WO2020103282A1 - 一种全碳陶轴装制动盘 - Google Patents

一种全碳陶轴装制动盘

Info

Publication number
WO2020103282A1
WO2020103282A1 PCT/CN2018/123899 CN2018123899W WO2020103282A1 WO 2020103282 A1 WO2020103282 A1 WO 2020103282A1 CN 2018123899 W CN2018123899 W CN 2018123899W WO 2020103282 A1 WO2020103282 A1 WO 2020103282A1
Authority
WO
WIPO (PCT)
Prior art keywords
disc
heat dissipation
friction
ribs
type
Prior art date
Application number
PCT/CN2018/123899
Other languages
English (en)
French (fr)
Inventor
肖鹏
朱苏华
Original Assignee
湖南世鑫新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南世鑫新材料有限公司 filed Critical 湖南世鑫新材料有限公司
Priority to EP18941002.0A priority Critical patent/EP3770458B1/en
Priority to JP2021528860A priority patent/JP7203462B2/ja
Priority to US16/982,058 priority patent/US11493102B2/en
Publication of WO2020103282A1 publication Critical patent/WO2020103282A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/125Discs; Drums for disc brakes characterised by the material used for the disc body
    • F16D65/126Discs; Drums for disc brakes characterised by the material used for the disc body the material being of low mechanical strength, e.g. carbon, beryllium; Torque transmitting members therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/128Discs; Drums for disc brakes characterised by means for cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/023Composite materials containing carbon and carbon fibres or fibres made of carbonizable material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/1304Structure
    • F16D2065/132Structure layered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/1304Structure
    • F16D2065/1328Structure internal cavities, e.g. cooling channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/134Connection
    • F16D2065/1344Connection permanent, e.g. by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/134Connection
    • F16D2065/1388Connection to shaft or axle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/134Connection
    • F16D2065/1392Connection elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0052Carbon

Definitions

  • the invention belongs to the braking technology of vehicles (including trains, cars and heavy-duty trucks, etc.), and in particular relates to a full-carbon ceramic shaft-mounted brake disc.
  • the brake disc is a key component of the vehicle. It is related to the safety of the vehicle's operation. Due to its complex and harsh working environment and inconvenient maintenance and replacement, brake disc products must have reliable braking, convenient maintenance, and a long service life.
  • the brake discs used in vehicles are generally made of cast steel (iron) or forged steel and other metal materials. They have the characteristics of high technical maturity, low cost and wide application speed range, and have been widely used at home and abroad.
  • traditional cast steel (iron) or forged steel brake discs are heavy, which is not only inconvenient to install and maintain, but also leads to increased energy consumption of vehicles.
  • the huge brake thermal load causes a large thermal stress on the brake disc.
  • the cyclic effect of the uneven temperature field and stress field is likely to cause micro cracks in the brake disc.
  • the micro cracks extend to a certain level At a certain level, the brake disc will fatigue and break.
  • the speed reaches or even exceeds 350 At Km / h, the temperature rise generated by the brake increases sharply, and the existing brake disc material is prone to friction surface cracks, which basically reaches the limit of the material.
  • carbon-ceramic composite brake discs to replace existing metal brake discs can reduce the unsprung weight of the vehicle and reduce power loss, and it has a series of advantages such as excellent friction performance, high temperature resistance, and a wide range of applicable environments.
  • the future development direction of dynamic disk materials The heat dissipation of carbon-ceramic composite materials is worse than that of metal materials, and more heat is brought about by friction at high speed. Therefore, it is necessary to design a structure with more excellent heat dissipation structure to greatly improve the heat dissipation effect of the disk.
  • carbon-ceramic composite materials have high brittleness and poor processing performance, especially the shaft-mounted brake discs, and the radiating ribs inside the brake discs are difficult to machine and form.
  • how to achieve its combination with the vehicle interface while ensuring structural strength also needs to be considered.
  • the technical problem to be solved by the present invention is to provide a new type of carbon-ceramic shaft-mounted brake disc in view of the material characteristics of the carbon-ceramic composite material leading to its application difficulties in vehicle brakes.
  • the invention relates to an all-carbon ceramic shaft mounted brake disc, which includes a disc hub (2) and a plurality of friction discs (1) sleeved on the disc hub (2) and coaxially stacked; between the plurality of friction discs and The friction disc (1) and the disc hub (2) are connected and integrated by a connection structure; the friction disc (1) is a carbon-ceramic composite material, and the heat dissipation ribs arranged radially along the disc surface (10) and the back surface (11) Composition, the heat dissipation ribs (11) between the stacked friction discs are in one-to-one contact.
  • the friction disc (1) has radial heat dissipation channels (12) formed on both sides of the heat dissipation ribs (11), and a communication groove connecting the radial heat dissipation channels on both sides is formed between the heat dissipation ribs (11) (13).
  • the thickness of the friction disk surface is 2 / 5-2 / 3 of the thickness of the friction disk (1).
  • the heat dissipation reinforcement ribs (11) are symmetrically distributed with the center of the disc surface as a center; the heat dissipation reinforcement ribs (11) include two types of reinforcement ribs, defining heat dissipation reinforcement ribs (11) distributed along the outer circumference of the friction disk
  • the reinforcement ribs are the first type of reinforcement ribs (11a).
  • the heat radiation ribs distributed along the inner circumference of the friction disc are the second type of reinforcement ribs (11b); the first type of reinforcement ribs (11a) It is staggered with the second type of reinforcing ribs (11b) at a certain angle in the circumferential direction, and the angle range is 10 ° -45 °.
  • a gap is left between adjacent first-type reinforcing ribs (11a), and the gap constitutes an air inlet (12a) of the radial heat dissipation channel (12).
  • the second-type reinforcing ribs (11b) are provided with a concave structure, and the bottom of the concave structure is processed with a gap, and the gap forms an air outlet (12b) of the radial heat dissipation channel (12); the adjacent second-type reinforcing ribs (11b) 11b) Form a communication groove (13) between them; the communication groove (13) communicates with a radial heat dissipation channel (12); the radial heat dissipation channel (12) communicates with the outside.
  • the projection is perpendicular to the surface of the friction disc (1).
  • the total area of the projection of the first type of ribs (11a) accounts for 30-45% of the projected area of the friction disc (1); the projection of the second type of ribs (11b) The total area accounts for 10-25% of the projected area of the friction disc (1).
  • the number of the first type of reinforcement (11a) and the second type of reinforcement (11b) is 3-30.
  • the projection is perpendicular to the disc surface of the friction disc (1).
  • the projection of a single rib in the first type of rib (11a) is arc-shaped, and the center of the arc is the center line of the arc and the outer circumference of the friction disc (1) Intersection point; the length of the first type of ribs (11a) in the radial direction is 1 / 10-1 / 6 of the radius of the friction disc (1);
  • the projection is perpendicular to the disc surface of the friction disc (1).
  • the projection of a single rib in the second type of rib (11b) is in the shape of a "U", and the opening end of the "U” shape faces the center of the projection of the friction disc (1) ,
  • the closed end of the "U” shape faces outward; both sides of the rib (11b) are radially symmetrical, and the angle between the side and the diameter is 10 ° -20 °; the arc of the closed end of the "U” shape and the two sides
  • the edges are tangent; the length of the second type of ribs (11b) in the radial direction is 1 / 8-3 / 8 of the radius of the friction disc (1).
  • the projection is perpendicular to the disc surface of the friction disc (1), and the projection of a single second-type rib is in a "U" shape; the width of the U shape is 1 / 16-1 / 2 of the radius of the friction disc (1); The length from the closed end of the U-shape to the port is 1 / 4-3 / 8 of the radius of the friction disc (1).
  • the first type of reinforcing ribs (11a) are alternately provided with rivet holes (15) and dynamic balancing holes (16); the rivet holes (15) are through holes penetrating the disc surface; the dynamic balancing holes (16) are blind holes , The depth is less than or equal to the thickness of the first type of reinforcement (11a).
  • an all-carbon ceramic shaft-mounted brake disc, the air inlet (12a), the communication groove (13) and the air outlet (12b) form a curvilinear diameter-reducing channel.
  • the communication grooves (13) are symmetrically distributed about the center of the disc surface of the brake disc (1); all the communication grooves (13) communicate with each other
  • a wave-shaped heat dissipation channel (14) is formed.
  • an all-carbon ceramic shaft mounted brake disc the connection structure includes rivets (7) for circumferential positioning between the friction discs (1) and friction discs (1) and Bolt assembly locked between disc hubs (2).
  • the rivet (7) is fixedly inserted into the rivet hole (15) between the stacked friction discs, and the rivet (7) is sleeved with a ferrule (71).
  • the bolt assembly includes an axial positioning washer (3), a torsion pin (4), a bolt (5), a nut (6) and a steel sleeve (8), the steel sleeve (8) is inserted into the friction disc (1 )
  • the bolt (5) is inserted through the bolt holes on the friction disc (1) and the disc hub (2), and is tightly connected by a nut (6), and the axial positioning washers (3) are respectively placed on the The outer sides of the friction disc and the disc hub are between the nut (6) and the nut of the bolt (5); the torsion pin (4) is assembled between the axial positioning washer (3) and the disc hub (2).
  • an all-carbon ceramic shaft-mounted brake disc the rivets are made of metal materials, and the rivet length is 1 / 16-1 / 2 of the total thickness of the brake disc, preferably the total thickness of the brake disc 1 / 8-1 / 4.
  • the thermal expansion coefficient of the metal material is 10 ⁇ 10 ⁇ 6 / K or less, and the shear tensile strength is 400 MPa or more.
  • the metal with a low thermal expansion coefficient is selected from at least one of 00Cr27Mo, 00Cr30Mo, 4J36 and the like.
  • an all-carbon ceramic shaft-mounted brake disc the brake disc (1) is made of carbon ceramic composite material with a density of 1.8-2.6 g / cm 3 .
  • the present invention is a full carbon ceramic shaft mounted brake disc.
  • the friction disc (1) may be formed by splicing a plurality of split friction discs (1 ') divided in a radial direction.
  • the stacked split friction Independent connection structures are provided between the discs (1 ') and between the split friction disc (1') and the disc hub.
  • the brake disc is designed as a split structure (at least two split friction discs), and each split friction disc is separately produced, processed and then stacked. First, it is conducive to the design of the heat dissipation structure of the entire disc.
  • the non-friction surface It can be milled on the non-friction surface into the desired shape, avoiding the technical difficulties caused by the overall processing of the heat dissipation channel and the ribs;
  • the material uniformity of the surface avoids uneven wear in the braking process caused by uneven composition of the brake disc during ceramicization;
  • the third is conducive to the improvement of the overall oxidation resistance of the brake disc, and the heat dissipation structure can be used during the ceramicization process
  • the formation of a tightly bonded SiC coating does not require additional anti-oxidation treatment.
  • the individual brake discs can also be assembled by splitting the brake discs. If a certain area of the brake disc is damaged, you can only replace and maintain the split brake disc where the area is located. The convenience of disassembly, assembly and maintenance of the brake disc is improved, and the use cost is reduced.
  • the heat dissipation ribs adopt the 2 types of ribs for alternating and / or cross settings. By adjusting the relative position, three-dimensional shape and projected area of the two, it is effective to dissipate the stress concentration while achieving efficient heat dissipation, avoiding the carbon ceramic materials.
  • the low strength is easy to cause the problem of radiating rib breakage, which ensures the structural strength of the carbon ceramic brake disc.
  • the maximum shear stress of the carbon ceramic radiating rib is less than 1MPa, which is much lower than the failure strength of the carbon ceramic material. This solves the problem that the heat dissipation and strength of carbon ceramic brake discs cannot be coordinated for a long time.
  • the two types of reinforcing ribs are staggered to form a wavy three-dimensional heat dissipation channel, which is beneficial to air flow and enhances the convection heat dissipation effect.
  • the two sides of the heat dissipation ribs are processed into symmetrical curved surfaces, so that the radial heat dissipation channel forms a curve-shaped variable-diameter channel. According to the change of the flow velocity of the air flow in the variable-section channel, the air flow is accelerated to take away more heat and improve the heat dissipation effectiveness.
  • the wavy three-dimensional heat dissipation channel connects all the radial heat dissipation channels to form a three-dimensional heat dissipation system that intersects the entire brake disc.
  • the steel sleeve provided in the bolt hole of the carbon ceramic brake disc can achieve the shear force of the steel sleeve in addition to the connection between the two split friction discs through the friction force, thereby increasing the stability of the connection strength of the entire structure It can prevent the bolt from being eccentric due to the moment load and cause the brake disc to be subjected to large uneven static pressure, reduce the force of the disc body connecting bolt and rivet, and prevent the bolt and rivet from breaking.
  • the rivet is made of a metal material with a low coefficient of thermal expansion.
  • the present invention also unexpectedly found that, under the condition of ensuring the connection strength, the length of the rivet is reasonably designed according to the difference in thermal expansion coefficient between the carbon ceramic friction disc and the rivet, which greatly reduces The occurrence of the phenomenon that the temperature of the rivet caused by the excessive elongation of the rivet during the braking process causes the axial relaxation of the brake disc has greatly improved the life of the product, which greatly exceeded the expectations.
  • the dynamic balancing holes are evenly distributed along the circumferential direction on the brake disc, and a metal block with a higher density can be embedded in the dynamic balancing hole, so that the carbon ceramic brake disc needs to be processed to remove the weight due to the imbalance. The problem.
  • the shaft-mounted brake disc of the present invention has the advantages of simple structure, excellent heat dissipation effect, reliable connection, high structural strength, convenient maintenance, light weight, etc., while ensuring reliable braking and reducing the vehicle (especially High-speed, high-load vehicles) energy consumption and maintenance costs.
  • Fig. 1 is an assembled cross-sectional view of a full carbon ceramic shaft-mounted brake disc in an embodiment.
  • Fig. 2 is a perspective schematic view of a full carbon ceramic shaft-mounted brake disc in an embodiment.
  • Fig. 3 is a front view of the friction disc in the embodiment.
  • Figure 4 is a partial view of the rivet connection structure.
  • Figure 5 is a sectional view of the bolt connection structure.
  • Fig. 6 is a schematic diagram of a split friction disk in an embodiment.
  • 2-disk hub 3-axial positioning washer, 4-transferring pin, 5-bolt, 6-nut, 7-rivet, 71-ferrule, 72-washer, 8-steel sleeve.
  • the full carbon ceramic shaft-mounted brake disc in the illustration is a preferred solution of the present invention, which specifically includes a friction disc 1, a disc hub 2, an axial positioning washer 3, a torsion pin 4, a bolt 5, Nut 6 and rivet 7.
  • the friction disc 1 is a ring made of carbon ceramic composite material.
  • Two annular friction discs 1 are coaxially stacked and fixed on the disc hub 2.
  • the disc hub 2 is fixedly connected to the axle, and the friction discs 1 are connected by rivets.
  • the outer disc surface of the friction disc is used to contact the friction brake pads and processed into a flat surface, and the inner disc surface is used for stacked contact between the friction discs 1, and the heat dissipation ribs 11 are processed on the side disc surface.
  • the thickness of the friction disk surface is 2 / 5-2 / 3 of the thickness of the friction disk 1
  • the thickness of the heat dissipation rib 11 is 1 / 3-3 / 5 of the thickness of the friction disk 1.
  • the heat dissipation ribs 11 are symmetrically distributed with the center of the disc surface as the center, and include the first type ribs 11a distributed along the outer circumference of the friction disc and the second type ribs 11b distributed along the inner circumference of the friction disc.
  • the first-type reinforcement ribs 11a and the second-type reinforcement ribs 11b are staggered at a certain angle in the circumferential direction, and the angle range is 10 ° -45 °.
  • the projection is perpendicular to the disc surface of the friction disc 1, the total area of the projection of the first type of ribs 11a accounts for 30-45% of the projection area of the friction disc 1; the total area of the projection of the second type of ribs 11b accounts for the projection area of the friction disc 1 10-25%.
  • the number of the first-type reinforcing ribs 11a and the second-type reinforcing ribs 11b is 3-30.
  • the projection is perpendicular to the disc surface of the friction disc 1, and the projection of a single rib in the first type of rib 11a is in the shape of an arc, and the center of the arc is the intersection of the center line of the arc and the outer circumference of the brake disc;
  • the length of the ribs 11a in the radial direction is 1 / 10-1 / 6 of the radius of the friction disc 1;
  • the projection is perpendicular to the surface of the friction disc 1, and the projection of a single rib in the second type of rib 11b is "U ",
  • the open end of the" U “shape faces the projection center of the friction disc 1, the closed end of the" U “shape faces outward; both sides of the rib 11b are radially symmetrical, and the angle between the side and the diameter is 10 ° -20 °;
  • the arc of the closed end of the "U” shape is tangent to the two sides;
  • the type 2 reinforcing ribs are used for alternating and / or cross setting.
  • the relative position, three-dimensional shape and projected area of the two it is effective to dissipate the stress concentration while achieving efficient heat dissipation, avoiding the easy generation of carbon ceramic materials due to low strength
  • the problem of fin rupture ensures the structural strength of the carbon-ceramic brake disc.
  • the second-type reinforcing ribs 11b are provided with a concave structure, and the bottom of the concave structure is processed with a notch to form the air outlet 12b of the radial heat dissipation channel 12; the adjacent second-type reinforcing ribs 11b form a communication groove 13; the communication groove 13 communicates with the radial heat dissipation channel 12; the radial heat dissipation channel 12 communicates with the outside.
  • the air inlet 12a, the communication groove 13 and the air outlet 12b form a curvilinear diameter-reducing channel.
  • the air flow is accelerated to take away more heat and improve the heat dissipation efficiency.
  • the communication grooves 13 communicate with each other to form a wavy planar heat dissipation channel 14, and the planar heat dissipation route connects all the radial heat dissipation channels 12 together to form a three-dimensional heat dissipation system that intersects the entire brake disc.
  • the dynamic balancing holes 16 are arranged on the first-type reinforcing ribs 11a.
  • the dynamic balancing holes 16 are blind holes with a depth less than or equal to the thickness of the first-type reinforcing ribs 11a.
  • the metal block is used to increase the weight when adjusting the dynamic balance of the brake disc.
  • the all-carbon ceramic in this embodiment refers to the entire brake disc is made of carbon-ceramic composite material with a density of 1.8-2.6 g / cm 3.
  • the installed friction discs form a whole, so that the milling processing of the heat dissipation ribs 11 and the communication groove 13 and other structures can be separately performed on one side of each friction disc, which improves the production efficiency and production cost.
  • a rivet hole 15 is also machined on the same circumference of the disc surface of the friction disk 1.
  • the rivet hole 15 is all processed on the solid part of the heat dissipation rib 11a, and the The positions of the rivet holes correspond to each other.
  • align the rivet holes and then fix and insert the rivet holes 15 in the coaxially aligned rivet holes 15 between the brake disks, and initially connect the two friction disks 1 It is integrated and forms the anti-rotation circumferential positioning between the friction discs.
  • a ferrule 71 is installed between the friction disc 1 and the rivet 7 in the radial direction.
  • the ring 71 is put on the rivet 7 to separate the friction disk 1 and the rivet 7.
  • a washer 72 is installed between the friction disc 1 and the rivet 7 in the axial direction.
  • a steel sleeve 8 is installed between the friction disk 1 and the bolt 5 in the radial direction of the screw.
  • two friction disks 1 with an integral structure as shown in FIG. 3 may be used for stacking assembly.
  • the split friction disc 1 'shown in FIG. 6 can also be used for stacking assembly.
  • This split friction disc structure is damaged in a certain area of the brake disc. , The split friction discs in the damaged area can be replaced separately.
  • the split friction disc 1 ' is divided radially along the friction disc shown in FIG. 3, and may be a semi-circular structure shown in FIG. 6, or two or more fan-shaped circular arc structures.
  • the split friction disc 1 ' The heat dissipation structure and connection structure after splicing into an integral ring are the same as the friction disc 1 of the overall structure, and on each split friction disc 1' stacked and each split friction disc 1 'and disc hub 2 Each room is provided with an independent connection structure, so as to ensure that each split friction disc 1 'can be disassembled and assembled separately.
  • the heat dissipation performance of the obtained product is improved by at least 10% compared with the existing carbon ceramic plate, and the service life is increased by 20%.
  • ANSYS Workbench 18.1 software train 350 km / h is used for the emergency braking of the carbon ceramic shaft disk of the present invention and the existing automobile carbon ceramic disk structure shaft disk.
  • the results show that the maximum temperature of the carbon ceramic shaft disc brake of the present invention is 702 °C, the maximum thermal stress of the disc surface is 67 MPa; while the maximum temperature of the existing automotive carbon ceramic disc structure shaft disc brake is 791 °C, the maximum thermal stress of the disc surface is 88 MPa.
  • the product obtained by the invention obviously improves the heat dissipation performance, at the same time effectively disperses the stress concentration, and greatly improves the reliability of the product.
  • the dimensions of the full carbon ceramic shaft-mounted brake disc are customized according to relevant standards.
  • the structure of the all-carbon ceramic axle-mounted brake disc designed by the present invention is suitable for all vehicles, and is especially suitable for high-speed trains.
  • the above embodiments describe the basic principles and main features of the present invention and the advantages of the present invention. Those skilled in the art should understand that the present invention is not limited by the above embodiments. The above embodiments and the description only describe the invention The specific working principle, without departing from the spirit and scope of the present invention, the present invention will have various changes and improvements, these changes and improvements fall within the scope of the claimed invention, the scope of the claimed invention is attached Claims and their equivalents.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Braking Arrangements (AREA)
  • Connection Of Plates (AREA)

Abstract

一种全碳陶轴装制动盘,包括盘毂(2)以及套装在盘毂(2)上并同轴叠装的多片摩擦盘(1);多片摩擦盘(1)之间以及摩擦盘(1)和盘毂(2)之间通过连接结构锁合连接成一体;摩擦盘(1)为碳陶复合材料,由盘面(10)和背面沿径向设置的散热加强筋(11)构成,叠装后的摩擦盘之间的散热加强筋(11)一一对应接触,在散热加强筋(11)的两侧形成径向散热通道(12),在散热加强筋(11)之间形成连通两侧径向散热通道(12)的连通槽(13)。该全碳陶轴装制动盘具有结构简单,散热效果优异,连接可靠,结构强度高,维护方便,重量轻等优点,在保证制动可靠的同时降低了运载工具的能源消耗及维护成本。

Description

一种全碳陶轴装制动盘 技术领域
本发明属于运载工具(包括列车、汽车及重载卡车等)制动技术,具体涉及一种全碳陶轴装制动盘。
背景技术
制动盘是运载工具的关键部件,关系到运载工具运行安全,因其工作环境复杂恶劣,维修更换不便,所以要求制动盘产品必须具有制动可靠、维护方便及较长的使用寿命。目前运载工具使用的制动盘一般采用铸钢(铁)或锻钢等金属材料,其具有技术成熟度高、成本低、适用速度范围广的特点,已在国内外得到了广泛的应用。但是传统的铸钢(铁)或锻钢制动盘重量大,不仅安装维护不方便,还会导致运载工具能耗的增加。同时,在制动过程中,巨大的制动热负荷使制动盘产生很大的热应力,不均匀温度场和应力场的循环作用容易使制动盘产生微裂纹,当微裂纹扩展到一定程度时,制动盘就会发生疲劳断裂。尤其在高速列车领域,随着列车不断增速,其速度达到甚至高于350 Km/h时,刹车产生的温升急剧增加,现有制动盘材料极易产生摩擦面裂纹,基本达到了材料的极限。
采用碳陶复合材料制动盘替代现有的金属制动盘,可以减轻运载工具簧下重量,降低功率损耗,而且其具有摩擦性能优异、耐高温、适用环境范围广等一系列优点,是制动盘材料未来的发展方向。但是碳陶复合材料的散热性较金属材料要差,且高速下摩擦带来的热量更多,因此结构上需要设计散热性更为优异的结构来大幅提高盘的散热效果。同时,碳陶复合材料的脆性大,加工性能差,尤其是轴装制动盘,制动盘内部的散热筋很难机加工成型。除此之外,针对碳陶制动盘,如何实现其与运载工具接口结合同时保证结构强度,也是需要考虑的。
目前,制动盘的结构设计大多数都是针对金属制动盘的,其散热结构通常采用整体铸造而成,因此并不适用于碳陶制动盘。而关于碳陶制动盘的报道一般也是只局限于盘的工艺制备过程,并未涉及具体的结构设计。因此,如何设计制备一款散热效果优异,实现其与运载工具接口结合,同时保证制动盘结构强度的全碳陶制动盘,仍然是一个亟待解决的难题。
技术问题
本发明所要解决的技术问题是:针对碳陶复合材料的材料特性导致其在运载工具制动器上的应用难题,提供一种新型的全碳陶轴装制动盘。
技术解决方案
本发明采用如下技术方案实现:
本发明,一种全碳陶轴装制动盘,包括盘毂(2)以及套装在盘毂(2)上并同轴叠装的多片摩擦盘(1);多片摩擦盘之间以及摩擦盘(1)和盘毂(2)之间通过连接结构锁合连接成一体;所述摩擦盘(1)为碳陶复合材料,由盘面(10)和背面沿径向设置的散热加强筋(11)构成,叠装后的摩擦盘之间的散热加强筋(11)一一对应接触。
所述摩擦盘(1),在所述散热加强筋(11)的两侧形成径向散热通道(12),所述散热加强筋(11)之间形成连通两侧径向散热通道的连通槽(13)。
所述摩擦盘盘面的厚度为摩擦盘(1)厚度的2/5-2/3。散热加强筋(11)的厚度为摩擦盘(1)厚度的1/3-3/5。摩擦盘盘面的厚度+散热加强筋(11)的厚度=摩擦盘(1)厚度。
所述散热加强筋(11)以盘面圆心为中心,呈对称分布;所述散热加强筋(11)包含两类加强筋,定义散热加强筋(11)中,沿摩擦盘盘体外圆周分布的散热加强筋为第一类加强筋(11a),定义散热加强筋(11)中,沿摩擦盘盘体内圆周分布的散热加强筋为第二类加强筋(11b);第一类加强筋(11a)与第二类加强筋(11b)在周向方向错开一定角度交错排布,角度范围为10°-45°。
相邻的第一类加强筋(11a)之间留有间隙,所述间隙构成径向散热通道(12)的进风口(12a)。
所述第二类加强筋(11b)上带有凹陷结构,凹陷结构底部加工有缺口,所述缺口构成径向散热通道(12)的出风口(12b);相邻的第二类加强筋(11b)之间构成连通槽(13);所述连通槽(13)与径向散热通道(12)连通;所述径向散热通道(12)与外部连通。
垂直于摩擦盘(1)的盘面进行投影,第一类加强筋(11a)所得投影的总面积占摩擦盘(1)投影面积的30-45%;第二类加强筋(11b)所得投影的总面积占摩擦盘(1)投影面积的10-25%。第一类加强筋(11a)和第二类加强筋(11b)的数量为3-30个。
垂直于摩擦盘(1)的盘面进行投影,第一类加强筋(11a)中单个加强筋所得投影呈圆弧形,圆弧形的圆心为圆弧中心线与摩擦盘(1)外圆周的交点;第一类加强筋(11a)沿径向方向的长度为摩擦盘(1)半径的1/10-1/6;
垂直于摩擦盘(1)的盘面进行投影,第二类加强筋(11b)中单个加强筋所得投影呈“U”形,所述“U”形的开口端朝摩擦盘(1)的投影圆心,“U”形的闭口端朝外;加强筋(11b)的两侧沿径向对称,侧边与直径的夹角呈10°-20°;“U”形闭口端的圆弧与两个侧边相切;第二类加强筋(11b)沿径向方向的长度为摩擦盘(1)半径的1/8-3/8。作为优选方案,垂直于摩擦盘(1)的盘面进行投影,单个第二类加强筋所得投影呈“U”形;U形的宽度为摩擦盘(1)半径的1/16-1/2;U形中闭口端到端口的长度为摩擦盘(1)半径的1/4-3/8。
第一类加强筋(11a)上交替设有铆钉孔(15)和动平衡孔(16);所述铆钉孔(15)为贯穿盘面的通孔;所述动平衡孔(16)为盲孔,深度小于等于第一类加强筋(11a)的厚度。
作为优选,本发明,一种全碳陶轴装制动盘,所述进风口(12a)、连通槽(13)及出风口(12b)形成曲线形变径通道。
作为优选,本发明,一种全碳陶轴装制动盘,所述连通槽(13)以制动盘(1)的盘面圆心为中心,呈对称分布;所有连通槽(13)之间连通形成波浪形的散热通道(14)。
作为优选,本发明,一种全碳陶轴装制动盘,所述连接结构包括用于摩擦盘(1)之间叠装周向定位的铆钉(7)以及用于摩擦盘(1)和盘毂(2)之间锁定的螺栓组件。
所述铆钉(7)固定插装在叠装的摩擦盘之间的铆钉孔(15)内,所述铆钉(7)上套装套圈(71)。
所述螺栓组件包括轴向定位垫圈(3)、传扭销(4)、螺栓(5)、螺母(6)和钢套(8),所述钢套(8)插装在摩擦盘(1)的螺栓孔中,螺栓(5)插装穿过摩擦盘(1)和盘毂(2)上的螺栓孔,通过螺母(6)紧固连接,轴向定位垫圈(3)分别垫设在摩擦盘和盘毂的外侧与螺母(6)和螺栓(5)的螺帽之间;所述传扭销(4)装配在轴向定位垫圈(3)和盘毂(2)之间。
作为优选,本发明,一种全碳陶轴装制动盘,所述铆钉采用金属材料制备,铆钉长度为制动盘总厚度的1/16-1/2,优选为制动盘总厚度的1/8-1/4。所述金属材料的热膨胀系数小于等于10×10 -6 /K、剪切拉伸强度大于等于400 MPa。在工业上应用时,所述低热膨胀系数的金属选自00Cr27Mo、00Cr30Mo、4J36等中的至少一种。
作为优选,本发明,一种全碳陶轴装制动盘,所述制动盘(1)采用密度为1.8-2.6 g/cm 3的碳陶复合材料。
作为优选,本发明,一种全碳陶轴装制动盘,所述摩擦盘(1)可以由沿径向分割的若干分体式摩擦盘(1’)拼接而成,叠装的分体式摩擦盘(1’)之间以及分体式摩擦盘(1’)和盘毂之间均设有独立的连接结构。
有益效果
本发明具有如下有益效果:
(1)针对碳陶复合材料的加工工艺性,将制动盘设计为分体式结构(至少两件分体式摩擦盘),对每件分体摩擦盘进行单独生产、加工后再叠装组成。其一有利于整个盘的散热结构设计,可以在非摩擦面进行铣削加工成所需的形状,避免了整体加工散热通道、加强筋带来的工艺难点;其二有利于制动盘两个摩擦面的材料均匀性,避免了制动盘整体陶瓷化过程中成分不均匀导致制动过程中的偏磨;其三有利于制动盘整体抗氧化性能的提高,散热结构可以在陶瓷化过程中形成结合紧密的SiC涂层,不需要再后续进行额外的抗氧化处理。同时,还可将单个的制动盘采用分体式制动盘拼接的方式进行拼装,如制动盘其中某个区域出现损坏,可以只对该区域所在的分体式制动盘进行更换维护,进一步提高了制动盘拆装维护的方便性,并且降低了使用成本。
(2)散热加强筋采用2类加强筋进行交替和/或交叉设置,通过调整二者的相对位置以及立体形状、投影面积,在实现高效散热的同时有利于分散应力集中,避免由于碳陶材料强度低容易产生散热筋断裂的问题,保证了碳陶制动盘的结构强度。经过验证,所得产品中,碳陶散热筋的最大剪切应力小于1MPa,大大低于碳陶材料的失效强度。这就解决了长期以来,碳陶制动盘散热和强度无法协调的问题。本发明中,2类加强筋之间交错排布, 形成波浪形的立体散热通道,有利空气流动,增强对流散热效果。同时,散热加强筋的两侧面加工成对称的曲面,这样径向散热通道形成一个曲线形变径通道,根据气流在变截面通道内的流速变化,加快了空气流动带走更多热量,提高了散热效率。波浪形的立体散热通道将所有的径向散热通道全部连通起来,形成穿插整个制动盘的立体散热系统。
(3)碳陶制动盘螺栓孔内设置的钢套,可以实现两半分体摩擦盘之间除了通过摩擦力连接结合外,增加钢套的剪切力,从而增加了整个结构连接强度的稳定性,防止螺栓受力矩载荷出现偏心而使制动盘受到较大的不均匀静压力,减少盘体连接螺栓及铆钉的受力,防止螺栓及铆钉断裂。
(4)铆钉采用热膨胀系数低的金属材料制备,同时,本发明还意外发现,在保证连接强度的情况下,根据碳陶摩擦盘与铆钉之间的热膨胀系数差异合理设计铆钉的长度,大大降低了制动过程中温度升高引起铆钉过度伸长导致制动盘轴向放松现象的出现概率,极大的提升了产品的寿命,这大大超出了预计。
(5)由于碳陶制动盘的密度只有金属制动盘的约1/3且硬度较高,若采用传统的加工去重的方法去实现动平衡会导致碳陶制动盘去除的体积过多影响结构的完整性,而且会加大加工强度。本发明在制动盘上设计沿圆周方向均匀分布动平衡孔,可以在动平衡孔内嵌装密度较高的金属块,从而巧妙地解决了碳陶制动盘由于不平衡需要后续加工去重的问题。
综上所述,本发明的轴装制动盘具有结构简单,散热效果优异,连接可靠,结构强度高,维护方便,重量轻等优点,在保证制动可靠的同时降低了运载工具(尤其是高速、高载荷运载工具)的能源消耗及维护成本。
以下结合附图和具体实施方式对本发明作进一步说明。
附图说明
图1为实施例中的全碳陶轴装制动盘的装配剖视图。
图2为实施例中的全碳陶轴装制动盘的立体示意图。
图3为实施例中的摩擦盘主视图。
图4铆钉连接结构局部视图。
图5螺栓连接结构剖视图。
图6为实施例中的分体式摩擦盘示意图。
图中标号:1-摩擦盘,1’-分体式摩擦盘,11-散热加强筋,11a-第一类散热加强筋,11a-第二类散热加强筋,12-径向散热通道,12a-进风口,12b-出风口,13-连通槽,14-平面散热通道,15-铆钉孔,16-动平衡孔,
2-盘毂,3-轴向定位垫圈,4-传扭销,5-螺栓,6-螺母,7-铆钉,71-套圈,72-垫圈, 8-钢套。
本发明的实施方式
实施例
参见图1和图2,图示中的全碳陶轴装制动盘为本发明的优选方案,具体包括摩擦盘1、盘毂2、轴向定位垫圈3、传扭销4、螺栓5、螺母6和铆钉7。其中摩擦盘1为碳陶复合材料加工成的圆环,两片环形摩擦盘1同轴叠装并固定套装在盘毂2上,通过盘毂2与车轴固定连接,摩擦盘1之间通过铆钉7连接在一起并周向定位,摩擦盘1的内圈法兰部分与盘毂2之间通过轴向定位垫圈3、传扭销4、螺栓5和螺母6组成的若干组螺栓组件锁定连接。本实施例旨在具体说明制动盘的散热结构以及与盘毂之间的连接方式,因此省略了对制动盘进行挤压摩擦的摩擦闸片和液压系统,其中摩擦闸片可采用与制动盘相同的碳陶复合材料,液压系统与现有的轴装制动器相同,本实施例在此不做赘述。
结合图3所示,摩擦盘的外侧盘面用于与摩擦闸片接触,加工成平整表面,内侧盘面用于摩擦盘1之间叠装接触,在该侧盘面上加工有散热加强筋11,用于形成散热通道。摩擦盘盘面的厚度为摩擦盘1厚度的2/5-2/3,散热加强筋11的厚度为摩擦盘1厚度的1/3-3/5。
散热加强筋11以盘面圆心为中心,呈对称分布,包含沿摩擦盘盘体外圆周分布的第一类加强筋11a和沿摩擦盘盘体内圆周分布的第二类加强筋11b。第一类加强筋11a与第二类加强筋11b在周向方向错开一定角度交错排布,角度范围为10°-45°。垂直于摩擦盘1的盘面进行投影,第一类加强筋11a所得投影的总面积占摩擦盘1投影面积的30-45%;第二类加强筋11b所得投影的总面积占摩擦盘1投影面积的10-25%。第一类加强筋11a和第二类加强筋11b的数量为3-30个。优选地,垂直于摩擦盘1的盘面进行投影,第一类加强筋11a中单个加强筋所得投影呈圆弧形,圆弧形的圆心为圆弧中心线与制动盘外圆周的交点;第一类加强筋11a沿径向方向的长度为摩擦盘1半径的1/10-1/6;垂直于摩擦盘1的盘面进行投影,第二类加强筋11b中单个加强筋所得投影呈“U”形,所述“U”形的开口端朝摩擦盘1的投影圆心,“U”形的闭口端朝外;加强筋11b的两侧沿径向对称,侧边与直径的夹角呈10°-20°;“U”形闭口端的圆弧与两个侧边相切;第二类加强筋11b沿径向方向的长度为摩擦盘1半径的1/8-3/8。这样,采用2类加强筋进行交替和/或交叉设置,通过调整二者的相对位置以及立体形状、投影面积,在实现高效散热的同时有利于分散应力集中,避免由于碳陶材料强度低容易产生散热筋断裂的问题,保证了碳陶制动盘的结构强度。
相邻的第一类加强筋11a之间留有间隙,构成径向散热通道12的进风口12a。第二类加强筋11b上带有凹陷结构,凹陷结构底部加工有缺口,构成径向散热通道12的出风口12b;相邻的第二类加强筋11b之间构成连通槽13;所述连通槽13与径向散热通道12连通;径向散热通道12与外部连通。这样,进风口12a、连通槽13及出风口12b形成曲线形变径通道,根据气流在变截面通道内的流速变化,加快了空气流动带走更多热量,提高了散热效率。同时,连通槽13之间连通形成波浪形的平面散热通道14,该平面散热路线将所有的径向散热通道12全部连通起来,形成穿插整个制动盘的立体散热系统。
同时,本实施例还在第一类加强筋11a上布置动平衡孔16,动平衡孔16为盲孔,深度小于等于第一类加强筋11a的厚度,通过向动平衡孔16内部可嵌装金属块,用以调整制动盘动平衡时增加重量。
本实施例的全碳陶是指制动盘整体全部采用密度为1.8-2.6 g/cm 3的碳陶复合材料,针对碳陶复合材料难以直接在内部去除材料加工的特点,直接采用两个叠装的摩擦盘形成整体,这样可以单独在每个摩擦盘的一侧盘面上进行散热加强筋11以及连通槽13等结构的铣削加工,这样提高了生产效率和生产成本。
再次参见图1,在此摩擦盘1之间以及摩擦盘1和盘毂2之间通过铆钉7和螺栓组件组合的连接结构进行锁定连接。具体的,在摩擦盘1的盘面同一圆周上还贯穿加工有铆钉孔15,为了保证铆钉的装配可靠性,铆钉孔15全部加工在散热加强筋11a的实体部分,并且每个制动盘上的铆钉孔位置一一对应。在将两个摩擦盘1叠装的过程中,将铆钉孔对齐,然后通过铆钉7固定插装在制动盘之间同轴对齐的铆钉孔15内,将两块摩擦盘1之间初步连接成一体并且形成了摩擦盘之间的防转周向定位。
然后将装好铆钉的叠装制动盘整体套装在盘毂2上,将摩擦盘1内圈的螺栓孔和盘毂2上的螺栓孔一一对齐,将螺栓5插装穿过摩擦盘1和盘毂2上的螺栓孔以及分别垫设在摩擦盘1和盘毂2外侧的轴向定位垫圈3,然后通过螺母6紧固连接,将摩擦盘1、盘毂2和轴向定位垫圈3之间压紧锁定。然后再在轴向定位垫圈3和盘毂2之间装配传扭销4,以提高盘毂和制动盘之间的扭矩传递能力,分担部分螺栓承担的扭矩,以提高螺栓的连接可靠性。
结合图4和图5,为了降低制动时因铆钉7发热膨胀而使摩擦盘1受到较大的不均匀热应力,在摩擦盘1与铆钉7径向方向之间安装有套圈71,套圈71套装在铆钉7上,将摩擦盘1和铆钉7之间隔开。同时为了防止铆钉铆接时对摩擦盘1受到较大的不均匀静压力,在摩擦盘1与铆钉7轴向方向之间安装有垫圈72。另外,为了降低制动时因螺栓5发热膨胀而使摩擦盘1受到较大的不均匀热应力,同时为了防止螺栓5受力矩载荷出现偏心而使摩擦盘1受到较大的不均匀静压力,在摩擦盘1与螺栓5的螺杆径向方向之间安装有钢套8。
本实施例在实际应用中,可采用两块如图3中所示的整体结构的摩擦盘1进行叠装装配。为了进一步提高制动盘的拆装方便性,还可采用图6中所示的分体式摩擦盘1’进行叠装装配,这种分体式的摩擦盘结构在制动盘某个区域出现损坏后,可以对损坏区域的分体式摩擦盘进行单独更换。分体式摩擦盘1’沿图3所示摩擦盘进行径向分割,可以是图6中所示的半圆形结构,也可是两块以上的扇形圆弧环状结构,由分体式摩擦盘1’拼接成整体圆环后的散热结构和连接结构与整体结构的摩擦盘1相同,并且在叠装的每块分体式摩擦盘1’上以及每块分体式摩擦盘1’与盘毂2之间均设有独立的连接结构,这样才能够保证对每块分体式摩擦盘1’进行单独拆装。本发明通过上述改进后,所得产品相比于现有碳陶盘的散热性能提升了至少10%,使用寿命提升了20%。
对本发明碳陶轴盘与现有类似汽车碳陶盘结构轴盘采用ANSYS Workbench 18.1软件列车350 km/h进行紧急制动的工况。结果显示,本发明碳陶轴盘制动最高温度为702℃,盘面最大热应力为67 MPa;而现有类似汽车碳陶盘结构轴盘制动最高温度为791℃,盘面最大热应力为88 MPa。这说明相比于现有碳陶盘,本发明所得产品明显提高了散热性能,同时有效分散了应力集中,大大提高了产品的可靠性。
该实施例中全碳陶轴装制动盘的尺寸按照相关标准定制。当然,本发明所设计的全碳陶轴装制动盘的结构适用于所有运载工具,特备适用于高速列车。以上实施例描述了本发明的基本原理和主要特征及本发明的优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的具体工作原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内,本发明要求保护范围由所附的权利要求书及其等效物界定。
 

Claims (13)

  1. 一种全碳陶轴装制动盘,其特征在于:包括盘毂(2)以及套装在盘毂(2)上并同轴叠装的多片摩擦盘(1);多片摩擦盘之间以及摩擦盘(1)和盘毂(2)之间通过连接结构锁合连接成一体;所述摩擦盘(1)为碳陶复合材料,由盘面(10)和背面沿径向设置的散热加强筋(11)构成,叠装后的摩擦盘之间的散热加强筋(11)一一对应接触;
    所述摩擦盘(1),在所述散热加强筋(11)的两侧形成径向散热通道(12),所述散热加强筋(11)之间形成连通两侧径向散热通道的连通槽(13)。
  2. 根据权利要求1所述的一种全碳陶轴装制动盘,其特征在于:散热加强筋(11)的厚度为摩擦盘(1)厚度的1/3-3/5。
  3. 根据权利要求1所述的一种全碳陶轴装制动盘,所述散热加强筋(11)以盘面圆心为中心,呈对称分布;所述散热加强筋(11)包含两类加强筋,定义散热加强筋(11)中,沿摩擦盘盘体外圆周分布的散热加强筋为第一类加强筋(11a),定义散热加强筋(11)中,沿摩擦盘盘体内圆周分布的散热加强筋为第二类加强筋(11b);第一类加强筋(11a)与第二类加强筋(11b)在周向方向错开一定角度交错排布,角度范围为10°-45°;
    相邻的第一类加强筋(11a)之间留有间隙,所述间隙构成径向散热通道(12)的进风口(12a);
    所述第二类加强筋(11b)上带有凹陷结构,凹陷结构底部加工有缺口,所述缺口构成径向散热通道(12)的出风口(12b);相邻的第二类加强筋(11b)之间构成连通槽(13);所述连通槽(13)与径向散热通道(12)连通;所述径向散热通道(12)与外部连通。
  4. 根据权利要求1、3所述的一种全碳陶轴装制动盘,其特征在于:垂直于摩擦盘(1)的盘面进行投影,第一类加强筋(11a)所得投影的总面积占摩擦盘(1)投影面积的30-45%;第二类加强筋(11b)所得投影的总面积占摩擦盘(1)投影面积的10-25%。
  5. 根据权利要求1、3、4所述的一种全碳陶轴装制动盘,其特征在于:第一类加强筋(11a)和第二类加强筋(11b)的数量为3-30。
  6. 根据权利要求1、3所述的一种全碳陶轴装制动盘,其特征在于:垂直于摩擦盘(1)的盘面进行投影,第一类加强筋(11a)中单个加强筋所得投影呈圆弧形,圆弧形的圆心为圆弧中心线与摩擦盘(1)外圆周的交点;第一类加强筋(11a)沿径向方向的长度为摩擦盘(1)半径的1/10-1/6;
    垂直于摩擦盘(1)的盘面进行投影,第二类加强筋(11b)中单个加强筋所得投影呈“U”形,所述“U”形的开口端朝摩擦盘(1)的投影圆心,“U”形的闭口端朝外;加强筋(11b)的两侧沿径向对称,侧边与直径的夹角呈10°-20°;“U”形闭口端的圆弧与两个侧边相切;第二类加强筋(11b)沿径向方向的长度为摩擦盘(1)半径的1/8-3/8。
  7. 根据权利要求1、3所述的一种全碳陶轴装制动盘,其特征在于:第一类加强筋(11a)上交替设有铆钉孔(15)和动平衡孔(16);所述铆钉孔(15)为贯穿盘面的通孔;所述动平衡孔(16)为盲孔,深度小于等于第一类加强筋(11a)的厚度。
  8. 根据权利要求1、3所述的一种全碳陶轴装制动盘,其特征在于:所述进风口(12a)、连通槽(13)及出风口(12b)形成曲线形变径通道。
  9. 根据权利要求1、3所述的一种全碳陶轴装制动盘,其特征在于:所述连通槽(13)以摩擦盘(1)的盘面圆心为中心,呈对称分布;所有连通槽(13)之间连通形成波浪形的散热通道(14)。
  10. 根据权利要求1所述的一种全碳陶轴装制动盘,其特征在于:所述连接结构包括用于摩擦盘(1)之间叠装周向定位的铆钉(7)以及用于摩擦盘(1)和盘毂(2)之间锁定的螺栓组件;
    所述铆钉(7)固定插装在叠装的摩擦盘之间的铆钉孔(15)内,所述铆钉(7)上套装套圈(71);
    所述螺栓组件包括轴向定位垫圈(3)、传扭销(4)、螺栓(5)、螺母(6)和钢套(8),所述钢套(8)插装在摩擦盘(1)的螺栓孔中,螺栓(5)插装穿过摩擦盘(1)和盘毂(2)上的螺栓孔,通过螺母(6)紧固连接,轴向定位垫圈(3)分别垫设在摩擦盘和盘毂的外侧与螺母(6)和螺栓(5)的螺帽之间;所述传扭销(4)装配在轴向定位垫圈(3)和盘毂(2)之间;
  11. 根据权利要求10中所述的一种全碳陶轴装制动盘,其特征在于:所述铆钉采用金属材料制备,铆钉长度为制动盘总厚度的1/16-1/2,优选为制动盘总厚度的1/8-1/4;所述金属材料的热膨胀系数小于等于10×10 -6/K、拉伸强度大于等于400 MPa。
  12. 根据权利要求1所述的一种全碳陶轴装制动盘,其特征在于:所述摩擦盘(1)采用密度为1.8-2.6 g/cm 3的碳陶复合材料。
  13. 根据权利要求1-12中任一项所述的一种全碳陶轴装制动盘,其特征在于:所述摩擦盘(1)可以由沿径向分割的若干分体式摩擦盘(1’)拼接而成,叠装的分体式摩擦盘(1’)之间以及分体式摩擦盘(1’)和盘毂之间均设有独立的连接结构。
     
PCT/CN2018/123899 2018-11-23 2018-12-26 一种全碳陶轴装制动盘 WO2020103282A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18941002.0A EP3770458B1 (en) 2018-11-23 2018-12-26 Full carbon-ceramic axle-mounted brake disc
JP2021528860A JP7203462B2 (ja) 2018-11-23 2018-12-26 全炭素セラミック軸付きブレーキディスク
US16/982,058 US11493102B2 (en) 2018-11-23 2018-12-26 Full carbon-ceramic axle-mounted brake disc

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811407595.7 2018-11-23
CN201811407595.7A CN109236904B (zh) 2018-11-23 2018-11-23 一种全碳陶轴装制动盘

Publications (1)

Publication Number Publication Date
WO2020103282A1 true WO2020103282A1 (zh) 2020-05-28

Family

ID=65076408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123899 WO2020103282A1 (zh) 2018-11-23 2018-12-26 一种全碳陶轴装制动盘

Country Status (5)

Country Link
US (1) US11493102B2 (zh)
EP (1) EP3770458B1 (zh)
JP (1) JP7203462B2 (zh)
CN (1) CN109236904B (zh)
WO (1) WO2020103282A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113898686A (zh) * 2021-08-25 2022-01-07 西安航空制动科技有限公司 一种航空机轮组合式刹车盘
CN114046324A (zh) * 2021-11-19 2022-02-15 广州市特耐得车轴有限公司 一种智能控制车轴温度控制装置及其控制方法
CN114562526A (zh) * 2022-03-01 2022-05-31 山东倍瑞恳新材料有限公司 一种便于拆卸更换的分体式轨道车辆制动盘

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11125289B2 (en) * 2019-07-03 2021-09-21 Honeywell International Inc. Brake disc assembly
CN114466981A (zh) * 2019-10-14 2022-05-10 沃尔沃卡车集团 制动盘和车辆
FR3112582B1 (fr) * 2020-07-17 2022-08-05 Alstom Transp Tech Ensemble de disque pour frein à segments
CN114754092B (zh) * 2022-03-18 2023-09-22 湖南湘投轻材科技股份有限公司 汽车制动盘及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1786507A (zh) * 2005-10-24 2006-06-14 北京交通大学 一种轴装式SiC颗粒增强铝基复合材料制动盘
KR20070023155A (ko) * 2005-08-23 2007-02-28 기아자동차주식회사 자동차용 브레이크 디스크의 발열장치
CN101865223A (zh) * 2010-06-07 2010-10-20 北京交通大学 一种轴装式结构约束释放型铁道车辆制动盘
CN105587805A (zh) * 2016-01-26 2016-05-18 北京交通大学 一种拼接式防反翘轴装制动盘
CN108317194A (zh) * 2018-03-26 2018-07-24 湖南世鑫新材料有限公司 高速列车用轴装制动盘组件

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2307959B (en) * 1995-12-05 1999-11-10 T & N Technology Ltd Disc brake rotors
US6164423A (en) * 1997-05-02 2000-12-26 Hayes Lemmerz International, Inc. Vented rotor for caliper disc brakes and the like
DE19925003B4 (de) * 1999-05-31 2004-04-29 Dr.Ing.H.C. F. Porsche Ag Bremsscheibe aus Faserverbund-Werkstoff
GB2444927A (en) * 2006-12-22 2008-06-25 Huntercombe Consultancy Ltd A ventilated brake disc
CN201420820Y (zh) * 2009-06-04 2010-03-10 浙江亚太机电股份有限公司 通风式制动盘
EP2472136B1 (en) * 2010-12-30 2015-05-27 Brembo SGL Carbon Ceramic Brakes GmbH Carbon ceramic friction disks and process for their preparation
DE202011052265U1 (de) * 2011-12-12 2013-03-13 Faiveley Transport Witten Gmbh Gebaute Wellenbremsscheibe
JP2013249917A (ja) 2012-06-01 2013-12-12 Sumitomo Electric Ind Ltd 締結構造体
CN204755671U (zh) * 2015-05-18 2015-11-11 山东浩信机械有限公司 制动盘
CN105485215B (zh) * 2016-01-28 2018-09-04 山东浩信机械有限公司 一种制动盘
CN207864486U (zh) * 2018-01-10 2018-09-14 王洪英 一种刹车盘
CN108425972B (zh) * 2018-03-23 2023-08-04 烟台胜地汽车零部件制造有限公司 一种制动复合盘及其加工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070023155A (ko) * 2005-08-23 2007-02-28 기아자동차주식회사 자동차용 브레이크 디스크의 발열장치
CN1786507A (zh) * 2005-10-24 2006-06-14 北京交通大学 一种轴装式SiC颗粒增强铝基复合材料制动盘
CN101865223A (zh) * 2010-06-07 2010-10-20 北京交通大学 一种轴装式结构约束释放型铁道车辆制动盘
CN105587805A (zh) * 2016-01-26 2016-05-18 北京交通大学 一种拼接式防反翘轴装制动盘
CN108317194A (zh) * 2018-03-26 2018-07-24 湖南世鑫新材料有限公司 高速列车用轴装制动盘组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3770458A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113898686A (zh) * 2021-08-25 2022-01-07 西安航空制动科技有限公司 一种航空机轮组合式刹车盘
CN114046324A (zh) * 2021-11-19 2022-02-15 广州市特耐得车轴有限公司 一种智能控制车轴温度控制装置及其控制方法
CN114046324B (zh) * 2021-11-19 2024-05-28 广州市特耐得车轴有限公司 一种智能控制车轴温度控制装置及其控制方法
CN114562526A (zh) * 2022-03-01 2022-05-31 山东倍瑞恳新材料有限公司 一种便于拆卸更换的分体式轨道车辆制动盘
CN114562526B (zh) * 2022-03-01 2024-01-23 山东倍瑞恳新材料有限公司 一种便于拆卸更换的分体式轨道车辆制动盘

Also Published As

Publication number Publication date
JP2022507887A (ja) 2022-01-18
JP7203462B2 (ja) 2023-01-13
CN109236904A (zh) 2019-01-18
EP3770458A4 (en) 2021-12-15
US20210095732A1 (en) 2021-04-01
EP3770458A1 (en) 2021-01-27
CN109236904B (zh) 2020-02-07
US11493102B2 (en) 2022-11-08
EP3770458B1 (en) 2023-01-11

Similar Documents

Publication Publication Date Title
WO2020103282A1 (zh) 一种全碳陶轴装制动盘
CN108317194B (zh) 高速列车用轴装制动盘组件
CA2914032C (en) Improved disc brake rotor for heavy-duty vehicles
US8336682B2 (en) Ventilated brake disk and method
US20070199778A1 (en) Vented disc brake rotor
US7850251B1 (en) Wheel hub and brake rotor assembly
US7267210B2 (en) Braking bank and disc for disc brake
CN106218870B (zh) 一种单轮双刹车刹车机轮
US11746843B2 (en) Brake disc assembly
US3698519A (en) Articulated disc brake configurations
US4018482A (en) Rim construction for wheels having brake torque drives
CA2952860C (en) Reduced-diameter brake rotor for heavy-duty vehicles
CN209026054U (zh) 高速列车全碳陶轴装制动盘组件
US2350970A (en) Rotor
CN111075865A (zh) 一种列车用调节式制动闸片
CN108468728B (zh) 高速列车全盘制动器
US7451858B2 (en) Disc brake for a heavy truck and a vehicle including such a disc brake
CN214945919U (zh) 分体式轴装制动盘、转向架及轨道车辆
CN109058329B (zh) 一种铝基复合材料轴装制动盘
CN221145116U (zh) 一种碳陶制动盘
CN112145594A (zh) 一种吸收热胀应力的制动盘

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018941002

Country of ref document: EP

Effective date: 20201023

ENP Entry into the national phase

Ref document number: 2021528860

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE