WO2020047924A1 - 一种碰撞吸能结构及具有其的轨道车辆 - Google Patents

一种碰撞吸能结构及具有其的轨道车辆 Download PDF

Info

Publication number
WO2020047924A1
WO2020047924A1 PCT/CN2018/108714 CN2018108714W WO2020047924A1 WO 2020047924 A1 WO2020047924 A1 WO 2020047924A1 CN 2018108714 W CN2018108714 W CN 2018108714W WO 2020047924 A1 WO2020047924 A1 WO 2020047924A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
absorbing
absorbing structure
collision
tube
Prior art date
Application number
PCT/CN2018/108714
Other languages
English (en)
French (fr)
Inventor
喻海洋
刘玉文
田爱琴
田洪雷
于洋洋
Original Assignee
中车青岛四方机车车辆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车青岛四方机车车辆股份有限公司 filed Critical 中车青岛四方机车车辆股份有限公司
Priority to EP18932821.4A priority Critical patent/EP3725638A4/en
Priority to US16/303,784 priority patent/US11186300B2/en
Publication of WO2020047924A1 publication Critical patent/WO2020047924A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F19/00Wheel guards; Bumpers; Obstruction removers or the like
    • B61F19/04Bumpers or like collision guards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D17/00Construction details of vehicle bodies
    • B61D17/04Construction details of vehicle bodies with bodies of metal; with composite, e.g. metal and wood body structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D17/00Construction details of vehicle bodies
    • B61D17/04Construction details of vehicle bodies with bodies of metal; with composite, e.g. metal and wood body structures
    • B61D17/06End walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F1/00Underframes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F1/00Underframes
    • B61F1/08Details
    • B61F1/10End constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F1/00Underframes
    • B61F1/08Details
    • B61F1/12Cross bearers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • the present invention relates to the technical field of rail vehicles, and in particular, to a collision energy-absorbing structure and a rail vehicle having the same.
  • the invention provides a collision energy-absorbing structure and a rail vehicle having the same to solve the problem that the collision energy-absorbing structure of a rail vehicle energy-absorbing component cannot meet the requirements of complicated road conditions in the prior art.
  • the present invention provides a collision energy absorbing structure, which includes a first-level energy absorbing structure for connecting with a side frame of a rail vehicle. At least two energy-absorbing chambers; an end energy-absorbing structure, the lower end of the end energy-absorbing structure is used to connect to the first-level energy-absorbing structure; a roof structure, the upper end of the end energy-absorbing structure is connected to the roof structure.
  • the first-level energy absorbing structure includes an end beam, and two ends of the end beam are respectively used to be connected to a side frame of a rail vehicle.
  • the end beam has an end beam bottom plate and an end beam standing plate connected to the end beam bottom plate.
  • the beam upright plate is vertically arranged and forms an energy absorption cavity on the bottom plate of the end beam.
  • the end energy absorption structure includes a first energy absorption pillar, a middle portion of the bottom plate of the end beam has a first pillar mounting hole, and the first energy absorption pillar passes through the first pillar mounting hole and communicates with the end beam bottom plate. Phase welding.
  • the end beam bottom plate includes a first bottom plate and a second bottom plate opposite to each other, and the first energy absorption pillar is welded to the first bottom plate and the second bottom plate, respectively.
  • the end energy-absorbing structure further includes a second energy-absorbing pillar, a first end of which is welded to the roof structure, and a second end of which is used for welding to a primary energy-absorbing structure.
  • first energy-absorbing pillars there are two second energy-absorbing pillars, two second energy-absorbing pillars are spaced apart, two first energy-absorbing pillars are two, and two first energy-absorbing pillars are spaced apart, two A first energy-absorbing pillar is located between two second energy-absorbing pillars.
  • the two ends of the end beam bottom plate each have a second column mounting hole, and the second energy absorption pillar is penetrated in the second column mounting hole and is welded to the end beam bottom plate.
  • the collision energy absorption structure further includes: a secondary energy absorption structure, the secondary energy absorption structure is connected to the primary energy absorption structure, the secondary energy absorption structure includes at least two spaced energy absorption tubes, and the primary energy absorption structure Connected to the first end of the energy absorption tube.
  • the energy absorbing tube has a hollow structure, and the energy absorbing tube has a first induction portion.
  • the first induction portion includes an induction hole, and the induction hole is a through hole.
  • the cross section of the energy absorbing tube is rectangular, and the first induction portion includes at least one group of induction holes, and each group of induction holes are arranged at intervals in the circumferential direction of the energy absorption tube along a plane perpendicular to the axis of the energy absorption tube.
  • the first induction portion includes a plurality of groups of induction holes, and the plurality of groups of induction holes are arranged at intervals along the extending direction of the energy absorption tube.
  • the energy absorbing tube includes at least two adjacent side walls, the two adjacent side walls are connected to form a bent portion, and the first induction portion is disposed at at least one bent portion of the energy absorbing tube.
  • the energy absorption tube further has a second induction portion, and the second induction portion is disposed on a side wall of the energy absorption tube.
  • the second induction portion is recessed inward with respect to the side wall of the energy absorbing tube to form a recessed portion.
  • the cross section of the energy absorbing tube is rectangular, the second induction portion is two, and the two second induction portions are oppositely disposed on the side wall of the energy absorption tube.
  • the collision energy absorption structure further includes a three-stage energy absorption structure, and the three-stage energy absorption structure is connected to the second end of the energy absorption tube.
  • the three-stage energy absorbing structure includes a stop beam, and two ends of the stop beam are respectively used for connection with a side frame of a rail vehicle.
  • the second end of the energy absorbing tube is connected to the stop beam.
  • the stop beam includes a first stop segment, a second stop segment, and a third stop segment connected in sequence.
  • the second end of the energy absorbing tube is welded to the second stop segment, and the first stop segment is in contact with the second stop segment.
  • the second stop section has a first included angle, the first included angle is an obtuse angle, the third stop section and the second stop section have a second included angle, and the first included angle is equal to the second included angle.
  • first stop section is provided with a plurality of spaced second weight reduction holes; and / or the third stop section is provided with a plurality of spaced third weight reduction holes.
  • a rail vehicle including a collision energy absorption structure, and the collision energy absorption structure is any of the collision energy absorption structures described above.
  • the first-level energy absorbing structure, the roof structure on the end chassis and the end-energy absorbing structure installed between the roof structure and the first-level energy absorbing structure form the end of the car body structure.
  • the overall energy-absorbing structure eliminates the need to add independent energy-absorbing structural elements.
  • the invention improves the collision energy absorption performance of the vehicle without increasing the outer size of the vehicle body structure. Because the vehicle's external dimensions are not increased, the collision energy absorbing structure of the present invention can meet the technical requirements of a small end-to-end clearance of the vehicle and a small curve passing, and can adapt to more complex road conditions.
  • FIG. 1 shows a first schematic structural diagram of a collision energy absorbing structure according to the present invention
  • Figure 2 shows a top view of a first end of a crash energy absorbing structure according to the present invention
  • Figure 3 shows a side view of a first end of a crash energy absorbing structure according to the invention
  • FIG. 4 shows a top view of a second end of a collision energy absorbing structure according to the present invention
  • Figure 5 shows a side view of a second end of a crash energy absorbing structure according to the present invention
  • FIG. 6 shows a second structural schematic diagram of a collision energy absorbing structure according to the present invention.
  • FIG. 7 shows a schematic diagram of a three-dimensional structure of an energy absorbing tube of a collision energy absorbing structure according to the present invention
  • FIG. 8 shows a schematic structural view of a front side of an energy absorption tube of a collision energy absorption structure according to the present invention
  • FIG. 9 shows a schematic plan view of a structure of an energy absorbing tube of a collision energy absorbing structure according to the present invention.
  • FIG. 10 is a schematic cross-sectional structure diagram of an energy absorbing tube of a collision energy absorbing structure according to the present invention.
  • an embodiment of the present invention provides a collision energy-absorbing structure, which mainly includes a first-level energy-absorbing structure 10 for connecting with a side frame 40 of a rail vehicle, and a first-level energy-absorbing structure.
  • 10 has at least two energy-absorbing cavities arranged at intervals; the end energy-absorbing structure 80, the lower end of the end energy-absorbing structure 80 is used to connect with the primary energy-absorbing structure 10; the roof structure 90, the end energy-absorbing structure 80 The upper end is connected to the roof structure 90.
  • the primary energy absorbing structure 10, the roof structure 90 on the end chassis, and the end energy absorbing structure 80 installed between the roof structure 90 and the primary energy absorbing structure 10 form a vehicle body structure.
  • the overall energy absorption structure at the end eliminates the need to add independent energy absorption structural elements.
  • the invention improves the collision energy absorption performance of the vehicle without increasing the outer size of the vehicle body structure, and meets the requirements of the vehicle body structure for collision energy absorption.
  • the vehicle body structure does not need to be changed in size, the size of the vehicle can be consistent with the existing vehicle, which can meet the requirements of compatible compatibility of the vehicle and improve the compatibility of the vehicle. Since the external dimensions of the vehicle are not increased, the collision energy-absorbing structure of the present invention can meet the technical requirements of a small end-to-end clearance and a small curve passing through the vehicle end, and can adapt to more complicated road conditions.
  • the first-level energy absorbing structure 10 includes an end beam 11, and two ends of the end beam 11 are respectively used to be connected to a side rail 40 of the undercarriage of the rail vehicle.
  • the beam bottom plate 111 and the end beam upright plate 112 connected to the end beam bottom plate 111.
  • the end beam upright plate 112 is vertically arranged and forms an energy absorption cavity on the end beam bottom plate 111.
  • the end beam upright plate 112 is vertically arranged on the end beam bottom plate 111, so that the primary energy absorption structure 10 naturally forms an energy absorption cavity with an energy absorption effect, thereby improving the collision performance of the rail vehicle and ensuring the personal safety of the personnel inside the vehicle . That is, when the primary energy-absorbing structure 10 receives the collision pressure in the opposite direction of the rail vehicle, the energy-absorbing cavity is deformed by the pressure to absorb the collision squeezing force, thereby ensuring the personal safety of the personnel inside the vehicle.
  • the end beam bottom plate 111 includes a first bottom plate and a second bottom plate that are oppositely disposed.
  • the end beam upright plate 112 is vertically arranged and connected to the end beam bottom plate 111 so as to form an energy absorption cavity on the end beam bottom plate 111.
  • the end beam upright plate 112 is vertically arranged on the first bottom plate, and an energy absorption cavity is enclosed on the first bottom plate.
  • the end beam upright plate 112 is covered with a second bottom plate. That is, the end beam upright plate 112 is vertically arranged under the second bottom plate and surrounds an energy absorption cavity under the second bottom plate. That is, the energy absorption cavity is surrounded by the end beam upright plate 112 and the end beam bottom plate 111.
  • the first bottom plate and the second bottom plate included in the end beam bottom plate 111 are respectively disposed above and below the energy absorption cavity.
  • the end beam upright plate 112 includes a first side upright plate 112a, a second side upright plate 112b, and a plurality of neutral upright plates 112c, where the first side The upright plate 112a and the second side upright plate 112b are arranged at intervals.
  • the two ends of the neutral plate 112c are connected to the first side upright plate 112a and the second side upright plate 112b, respectively.
  • a plurality of spaced energy absorption chambers are spaced between the first side upright plate 112a and the second side upright plate 112b.
  • This design of forming a plurality of energy absorption chambers by the first side upright plate 112a, the second side upright plate 112b, and the plurality of neutral plates 112c enables the primary energy absorption structure 10 to have a plurality of absorptions provided in the width direction of the rail vehicle.
  • the energy cavity enables the end beam upright plate 112 forming a plurality of energy absorption cavities to be deformed obliquely in the direction of the interior of the energy absorption cavity when being subjected to a collision squeezing force to absorb collision energy.
  • the neutral plate 112c and the first side plate 112a spaced apart from each other by the plurality of energy-absorbing chambers provide a supporting force that is contended with the collision squeeze force when they are subjected to the collision pressing force.
  • the neutral plate 112c and the first side plate stand The plate 112a is deformed to absorb the energy of the collision pressing force.
  • the first side upright plate 112a is configured to be connected to the end of one end of the chassis side beam 40, and the first side upright plate 112a It is an arc structure.
  • the collision energy absorbing structure is used to improve the collision performance of the end of the rail vehicle. Therefore, the collision energy absorbing structure may be provided at any end of the rail vehicle, that is, the collision energy absorbing structure may be provided at The first end of the rail vehicle; the collision energy absorbing structure may be disposed at the second end of the rail vehicle, or as shown in FIG. 1, the collision energy absorbing structure is symmetrically disposed at the first end and the second end of the rail vehicle.
  • the first side stand plate 112a for connecting to the end of one end of the underframe side beam 40 includes: the first stand plate may be connected to the end of the first end of the underframe side beam 40, or may be connected to the bottom The ends of the second end of the side frame beam 40 may be connected to the ends of the first and second ends of the side frame side beam 40.
  • the first side upright plate 112a is disposed at the end of the chassis, and a first layer of upright protection is formed at the end of the chassis. Secondly, the first side upright plate 112a is connected to the end of the underframe side beam 40 and one end of a plurality of neutral plates 112c, thereby ensuring that the first side upright plate 112a can crush the collision when the end of the rail vehicle is crushed by the collision. The force is distributed to the plurality of neutral plates 112c and the chassis side beams 40 to prevent the force application point of the collision squeezing force from being too concentrated, resulting in the situation that the primary energy-absorbing structure 10 cannot smoothly absorb energy.
  • the arc-shaped structure of the first side riser 112a has a technical effect of strengthening and dispersing the crushing and squeezing force.
  • the design of the first side riser 112a is a curved structure, which can also prevent multiple connected rail vehicles from colliding with each other when turning.
  • the side of the first side upright plate 112a away from the energy absorption cavity may be connected with the anti-climbing tooth 101, so that the collision energy-absorbing structure can achieve the anti-climbing effect at the same time. That is, when two rail vehicles collide with each other, the anti-climbing teeth 101 and the number of teeth of the two vehicles are consistent. When a collision occurs, at least one anti-climbing teeth 101 is ensured to the end beam 11 and the vehicle is not in the height direction. A misalignment occurred.
  • the primary side vertical plate 112a and the secondary side vertical plate included in the primary energy absorbing structure 10 112b, the plurality of neutral plates 112c, and the end beam bottom plate 111 are welded to each other.
  • the first side upright plate 112a and the second side upright plate 112b are also welded to the chassis side frame 40.
  • the primary energy absorbing structure 10 can also be adjusted variously.
  • at least one of the plurality of neutral plates 112c is provided with a first weight reduction hole, wherein the first weight reduction hole is used for Reduce the weight of rail vehicles / collision energy-absorbing structures.
  • the middle portion of the end beam bottom plate 111 has a coupler mounting hole 111b for connecting a coupler of a rail vehicle.
  • the plurality of neutral plates 112c include: two first neutral plates 112c, two second neutral plates 112c, and two third neutral plates 112c, where two first neutral plates 112c
  • the neutral plate 112c, the two second neutral plates 112c, and the two third neutral plates 112c are symmetrically arranged in the width direction of the rail vehicle.
  • a first energy absorption cavity and a first energy absorption cavity are formed between the two first neutral plates 112c.
  • a corresponding first base plate is provided with a coupler mounting hole 111b, a second energy absorption cavity is formed between the first neutral plate 112c and the second neutral plate 112c, and a first pillar is provided on the end beam bottom plate 111 corresponding to the second energy absorption cavity
  • a third energy absorption cavity is formed between the body mounting hole 111a, the second neutral plate 112c and the third neutral plate 112c, and a fourth energy absorption cavity is formed between the third performance cavity and the underframe side beam 40.
  • first neutral plate 112c and the third neutral plate 112c are parallel to each other, and the first neutral plate 112c and the third neutral plate 112c are perpendicular to the second side vertical plate 112b, and the first neutral plate 112c and the second neutral plate 112c There are preset angles between them.
  • first neutral plate 112c and the second neutral plate 112c are each provided with a first weight reduction hole.
  • the end energy absorption structure 80 includes a first energy absorption pillar 81, and the middle portion of the end beam bottom plate 111 has a first column installation hole 111 a and the first energy absorption pillar 81 Passed through the first column mounting hole 111 a and welded to the end beam bottom plate 111.
  • This design allows the first column mounting hole 111a to be provided in the middle of the end beam bottom plate 111, so that the first energy absorption pillar 81 can pass through the first column mounting hole 111a and be welded to the end beam bottom plate 111 to enhance end energy absorption.
  • the connection strength between the pillar and the end beam 11 further increases the connection strength of the end frame of the rail vehicle, and protects the personal safety of passengers.
  • the end beam bottom plate 111 includes a first bottom plate and a second bottom plate, and a middle portion of the first bottom plate has a third pillar mounting hole, a middle portion of the second bottom plate has a fourth pillar mounting hole, and the first The energy-absorbing pillar passes through the third pillar mounting hole and the fourth pillar mounting hole, and is welded to the first base plate and the second base plate, respectively.
  • This design not only makes both the first floor and the second floor welded to the first energy-absorbing pillar, which increases the connection stability of the end frame of the car.
  • the first pillar mounting hole 111a includes a third pillar mounting hole and a fourth pillar mounting hole.
  • the end energy-absorbing structure 80 further includes a second energy-absorbing pillar 82, a first end of which is welded to the roof structure 90, and a second end of which is used for welding to the primary energy-absorbing structure 10.
  • the second energy-absorbing pillars 82 are designed as two, and the two second energy-absorbing pillars 82 are spaced apart from each other, and the second energy-absorbing pillars 82 and the side of the rail vehicle are arranged.
  • the wall 70 is welded.
  • the above design strengthens the connection strength between the roof structure 90 of the rail vehicle and the bottom frame of the rail vehicle, and the welding design of the second energy absorption pillar 82 and the side wall 70 of the rail vehicle increases the frame structure of the vehicle end. Integrity, when the car end frame structure is crushed by collision, there are more rail vehicle components to provide anti-collision support.
  • FIG. 6 there are two second energy absorbing pillars 82, two second energy absorbing pillars 82 are arranged at intervals, and two first energy absorbing pillars 81, The two first energy-absorbing pillars 81 are located between the two second energy-absorbing pillars 82.
  • This example is based on statistical analysis of a large amount of experimental data.
  • the number and position of the first energy-absorbing cylinder 81 in the example and the number and position of the second energy-absorbing cylinder 82 in the example have reached a stable balance, that is, reached The balance between the weight and connection strength of the end energy-absorbing structure 80 is achieved, and the balance between the position design of the end energy-absorbing structure 80 and the connection stability is achieved.
  • the two ends of the end beam bottom plate 111 are provided with second column mounting holes 111c, and the second energy absorption pillar 82 is penetrated in the second column mounting holes 111c and welded to the end beam bottom plate 111.
  • This design makes the second column mounting hole 111c in the middle of the end beam bottom plate 111, so that the second energy absorption pillar 82 can pass through the second column mounting hole 111c and be welded to the end beam bottom plate 111 to strengthen the second column.
  • the connection strength between the mounting hole 111c and the end beam bottom plate 111 further increases the connection strength of the end frame of the rail vehicle, and protects the personal safety of passengers.
  • the first energy-absorbing pillar 81 is a collision pillar
  • the second energy-absorbing pillar 82 is an end angle pillar.
  • the collision pillars and end corner pillars form a protective structure at the front of the vehicle, protecting the lives of cabin crew and passengers. These four pillars adopt a closed tubular structure, and their cross-sectional sizes must meet the requirements.
  • the collision pillar, the end corner pillar, the top curved beam of the roof and the end beam 11 at the front end of the vehicle form an integrated structure.
  • the side walls 70 and roof structure 90 of the rest of the vehicle body are connected together by welding to form a whole.
  • the collision energy-absorbing structure also includes a secondary energy-absorbing structure 20, the secondary energy-absorbing structure 20 is connected to the primary energy-absorbing structure 10, and the secondary energy-absorbing structure 20 includes at least two energy-absorbing tubes 21 spaced apart.
  • the energy absorbing structure 10 is connected to the first end of the energy absorbing tube 21.
  • the secondary energy absorbing structure 20 will be described.
  • the design of the energy-absorbing cavity 10 of the primary energy-absorbing structure 10 and the energy-absorbing tube 21 of the secondary energy-absorbing structure 20 at the end of the rail vehicle enables the end of the rail vehicle to form at least two double energy absorption guarantees.
  • at least two energy-absorbing cavities of the first-level energy-absorbing structure 10 and the energy-absorbing tube 21 of the second-level energy-absorbing structure 20 can absorb a certain amount of collision energy and deform the energy, thereby improving the collision performance of the rail vehicle. Ensure the personal safety of passengers.
  • the energy absorbing structure when a vehicle collides, the energy absorbing structure is set in stages, and the energy absorbing structure in each stage will be deformed step by step, so that the deformation of the energy absorbing structure is within a controllable range, and the train structure will not cause uncontrollable deformation. And affect the safety of people in the car.
  • the energy absorbing tube 21 is provided in a hollow structure, and the energy absorbing tube 21 has a first induction portion 213.
  • the structure of the energy absorbing tube is simple, and because it has the first induction portion 213, when a collision occurs, the energy absorbing tube 21 is first deformed at the position where the first induction portion 213 is provided, so that the deformation of the energy absorbing tube 21 is in a controllable state and the track is avoided. Uncontrollable deformation of other parts of the train threatened the personal safety of people inside the train. Therefore, the present invention improves the anti-collision performance of the collision energy-absorbing structure.
  • the energy absorbing tubes 21 are symmetrically arranged along the vehicle width direction.
  • the energy absorbing tubes 21 adopt a thin-walled tube and have an induction hole 211 structure, which is beneficial to the deformation control of the energy absorbing tubes 21.
  • the energy absorbing tube 21 is connected to the second side upright plate 112b and the cross beam of the traction beam 50 by welding.
  • the energy absorbing tube 21 includes a first tube body portion 214 and a second tube body portion 215, and the first tube body portion 214 and the second tube body portion 215 are spliced.
  • the two tube body parts are spliced together to form an energy absorption tube 21 having a cavity.
  • the first tube body part 214 and the second tube body part 215 are spliced together and welded at the splicing place.
  • This type of structure has a simple structure and is conducive to modular design, which can reduce costs and improve processing efficiency.
  • the first pipe body portion 214 is a U-shaped structure
  • the first pipe body portion 214 includes a first bottom wall and two first side walls
  • the second pipe body portion 215 is a U-shaped structure
  • the second pipe body portion 215 It includes a second bottom wall and two second side walls, and the two first side walls are respectively opposite to the two second side walls.
  • first pipe body portion 214 and the second pipe body portion 215 are both U-shaped structures and symmetrically arranged.
  • the two side walls of the first pipe body portion 214 and the second pipe body portion 215 are in one-to-one correspondence.
  • This design makes a flat plane at the place to be welded, which is conducive to welding and improves production efficiency.
  • the symmetrically arranged first tube body portion 214 and the second tube body portion 215 have the same structure, which is beneficial to mass production and reduces costs.
  • the energy absorbing tube 21 includes at least two adjacent side walls, and the two adjacent side walls are connected to form a bent portion.
  • the first induction portion 213 is disposed on the energy absorbing tube 21. At least one bend.
  • a first induction portion 213 is provided in a bent portion of the energy absorbing tube 21 to form a collision induction structure.
  • the first induction portion 213 is disposed at a bend, and is easy to process, thereby improving production efficiency.
  • the cross section of the energy absorbing tube 21 in this embodiment is rectangular.
  • the rectangular energy absorbing tube 21 has good torsion resistance and can further improve the safety of the collision energy absorbing structure.
  • the first induction portion 213 includes an induction hole 211, and the induction hole 211 is a through hole.
  • the induction hole 211 is a through hole and can be easily processed.
  • the first induction portion 213 includes at least one set of induction holes 211, and each set of induction holes 211 is disposed at a circumferential interval of the energy absorption tube 21 along a plane perpendicular to the axis of the energy absorption tube 21.
  • a plurality of induction holes 211 are provided on the energy absorption tube 21 at intervals along each plane perpendicular to the axis of the energy absorption tube 21.
  • the plurality of induction holes 211 are evenly distributed along the circumferential direction of the energy absorption tube 21. In the event of a collision, the induction holes 211 evenly distributed in the circumferential direction of the energy absorbing tube 21 make the energy absorbing tube 21 be folded substantially along a plane, and the deformation is more controllable.
  • the first induction portion 213 includes a plurality of groups of induction holes 211, and the plurality of groups of induction holes 211 are spaced apart along the extending direction of the energy absorbing tube 21.
  • Multiple groups of induction holes 211 are arranged at intervals on the energy absorption tube 21. When a collision occurs, a deformation occurs at each group of induction holes 211.
  • the arrangement of the multiple groups of induction holes 211 allows the energy absorption tube 21 to deform multiple times and improves the energy absorption tube. 21 energy absorption capacity.
  • the energy absorption tube 21 further includes a second induction portion 216, and the second induction portion 216 is disposed on a side wall of the energy absorption tube 21.
  • the second induction portion 216 is recessed inwardly with respect to the side wall of the energy absorption tube 21 to form a recessed portion 212.
  • the axes of the first induction portion 213 and the second induction portion 216 are on the same plane perpendicular to the extending direction of the energy absorbing tube 21.
  • the setting of the second induction portion 216 is conducive to forming a weaker induction portion here, so that deformation can occur before other portions here.
  • the cross section of the energy absorbing tube 21 is rectangular, the second induction portion 216 is two, and the two second induction portions 216 are oppositely disposed on the side wall of the energy absorption tube 21.
  • the first tube body portion 214 is a U-shaped structure.
  • the first tube body portion 214 includes a first bottom wall and two first side walls.
  • the second pipe body portion 215 has a U-shaped structure, and the second pipe body portion 215 includes a second bottom wall and two second side walls.
  • the two first side walls are respectively opposite to the two second side walls, and the second induction portion 216 is respectively disposed on the first bottom wall and the second bottom wall.
  • the second induction portion 216 is a groove recessed into the interior of the energy absorbing tube 21.
  • the bottom wall of the groove is parallel to the side wall of the energy absorbing tube 21.
  • the side wall of the groove is an inclined surface and the cross section of the groove is trapezoidal.
  • the collision energy-absorbing structure also includes a three-stage energy-absorbing structure 30.
  • the three-stage energy-absorbing structure 30 is described below:
  • the three-stage energy absorbing structure 30 is connected to the second end of the energy absorbing tube 21.
  • the three-stage energy absorbing structure 30 includes a stop beam 31, and two ends of the stop beam 31 are respectively used to be connected to the side frame 40 of the rail vehicle, and the second end of the energy absorption tube 21 is in phase with the stop beam 31. connection.
  • This design increases the connection strength of the energy absorbing tube 21, that is, makes the energy absorbing tube 21 form an indirect connection relationship with the side frame 40 of the chassis through the stop beam, and avoids the positional displacement of the energy absorbing tube 21 when it receives a collision force, thereby causing the force to be ineffective. Occurs when the equilibrium cannot be controlled.
  • the design also increases the collision performance of the rail vehicle, that is, when the rail vehicle is subjected to a collision force, the stop beam can provide a supporting force that is commensurate with the collision force to reduce the degree of deformation of the rail vehicle. Further, the stop beam is subject to suction. Energy deformation can also absorb some collision energy.
  • the stop beam 31 is a transverse beam having a U-shaped cross section.
  • this design makes the stop beam difficult to deform, that is, the stop beam 31 having a U-shaped cross section can withstand a larger collision force without deformation.
  • the direction of the collision force may be the traveling direction of the rail vehicle, or the width direction of the rail vehicle.
  • the stop beam 31 includes a first stop section, a second stop section, and a third stop section connected in this order, and the second stop section 31 The end is welded to the second stop section, wherein the first stop section has a first included angle with the second stop section, the first included angle is an obtuse angle, and the third stop section and the second stop section There is a second included angle therebetween, and the first included angle is equal to the second included angle.
  • the stop beam includes a fourth stop section, a fifth stop section, and a sixth stop section connected in sequence, and the second stop section 21 The end is welded to the second stop section.
  • the length of the side of the fourth stop segment is the same as the length of the side of the sixth stop segment.
  • the length of the side of the fifth stop segment is less than the length of the side of the stop segment.
  • the side length of the stop beam is in the form of a rail vehicle. Benchmark.
  • the other side of the second stop section is also welded to the first ends of the two traction beams 50, and the second ends of the two traction beams 50 are welded to the pillow beam 60, wherein the two traction beams 50
  • a coupler mounting seat 51 is also provided between the stop beam and the pillow beam 60.
  • the three-level energy absorbing structure 30 can also be adjusted variously.
  • the first stop section is provided with a plurality of spaced second weight reduction holes, wherein the second weight reduction holes are used to reduce the track. Vehicle / collision weight structure.
  • the third stop section is provided with a plurality of third weight reduction holes arranged at intervals. The third weight reduction holes are used to reduce the weight of the rail vehicle / collision energy-absorbing structure.
  • the outer contour of the three-stage energy absorbing structure 30 can be changed as required, for example, the stop beam 31 is lengthened and the stop beam 31 is widened.
  • the first contact is the anti-climbing teeth 101, which are welded to the first-level energy-absorbing structure 10 and protrude from the first-level energy-absorbing structure 10.
  • the height of the anti-climbing teeth 101 and the number of teeth of the two vehicles are consistent.
  • at least one anti-climbing energy-absorbing beam tooth is ensured to the end beam 11 to prevent the vehicle from dislocation in the height direction;
  • the first and second bottom plates of the end beam bottom plate 111 and the end beam upright plate 112 connected to the end beam bottom plate 111 are welded to form a primary energy absorbing structure 10 that locally deforms and absorbs part of the energy.
  • the collision column as the first energy absorption column 81 and the end angle column as the second energy absorption column 82 welded to the end beam 11 are always connected to the end beam 11;
  • the secondary energy absorbing structure 20 is guided by the first induction portion 213 and the second induction portion 216, deforms, and absorbs energy.
  • the collision column, the end angle column, the end beam 11 and the secondary energy absorbing structure 20 are always connected together to ensure the safety of the personnel behind the collision column and the end angle column;
  • Another embodiment of the present invention provides a rail vehicle including a collision energy absorbing structure, wherein the collision energy absorbing structure is the collision energy absorbing structure described above.
  • the collision energy absorbing structure of this solution is not only an energy absorbing component, but also a load bearing structure.
  • the primary energy absorbing structure 10, the roof structure 90 on the end chassis, and the end energy absorbing structure 80 installed between the roof structure 90 and the primary energy absorbing structure 10 form the overall absorption of the end of the vehicle body structure.
  • Energy structure no need to add independent energy-absorbing structural elements.
  • the invention improves the collision energy absorption performance of the vehicle without increasing the outer size of the vehicle body structure, and meets the requirements of the vehicle body structure for collision energy absorption.
  • the size of the vehicle can be consistent with the existing vehicle, which can meet the requirements of compatible compatibility of the vehicle and improve the compatibility of the vehicle. Since the external dimensions of the vehicle are not increased, the collision energy-absorbing structure of the present invention can meet the technical requirements of a small end-to-end clearance and a small curve passing through the vehicle end, and can adapt to more complicated road conditions.
  • orientation words such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal”, “top, bottom” and the like indicate the orientation Or the positional relationship is usually based on the orientation or positional relationship shown in the drawings, only for the convenience of describing the present invention and simplifying the description. Unless otherwise stated, these orientation words do not indicate and imply the device or element referred to. It must have a specific orientation or be constructed and operated in a specific orientation, so it cannot be understood as a limitation on the scope of protection of the present invention; the orientation words “inside and outside” refer to the inside and outside relative to the outline of each component itself.
  • spatially relative terms such as “above”, “above”, “above”, “above”, etc. can be used here to describe as shown in the figure Shows the spatial position relationship between one device or feature and other devices or features. It should be understood that spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation of the device as described in the figures. For example, if a device in the figure is turned over, devices described as “above” or “above” other devices or constructions will be positioned “below the other devices or constructions” or “below” Other devices or constructs. " Thus, the exemplary term “above” may include both directions “above” and “below”. The device can also be positioned in other different ways (rotated 90 degrees or at other orientations), and the relative description of space used here is explained accordingly.

Abstract

一种碰撞吸能结构及具有其的轨道车辆,其中,碰撞吸能结构包括一级吸能结构(10),用于与轨道车辆的底架边梁(40)连接,一级吸能结构(10)具有间隔设置的至少两个吸能腔;端部吸能结构(80),端部吸能结构(80)的下端用于与一级吸能结构(10)相连接;车顶结构(90),端部吸能结构(80)的上端与车顶结构(90)相连接。具有该碰撞吸能结构的轨道车辆能够适应更多复杂路况要求。

Description

一种碰撞吸能结构及具有其的轨道车辆 技术领域
本发明涉及轨道车辆技术领域,具体而言,涉及一种碰撞吸能结构及具有其的轨道车辆。
背景技术
随着我国轨道交通等领域的高速发展,在方便人们出行的同时,其运行安全问题已越来越受到人们的重视。地铁等轨道交通车辆通常载客量大,运行速度快,一旦发生碰撞事故往往造成较大的人员伤亡和财产损失。近些年发生的列车追尾等事故充分说明即便在信号控制、调度管理和程序化管理等主动防护方面采取了一系列措施,列车的碰撞事故还是不能完全被避免,此种情况下,作为乘车人员生命财产安全终极卫士的被动安全防护装置的性能就显得尤为重要。
统计表明,轨道交通车辆等在碰撞过程中需要吸收的能量大,因此,轨道车辆的吸能部件的碰撞性能是衡量其质量的重要指标。而随着轨道交通车辆不断提速,对吸能部件的碰撞性能的要求也越来越高,相关技术中轨道车辆吸能部件的碰撞性能无法满足当下需求。
另外,在有些特殊工况下,要求车辆端部连挂间隙小且小曲线通过。这种要求下,一旦对车辆的碰撞吸能要求提高,需要增加车辆的碰撞吸能结构设计,则需要增大吸能结构的尺寸从而增大车端的尺寸,从而难以满足小曲线通过的需求。针对此种情况,目前还没有发现解决这种复杂路况要求的技术方案。
发明内容
本发明提供一种碰撞吸能结构及具有其的轨道车辆,以解决现有技术中轨道车辆吸能部件的碰撞吸能结构无法满足复杂路况要求的问题。
为了解决上述问题,根据本发明的一个方面,本发明提供了一种碰撞吸能结构,包括一级吸能结构,用于与轨道车辆的底架边梁连接,一级吸能结构具有间隔设置的至少两个吸能腔;端部吸能结构,端部吸能结构的下端用于与一级吸能结构相连接;车顶结构,端部吸能结构的上端与车顶结构相连接。
进一步地,一级吸能结构包括端梁,端梁的两端分别用于与轨道车辆的底架边梁连接,端梁具有端梁底板和与端梁底板相连接的端梁立板,端梁立板竖直设置并在端梁底板上围成吸能腔。
进一步地,端部吸能结构包括第一吸能柱体,端梁底板的中部具有第一柱体安装孔,第一吸能柱体穿设于第一柱体安装孔中并与端梁底板相焊接。
进一步地,端梁底板包括相对设置的第一底板和第二底板,第一吸能柱体分别与第一底板和第二底板相焊接。
进一步地,端部吸能结构还包括第二吸能柱体,其第一端与车顶结构焊接,其第二端用于与一级吸能结构焊接。
进一步地,第二吸能柱体为两个,两个第二吸能柱体相间隔地设置,第一吸能柱体为两个,两个第一吸能柱体相间隔地设置,两个第一吸能柱体位于两个第二吸能柱体之间。
进一步地,端梁底板的两端分别具有第二柱体安装孔,第二吸能柱体穿设于第二柱体安装孔中并与端梁底板相焊接。
进一步地,碰撞吸能结构还包括:二级吸能结构,二级吸能结构与一级吸能结构相连接,二级吸能结构包括至少两个间隔设置的吸能管,一级吸能结构与吸能管的第一端相连接。
进一步地,吸能管为中空结构,吸能管上具有第一诱导部。
进一步地,第一诱导部包括诱导孔,诱导孔为通孔。
进一步地,吸能管的横截面为矩形,第一诱导部包括至少一组诱导孔,每组诱导孔沿垂直于吸能管的轴线的平面在吸能管的周向间隔设置。
进一步地,第一诱导部包括多组诱导孔,多组诱导孔沿吸能管的延伸方向间隔设置。
进一步地,吸能管包括至少两个相邻的侧壁,两个相邻侧壁之间相连接并形成折弯部,第一诱导部设置在吸能管的至少一个折弯部处。
进一步地,吸能管上还具有第二诱导部,第二诱导部设置在吸能管的侧壁上。
进一步地,第二诱导部相对于吸能管的侧壁向内凹入形成凹陷部。
进一步地,吸能管的横截面为矩形,第二诱导部为两个,两个第二诱导部在吸能管的侧壁上相对地设置。
进一步地,碰撞吸能结构还包括三级吸能结构,三级吸能结构与吸能管的第二端相连接。
进一步地,三级吸能结构包括止挡梁,止挡梁的两端分别用于与轨道车辆的底架边梁连接。
进一步地,吸能管的第二端与止挡梁相连接。
进一步地,止挡梁为包括依次连接的第一止挡段、第二止挡段和第三止挡段,吸能管的第二端与第二止挡段相焊接,第一止挡段与第二止挡段之间具有第一夹角,第一夹角为钝角,第三止挡段与第二止挡段之间具有第二夹角,第一夹角等于第二夹角。
进一步地,第一止挡段上设置有多个间隔设置的第二减重孔;和/或第三止挡段上设置有多个间隔设置的第三减重孔。
根据本发明的另一方面,提供了一种轨道车辆,包括碰撞吸能结构,碰撞吸能结构为上述任一项的碰撞吸能结构。
应用本发明的技术方案,端部底架上的一级吸能结构、车顶结构以及安装在车顶结构以及一级吸能结构之间的端部吸能结构形成了车体结构的端部整体吸能结构,不再需要增加独立的吸能结构元件。本发明在不增大车体结构的外型尺寸的情况下,提高了车辆的碰撞吸能性能。由于不增加车辆的外形尺寸,本发明的碰撞吸能结构能够适应车辆端部连挂间隙小、小曲线通过的技术要求,能够适应更多复杂路况要求。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的碰撞吸能结构的结构示意图一;
图2示出了根据本发明的碰撞吸能结构的第一端的俯视图;
图3示出了根据本发明的碰撞吸能结构的第一端的侧视图;
图4示出了根据本发明的碰撞吸能结构的第二端的俯视图;
图5示出了根据本发明的碰撞吸能结构的第二端的侧视图;
图6示出了根据本发明的碰撞吸能结构的结构示意图二;
图7示出了根据本发明的碰撞吸能结构的吸能管的立体结构示意图;
图8示出了根据本发明的碰撞吸能结构的吸能管的主视结构示意图;
图9示出了根据本发明的碰撞吸能结构的吸能管的俯视结构示意图;
图10示出了根据本发明的碰撞吸能结构的吸能管的断面结构示意图。
其中,上述附图包括以下附图标记:
10、一级吸能结构;11、端梁;111、端梁底板;112、端梁立板;111a、第一柱体安装孔;111b、车钩安装孔;111c、第二柱体安装孔;112a、第一边立板;112b、第二边立板;112c、中立板;101、防爬齿;
20、二级吸能结构;21、吸能管;211、诱导孔;212、凹陷部;213、第一诱导部;214、第一管体部;215、第二管体部;216、第二诱导部;
30、三级吸能结构;31、止挡梁;
40、底架边梁;
50、牵引梁;51、车钩安装座;
60、枕梁;
70、侧墙;
80、端部吸能结构;81、第一吸能柱体;82、第二吸能柱体;
90、车顶结构。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1至图9所示,本发明的实施例提供了一种碰撞吸能结构,主要包括一级吸能结构10,用于与轨道车辆的底架边梁40连接,一级吸能结构10具有间隔设置的至少两个吸能腔;端部吸能结构80,端部吸能结构80的下端用于与一级吸能结构10相连接;车顶结构90,端部吸能结构80的上端与车顶结构90相连接。
本发明中,端部底架上的一级吸能结构10、车顶结构90以及安装在车顶结构90以及一级吸能结构10之间的端部吸能结构80形成了车体结构的端部整体吸能结构,不再需要增加独立的吸能结构元件。本发明在不增大车体结构的外型尺寸的情况下,提高了车辆的碰撞吸能性能,达到了车体结构碰撞吸能的要求。另外,由于车体结构外形尺寸不需变化,车辆的尺寸能够与既有车辆保持一致,可以满足车辆的兼容连挂的要求,提高了车辆的兼容性。由于不增加车辆的外形尺寸,本发明的碰撞吸能结构能够适应车辆端部连挂间隙小、小曲线通过的技术要求,能够适应更多复杂路况。
首先,针对上述碰撞吸能结构的一级吸能结构10进行说明:
根据本发明的一个实施例,如图1所示,一级吸能结构10包括端梁11,端梁11的两端分别用于与轨道车辆的底架边梁40连接,端梁11具有端梁底板111和与端梁底板111相连接的端梁立板112,端梁立板112竖直设置并在端梁底板111上围成吸能腔。端梁立板112竖直设置在端梁底板111上,使得一级吸能结构10自然而然的形成了具有吸能效果的吸能腔,进而提高轨道车辆的碰撞性能,保障车内人员的人身安全。也即,在一级吸能结构10受到轨道车辆行驶反方向上的碰撞压力时,吸能腔受到压力发生形变以吸收碰撞挤压力,进而保障车内人员的人身安全。
需要说明的是:端梁底板111包括相对设置的第一底板和第二底板。而端梁立板112竖直设置,并与端梁底板111相连接,从而在端梁底板111上围成吸能腔。具体为:端梁立板112竖直设置在第一底板上,并在第一底板上围成吸能腔,此外,在端梁立板112上覆盖有第二底板。也即,端梁立板112竖直设置在第二底板下,并在第二底板下围成吸能腔。也即,吸能腔 由端梁立板112和端梁底板111围绕而成。在本实施例中,端梁底板111包括的第一底板和第二底板分别设置于吸能腔上方和下方。
针对上述吸能腔,在本实施例中,具体如图1所示,端梁立板112包括第一边立板112a、第二边立板112b和多个中立板112c,其中,第一边立板112a和第二边立板112b相间隔地设置,中立板112c的两端分别与第一边立板112a和第二边立板112b相连接,多个中立板112c相间隔地设置,并在第一边立板112a和第二边立板112b之间隔出多个间隔设置的吸能腔。此种通过第一边立板112a、第二边立板112b和多个中立板112c形成多个吸能腔的设计,使得一级吸能结构10具备多个延轨道车辆车宽方向设置的吸能腔,使形成多个吸能腔的端梁立板112在受到碰撞挤压力时,向吸能腔内部方向倾斜变形,以吸收碰撞能量。具体而言,多个吸能腔间隔的中立板112c和第一边立板112a在受到碰撞挤压力时,提供与碰撞挤压力相抗衡的支撑力,最后中立板112c和第一边立板112a发生形变以吸收碰撞挤压力的能量。
针对上述第一边立板112a,在本实施例中,具体如图1所示,第一边立板112a用于与底架边梁40的一端的末端相连接,且第一边立板112a为弧形结构。
需要说明是:在本实施例中,碰撞吸能结构是用于提高轨道车辆端部的碰撞性能,因此,碰撞吸能结构可以设置于轨道车辆的任意一端,即,碰撞吸能结构可以设置于轨道车辆的第一端;碰撞吸能结构可以设置于轨道车辆的第二端,也可以如图1所示,碰撞吸能结构对称的设置于轨道车辆的第一端和第二端。
结合上述说明可知:第一边立板112a用于与底架边梁40的一端的末端相连接包括:第一立板可以与底架边梁40的第一端的末端连接,也可以与底架边梁40的第二端的末端连接,亦可以与底架边梁40的第一端和第二端的末端连接。
第一边立板112a设置于底架端部,于底架端部形成第一层立板防护。其次,第一边立板112a连接底架边梁40末端及连接多个中立板112c一端,进而保证了轨道车辆的端部在受到碰撞挤压时,第一边立板112a能够将碰撞挤压力分散至多个中立板112c及底架边梁40,防止碰撞挤压力的施力点过于集中,导致一级吸能结构10无法平稳吸能的情况发生。
此外,第一边立板112a为弧形结构具有加强分散碰撞挤压力的技术效果。此外,第一边立板112a为弧形结构的设计,也可以使多个相连接的轨道车辆在转弯时避免其相互碰撞。
本实施例中,第一边立板112a远离吸能腔的一侧可以连接防爬齿101,令碰撞吸能结构同时达到防爬效果。也即,在两个轨道车辆相互碰撞时,使得两车的防爬齿101高度一致和齿数一致,保证碰撞发生时,至端梁11少保证一个防爬齿101相啮合,车辆不在高度方向上发生错位。
需要说明的是:为了保证一级吸能结构10的连接稳定性,以及保证一级吸能结构10的碰撞性能,一级吸能结构10包含的第一边立板112a、第二边立板112b、多个中立板112c以及端梁底板111相互焊接。此外,第一边立板112a、第二边立板112b与底架边梁40也进行焊接连接。
一级吸能结构10还可以进行各种调整,作为一个可选的示例,多个中立板112c中的至少一个中立板112c上设置有第一减重孔,其中,第一减重孔用于减轻轨道车辆/碰撞吸能结构的重量。
作为另一个可选的示例,端梁底板111的中部具有车钩安装孔111b,用于连接轨道车辆的车钩。
作为一个可选的示例,如图1所示,多个中立板112c包括:两个第一中立板112c、两个第二中立板112c和两个第三中立板112c,其中,两个第一中立板112c、两个第二中立板112c和两个第三中立板112c延轨道车辆的车宽方向对称设置,两个第一中立板112c之间形成第一吸能腔,第一吸能腔对应的第一底板上设有车钩安装孔111b,第一中立板112c和第二中立板112c之间形成第二吸能腔,第二吸能腔对应的端梁底板111上设有第一柱体安装孔111a,第二中立板112c和第三中立板112c之间形成第三吸能腔,第三性能腔和底架边梁40之间形成第四吸能腔。此外,第一中立板112c和第三中立板112c相互平行,且第一中立板112c和第三中立板112c均与第二边立板112b垂直,而第一中立板112c与第二中立板112c之间设有预设角度。此外,第一中立板112c和第二中立板112c上均设有第一减重孔。
进一步地,针对端部吸能结构80进行说明:
如图6所示,在本实施例中,端部吸能结构80包括第一吸能柱体81,而端梁底板111的中部具有第一柱体安装孔111a,第一吸能柱体81穿设于第一柱体安装孔111a中并与端梁底板111相焊接。此种令端梁底板111的中部设置第一柱体安装孔111a的设计,使得第一吸能柱体81能够穿过第一柱体安装孔111a与端梁底板111焊接,加强端部吸能柱体与端部端梁11的连接强度,进而增加轨道车辆的端部骨架的连接强度,保护乘车人员的人身安全。
作为一种可选的示例,端梁底板111包括第一底板和第二底板,而第一底板的中部具有第三柱体安装孔,第二底板的中部具有第四柱体安装孔,第一吸能柱体穿过第三柱体安装孔和第四柱体安装孔,分别与第一底板和第二底板相焊接。此种设计不仅仅使得第一底板和第二底板均与第一吸能柱体焊接,增加车端骨架的连接稳定性,同时由于第一底板和第二底板之间设有一定高度差,因此可以限制第一吸能柱体向车厢内部倾斜的程度,以保护乘车人员的人身安全。需要说明的是:第一柱体安装孔111a包括第三柱体安装孔和第四柱体安装孔。
如图6所示,端部吸能结构80还包括第二吸能柱体82,其第一端与车顶结构90焊接,其第二端用于与一级吸能结构10焊接。
在本发明的实施例中,第二吸能柱体82设计为两个,并且让两个第二吸能柱体82相间隔地设置,以及让第二吸能柱体82与轨道车辆的侧墙70焊接。上述设计,加强了轨道车辆的车顶结构90和轨道车辆底架之间的连接强度,而第二吸能柱体82与轨道车辆的侧墙70焊接的设计,则增加了车端骨架结构的整体性,使得车端骨架结构受到碰撞挤压时,有更多的轨道车辆的部件提供抗碰撞的支持力。至于两个吸能柱体相间隔地设置的设计,则增加了车顶结构90和底架结构之间连接关系的均衡性,避免了因车顶结构90和底架结构连接关系不均衡,导致车端骨架结构在连接关系薄弱的地方发生扭曲形变的情况发生。
作为另一个可选的示例,如图6所示,第二吸能柱体82为两个,两个第二吸能柱体82相间隔地设置,第一吸能柱体81为两个,两个的第一吸能柱体81位于两个第二吸能柱体82之间。而该示例是基于大量实验数据统计分析所得,示例中第一吸能柱体81的数量和位置和示例中第二吸能柱体82的数量和位置达到了一个稳定的平衡,也即,达到了端部吸能结构80重量和连接强度之间的平衡,以及达到了端部吸能结构80的位置设计和连接稳性之间的平衡。
优选地,端梁底板111的两端分别具有第二柱体安装孔111c,第二吸能柱体82穿设于第二柱体安装孔111c中并与端梁底板111相焊接。此种令端梁底板111的中部设置第二柱体安装孔111c的设计,使得第二吸能柱体82能够穿过第二柱体安装孔111c与端梁底板111焊接,加强第二柱体安装孔111c与端梁底板111的连接强度,进而增加轨道车辆的端部骨架的连接强度,保护乘车人员的人身安全。
在一个示例中,第一吸能柱体81为碰撞柱,第二吸能柱体82为端角柱。碰撞柱与端角柱形成车辆前端的保护结构,保护车内乘务人员和乘客的生命安全。这四根柱子采用封闭的管状结构,其截面大小需满足要求。碰撞柱与端角柱与车顶的顶部弯梁以及车辆前端的端梁11形成整体结构。其余车体的侧墙70、车顶结构90通过焊接连接在一起,形成一个整体。
再次,碰撞吸能结构还包括二级吸能结构20,二级吸能结构20与一级吸能结构10相连接,二级吸能结构20包括至少两个间隔设置的吸能管21,一级吸能结构10与吸能管21的第一端相连接。接下来对二级吸能结构20进行说明。
此种在轨道车辆端部设置一级吸能结构10的吸能腔和二级吸能结构20的吸能管21的设计,使得轨道车辆的端部至少形成两重吸能保障,即在轨道车辆受到碰撞时,一级吸能结构10间隔设置的至少两个吸能腔和二级吸能结构20的吸能管21均可以吸收一定的碰撞能量发生吸能形变,进而提高轨道车辆的碰撞性能,保证乘车人员的人身安全。另外,在车辆发生碰撞时,由于吸能结构是逐级设置,每级吸能结构会逐级发生形变,使得吸能结构的形变在可控的范围内,避免列车的结构造成不可控的变形而影响车内人员安全。
吸能管21设置为中空结构,且吸能管21上具有第一诱导部213。该吸能管结构的结构简单,且由于具有第一诱导部213,在发生碰撞时,吸能管21首先在设置第一诱导部213的部位变形,使得吸能管21的变形处于可控状态,避免轨道列车的其他部分发生不可控的形变而威胁车内人员的人身安全。因此,本发明提升了碰撞吸能结构的防碰撞性能。优选地,吸能管21沿车宽方向对称布置,吸能管21采用薄壁管并且开诱导孔211结构,有利于吸能管21的变形控制。吸能管21与第二边立板112b和牵引梁50的横梁采用焊接方式连接。
根据本发明的一个实施例,如图7所示,吸能管21包括第一管体部214和第二管体部215,第一管体部214和第二管体部215拼接。两个管体部相拼接形成了具有空腔的吸能管21,在加工时,将第一管体部214和第二管体部215相拼接,并在拼接处焊接。此种结构形式结构简单,有利于模块化设计,从而可以降低成本,并提高加工效率。
具体地,第一管体部214为U形结构,第一管体部214包括第一底壁和两个第一侧壁,第二管体部215为U形结构,第二管体部215包括第二底壁和两个第二侧壁,两个第一侧壁分别与两个第二侧壁相对接。
本实施例中,第一管体部214和第二管体部215均为U形结构并对称布置。第一管体部214和第二管体部215的两个侧壁一一对应的相对接。此种设计使得待焊接处形成一个平整的平面,有利于焊接的进行,便于提高生产效率。对称布置的第一管体部214和第二管体部215的结构相同,有利于批量生产,降低成本。
本发明中,如图7所示,吸能管21包括至少两个相邻的侧壁,两个相邻侧壁之间相连接并形成折弯部,第一诱导部213设置在吸能管21的至少一个折弯部处。在吸能管21的折弯部设置第一诱导部213,形成碰撞诱导结构。在轨道列车发生碰撞时,吸能管21上设置的第一诱导部213会先于整体结构而变形,从而使得吸能管21的变形可控,避免轨道列车的其他部分发生不可控的形变而威胁车内人员的人身安全。第一诱导部213设置在折弯处,易于加工,从而可以提高生产效率。优选地,本实施例中的吸能管21横截面为矩形,矩形的吸能管21抗扭性能好,能进一步提高碰撞吸能结构的安全性。
本实施例中,优选地,如图7、图8和图9所示,第一诱导部213包括诱导孔211,诱导孔211为通孔。诱导孔211为通孔,容易加工。
如图7、图8和图9所示,第一诱导部213包括至少一组诱导孔211,每组诱导孔211沿垂直于吸能管21的轴线的平面在吸能管21的周向间隔设置。
沿每一个垂直于吸能管21的轴线的平面在吸能管21上间隔设置多个诱导孔211,多个诱导孔211沿吸能管21的周向均匀分布。在发生碰撞时,在吸能管21的周向均匀分布的诱导孔211使得吸能管21基本沿一个平面折叠,变形更加可控。
在一个优选的示例中,第一诱导部213包括多组诱导孔211,多组诱导孔211沿吸能管21的延伸方向间隔设置。
多组诱导孔211在吸能管21上间隔设置,在发生碰撞时,每组诱导孔211处发生一次变形,多组诱导孔211的设置,使得吸能管21可以发生多次变形,提高了吸能管21的吸能的能力。
如图7、图8和图10所示,吸能管21上还具有第二诱导部216,第二诱导部216设置在吸能管21的侧壁上。优选地,本实施例中,第二诱导部216相对于吸能管21的侧壁相内凹入形成凹陷部212。
如图7和图8所示,在一个实施例中,第一诱导部213和第二诱导部216的轴线在垂直于吸能管21的延伸方向的同一平面上。在第一诱导部213的基础上,第二诱导部216的设置,有利于在此处形成一个更加薄弱的诱导部位,使得此处可以先于其他部分发生变形。
如图10所示,在一个实施例中,吸能管21的横截面为矩形,第二诱导部216为两个,两个第二诱导部216在吸能管21的侧壁上相对地设置。第一管体部214为U形结构,第一管体部214包括第一底壁和两个第一侧壁。第二管体部215为U形结构,第二管体部215包括第二底壁和两个第二侧壁。两个第一侧壁分别与两个第二侧壁相对接,第二诱导部216分别设置在第一底壁和第二底壁上。
优选地,第二诱导部216为向吸能管21内部凹陷的凹槽,凹槽的底壁与吸能管21的侧壁平行,凹槽的侧壁为倾斜面,凹槽的横截面为梯形。
最后,碰撞吸能结构还包括三级吸能结构30,下面针对三级吸能结构30进行说明:
如图1、图2和图4所示,在本实施例中,三级吸能结构30与吸能管21的第二端相连接。具体的,三级吸能结构30包括止挡梁31,止挡梁31的两端分别用于与轨道车辆的底架边梁40连接,而吸能管21的第二端与止挡梁31相连接。此种设计,增加吸能管21的连接强度,即令吸能管21通过止档梁与底架边梁40形成间接连接关系,避免吸能管21在受到碰撞力时发生位置偏移,进而导致受力不均衡无法进行可控形变的情况发生。此外,该设计也增加了轨道车辆碰撞性能,即轨道车辆受到碰撞力时,止档梁能够提供与碰撞力相抗衡的支撑力,以减少轨道车辆的形变程度,进一步地,止档梁发生吸能形变还可以吸收一定的碰撞能量。
此外,在本实施例中,止挡梁31为截面为U形的横梁。而此种设计使得止档梁不易发生形变,即截面为U形的止挡梁31可以承受更大的碰撞力,而不发生形变。需要说明的是:该碰撞力的方向可以为轨道车辆的行驶方向,也可以为轨道车辆的车宽方向。
作为一种可选的示例,具体如图1和图4所示,止挡梁31包括依次连接的第一止挡段、第二止挡段和第三止挡段,吸能管21的第二端与第二止挡段相焊接,其中,第一止挡段与第二止挡段之间具有第一夹角,第一夹角为钝角,第三止挡段与第二止挡段之间具有第二夹角,第一夹角等于第二夹角。
作为另一种可选的示例,具体如图1和图2所示,止档梁包括依次连接的第四止挡段、第五止挡段和第六止挡段,吸能管21的第二端与第二止挡段相焊接。其中,第四止挡段侧面的长度与第六止档段侧面的长度相同,第五止挡段侧面的长度小于止挡段侧面的长度,止档梁的侧面长度以轨道车辆的形式方向为基准。
需要说明的是:第二止挡段的另一面还与两个牵引梁50的第一端相焊接,两个牵引梁50的第二端与枕梁60相焊接,其中,两个牵引梁50、止档梁和枕梁60之间还设有车钩安装座51。
三级吸能结构30还可以进行各种调整,作为一个可选的示例,第一止挡段上设置有多个间隔设置的第二减重孔,其中,第二减重孔用于减轻轨道车辆/碰撞吸能结构的重量。同理,作为另一个可选的示例,第三止挡段上设置有多个间隔设置的第三减重孔,其中,第三减重孔用于减轻轨道车辆/碰撞吸能结构的重量。
进一步地,三级吸能结构30外轮廓可根据需要进行变化,例如将止挡梁31加长、将止挡梁31加宽。
接下来提供一个优选实施例进一步说明:
1、相邻的两车辆碰撞时,首先接触是防爬齿101,防爬齿101焊接在一级吸能结构10上,并且突出于一级吸能结构10。两车辆的防爬齿101的高度一致和齿数一致,保证碰撞发生时,至端梁11少保证一个防爬吸能梁齿相啮合,车辆不在高度方向上发生错位;
2、随着碰撞的加剧,端梁底板111的第一底板和第二底板、与端梁底板111相连接的端梁立板112焊接形成的一级吸能结构10发生局部形变,吸收一部分能量。同时焊接在端梁11上的作为第一吸能柱体81的碰撞柱和作为第二吸能柱体82的端角柱始终与端梁11连接;
3、随着碰撞的加剧,二级吸能结构20由第一诱导部213和第二诱导部216的引导,发生形变,吸收能量。同时碰撞柱、端角柱、端梁11和二级吸能结构20始终连接在一起,保证碰撞柱和端角柱后面的人员安全;
4、吸能管21吸收能量形变完成后,前端形变产生,两车的碰撞柱接触碰撞,产生形变,吸收能量,端部区域的吸能空间使用完毕。与车辆前端连接在一起的车顶结构90、侧墙70和底架产生局部破坏,车辆的碰撞吸能完成。
5、在完成碰撞吸能的形变后,车辆前端连接在一起的车顶结构90、侧墙70和底架产生局部变形,但是不发生分离。
本发明的另一实施例提供了一种轨道车辆,包括碰撞吸能结构,其中,碰撞吸能结构为上述的碰撞吸能结构。该方案的碰撞吸能结构不仅是吸能部件,同时也是载荷承载结构。
端部底架上的一级吸能结构10、车顶结构90以及安装在车顶结构90以及一级吸能结构10之间的端部吸能结构80形成了车体结构的端部整体吸能结构,不再需要增加独立的吸能结构元件。本发明在不增大车体结构的外型尺寸的情况下,提高了车辆的碰撞吸能性能,达到了车体结构碰撞吸能的要求。另外,由于车体结构外形尺寸不需变化,车辆的尺寸能够与既有车辆保持一致,可以满足车辆的兼容连挂的要求,提高了车辆的兼容性。由于不增加车辆的外形尺寸,本发明的碰撞吸能结构能够适应车辆端部连挂间隙小、小曲线通过的技术要求,能够适应更多复杂路况。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。

Claims (22)

  1. 一种轨道车辆的碰撞吸能结构,其特征在于,包括:
    一级吸能结构(10),用于与所述轨道车辆的底架边梁(40)连接,所述一级吸能结构(10)具有间隔设置的至少两个吸能腔;
    端部吸能结构(80),所述端部吸能结构(80)的下端用于与所述一级吸能结构(10)相连接;
    车顶结构(90),所述端部吸能结构(80)的上端与所述车顶结构(90)相连接。
  2. 根据权利要求1所述的碰撞吸能结构,其特征在于,所述一级吸能结构(10)包括端梁(11),所述端梁(11)的两端分别用于与所述轨道车辆的底架边梁(40)连接,所述端梁(11)具有端梁底板(111)和与所述端梁底板(111)相连接的端梁立板(112),所述端梁立板(112)竖直设置并在所述端梁底板(111)上围成所述吸能腔。
  3. 根据权利要求2所述的碰撞吸能结构,其特征在于,所述端部吸能结构(80)包括第一吸能柱体(81),所述端梁底板(111)的中部具有第一柱体安装孔(111a),所述第一吸能柱体(81)穿设于所述第一柱体安装孔(111a)中并与所述端梁底板(111)相焊接。
  4. 根据权利要求3所述的碰撞吸能结构,其特征在于,所述端梁底板(111)包括相对设置的第一底板和第二底板,所述第一吸能柱体(81)分别与所述第一底板和所述第二底板相焊接。
  5. 根据权利要求3所述的碰撞吸能结构,其特征在于,所述端部吸能结构(80)还包括第二吸能柱体(82),其第一端与所述车顶结构(90)焊接,其第二端用于与所述一级吸能结构(10)焊接。
  6. 根据权利要求5所述的碰撞吸能结构,其特征在于,所述第二吸能柱体(82)为两个,两个所述第二吸能柱体(82)相间隔地设置,所述第一吸能柱体(81)为两个,两个所述第一吸能柱体(81)相间隔地设置,两个所述第一吸能柱体(81)位于两个所述第二吸能柱体(82)之间。
  7. 根据权利要求6所述的碰撞吸能结构,其特征在于,所述端梁底板(111)的两端分别具有第二柱体安装孔(111c),所述第二吸能柱体(82)穿设于所述第二柱体安装孔(111c)中并与所述端梁底板(111)相焊接。
  8. 根据权利要求1所述的碰撞吸能结构,其特征在于,所述碰撞吸能结构还包括:
    二级吸能结构(20),所述二级吸能结构(20)与所述一级吸能结构(10)相连接,所述二级吸能结构(20)包括至少两个间隔设置的吸能管(21),所述一级吸能结构(10)与所述吸能管(21)的第一端相连接。
  9. 根据权利要求8所述的碰撞吸能结构,其特征在于,所述吸能管(21)为中空结构,所述吸能管(21)上具有第一诱导部(213)。
  10. 根据权利要求9所述的碰撞吸能结构,其特征在于,所述第一诱导部(213)包括诱导孔(211),所述诱导孔(211)为通孔。
  11. 根据权利要求10所述的碰撞吸能结构,其特征在于,所述吸能管(21)的横截面为矩形,所述第一诱导部(213)包括至少一组诱导孔(211),每组所述诱导孔(211)沿垂直于所述吸能管(21)的轴线的平面在所述吸能管(21)的周向间隔设置。
  12. 根据权利要求11所述的碰撞吸能结构,其特征在于,所述第一诱导部(213)包括多组诱导孔(211),多组所述诱导孔(211)沿所述吸能管(21)的延伸方向间隔设置。
  13. 根据权利要求9所述的碰撞吸能结构,其特征在于,所述吸能管(21)包括至少两个相邻的侧壁,两个相邻侧壁之间相连接并形成折弯部,所述第一诱导部(213)设置在所述吸能管(21)的至少一个折弯部处。
  14. 根据权利要求9所述的碰撞吸能结构,其特征在于,所述吸能管(21)上还具有第二诱导部(216),所述第二诱导部(216)设置在所述吸能管(21)的侧壁上。
  15. 根据权利要求14所述的碰撞吸能结构,其特征在于,所述第二诱导部(216)相对于所述吸能管(21)的侧壁向内凹入形成凹陷部(212)。
  16. 根据权利要求15所述的碰撞吸能结构,其特征在于,所述吸能管(21)的横截面为矩形,所述第二诱导部(216)为两个,两个第二诱导部(216)在所述吸能管(21)的侧壁上相对地设置。
  17. 根据权利要求8所述的碰撞吸能结构,其特征在于,还包括三级吸能结构(30),所述三级吸能结构(30)与所述吸能管(21)的第二端相连接。
  18. 根据权利要求17所述的碰撞吸能结构,其特征在于,所述三级吸能结构(30)包括止挡梁(31),所述止挡梁(31)的两端分别用于与所述轨道车辆的底架边梁(40)连接。
  19. 根据权利要求18所述的碰撞吸能结构,其特征在于,所述吸能管(21)的第二端与所述止挡梁(31)相连接。
  20. 根据权利要求18所述的碰撞吸能结构,其特征在于,所述止挡梁(31)为包括依次连接的第一止挡段、第二止挡段和第三止挡段,所述吸能管(21)的第二端与所述第二止挡段相焊接,所述第一止挡段与所述第二止挡段之间具有第一夹角,所述第一夹角为钝角,所述第三止挡段与所述第二止挡段之间具有第二夹角,所述第一夹角等于所述第二夹角。
  21. 根据权利要求20所述的碰撞吸能结构,其特征在于,所述第一止挡段上设置有多个间隔设置的第二减重孔;和/或所述第三止挡段上设置有多个间隔设置的第三减重孔。
  22. 一种轨道车辆,包括碰撞吸能结构,其特征在于,所述碰撞吸能结构为权利要求1至21中任一项所述的碰撞吸能结构。
PCT/CN2018/108714 2018-09-06 2018-09-29 一种碰撞吸能结构及具有其的轨道车辆 WO2020047924A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18932821.4A EP3725638A4 (en) 2018-09-06 2018-09-29 IMPACT ENERGY ABSORBING STRUCTURE AND RAIL VEHICLE WITH IT
US16/303,784 US11186300B2 (en) 2018-09-06 2018-09-29 Collision energy absorption structure and rail vehicle having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811039092.9 2018-09-06
CN201811039092.9A CN109367560A (zh) 2018-09-06 2018-09-06 一种碰撞吸能结构及具有其的轨道车辆

Publications (1)

Publication Number Publication Date
WO2020047924A1 true WO2020047924A1 (zh) 2020-03-12

Family

ID=65404562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108714 WO2020047924A1 (zh) 2018-09-06 2018-09-29 一种碰撞吸能结构及具有其的轨道车辆

Country Status (5)

Country Link
US (1) US11186300B2 (zh)
EP (1) EP3725638A4 (zh)
CN (1) CN109367560A (zh)
MA (1) MA51164A (zh)
WO (1) WO2020047924A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162163A (zh) * 2021-12-29 2022-03-11 中车青岛四方机车车辆股份有限公司 基于车钩箱端梁的端部底架及轨道车辆
CN114735042A (zh) * 2022-05-10 2022-07-12 北京轨道交通技术装备集团有限公司 一种轨道车辆底架结构及其前端地板

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110682931B (zh) * 2019-10-28 2020-08-25 中铁轨道交通装备有限公司 车体底架及具有其的有轨电车
CN112874555B (zh) * 2021-04-08 2022-07-15 中车青岛四方机车车辆股份有限公司 轨道车辆司机室前端的底架结构
CN113844477B (zh) * 2021-10-13 2023-06-30 中车大连机车车辆有限公司 一种城际车前端部件安装结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1223095A1 (en) * 2000-08-28 2002-07-17 Mitsubishi Heavy Industries, Ltd. Body structure
CN101932487A (zh) * 2008-01-31 2010-12-29 西门子公司 构成车辆正面的包括至少一个能量吸收构件的车头部件
CN202935363U (zh) * 2012-11-15 2013-05-15 南车株洲电力机车有限公司 一种防爬器
CN107614351A (zh) * 2015-06-03 2018-01-19 川崎重工业株式会社 铁道车辆的车身
CN207345836U (zh) * 2017-10-19 2018-05-11 中车青岛四方机车车辆股份有限公司 一种分级式吸能结构及轨道车辆
CN207631268U (zh) * 2017-10-30 2018-07-20 中车长春轨道客车股份有限公司 一种大容量吸能轨道车辆前端防爬装置
CN109383552A (zh) * 2018-09-06 2019-02-26 中车青岛四方机车车辆股份有限公司 一种轨道车辆

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612062B2 (ja) 1988-11-18 1994-02-16 ヤマハ発動機株式会社 多吸気弁式エンジンの吸気装置
FR2759338B1 (fr) * 1997-02-10 1999-04-02 Gec Alsthom Transport Sa Dispositif d'absorption d'energie et vehicule, notamment ferroviaire, comportant un tel dispositif d'absorption
JP4015725B2 (ja) * 1997-08-20 2007-11-28 日本車輌製造株式会社 鉄道車両用台枠
JP3015358B1 (ja) * 1998-12-04 2000-03-06 川崎重工業株式会社 箱形構造体および車両用端梁
AT503688B1 (de) * 2004-10-19 2008-04-15 Siemens Transportation Systems Schienenfahrzeug mit vertikal verlaufenden rammsäulen
AT511291A1 (de) * 2011-04-04 2012-10-15 Siemens Ag Oesterreich Schienenfahrzeug mit angesetzter verformungszone
CN103909948A (zh) * 2014-04-08 2014-07-09 唐山轨道客车有限责任公司 轨道车辆吸能装置
CN204341081U (zh) * 2014-12-04 2015-05-20 南车株洲电力机车有限公司 一种城轨车辆车头防爬吸能装置
GB201522419D0 (en) * 2015-12-18 2016-02-03 Hitachi Ltd Railway vehicle provided with collision energy absorption structure
CN206159340U (zh) * 2016-03-29 2017-05-10 深圳市乾行达科技有限公司 一种组合式缓冲吸能装置
JP2018069944A (ja) * 2016-10-31 2018-05-10 東日本旅客鉄道株式会社 鉄道車両
CN106515780B (zh) * 2016-12-26 2019-06-11 深圳市乾行达科技有限公司 一种易维护的框架型吸能结构
CN109382552A (zh) 2018-11-23 2019-02-26 张家港市三林金泰新能源有限公司 新型能源内燃机法兰的斜切支架

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1223095A1 (en) * 2000-08-28 2002-07-17 Mitsubishi Heavy Industries, Ltd. Body structure
CN101932487A (zh) * 2008-01-31 2010-12-29 西门子公司 构成车辆正面的包括至少一个能量吸收构件的车头部件
CN202935363U (zh) * 2012-11-15 2013-05-15 南车株洲电力机车有限公司 一种防爬器
CN107614351A (zh) * 2015-06-03 2018-01-19 川崎重工业株式会社 铁道车辆的车身
CN207345836U (zh) * 2017-10-19 2018-05-11 中车青岛四方机车车辆股份有限公司 一种分级式吸能结构及轨道车辆
CN207631268U (zh) * 2017-10-30 2018-07-20 中车长春轨道客车股份有限公司 一种大容量吸能轨道车辆前端防爬装置
CN109383552A (zh) * 2018-09-06 2019-02-26 中车青岛四方机车车辆股份有限公司 一种轨道车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3725638A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162163A (zh) * 2021-12-29 2022-03-11 中车青岛四方机车车辆股份有限公司 基于车钩箱端梁的端部底架及轨道车辆
CN114162163B (zh) * 2021-12-29 2023-12-26 中车青岛四方机车车辆股份有限公司 基于车钩箱端梁的端部底架及轨道车辆
CN114735042A (zh) * 2022-05-10 2022-07-12 北京轨道交通技术装备集团有限公司 一种轨道车辆底架结构及其前端地板

Also Published As

Publication number Publication date
US11186300B2 (en) 2021-11-30
CN109367560A (zh) 2019-02-22
EP3725638A4 (en) 2021-08-25
US20210221413A1 (en) 2021-07-22
MA51164A (fr) 2020-10-21
EP3725638A1 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
WO2020047924A1 (zh) 一种碰撞吸能结构及具有其的轨道车辆
CN208515593U (zh) 一种轨道车辆车头结构及轨道车辆
CN106240587A (zh) 一种轨道车辆车头结构
DK2694347T3 (en) A rail vehicle fitted with a crumple zone
CN109383552A (zh) 一种轨道车辆
US4235170A (en) Railway car underframe end sill
US20130104770A1 (en) Railway vehicle
US20130098264A1 (en) Railway vehicle
CN206589655U (zh) 一种车辆电池包防护装置及使用该防护装置的车辆
JP6259160B2 (ja) 鉄道車両
WO2019242364A1 (zh) 防爬吸能装置及具有其的轨道车辆
CN110667617A (zh) 一种高地板有轨电车的头车车体结构
CN107416042A (zh) 一种汽车地板前部的九宫格式骨架梁
US20130125782A1 (en) Railway vehicle
CN205524489U (zh) 车辆上边梁及具有该上边梁的机舱总成
CN102619448B (zh) 一种优化偏置碰效果的车门加强结构
WO2017037854A1 (ja) 鉄道車両
WO2013118284A1 (ja) 鉄道車両
CN109177995B (zh) 车端骨架结构及具有其的轨道车辆
WO2019242363A1 (zh) 防爬吸能装置及具有其的轨道车辆
CN112373576A (zh) 一种前地板总成结构
CN217496287U (zh) 车辆后地板结构与车辆
CN207712163U (zh) 纯电动汽车的下车身结构
CN208868056U (zh) 一种碰撞吸能装置及具有其的轨道车辆
CN107985422A (zh) 纯电动汽车的下车身结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932821

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18932821.4

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018932821

Country of ref document: EP

Effective date: 20200608

NENP Non-entry into the national phase

Ref country code: DE