WO2020047982A1 - 一种微轨车辆及其电磁制动器 - Google Patents

一种微轨车辆及其电磁制动器 Download PDF

Info

Publication number
WO2020047982A1
WO2020047982A1 PCT/CN2018/113411 CN2018113411W WO2020047982A1 WO 2020047982 A1 WO2020047982 A1 WO 2020047982A1 CN 2018113411 W CN2018113411 W CN 2018113411W WO 2020047982 A1 WO2020047982 A1 WO 2020047982A1
Authority
WO
WIPO (PCT)
Prior art keywords
disc
brake
electromagnetic brake
sleeve
fixing sleeve
Prior art date
Application number
PCT/CN2018/113411
Other languages
English (en)
French (fr)
Inventor
李化明
刘中华
焦东明
陈磊
李童生
李超
杜慧杰
郭小行
王振宏
方培嫘
Original Assignee
中车唐山机车车辆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车唐山机车车辆有限公司 filed Critical 中车唐山机车车辆有限公司
Publication of WO2020047982A1 publication Critical patent/WO2020047982A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/22Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
    • F16D55/224Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members
    • F16D55/225Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/22Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for pressing members apart, e.g. for drum brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/20Electric or magnetic using electromagnets

Definitions

  • the present application relates to the technical field of rail transit, and in particular, to a micro-rail vehicle and an electromagnetic brake thereof.
  • the braking system of traditional rail vehicles generally adopts air braking or hydraulic braking.
  • air braking systems and hydraulic braking systems they are not suitable for micro-rail vehicles.
  • the embodiment of the present application provides a micro-rail vehicle and an electromagnetic brake thereof.
  • the electromagnetic brake has a characteristic of large braking force, so as to solve the problem that the related electromagnetic brake cannot meet the braking performance requirements of the micro-rail vehicle due to the small braking force.
  • an electromagnetic brake includes a yoke, an armature, an excitation coil, at least two brake discs, a movable disc, a fixed disc, a fixed sleeve, and an elastic member.
  • the armature, the fixed plate, and the movable plate are sleeved on the outer peripheral surface of the fixed sleeve;
  • the yoke is fixedly connected to the fixed plate, the armature is provided between the yoke and the fixed plate, and the armature and the yoke There is a predetermined gap between them, the at least two brake discs are arranged side by side between the armature and the fixed disc;
  • the at least two brake discs are each capable of sliding along the axial direction of the fixing sleeve, and are relatively fixedly sleeved on the outer peripheral surface of the fixing sleeve in the circumferential direction of the fixing sleeve;
  • One said movable disc is sandwiched between each adjacent two brake discs;
  • the yoke is provided with a plurality of mounting holes with openings facing the fixed plate and a groove with the opening facing the fixed plate, and the exciting coil is embedded in the groove;
  • One said elastic member is provided in each mounting hole;
  • the elastic member has opposite first and second ends, wherein the first end is in contact with the yoke, and the second end is in contact with the armature.
  • the brake disc includes:
  • a brake disc body having a first side surface facing the movable disc and a second side surface facing away from the movable disc;
  • a first friction pad which is disposed on the first side surface of the brake disc body
  • the brake disc body includes a disc hub and a disc core, and the disc hub is fixedly connected to an inner ring of the disc core;
  • the first friction block and the second friction block are disposed on the disk core.
  • the first friction block and the second friction block are both made of powder metallurgy material or fiber reinforced composite material; and / or,
  • the core is made of steel, iron or copper.
  • the first side surface is provided with a plurality of the first friction pads evenly distributed along the circumferential direction of the brake disc body, and the second side surface is evenly distributed with A plurality of said second friction blocks.
  • the yoke further includes an adjusting member corresponding to each of the mounting holes, and the adjusting member is used to adjust a compression amount of the elastic member in the corresponding mounting hole;
  • the adjusting member is threadedly connected to an end of the mounting hole facing away from the armature, and the adjusting member abuts the elastic member in the mounting hole.
  • the adjusting member is an inner hexagon set screw, a bolt, or a screw.
  • a brake clearance adjustment mechanism is further included;
  • the braking gap adjustment mechanism includes:
  • At least two fasteners which are evenly distributed along the circumferential direction of the fixing sleeve and are used to fixedly connect the fixing disc to the yoke;
  • a sleeve which corresponds to each fastener one by one, and is sleeved on the outer peripheral surface of the corresponding fastener, and the sleeve is arranged between the yoke and the fixed disk;
  • each set of U-shaped gaskets includes a plurality of U-shaped gaskets having different thicknesses.
  • each U-shaped gasket faces the fixed sleeve.
  • each U-shaped gasket is 0.5 mm to 2 mm.
  • the movable plate is provided with an opening groove corresponding to the sleeve one-to-one and a relief hole penetrating through its thickness;
  • the open slot is used to pass a corresponding sleeve
  • the fixing plate is provided with threaded holes corresponding to the relief holes on a one-to-one basis.
  • a noise reduction structure is also included;
  • the noise reduction structure includes a recessed groove provided on an outer peripheral surface of the fixing sleeve, and a noise reduction strip embedded in the recessed groove.
  • the noise reduction strip is made of rubber or resin material.
  • the caulking groove is an axial caulking groove extending along an axial direction of the fixing sleeve or a circumferential caulking groove extending along a circumferential direction of the fixing sleeve.
  • the fixing sleeve is a spline sleeve or a shaft sleeve, and a cross-sectional outer shape of the shaft sleeve is a polygon.
  • a micro-rail vehicle is provided, and the micro-rail vehicle includes any one of the electromagnetic brakes provided by the foregoing technical solutions.
  • the friction area of the brake disc can be increased by at least two brake discs and the movable disc provided between the brake discs, thereby increasing the braking friction force and braking force. Therefore, the electromagnetic brake has the characteristic of large braking force, so as to solve the problem that the related electromagnetic brake cannot meet the braking performance requirements of the micro-rail vehicle due to the small braking force.
  • FIG. 1 is a schematic structural diagram of an electromagnetic brake according to an embodiment of the present application.
  • FIG. 2 is a schematic view of the A-direction structure of the electromagnetic brake in FIG. 1;
  • FIG. 3 is a B-B sectional view of the electromagnetic brake in FIG. 2;
  • FIG. 4 is a schematic structural diagram of a brake disc of the electromagnetic brake in FIG. 1;
  • FIG. 5 is a schematic view of the C-direction structure of the brake disc in FIG. 4;
  • FIG. 6 is a sectional view taken along the D-D line of the brake disc in FIG. 5;
  • FIG. 7 is a schematic structural diagram of another brake disc of the electromagnetic brake in FIG. 1;
  • FIG. 8 is a schematic structural diagram of another brake disc of the electromagnetic brake in FIG. 1;
  • FIG. 9 is a schematic structural diagram of another brake disc of the electromagnetic brake in FIG. 1;
  • FIG. 10 is a structural diagram of a disc core with a friction pad of the brake disc in FIG. 9;
  • FIG. 11 is a structural schematic view of a disc hub of the brake disc in FIG. 9;
  • FIG. 12 is a schematic structural diagram of a fixed disk of the electromagnetic brake in FIG. 1;
  • FIG. 13 is a schematic structural diagram of a movable disc of the electromagnetic brake in FIG. 1;
  • FIG. 14 is a schematic structural diagram of a U-shaped gasket of the electromagnetic brake in FIG. 3;
  • FIG. 15 is a schematic structural diagram when the fixing sleeve in FIG. 3 is a spline sleeve
  • 16 to 19 are schematic structural diagrams when the fixing sleeve is a shaft sleeve.
  • the technicians found that although the relevant electromagnetic brakes can meet the space requirements of micro-rail vehicles in terms of size, due to the size limitation of the running mechanism of the micro-rail vehicles, the electromagnetic brakes cannot be stopped due to the small braking force. Meet the braking performance requirements of micro-rail vehicles.
  • an embodiment of the present application provides a micro-rail vehicle and an electromagnetic brake thereof.
  • the electromagnetic brake has a characteristic of large braking force, so as to solve the problem that the related electromagnetic brake cannot meet the braking performance requirements of the micro-rail vehicle due to the small braking force. The problem.
  • an embodiment of the present application provides an electromagnetic brake 1.
  • the electromagnetic brake 1 includes a yoke 11, an armature 12, an excitation coil 19, at least two brake discs 13, a movable disc 14, Fixed disc 15, fixed sleeve 16, and elastic member 18;
  • the electromagnetic brake 1 shown in the structure shown in FIG. 3 is provided with two brake discs 13, but in actual use, two brake discs 13, three Any number of brake discs 13 such as a brake disc 13 and four brake discs 13 are not limited to the two brake discs 13 shown in the structure in FIG. 3;
  • the armature 12, the fixed plate 15, and the movable plate 14 are sleeved on the outer peripheral surface of the fixed sleeve 16;
  • the yoke 11 and the fixed disk 15 are oppositely disposed and fixedly connected.
  • the armature 12 is provided between the yoke 11 and the fixed disk 15, and there is a predetermined gap S between the armature 12 and the yoke 11.
  • Two brake discs 13 are arranged side by side between the armature 12 and the fixed disc 15; as shown in the structure of FIG. 1 and FIG.
  • the fixed disc 15 is fixed to the yoke 11 by a fastener 171 such as a bolt, and the movable disc 14 is It is sandwiched between the brake discs 13; there is a predetermined gap S between the armature 12 and the yoke 11 so that the armature 12 can press the brake disc 13 or make the brake disc under the action of the excitation coil 19 and the elastic member 18 13 loosen;
  • At least two brake disks 13 can slide along the axial direction of the fixed sleeve 16 and are relatively fixedly sleeved on the outer peripheral surface of the fixed sleeve 16 along the circumferential direction of the fixed sleeve 16; as shown in the structure of FIG.
  • the two spaced-apart brake discs 13 are sleeved on the outer peripheral surface of the fixing sleeve 16.
  • the brake disc 13 can slide along the axial direction of the fixing sleeve 16, so that the brake disc 13 can brake under the action of the armature 12.
  • the brake disc 13 is relatively fixed with the fixing sleeve 16 along the circumferential direction of the fixing sleeve 16 so that the brake disk 13 can rotate with the fixing sleeve 16 or is used to decelerate and brake the fixing sleeve 16;
  • a movable disc 14 is sandwiched between each two adjacent brake discs 13; the movable disc 14 sandwiched between the brake discs 13 can increase the brake disc 13 to brake in the electromagnetic brake 1
  • the friction area at the time that is, when the electromagnetic brake 1 is provided with two brake discs 13, the friction area of at least two brake discs 13 and the movable disc 14 can be increased, in contrast to the electromagnetic brake provided with only one brake disc 13. Ratio, can double the friction area, so when the electromagnetic brake 1 is provided with a plurality of brake disks 13, the friction area is proportional to the number of brake disks 13;
  • the yoke 11 is provided with a plurality of mounting holes 111 opening toward the fixing plate 15 and a groove 112 opening toward the fixing plate 15.
  • An exciting coil 19 is embedded in the groove 112; each mounting hole 111 is provided with One elastic member 18; the yoke 11 shown in the structure shown in FIG. 3 is provided with a plurality of mounting holes 111 for receiving the elastic member 18 and a groove 112 for receiving the exciting coil 19.
  • the mounting holes 111 may be through holes. Hole, step hole or blind hole, the groove 112 may be an annular groove; the elastic member 18 may be any component capable of generating elastic force such as a spring;
  • the elastic member 18 has opposite first and second ends 181 and 182, wherein the first end 181 is in contact with the yoke 11 and the second end 182 is in contact with the armature 12.
  • the fixing sleeve 16 may be a spline sleeve or a shaft sleeve.
  • the function of the fixing sleeve 16 is to fix the electromagnetic brake 1 to a rotating member such as an axle or a rotating shaft.
  • the exciting coil 19 When the exciting coil 19 is energized, the current of the exciting coil 19 generates an electromagnetic field between the yoke 11 and the armature 12. The electromagnetic field generates an electromagnetic force to attract the armature 12 to move toward the yoke 11. The electromagnetic force is greater than that of the elastic member 18 acting on the armature 12. During the elastic force, the pressing force of the armature 12 disappears, the pressure between the brake disc 13 and the movable disc 14 and the fixed disc 15 disappears, the movable disc returns to the free position, and the two brake discs 13 rotate with the fixed sleeve 16. At this time, the braking effect of the electromagnetic brake 1 is eliminated, and equipment such as a micro-rail vehicle provided with rotating parts such as an axle and a rotating shaft can normally run.
  • equipment such as a micro-rail vehicle provided with rotating parts such as an axle and a rotating shaft can normally run.
  • the frictional force between 13 and armature 12 generates frictional force.
  • the frictional force can reduce or stop the rotation speed of the rotating component.
  • the electromagnetic brake 1 enters the braking state, and a micro-track of the rotating component such as the axle and the rotating shaft is provided. The vehicle and other equipment will enter the deceleration and braking state.
  • the above-mentioned electromagnetic brake 1 can realize the braking and releasing functions by turning on and off the excitation coil 19 and the role of the elastic member 18; and when the electromagnetic brake 1 enters a braking state, between the brake disc 13 and the movable disc 14, Friction is generated between the brake disc 13 and the fixed disc 15 and between the brake disc 13 and the armature 12, and since the electromagnetic brake 1 is provided with at least two brake discs 13, the friction area of the brake disc 13 can be increased Therefore, the friction force and the braking torque during braking are increased. Therefore, compared with the related electromagnetic brake 1, the electromagnetic brake 1 provided in the embodiment of the present application can generate a larger braking force.
  • the above-mentioned electromagnetic brake 1 has a characteristic of large braking force, so as to solve the problem that the related electromagnetic brake 1 cannot meet the braking performance requirements of the micro-rail vehicle due to the small braking force.
  • the brake disc 13 may include a brake disc body 131, a first friction block 132, and a second friction block 133;
  • the moving disc body 131 is provided with a positioning key groove 1311 for positioning and matching with the fixed sleeve 16;
  • the brake disc body 131 has a first side surface 1313 facing the movable disc 14 and a second side surface 1314 facing away from the movable disc 14; a first friction block 132
  • the second friction pad 133 is disposed on the first side surface 1313 of the brake disc body 131.
  • the second friction pad 133 is disposed on the second side surface 1314 of the brake disc body 131.
  • the first side surface 1313 is provided with a plurality of first friction blocks 132 evenly distributed, and the second side surface 1314 is evenly distributed with A plurality of second friction blocks 133.
  • the first friction block 132 and the second friction block 133 may be a ring structure in FIG. 4, a pentagonal bump structure in FIG. 8, or a cylindrical structure in FIG. 9, and are not limited to FIG. 4, FIG. 7,
  • the structure of the friction blocks in FIG. 8, FIG. 9, and FIG. 10 may also be other structural forms.
  • the arrangement form of the first friction block 132 and the second friction block 133 may be uniformly distributed, matrix distributed, or other arbitrary random. Distribution structure.
  • a heat dissipation channel 1321 may also be provided on the first friction block 132, of course, it may also be provided on the second friction block. 133 settings.
  • first friction block 132 and the second friction block 133 are respectively provided on both sides of the brake disc body 131, and the first friction block 132 and the second friction block 133 are protruded from the brake disc body 131 and are disposed on the electromagnetic brake 1 During the braking process, during the friction braking between the brake disc 13 and the movable disc 14, the fixed disc 15, and the armature 12, only the first friction block 132 and the second friction block 133 are involved in the friction. During the process, the brake disc body 131 can be protected from friction loss. In the case where the first friction block 132 and the second friction block 133 are severely worn, only the first friction block 132 and the second friction block 133 can be replaced to brake. The disc body 131 can be reused because it is not subject to abrasion, thereby improving the utilization rate of the brake disc body 131 and reducing the cost of the brake disc 13.
  • the brake disc body 131 shown in the structure of FIG. 9 includes a disc hub 1315 and a disc core 1316, and the disc hub 1315 is fixedly connected to the inner ring of the disc core 1316; first friction The block 132 and the second friction block 133 are provided on the disk core 1316.
  • Both the first friction block 132 and the second friction block 133 can be made of powder metallurgy material or fiber reinforced composite material, such as: copper-based ceramic powder metallurgy material, iron-based powder metallurgy material, aluminum-based powder metallurgy material, etc .; core 1316 It can be made of steel, iron or copper.
  • the disc core 1316 of the brake disc 13 and the friction block can be made integral by methods such as die casting and sintering.
  • the disk hub 1315 shown in the structure shown in FIG. 11 is provided with a through-thick disk hub fixing hole 13151
  • the disk core 1316 shown in the structure shown in FIG. 10 is provided with a plurality of counterbores 13161.
  • the disk hub 1315 and the disk core 1316 can be fixedly connected together through the counterbored bolts, rivets and other connecting members 1317 through the corresponding counterbores 13161 and the disk hub fixing holes 13151.
  • the brake disc body 131 is composed of the assembled disc hub 1315 and the disc core 1316, during the production, manufacturing and maintenance process, the disc hub 1315 and the disc core 1316 can be separately manufactured and then assembled, which is not only convenient to manufacture Moreover, it can also avoid the situation that the manufacturing cost is increased due to the low qualified rate of the integral molding product; and when the failure needs repair, only the defective hub 1315 or core 1316 can be replaced, so the waste of materials can be reduced. This reduces the cost of use for customers.
  • the yoke 11 further includes an adjusting member 113 corresponding to each of the mounting holes 111, and the adjusting member 113 is used to adjust a compression amount of the elastic member 18 in the corresponding mounting hole 111;
  • the adjusting member 113 is screwed to an end of the mounting hole 111 facing away from the armature 12, and the adjusting member 113 is in contact with the elastic member 18 in the mounting hole 111.
  • an adjusting member 113 is also installed in the mounting hole 111.
  • the adjusting member 113 may be a hexagon socket set stud, a bolt, or a screw.
  • the screwing of 111 can adjust the position of the adjusting member 113 in the mounting hole 111 by rotating the adjusting member 113.
  • the adjusting member 113 can be rotated by The elastic force of the elastic member 18 is adjusted.
  • the elastic force of the elastic member 18 becomes larger, otherwise, the elastic force of the elastic member 18 becomes smaller.
  • the adjustment of the elastic member 18 can be achieved through the adjustment member 113 installed in the mounting hole 111, which not only has the characteristics of flexible and convenient adjustment, but also can be adjusted by the adjustment member 113 when the elastic member 18 is not selected properly.
  • the elastic force of the elastic member 18 meets the requirements of the electromagnetic brake 1, thereby preventing production efficiency from being reduced due to reselection and installation of the elastic member 18.
  • the electromagnetic brake 1 further includes a brake clearance adjustment mechanism 17;
  • the brake clearance adjustment mechanism 17 includes at least two fasteners 171 , Sleeve 172, and a set of U-shaped spacers 173 sandwiched between the sleeve 172 and the fixed plate 15; the fixed connection between the fixed plate 15 and the yoke 11 can also be achieved by a fastener 171, that is,
  • the fasteners 171 can be used to fixedly connect the fixed disk 15 and the yoke 11 or to adjust the brake clearance.
  • At least two fasteners 171 can be two, three, four or more.
  • At least two fasteners 171 may be uniformly distributed along the axial direction of the fixing plate 15; as shown in the structure of FIG. 2, the brake gap adjustment mechanism 17 is provided with three fasteners 171 And three fasteners 171 are evenly distributed along the axial direction of the fixing plate 15, that is, an included angle formed between each two fasteners 171 is 120 °;
  • At least two fasteners 171 are evenly distributed along the circumferential direction of the fixing sleeve 16 and are used to fixedly connect the fixing plate 15 to the yoke 11; the sleeve 172 corresponds to each of the fasteners 171 and is sleeved on the corresponding On the outer peripheral surface of the fastener 171, a sleeve 172 is disposed between the yoke 11 and the fixing plate 15; each set of U-shaped gaskets 173 includes a plurality of U-shaped gaskets 173 of different thicknesses.
  • the thickness can be from 0.5mm to 2mm, such as: 0.5mm, 0.8mm, 1.0mm, 1.2mm, 1.5mm, 2mm.
  • each set of U-shaped gaskets 173 may include a 0.5-mm thick U-shaped gasket 173, a 1-mm thick U-shaped gasket 173, and a 2 mm-thick U-shaped gasket 173; of course
  • Each group of U-shaped gaskets 173 can be provided with a combination of different numbers and different thicknesses of multiple U-shaped gaskets 173 according to actual needs.
  • the specific structure of the U-shaped gasket 173 can be referred to FIG. 14.
  • the gasket opening 1731 of each U-shaped gasket 173 faces the fixing sleeve 16.
  • the brake gap adjusting mechanism 17 is provided with a set of U-shaped shims 173 having different thicknesses, the U-shaped shims 173 are U-shaped structures and have shim openings 1731. Therefore, the brake gap of the electromagnetic brake 1 is adjusted.
  • the U-shaped gasket 173 of appropriate thickness can be directly removed from the sleeve 172 and the fixing plate 15 through the gasket opening 1731 of the U-shaped gasket 173, without removing the
  • the brake clearance can be adjusted after removing the fastener 171, and the brake clearance can be accurately adjusted according to the number and thickness of the U-shaped spacers 173, so that the brake clearance adjustment of the electromagnetic brake 1 is not only convenient for quantification, The adjustment error between different operators is reduced, and the phenomenon of eccentric wear of the brake disc 13 is avoided, and the adjustment is convenient, simple, fast, and saves man-hours.
  • the movable disk 14 shown in the structure shown in FIG. 13 is provided with an opening groove 141 corresponding to the sleeve 172 and a relief hole 142 penetrating through its thickness;
  • the disk 14 is also provided with a first central through hole 143 for mounting the fixed sleeve 16; the movable disk 14 is convenient for installation of the sleeve 172 through the opening slot 141 provided, and the movable disk can also be matched by the cooperation of the opening groove 141 and the sleeve 172.
  • the relief hole 142 is used to pass in relief parts such as bolts, and the relief part is used to drive the armature 12 to be reset by the relief part when the excitation coil 19 or the armature 12 of the electromagnetic brake 1 fails, that is, to make The loss of pressing force between the brake disc 13 and the armature 12 causes the electromagnetic brake 1 to lose its braking function;
  • the number and distribution form of the opening grooves 141 and the relief holes 142 are not limited to the structure shown in FIG. 13 and can be set according to the actual situation Opening slot 141 is used to pass through the corresponding sleeve 172;
  • the fixing plate 15 is provided with screw holes 151 corresponding to the relief holes 142; the fixing plate 15 shown in the structure shown in FIG. 12 is provided with a screw hole 151 screwed with a relief member such as a bolt, and a fixing hole through which a fastener 171 is inserted 152 and a second central through hole 153 for passing through the fixing sleeve 16.
  • the threaded holes 151 correspond to the relief holes 142 on the movable plate 14 one by one.
  • a relief member such as a bolt can be screwed with the threaded hole 151, so that the relief member is fixedly installed on the fixing plate 15, and the other end can pass through
  • the relief hole 142 is in contact with the armature 12, and further, a clearance is created between the armature 12 and the brake disc 13 through the threaded cooperation of the relief member and the threaded hole 151, so that the braking function of the electromagnetic brake 1 is released.
  • the malfunctioning electromagnetic brake 1 can be released after the relief member threaded with the threaded hole 151 passes through the relief hole 142. Therefore, through the additional screw holes 151 on the fixed disk 15 and the relief holes 142 on the movable disk 14, it is convenient for the electromagnetic brake 1 to release the brake in the event of a failure, and it is convenient to maintain and operate the electromagnetic brake 1.
  • the electromagnetic brake 1 may further include a noise reduction structure; the noise reduction structure may include an embedded groove 164 provided on an outer peripheral surface of the fixing sleeve 16, and A noise reduction strip (not shown in the figure) embedded in the insertion groove 164.
  • the noise reduction strip can be made of rubber or resin material, and the resin material can be polytetrafluoroethylene.
  • the fixing sleeve 16 may be a spline sleeve or a shaft sleeve, and the outer contour shape of the cross section of the shaft sleeve is a polygon.
  • the fixed sleeve 16 is provided with a spline 161 on the outer peripheral surface to which the brake disc 13 is installed, and a shaft is provided at the center position for a shaft or a rotating shaft.
  • a key groove 163 for fixing a rotating component is provided on the inner peripheral surface, and an insert groove 164 for embedding a noise reduction strip is also provided on the outer peripheral surface; as shown in the structure of FIG. 17 and FIG.
  • the engaging groove 164 may also be a circumferentially engaging groove extending along the circumferential direction of the fixing sleeve 16 as shown in the structure in FIG. 19.
  • the fixing sleeve 16 may also be a shaft sleeve whose cross-sectional outer shape is a regular hexagon.
  • the cross section of the fixing sleeve 16 may be a regular polygon such as a regular hexagon or a regular pentagon, or may be Irregular polygon structure.
  • the embedded grooves 164 may be evenly distributed on the outer peripheral surface of the fixing sleeve 16, or may be randomly distributed on the outer peripheral surface of the fixing sleeve 16.
  • the brake disc body 131 shown in the structure shown in FIG. 5 cooperates with the fixed sleeve 16 of the spline sleeve
  • the brake disc body 131 is provided with a positioning key groove 1311 which is connected to the spline 161 of the outer surface of the spline sleeve, and is also provided.
  • the spline 161 When the brake disc 13 is set on the outer peripheral surface of the fixed sleeve 16, the spline 161 is fitted into the positioning key groove 1311 to form a noise reduction strip. It is placed in the accommodating space formed by the corresponding insertion groove 164 and the alignment groove 1312.
  • the noise reduction bar of the noise reduction structure can be installed between the fixed sleeve 16 and the brake disk 13, the movable disk 14, the armature 12 and the fixed disk 15, so the noise reduction bar can be reduced by the noise reduction bar.
  • the small electromagnetic brake 1 generates noise due to friction and collision between any two of the fixed sleeve 16, the brake disk 13, the movable disk 14, the armature 12, and the fixed disk 15 during the braking process.
  • the collision and friction loss of the components, especially the abnormal wear of the friction block so the adoption of the above noise reduction structure is beneficial to improve the service life of the electromagnetic brake 1 while reducing noise.
  • a micro-rail vehicle is provided, and the micro-rail vehicle includes any one of the electromagnetic brakes 1 provided in the foregoing embodiments.
  • the micro-rail vehicle adopts the electromagnetic brake 1 described above.
  • the friction area of the brake disc 13 can be increased by at least two brake discs 13 and the movable disc 14 provided between the brake discs 1, thereby increasing the electromagnetic field.
  • the braking force and braking torque of the brake 1 therefore, the micro-rail vehicle using the electromagnetic brake 1 has the characteristics of short braking distance and good braking effect.

Abstract

一种微轨车辆及其电磁制动器(1),涉及轨道交通技术领域,上述电磁制动器(1)包括磁轭(11)、衔铁(12)、励磁线圈(19)、固定套(16)、固定盘(15)、弹性件(18)、至少两个制动盘(13)以及活动盘(14);所述至少两个制动盘(13)均能够沿所述固定套(16)的轴向滑动、且沿所述固定套(16)的周向相对固定地套设于所述固定套(16)的外周面;在每相邻的两个制动盘(13)之间均夹设有一个所述活动盘(14)。该电磁制动器(1)能够通过设置的至少两个制动盘(13)以及设置于制动盘(13)之间的活动盘(14)增大制动盘(13)的摩擦面积,进而增大制动摩擦力和制动力矩,因此,该电磁制动器(1)具有制动力大的特点,以解决现有的电磁制动器因制动力小而不能满足微轨车辆制动性能要求的问题。

Description

一种微轨车辆及其电磁制动器 技术领域
本申请涉及轨道交通技术领域,具体地,涉及一种微轨车辆及其电磁制动器。
背景技术
传统轨道车辆的制动系统一般采用空气制动或液压制动的方式,但是由于空气制动系统和液压制动系统存在体积大和结构复杂的特点,因此,不适用于微轨车辆。技术人员发现,传统的电磁制动器虽然在尺寸方面能够满足微轨车辆的空间要求,但是,受微轨车辆走行机构的尺寸限制,导致电磁制动器因制动力较小而不能满足微轨车辆制动性能要求。
发明内容
本申请实施例中提供了一种微轨车辆及其电磁制动器,该电磁制动器具有制动力大的特点,以解决相关电磁制动器因制动力小而不能满足微轨车辆制动性能要求的问题。
根据本申请实施例的第一个方面,提供了一种电磁制动器,该电磁制动器包括磁轭、衔铁、励磁线圈、至少两个制动盘、活动盘、固定盘、固定套以及弹性件;
所述衔铁、所述固定盘以及所述活动盘均套设于所述固定套的外周面;
沿所述固定套的轴向,所述磁轭与所述固定盘相对设置且固定连接,所述衔铁设置于所述磁轭与所述固定盘之间、且所述衔铁与所述磁轭之间具有预定间隙,所述至少两个制动盘并排设置于所述衔铁与所述固定盘之间;
所述至少两个制动盘均能够沿所述固定套的轴向滑动、且沿所述固定套的周向相对固定地套设于所述固定套的外周面;
在每相邻的两个制动盘之间均夹设有一个所述活动盘;
所述磁轭设置有开口朝向固定盘的多个安装孔、以及开口朝向所述固定盘的凹槽,在所述凹槽内嵌设有所述励磁线圈;
在每个安装孔中均设置有一个所述弹性件;
所述弹性件具有相对的第一端和第二端,其中,所述第一端与所述磁轭相抵接、且所述第二端与所述衔铁相抵接。
在一些可选的实现方式中,所述制动盘包括:
制动盘体,所述制动盘体具有朝向所述活动盘的第一侧表面和背离所述活动盘的第二侧表面;
第一摩擦块,所述第一摩擦块设置于所述制动盘体的所述第一侧表面;
以及第二摩擦块,所述第二摩擦块设置于所述制动盘体的所述第二侧表面。
在一些可选的实现方式中,所述制动盘体包括盘毂和盘芯,所述盘毂固定连接于所述盘芯的内圈;
所述第一摩擦块和所述第二摩擦块设置于所述盘芯。
在一些可选的实现方式中,所述第一摩擦块和所述第二摩擦块均采用粉末冶金材料或纤维增强复合材料制成;和/或,
所述盘芯采用钢、铁或铜材料制成。
在一些可选的实现方式中,沿所述制动盘体的周向,所述第一侧表面设置有均匀分布的多个所述第一摩擦块,且所述第二侧表面均匀分布有多个所述第二摩擦块。
在一些可选的实现方式中,所述磁轭还包括与每个所述安装孔一一对应的调节件,所述调节件用于调节对应安装孔中的所述弹性件的压缩量;
在相互对应的调节件和安装孔中,所述调节件螺纹连接于所述安装孔背离所述衔铁的一端,且所述调节件与所述安装孔中的所述弹性件相抵接。
在一些可选的实现方式中,所述调节件为内六角紧定螺柱、螺栓或螺钉。
在一些可选的实现方式中,还包括制动间隙调节机构;
所述制动间隙调节机构包括:
至少两个紧固件,所述至少两个紧固件沿所述固定套的周向均匀分布、且用于将所述固定盘固定连接于所述磁轭;
套筒,所述套筒与每个紧固件一一对应、且套设于对应紧固件的外周面,所述套筒设置于所述磁轭与所述固定盘之间;
以及夹设在所述套筒和固定盘之间的一组U形垫片,其中,每组U形垫片均包括厚度不同的多个U形垫片。
在一些可选的实现方式中,每个U形垫片的垫片开口均朝向所述固定套。
在一些可选的实现方式中,每个U形垫片的厚度为0.5mm~2mm。
在一些可选的实现方式中,所述活动盘设置有与所述套筒一一对应的开口槽、以及贯穿其厚度的缓解孔;
所述开口槽用于穿设对应的套筒;
所述固定盘设置有与所述缓解孔一一对应的螺纹孔。
在一些可选的实现方式中,还包括降噪结构;
所述降噪结构包括设置于所述固定套外周面的嵌槽、以及嵌设于所述嵌槽内的降噪条。
在一些可选的实现方式中,所述降噪条采用橡胶或树脂材料制成。
在一些可选的实现方式中,所述嵌槽为沿所述固定套的轴向延伸的轴向嵌槽或沿所述固定套的周向延伸的周向嵌槽。
在一些可选的实现方式中,所述固定套为花键套或轴套,且所述轴套的横截面的外轮廓形状为多边形。
根据本申请实施例的第二个方面,提供了一种微轨车辆,该微轨车辆包括上述技术方案提供的任意一种电磁制动器。
采用本申请实施例中提供的电磁制动器,能够通过设置的至少两个制动盘以及设置于制动盘之间的活动盘增大制动盘的摩擦面积,进而增大制动摩擦力和制动力矩,因此,该电磁制动器具有制动力大的特点,以解决相关电磁制动 器因制动力小而不能满足微轨车辆制动性能要求的问题。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例提供的一种电磁制动器的结构示意图;
图2为图1中电磁制动器的A向结构示意图;
图3为图2中电磁制动器的B-B向剖视图;
图4为图1中电磁制动器的一种制动盘的结构示意图;
图5为图4中制动盘的C向结构示意图;
图6为图5中制动盘的D-D向剖视图;
图7为图1中电磁制动器的另一种制动盘的结构示意图;
图8为图1中电磁制动器的另一种制动盘的结构示意图;
图9为图1中电磁制动器的另一种制动盘的结构示意图;
图10为图9中制动盘的带有摩擦块的盘芯的结构示意图;
图11为图9中制动盘的盘毂的结构示意图;
图12为图1中电磁制动器的固定盘的结构示意图;
图13为图1中电磁制动器的活动盘的结构示意图;
图14为图3中电磁制动器的U形垫片的结构示意图;
图15为图3中固定套为花键套时的结构示意图;
图16-图19为固定套为轴套时的结构示意图。
附图标记:
1-电磁制动器;11-磁轭;12-衔铁;13-制动盘;14-活动盘;15-固定盘;16-固定套;17-制动间隙调节机构;18-弹性件;19-励磁线圈;111-安装孔;112-凹槽;113-调节件;131-制动盘体;132-第一摩擦块;133-第二摩擦块;141-开口槽;142-缓解孔;143-第一中心通孔;151-螺纹孔;152-固定孔;153-第二 中心通孔;161-花键;162-轴向通孔;163-键槽;164-嵌槽;171-紧固件;172-套筒;173-U形垫片;181-第一端;182-第二端;1121-开口;1311-定位键槽;1312-对位槽;1313-第一侧表面;1314-第二侧表面;1315-盘毂;1316-盘芯;1317-连接件;1321-散热通道;1731-垫片开口;13151-盘毂固定孔;13161-沉孔;S-预定间隙。
具体实施方式
在实现本申请的过程中,技术人员发现,相关电磁制动器虽然在尺寸方面能够满足微轨车辆的空间要求,但是,受微轨车辆走行机构的尺寸限制,导致电磁制动器因制动力较小而不能满足微轨车辆制动性能要求。
针对上述问题,本申请实施例中提供了一种微轨车辆及其电磁制动器,该电磁制动器具有制动力大的特点,以解决相关电磁制动器因制动力小而不能满足微轨车辆制动性能要求的问题。
为了使本申请实施例中的技术方案及优点更加清楚明白,以下结合附图对本申请的示例性实施例进行进一步详细的说明,显然,所描述的实施例仅是本申请的一部分实施例,而不是所有实施例的穷举。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本申请实施例提供了一种电磁制动器1,如图1和图3结构所示,该电磁制动器1包括磁轭11、衔铁12、励磁线圈19、至少两个制动盘13、活动盘14、固定盘15、固定套16以及弹性件18;如图3结构所示的电磁制动器1设置有两个制动盘13,但是,在实际使用过程中,可以设置两个制动盘13、三个制动盘13、四个制动盘13等任意数量的多个制动盘13,不限于图3中结构所示的两个制动盘13;
衔铁12、固定盘15以及活动盘14均套设于固定套16的外周面;
沿固定套16的轴向,磁轭11与固定盘15相对设置且固定连接,衔铁12设置于磁轭11与固定盘15之间、且衔铁12与磁轭11之间具有预定间隙S,至少两个制动盘13并排设置于衔铁12与固定盘15之间;如图1和图3结构 所示,固定盘15通过螺栓等紧固件171被固定安装于磁轭11,活动盘14被夹设在制动盘13之间;衔铁12与磁轭11之间具有预定间隙S,以使衔铁12在励磁线圈19和弹性件18的作用下能够压紧制动盘13或使制动盘13松开;
至少两个制动盘13均能够沿固定套16的轴向滑动、且沿固定套16的周向相对固定地套设于固定套16的外周面;如图3结构所示,被活动盘14间隔开的两个制动盘13均套设于固定套16的外周面,制动盘13能够沿固定套16的轴向滑动,以使制动盘13能够在衔铁12的作用下进行制动,并且制动盘13沿固定套16的周向与固定套16相对固定,使制动盘13能够随固定套16一起转动或用于对固定套16进行减速、制动;
在每相邻的两个制动盘13之间均夹设有一个活动盘14;通过夹设在制动盘13之间的活动盘14能够增大制动盘13在电磁制动器1进行制动时的摩擦面积,即,当电磁制动器1设置有两个制动盘13时,至少能够增加两个制动盘13与活动盘14的摩擦面积,与仅设置一个制动盘13的电磁制动器相比,能够增大一倍的摩擦面积,因此,当电磁制动器1设置有多个制动盘13时,摩擦面积则与制动盘13的数量成正比;
磁轭11设置有开口朝向固定盘15的多个安装孔111、以及开口朝向固定盘15的凹槽112,在凹槽112内嵌设有励磁线圈19;在每个安装孔111中均设置有一个弹性件18;如图3结构所示的磁轭11设置有多个用于容置弹性件18的安装孔111、以及用于容置励磁线圈19的凹槽112,安装孔111可以为通孔、台阶孔或盲孔,凹槽112可以为环形槽;弹性件18可以为弹簧等任何能够产生弹性力的部件;
弹性件18具有相对的第一端181和第二端182,其中,第一端181与磁轭11相抵接、且第二端182与衔铁12相抵接。
上述电磁制动器1在实际使用过程中,上述固定套16可以为花键套或轴套,固定套16的作用是将该电磁制动器1固定安装于车轴、转轴等转动部件。
上述电磁制动器1的工作原理为:
在励磁线圈19通电时,励磁线圈19的电流在磁轭11和衔铁12之间产生电磁场,电磁场产生电磁力以吸动衔铁12朝向磁轭11运动,电磁力大于弹性件18作用于衔铁12的弹性力时,衔铁12的压紧力消失,制动盘13与活动盘14和固定盘15之间的压力消失,活动盘恢复到自由位,两个制动盘13随固定套16转动,此时,电磁制动器1的制动作用消除,设置有车轴、转轴等转动部件的微轨车辆等设备可正常行驶。
在励磁线圈19断电时,励磁线圈19中的电流消失,弹性件18的弹性力作用于衔铁12,使衔铁12朝向固定盘15方向运动,通过弹性力的作用使衔铁12挤压制动盘13,并使制动盘13压紧活动盘14和固定盘15,衔铁12、制动盘13、活动盘14以及固定盘15被弹性力压紧在一起,制动盘13在车轴、转轴等转动部件的带动下与衔铁12、活动盘14和固定盘15之间产生相对转动,并在制动盘13和活动盘14之间、制动盘13与固定盘15之间、以及制动盘13与衔铁12之间的摩擦力并产生摩擦力,通过摩擦力能够使转动部件的转动速度降低或停止,此时,电磁制动器1进入制动状态,设置有车轴、转轴等转动部件的微轨车辆等设备即进入减速、制动状态。
上述电磁制动器1通过励磁线圈19的通断电以及弹性件18的作用能够实现制动和解除制动功能;并在电磁制动器1进入制动状态时,制动盘13与活动盘14之间、制动盘13与固定盘15之间、以及制动盘13与衔铁12之间均产生摩擦,并且由于电磁制动器1设置有至少两个制动盘13,能够增大制动盘13的摩擦面积,进而增大制动时的摩擦力和制动力矩,因此,与相关电磁制动器1相比,本申请实施例提供的电磁制动器1能够产生较大的制动力。
因此,上述电磁制动器1具有制动力大的特点,以解决相关电磁制动器1因制动力小而不能满足微轨车辆制动性能要求的问题。
一种具体的实施方式中,如图4和图6结构所示,制动盘13可以包括制动盘体131、第一摩擦块132以及第二摩擦块133;如图5结构所示的制动盘体131设置有与固定套16定位配合的定位键槽1311;制动盘体131具有朝向 活动盘14的第一侧表面1313和背离活动盘14的第二侧表面1314;第一摩擦块132设置于制动盘体131的第一侧表面1313;第二摩擦块133设置于制动盘体131的第二侧表面1314。如图8、图9和图10结构所示,沿制动盘体131的周向,第一侧表面1313设置有均匀分布的多个第一摩擦块132,且第二侧表面1314均匀分布有多个第二摩擦块133。第一摩擦块132和第二摩擦块133可以为图4中的圆环状结构、图8中的五边形凸块结构或图9中的圆柱体结构,并不限于图4、图7、图8、图9以及图10中的摩擦块结构,还可以为其它的结构形式,同时,第一摩擦块132和第二摩擦块133的设置形式可以为均匀分布、矩阵分布或其它任意的随机分布结构。如图7结构所示,为了防止制动盘13在制动过程中因摩擦而产生过热的问题,在第一摩擦块132上还可以设置有散热通道1321,当然,也可以在第二摩擦块133上设置。
由于在制动盘体131的两侧分别设置有第一摩擦块132以及第二摩擦块133,且第一摩擦块132以及第二摩擦块133均突出于制动盘体131设置,在电磁制动器1进行制动过程中,制动盘13与活动盘14、固定盘15以及衔铁12进行摩擦制动的过程中,只有第一摩擦块132以及第二摩擦块133参与摩擦,因此,在制动过程中,制动盘体131能够免受摩擦损耗,在第一摩擦块132以及第二摩擦块133磨损严重的情况下,可以只更换第一摩擦块132以及第二摩擦块133,而制动盘体131由于未受到磨损能够重复利用,进而能够提高制动盘体131的利用率,并能够降低制动盘13的成本。
为了进一步提高零部件的利用率和降低生产成本,如图9结构所示的制动盘体131包括盘毂1315和盘芯1316,盘毂1315固定连接于盘芯1316的内圈;第一摩擦块132和第二摩擦块133设置于盘芯1316。第一摩擦块132和第二摩擦块133均可以采用粉末冶金材料或纤维增强复合材料制成,如:铜基陶瓷粉末冶金材料、铁基粉末冶金材料、铝基粉末冶金材料等;盘芯1316可以采用钢、铁或铜材料制成。制动盘13的盘芯1316和摩擦块之间可以通过压铸、烧结等方法制成一体。为了方便盘毂1315和盘芯1316的连接,如图11结构所 示的盘毂1315设置有贯穿厚度的盘毂固定孔13151,如图10结构所示的盘芯1316设置有多个沉孔13161,通过穿设对应的沉孔13161和盘毂固定孔13151的沉头螺栓、铆钉等连接件1317能够将盘毂1315和盘芯1316固定连接在一起。
由于制动盘体131由装配在一起的盘毂1315和盘芯1316构成,因此,在生产、制造和维修过程中,可以分别制造盘毂1315和盘芯1316后再进行装配形成,不仅制造方便,而且还能避免因一体成型产品合格率低而提高制造成本的情况出现;并且在出现故障需要维修时,可仅更换具有缺陷的盘毂1315或盘芯1316,因此,能够减少材料的浪费,进而降低客户的使用成本。
具体地,如图3结构所示,磁轭11还包括与每个安装孔111一一对应的调节件113,调节件113用于调节对应安装孔111中的弹性件18的压缩量;
在相互对应的调节件113和安装孔111中,调节件113螺纹连接于安装孔111背离衔铁12的一端,且调节件113与安装孔111中的弹性件18相抵接。
在安装孔111为贯穿磁轭11厚度的通孔时,在安装孔111中还安装有调节件113,调节件113可以为内六角紧定螺柱、螺栓或螺钉,通过调节件113与安装孔111的螺纹配合,能够通过旋转调节件113来调节调节件113在安装孔111中的位置,同时由于调节件113与安装孔111中的弹性件18相抵接,因此,能够通过旋转调节件113来调节弹性件18的弹力,当调节件113朝向弹性件18移动时,弹性件18的弹力则变大,反之,弹性件18的弹力则变小。所以能够通过安装于安装孔111中的调节件113来实现对弹性件18的调节,不仅具有调节灵活、方便的特点,而且在弹性件18选择不当的时候,可以通过调节件113的调节来使弹性件18的弹力满足电磁制动器1的要求,进而防止因重新选择、安装弹性件18而降低生产效率。
在电磁制动器1的使用过程中,为了方便调节制动间隙,如图3结构所示,上述电磁制动器1还包括制动间隙调节机构17;制动间隙调节机构17包括至少两个紧固件171、套筒172、以及夹设在套筒172和固定盘15之间的一组U 形垫片173;固定盘15与磁轭11之间的固定连接也可以通过紧固件171实现,即,紧固件171既可以用于固定连接固定盘15和磁轭11,也可以用来实现制动间隙的调节;至少两个紧固件171可以为两个、三个、四个或多个,并且,为了能够实现紧固力的均匀分布,至少两个紧固件171可以沿固定盘15的轴向均匀分布;如图2结构所示,制动间隙调节机构17设置有三个紧固件171,并且三个紧固件171沿固定盘15的轴向均匀分布,即,每两个紧固件171之间形成的夹角为120°;
至少两个紧固件171沿固定套16的周向均匀分布、且用于将固定盘15固定连接于磁轭11;套筒172与每个紧固件171一一对应、且套设于对应紧固件171的外周面,套筒172设置于磁轭11与固定盘15之间;其中,每组U形垫片173均包括厚度不同的多个U形垫片173,U形垫片的厚度可以为0.5mm~2mm,如:0.5mm、0.8mm、1.0mm、1.2mm、1.5mm、2mm。例如,为了方便调节制动间隙,每组U形垫片173可以包括一个0.5mm厚的U形垫片173、一个1mm厚的U形垫片173以及一个2mm厚的U形垫片173;当然,每组U形垫片173可以根据实际需要设置不同个数、不同厚度的多个U形垫片173的组合。U形垫片173的具体结构可参考图14,为了方便U形垫片173的拆装,每个U形垫片173的垫片开口1731均朝向固定套16。
由于该制动间隙调节机构17中设置有一组厚度不同的U形垫片173,U形垫片173为U形结构且具有垫片开口1731,因此,在对电磁制动器1的制动间隙进行调节的过程中,在松动紧固件171之后,便可以通过U形垫片173的垫片开口1731将适当厚度的U形垫片173直接从套筒172和固定盘15之间取下,无需将紧固件171拆下即可进行制动间隙的调节,而且能够根据U形垫片173的个数和厚度对制动间隙进行精确地调节,使电磁制动器1的制动间隙调节不仅便于量化、减小不同操作人员之间的调节误差,进而避免制动盘13的偏磨现象,而且还具有调节方便、简单、快捷,节省工时的特点。
为了方便电磁制动器1的维修以及出现故障时对其进行控制,如图13结 构所示的活动盘14设置有与套筒172一一对应的开口槽141、以及贯穿其厚度的缓解孔142;活动盘14还设置有用于套设固定套16的第一中心通孔143;活动盘14通过设置的开口槽141便于套筒172安装,同时还可以通过开口槽141与套筒172的配合对活动盘14进行定位和限位,缓解孔142用于穿设螺栓等缓解件,缓解件用于在电磁制动器1的励磁线圈19或衔铁12出现故障时,通过缓解件来驱动衔铁12复位,即,使制动盘13与衔铁12之间失去压紧力而使电磁制动器1失去制动功能;开口槽141和缓解孔142的数量和分布形式不限于图13中结构所示,可以根据实际情况进行设置;开口槽141用于穿设对应的套筒172;
固定盘15设置有与缓解孔142一一对应的螺纹孔151;如图12结构所示的固定盘15设置有与螺栓等缓解件螺纹连接的螺纹孔151、穿设紧固件171的固定孔152、以及用于穿设固定套16的第二中心通孔153,螺纹孔151与活动盘14上的缓解孔142一一对应。
在电磁制动器1因励磁线圈19或衔铁12出现故障而无法解除制动时,可以通过螺栓等缓解件与螺纹孔151的螺纹连接,使缓解件固定安装于固定盘15,并且另一端可以穿过缓解孔142以与衔铁12相抵接,进而通过缓解件与螺纹孔151螺纹配合使衔铁12与制动盘13之间产生间隙,以使电磁制动器1的制动功能解除。
由于固定盘15上设置有螺纹孔151,且活动盘14上设置有缓解孔142,通过与螺纹孔151螺纹配合的缓解件穿过缓解孔142后即可使出现故障的电磁制动器1解除制动,因此,通过固定盘15上增设的螺纹孔151和活动盘14上增设的缓解孔142便于电磁制动器1在故障时解除制动,便于电磁制动器1的维修和操作。
在上述各种实施例的基础上,为了提高用户使用电磁制动器1的舒适性,上述电磁制动器1还可以包括降噪结构;降噪结构可以包括设置于固定套16外周面的嵌槽164、以及嵌设于嵌槽164内的降噪条(图中未示出)。降噪条可 以采用橡胶或树脂材料制成,树脂材料可以选用聚四氟乙烯。固定套16可以为花键套或轴套,且轴套的横截面的外轮廓形状为多边形。如图15结构所示的固定套16为花键套,固定套16在外周面设置有安装制动盘13的花键161,在轴心位置设置有用于穿设车轴或转轴等转动部件的轴向通孔162,在内周面设置有用于固定转动部件的键槽163,还在外周面设置有用于嵌设降噪条的嵌槽164;如图17和图18结构所示,嵌槽164可以为沿固定套16的轴向延伸的轴向嵌槽,嵌槽164还可以为图19中结构所示的沿固定套16的周向延伸的周向嵌槽。如图16结构所示,固定套16还可以为横截面的外轮廓形状为正六边形的轴套,固定套16的横截面可以为正六边形、正五边形等正多边形,也可以为不规则的多边形结构。嵌槽164可以均匀分布于固定套16的外周面,也可以随机分布于固定套16的外周面。如图5结构所示的制动盘体131在采用花键套的固定套16配合时,制动盘体131设置有与花键套外表面的花键161键连接的定位键槽1311,还设置有与嵌槽164对应且用于容置降噪条的对位槽1312;在制动盘13套设于固定套16外周面时,花键161形状配合在定位键槽1311内,降噪条容置在对应的嵌槽164与对位槽1312形成的容置空间内。
由于电磁制动器1设置有降噪结构,降噪结构的降噪条可以安装于固定套16与制动盘13、活动盘14、衔铁12和固定盘15之间,因此,能够通过降噪条减小电磁制动器1在制动过程中因为固定套16、制动盘13、活动盘14、衔铁12以及固定盘15中任意两者之间摩擦、碰撞产生的噪音,同时,还能减小上述各部件的碰撞、摩擦损耗,尤其是摩擦块的非正常磨损,因此,采用上述降噪结构在降低噪音的同时有利于提高电磁制动器1的使用寿命。
根据本申请实施例的第二个方面,提供了一种微轨车辆,该微轨车辆包括上述实施例提供的任意一种电磁制动器1。
微轨车辆采用上述电磁制动器1,能够通过电磁制动器1设置的至少两个制动盘13以及设置于制动盘13之间的活动盘14增大制动盘13的摩擦面积,进而增大电磁制动器1的制动力和制动力矩,因此,采用该电磁制动器1的微 轨车辆具有制动距离短和制动效果好的特点。
尽管已描述了本申请一些可选的实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括一些可选的实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (16)

  1. 一种电磁制动器,其特征在于,包括磁轭、衔铁、励磁线圈、至少两个制动盘、活动盘、固定盘、固定套以及弹性件;
    所述衔铁、所述固定盘以及所述活动盘均套设于所述固定套的外周面;
    沿所述固定套的轴向,所述磁轭与所述固定盘相对设置且固定连接,所述衔铁设置于所述磁轭与所述固定盘之间、且所述衔铁与所述磁轭之间具有预定间隙,所述至少两个制动盘并排设置于所述衔铁与所述固定盘之间;
    所述至少两个制动盘均能够沿所述固定套的轴向滑动、且沿所述固定套的周向相对固定地套设于所述固定套的外周面;
    在每相邻的两个制动盘之间均夹设有一个所述活动盘;
    所述磁轭设置有开口朝向固定盘的多个安装孔、以及开口朝向所述固定盘的凹槽,在所述凹槽内嵌设有所述励磁线圈;
    在每个安装孔中均设置有一个所述弹性件;
    所述弹性件具有相对的第一端和第二端,其中,所述第一端与所述磁轭相抵接、且所述第二端与所述衔铁相抵接。
  2. 根据权利要求1所述的电磁制动器,其特征在于,所述制动盘包括:
    制动盘体,所述制动盘体具有朝向所述活动盘的第一侧表面和背离所述活动盘的第二侧表面;
    第一摩擦块,所述第一摩擦块设置于所述制动盘体的所述第一侧表面;
    以及第二摩擦块,所述第二摩擦块设置于所述制动盘体的所述第二侧表面。
  3. 根据权利要求2所述的电磁制动器,其特征在于,所述制动盘体包括盘毂和盘芯,所述盘毂固定连接于所述盘芯的内圈;
    所述第一摩擦块和所述第二摩擦块设置于所述盘芯。
  4. 根据权利要求3所述的电磁制动器,其特征在于,所述第一摩擦块和所述第二摩擦块均采用粉末冶金材料或纤维增强复合材料制成;和/或,
    所述盘芯采用钢、铁或铜材料制成。
  5. 根据权利要求2所述的电磁制动器,其特征在于,沿所述制动盘体的周向,所述第一侧表面设置有均匀分布的多个所述第一摩擦块,且所述第二侧表面均匀分布有多个所述第二摩擦块。
  6. 根据权利要求1所述的电磁制动器,其特征在于,所述磁轭还包括与每个所述安装孔一一对应的调节件,所述调节件用于调节对应安装孔中的所述弹性件的压缩量;
    在相互对应的调节件和安装孔中,所述调节件螺纹连接于所述安装孔背离所述衔铁的一端,且所述调节件与所述安装孔中的所述弹性件相抵接。
  7. 根据权利要求6所述的电磁制动器,其特征在于,所述调节件为内六角紧定螺柱、螺栓或螺钉。
  8. 根据权利要求1所述的电磁制动器,其特征在于,还包括制动间隙调节机构;
    所述制动间隙调节机构包括:
    至少两个紧固件,所述至少两个紧固件沿所述固定套的周向均匀分布、且用于将所述固定盘固定连接于所述磁轭;
    套筒,所述套筒与每个紧固件一一对应、且套设于对应紧固件的外周面,所述套筒设置于所述磁轭与所述固定盘之间;
    以及夹设在所述套筒和固定盘之间的一组U形垫片,其中,每组U形垫片均包括厚度不同的多个U形垫片。
  9. 根据权利要求8所述的电磁制动器,其特征在于,每个U形垫片的垫片开口均朝向所述固定套。
  10. 根据权利要求8所述的电磁制动器,其特征在于,每个U形垫片的厚度为0.5mm~2mm。
  11. 根据权利要求8所述的电磁制动器,其特征在于,所述活动盘设置有与所述套筒一一对应的开口槽、以及贯穿其厚度的缓解孔;
    所述开口槽用于穿设对应的套筒;
    所述固定盘设置有与所述缓解孔一一对应的螺纹孔。
  12. 根据权利要求1所述的电磁制动器,其特征在于,还包括降噪结构;
    所述降噪结构包括设置于所述固定套外周面的嵌槽、以及嵌设于所述嵌槽内的降噪条。
  13. 根据权利要求12所述的电磁制动器,其特征在于,所述降噪条采用橡胶或树脂材料制成。
  14. 根据权利要求12所述的电磁制动器,其特征在于,所述嵌槽为沿所述固定套的轴向延伸的轴向嵌槽或沿所述固定套的周向延伸的周向嵌槽。
  15. 根据权利要求1-14任一项所述的电磁制动器,其特征在于,所述固定套为花键套或轴套,且所述轴套的横截面的外轮廓形状为多边形。
  16. 一种微轨车辆,其特征在于,包括如权利要求1-15任一项所述的电磁制动器。
PCT/CN2018/113411 2018-09-03 2018-11-01 一种微轨车辆及其电磁制动器 WO2020047982A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811018714.XA CN110873135A (zh) 2018-09-03 2018-09-03 一种微轨车辆及其电磁制动器
CN201811018714.X 2018-09-03

Publications (1)

Publication Number Publication Date
WO2020047982A1 true WO2020047982A1 (zh) 2020-03-12

Family

ID=69716541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113411 WO2020047982A1 (zh) 2018-09-03 2018-11-01 一种微轨车辆及其电磁制动器

Country Status (2)

Country Link
CN (1) CN110873135A (zh)
WO (1) WO2020047982A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111301386A (zh) * 2020-03-31 2020-06-19 常州中车铁马科技实业有限公司 轭端总成、传动模块、电机械制动装置、制动夹钳单元和轨道车辆
CN113685464B (zh) * 2021-09-18 2022-05-27 奥创动力传动(深圳)有限公司 制动器
WO2023040178A1 (zh) * 2021-09-18 2023-03-23 奥创动力传动(深圳)有限公司 摩擦盘及制动器
CN113685465B (zh) * 2021-09-18 2022-03-01 奥创动力传动(深圳)有限公司 制动器
WO2023040179A1 (zh) * 2021-09-18 2023-03-23 奥创动力传动(深圳)有限公司 磁轭铁芯及制动器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181090A (ja) * 2000-12-11 2002-06-26 Hitachi Ltd ディスクブレーキ
JP2003184919A (ja) * 2001-12-19 2003-07-03 Hitachi Ltd ディスク形電磁ブレーキ装置
CN201184290Y (zh) * 2008-04-09 2009-01-21 姜银生 抽油机电磁制动器
CN101363490A (zh) * 2008-09-25 2009-02-11 天津永恒泰科技有限公司 一种用于电磁制动器的低噪声轴套
CN201827269U (zh) * 2010-10-28 2011-05-11 焦作制动器股份有限公司 一种电磁盘式制动器
CN202659777U (zh) * 2012-07-05 2013-01-09 成都瑞迪机械实业有限公司 手动释放型大扭矩电磁制动器
CN205479051U (zh) * 2016-03-23 2016-08-17 天津百德四方传动设备有限公司 一种电磁失电制动器
CN205937600U (zh) * 2016-08-09 2017-02-08 林德(中国)叉车有限公司 一种电磁制动器气隙调整结构及电磁制动器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2068619U (zh) * 1989-11-08 1991-01-02 天津市机床电器总厂 能定位传动的牙嵌式电磁离合器
CN200965022Y (zh) * 2006-10-31 2007-10-24 张坤 摩擦离合片
CN206799062U (zh) * 2017-03-22 2017-12-26 莱德沃起重机械(上海)有限公司 电磁安全制动器
CN107795612B (zh) * 2017-10-31 2024-02-09 常州中车铁马科技实业有限公司 制动盘及具有其的车辆
CN207496674U (zh) * 2017-11-03 2018-06-15 中车唐山机车车辆有限公司 一种微轨走行机构
CN207777473U (zh) * 2017-12-08 2018-08-28 常州中车铁马科技实业有限公司 盘体、制动盘以及轨道交通车辆
CN108317194B (zh) * 2018-03-26 2024-03-12 湖南世鑫新材料有限公司 高速列车用轴装制动盘组件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181090A (ja) * 2000-12-11 2002-06-26 Hitachi Ltd ディスクブレーキ
JP2003184919A (ja) * 2001-12-19 2003-07-03 Hitachi Ltd ディスク形電磁ブレーキ装置
CN201184290Y (zh) * 2008-04-09 2009-01-21 姜银生 抽油机电磁制动器
CN101363490A (zh) * 2008-09-25 2009-02-11 天津永恒泰科技有限公司 一种用于电磁制动器的低噪声轴套
CN201827269U (zh) * 2010-10-28 2011-05-11 焦作制动器股份有限公司 一种电磁盘式制动器
CN202659777U (zh) * 2012-07-05 2013-01-09 成都瑞迪机械实业有限公司 手动释放型大扭矩电磁制动器
CN205479051U (zh) * 2016-03-23 2016-08-17 天津百德四方传动设备有限公司 一种电磁失电制动器
CN205937600U (zh) * 2016-08-09 2017-02-08 林德(中国)叉车有限公司 一种电磁制动器气隙调整结构及电磁制动器

Also Published As

Publication number Publication date
CN110873135A (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
WO2020047982A1 (zh) 一种微轨车辆及其电磁制动器
JP6535411B2 (ja) 列車用の弾性調節式ブレーキパッド
US4982825A (en) Torque and air gap adjustment mechanism for spring engaged brake or clutch
US11780419B2 (en) Electric park brake with electromagnetic brake
CN108474425B (zh) 铁道车辆用的制动摩擦衬片及采用其的铁道车辆用盘形制动器
KR100471909B1 (ko) 디스크 브레이크 시스템
WO2020103282A1 (zh) 一种全碳陶轴装制动盘
JPH04228935A (ja) キャリパクラッチ又はブレーキ装置
CN201425073Y (zh) 一种电磁制动器
WO2017115700A1 (ja) 鉄道車両用ブレーキライニングおよびそれを備えたディスクブレーキ
US2916105A (en) Self-energizing disc brake for highspeed aircraft and other heavy duty uses
US10746242B2 (en) Disc brake
KR20010082476A (ko) 분리형 브레이크 디스크
CA2677453C (en) Braking
KR101532078B1 (ko) 분리 가능한 브레이크 디스크, 이를 구비한 휠 베어링 조립체 및 브레이크 디스크의 런아웃 규제 방법
JPS6220923A (ja) 負作動形電磁ブレ−キ
KR20070093527A (ko) 저더 방지용 브레이크 시스템
US4593795A (en) Inclined disc brake assembly
CN204529196U (zh) 一种盘式制动器消音装置
CN114026347A (zh) 用于可旋转元件的电动鼓式制动器
JPH11230203A (ja) 無励磁作動形電磁ブレーキ
CN215521736U (zh) 液压盘式制动器
CN212985861U (zh) 一种组合式制动盘
US20230272829A1 (en) Friction Pad Carrier for a Disc Brake
JPH0141852B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932748

Country of ref document: EP

Kind code of ref document: A1