WO2020049673A1 - 電動機制御装置および電動機制御方法 - Google Patents
電動機制御装置および電動機制御方法 Download PDFInfo
- Publication number
- WO2020049673A1 WO2020049673A1 PCT/JP2018/032967 JP2018032967W WO2020049673A1 WO 2020049673 A1 WO2020049673 A1 WO 2020049673A1 JP 2018032967 W JP2018032967 W JP 2018032967W WO 2020049673 A1 WO2020049673 A1 WO 2020049673A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control
- width modulation
- pulse width
- modulation control
- voltage
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
Definitions
- This specification discloses a technique related to a motor control device and a motor control method.
- the hybrid device described in Patent Document 1 switches between a circular mode in which the trajectory of the primary linkage flux is circular and a hexagonal mode in which the trajectory of the primary linkage flux is hexagonal, by a mode switching signal. As a result, the hybrid device described in Patent Literature 1 attempts to compensate for the insufficient running torque and expand the drive region.
- Patent Document 1 does not disclose the position of the mover when switching between the circular mode and the hexagonal mode. Therefore, in the hybrid device described in Patent Literature 1, the torque fluctuation caused by the mode switching may increase depending on the position of the mover.
- the present specification discloses a motor control device and a motor control method capable of suppressing a torque fluctuation caused by switching of pulse width modulation control.
- a motor control device including a first control unit, a second control unit, and a control change unit.
- the first control unit performs the first pulse width modulation control in an output region between a regular hexagon indicating an outer edge of an output range of the power converter and an inscribed circle inscribed in the regular hexagon.
- the second control unit performs the second pulse width modulation control in the inscribed circle and an output region inside the inscribed circle.
- the control change unit when the mover of the electric motor is located at a predetermined position specified by a predetermined contact of the six contacts formed by the regular hexagon and the inscribed circle, the first pulse width modulation The control and the second pulse width modulation control are switched from one to the other.
- a motor control method including a first control step, a second control step, and a control change step.
- the first control step performs first pulse width modulation control in an output region between a regular hexagon indicating an outer edge of an output range of the power converter and an inscribed circle inscribed in the regular hexagon.
- the second control step performs second pulse width modulation control in the inscribed circle and an output region inside the inscribed circle.
- the control changing step includes: when the mover of the electric motor is located at a predetermined position specified by a predetermined contact among the six contacts formed by the regular hexagon and the inscribed circle, the first pulse width modulation. The control and the second pulse width modulation control are switched from one to the other.
- the control change unit is provided.
- the control change unit is configured to control the first pulse width modulation control and the second pulse width control when the mover of the motor is located at a predetermined position specified by a predetermined contact among the six contacts formed by the regular hexagon and the inscribed circle. Switching from one of the pulse width modulation controls to the other.
- the output command by the first pulse width modulation control and the output command by the second pulse width modulation control match. Therefore, the above-described motor control device can suppress torque fluctuation caused by switching of the pulse width modulation control. What has been described above for the motor control device can be similarly applied to the motor control method.
- FIG. 1 is a configuration diagram illustrating an example of a motor control device 10.
- FIG. 3 is a block diagram illustrating an example of a control block of a control device 60.
- FIG. 4 is a vector diagram illustrating an example of a relationship between a torque and an armature current.
- FIG. 3 is a block diagram illustrating an example of a control block of a pulse width modulation control unit 75.
- FIG. 3 is a schematic diagram illustrating an example of an output range of a power converter 40.
- FIG. 4 is a vector diagram showing an example of pulse width modulation control by space vector modulation.
- 5 is a timing chart illustrating an example of pulse width modulation control by space vector modulation.
- FIG. 4 is a schematic diagram illustrating an example of pulse width modulation control based on carrier comparison.
- Timing chart which shows an example of the switching method of the pulse width modulation control by the control change part 75c.
- 15 is a timing chart illustrating another example of a method of switching pulse width modulation control by the control changing unit 75c.
- 15 is a timing chart illustrating another example of a method of switching pulse width modulation control by the control changing unit 75c.
- Embodiment 1-1 Configuration Example of Motor Control Device 10
- the motor control device 10 of the present embodiment includes a power supply 20, a smoothing capacitor 30, a power converter 40, and a control device 60.
- the electric motor 50 is electrically connected to the power converter 40.
- the power supply 20 outputs DC power.
- the power supply 20 only needs to be able to output DC power, and can take various forms.
- a lead storage battery (battery), a lithium ion battery, a power generator (for example, a fuel cell), or the like can be used.
- the power supply 20 can also boost low-voltage DC power using, for example, a known boost converter.
- the smoothing capacitor 30 smoothes the DC power output from the power supply 20.
- the positive electrode side 20p of the power supply 20 is connected to the positive electrode side 30p of the smoothing capacitor 30.
- the negative electrode side 20n of the power supply 20 is connected to the negative electrode side 30n of the smoothing capacitor 30, and is connected to a power ground (a reference potential of a high voltage side circuit including the power supply 20).
- a power ground a reference potential of a high voltage side circuit including the power supply 20.
- an electrolytic capacitor can be used as the smoothing capacitor 30, for example.
- the DC power supplied from the power supply 20 is smoothed by the smoothing capacitor 30 to reduce the ripple.
- the power converter 40 converts DC power output from the power supply 20 into AC power, and outputs the converted AC power to the electric motor 50.
- the power converter 40 includes a plurality (six) of switching elements (in this embodiment, three pairs of switching elements 41), which are connected in a full bridge. .
- a positive switching element 4xp connected to the positive electrode 20p of the power supply 20 and a negative switching element 4xn connected to the negative electrode 20n of the power supply 20 are connected in series.
- the electric motor 50 of the present embodiment is a three-phase motor, and x is any of u, v, and w.
- the positive switching element 4up indicates a U-phase positive switching element
- the negative switching element 4un indicates a U-phase negative switching element.
- a known power switching element can be used for the positive switching element 4xp and the negative switching element 4xn.
- a known insulated gate bipolar transistor IGBT: Insulated Gate Bipolar Transistor
- FET Field Effect Transistor
- each of the plurality (three) of the positive-electrode-side switching elements 4xp includes a control terminal 4g, an input terminal 4c, an output terminal 4e, and a return diode 4d.
- the control terminal 4g corresponds to a gate terminal
- the input terminal 4c corresponds to a collector terminal
- the output terminal 4e corresponds to an emitter terminal.
- FET field effect transistor
- the control terminal 4g corresponds to a gate terminal
- the input terminal 4c corresponds to a drain terminal
- the output terminal 4e corresponds to a source terminal.
- the control terminal 4g is connected to the control device 60 via the drive circuit 61b.
- Each of the plurality of (three) positive-side switching elements 4xp is controlled to open and close based on a drive signal (pulse signal) output from the control device 60.
- the voltage between the control terminal 4g and the output terminal 4e is defined as a control voltage Vge.
- Vge When the control voltage Vge is at a low level (a state that is equal to or lower than a predetermined voltage value), the open state in which the input terminal 4c and the output terminal 4e are electrically disconnected is controlled.
- the control voltage Vge When the control voltage Vge is at a high level (a state where the control voltage Vge exceeds a predetermined voltage value), the closed state in which the input terminal 4c and the output terminal 4e are electrically connected is controlled.
- a body diode (parasitic diode) of a switching element can be used.
- a freewheeling diode may be separately provided instead of the body diode, and connected in parallel between the input terminal 4c and the output terminal 4e.
- the return diode 4d forms a current path from the output terminal 4e to the input terminal 4c when the switching element is open.
- the switching element can be protected from a reverse current generated by opening and closing of the switching element.
- the control device 60 controls the opening and closing of a plurality of (six) switching elements (the positive switching element 4xp and the negative switching element 4xn forming the three pairs of switching elements 41) of the power converter 40, and performs power conversion.
- the control unit 40 is controlled. Thereby, power converter 40 converts DC power output from power supply 20 to AC power.
- an output terminal 42x is provided between the positive switching element 4xp and the negative switching element 4xn.
- the output terminal 42x and the phase terminal 43x of the electric motor 50 are electrically connected by a power cable 44x.
- the power cable 44x supplies the AC power converted by the power converter 40 to the electric motor 50.
- x is any of u, v, and w.
- the electric motor 50 includes a stator 51 and a mover 52.
- the electric motor 50 of the present embodiment is a radial gap type cylindrical electric motor in which the stator 51 and the mover 52 are coaxially arranged.
- the electric motor 50 may be an axial gap type cylindrical electric motor.
- the electric motor 50 may be a linear electric motor in which the mover 52 moves linearly with respect to the stator 51.
- one of the stator 51 and the mover 52 includes a coil (U-phase coil 51u, V-phase coil 51v, and W-phase coil 51w), and the other of the stator 51 and the mover 52 And a permanent magnet (not shown). As shown in FIG.
- the coils (the U-phase coil 51u, the V-phase coil 51v, and the W-phase coil 51w) can be connected by Y connection.
- the neutral point is indicated by a neutral point 51n.
- the coils (the U-phase coil 51u, the V-phase coil 51v, and the W-phase coil 51w) can be connected by ⁇ connection.
- the control device 60 includes a known central processing unit and a storage device, and forms a control circuit (both are not shown).
- the central processing unit is a CPU (Central Processing Unit), and can perform various calculation processes.
- the storage device includes a first storage device and a second storage device.
- the first storage device is a volatile storage device (RAM: Random Access Memory), and the second storage device is a nonvolatile storage device (ROM: Read Only Only Memory).
- Control device 60 controls a power conversion system including power converter 40.
- Control device 60 also controls the opening and closing of a plurality (six) of switching elements (positive switching element 4xp and negative switching element 4xn) of power converter 40 by pulse width modulation (PWM) control.
- PWM pulse width modulation
- the control device 60 includes a DC voltage detector 61a, a drive circuit 61b, a current detector 61c, and a position detector 61d.
- the DC voltage detector 61a detects a DC voltage Vdc of DC power smoothed by the smoothing capacitor 30. Specifically, for example, the DC voltage detector 61a divides the DC voltage Vdc with a plurality of resistors having known resistance values, and outputs the divided DC voltage to the control device 60.
- the control device 60 obtains the DC voltage divided by a known A / D converter (not shown) or the like, and the DC voltage Vdc of the DC power smoothed by the smoothing capacitor 30 (input to the power converter 40). DC voltage Vdc) can be obtained.
- the DC voltage Vdc detected by the DC voltage detector 61a is referred to as a DC voltage detection value Vdc_fb.
- the drive circuit 61b is a drive circuit that amplifies a drive signal output from the control device 60.
- a known driver circuit can be used.
- FIG. 1 the connection between the control terminal 4g of each switching element of the power converter 40 and the drive circuit 61b is omitted.
- the current detector 61c detects an output current output from the power converter 40.
- the current detector 61c is provided on the power cable 44u and the power cable 44v, and detects the U-phase current Iu and the V-phase current Iv.
- the U-phase current Iu detected by the current detector 61c is referred to as a U-phase current detection value Iu_fb
- the V-phase current Iv detected by the current detector 61c is referred to as a V-phase current detection value Iv_fb.
- the W-phase current Iw can be calculated by subtracting the U-phase current detection value Iu_fb and the V-phase current detection value Iv_fb from zero.
- a known current detector for example, a current detector using a current transformer, a current detector using a shunt resistor, or the like
- a known current detector for example, a current detector using a current transformer, a current detector using a shunt resistor, or the like
- the position detector 61d detects the position of the mover 52 with respect to the stator 51.
- a known position detector for example, a resolver, an encoder, a Hall sensor, or the like
- the position of the mover 52 (the rotation angle when the electric motor 50 is a cylindrical electric motor) detected by the position detector 61d is referred to as a mover position ⁇ .
- the control device 60 can be provided with various detectors other than the detector described above.
- the central processing unit of the control device 60 reads out the control program of the power converter 40 stored in the second storage device to the first storage device and executes the control program. Further, the above-described detected values and the like are input to the control device 60 via an insulating unit (not shown).
- the central processing unit outputs an open / close signal to each switching element of the power converter 40 via the insulating unit and the drive circuit 61b shown in FIG. 1 to control the opening / closing of the power converter 40.
- the insulating unit electrically insulates a low-voltage circuit including the control device 60 from a high-voltage circuit including the power supply 20.
- the insulating portion for example, a known photocoupler or the like can be used.
- control device 60 of the present embodiment when considered as a control block, includes a three-phase / two-phase conversion unit 71, a rotation speed calculation unit 72, and a current command value setting unit 73, a current control unit 74, and a pulse width modulation control unit 75.
- the main magnetic flux direction of the mover magnetic pole (permanent magnet in the present embodiment) of the electric motor 50 is defined as a d-axis direction, and a direction electrically orthogonal to the d-axis direction is defined as a q-axis direction.
- a voltage equation in a d-axis-q-axis coordinate system of an embedded magnet type synchronous motor in which a permanent magnet is embedded in the mover 52 can be expressed by Expression (1).
- the voltage in the d-axis direction is represented by a d-axis voltage Vd
- the voltage in the q-axis direction is represented by a q-axis voltage Vq
- the winding resistance of each of the coils is represented by a winding resistance R.
- the d-axis inductance is represented by a d-axis inductance Ld
- the q-axis inductance is represented by a q-axis inductance Lq.
- the current in the d-axis direction is represented by a d-axis current Id
- the current in the q-axis direction is represented by a q-axis current Iq
- the angular velocity of the mover 52 is represented by an angular velocity ⁇
- the induced voltage constant is represented by an induced voltage constant ⁇ .
- the control device 60 controls the power converter 40 by setting the d-axis current command value Id_ref and the q-axis current command value Iq_ref, respectively. Specifically, control device 60 controls power converter 40 by setting d-axis voltage command value Vd_ref and q-axis voltage command value Vq_ref based on d-axis current command value Id_ref and q-axis current command value Iq_ref. I do.
- the d-axis current command value Id_ref refers to a d-axis current command value
- the q-axis current command value Iq_ref refers to a q-axis direction current command value.
- the d-axis voltage command value Vd_ref refers to a voltage command value in the d-axis direction
- the q-axis voltage command value Vq_ref refers to a q-axis direction voltage command value.
- Three-phase / two-phase converter 71 calculates a d-axis current calculation value Id_fb, a q-axis current calculation value Iq_fb, and an input current calculation value Iin_fb.
- the d-axis current calculation value Id_fb refers to the d-axis direction current calculation value
- the q-axis current calculation value Iq_fb refers to the q-axis direction current calculation value.
- the input current calculation value Iin_fb refers to the magnitude (absolute value) of the input current Iin input to the electric motor 50. As shown in FIG.
- the U-phase current detection value Iu_fb and the V-phase current detection value Iv_fb detected by the current detector 61c are input to the three-phase / two-phase conversion unit 71.
- the W-phase current Iw can be calculated by subtracting the U-phase current detection value Iu_fb and the V-phase current detection value Iv_fb from zero.
- the detected value (calculated value) of the W-phase current Iw is a W-phase current detected value Iw_fb.
- the mover position ⁇ detected by the position detector 61d is input to the three-phase / two-phase converter 71.
- the three-phase / two-phase converter 71 uses the U-phase current detection value Iu_fb, the V-phase current detection value Iv_fb, the W-phase current detection value Iw_fb, and the mover position ⁇ to obtain the d-axis based on the equation (2).
- the current calculation value Id_fb and the q-axis current calculation value Iq_fb are calculated. Further, the three-phase / two-phase conversion unit 71 calculates the square root of the sum of squares obtained by adding the square of the d-axis current calculation value Id_fb and the square of the q-axis current calculation value Iq_fb, and calculates the input current calculation value Iin_fb. I do.
- the mover position ⁇ can also be estimated from, for example, temporal changes in the U-phase current detection value Iu_fb, the V-phase current detection value Iv_fb, and the W-phase current detection value Iw_fb. Further, the mover position ⁇ can be estimated from, for example, a temporal change of the induced voltage of each phase.
- Rotation speed calculation unit 72 The rotation speed calculator 72 calculates the rotation speed Vc of the electric motor 50 (movable element 52). As shown in FIG. 2, the rotational speed calculator 72 receives the mover position ⁇ detected by the position detector 61d. The rotation speed calculation unit 72 can calculate the rotation speed Vc by, for example, time-differentiating the mover position ⁇ . Note that the control device 60 can also measure the rotation speed Vc using a known rotation speed detector. In the present specification, the rotation speed Vc calculated by the rotation speed calculation unit 72 is referred to as a rotation speed calculation value Vc_fb.
- the current command value setting unit 73 calculates a d-axis current command value Id_ref and a q-axis current command value Iq_ref.
- the d-axis current command value Id_ref and the q-axis current command value Iq_ref can be calculated by various methods.
- the current command value setting unit 73 sets, for example, the d-axis current command value Id_ref and the q-axis current command value Iq_ref so that the armature current becomes minimum with respect to the required torque (to minimize the loss). (Maximum efficiency control).
- Fig. 3 shows an example of the relationship between torque and armature current.
- a curve L11 shows an example of the relationship between the d-axis current command value Id_ref and the q-axis current command value Iq_ref (relationship of the armature current current vector) when the required torque (torque command value Trq_ref) is constant.
- the required torque is obtained by setting the current vector of the armature current on the curve L11.
- the arrow L12 indicates a current vector that minimizes the armature current when obtaining the required torque indicated by the curve L11.
- the straight line L13 indicates a tangent at the extremum of the curve L11. That is, when the current vector of the armature current is orthogonal to the tangent indicated by the straight line L13, the armature current when obtaining the required torque is minimized.
- Control device 60 sets torque command value Trq_ref according to the required torque. As shown in FIG. 2, a torque command value Trq_ref is input to the current command value setting unit 73.
- the current command value setting unit 73 sets the d-axis current command value Id_ref and the q-axis current command value Iq_ref such that the armature current becomes minimum with respect to the torque command value Trq_ref.
- the d-axis current command value Id_ref and the q-axis current command value Iq_ref corresponding to the required torque (torque command value Trq_ref) are calculated in advance, and are converted into, for example, a map, a table, a relational expression (polynomial), and the like, and are stored in the second storage It is stored in the device.
- the current control unit 74 calculates a d-axis voltage command value Vd_ref based on the d-axis current command value Id_ref. Further, the current control unit 74 calculates a q-axis voltage command value Vq_ref based on the q-axis current command value Iq_ref. Specifically, the d-axis voltage command value Vd_ref is calculated such that the d-axis current calculation value Id_fb matches the d-axis current command value Id_ref. The q-axis voltage command value Vq_ref is calculated so that the q-axis current calculation value Iq_fb matches the q-axis current command value Iq_ref. The current control unit 74 only needs to be able to calculate the d-axis voltage command value Vd_ref and the q-axis voltage command value Vq_ref, and may take various forms.
- the current control unit 74 of the present embodiment includes a subtractor 74a, a PI control unit 74b, a subtractor 74c, and a PI control unit 74d.
- the d-axis current command value Id_ref and the d-axis current calculation value Id_fb are input to the subtractor 74a.
- the subtractor 74a calculates the deviation ⁇ Id by subtracting the d-axis current calculation value Id_fb from the d-axis current command value Id_ref.
- the deviation ⁇ Id calculated by the subtractor 74a is output to the PI control unit 74b.
- the PI control unit 74b performs proportional control and integral control so that the d-axis current calculation value Id_fb matches the d-axis current command value Id_ref.
- the PI control unit 74b includes a proportional operation unit 74b1, an integration operation unit 74b2, and an adder 74b3.
- the proportional calculator 74b1 outputs a calculation result obtained by multiplying the deviation ⁇ Id by the proportional gain Kpd.
- the integration calculator 74b2 outputs a calculation result obtained by multiplying the integration value obtained by integrating the deviation ⁇ Id by an integration gain Kid.
- the adder 74b3 adds the operation result of the proportional operation unit 74b1 and the operation result of the integration operation unit 74b2. Then, the PI control unit 74b outputs the calculation result of the adder 74b3 as the d-axis voltage command value Vd_ref.
- the PI control unit 74b may include a differential calculator that outputs a calculation result obtained by multiplying a differential value obtained by differentiating the deviation ⁇ Id by a differential gain. That is, the PI control unit 74b can be a PID control unit that performs proportional control, integral control, and differential control.
- the q-axis current command value Iq_ref and the q-axis current calculation value Iq_fb are input to the subtractor 74c.
- the subtractor 74c calculates the deviation ⁇ Iq by subtracting the q-axis current calculation value Iq_fb from the q-axis current command value Iq_ref.
- the deviation ⁇ Iq calculated by the subtractor 74c is output to the PI control unit 74d.
- the PI control unit 74d performs proportional control and integral control so that the q-axis current calculation value Iq_fb matches the q-axis current command value Iq_ref.
- the PI control unit 74d includes a proportional operation unit 74d1, an integration operation unit 74d2, and an adder 74d3.
- the proportional calculator 74d1 outputs a calculation result obtained by multiplying the deviation ⁇ Iq by the proportional gain Kpq.
- the integration calculator 74d2 outputs a calculation result obtained by multiplying the integration value obtained by integrating the deviation ⁇ Iq by the integration gain Kiq.
- the adder 74d3 adds the operation result of the proportional operation unit 74d1 and the operation result of the integration operation unit 74d2. Then, the PI control unit 74d outputs the calculation result of the adder 74d3 as the q-axis voltage command value Vq_ref.
- the PI control unit 74d may include a differential operation unit that outputs a calculation result obtained by multiplying a differential value obtained by differentiating the deviation ⁇ Iq by a differential gain.
- the current control unit 74 can calculate the d-axis voltage command value Vd_ref and the q-axis voltage command value Vq_ref by, for example, at least proportional control and integral control among proportional control, integral control, and differential control. .
- the d-axis voltage command value Vd_ref can be expressed by Expression (3) using the proportional gain Kpd and the integral gain Kid.
- the q-axis voltage command value Vq_ref can be expressed by Expression (4) using the proportional gain Kpq and the integral gain Kiq.
- the Laplace operator is represented by a Laplace operator s.
- Pulse width modulation controller 75 The pulse width modulation control unit 75 generates an open / close signal (pulse signal) for a plurality (six) of switching elements (the positive switching element 4xp and the negative switching element 4xn) of the power converter 40. As shown in FIG. 2, the d-axis voltage command value Vd_ref and the q-axis voltage command value Vq_ref calculated by the current control unit 74 are input to the pulse width modulation control unit 75. The mover position ⁇ detected by the position detector 61d is input to the pulse width modulation control unit 75.
- the input current calculation value Iin_fb of the electric motor 50 calculated by the three-phase / two-phase conversion unit 71 is input to the pulse width modulation control unit 75.
- the rotation speed calculation value Vc_fb calculated by the rotation speed calculation unit 72 is input to the pulse width modulation control unit 75.
- the DC voltage detection value Vdc_fb detected by the DC voltage detector 61a is input to the pulse width modulation control unit 75.
- the pulse width modulation control unit 75 includes a first control unit 75a, a second control unit 75b, and a control change unit 75c.
- FIG. 5 shows an example of the output range of the power converter 40.
- the first control unit 75a outputs an area between a regular hexagon RH1 indicating the outer edge of the output range of the power converter 40 and an inscribed circle IC1 inscribed in the regular hexagon RH1 (hereinafter, referred to as a "first output area").
- the first pulse width modulation control PWM1 is performed.
- the first pulse width modulation control PWM1 generates a pulse signal by selecting a predetermined voltage vector from a plurality (eight) of voltage vectors V0 to V7, and generates a pulse signal by a space vector modulation (SVM). Modulation control is preferred.
- SVM space vector modulation
- the first control unit 75a uses the d-axis voltage command value Vd_ref, the q-axis voltage command value Vq_ref, and the mover position ⁇ to convert the d-axis-q axis coordinate system (rotational coordinate system) to the ⁇ -axis coordinate system ( It performs coordinate conversion to a stationary coordinate system and performs pulse width modulation control by space vector modulation.
- FIG. 5 shows the relationship between the d-axis-q-axis coordinate system (rotating coordinate system) and the ⁇ -axis- ⁇ axis coordinate system (stationary coordinate system).
- the coordinate conversion from the d-axis-q-axis coordinate system (rotating coordinate system) to the ⁇ -axis- ⁇ axis coordinate system (stationary coordinate system) can be expressed by Expression (5).
- the voltage command value in the ⁇ -axis direction is represented by an ⁇ -axis voltage command value V ⁇ _ref
- the voltage command value in the ⁇ -axis direction is represented by a ⁇ -axis voltage command value V ⁇ _ref.
- a pulse signal is generated by selecting a predetermined voltage vector from a plurality of (eight) voltage vectors V0 to V7.
- the voltage vector V1 (1, 0, 0) shown in FIG. 5 indicates the U-phase direction, and the U-phase positive-side switching element 4up, the V-phase negative-side switching element 4vn, and the W-phase negative-side switching element 4wn are closed. State, and the other switching elements are controlled to the open state.
- the voltage vector V3 (0, 1, 0) indicates the V-phase direction, and the U-phase negative switching element 4un, the V-phase positive switching element 4vp, and the W-phase negative switching element 4wn are controlled to be closed.
- the voltage vector V2 (1,1,0) is such that the U-phase positive-side switching element 4up, the V-phase positive-side switching element 4vp, and the W-phase negative-side switching element 4wn are controlled to be in a closed state, and other switching is performed. This shows that the element is controlled to the open state.
- the voltage vector V4 (0, 1, 1) is such that the U-phase negative switching element 4un, the V-phase positive switching element 4vp, and the W-phase positive switching element 4wp are controlled to be closed, and the other switching elements are This indicates that the state is controlled to the open state.
- the voltage vector V6 (1, 0, 1) is such that the U-phase positive-side switching element 4up, the V-phase negative-side switching element 4vn, and the W-phase positive-side switching element 4wp are controlled to a closed state, and the other switching elements This indicates that the state is controlled to the open state.
- the voltage vector V0 (0, 0, 0) is controlled by closing the U-phase negative-side switching element 4un, the V-phase negative-side switching element 4vn, and the W-phase negative-side switching element 4wn, and switching the other switching elements. This shows that the element is controlled to the open state.
- the voltage vector V7 (1, 1, 1) is such that the U-phase positive-side switching element 4up, the V-phase positive-side switching element 4vp, and the W-phase positive-side switching element 4wp are controlled to be closed, and the other switching elements are This indicates that the state is controlled to the open state. That is, the voltage vector V0 (0, 0, 0) and the voltage vector V7 (1, 1, 1) output zero voltage. As shown in FIG.
- the first control unit 75a determines a plurality of (eight rotation angles) the mover position ⁇ (the rotation angle when the electric motor 50 is a cylindrical electric motor) in the ⁇ -axis coordinate system (stationary coordinate system). ), A predetermined voltage vector is selected from the voltage vectors V0 to V7, and the generation time of the selected voltage vector is controlled.
- the mover position ⁇ includes a position ⁇ of the command voltage V_ref in the d-axis / q-axis coordinate system (rotational coordinate system) (the rotation angle when the electric motor 50 is a cylindrical electric motor), and the mover position. ⁇ (rotation angle).
- FIG. 6B shows an example of a timing chart of the open / close signal of the plurality of (six) switching elements (the positive switching element 4xp and the negative switching element 4xn) at this time.
- the broken line L21 indicates a temporal change in the open / close state of the U-phase positive-side switching element 4up and negative-side switching element 4un.
- a broken line L22 indicates a temporal change in the open / closed state of the V-phase positive-side switching element 4vp and negative-side switching element 4vn.
- a broken line L23 indicates a temporal change in the open / close state of the W-phase positive-side switching element 4wp and negative-side switching element 4wn.
- the first control unit 75a sets a time T1 for generating the voltage vector V1 and a time T2 for generating the voltage vector V2 in the predetermined control cycle Ts.
- the output state at time T1 shown in FIG. 6B is 1, 0, 0 in the order of U-phase, V-phase, and W-phase, and indicates the output state of the voltage vector V1 described above. That is, the first control unit 75a controls the U-phase positive-side switching element 4up, the V-phase negative-side switching element 4vn, and the W-phase negative-side switching element 4wn to the closed state during the time T1, and performs other switching.
- a pulse signal for controlling the element to open is generated.
- the output state at time T2 shown in FIG. 6B is 1, 1, 0 in the order of U phase, V phase, and W phase, indicating the output state of the voltage vector V2 described above. That is, during the time T2, the first control unit 75a controls the U-phase positive-side switching element 4up, the V-phase positive-side switching element 4vp, and the W-phase negative-side switching element 4wn to a closed state, and performs other switching. A pulse signal for controlling the element to open is generated.
- the first control unit 75a selects the zero voltage in the remaining time T0 of the control cycle Ts. For example, the first control unit 75a selects the voltage vector V0 for half the time T0 (time T0 / 2), and selects the voltage vector V7 for half the time T0 (time T0 / 2).
- the output state at half the time T0 (the time T0 / 2) shown in FIG. 6B is 0, 0, 0, indicating the output state of the voltage vector V0 described above. That is, the first control unit 75a controls the U-phase negative-side switching element 4un, the V-phase negative-side switching element 4vn, and the W-phase negative-side switching element 4wn to be in the closed state during the first time T0 / 2. , And generates a pulse signal for controlling the other switching elements to the open state.
- the output state at half the time T0 (time T0 / 2) shown in FIG. 6B is 1, 1, 1 and indicates the output state of the voltage vector V7 described above. That is, the first control unit 75a controls the U-phase positive-side switching element 4up, the V-phase positive-side switching element 4vp, and the W-phase positive-side switching element 4wp to be in the closed state during the last time T0 / 2. , And generates a pulse signal for controlling the other switching elements to the open state.
- the command voltage in which the voltage vector V1 and the voltage vector V2 shown in FIG. V_ref is obtained.
- the first control unit 75a selects a predetermined voltage vector from a plurality of (eight) voltage vectors V0 to V7, and outputs the selected voltage vector. The time of occurrence can be controlled.
- Second control unit 75b The second control unit 75b performs the second pulse width modulation control PWM2 in the inscribed circle IC1 shown in FIG. 5 and an output area inside the inscribed circle IC1 (hereinafter, referred to as a “second output area”).
- the second pulse width modulation control PWM2 is preferably a pulse width modulation control based on a carrier wave comparison that generates a pulse signal by comparing the magnitude of the carrier wave CW1 with the modulation wave MW1.
- the second control unit 75b performs coordinate conversion from the d-axis-q-axis coordinate system (rotational coordinate system) to the ⁇ -axis- ⁇ -axis coordinate system (stationary coordinate system) in the same manner as the first control unit 75a.
- the second control unit 75b performs two-phase / three-phase conversion to calculate three-phase voltage command values (U-phase voltage command value Vu_ref, V-phase voltage command value Vv_ref, and W-phase voltage command value Vw_ref).
- the U-phase voltage command value Vu_ref refers to a voltage command value in the U-phase direction.
- the V-phase voltage command value Vv_ref refers to a voltage command value in the V-phase direction.
- the W-phase voltage command value Vw_ref refers to a voltage command value in the W-phase direction.
- FIG. 7 shows an example of pulse width modulation control based on carrier wave comparison.
- a broken line L31 shows an example of a change with time of the carrier wave CW1.
- the carrier CW1 for example, a carrier signal that changes linearly with time, such as a triangular wave or a sawtooth wave, can be used.
- the carrier CW1 of the present embodiment is a triangular wave.
- the frequency of carrier wave CW1 is set sufficiently higher than the output frequency of power converter 40.
- a curve L32 shows an example of a temporal change of the modulated wave MW1.
- the modulation wave MW1 is generated based on the three-phase voltage command values (U-phase voltage command value Vu_ref, V-phase voltage command value Vv_ref and W-phase voltage command value Vw_ref) and the DC voltage detection value Vdc_fb, and the modulation of this embodiment is performed.
- the wave MW1 changes with time in a sinusoidal manner.
- a broken line L33 shows an example of a pulse signal generated using the carrier wave CW1 and the modulated wave MW1.
- the second control unit 75b includes, for example, a well-known comparator (not shown), and generates a pulse signal by comparing the magnitude of the carrier wave CW1 with the modulation wave MW1. Specifically, when the modulation wave MW1 indicated by the curve L32 is equal to or lower than the carrier wave CW1 indicated by the broken line L31, the output of the comparator becomes a low level (voltage state equal to or lower than a predetermined voltage value), and the U-phase positive switching element 4 up is controlled to the open state (for example, a section indicated by time T31 in the same figure).
- the output of the comparator becomes a high level (a voltage state exceeding a predetermined voltage value), and the U-phase positive side switching element 4up Is controlled to be in a closed state (for example, a section indicated by a time T32 in the figure).
- a pulse signal indicated by a broken line L33 is generated.
- the second control unit 75b compares the magnitude of the modulated wave (not shown) whose phase is delayed by 120 ° (electrical angle) with respect to the modulated wave MW1 indicated by the curve L32, and the carrier wave CW1, thereby obtaining the V-phase positive electrode.
- a pulse signal for controlling opening and closing of the side switching element 4vp is generated.
- the second control unit 75b compares the magnitude of the modulated wave (not shown) whose phase advances by 120 ° (electrical angle) with respect to the modulated wave MW1 indicated by the curve L32, and the carrier wave CW1, thereby obtaining the W-phase.
- a pulse signal for controlling opening and closing of the positive switching element 4wp is generated.
- the pulse signal of the negative switching element 4xn is a pulse signal obtained by reversing the open and closed states of the pulse signal of the positive switching element 4xp.
- the second control unit 75b can perform pulse width modulation control based on carrier wave comparison and generate a pulse signal.
- the first pulse width modulation control PWM1 of the present embodiment is a pulse width modulation control by space vector modulation that generates a pulse signal by selecting a predetermined voltage vector from a plurality (eight) of voltage vectors V0 to V7. is there.
- the second pulse width modulation control PWM2 is a pulse width modulation control based on carrier wave comparison that generates a pulse signal by comparing the magnitude of the carrier wave CW1 with the modulation wave MW1.
- the pulse width modulation control based on the carrier wave comparison the number of times of switching of a plurality of (six) switching elements (the positive switching element 4xp and the negative switching element 4xn) increases as compared with the pulse width modulation control based on the space vector modulation.
- the motor control device 10 of the present embodiment can improve the efficiency of the power converter 40 at the time of low output (the inscribed circle IC1 shown in FIG. 5 and the second output region inside the inscribed circle IC1). it can.
- the second control unit 75b controls the voltage utilization rate of the DC voltage Vdc input to the power converter 40 such that the six contacts TP1 to TP6 are formed by the regular hexagon RH1 and the inscribed circle IC1 shown in FIG. Is preferably set.
- the dashed circle IC0 shown in the figure indicates the output (vector locus of the command voltage V_ref) of the power converter 40 when the amplitude of the carrier wave CW1 and the amplitude of the modulated wave MW1 match (when the modulation factor is 1). ing.
- the output area outside the circle IC0 is an overmodulation area. Since the armature current of the electric motor 50 is distorted when the overmodulation is performed, the second control unit 75b may improve the voltage utilization rate of the DC voltage Vdc without performing the overmodulation.
- the second control unit 75b fixes the one-phase modulated wave MW1 at every 60 ° (electrical angle) of the three-phase modulated wave MW1, and modulates the other two-phase modulated wave MW1 to thereby reduce the DC voltage.
- the voltage utilization of Vdc can also be improved.
- the second control unit 75b adjusts the DC voltage Vdc input to the power converter 40 so that the six contacts TP1 to TP6 are formed by the regular hexagon RH1 and the inscribed circle IC1 shown in FIG. Voltage utilization can be set.
- the second pulse width modulation control PWM2 is a pulse width modulation control based on carrier wave comparison
- the predetermined position is a position specified by a predetermined contact among the six contacts TP1 to TP6 formed by the regular hexagon RH1 and the inscribed circle IC1 shown in FIG. 5 (rotation angle when the electric motor 50 is a cylindrical electric motor). It is. For example, in the predetermined position ⁇ 1 shown in FIG.
- the line connecting the contact point TP1 and the origin 0 is one of two coordinate axes ( ⁇ axis and ⁇ axis) of the ⁇ axis- ⁇ axis coordinate system (stationary coordinate system). Can be represented by an angle with the coordinate axis ( ⁇ -axis) of, and is specified by the contact point TP1.
- the control changing unit 75c When a predetermined switching condition described later is satisfied and the mover position ⁇ of the mover 52 is at a predetermined position (for example, the predetermined position ⁇ 1), the control changing unit 75c performs the first pulse width modulation control PWM1 and the second pulse width modulation control PWM1. Switching from one of the pulse width modulation control PWM2 to the other.
- the control changing unit 75c can switch the pulse width modulation control at any of the six contacts TP1 to TP6, and the contacts are not limited. Further, the contact when switching from the first pulse width modulation control PWM1 to the second pulse width modulation control PWM2 is the same as the contact when switching from the second pulse width modulation control PWM2 to the first pulse width modulation control PWM1. May be different.
- the output range of the power converter 40 increases in the first output region (the regular hexagon RH1 shown in FIG. 5 and the inscribed region inscribed in the regular hexagon RH1). (The output area between the circle IC1). Conversely, as the input current Iin of the motor 50 decreases, the output range of the power converter 40 approaches the second output region (the inscribed circle IC1 and the output region inside the inscribed circle IC1).
- the above description regarding the input current Iin of the electric motor 50 can be similarly applied to the output torque Tout of the electric motor 50.
- the control change unit 75c changes the second pulse width modulation control PWM2 to the first pulse width modulation control. It is preferable to switch to PWM1. Further, when the input current Iin or the output torque Tout of the electric motor 50 becomes smaller than the predetermined threshold TH1, the control change unit 75c preferably switches from the first pulse width modulation control PWM1 to the second pulse width modulation control PWM2. . Thereby, the motor control device 10 can switch the pulse width modulation control according to the load state of the motor 50 based on the input current Iin or the output torque Tout of the motor 50.
- the control change unit 75c of the present embodiment uses the input current calculation value Iin_fb as the input current Iin of the electric motor 50.
- the control change unit 75c uses the torque command value Trq_ref as the output torque Tout of the electric motor 50.
- the predetermined threshold value TH1 is, for example, the input current Iin or the output torque Tout of the electric motor 50 when the output of the power converter 40 (the vector locus of the command voltage V_ref) is represented by the inscribed circle IC1 shown in FIG. Can be set.
- the predetermined threshold value TH1 can be obtained in advance by, for example, simulation, measurement using an actual device, or the like.
- control change unit 75c performs predetermined switching between switching from the second pulse width modulation control PWM2 to the first pulse width modulation control PWM1 and switching from the first pulse width modulation control PWM1 to the second pulse width modulation control PWM2. It is preferable to have a hysteresis width HY0 of Thereby, the motor control device 10 can suppress hunting in switching of the pulse width modulation control.
- the control change unit 75c when the input current Iin or the output torque Tout of the electric motor 50 becomes equal to or more than the first predetermined threshold TH11, the control change unit 75c outputs the first pulse from the second pulse width modulation control PWM2. Switch to width modulation control PWM1 (see arrow L41).
- the control changing unit 75c switches from the first pulse width modulation control PWM1 to the second pulse width modulation control PWM2 (arrow). L42).
- the hysteresis width HY0 is a subtraction value obtained by subtracting the second predetermined threshold TH12 from the first predetermined threshold TH11. Note that the hysteresis width HY0 is set such that pulse width modulation control can be switched at a predetermined position specified by a predetermined one of the six contacts TP1 to TP6.
- the hysteresis width HY0 can be obtained in advance by, for example, simulation, measurement using an actual device, or the like.
- the first output area (the output area between the regular hexagon RH1 shown in FIG. 5 and the inscribed circle IC1 inscribed in the regular hexagon RH1) is the second output area (the inscribed circle IC1 and the output inside the inscribed circle IC1). Area), the voltage utilization rate of the DC voltage Vdc input to the power converter 40 is higher. Therefore, the motor control device 10 can facilitate the flow of the armature current at the time of high output (the first output region between the regular hexagon RH1 and the inscribed circle IC1 inscribed in the regular hexagon RH1 shown in FIG. 5). As a result, the output torque Tout (powering torque) of the electric motor 50 can be increased.
- the control change unit 75c of the present embodiment uses the calculated rotation speed Vc_fb as the rotation speed Vc of the electric motor 50.
- the method of setting the predetermined threshold value TH1 can be similarly applied to the predetermined rotation speed TH2.
- the motor 50 is designed so that the maximum value of the rotation speed Vc is smaller than the rated rotation speed VR0. Therefore, it is preferable that the predetermined rotation speed TH2 is the rated rotation speed VR0 when the output of the electric motor 50 is the rated output PR0. Thereby, the motor control device 10 can set the second output area (the inscribed circle IC1 and the output area inside the inscribed circle IC1 shown in FIG. 5) to the output area of the rated output PR0 or less.
- the rated output PR0 and the rated rotation speed VR0 are constants determined by the electric motor 50.
- the control change unit 75c changes the second pulse width modulation control PWM2 to the first pulse width modulation control PWM1. (See arrow L43). Further, the control changing unit 75c can also switch from the first pulse width modulation control PWM1 to the second pulse width modulation control PWM2 when the rotation speed Vc of the electric motor 50 becomes lower than the second predetermined rotation speed TH22 (arrow). L44). Thereby, the motor control device 10 can suppress hunting in switching of the pulse width modulation control.
- the hysteresis width HY0 is a subtraction value obtained by subtracting the second predetermined rotation speed TH22 from the first predetermined rotation speed TH21. What has been described about the method of setting the hysteresis width HY0 can be similarly applied to the present embodiment.
- Second Modification For example, it is assumed that the supply state of the DC power from the power supply 20 shown in FIG. 1 becomes unstable and the DC voltage Vdc input to the power converter 40 decreases. At this time, there is a case where it is desired to increase the voltage utilization rate of the DC voltage Vdc and continue driving the electric motor 50 as much as possible.
- the control change unit 75c when the DC voltage Vdc input to the power converter 40 becomes lower than the predetermined voltage TH3, the control change unit 75c outputs the first pulse width from the second pulse width modulation control PWM2. It is preferable to switch to the modulation control PWM1.
- the control change unit 75c preferably switches from the first pulse width modulation control PWM1 to the second pulse width modulation control PWM2 when the DC voltage Vdc input to the power converter 40 becomes equal to or higher than the predetermined voltage TH3. is there.
- the first output area (the output area between the regular hexagon RH1 and the inscribed circle IC1 inscribed in the regular hexagon RH1 shown in FIG. 5) is the second output area (the inscribed circle IC1 and the inscribed circle IC1).
- the voltage utilization rate of the DC voltage Vdc is higher than that of the output area inside the circle IC1). Therefore, motor controller 10 can easily continue driving motor 50 when DC voltage Vdc input to power converter 40 decreases.
- the control change unit 75c of the present embodiment uses the detected DC voltage value Vdc_fb as the DC voltage Vdc input to the power converter 40.
- the method of setting the predetermined threshold value TH1 can be similarly applied to the DC voltage Vdc.
- the control changing unit 75c when the DC voltage Vdc input to the power converter 40 becomes lower than the first predetermined voltage TH31, the control changing unit 75c outputs the first pulse width modulation control PWM2 from the second pulse width modulation control PWM2. It is also possible to switch to the width modulation control PWM1 (see arrow L45). Further, when the DC voltage Vdc input to the power converter 40 becomes equal to or higher than the second predetermined voltage TH32, the control changing unit 75c switches from the first pulse width modulation control PWM1 to the second pulse width modulation control PWM2. (See arrow L46). Thereby, the motor control device 10 can suppress hunting in switching of the pulse width modulation control.
- the hysteresis width HY0 is a subtraction value obtained by subtracting the first predetermined voltage TH31 from the second predetermined voltage TH32. What has been described about the method of setting the hysteresis width HY0 can be similarly applied to the present embodiment.
- the first pulse width modulation control PWM1 and the second pulse width modulation control PWM2 may be pulse width modulation control based on carrier wave comparison that generates a pulse signal by comparing the magnitude of the carrier wave CW1 with the modulation wave MW1. good.
- the voltage utilization of the DC voltage Vdc input to the power converter 40 is set higher than in the second pulse width modulation control PWM2.
- the second control unit 75b preferably sets the voltage utilization of the DC voltage Vdc input to the power converter 40 so that the six contacts TP1 to TP6 are formed by the regular hexagon RH1 and the inscribed circle IC1. It is.
- the motor control device 10 of the present embodiment can fix the switching frequency by the frequency of the carrier wave CW1, and can reduce the calculation load when the switching frequency is increased as compared with the embodiment.
- the first controller 75a and the second controller 75b can perform various pulse width modulation controls. At least one of the first control unit 75a and the second control unit 75b can perform, for example, pulse width modulation control based on instantaneous value comparison. In pulse width modulation control based on instantaneous value comparison, an error between an output and a command value is input to a hysteresis comparator, and tracking control is performed so that the error falls within a threshold value of the hysteresis comparator.
- the motor control device 10 can perform various vector controls.
- the motor control device 10 can include, for example, a decoupling control unit.
- the decoupling control unit cancels the interference of the d-axis current Id on the q-axis voltage Vq ( ⁇ ⁇ Ld ⁇ Id shown in Expression (1)), and the interference of the q-axis current Iq on the d-axis voltage Vd (Expression ( - ⁇ ⁇ Lq ⁇ Iq) shown in 1) is canceled.
- the motor control device 10 includes a maximum torque control for controlling the output torque to be the maximum for the same current, a power factor 1 control for controlling the power factor to 1, and a d-axis for controlling the d-axis current Id to zero. Current zero control or the like can also be performed.
- the motor control method includes a first control step, a second control step, and a control change step.
- the first pulse width modulation control PWM1 is performed in an output region between a regular hexagon RH1 indicating the outer edge of the output range of the power converter 40 and an inscribed circle IC1 inscribed in the regular hexagon RH1.
- the second pulse width modulation control PWM2 is performed in the inscribed circle IC1 and the output region inside the inscribed circle IC1.
- the control change step is performed when the mover 52 of the electric motor 50 is located at a predetermined position specified by a predetermined one of the six contacts TP1 to TP6 formed by the regular hexagon RH1 and the inscribed circle IC1. Switching from one of the pulse width modulation control PWM1 and the second pulse width modulation control PWM2 to the other. That is, the first control step corresponds to the control performed by the first control unit 75a. The second control step corresponds to the control performed by the second control unit 75b. The control change step corresponds to control performed by the control change unit 75c.
- the control change unit 75c is provided.
- the mover 52 of the electric motor 50 is located at a predetermined position specified by a predetermined contact among the six contacts TP1 to TP6 formed by the regular hexagon RH1 and the inscribed circle IC1, Switching from one of the one pulse width modulation control PWM1 and the second pulse width modulation control PWM2 to the other.
- the output command by the first pulse width modulation control PWM1 matches the output command by the second pulse width modulation control PWM2. Therefore, the motor control device 10 can suppress the torque fluctuation caused by the switching of the pulse width modulation control. What has been described above for the motor control device 10 can be similarly applied to the motor control method.
- 10 electric motor control device
- 40 electric power converter
- 50 electric motor
- 52 mover
- 75a first control unit
- 75b second control unit
- 75c control change unit
- RH1 regular hexagon
- IC1 inscribed circle
- TP1 to TP6 contact point
- ⁇ 1 predetermined position
- PWM1 first pulse width modulation control
- PWM2 second pulse width modulation control
- V0 to V7 voltage vector
- CW1 carrier wave
- MW1 modulated wave
- Iin input current
- Tout output torque
- TH1 predetermined threshold
- Vc rotation speed
- TH2 predetermined rotation speed
- PR0 Rated output
- VR0 Rated rotation speed
- Vdc DC voltage
- TH3 predetermined voltage
- HY0 hysteresis width.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
電動機制御装置は、第一制御部と、第二制御部と、制御変更部とを備える。第一制御部は、電力変換器の出力範囲の外縁を示す正六角形と正六角形に内接する内接円との間の出力領域において第一パルス幅変調制御を行う。第二制御部は、内接円および内接円より内側の出力領域において第二パルス幅変調制御を行う。制御変更部は、電動機の可動子が正六角形および内接円によって形成される六つの接点のうちの所定の接点によって特定される所定位置に位置するときに、第一パルス幅変調制御および第二パルス幅変調制御のうちの一方から他方に切り替える。
Description
本明細書は、電動機制御装置および電動機制御方法に関する技術を開示する。
特許文献1に記載のハイブリッド装置は、一次鎖交磁束の軌跡を円形にする円形モードと、一次鎖交磁束の軌跡を六角形にする六角形モードとをモード切り替え信号によって切り替える。これにより、特許文献1に記載のハイブリッド装置は、不足する力行トルクを補い、駆動領域を拡大しようとしている。
しかしながら、特許文献1は、円形モードと六角形モードとを切り替えるときの可動子の位置について開示するものではない。そのため、特許文献1に記載のハイブリッド装置は、可動子の位置によっては、モード切り替えによって生じるトルク変動が増大する可能性がある。
このような事情に鑑みて、本明細書は、パルス幅変調制御の切り替えによって生じるトルク変動を抑制可能な電動機制御装置および電動機制御方法を開示する。
本明細書は、第一制御部と、第二制御部と、制御変更部とを備える電動機制御装置を開示する。前記第一制御部は、電力変換器の出力範囲の外縁を示す正六角形と前記正六角形に内接する内接円との間の出力領域において第一パルス幅変調制御を行う。前記第二制御部は、前記内接円および前記内接円より内側の出力領域において第二パルス幅変調制御を行う。前記制御変更部は、電動機の可動子が前記正六角形および前記内接円によって形成される六つの接点のうちの所定の接点によって特定される所定位置に位置するときに、前記第一パルス幅変調制御および前記第二パルス幅変調制御のうちの一方から他方に切り替える。
また、本明細書は、第一制御工程と、第二制御工程と、制御変更工程とを備える電動機制御方法を開示する。前記第一制御工程は、電力変換器の出力範囲の外縁を示す正六角形と前記正六角形に内接する内接円との間の出力領域において第一パルス幅変調制御を行う。前記第二制御工程は、前記内接円および前記内接円より内側の出力領域において第二パルス幅変調制御を行う。前記制御変更工程は、電動機の可動子が前記正六角形および前記内接円によって形成される六つの接点のうちの所定の接点によって特定される所定位置に位置するときに、前記第一パルス幅変調制御および前記第二パルス幅変調制御のうちの一方から他方に切り替える。
上記の電動機制御装置によれば、制御変更部を備える。制御変更部は、電動機の可動子が正六角形および内接円によって形成される六つの接点のうちの所定の接点によって特定される所定位置に位置するときに、第一パルス幅変調制御および第二パルス幅変調制御のうちの一方から他方に切り替える。電動機の可動子が所定の接点によって特定される所定位置に位置するときには、第一パルス幅変調制御による出力指令と、第二パルス幅変調制御による出力指令とが一致する。よって、上記の電動機制御装置は、パルス幅変調制御の切り替えによって生じるトルク変動を抑制することができる。電動機制御装置について上述したことは、電動機制御方法についても同様に言える。
1.実施形態
1-1.電動機制御装置10の構成例
図1に示すように、本実施形態の電動機制御装置10は、電源20と、平滑コンデンサ30と、電力変換器40と、制御装置60とを備えている。また、電力変換器40には、電動機50が電気的に接続されている。
1-1.電動機制御装置10の構成例
図1に示すように、本実施形態の電動機制御装置10は、電源20と、平滑コンデンサ30と、電力変換器40と、制御装置60とを備えている。また、電力変換器40には、電動機50が電気的に接続されている。
電源20は、直流電力を出力する。電源20は、直流電力を出力することができれば良く、種々の形態をとり得る。電源20は、例えば、鉛蓄電池(バッテリ)、リチウムイオン電池、発電装置(例えば、燃料電池)などを用いることができる。また、電源20は、例えば、公知の昇圧コンバータなどを用いて、低電圧の直流電力を昇圧することもできる。
平滑コンデンサ30は、電源20から出力された直流電力を平滑する。電源20の正極側20pは、平滑コンデンサ30の正極側30pと接続されている。電源20の負極側20nは、平滑コンデンサ30の負極側30nと接続されており、パワーグランド(電源20を含む高電圧側の回路の基準電位)と接続されている。平滑コンデンサ30は、例えば、電解コンデンサを用いることができる。電源20から供給された直流電力は、平滑コンデンサ30によって平滑されてリップルが低減される。
電力変換器40は、電源20から出力された直流電力を交流電力に変換し、変換された交流電力を電動機50に出力する。図1に示すように、電力変換器40は、複数(6つ)のスイッチング素子(本実施形態では、三組の一対のスイッチング素子41)を備えており、これらは、フルブリッジ接続されている。三組の一対のスイッチング素子41の各々は、電源20の正極側20pに接続される正極側スイッチング素子4xpと、電源20の負極側20nに接続される負極側スイッチング素子4xnとが直列接続されている。なお、本実施形態の電動機50は三相機であり、xは、u、v、wのうちのいずれかである。例えば、正極側スイッチング素子4upは、U相の正極側スイッチング素子を示しており、負極側スイッチング素子4unは、U相の負極側スイッチング素子を示している。
正極側スイッチング素子4xpおよび負極側スイッチング素子4xnは、公知の電力用スイッチング素子を用いることができる。正極側スイッチング素子4xpおよび負極側スイッチング素子4xnは、例えば、公知の絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)を用いることができる。また、正極側スイッチング素子4xpおよび負極側スイッチング素子4xnは、例えば、公知の電界効果トランジスタ(FET:Field Effect Transistor)を用いることもできる。
図1に示すように、複数(3つ)の正極側スイッチング素子4xpの各々は、制御端子4gと、入力端子4cと、出力端子4eと、還流ダイオード4dとを備えている。例えば、絶縁ゲートバイポーラトランジスタ(IGBT)では、制御端子4gは、ゲート端子に相当し、入力端子4cは、コレクタ端子に相当し、出力端子4eは、エミッタ端子に相当する。電界効果トランジスタ(FET)では、制御端子4gは、ゲート端子に相当し、入力端子4cは、ドレイン端子に相当し、出力端子4eは、ソース端子に相当する。制御端子4gは、駆動回路61bを介して、制御装置60と接続されている。複数(3つ)の正極側スイッチング素子4xpの各々は、制御装置60から出力される駆動信号(パルス信号)に基づいて開閉制御される。
制御端子4gと出力端子4eとの間の電圧を制御電圧Vgeとする。例えば、制御電圧Vgeがローレベル(所定電圧値以下の状態)のときには、入力端子4cと出力端子4eとの間が電気的に遮断された開状態に制御される。制御電圧Vgeがハイレベル(所定電圧値を超えている状態)のときには、入力端子4cと出力端子4eとの間が電気的に導通された閉状態に制御される。
還流ダイオード4dは、例えば、スイッチング素子のボディダイオード(寄生ダイオード)を用いることができる。また、ボディダイオードの代わりに、還流ダイオードを別途設けて、入力端子4cと出力端子4eとの間に並列接続することもできる。還流ダイオード4dは、スイッチング素子が開状態のときに、出力端子4e側から入力端子4c側に向かう電流経路を形成する。これにより、スイッチング素子の開閉に伴って生じる逆電流から当該スイッチング素子を保護することができる。
複数(3つ)の正極側スイッチング素子4xpについて上述したことは、複数(3つ)の負極側スイッチング素子4xnについても同様に言える。制御装置60は、電力変換器40の複数(6つ)のスイッチング素子(三組の一対のスイッチング素子41を構成する正極側スイッチング素子4xpおよび負極側スイッチング素子4xn)を開閉制御して、電力変換器40を制御する。これにより、電力変換器40は、電源20から出力された直流電力を交流電力に変換する。
図1に示すように、正極側スイッチング素子4xpと負極側スイッチング素子4xnとの間には、出力端子42xが設けられている。出力端子42xと、電動機50の相端子43xとの間は、電力ケーブル44xによって電気的に接続されている。電力ケーブル44xは、電力変換器40によって変換された交流電力を電動機50に給電する。なお、xは、u、v、wのうちのいずれかである。
電動機50は、固定子51と可動子52とを備えている。本実施形態の電動機50は、固定子51および可動子52が同軸に配設されるラジアル空隙型の円筒状電動機である。なお、電動機50は、アキシャル空隙型の円筒状電動機であっても良い。また、電動機50は、可動子52が固定子51に対して直線状に移動するリニア電動機であっても良い。いずれの場合も、固定子51および可動子52のうちの一方は、コイル(U相コイル51u、V相コイル51v、W相コイル51w)を備え、固定子51および可動子52のうちの他方は、永久磁石(図示略)を備えていると良い。図1に示すように、コイル(U相コイル51u、V相コイル51v、W相コイル51w)は、Y結線で接続することができる。同図では、中性点が中性点51nで示されている。なお、コイル(U相コイル51u、V相コイル51v、W相コイル51w)は、Δ結線で接続することもできる。
制御装置60は、公知の中央演算装置および記憶装置を備えており、制御回路が構成されている(いずれも図示略)。中央演算装置は、CPU(Central Processing Unit)であり、種々の演算処理を行うことができる。記憶装置は、第一記憶装置および第二記憶装置を備えている。第一記憶装置は、揮発性の記憶装置(RAM:Random Access Memory)であり、第二記憶装置は、不揮発性の記憶装置(ROM:Read Only Memory)である。制御装置60は、電力変換器40を含む電力変換システムを制御する。また、制御装置60は、電力変換器40の複数(6つ)のスイッチング素子(正極側スイッチング素子4xpおよび負極側スイッチング素子4xn)をパルス幅変調(PWM:Pulse Width Modulation)制御によって開閉制御する。
図1に示すように、制御装置60は、直流電圧検出器61aと、駆動回路61bと、電流検出器61cと、位置検出器61dとを備えている。直流電圧検出器61aは、平滑コンデンサ30によって平滑された直流電力の直流電圧Vdcを検出する。具体的には、直流電圧検出器61aは、例えば、抵抗値が既知の複数の抵抗器によって当該直流電圧Vdcを分圧して、分圧された直流電圧を制御装置60に出力する。制御装置60は、公知のA/D変換器(図示略)などによって分圧された直流電圧を知得し、平滑コンデンサ30によって平滑された直流電力の直流電圧Vdc(電力変換器40に入力される直流電圧Vdc)を知得することができる。本明細書では、直流電圧検出器61aによって検出された直流電圧Vdcを直流電圧検出値Vdc_fbという。
駆動回路61bは、制御装置60から出力される駆動信号を増幅する駆動回路であり、例えば、公知のドライバ回路を用いることができる。なお、図1では、電力変換器40の各スイッチング素子の制御端子4gと、駆動回路61bとの間の接続は、記載が省略されている。
電流検出器61cは、電力変換器40から出力される出力電流を検出する。本実施形態では、電流検出器61cは、電力ケーブル44uおよび電力ケーブル44vに設けられており、U相電流IuおよびV相電流Ivを検出する。本明細書では、電流検出器61cによって検出されたU相電流IuをU相電流検出値Iu_fbといい、電流検出器61cによって検出されたV相電流IvをV相電流検出値Iv_fbという。なお、W相電流Iwは、ゼロからU相電流検出値Iu_fbおよびV相電流検出値Iv_fbをそれぞれ減じて算出することができる。電流検出器61cは、公知の電流検出器(例えば、カレントトランスを使用した電流検出器、シャント抵抗器を使用した電流検出器など)を用いることができる。
位置検出器61dは、固定子51に対する可動子52の位置を検出する。位置検出器61dは、公知の位置検出器(例えば、レゾルバ、エンコーダ、ホールセンサなど)を用いることができる。本明細書では、位置検出器61dによって検出された可動子52の位置(電動機50が円筒状電動機の場合、回転角)を可動子位置θという。なお、制御装置60は、上述した検出器以外にも種々の検出器を設けることができる。
制御装置60の中央演算装置は、第二記憶装置に記憶されている電力変換器40の制御プログラムを第一記憶装置に読み出して、制御プログラムを実行する。また、上述した検出値などは、絶縁部(図示略)を介して、制御装置60に入力される。中央演算装置は、絶縁部および図1に示す駆動回路61bを介して、電力変換器40の各スイッチング素子に開閉信号を出力して、電力変換器40を開閉制御する。なお、絶縁部は、制御装置60を含む低電圧側の回路と、電源20を含む高電圧側の回路とを電気的に絶縁する。絶縁部は、例えば、公知のフォトカプラなどを用いることができる。
1-2.制御装置60による制御例
図2に示すように、本実施形態の制御装置60は、制御ブロックとして捉えると、三相/二相変換部71と、回転速度算出部72と、電流指令値設定部73と、電流制御部74と、パルス幅変調制御部75とを備えている。
図2に示すように、本実施形態の制御装置60は、制御ブロックとして捉えると、三相/二相変換部71と、回転速度算出部72と、電流指令値設定部73と、電流制御部74と、パルス幅変調制御部75とを備えている。
電動機50の可動子磁極(本実施形態では、永久磁石)の主磁束方向をd軸方向とし、d軸方向と電気的に直交する方向をq軸方向とする。例えば、永久磁石が可動子52に埋設されている埋込磁石型の同期電動機のd軸-q軸座標系における電圧方程式は、式(1)で表すことができる。
但し、d軸方向の電圧は、d軸電圧Vdで表し、q軸方向の電圧は、q軸電圧Vqで表す。また、コイル(U相コイル51u、V相コイル51v、W相コイル51w)の各巻線抵抗は、巻線抵抗Rで表す。さらに、d軸インダクタンスは、d軸インダクタンスLdで表し、q軸インダクタンスは、q軸インダクタンスLqで表す。また、d軸方向の電流は、d軸電流Idで表し、q軸方向の電流は、q軸電流Iqで表す。さらに、可動子52の角速度は、角速度ωで表し、誘起電圧定数は、誘起電圧定数Φで表す。また、微分演算子は、微分演算子p(=d/dt)で表す。
制御装置60は、d軸電流指令値Id_refおよびq軸電流指令値Iq_refをそれぞれ設定して、電力変換器40を制御する。具体的には、制御装置60は、d軸電流指令値Id_refおよびq軸電流指令値Iq_refに基づいてd軸電圧指令値Vd_refおよびq軸電圧指令値Vq_refを設定して、電力変換器40を制御する。但し、d軸電流指令値Id_refは、d軸方向の電流指令値をいい、q軸電流指令値Iq_refは、q軸方向の電流指令値をいう。また、d軸電圧指令値Vd_refは、d軸方向の電圧指令値をいい、q軸電圧指令値Vq_refは、q軸方向の電圧指令値をいう。
1-2-1.三相/二相変換部71
三相/二相変換部71は、d軸電流算出値Id_fbおよびq軸電流算出値Iq_fb、並びに、入力電流算出値Iin_fbを算出する。但し、d軸電流算出値Id_fbは、d軸方向の電流算出値をいい、q軸電流算出値Iq_fbは、q軸方向の電流算出値をいう。入力電流算出値Iin_fbは、電動機50に入力される入力電流Iinの大きさ(絶対値)をいう。図2に示すように、三相/二相変換部71には、電流検出器61cによって検出されたU相電流検出値Iu_fbおよびV相電流検出値Iv_fbが入力される。既述したように、W相電流Iwは、ゼロからU相電流検出値Iu_fbおよびV相電流検出値Iv_fbをそれぞれ減じて算出することができる。W相電流Iwの検出値(算出値)は、W相電流検出値Iw_fbとする。また、三相/二相変換部71には、位置検出器61dによって検出された可動子位置θが入力される。
三相/二相変換部71は、d軸電流算出値Id_fbおよびq軸電流算出値Iq_fb、並びに、入力電流算出値Iin_fbを算出する。但し、d軸電流算出値Id_fbは、d軸方向の電流算出値をいい、q軸電流算出値Iq_fbは、q軸方向の電流算出値をいう。入力電流算出値Iin_fbは、電動機50に入力される入力電流Iinの大きさ(絶対値)をいう。図2に示すように、三相/二相変換部71には、電流検出器61cによって検出されたU相電流検出値Iu_fbおよびV相電流検出値Iv_fbが入力される。既述したように、W相電流Iwは、ゼロからU相電流検出値Iu_fbおよびV相電流検出値Iv_fbをそれぞれ減じて算出することができる。W相電流Iwの検出値(算出値)は、W相電流検出値Iw_fbとする。また、三相/二相変換部71には、位置検出器61dによって検出された可動子位置θが入力される。
三相/二相変換部71は、U相電流検出値Iu_fb、V相電流検出値Iv_fbおよびW相電流検出値Iw_fb、並びに、可動子位置θを用いて、式(2)に基づいてd軸電流算出値Id_fbおよびq軸電流算出値Iq_fbを算出する。また、三相/二相変換部71は、d軸電流算出値Id_fbの二乗と、q軸電流算出値Iq_fbの二乗とを加算した二乗和の平方根を算出して、入力電流算出値Iin_fbを算出する。なお、可動子位置θは、例えば、U相電流検出値Iu_fb、V相電流検出値Iv_fbおよびW相電流検出値Iw_fbの経時変化から推定することもできる。また、可動子位置θは、例えば、各相の誘起電圧の経時変化から推定することもできる。
1-2-2.回転速度算出部72
回転速度算出部72は、電動機50(可動子52)の回転速度Vcを算出する。図2に示すように、回転速度算出部72には、位置検出器61dによって検出された可動子位置θが入力される。回転速度算出部72は、例えば、可動子位置θを時間微分して回転速度Vcを算出することができる。なお、制御装置60は、公知の回転速度検出器を用いて、回転速度Vcを測定することもできる。本明細書では、回転速度算出部72によって算出された回転速度Vcを回転速度算出値Vc_fbという。
回転速度算出部72は、電動機50(可動子52)の回転速度Vcを算出する。図2に示すように、回転速度算出部72には、位置検出器61dによって検出された可動子位置θが入力される。回転速度算出部72は、例えば、可動子位置θを時間微分して回転速度Vcを算出することができる。なお、制御装置60は、公知の回転速度検出器を用いて、回転速度Vcを測定することもできる。本明細書では、回転速度算出部72によって算出された回転速度Vcを回転速度算出値Vc_fbという。
1-2-3.電流指令値設定部73
電流指令値設定部73は、d軸電流指令値Id_refおよびq軸電流指令値Iq_refを算出する。d軸電流指令値Id_refおよびq軸電流指令値Iq_refの算出は、種々の方法をとり得る。電流指令値設定部73は、例えば、所要トルクに対して電機子電流が最小になるように(損失が最小になるように)、d軸電流指令値Id_refおよびq軸電流指令値Iq_refを設定することができる(最大効率制御)。
電流指令値設定部73は、d軸電流指令値Id_refおよびq軸電流指令値Iq_refを算出する。d軸電流指令値Id_refおよびq軸電流指令値Iq_refの算出は、種々の方法をとり得る。電流指令値設定部73は、例えば、所要トルクに対して電機子電流が最小になるように(損失が最小になるように)、d軸電流指令値Id_refおよびq軸電流指令値Iq_refを設定することができる(最大効率制御)。
図3は、トルクと電機子電流の関係の一例を示している。曲線L11は、所要トルク(トルク指令値Trq_ref)が一定のときのd軸電流指令値Id_refとq軸電流指令値Iq_refの関係(電機子電流の電流ベクトルの関係)の一例を示している。電機子電流の電流ベクトルが曲線L11上に設定されることにより、所要トルクが得られる。矢印L12は、曲線L11で示す所要トルクを得るときに電機子電流が最小になる電流ベクトルを示している。直線L13は、曲線L11の極値における接線を示している。つまり、電機子電流の電流ベクトルが直線L13で示す接線と直交するときに、所要トルクを得る際の電機子電流が最小になる。
所要トルクが増加するとトルク指令値Trq_refが増大され、曲線L11は、曲線L11aに移動する。矢印L12aは、このときに電機子電流が最小になる電流ベクトルを示している。逆に、所要トルクが減少するとトルク指令値Trq_refが低減され、曲線L11は、曲線L11bに移動する。矢印L12bは、このときに電機子電流が最小になる電流ベクトルを示している。なお、同図の横軸は、d軸を示し、縦軸は、q軸を示している。
制御装置60は、所要トルクに応じて、トルク指令値Trq_refを設定する。図2に示すように、電流指令値設定部73には、トルク指令値Trq_refが入力される。電流指令値設定部73は、トルク指令値Trq_refに対して電機子電流が最小になるように、d軸電流指令値Id_refおよびq軸電流指令値Iq_refを設定する。所要トルク(トルク指令値Trq_ref)に対応するd軸電流指令値Id_refおよびq軸電流指令値Iq_refは、予め算出され、例えば、マップ、テーブル、関係式(多項式)などに変換されて、第二記憶装置に記憶されている。
1-2-4.電流制御部74
電流制御部74は、d軸電流指令値Id_refに基づいて、d軸電圧指令値Vd_refを算出する。また、電流制御部74は、q軸電流指令値Iq_refに基づいて、q軸電圧指令値Vq_refを算出する。具体的には、d軸電圧指令値Vd_refは、d軸電流算出値Id_fbがd軸電流指令値Id_refと一致するように算出される。また、q軸電圧指令値Vq_refは、q軸電流算出値Iq_fbがq軸電流指令値Iq_refと一致するように算出される。電流制御部74は、d軸電圧指令値Vd_refおよびq軸電圧指令値Vq_refを算出することができれば良く、種々の形態をとり得る。
電流制御部74は、d軸電流指令値Id_refに基づいて、d軸電圧指令値Vd_refを算出する。また、電流制御部74は、q軸電流指令値Iq_refに基づいて、q軸電圧指令値Vq_refを算出する。具体的には、d軸電圧指令値Vd_refは、d軸電流算出値Id_fbがd軸電流指令値Id_refと一致するように算出される。また、q軸電圧指令値Vq_refは、q軸電流算出値Iq_fbがq軸電流指令値Iq_refと一致するように算出される。電流制御部74は、d軸電圧指令値Vd_refおよびq軸電圧指令値Vq_refを算出することができれば良く、種々の形態をとり得る。
図2に示すように、本実施形態の電流制御部74は、減算器74aと、PI制御部74bと、減算器74cと、PI制御部74dとを備えている。減算器74aには、d軸電流指令値Id_refと、d軸電流算出値Id_fbとが入力される。減算器74aは、d軸電流指令値Id_refからd軸電流算出値Id_fbを減じて偏差ΔIdを算出する。減算器74aによって算出された偏差ΔIdは、PI制御部74bに対して出力される。本実施形態では、PI制御部74bは、d軸電流算出値Id_fbがd軸電流指令値Id_refと一致するように、比例制御および積分制御を行う。
PI制御部74bは、比例演算器74b1と、積分演算器74b2と、加算器74b3とを備えている。比例演算器74b1は、偏差ΔIdに比例ゲインKpdを乗じた演算結果を出力する。積分演算器74b2は、偏差ΔIdを積分した積分値に積分ゲインKidを乗じた演算結果を出力する。加算器74b3は、比例演算器74b1の演算結果と、積分演算器74b2の演算結果とを加算する。そして、PI制御部74bは、加算器74b3の演算結果をd軸電圧指令値Vd_refとして出力する。なお、PI制御部74bは、偏差ΔIdを微分した微分値に微分ゲインを乗じた演算結果を出力する微分演算器を備えることもできる。つまり、PI制御部74bは、比例制御、積分制御および微分制御を行うPID制御部とすることもできる。
減算器74cには、q軸電流指令値Iq_refと、q軸電流算出値Iq_fbとが入力される。減算器74cは、q軸電流指令値Iq_refからq軸電流算出値Iq_fbを減じて偏差ΔIqを算出する。減算器74cによって算出された偏差ΔIqは、PI制御部74dに対して出力される。本実施形態では、PI制御部74dは、q軸電流算出値Iq_fbがq軸電流指令値Iq_refと一致するように、比例制御および積分制御を行う。
PI制御部74dは、比例演算器74d1と、積分演算器74d2と、加算器74d3とを備えている。比例演算器74d1は、偏差ΔIqに比例ゲインKpqを乗じた演算結果を出力する。積分演算器74d2は、偏差ΔIqを積分した積分値に積分ゲインKiqを乗じた演算結果を出力する。加算器74d3は、比例演算器74d1の演算結果と、積分演算器74d2の演算結果とを加算する。そして、PI制御部74dは、加算器74d3の演算結果をq軸電圧指令値Vq_refとして出力する。なお、PI制御部74dは、PI制御部74bと同様に、偏差ΔIqを微分した微分値に微分ゲインを乗じた演算結果を出力する微分演算器を備えることもできる。
このように、電流制御部74は、例えば、比例制御、積分制御および微分制御のうちの少なくとも比例制御および積分制御によって、d軸電圧指令値Vd_refおよびq軸電圧指令値Vq_refを算出することができる。なお、d軸電圧指令値Vd_refは、比例ゲインKpdおよび積分ゲインKidを用いて、式(3)で表すことができる。また、q軸電圧指令値Vq_refは、比例ゲインKpqおよび積分ゲインKiqを用いて、式(4)で表すことができる。いずれもラプラス演算子は、ラプラス演算子sで表す。
1-2-5.パルス幅変調制御部75
パルス幅変調制御部75は、電力変換器40の複数(6つ)のスイッチング素子(正極側スイッチング素子4xpおよび負極側スイッチング素子4xn)の開閉信号(パルス信号)を生成する。図2に示すように、パルス幅変調制御部75には、電流制御部74によって算出されたd軸電圧指令値Vd_refおよびq軸電圧指令値Vq_refが入力される。また、パルス幅変調制御部75には、位置検出器61dによって検出された可動子位置θが入力される。
パルス幅変調制御部75は、電力変換器40の複数(6つ)のスイッチング素子(正極側スイッチング素子4xpおよび負極側スイッチング素子4xn)の開閉信号(パルス信号)を生成する。図2に示すように、パルス幅変調制御部75には、電流制御部74によって算出されたd軸電圧指令値Vd_refおよびq軸電圧指令値Vq_refが入力される。また、パルス幅変調制御部75には、位置検出器61dによって検出された可動子位置θが入力される。
さらに、パルス幅変調制御部75には、三相/二相変換部71によって算出された電動機50の入力電流算出値Iin_fbが入力される。また、パルス幅変調制御部75には、回転速度算出部72によって算出された回転速度算出値Vc_fbが入力される。さらに、パルス幅変調制御部75には、直流電圧検出器61aによって検出された直流電圧検出値Vdc_fbが入力される。
1-3.パルス幅変調制御部75の詳細
図4に示すように、パルス幅変調制御部75は、第一制御部75aと、第二制御部75bと、制御変更部75cとを備えている。
図4に示すように、パルス幅変調制御部75は、第一制御部75aと、第二制御部75bと、制御変更部75cとを備えている。
1-3-1.第一制御部75a
図5は、電力変換器40の出力範囲の一例を示している。第一制御部75aは、電力変換器40の出力範囲の外縁を示す正六角形RH1と、正六角形RH1に内接する内接円IC1との間の出力領域(以下、「第一出力領域」という。)において、第一パルス幅変調制御PWM1を行う。第一パルス幅変調制御PWM1は、複数(8つ)の電圧ベクトルV0~V7の中から所定の電圧ベクトルを選択することによりパルス信号を生成する空間ベクトル変調(SVM:Space Vector Modulation)によるパルス幅変調制御であると好適である。
図5は、電力変換器40の出力範囲の一例を示している。第一制御部75aは、電力変換器40の出力範囲の外縁を示す正六角形RH1と、正六角形RH1に内接する内接円IC1との間の出力領域(以下、「第一出力領域」という。)において、第一パルス幅変調制御PWM1を行う。第一パルス幅変調制御PWM1は、複数(8つ)の電圧ベクトルV0~V7の中から所定の電圧ベクトルを選択することによりパルス信号を生成する空間ベクトル変調(SVM:Space Vector Modulation)によるパルス幅変調制御であると好適である。
第一制御部75aは、d軸電圧指令値Vd_ref、q軸電圧指令値Vq_refおよび可動子位置θを用いて、d軸-q軸座標系(回転座標系)からα軸-β軸座標系(静止座標系)への座標変換を行い、空間ベクトル変調によるパルス幅変調制御を行う。d軸-q軸座標系(回転座標系)と、α軸-β軸座標系(静止座標系)との関係は、図5に示される。よって、d軸-q軸座標系(回転座標系)からα軸-β軸座標系(静止座標系)への座標変換は、式(5)で表すことができる。但し、α軸方向の電圧指令値はα軸電圧指令値Vα_refで表し、β軸方向の電圧指令値はβ軸電圧指令値Vβ_refで表す。
空間ベクトル変調によるパルス幅変調制御では、複数(8つ)の電圧ベクトルV0~V7の中から所定の電圧ベクトルを選択することにより、パルス信号を生成する。図5に示す電圧ベクトルV1(1,0,0)は、U相方向を示し、U相の正極側スイッチング素子4up、V相の負極側スイッチング素子4vnおよびW相の負極側スイッチング素子4wnが閉状態に制御され、他のスイッチング素子が開状態に制御されることを示している。電圧ベクトルV3(0,1,0)は、V相方向を示し、U相の負極側スイッチング素子4un、V相の正極側スイッチング素子4vpおよびW相の負極側スイッチング素子4wnが閉状態に制御され、他のスイッチング素子が開状態に制御されることを示している。電圧ベクトルV5(0,0,1)は、W相方向を示し、U相の負極側スイッチング素子4un、V相の負極側スイッチング素子4vnおよびW相の正極側スイッチング素子4wpが閉状態に制御され、他のスイッチング素子が開状態に制御されることを示している。
また、電圧ベクトルV2(1,1,0)は、U相の正極側スイッチング素子4up、V相の正極側スイッチング素子4vpおよびW相の負極側スイッチング素子4wnが閉状態に制御され、他のスイッチング素子が開状態に制御されることを示している。電圧ベクトルV4(0,1,1)は、U相の負極側スイッチング素子4un、V相の正極側スイッチング素子4vpおよびW相の正極側スイッチング素子4wpが閉状態に制御され、他のスイッチング素子が開状態に制御されることを示している。電圧ベクトルV6(1,0,1)は、U相の正極側スイッチング素子4up、V相の負極側スイッチング素子4vnおよびW相の正極側スイッチング素子4wpが閉状態に制御され、他のスイッチング素子が開状態に制御されることを示している。
なお、電圧ベクトルV0(0,0,0)は、U相の負極側スイッチング素子4un、V相の負極側スイッチング素子4vnおよびW相の負極側スイッチング素子4wnが閉状態に制御され、他のスイッチング素子が開状態に制御されることを示している。電圧ベクトルV7(1,1,1)は、U相の正極側スイッチング素子4up、V相の正極側スイッチング素子4vpおよびW相の正極側スイッチング素子4wpが閉状態に制御され、他のスイッチング素子が開状態に制御されることを示している。つまり、電圧ベクトルV0(0,0,0)および電圧ベクトルV7(1,1,1)は、ゼロ電圧を出力する。図5に示すように、空間ベクトル変調によるパルス幅変調制御では、空間的に隣接する電圧ベクトルの位相差が60°(電気角)の複数(6つ)の電圧ベクトルV1~V6と、ゼロ電圧を出力する少なくとも一つの電圧ベクトルV0,V7とを用いて、パルス信号を生成する。
具体的には、第一制御部75aは、α軸-β軸座標系(静止座標系)における可動子位置γ(電動機50が円筒状電動機の場合、回転角)に基づいて、複数(8つ)の電圧ベクトルV0~V7の中から所定の電圧ベクトルを選択し、選択した電圧ベクトルの発生時間を制御する。図5に示すように、可動子位置γは、d軸-q軸座標系(回転座標系)における指令電圧V_refの位置δ(電動機50が円筒状電動機の場合、回転角)と、可動子位置θ(回転角)とを加算した位置(回転角)である。
図5および図6Aに示すように、例えば、空間的に隣接する二つの電圧ベクトルV1,V2によって形成される領域において、指令電圧V_refを発生させる場合を想定する。図6Bは、このときの複数(6つ)のスイッチング素子(正極側スイッチング素子4xpおよび負極側スイッチング素子4xn)の開閉信号のタイミングチャートの一例を示している。具体的には、折線L21は、U相の正極側スイッチング素子4upおよび負極側スイッチング素子4unの開閉状態の経時変化を示している。折線L22は、V相の正極側スイッチング素子4vpおよび負極側スイッチング素子4vnの開閉状態の経時変化を示している。折線L23は、W相の正極側スイッチング素子4wpおよび負極側スイッチング素子4wnの開閉状態の経時変化を示している。
図6Aおよび図6Bに示すように、第一制御部75aは、所定の制御周期Tsのうち、電圧ベクトルV1を発生させる時間T1と、電圧ベクトルV2を発生させる時間T2とを設定する。図6Bに示す時間T1における出力状態は、U相、V相、W相の順に、1,0,0であり、既述した電圧ベクトルV1の出力状態を示している。つまり、第一制御部75aは、時間T1の間、U相の正極側スイッチング素子4up、V相の負極側スイッチング素子4vnおよびW相の負極側スイッチング素子4wnを閉状態に制御し、他のスイッチング素子を開状態に制御するパルス信号を生成する。
同様に、図6Bに示す時間T2における出力状態は、U相、V相、W相の順に、1,1,0であり、既述した電圧ベクトルV2の出力状態を示している。つまり、第一制御部75aは、時間T2の間、U相の正極側スイッチング素子4up、V相の正極側スイッチング素子4vpおよびW相の負極側スイッチング素子4wnを閉状態に制御し、他のスイッチング素子を開状態に制御するパルス信号を生成する。
なお、第一制御部75aは、制御周期Tsの残りの時間T0において、ゼロ電圧を選択する。例えば、第一制御部75aは、時間T0の半分の時間(時間T0/2)、電圧ベクトルV0を選択し、時間T0の半分の時間(時間T0/2)、電圧ベクトルV7を選択する。図6Bに示す最初の時間T0の半分の時間(時間T0/2)における出力状態は、0,0,0であり、既述した電圧ベクトルV0の出力状態を示している。つまり、第一制御部75aは、最初の時間T0/2の間、U相の負極側スイッチング素子4un、V相の負極側スイッチング素子4vnおよびW相の負極側スイッチング素子4wnを閉状態に制御し、他のスイッチング素子を開状態に制御するパルス信号を生成する。
同様に、図6Bに示す最後の時間T0の半分の時間(時間T0/2)における出力状態は、1,1,1であり、既述した電圧ベクトルV7の出力状態を示している。つまり、第一制御部75aは、最後の時間T0/2の間、U相の正極側スイッチング素子4up、V相の正極側スイッチング素子4vpおよびW相の正極側スイッチング素子4wpを閉状態に制御し、他のスイッチング素子を開状態に制御するパルス信号を生成する。
このように複数(6つ)のスイッチング素子(正極側スイッチング素子4xpおよび負極側スイッチング素子4xn)が開閉制御されることにより、図6Aに示す電圧ベクトルV1と電圧ベクトルV2とが合成された指令電圧V_refが得られる。第一制御部75aは、他の領域に指令電圧V_refを発生させる場合も同様にして、複数(8つ)の電圧ベクトルV0~V7の中から所定の電圧ベクトルを選択し、選択した電圧ベクトルの発生時間を制御することができる。
1-3-2.第二制御部75b
第二制御部75bは、図5に示す内接円IC1および内接円IC1より内側の出力領域(以下、「第二出力領域」という。)において、第二パルス幅変調制御PWM2を行う。第二パルス幅変調制御PWM2は、搬送波CW1と変調波MW1とを大小比較することによりパルス信号を生成する搬送波比較によるパルス幅変調制御であると好適である。
第二制御部75bは、図5に示す内接円IC1および内接円IC1より内側の出力領域(以下、「第二出力領域」という。)において、第二パルス幅変調制御PWM2を行う。第二パルス幅変調制御PWM2は、搬送波CW1と変調波MW1とを大小比較することによりパルス信号を生成する搬送波比較によるパルス幅変調制御であると好適である。
第二制御部75bは、第一制御部75aと同様にして、d軸-q軸座標系(回転座標系)からα軸-β軸座標系(静止座標系)への座標変換を行う。また、第二制御部75bは、二相/三相変換して、三相の電圧指令値(U相電圧指令値Vu_ref、V相電圧指令値Vv_refおよびW相電圧指令値Vw_ref)を算出する。但し、U相電圧指令値Vu_refは、U相方向の電圧指令値をいう。V相電圧指令値Vv_refは、V相方向の電圧指令値をいう。W相電圧指令値Vw_refは、W相方向の電圧指令値をいう。
図7は、搬送波比較によるパルス幅変調制御の一例を示している。折線L31は、搬送波CW1の経時変化の一例を示している。搬送波CW1は、例えば、三角波、のこぎり波などの直線状に経時変化する搬送信号を用いることができる。本実施形態の搬送波CW1は、三角波である。また、搬送波CW1の周波数は、電力変換器40の出力周波数と比べて十分高く設定する。曲線L32は、変調波MW1の経時変化の一例を示している。変調波MW1は、三相の電圧指令値(U相電圧指令値Vu_ref、V相電圧指令値Vv_refおよびW相電圧指令値Vw_ref)および直流電圧検出値Vdc_fbに基づいて生成され、本実施形態の変調波MW1は、正弦波状に経時変化する。折線L33は、搬送波CW1および変調波MW1を用いて生成されるパルス信号の一例を示している。
第二制御部75bは、例えば、公知の比較器(図示略)を備えており、搬送波CW1と変調波MW1とを大小比較することによりパルス信号を生成する。具体的には、曲線L32で示す変調波MW1が折線L31で示す搬送波CW1以下の場合、比較器の出力は、ローレベル(所定電圧値以下の電圧状態)になり、U相の正極側スイッチング素子4upは、開状態に制御される(例えば、同図の時間T31で示す区間)。逆に、曲線L32で示す変調波MW1が折線L31で示す搬送波CW1より大きい場合、比較器の出力は、ハイレベル(所定電圧値を超えた電圧状態)になり、U相の正極側スイッチング素子4upは、閉状態に制御される(例えば、同図の時間T32で示す区間)。これを繰り返すことにより、折線L33で示すパルス信号が生成される。
また、第二制御部75bは、曲線L32で示す変調波MW1に対して位相が120°(電気角)遅れる変調波(図示略)と、搬送波CW1とを大小比較することにより、V相の正極側スイッチング素子4vpを開閉制御するパルス信号を生成する。同様に、第二制御部75bは、曲線L32で示す変調波MW1に対して位相が120°(電気角)進む変調波(図示略)と、搬送波CW1とを大小比較することにより、W相の正極側スイッチング素子4wpを開閉制御するパルス信号を生成する。さらに、負極側スイッチング素子4xnのパルス信号は、デッドタイムを無視すると、正極側スイッチング素子4xpのパルス信号の開状態および閉状態を反転したパルス信号になる。このようにして、第二制御部75bは、搬送波比較によるパルス幅変調制御を行い、パルス信号を生成することができる。
本実施形態の第一パルス幅変調制御PWM1は、複数(8つ)の電圧ベクトルV0~V7の中から所定の電圧ベクトルを選択することによりパルス信号を生成する空間ベクトル変調によるパルス幅変調制御である。また、第二パルス幅変調制御PWM2は、搬送波CW1と変調波MW1とを大小比較することによりパルス信号を生成する搬送波比較によるパルス幅変調制御である。搬送波比較によるパルス幅変調制御は、空間ベクトル変調によるパルス幅変調制御と比べて、複数(6つ)のスイッチング素子(正極側スイッチング素子4xpおよび負極側スイッチング素子4xn)のスイッチング回数が増加する。そのため、搬送波比較によるパルス幅変調制御は、空間ベクトル変調によるパルス幅変調制御と比べて、スイッチング損失は増大するが、電動機50の電機子電流をより正弦波に近づけることができる。よって、本実施形態の電動機制御装置10は、低出力時(図5に示す内接円IC1および内接円IC1より内側の第二出力領域)において、電力変換器40の効率を向上させることができる。
また、第二制御部75bは、図5に示す正六角形RH1および内接円IC1によって六つの接点TP1~TP6が形成されるように、電力変換器40に入力される直流電圧Vdcの電圧利用率を設定すると好適である。同図に示す破線の円IC0は、搬送波CW1の振幅と変調波MW1の振幅とが一致するとき(変調率が1のとき)の電力変換器40の出力(指令電圧V_refのベクトル軌跡)を示している。円IC0より外側の出力領域は、過変調の領域になる。過変調を行うと電動機50の電機子電流が歪むので、第二制御部75bは、過変調を行うことなく、直流電圧Vdcの電圧利用率を改善すると良い。
第二制御部75bは、例えば、三相の変調波MW1の各々に第三調波を重畳させることにより、直流電圧Vdcの電圧利用率を改善することができる。また、第二制御部75bは、三相の変調波MW1の各々に三の倍数調波を重畳させることにより、直流電圧Vdcの電圧利用率を改善することもできる。さらに、三相の変調波MW1のうちの大きさが中間の変調波MW1を中間変調波とする。このとき、第二制御部75bは、三相の変調波MW1の各々に中間変調波の大きさの半分(電圧利用率を約1.155(=2/√3)にする場合)を重畳させることにより、直流電圧Vdcの電圧利用率を改善することもできる。また、第二制御部75bは、三相の変調波MW1の60°(電気角)毎に一相の変調波MW1を固定し、他の二相の変調波MW1を変調させることにより、直流電圧Vdcの電圧利用率を改善することもできる。
このようにして、第二制御部75bは、図5に示す正六角形RH1および内接円IC1によって六つの接点TP1~TP6が形成されるように、電力変換器40に入力される直流電圧Vdcの電圧利用率を設定することができる。例えば、第二パルス幅変調制御PWM2が搬送波比較によるパルス幅変調制御の場合、第二制御部75bは、直流電圧Vdcの電圧利用率を約1.155(=2/√3)に設定する。
1-3-3.制御変更部75c
制御変更部75cは、電動機50の可動子52が所定位置に位置するときに、第一パルス幅変調制御PWM1および第二パルス幅変調制御PWM2のうちの一方から他方に切り替える。所定位置は、図5に示す正六角形RH1および内接円IC1によって形成される六つの接点TP1~TP6のうちの所定の接点によって特定される位置(電動機50が円筒状電動機の場合、回転角)である。例えば、図5に示す所定位置γ1は、接点TP1と原点0とを結ぶ線分が、α軸-β軸座標系(静止座標系)の二つの座標軸(α軸およびβ軸)のうちの一の座標軸(α軸)となす角度によって表すことができ、接点TP1によって特定される。
制御変更部75cは、電動機50の可動子52が所定位置に位置するときに、第一パルス幅変調制御PWM1および第二パルス幅変調制御PWM2のうちの一方から他方に切り替える。所定位置は、図5に示す正六角形RH1および内接円IC1によって形成される六つの接点TP1~TP6のうちの所定の接点によって特定される位置(電動機50が円筒状電動機の場合、回転角)である。例えば、図5に示す所定位置γ1は、接点TP1と原点0とを結ぶ線分が、α軸-β軸座標系(静止座標系)の二つの座標軸(α軸およびβ軸)のうちの一の座標軸(α軸)となす角度によって表すことができ、接点TP1によって特定される。
制御変更部75cは、後述する所定の切り替え条件が成立し、かつ、可動子52の可動子位置γが所定位置(例えば、所定位置γ1)のときに、第一パルス幅変調制御PWM1および第二パルス幅変調制御PWM2のうちの一方から他方に切り替える。なお、制御変更部75cは、六つの接点TP1~TP6のうちの任意の接点においてパルス幅変調制御を切り替えることができ、接点は限定されない。また、第一パルス幅変調制御PWM1から第二パルス幅変調制御PWM2に切り替えるときの接点と、第二パルス幅変調制御PWM2から第一パルス幅変調制御PWM1に切り替えるときの接点とは、同じであっても良く、異なっていても良い。
電動機50の入力電流Iin(電力変換器40の出力電流)が増加する程、電力変換器40の出力範囲は、第一出力領域(図5に示す正六角形RH1と正六角形RH1に内接する内接円IC1との間の出力領域)に近づく。逆に、電動機50の入力電流Iinが減少する程、電力変換器40の出力範囲は、第二出力領域(内接円IC1および内接円IC1より内側の出力領域)に近づく。電動機50の入力電流Iinについて上述したことは、電動機50の出力トルクToutについても同様に言える。
よって、図8Aに示すように、制御変更部75cは、電動機50の入力電流Iinまたは出力トルクToutが所定閾値TH1以上になったときに、第二パルス幅変調制御PWM2から第一パルス幅変調制御PWM1に切り替えると好適である。また、制御変更部75cは、電動機50の入力電流Iinまたは出力トルクToutが所定閾値TH1未満になったときに、第一パルス幅変調制御PWM1から第二パルス幅変調制御PWM2に切り替えると好適である。これにより、電動機制御装置10は、電動機50の入力電流Iinまたは出力トルクToutに基づいて電動機50の負荷状態に応じて、パルス幅変調制御の切り替えを行うことができる。
なお、本実施形態の制御変更部75cは、電動機50の入力電流Iinとして、入力電流算出値Iin_fbを用いる。制御変更部75cは、電動機50の出力トルクToutとして、トルク指令値Trq_refを用いる。また、所定閾値TH1は、例えば、電力変換器40の出力(指令電圧V_refのベクトル軌跡)が、図5に示す内接円IC1で表されるときの電動機50の入力電流Iinまたは出力トルクToutに設定することができる。所定閾値TH1は、例えば、シミュレーション、実機による測定などによって、予め取得しておくことができる。
また、制御変更部75cは、第二パルス幅変調制御PWM2から第一パルス幅変調制御PWM1への切り替えと、第一パルス幅変調制御PWM1から第二パルス幅変調制御PWM2への切り替えとにおいて、所定のヒステリシス幅HY0をもたせると好適である。これにより、電動機制御装置10は、パルス幅変調制御の切り替えにおけるハンチングを抑制することができる。この場合、図8Aに示すように、制御変更部75cは、電動機50の入力電流Iinまたは出力トルクToutが第一所定閾値TH11以上になったときに、第二パルス幅変調制御PWM2から第一パルス幅変調制御PWM1に切り替える(矢印L41参照)。また、制御変更部75cは、電動機50の入力電流Iinまたは出力トルクToutが第二所定閾値TH12未満になったときに、第一パルス幅変調制御PWM1から第二パルス幅変調制御PWM2に切り替える(矢印L42参照)。
ヒステリシス幅HY0は、第一所定閾値TH11から第二所定閾値TH12を減じた減算値になる。なお、ヒステリシス幅HY0は、六つの接点TP1~TP6のうちの所定の接点によって特定される所定位置においてパルス幅変調制御を切り替え可能に設定される。ヒステリシス幅HY0は、例えば、シミュレーション、実機による測定などによって、予め取得しておくことができる。
2.変形形態
2-1.第一変形形態
電動機50の回転速度Vcが増加する程、電動機50の誘起電圧(逆起電圧)が増大して、電機子電流が流れ難くなる。その結果、電動機50の出力トルクTout(力行トルク)は、減少する。そこで、図8Bに示すように、制御変更部75cは、電動機50の回転速度Vcが所定回転速度TH2以上になったときに、第二パルス幅変調制御PWM2から第一パルス幅変調制御PWM1に切り替えると好適である。また、制御変更部75cは、電動機50の回転速度Vcが所定回転速度TH2未満になったときに、第一パルス幅変調制御PWM1から第二パルス幅変調制御PWM2に切り替えると好適である。
2-1.第一変形形態
電動機50の回転速度Vcが増加する程、電動機50の誘起電圧(逆起電圧)が増大して、電機子電流が流れ難くなる。その結果、電動機50の出力トルクTout(力行トルク)は、減少する。そこで、図8Bに示すように、制御変更部75cは、電動機50の回転速度Vcが所定回転速度TH2以上になったときに、第二パルス幅変調制御PWM2から第一パルス幅変調制御PWM1に切り替えると好適である。また、制御変更部75cは、電動機50の回転速度Vcが所定回転速度TH2未満になったときに、第一パルス幅変調制御PWM1から第二パルス幅変調制御PWM2に切り替えると好適である。
第一出力領域(図5に示す正六角形RH1と正六角形RH1に内接する内接円IC1との間の出力領域)は、第二出力領域(内接円IC1および内接円IC1より内側の出力領域)と比べて、電力変換器40に入力される直流電圧Vdcの電圧利用率が高くなる。よって、電動機制御装置10は、高出力時(図5に示す正六角形RH1と正六角形RH1に内接する内接円IC1との間の第一出力領域)において、電機子電流を流れ易くすることができ、電動機50の出力トルクTout(力行トルク)を増大することができる。なお、本形態の制御変更部75cは、電動機50の回転速度Vcとして、回転速度算出値Vc_fbを用いる。また、所定閾値TH1の設定方法について既述したことは、所定回転速度TH2についても同様に言える。
また、電動機50は、回転速度Vcの最大値が定格回転速度VR0より小さくなるように設計される。よって、所定回転速度TH2は、電動機50の出力が定格出力PR0のときの定格回転速度VR0であると好適である。これにより、電動機制御装置10は、第二出力領域(図5に示す内接円IC1および内接円IC1より内側の出力領域)を、定格出力PR0以下の出力領域に設定することができる。なお、定格出力PR0および定格回転速度VR0は、電動機50によって定まる定数である。
さらに、図8Bに示すように、制御変更部75cは、電動機50の回転速度Vcが第一所定回転速度TH21以上になったときに、第二パルス幅変調制御PWM2から第一パルス幅変調制御PWM1に切り替えることもできる(矢印L43参照)。また、制御変更部75cは、電動機50の回転速度Vcが第二所定回転速度TH22未満になったときに、第一パルス幅変調制御PWM1から第二パルス幅変調制御PWM2に切り替えることもできる(矢印L44参照)。これにより、電動機制御装置10は、パルス幅変調制御の切り替えにおけるハンチングを抑制することができる。この場合、ヒステリシス幅HY0は、第一所定回転速度TH21から第二所定回転速度TH22を減じた減算値になる。ヒステリシス幅HY0の設定方法について既述したことは、本形態においても同様に言える。
2-2.第二変形形態
例えば、図1に示す電源20による直流電力の供給状態が不安定になり、電力変換器40に入力される直流電圧Vdcが低下したとする。このとき、直流電圧Vdcの電圧利用率を高くして、可能な限り電動機50の駆動を継続させたい場合がある。この場合、図8Cに示すように、制御変更部75cは、電力変換器40に入力される直流電圧Vdcが所定電圧TH3未満になったときに、第二パルス幅変調制御PWM2から第一パルス幅変調制御PWM1に切り替えると好適である。また、制御変更部75cは、電力変換器40に入力される直流電圧Vdcが所定電圧TH3以上になったときに、第一パルス幅変調制御PWM1から第二パルス幅変調制御PWM2に切り替えると好適である。
例えば、図1に示す電源20による直流電力の供給状態が不安定になり、電力変換器40に入力される直流電圧Vdcが低下したとする。このとき、直流電圧Vdcの電圧利用率を高くして、可能な限り電動機50の駆動を継続させたい場合がある。この場合、図8Cに示すように、制御変更部75cは、電力変換器40に入力される直流電圧Vdcが所定電圧TH3未満になったときに、第二パルス幅変調制御PWM2から第一パルス幅変調制御PWM1に切り替えると好適である。また、制御変更部75cは、電力変換器40に入力される直流電圧Vdcが所定電圧TH3以上になったときに、第一パルス幅変調制御PWM1から第二パルス幅変調制御PWM2に切り替えると好適である。
既述したように、第一出力領域(図5に示す正六角形RH1と正六角形RH1に内接する内接円IC1との間の出力領域)は、第二出力領域(内接円IC1および内接円IC1より内側の出力領域)と比べて、直流電圧Vdcの電圧利用率が高くなる。よって、電動機制御装置10は、電力変換器40に入力される直流電圧Vdcが低下したときに、電動機50の駆動を継続し易くなる。なお、本形態の制御変更部75cは、電力変換器40に入力される直流電圧Vdcとして、直流電圧検出値Vdc_fbを用いる。また、所定閾値TH1の設定方法について既述したことは、直流電圧Vdcについても同様に言える。
さらに、図8Cに示すように、制御変更部75cは、電力変換器40に入力される直流電圧Vdcが第一所定電圧TH31未満になったときに、第二パルス幅変調制御PWM2から第一パルス幅変調制御PWM1に切り替えることもできる(矢印L45参照)。また、制御変更部75cは、電力変換器40に入力される直流電圧Vdcが第二所定電圧TH32以上になったときに、第一パルス幅変調制御PWM1から第二パルス幅変調制御PWM2に切り替えることもできる(矢印L46参照)。これにより、電動機制御装置10は、パルス幅変調制御の切り替えにおけるハンチングを抑制することができる。この場合、ヒステリシス幅HY0は、第二所定電圧TH32から第一所定電圧TH31を減じた減算値になる。ヒステリシス幅HY0の設定方法について既述したことは、本形態においても同様に言える。
2-3.第三変形形態
第一パルス幅変調制御PWM1および第二パルス幅変調制御PWM2は、搬送波CW1と変調波MW1とを大小比較することによりパルス信号を生成する搬送波比較によるパルス幅変調制御であっても良い。このとき、第一パルス幅変調制御PWM1は、第二パルス幅変調制御PWM2と比べて、電力変換器40に入力される直流電圧Vdcの電圧利用率が高く設定される。また、第二制御部75bは、正六角形RH1および内接円IC1によって六つの接点TP1~TP6が形成されるように、電力変換器40に入力される直流電圧Vdcの電圧利用率を設定すると好適である。直流電圧Vdcの電圧利用率の設定方法は、既述した方法を用いることができる。本形態の電動機制御装置10は、搬送波CW1の周波数によってスイッチング周波数を固定することができ、スイッチング周波数を高くしたときの演算負荷を実施形態と比べて軽減することができる。
第一パルス幅変調制御PWM1および第二パルス幅変調制御PWM2は、搬送波CW1と変調波MW1とを大小比較することによりパルス信号を生成する搬送波比較によるパルス幅変調制御であっても良い。このとき、第一パルス幅変調制御PWM1は、第二パルス幅変調制御PWM2と比べて、電力変換器40に入力される直流電圧Vdcの電圧利用率が高く設定される。また、第二制御部75bは、正六角形RH1および内接円IC1によって六つの接点TP1~TP6が形成されるように、電力変換器40に入力される直流電圧Vdcの電圧利用率を設定すると好適である。直流電圧Vdcの電圧利用率の設定方法は、既述した方法を用いることができる。本形態の電動機制御装置10は、搬送波CW1の周波数によってスイッチング周波数を固定することができ、スイッチング周波数を高くしたときの演算負荷を実施形態と比べて軽減することができる。
2-4.その他
第一制御部75aおよび第二制御部75bは、種々のパルス幅変調制御を行うことができる。第一制御部75aおよび第二制御部75bのうちの少なくとも一方は、例えば、瞬時値比較によるパルス幅変調制御を行うことができる。瞬時値比較によるパルス幅変調制御は、出力と指令値との誤差をヒステリシスコンパレータに入力し、誤差がヒステリシスコンパレータの閾値以内に収まるように追従制御する。
第一制御部75aおよび第二制御部75bは、種々のパルス幅変調制御を行うことができる。第一制御部75aおよび第二制御部75bのうちの少なくとも一方は、例えば、瞬時値比較によるパルス幅変調制御を行うことができる。瞬時値比較によるパルス幅変調制御は、出力と指令値との誤差をヒステリシスコンパレータに入力し、誤差がヒステリシスコンパレータの閾値以内に収まるように追従制御する。
また、電動機制御装置10は、種々のベクトル制御を行うことができる。電動機制御装置10は、例えば、非干渉化制御部を備えることができる。非干渉化制御部は、d軸電流Idによるq軸電圧Vqへの干渉(式(1)に示すω×Ld×Id)を打ち消し、q軸電流Iqによるd軸電圧Vdへの干渉(式(1)に示す-ω×Lq×Iq)を打ち消す。また、電動機制御装置10は、同一電流に対して出力トルクが最大になるように制御する最大トルク制御、力率を1に制御する力率1制御、d軸電流Idをゼロに制御するd軸電流ゼロ制御などを行うこともできる。
3.電動機制御方法
電動機制御装置10について既述したことは、電動機制御方法についても同様に言える。具体的には、電動機制御方法は、第一制御工程と、第二制御工程と、制御変更工程とを備える。第一制御工程は、電力変換器40の出力範囲の外縁を示す正六角形RH1と正六角形RH1に内接する内接円IC1との間の出力領域において第一パルス幅変調制御PWM1を行う。第二制御工程は、内接円IC1および内接円IC1より内側の出力領域において第二パルス幅変調制御PWM2を行う。制御変更工程は、電動機50の可動子52が正六角形RH1および内接円IC1によって形成される六つの接点TP1~TP6のうちの所定の接点によって特定される所定位置に位置するときに、第一パルス幅変調制御PWM1および第二パルス幅変調制御PWM2のうちの一方から他方に切り替える。つまり、第一制御工程は、第一制御部75aが行う制御に相当する。第二制御工程は、第二制御部75bが行う制御に相当する。制御変更工程は、制御変更部75cが行う制御に相当する。
電動機制御装置10について既述したことは、電動機制御方法についても同様に言える。具体的には、電動機制御方法は、第一制御工程と、第二制御工程と、制御変更工程とを備える。第一制御工程は、電力変換器40の出力範囲の外縁を示す正六角形RH1と正六角形RH1に内接する内接円IC1との間の出力領域において第一パルス幅変調制御PWM1を行う。第二制御工程は、内接円IC1および内接円IC1より内側の出力領域において第二パルス幅変調制御PWM2を行う。制御変更工程は、電動機50の可動子52が正六角形RH1および内接円IC1によって形成される六つの接点TP1~TP6のうちの所定の接点によって特定される所定位置に位置するときに、第一パルス幅変調制御PWM1および第二パルス幅変調制御PWM2のうちの一方から他方に切り替える。つまり、第一制御工程は、第一制御部75aが行う制御に相当する。第二制御工程は、第二制御部75bが行う制御に相当する。制御変更工程は、制御変更部75cが行う制御に相当する。
4.実施形態の効果の一例
電動機制御装置10によれば、制御変更部75cを備える。制御変更部75cは、電動機50の可動子52が正六角形RH1および内接円IC1によって形成される六つの接点TP1~TP6のうちの所定の接点によって特定される所定位置に位置するときに、第一パルス幅変調制御PWM1および第二パルス幅変調制御PWM2のうちの一方から他方に切り替える。電動機50の可動子52が所定の接点によって特定される所定位置に位置するときには、第一パルス幅変調制御PWM1による出力指令と、第二パルス幅変調制御PWM2による出力指令とが一致する。よって、電動機制御装置10は、パルス幅変調制御の切り替えによって生じるトルク変動を抑制することができる。電動機制御装置10について上述したことは、電動機制御方法についても同様に言える。
電動機制御装置10によれば、制御変更部75cを備える。制御変更部75cは、電動機50の可動子52が正六角形RH1および内接円IC1によって形成される六つの接点TP1~TP6のうちの所定の接点によって特定される所定位置に位置するときに、第一パルス幅変調制御PWM1および第二パルス幅変調制御PWM2のうちの一方から他方に切り替える。電動機50の可動子52が所定の接点によって特定される所定位置に位置するときには、第一パルス幅変調制御PWM1による出力指令と、第二パルス幅変調制御PWM2による出力指令とが一致する。よって、電動機制御装置10は、パルス幅変調制御の切り替えによって生じるトルク変動を抑制することができる。電動機制御装置10について上述したことは、電動機制御方法についても同様に言える。
10:電動機制御装置、40:電力変換器、50:電動機、52:可動子、
75a:第一制御部、75b:第二制御部、75c:制御変更部、
RH1:正六角形、IC1:内接円、TP1~TP6:接点、
γ1:所定位置、
PWM1:第一パルス幅変調制御、PWM2:第二パルス幅変調制御、
V0~V7:電圧ベクトル、CW1:搬送波、MW1:変調波、
Iin:入力電流、Tout:出力トルク、TH1:所定閾値、
Vc:回転速度、TH2:所定回転速度、
PR0:定格出力、VR0:定格回転速度、
Vdc:直流電圧、TH3:所定電圧、HY0:ヒステリシス幅。
75a:第一制御部、75b:第二制御部、75c:制御変更部、
RH1:正六角形、IC1:内接円、TP1~TP6:接点、
γ1:所定位置、
PWM1:第一パルス幅変調制御、PWM2:第二パルス幅変調制御、
V0~V7:電圧ベクトル、CW1:搬送波、MW1:変調波、
Iin:入力電流、Tout:出力トルク、TH1:所定閾値、
Vc:回転速度、TH2:所定回転速度、
PR0:定格出力、VR0:定格回転速度、
Vdc:直流電圧、TH3:所定電圧、HY0:ヒステリシス幅。
Claims (10)
- 電力変換器の出力範囲の外縁を示す正六角形と前記正六角形に内接する内接円との間の出力領域において第一パルス幅変調制御を行う第一制御部と、
前記内接円および前記内接円より内側の出力領域において第二パルス幅変調制御を行う第二制御部と、
電動機の可動子が前記正六角形および前記内接円によって形成される六つの接点のうちの所定の接点によって特定される所定位置に位置するときに、前記第一パルス幅変調制御および前記第二パルス幅変調制御のうちの一方から他方に切り替える制御変更部と、
を備える電動機制御装置。 - 前記第一パルス幅変調制御は、複数の電圧ベクトルの中から所定の電圧ベクトルを選択することによりパルス信号を生成する空間ベクトル変調によるパルス幅変調制御であり、
前記第二パルス幅変調制御は、搬送波と変調波とを大小比較することによりパルス信号を生成する搬送波比較によるパルス幅変調制御である請求項1に記載の電動機制御装置。 - 前記第一パルス幅変調制御および前記第二パルス幅変調制御は、搬送波と変調波とを大小比較することによりパルス信号を生成する搬送波比較によるパルス幅変調制御であり、
前記第一パルス幅変調制御は、前記第二パルス幅変調制御と比べて、前記電力変換器に入力される直流電圧の電圧利用率が高く設定されている請求項1に記載の電動機制御装置。 - 前記第二制御部は、前記正六角形および前記内接円によって六つの接点が形成されるように、前記電力変換器に入力される直流電圧の電圧利用率を設定する請求項1~請求項3のいずれか一項に記載の電動機制御装置。
- 前記制御変更部は、前記電動機の入力電流または出力トルクが所定閾値以上になったときに、前記第二パルス幅変調制御から前記第一パルス幅変調制御に切り替え、前記電動機の前記入力電流または前記出力トルクが所定閾値未満になったときに、前記第一パルス幅変調制御から前記第二パルス幅変調制御に切り替える請求項1~請求項4のいずれか一項に記載の電動機制御装置。
- 前記制御変更部は、前記電動機の回転速度が所定回転速度以上になったときに、前記第二パルス幅変調制御から前記第一パルス幅変調制御に切り替え、前記電動機の前記回転速度が所定回転速度未満になったときに、前記第一パルス幅変調制御から前記第二パルス幅変調制御に切り替える請求項1~請求項4のいずれか一項に記載の電動機制御装置。
- 前記所定回転速度は、前記電動機の出力が定格出力のときの定格回転速度である請求項6に記載の電動機制御装置。
- 前記制御変更部は、前記電力変換器に入力される直流電圧が所定電圧未満になったときに、前記第二パルス幅変調制御から前記第一パルス幅変調制御に切り替え、前記電力変換器に入力される前記直流電圧が所定電圧以上になったときに、前記第一パルス幅変調制御から前記第二パルス幅変調制御に切り替える請求項1~請求項4のいずれか一項に記載の電動機制御装置。
- 前記制御変更部は、前記第二パルス幅変調制御から前記第一パルス幅変調制御への切り替えと、前記第一パルス幅変調制御から前記第二パルス幅変調制御への切り替えとにおいて、所定のヒステリシス幅をもたせる請求項5~請求項8のいずれか一項に記載の電動機制御装置。
- 電力変換器の出力範囲の外縁を示す正六角形と前記正六角形に内接する内接円との間の出力領域において第一パルス幅変調制御を行う第一制御工程と、
前記内接円および前記内接円より内側の出力領域において第二パルス幅変調制御を行う第二制御工程と、
電動機の可動子が前記正六角形および前記内接円によって形成される六つの接点のうちの所定の接点によって特定される所定位置に位置するときに、前記第一パルス幅変調制御および前記第二パルス幅変調制御のうちの一方から他方に切り替える制御変更工程と、
を備える電動機制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/032967 WO2020049673A1 (ja) | 2018-09-06 | 2018-09-06 | 電動機制御装置および電動機制御方法 |
JP2020540934A JP6983330B2 (ja) | 2018-09-06 | 2018-09-06 | 電動機制御装置および電動機制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/032967 WO2020049673A1 (ja) | 2018-09-06 | 2018-09-06 | 電動機制御装置および電動機制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020049673A1 true WO2020049673A1 (ja) | 2020-03-12 |
Family
ID=69723063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/032967 WO2020049673A1 (ja) | 2018-09-06 | 2018-09-06 | 電動機制御装置および電動機制御方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6983330B2 (ja) |
WO (1) | WO2020049673A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0947100A (ja) * | 1995-07-31 | 1997-02-14 | Fuji Electric Co Ltd | 永久磁石形同期電動機の制御装置 |
JP2000333462A (ja) * | 1999-05-17 | 2000-11-30 | Tokyo Electric Power Co Inc:The | 三相交直変換回路の定サンプリング型pwm装置 |
JP2002142500A (ja) * | 2000-09-01 | 2002-05-17 | Ecostar Electric Drive Syst Llc | モーター制御システム |
JP2013258891A (ja) * | 2012-06-12 | 2013-12-26 | Hyundai Motor Co Ltd | 永久磁石同期モータの制御方法 |
US20170070172A1 (en) * | 2015-07-10 | 2017-03-09 | Lg Electronics Inc. | Motor driving apparatus and home appliance including the same |
-
2018
- 2018-09-06 JP JP2020540934A patent/JP6983330B2/ja active Active
- 2018-09-06 WO PCT/JP2018/032967 patent/WO2020049673A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0947100A (ja) * | 1995-07-31 | 1997-02-14 | Fuji Electric Co Ltd | 永久磁石形同期電動機の制御装置 |
JP2000333462A (ja) * | 1999-05-17 | 2000-11-30 | Tokyo Electric Power Co Inc:The | 三相交直変換回路の定サンプリング型pwm装置 |
JP2002142500A (ja) * | 2000-09-01 | 2002-05-17 | Ecostar Electric Drive Syst Llc | モーター制御システム |
JP2013258891A (ja) * | 2012-06-12 | 2013-12-26 | Hyundai Motor Co Ltd | 永久磁石同期モータの制御方法 |
US20170070172A1 (en) * | 2015-07-10 | 2017-03-09 | Lg Electronics Inc. | Motor driving apparatus and home appliance including the same |
Also Published As
Publication number | Publication date |
---|---|
JP6983330B2 (ja) | 2021-12-17 |
JPWO2020049673A1 (ja) | 2021-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4582168B2 (ja) | 回転機の制御装置、及び回転機の制御システム | |
Verma et al. | Speed sensorless vector controlled induction motor drive using single current sensor | |
US9112436B2 (en) | System for controlling controlled variable of rotary machine | |
JP4429338B2 (ja) | モータ制御装置、電流検出ユニット | |
US8639405B2 (en) | Electric motor drive system for an electric vehicle | |
US7960927B2 (en) | Electric motor control device and drive unit | |
JP4458174B2 (ja) | 回転機の制御装置、及び回転機の制御システム | |
US8497645B2 (en) | Control device for electric motor drive device | |
JP2011019319A (ja) | 回転機の制御装置 | |
US10992246B2 (en) | Controller for AC rotary machine | |
US20140225540A1 (en) | Control apparatus for ac motor | |
JP2000032799A (ja) | 回転電機の制御装置及び制御方法 | |
JP4775168B2 (ja) | 3相回転機の制御装置 | |
JP6119585B2 (ja) | 電動機駆動装置 | |
US20140176029A1 (en) | Vehicle and control device for vehicle | |
JP2017195672A (ja) | 回転電機の制御装置 | |
JP5955761B2 (ja) | 車両の制御装置 | |
CN111953265A (zh) | 用于旋转电机的控制装置 | |
JP5618948B2 (ja) | モータ制御システム | |
JP2016059245A (ja) | 回転機の制御装置 | |
JP6983330B2 (ja) | 電動機制御装置および電動機制御方法 | |
Chen et al. | Modeling of the system level electric drive using efficiency maps obtained by simulation methods | |
JP2022119237A (ja) | 交流回転電機の制御装置 | |
WO2020105106A1 (ja) | 交流回転電機の制御装置 | |
US20240097595A1 (en) | Power conversion device and power conversion method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18932399 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020540934 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18932399 Country of ref document: EP Kind code of ref document: A1 |