の減少の程度が小さい補正値を用いて初期待機時間を補正して待機時間を算出し、当該待機時間に従って間接波信号を待機させる。これにより、伝送装置10は、間接波信号の遅延の程度に応じて、間接波信号の待機時間の減少の程度を調整することができる。
 さらに、直接波と複数の間接波によってマルチパスフェージングが発生している場合、補正値算出部130は、信号強度が最大の電波信号の受信時刻を基準時刻として、閾値を超えた各タップ係数について差分時間を算出する。そして、補正値算出部130は、これらの差分時間の和を、閾値を超えたタップ係数の数で除算することにより、補正値を算出する。次いで、伝送時間変動補償部140が、当該補正値を用いて初期待機時間を補正して待機時間を算出し、当該待機時間に従い、信号強度が最大の電波信号を待機させる。このため、伝送装置10は、1の直接波と複数の間接波によってマルチパスフェージングが発生している場合にも、電波信号の伝送時間の変動を補償することができる。
 さらに、伝送時間算出部150は、電波伝搬路の環境の変化によって起こり得る伝送時間の変動が補償された状態で、伝送時間算出処理を実行して、伝送装置10と他の伝送装置との間の伝送時間を算出するため、変動が補償された伝送時間を算出することができる。そして、時刻同期部170が、他の伝送装置に対し、この伝送時間と、自機が計測する時刻情報を送信して時刻を同期させるため、伝送装置10および他の伝送装置において時刻の同期精度が向上する。
 <第2の実施形態>
 図9は、本発明の第2の実施形態に係る伝送装置の詳細な構成を示すブロック図である。以下、図9を参照して、第2の実施形態に係る伝送装置20について、第1の実施形態に係る伝送装置10との相違点を中心に説明する。
 伝送装置20は、アンテナ100と、多重部110と、受信部220と、補正値算出部130と、伝送時間変動補償部140と、伝送時間算出部150と、時刻計測部160と、時刻同期部170と、送信部180と、推定部200とを備える。アンテナ100、多重部110、伝送時間変動補償部140、伝送時間算出部150、時刻計測部160、時刻同期部170および送信部180は、伝送装置10が備える対応する機能部と同じ機能を有する。受信部220は、FIR122および復調部126(図示せず)を備えるが、伝送装置10が有する信号点特定部123、誤差信号生成部124およびタップ係数生成部125を備えていない。
 推定部200は、電波伝搬路において変化し得る電波信号の振幅および位相の時間応答を推定する論理回路である。具体的には、推定部200は、図13に示すように、送信側の伝送装置が定期的に送信する既知の電波信号を受信し、この受信した電波信号の位相および振幅と、既知の電波信号の本来の位相および振幅とを比較して、変動差(位相変動および振幅変動)を算出することにより、電波信号の振幅および位相の時間応答を推定することができる。推定部200は、このようにして推定された電波信号の振幅値と、当該電波信号の受信時刻を示す時間情報を補正値算出部130に供給する。
 補正値算出部130は、推定部200が出力した電波信号の振幅値と、当該電波信号の受信時刻を示す時刻情報とを用いて補正値を算出する。具体的には、補正値算出部130は、推定部200が出力した電波信号のうち振幅値のうち閾値を超える電波信号を特定する。当該閾値として、例えば、ノイズレベルを超える電波信号の強度を示す値を採用することができる。次いで、補正値算出部130は、閾値を超える電波信号のうち振幅値が最大となる電波信号の受信時刻を基準時刻tとし、当該電波信号の受信時刻と、閾値を超える他の電波信号の受信時刻との差分時間を算出する。そして、補正値算出部130は、上記数式1に基準時刻tおよび当該差分時間を代入することにより、補正値を算出することができる。
 第2の実施形態では、第1の実施形態と同様に、以下の効果を奏する。すなわち、直接波優位のマルチパスフェージングが発生している場合、補正値算出部130が、推定された振幅値の時刻情報に基づき、初期待機時間を増加させる補正値を算出する。そして、伝送時間変動補償部140が、当該補正値を用いて初期待機時間を補正して待機時間を算出し、当該待機時間に従って電波信号を待機させてから出力する。一方、間接波優位のマルチパスフェージングが発生している場合、補正値算出部130は、推定された振幅値の時刻情報に基づき、初期待機時間を減少させる補正値を算出する。そして、伝送時間変動補償部140は、当該補正値を用いて初期待機時間を補正して待機時間を算出し、当該待機時間に従って電波信号を待機させてから出力する。このように、伝送装置10は、電波伝搬路の環境の変化に応じて、直接波信号の待機時間を長くし、または、間接波信号の待機時間を短くするため、電波伝搬路の環境の変化によって起こり得る電波信号の伝送時間の変動を補償することができる。
 <その他の実施形態>
 補正値算出部130が、補正値を算出する場合に使用する数式は、数式1に限られず、直接波優位のマルチパスフェージングが発生しているときに直接波信号の待機時間を長くし、かつ、間接波優位のマルチパスフェージングが発生しているときに間接波信号の待機時間を短くすることが可能な任意の数式を用いて、補正値を算出することができる。
 また、間接波優位のマルチパスフェージングが発生している場合に、伝送時間変動補償部140が、初期待機時間に従って間接波信号を待機させてもよい。この実施形態では、直接波優位のマルチパスフェージングが発生している場合、補正値算出部130は、初期待機時間を増加させる補正値を算出し、伝送時間変動補償部140が、当該補正値を用いて待機時間を算出し、当該待機時間に従って直接波信号を待機させる。
 さらに、上述した実施形態では、伝送時間変動補償部140が、復調部126が復調した電波信号を待機させるが、他の実施形態では、伝送時間変動補償部140は、信号点特定部123から電波信号を受信し、当該電波信号を待機させた後、復調部126に電波信号を供給してもよい。
 さらに、上述した実施形態では、信号点特定部123、誤差信号生成部124、タップ係数生成部125、補正値算出部130、伝送時間変動補償部140、伝送時間算出部150、時刻計測部160、時刻同期部170、および推定部200を論理回路によって実現するが、他の実施形態では、CPU(Central Processing Unit)が、これらの機能部に実装されるプログラムをRAM(Random access memory)に展開し、上述した処理を実行してもよい。
 さらに、上述した実施形態では、FIFO等を利用して電波信号を待機させる場合、伝送時間変動補償部140が、電波信号を記憶素子に一定時間保存するが、他の実施形態では、電波信号のタイムスタンプを書き換えて伝送時間の変動を補償してもよい。この場合、電波信号を記憶素子に一定時間保存する必要がないため、ハードウェアリソースを低減することができる。
 上述の例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに提供することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、フレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM)を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに提供されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 本発明は上述した実施形態に限られたものではなく、本発明の趣旨を逸脱しない範囲で適宜変更することが可能である。
 この出願は、2018年9月3日に出願された日本出願特願2018-164334を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10  伝送装置
100 アンテナ
123 信号点特定部
124 誤差信号生成部
125 タップ係数生成部
130 補正値算出部
140 伝送時間変動補償部
150 伝送時間算出部
160 時刻計測部
170 時刻同期部

Claims (6)

  1.  直接波信号の受信時刻と、前記直接波信号に後続する間接波信号の受信時刻に基づき、前記直接波信号または前記間接波信号の初期待機時間を補正する補正値を算出する補正値算出手段と、
     前記補正値を用いて前記初期待機時間を補正して待機時間を算出し、前記待機時間に従って前記直接波信号または前記間接波信号を待機させる伝送時間変動補償手段と
     を備え、
     前記補正値算出手段は、
     前記直接波信号の強度が前記間接波信号の強度よりも大きい場合、前記直接波信号の待機時間を長くするための補正値を算出し、
     前記間接波信号の強度が前記直接波信号の強度よりも大きい場合、前記間接波信号の待機時間を短くするための補正値を算出する、伝送装置。
  2.  前記補正値算出手段は、
     前記間接波信号の遅延の程度が大きい場合には、前記直接波信号または間接波信号の待機時間の増減の程度を大きくする補正値を算出し、
     前記間接波信号の遅延の程度が小さい場合には、前記直接波信号または間接波信号の待機時間の増減の程度を小さくする補正値を算出する、請求項1に記載の伝送装置。
  3.  前記伝送装置は、
     他の伝送装置に対する応答要求の送信時刻と、前記応答要求に対する前記他の伝送装置からの応答の受信時刻とを用いて、前記伝送装置と前記他の伝送装置との間の伝送時間を算出する伝送時間算出手段と、
     前記伝送装置が計測する現在の時刻を示す情報および前記伝送時間を前記他の伝送装置に送信し、前記他の伝送装置が計測する時刻を、前記伝送装置が計測する時刻に同期させる時刻同期手段と
     をさらに備える、請求項1または2に記載の伝送装置。
  4.  前記伝送装置は、
     前記伝送装置が使用する変調方式のコンスタレーションにおいて、理想的な電波信号を示す複数の信号点の中から、前記伝送装置が受信した電波信号とのユークリッド距離が最小となる信号点を特定する信号点特定手段と、
     前記電波信号と前記信号点特定手段が特定した信号点を用いて、前記電波信号と前記信号点との誤差を示す誤差信号ベクトルを生成する誤差信号生成手段と、
     前記電波信号および前記誤差信号ベクトルを用いて、前記電波信号の強度を示すタップ係数を生成するタップ係数生成手段と
     をさらに備え、
     前記補正値算出手段は、閾値を超えたタップ係数に関連する電波信号の受信時刻を用いて、前記補正値を算出する、請求項1~3のいずれか1項に記載の伝送装置。
  5.  電波信号の伝送時間の変動を補償する伝送時間変動補償方法であって、
     直接波信号の受信時刻と、前記直接波信号に後続する間接波信号の受信時刻に基づき、前記直接波信号または前記間接波信号の初期待機時間を補正する補正値を算出するステップと、
     前記補正値を用いて前記初期待機時間を補正して待機時間を算出し、前記待機時間に従って前記直接波信号または前記間接波信号を待機させるステップとを含み、
     前記補正値を算出するステップは、
     前記直接波信号の強度が前記間接波信号の強度よりも大きい場合、前記直接波信号の待機時間を長くするための補正値を算出するステップと、
     前記間接波信号の強度が前記直接波信号の強度よりも大きい場合、前記間接波信号の待機時間を短くするための補正値を算出するステップと
     を含む、伝送時間変動補償方法。
  6.  補正値算出手段と、伝送時間変動補償手段とを備える伝送装置において実行される伝送時間変動補償プログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記補正値算出手段に対し、直接波信号の受信時刻と、前記直接波信号に後続する間接波信号の受信時刻に基づき、前記直接波信号または前記間接波信号の初期待機時間を増減させるための補正値を算出させるステップと、
     前記伝送時間変動補償手段に対し、前記補正値を用いて前記初期待機時間を補正して待機時間を算出し、前記待機時間に従って前記直接波信号または前記間接波信号を待機させるステップとを含み、
     前記補正値を算出させるステップは、
     前記直接波信号の強度が前記間接波信号の強度よりも大きい場合、前記直接波信号の待機時間を長くするための補正値を算出させるステップと、
     前記間接波信号の強度が前記直接波信号の強度よりも大きい場合、前記間接波信号の待機時間を短くするための補正値を算出させるステップと
     を含む、伝送時間変動補償プログラムを格納した非一時的なコンピュータ可読媒体。
PCT/JP2019/032387 2018-09-03 2019-08-20 伝送装置、伝送時間変動補償方法および伝送時間変動補償プログラムを格納した非一時的なコンピュータ可読媒体 WO2020050004A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/272,421 US11558085B2 (en) 2018-09-03 2019-08-20 Transmission apparatus, transmission time fluctuation compensation method, and non-transitory computer readable medium storing transmission time fluctuation compensation program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-164334 2018-09-03
JP2018164334 2018-09-03

Publications (1)

Publication Number Publication Date
WO2020050004A1 true WO2020050004A1 (ja) 2020-03-12

Family

ID=69722426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032387 WO2020050004A1 (ja) 2018-09-03 2019-08-20 伝送装置、伝送時間変動補償方法および伝送時間変動補償プログラムを格納した非一時的なコンピュータ可読媒体

Country Status (2)

Country Link
US (1) US11558085B2 (ja)
WO (1) WO2020050004A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117155498A (zh) * 2023-10-30 2023-12-01 武汉能钠智能装备技术股份有限公司 一种针对分布式接收机的信道联合参数处理方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005354677A (ja) * 2004-05-13 2005-12-22 Ntt Docomo Inc パスサーチャ及びパスサーチ方法
JP2010239395A (ja) * 2009-03-31 2010-10-21 Samsung Electronics Co Ltd 無線通信装置、無線通信システム、及び直接波の受信タイミング検出方法
JP2017147667A (ja) * 2016-02-19 2017-08-24 日本電気株式会社 信号補償用システム、信号補償実行システムおよび信号補償用係数算出方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9317604D0 (en) * 1993-08-24 1993-10-06 Philips Electronics Uk Ltd Receiver for ds-cdma signals
JP2734953B2 (ja) * 1993-12-16 1998-04-02 日本電気株式会社 Cdma受信装置
JP3034309B2 (ja) * 1995-02-27 2000-04-17 エヌ・ティ・ティ移動通信網株式会社 高速無線通信方式
US5692006A (en) * 1995-07-31 1997-11-25 Qualcomm Incorporated Adaptive despreader
US7054296B1 (en) * 1999-08-04 2006-05-30 Parkervision, Inc. Wireless local area network (WLAN) technology and applications including techniques of universal frequency translation
EP1596506B1 (en) 2004-05-13 2011-11-23 NTT DoCoMo, Inc. Path searcher and path searching method in a CDMA receiver
US8385398B2 (en) * 2005-12-19 2013-02-26 St-Ericsson Sa Receiver with chip-level equalisation
JP5349206B2 (ja) 2009-08-28 2013-11-20 三菱電機株式会社 キャリア間干渉除去装置及びキャリア間干渉除去方法
DE102015122336A1 (de) * 2015-12-21 2017-06-22 Intel IP Corporation Mobiles endgerät und verfahren zur verarbeitung von signalen
CN106253922B (zh) * 2016-08-11 2018-08-10 怀化学院 一种基于盲均衡算法的pcm/fm的抗多径干扰遥测接收方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005354677A (ja) * 2004-05-13 2005-12-22 Ntt Docomo Inc パスサーチャ及びパスサーチ方法
JP2010239395A (ja) * 2009-03-31 2010-10-21 Samsung Electronics Co Ltd 無線通信装置、無線通信システム、及び直接波の受信タイミング検出方法
JP2017147667A (ja) * 2016-02-19 2017-08-24 日本電気株式会社 信号補償用システム、信号補償実行システムおよび信号補償用係数算出方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KITAYAMA, KAZUHIKO ET AL.: "Considerations and Countermeasures of Errors generated when Delay Time is not Integer of Sampling Interval at Delay Profile Measurement in Digital Terrestrial Television Broadcasting", THE JOURNAL OF THE INSTITUTE OF IMAGE INFORMATION AND TELEVISION ENGINEERS, THE INSTITUTE OF IMAGE INFORMATION AND TELEVISION ENGINEERS, vol. 66, no. 4, 1 April 2012 (2012-04-01), pages J119 - J123, XP055691840, Retrieved from the Internet <URL:https://www.jstage.jst.go.jp/article/itej/66/4/66_4_J119/_pdf> [retrieved on 20191023] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117155498A (zh) * 2023-10-30 2023-12-01 武汉能钠智能装备技术股份有限公司 一种针对分布式接收机的信道联合参数处理方法及装置
CN117155498B (zh) * 2023-10-30 2024-03-22 武汉能钠智能装备技术股份有限公司 一种针对分布式接收机的信道联合参数处理方法及装置

Also Published As

Publication number Publication date
US11558085B2 (en) 2023-01-17
US20210328629A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
US6347126B1 (en) Receiver with a frequency offset correcting function
JP4924201B2 (ja) 受信品質測定装置および受信品質測定方法
US9614634B2 (en) Method and device for cancelling a narrow band interference in a single carrier signal and computer program
KR20060096856A (ko) 채널 등화기 및 채널 등화 방법
US9680667B2 (en) Adaptive equalization circuit, digital coherent receiver, and adaptive equalization method
CN110198282B (zh) 用于信道均衡的方法、设备和计算机可读介质
JP2008271539A (ja) ブロードバンド無線通信システムにおけるフレーム同期装置及び方法
US9088391B2 (en) Temperature compensated carrier offset correction of a received signal
WO2019043747A1 (ja) 光通信装置
WO2020050004A1 (ja) 伝送装置、伝送時間変動補償方法および伝送時間変動補償プログラムを格納した非一時的なコンピュータ可読媒体
TW201312981A (zh) 時序恢復模組與時序恢復方法
JP4459254B2 (ja) 無線通信装置
KR100959341B1 (ko) 상관관계 기반의 채널 임펄스 응답 측정에서 미지의심볼에 대한 적응형 임계화 알고리즘
US9237046B2 (en) Receiver circuit
JP2007158721A (ja) 受信機およびシンボル区間抽出方法
CN111566953B (zh) 符号判定装置和符号判定方法
JP2002152065A (ja) 回り込みキャンセラ及び伝搬路特性測定装置
JP6585565B2 (ja) 通信システムおよび受信装置
JP2010118817A (ja) 適応等化器およびタップ係数制御方法
US8175203B2 (en) Broadcast channel estimator
JP5667876B2 (ja) 伝搬路推定装置、受信機、及び伝搬路推定方法
JP4795274B2 (ja) 適応等化装置
JP6293011B2 (ja) 等化装置、等化方法、及び受信装置
KR101364559B1 (ko) Ofdm 수신 장치 및 수신 신호 처리 방법
KR101088042B1 (ko) 직교주파수 분할 다중 기반에서 채널상태정보를 적용한 수신신호 처리방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP