WO2020044602A1 - 非接触給電システム、非接触給電方法および非接触給電プログラム - Google Patents

非接触給電システム、非接触給電方法および非接触給電プログラム Download PDF

Info

Publication number
WO2020044602A1
WO2020044602A1 PCT/JP2019/005749 JP2019005749W WO2020044602A1 WO 2020044602 A1 WO2020044602 A1 WO 2020044602A1 JP 2019005749 W JP2019005749 W JP 2019005749W WO 2020044602 A1 WO2020044602 A1 WO 2020044602A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
receiving device
power receiving
unit
Prior art date
Application number
PCT/JP2019/005749
Other languages
English (en)
French (fr)
Inventor
剛史 三浦
寿康 三輪田
佑介 河合
雅思 佐藤
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to US17/265,810 priority Critical patent/US11223239B2/en
Priority to DE112019004331.5T priority patent/DE112019004331T5/de
Publication of WO2020044602A1 publication Critical patent/WO2020044602A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • the present invention relates to a non-contact power supply system including a non-contact power supply device and a power receiving device, a non-contact power supply method, and a non-contact power supply program.
  • a wireless power supply system that wirelessly supplies power from a power supply device to a power receiving device has been used.
  • Such a non-contact power supply system communicates between a power receiving device and a power supply device, and power is supplied from the power supply device based on data received from the power reception device through communication in the power supply device. There is.
  • the power receiving device is usually operated by a battery mounted on the power receiving device. For this reason, for example, the remaining battery level on the power receiving device side is almost zero, the positional relationship between the power feeding device and the power receiving device is inappropriate (the distance between the power feeding / power receiving coils is large, or the positional deviation is large). ), Necessary for the power receiving device to operate when the power supply efficiency of the non-contact power supply is reduced and the power required for the operation of the power receiving device cannot be supplied, or the power receiving device is affected by disturbance (crosstalk, noise, etc.) Power may be insufficient. Therefore, there is a problem that the wireless communication becomes unstable and the power supply becomes unstable with the stoppage of the function of the power receiving device.
  • Patent Literature 1 in order to accurately supply power to a power receiving device, power supply to a power supply unit is stopped for a predetermined time based on a wireless communication unit receiving signals from a plurality of power receiving devices, A power supply device that causes a power supply unit to restart power supply is disclosed.
  • the above-mentioned conventional contactless power supply system has the following problems. That is, in the non-contact power supply system disclosed in the above publication, when a signal from a power receiving device to be supplied and a signal from another power receiving device not to be supplied are received, power is supplied to the power receiving device to be supplied. Is restarted, and power supply to another power receiving device that is not a power supply target is stopped. This allows the communication unit to receive only the signal from the power receiving device to be supplied with power, so that the power supplying device accurately receives power receiving information from the power receiving device to be supplied with power, and accurately supplies power to a desired power receiving device. can do.
  • An object of the present invention is to provide a non-contact power supply system, a non-contact power supply method, and a non-contact power supply program capable of stabilizing a communication state between a non-contact power supply device and a power receiving device and performing power supply in a stable state. Is to do.
  • a non-contact power supply system is a non-contact power supply system that supplies power from a non-contact power supply device to a power reception device while performing communication between the non-contact power supply device and the power reception device. And a power receiving device.
  • the power receiving device communicates with the power receiving coil unit supplied from the non-contact power supply device and the non-contact power supply device, and transmits the data transmitted to the non-contact power supply device with information having continuity added thereto.
  • the non-contact power supply device includes a power supply coil unit that supplies power to a power reception coil unit of the power reception device, a second communication unit that communicates with a first communication unit of the power reception device, and a first communication unit of the power reception device in the second communication unit.
  • the power supply coil unit receives the power from the power receiving coil unit.
  • a power supply control unit that performs a correction to increase the output value supplied to the unit.
  • the power supply control unit controls the power reception device in the second communication unit.
  • the power supply control unit refers to the information having continuity added to the data received from the first communication unit of the power receiving device in the second communication unit, and determines whether the continuity is lost. Is adjusted so that the output supplied from the power supply coil unit to the power receiving device increases.
  • the information having continuity is, for example, a number (1, 2, 3, 4,%), A character (a, b, c, d,%), A time (9:00: 00, 9:00:01, 9:00:02, 9:00:03,...), Or a combination thereof.
  • non-contact power supply is a state in which the power supply coil unit on the non-contact power supply device side does not directly contact the power reception coil unit on the power reception device side, and wireless power reception is performed without using a cord or metal setting. This means that power is supplied to the device side.
  • an electromagnetic induction method or a magnetic field resonance method may be employed.
  • an electromagnetic induction method or a magnetic field resonance method may be employed.
  • the wireless power supply device cannot receive the data transmitted from the power receiving device in a stable state, and thus may not be able to supply power to the power receiving device stably.
  • the power supply control unit corrects the output value supplied from the power supply coil unit to the power receiving device so as to increase.
  • the output to the power receiving device is corrected so that the output to the power receiving device is increased.
  • the communication environment can be improved and power can be supplied stably. As a result, the state of communication with the power receiving device can be stabilized, and power can be supplied in a stable state.
  • a non-contact power supply system is the non-contact power supply system according to the first invention, wherein the information having continuity includes at least one of a number, a character, and a time.
  • the information having continuity includes at least one of a number, a character, and a time.
  • a non-contact power supply system is the non-contact power supply system according to the first or second invention, wherein the non-contact power supply device has information having a correction rate and continuity used for correcting an output value. And a storage unit for storing a correction table indicating the relationship between the data marked with a symbol and the number of missing data.
  • a storage unit for storing a correction table indicating a relationship between the number of data loss that is continuously received and the data with continuity information and the correction rate used when correcting the output value. ing.
  • the power supply control unit can easily refer to the correction table stored in the storage unit.
  • a correction rate for correcting the output value can be obtained.
  • a non-contact power supply system is the non-contact power supply system according to the third invention, wherein the power supply control unit obtains a correction rate by referring to a correction table stored in the storage unit.
  • the power supply control unit refers to the correction table stored in the storage unit to obtain a correction rate used for correcting the output value. This makes it possible to easily obtain the correction rate required for correcting the output value using the correction table stored in the storage unit.
  • a non-contact power supply system is the non-contact power supply system according to any one of the first to fourth inventions, wherein the non-contact power supply device has a DC input unit to which power is input from a power supply.
  • a DC / AC circuit that supplies AC power to the power supply coil unit with the DC power input to the DC input unit, and a DC / AC control unit that controls the DC / AC circuit based on a signal received from the power supply control unit And further have.
  • the non-contact power supply device is configured based on a DC input unit to which power is input from an external power supply such as an outlet, a DC / AC circuit that converts DC power into AC power, and a signal received from the power supply control unit. And a DC / AC control unit for controlling the AC power supplied to the feeding coil unit.
  • the DC / AC control unit can appropriately control the magnitude of the AC power (output) supplied from the DC / AC circuit to the power supply coil unit.
  • a non-contact power supply system is the non-contact power supply system according to any one of the first to fifth aspects, wherein the power supply control unit performs duty control of PWM (Pulse-Width-Modulation). To correct the output value.
  • PWM Pulse-Width-Modulation
  • the power (output) supplied to the power supply coil is corrected by PWM duty control.
  • a non-contact power supply system is the non-contact power supply system according to any one of the first to sixth aspects, wherein, when the power supply control unit is activated, the first communication of the power receiving device is performed. Until communication from the unit is received, power is supplied at a second output lower than the first output when power is supplied to the power receiving coil unit.
  • the power supply control unit performs low-output power supply from the non-contact power supply device until the power receiving device is arranged at a position where power can be supplied to the non-contact power supply device.
  • the power receiving device arranged at a position where power can be supplied from the non-contact power feeding device can be used, for example, when the remaining battery level of the power receiving device is almost zero, or when the power receiving device is arranged with respect to the non-contact charging device. Even when the power is not suitable, the data can be transmitted to the second communication unit of the contactless power supply device by the low output power supply.
  • a non-contact power supply system is the non-contact power supply system according to the seventh invention, wherein the power supply control unit converts the data received from the first communication unit of the power receiving device during power supply with the second output. Based on this, an authentication process is performed to determine whether or not the power receiving device has been authenticated as a power supply target.
  • an authentication process is performed to authenticate the power receiving device to be supplied with power.
  • stable power supply can be performed to an appropriate power receiving apparatus.
  • a non-contact power supply system is the non-contact power supply system according to the eighth aspect, wherein the power supply control unit is configured to perform the second step when the power receiving device is not authenticated as a power supply target in the authentication process. (2) A correction process for increasing the output is performed, and an authentication process is performed again based on the data received from the first communication unit of the power receiving device to determine whether the power receiving device has been authenticated as a power supply target.
  • the second output is increased, assuming a case in which authentication is not performed by authentication using data received from the power receiving device by low-output power supply and authentication is not performed due to a deterioration in the communication environment or the like.
  • the correction process is performed as described above, and the re-authentication process is performed again using the data received from the power receiving device.
  • a non-contact power supply system is the non-contact power supply system according to any one of the first to ninth aspects, wherein the power receiving device includes a battery that stores power supplied to the power receiving coil unit. A power receiving control unit that controls output from the power receiving coil unit to the battery.
  • the power receiving device further includes a battery that stores power supplied to the power receiving coil unit, and a power receiving control unit that controls output from the power receiving coil unit to the battery.
  • the power supplied from the power supply coil unit to the power receiving coil unit can be stored in the battery while the second communication unit on the non-contact power supply device side communicates with the first communication unit on the power receiving device side.
  • a non-contact power supply system is the non-contact power supply system according to any one of the first to tenth aspects, wherein the power receiving device detects power supplied to the power receiving coil unit.
  • a detection unit is further provided.
  • the state detection unit detects whether the power supplied from the power feeding coil unit on the non-contact power feeding device side to the power receiving coil unit has reached a predetermined power required for the power receiving device side.
  • a predetermined power required for the power receiving device side For example, it is possible to determine whether or not to store the power supplied to the power receiving coil unit in the battery according to the detection result of the state detection unit.
  • a non-contact power supply system is the non-contact power supply system according to the eleventh invention, wherein the power reception control unit transmits the power from the power reception coil unit to the battery based on the amount of power detected by the state detection unit. And outputs it to the first communication unit.
  • the power reception control unit uses the detection result of the state detection unit, controls whether or not to output from the power reception coil unit to the battery, and notifies the first communication unit of the detection result.
  • the power is controlled so as not to output from the power receiving coil unit to the battery.
  • One communication unit is notified of the detection result. With this, it is possible to determine whether or not power is stored in the battery based on the detection result of the state detection unit, and the power supply amount to the non-contact power supply device side via the first communication unit is insufficient. You can tell the effect.
  • a non-contact power supply method is a non-contact power supply method for performing communication between the non-contact power supply device and the power receiving device and supplying power from the non-contact charging device to the power receiving device, wherein the communication step includes: And an output correction step.
  • the communication step data to which information having continuity is added is transmitted from the first communication unit of the power receiving device to the second communication unit of the wireless power feeding device.
  • the determining step when the reception of the data transmitted from the first communication unit is started in the second communication unit, it is determined whether the continuity of the information having continuity added to the continuously received data is impaired. Is determined.
  • the output correction step when the continuity of the information having continuity added to the data is impaired as a result of the determination in the determination step, power is supplied from the power supply coil unit of the non-contact power supply device to the power reception coil unit of the power reception device. Is performed to increase the output value to be output.
  • the non-contact power supply method of supplying power from the non-contact power supply device to the power reception device while performing communication between the non-contact power supply device and the power reception device at the time of starting communication, the first communication unit of the power reception device is started by the second communication unit.
  • the power supplied from the power feeding coil unit to the power receiving coil unit of the power receiving device is adjusted in accordance with whether or not the continuity of the information having continuity added to the data continuously received from the power receiving coil unit is adjusted.
  • the second communication unit refers to the information having continuity added to the data received from the first communication unit of the power receiving device, and when the continuity is impaired, the power supply coil unit Is adjusted so that the output supplied from the power supply device to the power receiving device increases.
  • the information having continuity is, for example, a number (1, 2, 3, 4,%), A character (a, b, c, d,%), A time (9:00: 00, 9:00:01, 9:00:02, 9:00:03,...), Or a combination thereof.
  • non-contact power supply is a state in which the power supply coil unit on the non-contact power supply device side does not directly contact the power reception coil unit on the power reception device side, and wireless power reception is performed without using a cord or metal setting. This means that power is supplied to the device side.
  • an electromagnetic induction method or a magnetic field resonance method may be employed.
  • an electromagnetic induction method or a magnetic field resonance method may be employed.
  • the wireless power supply device cannot receive the data transmitted from the power receiving device in a stable state, and thus may not be able to supply power to the power receiving device stably.
  • the communication environment when the communication environment is poor at the start of communication, if the continuity of information having continuity attached to continuously received data is impaired, the communication condition deteriorates. Is determined to be present, and the output value supplied from the power supply coil unit to the power receiving device is corrected so as to increase.
  • the output to the power receiving device is corrected so that the output to the power receiving device is increased.
  • the communication environment can be improved and power can be supplied stably. As a result, the state of communication with the power receiving device can be stabilized, and power can be supplied in a stable state.
  • a wireless power supply method is the wireless power supply method according to the thirteenth aspect, wherein the information having continuity includes at least one of a number, a character, and a time.
  • the information having continuity includes at least one of a number, a character, and a time.
  • numbers (1, 2, 3, 4,...) And characters (a, b, c, d,. ..) and time (9: 00: 00: 00, 9:00:01, 9:00:02, 9:00:03, .
  • a non-contact power supply method is the non-contact power supply method according to the thirteenth or fourteenth invention, wherein in the output correction step, the output value is stored in a storage unit of the non-contact power supply device, and is used for correcting an output value.
  • the correction rate is determined with reference to a correction table that indicates the relationship between the correction rate used and the number of missing data pieces to which information having continuity is added.
  • the correction of the output value is performed by referring to a correction table stored in the storage unit and indicating the relationship between the correction rate used for correcting the output value and the number of missing data to which information having continuity is added. Find the correction factor used for. This makes it possible to easily obtain the correction rate required for correcting the output value using the correction table stored in the storage unit.
  • a non-contact power supply method is the non-contact power supply method according to any one of the thirteenth to fifteenth inventions, wherein in the output correction step, PWM (Pulse-Width-Modulation) duty control is performed.
  • PWM Pulse-Width-Modulation
  • the power (output) supplied to the power supply coil is corrected by PWM duty control.
  • a non-contact power supply method is the non-contact power supply method according to any one of the thirteenth to sixteenth aspects, wherein, after being activated, power is received until communication from the power receiving device is received.
  • the method further includes a low-output power supply step of performing power supply at a second output lower than the first output when power is supplied to the device.
  • the power supply control unit performs low-output power supply from the non-contact power supply device until the power receiving device is arranged at a position where power can be supplied to the non-contact power supply device.
  • the power receiving device arranged at a position where power can be supplied from the non-contact power feeding device can be used, for example, when the remaining battery level of the power receiving device is almost zero, or when the power receiving device is arranged with respect to the non-contact charging device. Even when the power is not suitable, the data can be transmitted to the second communication unit of the contactless power supply device by the low output power supply.
  • a wireless power supply method is the wireless power supply method according to the seventeenth aspect, wherein the power receiving device is authenticated as a power supply target based on data received from the power receiving device at the time of power supply with the second output.
  • An authentication step of performing an authentication process of whether or not the authentication has been performed is further provided.
  • the non-contact power supply device authenticates the power receiving device to be supplied with power based on various information (for example, the ID of the power receiving device) included in the data received from the power receiving device that has received the low-output power supply. Perform authentication processing.
  • stable power supply can be performed to an appropriate power receiving apparatus.
  • a non-contact power supply method is the non-contact power supply method according to the eighteenth aspect, wherein the second output is increased when the power receiving device is not authenticated as a power supply target in the authentication step.
  • the correction process is performed, and the authentication process is performed again based on the data received from the power receiving device to determine whether the power receiving device has been authenticated as a power supply target.
  • the second output is increased, assuming a case in which authentication is not performed by authentication using data received from the power receiving device by low-output power supply and authentication is not performed due to a deterioration in the communication environment or the like.
  • the correction process is performed as described above, and the re-authentication process is performed again using the data received from the power receiving device.
  • the non-contact power supply program according to the twentieth invention is a non-contact power supply program for performing communication between the non-contact power supply device and the power receiving device and supplying power from the non-contact charging device to the power receiving device, comprising: a communication step; And causing the computer to execute a non-contact power supply method including a step and an output correction step.
  • the communication step data to which information having continuity is added is transmitted from the first communication unit of the power receiving device to the second communication unit of the wireless power feeding device.
  • the determining step when the reception of the data transmitted from the first communication unit is started in the second communication unit, it is determined whether the continuity of the information having continuity added to the continuously received data is impaired. Is determined.
  • the output correction step when the continuity of the information having continuity added to the data is impaired as a result of the determination in the determination step, power is supplied from the power supply coil unit of the non-contact power supply device to the power reception coil unit of the power reception device. Is performed to increase the output value to be output.
  • the non-contact power supply method of supplying power from the non-contact power supply device to the power reception device while performing communication between the non-contact power supply device and the power reception device at the time of starting communication, the first communication unit of the power reception device is started by the second communication unit.
  • the power supplied from the power feeding coil unit to the power receiving coil unit of the power receiving device is adjusted in accordance with whether or not the continuity of the information having continuity added to the data continuously received from the power receiving coil unit is adjusted.
  • the second communication unit refers to the information having continuity added to the data received from the first communication unit of the power receiving device, and when the continuity is impaired, the power supply coil unit Is adjusted so that the output supplied from the power supply device to the power receiving device increases.
  • the information having continuity is, for example, a number (1, 2, 3, 4,%), A character (a, b, c, d,%), A time (9:00: 00, 9:00:01, 9:00:02, 9:00:03,...), Or a combination thereof.
  • non-contact power supply is a state in which the power supply coil unit on the non-contact power supply device side does not directly contact the power reception coil unit on the power reception device side, and wireless power reception is performed without using a cord or metal setting. This means that power is supplied to the device side.
  • an electromagnetic induction method or a magnetic field resonance method may be employed.
  • an electromagnetic induction method or a magnetic field resonance method may be employed.
  • the wireless power supply device cannot receive the data transmitted from the power receiving device in a stable state, and thus may not be able to supply power to the power receiving device stably.
  • this non-contact power supply program when the communication environment is poor at the start of communication, if the continuity of information with continuity attached to data Is determined to be present, and the output value supplied from the power supply coil unit to the power receiving device is corrected so as to increase. Thereby, for example, even when the communication environment is poor due to an improper positional relationship between the non-contact power supply device and the power receiving device, for example, the output to the power receiving device is corrected so that the output to the power receiving device is increased.
  • the communication environment can be improved and power can be supplied stably.
  • the state of communication with the power receiving device can be stabilized, and power can be supplied in a stable state.
  • the invention's effect ADVANTAGE OF THE INVENTION
  • the communication state between a non-contact electric power supply apparatus and a power receiving apparatus side can be stabilized, and electric power feeding can be performed in a stable state.
  • FIG. 1 is a control block diagram illustrating a configuration of a wireless power supply system according to an embodiment of the present invention.
  • 3 is a flowchart showing a flow of processing when the non-contact power supply device included in the non-contact power supply system of FIG. 1 is activated.
  • 3 is a flowchart showing the flow of processing on the power receiving device side included in the non-contact power supply system of FIG. 1.
  • 2 is a flowchart showing the flow of processing such as message analysis on the contactless power supply device side in FIG. 1.
  • 4 is a flowchart showing a flow of a process of output correction control based on continuity of a serial number given to data received on the contactless power supply device side in FIG. 1.
  • FIG. 2 is a diagram showing the contents of a message (data, serial number, etc.) received by the wireless power supply device of FIG. 1.
  • FIG. 2 is a diagram illustrating a correction table stored in a storage unit of the wireless power supply device of FIG. 1.
  • the non-contact power supply system 30 according to one embodiment of the present invention will be described below with reference to FIGS. (Configuration of the non-contact power supply system 30)
  • the non-contact power supply system 30 according to the present embodiment is a system that supplies power from the non-contact power supply device 10 to the power receiving device 20 while performing communication between the non-contact power supply device 10 and the power receiving device 20.
  • the wireless communication unit 16 on the non-contact power supply device 10 and the wireless communication unit 28 on the power reception device 20 communicate with each other, and power is supplied from the power supply coil unit 13 disposed close to each other to the power reception coil unit 21. Will be
  • the non-contact power supply is a state in which the power supply coil unit 13 of the non-contact power supply device 10 and the power reception coil unit 21 of the power reception device 20 do not directly contact each other, This means that power is supplied from the non-contact power supply device 10 to the power receiving device 20 wirelessly without any setting or the like.
  • the configurations of the non-contact power feeding device 10 and the power receiving device 20 will be described later in detail.
  • the power receiving device 20 supplied with power by the non-contact power supply device 10 includes, for example, a flying device such as a drone equipped with a chargeable / dischargeable battery inside, an electric vehicle such as an electric motorcycle, a lawn mower, Various devices such as a power tool such as a work tool, a vacuum cleaner, and a robot are included, but the power receiving device 20 is not limited to the devices described here.
  • the non-contact power supply device 10 includes a DC input unit 11, a DC / AC circuit 12, a power supply coil unit 13, a DC / AC control unit 14, a power supply control unit 15, a wireless communication unit (A second communication unit) 16 and a storage unit 17.
  • the DC input unit 11 receives DC (direct current) power via an external outlet 11a (see FIG. 1).
  • the DC / AC circuit 12 is connected to the DC input unit 11, the DC / AC control unit 14, and the power supply coil unit 13, as shown in FIG. Then, the DC / AC circuit 12 converts the DC power input to the DC input unit 11 into AC (AC) power, and outputs the DC power to the power supply coil unit 13 based on an instruction input from the DC / AC control unit 14. (Power supply amount) is controlled.
  • the power supply coil unit 13 is connected to the DC / AC circuit 12, generates a magnetic flux by an AC current output from the DC / AC circuit 12, and arranges the power supply coil unit 13 on the side of the power receiving device 20 that is disposed close to the power receiving device 20. Is supplied to the power receiving coil unit 21 of FIG. Note that the power supply method from the non-contact power supply device 10 to the power receiving device 20 is not limited to the electromagnetic induction method, and another method such as a resonance method may be employed.
  • the DC / AC control unit 14 is connected to the DC / AC circuit 12 and the power supply control unit 15, and controls the DC / AC circuit 12 based on an instruction input from the power supply control unit 15.
  • Control As shown in FIG. 1, the power supply control unit 15 is connected to the DC / AC control unit 14, the wireless communication unit 16, and the storage unit 17, and includes a CPU and other circuits. Then, the power supply control unit 15 outputs an output to the power receiving device 20 based on the presence or absence of continuity of the serial number (information having continuity) (see FIG. 6) attached to the data received via the wireless communication unit 16. (Power supply amount) is corrected.
  • the continuity of the serial number assigned to the data received from the power receiving device 20 is impaired, that is, the power supply control unit 15 If so, the DC / AC control unit 14 is instructed to correct the output power supply amount.
  • the continuity of the serial number used as the information having continuity refers to the serially received data in the order of 1, 2, 3, 4,... Means that. For this reason, for example, when data received by the wireless communication unit 16 is lost due to a factor such as disturbance, a part of the serial number is omitted, and continuity is lost.
  • the power supply amount is corrected by PWM (Pulse-Width-Modulation) duty control.
  • PWM Pulse-Width-Modulation
  • the wireless communication unit 16 is connected to the power supply control unit 15, performs communication with the wireless communication unit 28 of the power receiving device 20, and transmits data received from the power receiving device 20. It transmits to the power supply control unit 15. Then, the wireless communication unit 16 determines whether the continuity of the serial number (information having continuity) given to the data received from the power receiving device 20 has not been impaired.
  • the communication between the wireless communication unit 16 of the non-contact power supply device 10 and the wireless communication unit 28 of the power receiving device 20 may be performed using, for example, a 2.4 GHz band (2402 to 2480 MHz).
  • the storage unit 17 is connected to the power supply control unit 15 as shown in FIG. 1, and stores a correction table (see FIG. 7) for acquiring a correction rate used for correcting a power supply power value described later. I have.
  • the power receiving device 20 includes a power receiving coil unit 21, a rectifier circuit 22, a DC / DC circuit 23, a DC / DC control unit 24, a battery (load) 25, and a state detection unit 26. , A power receiving control unit 27 and a wireless communication unit (first communication unit) 28.
  • the power receiving coil unit 21 is connected to a rectifier circuit 22, and an induced electromotive force is generated by a magnetic flux generated in the power supply coil unit 13 on the side of the non-contact power supply device 10 that is arranged close to the power receiving coil unit 21. Then, the power receiving coil unit 21 sends the power received from the wireless power supply device 10 to the rectifier circuit 22. As shown in FIG. 1, the rectifier circuit 22 is connected to the power receiving coil unit 21, the DC / DC circuit 23, and the state detecting unit 26, and rectifies the AC power received from the power receiving coil unit 21 into DC power.
  • the DC / DC circuit 23 is connected to the rectifier circuit 22, the DC / DC control unit 24, and the battery 25, and performs switching based on an instruction input from the DC / DC control unit 24.
  • the output to the battery 25 is controlled.
  • the DC / DC control unit 24 is connected to the DC / DC circuit 23 and the power reception control unit 27, and based on an instruction input from the power reception control unit 27, Controls switching operation.
  • the battery 25 is a chargeable / dischargeable secondary battery, and is connected to the DC / DC circuit 23 as shown in FIG. 1 and stores the DC power output from the DC / DC circuit 23.
  • the state detection unit 26 is connected to the rectifier circuit 22 and the power reception control unit 27, detects a voltage value and a current value between the rectification circuit 22 and the DC / DC circuit 23, and Notify the control unit 27.
  • the power reception control unit 27 is connected to the DC / DC control unit 24, the state detection unit 26, and the wireless communication unit 28, as shown in FIG. Then, power reception control unit 27 compares the voltage value and the current value detected by state detection unit 26 with the preset reference voltage value and reference current value, and is larger than the reference voltage value and the reference current value. In this case, it is determined that there is no problem with the received power amount, and the DC / DC control unit 24 is notified to output from the DC / DC circuit 23 to the battery 25. Further, the power reception control unit 27 transmits the voltage value and the current value detected by the state detection unit 26 to the wireless communication unit 28.
  • the power reception control unit 27 transmits a message including a serial number or the like to the data. Is transmitted from the wireless communication unit 28 (see FIG. 6).
  • the wireless communication unit 28 is configured by a circuit including a CPU, and is connected to the power reception control unit 27 as shown in FIG. Then, the wireless communication unit 28 transmits the data (such as the voltage value and current value of the received power) received from the power reception control unit 27, a serial number, and a message including an error detection code (CRC (Cyclic Redundancy Check)) (see FIG. 6). Is transmitted to the wireless communication unit 16 of the non-contact power supply device 10.
  • CRC Cyclic Redundancy Check
  • step S11 when the power of the non-contact power supply device 10 is turned on, in step S11, regardless of whether or not the power receiving device 20 is arranged in a communicable range, in a normal time, Power supply (low-output power supply) with power lower than the power supplied to the power receiving device 20 is performed.
  • the power supply control unit 15 instructs the DC / AC control unit 14 so that the output from the DC / AC circuit 12 becomes low.
  • the power supply coil unit 13 outputs lower power than during normal power supply.
  • step S12 the wireless communication unit 16 waits until the wireless communication unit 16 receives wireless (data) from the wireless communication unit 28 of the power receiving device 20 to which the low output power has been supplied. ) Is received, the process proceeds to step S13.
  • step S13 the power supply control unit 15 checks the presence or absence of authentication based on the information received from the power receiving device 20 in order to confirm whether the communication is from the power receiving device 20 to be supplied with power. Perform the following processing.
  • the power supply control unit 15 determines that the power receiving apparatus 20 has been authenticated as a power supply target, the process proceeds to the processing flow illustrated in FIG. 5 in order to perform power supply with normal power.
  • the process proceeds to step S14.
  • the reason why the authentication is not possible may be, for example, a case where communication is performed with a device that is not a power supply target, a case where power supplied by low-power supply is not sufficient to perform stable communication, and the like.
  • step S14 and step S15 a process for rescuing the power receiving device 20 that has become unauthenticated for the latter reason is performed. That is, in step S14, the power supply control unit 15 determines that the correction rate has reached the upper limit in order to check whether the power of the low-output power supply to the power receiving device 20 that has not been authenticated in step S13 has reached the maximum output. Is determined.
  • the correction rate has not reached the upper limit
  • the output of the low-output power supply is increased by one step, and the process proceeds to step S15 in order to perform authentication again or to retry.
  • the correction rate has reached the upper limit
  • step S15 the power supply control unit 15 increases the correction rate, performs low-output power supply again, and waits for reception of a wireless signal in step S12.
  • the processing from step S12 to step S15 is repeatedly performed until the power receiving device 20 is authenticated, or until the correction rate of the low output power supply reaches the upper limit.
  • step S21 the power receiving coil unit 21 of the authenticated power receiving device 20 receives the power output from the power feeding coil unit 13 on the non-contact power feeding device 10 side.
  • step S22 the rectifier circuit 22 rectifies the AC power received by the power receiving coil unit 21 into DC power and outputs the DC power to the DC / DC circuit 23 and the state detection unit 26.
  • step S23 the state detection unit 26 detects the voltage value and the current value of the received power.
  • step S24 the power reception control unit 27 determines whether the voltage value and the current value detected by the state detection unit 26 are equal to or more than predetermined values. Here, if the value is equal to or more than the predetermined value, the process proceeds to step S25. If the value is less than the predetermined value, it is determined that the received power is insufficient without charging the battery 25. The process proceeds to step S27 to notify the 10 side.
  • step S25 since the power reception control unit 27 has confirmed in step S24 that the received power is equal to or more than the predetermined value, the DC / DC control unit 24 Control is performed so as to perform DC conversion and output to the battery 25.
  • step S26 the battery 25 is charged with the electric power output from the DC / DC circuit 23.
  • step S27 the power reception control unit 27 sets data such as a voltage value and a current value detected from the power received by the state detection unit 26, a serial number (information having continuity), an error detection code A message (see FIG. 6) with (CRC) is created.
  • step S28 the power reception control unit 27 sends the received power (voltage value and current value) created by the power reception control unit 27 to the wireless communication unit 16 of the wireless power supply device 10 from the wireless communication unit 28.
  • the wireless communication unit 28 is controlled so as to transmit a message in which a serial number or the like is added to the data of (1).
  • the received power (the voltage value and the current value) included in the message transmitted from the wireless communication unit 28 to the non-contact power supply device 10 is such that the power supplied to the non-contact power supply device 10 is Used to verify if the power is sufficient. Therefore, in the non-contact power supply device 10, when the power values (voltage value and current value) received from the power receiving device 20 side are not sufficient by the power receiving device 20 side, the power is adjusted so that the output is increased and the power is supplied.
  • step S31 the wireless communication unit 16 receives a message created in the power receiving device 20 from the wireless communication unit 28 of the power receiving device 20.
  • step S32 the received message is analyzed in the wireless communication unit 16. More specifically, the wireless communication unit 16 obtains the power (voltage value and current value) received by the power receiving device 20 by message analysis, and performs control so as to cut off communication with devices other than the power supply target. .
  • step S33 the wireless communication unit 16 notifies the power supply control unit 15 of the analysis result of the message including the received data such as the voltage value and the current value and the analysis result of the radio wave intensity.
  • the analysis processing of the radio wave intensity and the like included in the message may be performed in the wireless communication unit 16 including a circuit such as a CPU as in the present embodiment, or may be performed in the power supply control unit 15.
  • the power supply control unit 15 determines whether or not the power to be supplied to the power receiving device 20 is appropriate based on the analysis result of the message notified in step S33. Feedback control is performed so that the output value is adjusted and the power supplied is optimized.
  • step S41 the wireless communication unit 16 waits until wireless is received from the power receiving device 20 side, and upon receiving wireless, proceeds to step S42.
  • step S42 data is acquired until the number of times of communication between the wireless communication unit 16 of the non-contact power feeding device 10 and the wireless communication unit 28 of the power receiving device 20 reaches a predetermined number of times of sampling.
  • the process of step S43 is repeatedly performed until the communication data for 10 times is received from the power receiving device 20.
  • step S43 the power supply control unit 15 confirms the continuity of the serial numbers assigned to the ten data received by the wireless communication unit 16. More specifically, the power supply control unit 15 determines whether the serial numbers given to the ten data received by the wireless communication unit 16 are consecutive up to 1, 2, 3, 4,. Check if.
  • step S44 the reference value of the output correction control obtained from the sampled data (for 10 receptions) is stored in the storage unit 17.
  • step S45 as a result of the confirmation in step S43, the power supply control unit 15 determines the number of missing data (serial numbers) for ten times received in the wireless communication unit 16 as the reference value (step S43). In the present embodiment, it is determined whether the number is less than 3).
  • the number of missing data is the number of missing serial numbers in the received data for ten times, for example, serial numbers 1, 2, 3, 4,. If 10 data with serial numbers 1, 2, 3, 5, 7, 9, 10, 11, 12, and 13 are received without numbers 4, 6, and 8, the missing number is 3 Is determined.
  • the process proceeds to step S47.
  • the number of missing reception data is three or more, it is determined that there is a possibility that communication between the non-contact power supply device 10 and the power receiving device 20 is interrupted and normal communication is not performed. Proceed to S46.
  • the reference value (threshold) used for the determination in step S45 is not limited to three, and may be set to a value larger than three, for example, one or two. It may be set to a value smaller than three.
  • the power supply control unit 15 since it is determined in step S45 that the number of missing data is three or more, the power supply control unit 15 refers to the correction table stored in the storage unit 17 to perform output correction. Acquire the correction rate used for control.
  • the correction table stored in the storage unit 17 includes the number of missing data in the range of 3 to 9 of the data for 10 times and the correction rate (%) used for the output correction control. Show the relationship.
  • the correction rates are 110%, 120%, and 130%, respectively. Is set.
  • a correction rate is selected such that the output supplied to the power receiving device 20 increases.
  • the number of missing data is 7, 8, and 9, it is assumed that unstable communication is being performed, so that the correction rates are further increased to 140% and 150%, respectively. % And 160%.
  • a correction rate is selected such that the output supplied to the power receiving device 20 is further increased.
  • step S47 the power supply control unit 15 corrects the output supplied from the power supply coil unit 13 to the power receiving coil unit 21 of the power receiving device 20 using the correction rate acquired with reference to the correction table. .
  • the corrected output is calculated by a formula of power supply output voltage value (V) ⁇ correction rate (%).
  • the power supply control unit 15 uses the corrected output calculated in step S47 to supply DC / AC power from the power supply coil unit 13 to the power reception coil unit 21 on the power receiving device 20 side. The control unit 14 is instructed.
  • the non-contact power supply device 10 that communicates with the power reception device 20 and supplies power to the power reception device 20 includes the power supply coil unit 13, the wireless communication unit 16, and the power supply control unit 15. I have.
  • the power supply coil unit 13 supplies power to the power receiving device 20.
  • the wireless communication unit 16 communicates with the wireless communication unit 28 on the power receiving device 20 side.
  • the power supply control unit 15 determines that the continuity of the serial number assigned to the received data is impaired, When the number of missing data is equal to or greater than the reference value, a correction is performed to increase the output value supplied from the power supply coil unit 13 to the power receiving device 20.
  • the power supply control unit 15 determines that the continuity of the serial number assigned to the data received from the power receiving device 20 in the wireless communication unit 16 is impaired (the received data If the number of defects is equal to or more than the reference value), the output power supplied from the power supply coil unit 13 to the power receiving device 20 is adjusted to be large.
  • the battery is affected by disturbance such as noise.
  • the radio wave included in the data received from the power receiving device 20 may be interrupted due to the deterioration of the communication environment. In this case, since data transmitted from the power receiving device 20 cannot be received in a stable state, power may not be supplied to the power receiving device 20 stably.
  • the power supply control unit 15 Correction is made so that the output value supplied to the (power receiving coil unit 21) increases. Accordingly, even when the communication environment is poor due to, for example, an improper positional relationship between the non-contact power supply device 10 and the power receiving device 20, the output to the power receiving device 20 is corrected so as to increase.
  • the communication environment between the non-contact power supply device 10 and the power receiving device 20 can be improved, and power can be supplied stably.
  • the power supply control unit 15 of the non-contact power supply device 10 An example in which the correction control is performed has been described.
  • the present invention is not limited to this.
  • the correction table is not limited to a table indicating the relationship between the number of data loss and the correction rate, and may be a table indicating the relationship between the data loss ratio (%) and the correction rate.
  • the configuration of the non-contact power supply system 30 that supplies power from the single non-contact power supply device 10 to the single power receiving device 20 has been described as an example.
  • the present invention is not limited to this.
  • a non-contact power supply system that supplies power from a single non-contact power supply device to a plurality of power receiving devices almost simultaneously may be used.
  • the power supply control unit 15 determines whether to perform output correction control based on the presence or absence of continuity of a serial number (information having continuity) given to data received by the wireless communication unit 16.
  • a serial number information having continuity
  • the wireless communication unit 16 that communicates with the power receiving device 20 and the power supply control unit 15 that controls power supply from the power supply coil unit 13 are separately described as an example.
  • the present invention is not limited to this.
  • the present invention may be implemented as one microcomputer having a communication function of communicating with the power receiving device 20 and a power supply control function of controlling power supply from the power supply coil unit 13.
  • the present invention may be realized as a control program that causes a computer to execute the non-contact power supply method described in the above embodiment.
  • This control program only needs to be stored in the storage unit 17 shown in FIG. 1, and is read out by hardware such as a CPU, whereby the computer can execute the control method described above.
  • the contactless power supply system of the present invention has the effect of stabilizing the communication state with the power receiving device side and performing power supply in a stable state. And widely applicable.
  • Non-contact power supply device 11 DC input unit 11a External outlet 12 DC / AC circuit 13 Power supply coil unit 14 DC / AC control unit 15 Power supply control unit 16 Wireless communication unit (second communication unit) 17 Storage unit 20 Power receiving device 21 Power receiving coil unit 22 Rectifier circuit 23 DC / DC circuit 24 DC / DC control unit 25 Battery (load) 26 state detection unit 27 power reception control unit 28 wireless communication unit (first communication unit) 30 Non-contact power supply system

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

非接触給電システム(30)では、非接触給電装置(10)は、受電装置(20)の受電コイル部(21)へ給電を行う給電コイル部(13)と、受電装置(20)の無線通信部(28)と通信を行う無線通信部(16)と、無線通信部(16)において受電装置(20)の無線通信部(28)から送信されたデータの受信が開始された際に、連続的に受信したデータに付加された連続性を持つ情報を参照して、連続性が損なわれている場合に、給電コイル部(13)から受電コイル部(21)へ給電される出力値を大きくする補正を行う給電制御部(15)と、を有している。

Description

非接触給電システム、非接触給電方法および非接触給電プログラム
 本発明は、非接触給電装置と受電装置とを備えた非接触給電システム、非接触給電方法および非接触給電プログラムに関する。
 近年、給電装置から受電装置に対してワイヤレスで給電を行う非接触給電システムが用いられている。
 このような非接触給電システムには、受電装置と給電装置との間において通信を行う、給電装置において通信を介して受電装置から受信したデータ等に基づいて、給電装置からの給電が行われるものがある。
 このような構成では、受電装置は、通常、受電装置に搭載されたバッテリによって動作される。このため、例えば、受電装置側のバッテリ残量がほぼゼロである、給電装置と受電装置との位置関係が不適切である(給電/受電コイル間の距離が離れている、または位置ずれが大きい)、非接触給電の給電効率が低下し受電装置の動作に必要な電力が供給できない、外乱(混線、ノイズ等)による影響を受けている、等の状態になると受電装置が動作するために必要な電力が不足するおそれがある。よって、受電装置側の機能停止に伴って、無線通信が不安定になり、給電が安定しないという課題があった。
 例えば、特許文献1には、受電装置への給電を正確に行うために、無線通信部が複数の受電装置からの信号を受信することに基づいて、電源部への給電を所定時間停止し、電源部に給電を再開させる給電装置について開示されている。
特開2018-68008号公報
 しかしながら、上記従来の非接触給電システムでは、以下に示すような問題点を有している。
 すなわち、上記公報に開示された非接触給電システムでは、給電対象の受電装置からの信号と給電対象外の他の受電装置からの信号とを受信した場合に、給電対象である受電装置への給電を再開させ、給電対象外の他の受電装置への給電を停止させる。これにより、通信部が給電対象の受電装置からの信号のみを受信するため、給電装置は、給電対象の受電装置からの受電情報を正確に受信して、所望の受電装置に対して正確に給電することができる。
 しかし、このような構成では、例えば、給電装置と受電装置との位置関係が不適切であったり、外乱の影響によって通信が不安定になったりした場合に、受電装置に対して安定的に給電を行うための措置については考慮されていない。
 本発明の課題は、非接触給電装置と受電装置との通信状態を安定化させ、安定した状態で給電を実施することが可能な非接触給電システム、非接触給電方法および非接触給電プログラムを提供することにある。
 第1の発明に係る非接触給電システムは、非接触給電装置と受電装置との間で通信を行いながら、非接触給電装置から受電装置に給電する非接触給電システムであって、非接触給電装置と受電装置とを備えている。受電装置は、非接触給電装置から給電される受電コイル部と、非接触給電装置と通信を行うとともに、非接触給電装置に送信されるデータに連続性を持つ情報を付加して送信する第1通信部と、を有している。非接触給電装置は、受電装置の受電コイル部へ給電を行う給電コイル部と、受電装置の第1通信部と通信を行う第2通信部と、第2通信部において受電装置の第1通信部から送信されたデータの受信が開始された際に、連続的に受信したデータに付加された連続性を持つ情報を参照して、連続性が損なわれている場合に、給電コイル部から受電コイル部へ給電される出力値を大きくする補正を行う給電制御部と、を有している。
 ここでは、非接触給電装置と受電装置との間で通信を行いながら非接触給電装置から受電装置へ給電する非接触給電システムにおいて、通信開始時に、給電制御部が、第2通信部において受電装置の第1通信部から連続的に受信したデータに付加された連続性を持つ情報の連続性が損なわれているか否かに応じて、給電コイル部から受電装置の受電コイル部へ給電される出力を調整する。
 より具体的には、給電制御部は、第2通信部において受電装置の第1通信部から受信したデータに付加された連続性を持つ情報を参照して、連続性が損なわれている場合には、給電コイル部から受電装置へ給電される出力が大きくなるように調整される。
 なお、連続性を持つ情報とは、例えば、番号(1,2,3,4、・・・)、文字(a,b,c,d,・・・)、時刻(9:00:00、9:00:01、9:00:02、9:00:03、・・・)、あるいはこれらの組合せ等が含まれる。
 そして、連続性が損なわれるとは、例えば、連続的に受信したデータに付された情報が、1,2,4,6,7・・・等、3,5が抜けた状態を意味している。すなわち、例えば、外乱等の影響を受けて通信環境が悪化した場合には、連続的に受信しているデータの一部が欠損して、連続性を持つ情報の連続性が損なわれてしまう。
 また、非接触給電とは、非接触給電装置側の給電コイル部と、受電装置側の受電コイル部とが直接的に接触しない状態であって、コードや金属設定等を介さずにワイヤレスで受電装置側への給電が行われることを意味している。
 さらに、非接触給電の方式としては、電磁誘導式が採用されていてもよいし、磁界共鳴式が採用されていてもよい。
 ここで、例えば、受電装置側のバッテリ残量がほぼゼロである場合や、非接触給電装置と受電装置との位置関係が不適切である場合、ノイズ等の外乱の影響を受けている場合等には、通信環境の悪化のため、非接触給電装置と受電装置との通信が途切れがちになることがある。この場合には、非接触給電装置において、受電装置から送信されるデータを安定した状態で受信することができないため、安定的に受電装置に対する給電を行うことができないおそれがある。
 本非接触給電システムでは、通信開始時に通信環境が悪い場合において、連続的に受信したデータに付された連続性を持つ情報の連続性が損なわれている場合には、通信状況が悪化していると判断し、給電制御部が、給電コイル部から受電装置へ給電される出力値が大きくなるように補正する。
 これにより、例えば、非接触給電装置と受電装置との位置関係が不適切である等の理由により通信環境が悪い場合でも、受電装置に対する出力が大きくなるように補正されることで、受電装置との間の通信環境を改善し、安定的に給電を行うことができる。
 この結果、受電装置側との通信状態を安定化させ、安定した状態で給電を実施することができる。
 第2の発明に係る非接触給電システムは、第1の発明に係る非接触給電システムであって、連続性を持つ情報には、番号、文字、時刻の少なくとも1つが含まれる。
 ここでは、受電装置において、連続的に受信するデータに付加された連続性を持つ情報として、番号(1,2,3,4,・・・)、文字(a,b,c,d,・・・)、時刻(9:00:00、9:00:01、9:00:02、9:00:03、・・・)の少なくとも1つを用いる。
 これにより、例えば、外乱等の影響を受けて通信環境が悪化した場合には、連続的に受信しているデータの一部が欠損した場合には、連続性を持つ情報の連続性が損なわれていることを検出することで、容易に通信環境の悪化を検出することができる。
 第3の発明に係る非接触給電システムは、第1または第2の発明に係る非接触給電システムであって、非接触給電装置は、出力値の補正に用いられる補正率と連続性を持つ情報が付されたデータの欠損数との関係を示す補正テーブルを保存する記憶部を、さらに有している。
 ここでは、連続的に受信し連続性を持つ情報が付されたデータの欠損数と、出力値の補正を行う際に用いられる補正率との関係を示す補正テーブルを保存する記憶部が設けられている。
 これにより、給電制御部は、受電装置から受信したデータに付加された連続性を持つ情報の連続性が損なわれている場合には、記憶部に保存された補正テーブルを参照することで、容易に出力値を補正するための補正率を得ることができる。
 第4の発明に係る非接触給電システムは、第3の発明に係る非接触給電システムであって、給電制御部は、記憶部に保存された補正テーブルを参照して、補正率を求める。
 ここでは、給電制御部が、記憶部に保存された補正テーブルを参照して、出力値の補正に用いられる補正率を求める。
 これにより、記憶部に保存された補正テーブルを用いて、出力値の補正に必要な補正率を容易に取得することができる。
 第5の発明に係る非接触給電システムは、第1から第4の発明のいずれか1つに係る非接触給電システムであって、非接触給電装置は、電源から電力が入力されるDC入力部と、DC入力部に入力されたDC電力を給電コイル部へAC電力を供給するDC/AC回路と、給電制御部から受信した信号に基づいて、DC/AC回路を制御するDC/AC制御部と、をさらに有している。
 ここでは、非接触給電装置が、例えば、コンセント等の外部電源から電力が入力されるDC入力部と、DC電力をAC電力へ変換するDC/AC回路と、給電制御部から受信した信号に基づいて給電コイル部へ供給されるAC電力を制御するDC/AC制御部とをさらに有している。
 これにより、非接触給電装置において、DC/AC制御部によって、DC/AC回路から給電コイル部へ供給されるAC電力(出力)の大きさを適切に制御することができる。
 第6の発明に係る非接触給電システムは、第1から第5の発明のいずれか1つに係る非接触給電システムであって、給電制御部は、PWM(Pulse-Width-Modulation)のDuty制御によって、出力値の補正を行う。
 ここでは、給電コイルへ供給される電力(出力)の補正を、PWMのDuty制御によって行う。
 これにより、パルス幅を変調することにより、給電コイルへ給電される出力を容易に調整することができる。
 第7の発明に係る非接触給電システムは、第1から第6の発明のいずれか1つに係る非接触給電システムであって、給電制御部は、起動されると、受電装置の第1通信部からの通信を受信するまで、受電コイル部へ給電する際の第1出力よりも低い第2出力で給電を行う。
 ここでは、非接触給電装置が起動された後、受電装置との通信を受信するまでの間、受電装置へ給電する際の第1出力よりも低い第2出力で給電を行う。
 すなわち、給電制御部は、非接触給電装置に対して受電装置が給電可能な位置に配置されるまでは、非接触給電装置から低出力給電を行う。
 これにより、非接触給電装置からの給電可能な位置に配置された受電装置は、例えば、受電装置側のバッテリ残量がほとんどゼロである場合や、非接触充電装置に対して受電装置の配置が適していない場合等でも、低出力給電によって、データを非接触給電装置の第2通信部へデータを送信することができる。
 第8の発明に係る非接触給電システムは、第7の発明に係る非接触給電システムであって、給電制御部は、第2出力での給電時に受電装置の第1通信部から受信したデータに基づいて、受電装置が給電対象として認証されているか否かの認証処理を行う。
 ここでは、低出力給電を受けた受電装置から受信したデータに含まれる各種情報(例えば、受電装置のID等)に基づいて、給電対象の受電装置であることを認証する認証処理を行う。
 これにより、給電対象である受電装置であることを認証した後、適切な受電装置に対して安定的な給電を行うことができる。
 第9の発明に係る非接触給電システムは、第8の発明に係る非接触給電システムであって、給電制御部は、認証処理において、受電装置が給電対象と認証されなかった場合には、第2出力を大きくする補正処理を実施し、再度、受電装置の第1通信部から受信したデータに基づいて、受電装置が給電対象として認証されているか否かの認証処理を行う。
 ここでは、低出力給電によって受電装置から受信したデータを用いた認証によって非認証と判定された場合でも、通信環境の悪化等の理由によって認証されなかった場合を想定し、第2出力を大きくするように補正処理を実施して、再度、受電装置から受信したデータを用いて再認証の処理を行う。
 これにより、低出力給電によって受電装置から受信したデータを用いた認証によって非認証と判定された場合でも、通信環境の悪化等の理由によって認証されなかった受電装置を再認証することで、適切な受電装置に対して安定的な給電を行うことができる。
 第10の発明に係る非接触給電システムは、第1から第9の発明のいずれか1つに係る非接触給電システムであって、受電装置は、受電コイル部に給電された電力を蓄えるバッテリと、受電コイル部からバッテリへの出力を制御する受電制御部と、をさらに有している。
 ここでは、受電装置が、受電コイル部に給電された電力を蓄えるバッテリと、受電コイル部からバッテリへの出力を制御する受電制御部とをさらに有している。
 これにより、非接触給電装置側の第2通信部と受電装置側の第1通信部とが通信しながら、給電コイル部から受電コイル部に対して給電された電力をバッテリに蓄えることができる。
 第11の発明に係る非接触給電システムは、第1から第10の発明のいずれか1つに係る非接触給電システムであって、受電装置は、受電コイル部に給電された電力を検出する状態検出部を、さらに有している。
 ここでは、受電装置において、状態検出部が、非接触給電装置側の給電コイル部から受電コイル部へ給電された電力が、受電装置側に必要な所定の電力に達しているか否かを検出する。
 これにより、状態検出部における検出結果に応じて、例えば、受電コイル部へ給電された電力をバッテリへ蓄えるか否かを判定することができる。あるいは、例えば、第2通信部から非接触給電装置側の第1通信部へ、給電された電力が不足していることを通知することができる。
 第12の発明に係る非接触給電システムは、第11の発明に係る非接触給電システムであって、受電制御部は、状態検出部において検出された電力量に基づいて、受電コイル部からバッテリへの出力を制御するとともに、第1通信部へ通知する。
 ここでは、状態検出部における検出結果を用いて、受電制御部が、受電コイル部からバッテリへの出力を行うか否かを制御するとともに、第1通信部へ検出結果を通知する。
 より具体的には、状態検出部において検出された電力量が、受電装置に必要な電力量に満たない場合には、受電コイル部からバッテリへの出力を行わないように制御されるとともに、第1通信部に対してその検出結果を通知する。
 これにより、状態検出部における検出結果を踏まえて、バッテリへ電力が蓄えられるか否かを決定することができるとともに、第1通信部を介して非接触給電装置側へ給電量が不足している旨を伝えることができる。
 第13の発明に係る非接触給電方法は、非接触給電装置と受電装置との間で通信を行い、非接触充電装置から受電装置へ給電する非接触給電方法であって、通信ステップと、判定ステップと、出力補正ステップと、を備えている。通信ステップでは、受電装置の第1通信部から非接触給電装置の第2通信部へ、連続性を持つ情報が付加されたデータを送信する。判定ステップでは、第2通信部において第1通信部から送信されたデータの受信が開始されると、連続的に受信したデータに付加された連続性を持つ情報の連続性が損なわれているか否かを判定する。出力補正ステップでは、判定ステップにおける判定の結果、データに付加された連続性を持つ情報の連続性が損なわれている場合に、非接触給電装置の給電コイル部から受電装置の受電コイル部へ給電される出力値を大きくする補正を行う。
 ここでは、非接触給電装置と受電装置との間で通信を行いながら非接触給電装置から受電装置へ給電する非接触給電方法において、通信開始時に、第2通信部において受電装置の第1通信部から連続的に受信したデータに付加された連続性を持つ情報の連続性が損なわれているか否かに応じて、給電コイル部から受電装置の受電コイル部へ給電される出力を調整する。
 より具体的には、第2通信部において受電装置の第1通信部から受信したデータに付加された連続性を持つ情報を参照して、連続性が損なわれている場合には、給電コイル部から受電装置へ給電される出力が大きくなるように調整される。
 なお、連続性を持つ情報とは、例えば、番号(1,2,3,4、・・・)、文字(a,b,c,d,・・・)、時刻(9:00:00、9:00:01、9:00:02、9:00:03、・・・)、あるいはこれらの組合せ等が含まれる。
 そして、連続性が損なわれるとは、例えば、連続的に受信したデータに付された情報が、1,2,4,6,7・・・等、3,5が抜けた状態を意味している。すなわち、例えば、外乱等の影響を受けて通信環境が悪化した場合には、連続的に受信しているデータの一部が欠損して、連続性を持つ情報の連続性が損なわれてしまう。
 また、非接触給電とは、非接触給電装置側の給電コイル部と、受電装置側の受電コイル部とが直接的に接触しない状態であって、コードや金属設定等を介さずにワイヤレスで受電装置側への給電が行われることを意味している。
 さらに、非接触給電の方式としては、電磁誘導式が採用されていてもよいし、磁界共鳴式が採用されていてもよい。
 ここで、例えば、受電装置側のバッテリ残量がほぼゼロである場合や、非接触給電装置と受電装置との位置関係が不適切である場合、ノイズ等の外乱の影響を受けている場合等には、通信環境の悪化のため、非接触給電装置と受電装置との通信が途切れがちになることがある。この場合には、非接触給電装置において、受電装置から送信されるデータを安定した状態で受信することができないため、安定的に受電装置に対する給電を行うことができないおそれがある。
 本非接触給電方法では、通信開始時に通信環境が悪い場合において、連続的に受信したデータに付された連続性を持つ情報の連続性が損なわれている場合には、通信状況が悪化していると判断し、給電コイル部から受電装置へ給電される出力値が大きくなるように補正する。
 これにより、例えば、非接触給電装置と受電装置との位置関係が不適切である等の理由により通信環境が悪い場合でも、受電装置に対する出力が大きくなるように補正されることで、受電装置との間の通信環境を改善し、安定的に給電を行うことができる。
 この結果、受電装置側との通信状態を安定化させ、安定した状態で給電を実施することができる。
 第14の発明に係る非接触給電方法は、第13の発明に係る非接触給電方法であって、連続性を持つ情報には、番号、文字、時刻の少なくとも1つが含まれる。
 ここでは、受電装置において、連続的に受信するデータに付加された連続性を持つ情報として、番号(1,2,3,4,・・・)、文字(a,b,c,d,・・・)、時刻(9:00:00、9:00:01、9:00:02、9:00:03、・・・)の少なくとも1つを用いる。
 これにより、例えば、外乱等の影響を受けて通信環境が悪化した場合には、連続的に受信しているデータの一部が欠損した場合には、連続性を持つ情報の連続性が損なわれていることを検出することで、容易に通信環境の悪化を検出することができる。
 第15の発明に係る非接触給電方法は、第13または第14の発明に係る非接触給電方法であって、出力補正ステップでは、非接触給電装置の記憶部に保存され、出力値の補正に用いられる補正率と連続性を持つ情報が付されたデータの欠損数との関係を示す補正テーブルを参照して、補正率を求める。
 ここでは、記憶部に保存されており、出力値の補正に用いられる補正率と連続性を持つ情報が付されたデータの欠損数との関係を示す補正テーブルを参照して、出力値の補正に用いられる補正率を求める。
 これにより、記憶部に保存された補正テーブルを用いて、出力値の補正に必要な補正率を容易に取得することができる。
 第16の発明に係る非接触給電方法は、第13から第15の発明のいずれか1つに係る非接触給電方法であって、出力補正ステップでは、PWM(Pulse-Width-Modulation)のDuty制御によって、出力値の補正を行う。
 ここでは、給電コイルへ供給される電力(出力)の補正を、PWMのDuty制御によって行う。
 これにより、パルス幅を変調することにより、給電コイルへ給電される出力を容易に調整することができる。
 第17の発明に係る非接触給電方法は、第13から第16の発明のいずれか1つに係る非接触給電方法であって、起動された後、受電装置からの通信を受信するまで、受電装置へ給電する際の第1出力よりも低い第2出力で給電を行う低出力給電ステップを、さらに備えている。
 ここでは、非接触給電装置が起動された後、受電装置との通信を受信するまでの間、受電装置へ給電する際の第1出力よりも低い第2出力で給電を行う。
 すなわち、給電制御部は、非接触給電装置に対して受電装置が給電可能な位置に配置されるまでは、非接触給電装置から低出力給電を行う。
 これにより、非接触給電装置からの給電可能な位置に配置された受電装置は、例えば、受電装置側のバッテリ残量がほとんどゼロである場合や、非接触充電装置に対して受電装置の配置が適していない場合等でも、低出力給電によって、データを非接触給電装置の第2通信部へデータを送信することができる。
 第18の発明に係る非接触給電方法は、第17の発明に係る非接触給電方法であって、第2出力での給電時に受電装置から受信したデータに基づいて、受電装置が給電対象として認証されているか否かの認証処理を行う認証ステップを、さらに備えている。
 ここでは、非接触給電装置において、低出力給電を受けた受電装置から受信したデータに含まれる各種情報(例えば、受電装置のID等)に基づいて、給電対象の受電装置であることを認証する認証処理を行う。
 これにより、給電対象である受電装置であることを認証した後、適切な受電装置に対して安定的な給電を行うことができる。
 第19の発明に係る非接触給電方法は、第18の発明に係る非接触給電方法であって、認証ステップにおいて、受電装置が給電対象と認証されなかった場合には、第2出力を大きくする補正処理を実施し、再度、受電装置から受信したデータに基づいて、受電装置が給電対象として認証されているか否かの認証処理を行う。
 ここでは、低出力給電によって受電装置から受信したデータを用いた認証によって非認証と判定された場合でも、通信環境の悪化等の理由によって認証されなかった場合を想定し、第2出力を大きくするように補正処理を実施して、再度、受電装置から受信したデータを用いて再認証の処理を行う。
 これにより、非接触給電装置において、低出力給電によって受電装置から受信したデータを用いた認証によって非認証と判定された場合でも、通信環境の悪化等の理由によって認証されなかった受電装置を再認証することで、適切な受電装置に対して安定的な給電を行うことができる。
 第20の発明に係る非接触給電プログラムは、非接触給電装置と受電装置との間で通信を行い、非接触充電装置から受電装置へ給電する非接触給電プログラムであって、通信ステップと、判定ステップと、出力補正ステップと、を備えた非接触給電方法をコンピュータに実行させる。通信ステップでは、受電装置の第1通信部から非接触給電装置の第2通信部へ、連続性を持つ情報が付加されたデータを送信する。判定ステップでは、第2通信部において第1通信部から送信されたデータの受信が開始されると、連続的に受信したデータに付加された連続性を持つ情報の連続性が損なわれているか否かを判定する。出力補正ステップでは、判定ステップにおける判定の結果、データに付加された連続性を持つ情報の連続性が損なわれている場合に、非接触給電装置の給電コイル部から受電装置の受電コイル部へ給電される出力値を大きくする補正を行う。
 ここでは、非接触給電装置と受電装置との間で通信を行いながら非接触給電装置から受電装置へ給電する非接触給電方法において、通信開始時に、第2通信部において受電装置の第1通信部から連続的に受信したデータに付加された連続性を持つ情報の連続性が損なわれているか否かに応じて、給電コイル部から受電装置の受電コイル部へ給電される出力を調整する。
 より具体的には、第2通信部において受電装置の第1通信部から受信したデータに付加された連続性を持つ情報を参照して、連続性が損なわれている場合には、給電コイル部から受電装置へ給電される出力が大きくなるように調整される。
 なお、連続性を持つ情報とは、例えば、番号(1,2,3,4、・・・)、文字(a,b,c,d,・・・)、時刻(9:00:00、9:00:01、9:00:02、9:00:03、・・・)、あるいはこれらの組合せ等が含まれる。
 そして、連続性が損なわれるとは、例えば、連続的に受信したデータに付された情報が、1,2,4,6,7・・・等、3,5が抜けた状態を意味している。すなわち、例えば、外乱等の影響を受けて通信環境が悪化した場合には、連続的に受信しているデータの一部が欠損して、連続性を持つ情報の連続性が損なわれてしまう。
 また、非接触給電とは、非接触給電装置側の給電コイル部と、受電装置側の受電コイル部とが直接的に接触しない状態であって、コードや金属設定等を介さずにワイヤレスで受電装置側への給電が行われることを意味している。
 さらに、非接触給電の方式としては、電磁誘導式が採用されていてもよいし、磁界共鳴式が採用されていてもよい。
 ここで、例えば、受電装置側のバッテリ残量がほぼゼロである場合や、非接触給電装置と受電装置との位置関係が不適切である場合、ノイズ等の外乱の影響を受けている場合等には、通信環境の悪化のため、非接触給電装置と受電装置との通信が途切れがちになることがある。この場合には、非接触給電装置において、受電装置から送信されるデータを安定した状態で受信することができないため、安定的に受電装置に対する給電を行うことができないおそれがある。
 本非接触給電プログラムでは、通信開始時に通信環境が悪い場合において、連続的に受信したデータに付された連続性を持つ情報の連続性が損なわれている場合には、通信状況が悪化していると判断し、給電コイル部から受電装置へ給電される出力値が大きくなるように補正する。
 これにより、例えば、非接触給電装置と受電装置との位置関係が不適切である等の理由により通信環境が悪い場合でも、受電装置に対する出力が大きくなるように補正されることで、受電装置との間の通信環境を改善し、安定的に給電を行うことができる。
 この結果、受電装置側との通信状態を安定化させ、安定した状態で給電を実施することができる。
(発明の効果)
 本発明に係る非接触給電システムによれば、非接触給電装置と受電装置側との通信状態を安定化させ、安定した状態で給電を実施することができる。
本発明の一実施形態に係る非接触給電システムの構成を示す制御ブロック図。 図1の非接触給電システムに含まれる非接触給電装置の起動時における処理の流れを示すフローチャート。 図1の非接触給電システムに含まれる受電装置側の処理の流れを示すフローチャート。 図1の非接触給電装置側の電文解析等の処理の流れを示すフローチャート。 図1の非接触給電装置側において受信したデータに付されたシリアル番号の連続性に基づいて出力補正制御の処理の流れを示すフローチャート。 図1の非接触給電装置において受信した電文(データ、シリアル番号等)の内容を示す図。 図1の非接触給電装置の記憶部に保存される補正テーブルを示す図。
 本発明の一実施形態に係る非接触給電システム30について、図1~図7を用いて説明すれば以下の通りである。
 (非接触給電システム30の構成)
 本実施形態に係る非接触給電システム30は、非接触給電装置10と受電装置20との間において通信を行いながら、非接触給電装置10から受電装置20へ給電するシステムであって、図1に示すように、非接触給電装置10側の無線通信部16と受電装置20側の無線通信部28とが通信を行うとともに、互いに近接配置された給電コイル部13から受電コイル部21へ給電が行われる。
 なお、本実施形態において、非接触給電とは、非接触給電装置10側の給電コイル部13と、受電装置20側の受電コイル部21とが直接的に接触しない状態であって、コードや金属設定等を介さずにワイヤレスで、非接触給電装置10から受電装置20への給電が行われることを意味している。
 非接触給電装置10および受電装置20の構成については、後段にて詳述する。
 本実施形態において、非接触給電装置10によって給電される受電装置20には、例えば、内部に充放電可能なバッテリを搭載したドローン等の飛行装置、電動バイク等の電動移動体、芝刈り機や作業用工具等の電動工具、掃除機、ロボット等の各種装置が含まれるが、受電装置20は、ここで挙げた装置に限定されるものではない。
 (非接触給電装置10の構成)
 非接触給電装置10は、図1に示すように、DC入力部11と、DC/AC回路12と、給電コイル部13と、DC/AC制御部14と、給電制御部15と、無線通信部(第2通信部)16と、記憶部17とを備えている。
 DC入力部11は、外部コンセント11a(図1参照)を介してDC(直流)電力が入力される。
 DC/AC回路12は、図1に示すように、DC入力部11とDC/AC制御部14と給電コイル部13とに接続されている。そして、DC/AC回路12は、DC入力部11に入力されたDC電力をAC(交流)電力に変換し、DC/AC制御部14からの指示入力に基づいて、給電コイル部13への出力(給電量)を調整するように制御される。
 給電コイル部13は、図1に示すように、DC/AC回路12と接続されており、DC/AC回路12から出力されたAC電流によって磁束を発生させて、近接配置された受電装置20側の受電コイル部21に対して給電を行う。
 なお、非接触給電装置10から受電装置20に対する給電方式としては、電磁誘導方式に限らず、共鳴方式等の他の方式が採用されてもよい。
 DC/AC制御部14は、図1に示すように、DC/AC回路12と給電制御部15とに接続されており、給電制御部15からの指示入力に基づいて、DC/AC回路12を制御する。
 給電制御部15は、図1に示すように、DC/AC制御部14、無線通信部16および記憶部17と接続されており、CPUおよびその他の回路から構成されている。そして、給電制御部15は、無線通信部16を介して受信したデータに付されたシリアル番号(連続性を持つ情報)(図6参照)の連続性の有無に基づいて、受電装置20に対する出力(給電量)の補正を行う。
 より具体的には、給電制御部15は、受電装置20から受信したデータに付されたシリアル番号の連続性が損なわれている場合、つまり、通信環境が悪いために受信したデータに欠損が生じている場合には、DC/AC制御部14に対して、出力される給電量を補正するように指示を行う。
 ここで、連続性を持つ情報として用いられるシリアル番号の連続性とは、連続的に受信したデータ順に、1,2,3,4,・・・と、順番に連続する番号が付されていることを意味している。このため、例えば、外乱等の要因によって、無線通信部16において受信したデータに欠損が生じた場合には、シリアル番号の一部に抜けが生じて連続性が損なわれる。
 なお、給電量の補正は、PWM(Pulse-Width-Modulation)のDuty制御によって実施される。
 無線通信部16は、図1に示すように、給電制御部15と接続されており、受電装置20側の無線通信部28との間において通信を行うとともに、受電装置20側から受信したデータを給電制御部15へ送信する。そして、無線通信部16は、受電装置20側から受信したデータに付されたシリアル番号(連続性を持つ情報)の連続性が損なわれていないか否かを判定する。
 なお、非接触給電装置10側の無線通信部16と、受電装置20側の無線通信部28との間の通信は、例えば、2.4GHz帯(2402~2480MHz)を利用して行われればよい。
 記憶部17は、図1に示すように、給電制御部15に接続されており、後述する給電電力値の補正に用いられる補正率を取得するための補正テーブル(図7参照)を保存している。
 なお、無線通信部16において受信したデータに付されたシリアル番号の連続性(受信したデータの欠損数)に基づいて、非接触給電装置10から受電装置20に対する給電を行う処理については、後段にて詳述する。
 (受電装置20の構成)
 受電装置20は、図1に示すように、受電コイル部21と、整流回路22と、DC/DC回路23と、DC/DC制御部24と、バッテリ(負荷)25と、状態検出部26と、受電制御部27と、無線通信部(第1通信部)28とを備えている。
 受電コイル部21は、図1に示すように、整流回路22に接続されており、近接配置された非接触給電装置10側の給電コイル部13において発生した磁束によって誘導起電力が発生する。そして、受電コイル部21は、非接触給電装置10から受電した電力を、整流回路22へ送る。
 整流回路22は、図1に示すように、受電コイル部21、DC/DC回路23および状態検出部26と接続されており、受電コイル部21から受け取ったAC電力をDC電力に整流する。
 DC/DC回路23は、図1に示すように、整流回路22、DC/DC制御部24およびバッテリ25と接続されており、DC/DC制御部24からの指示入力に基づいてスイッチングを行い、バッテリ25への出力を制御する。
 DC/DC制御部24は、図1に示すように、DC/DC回路23と受電制御部27とに接続されており、受電制御部27からの指示入力に基づいて、DC/DC回路23のスイッチング動作を制御する。
 バッテリ25は、充放電可能な二次電池であって、図1に示すように、DC/DC回路23に接続されており、DC/DC回路23から出力されたDC電力を蓄える。
 状態検出部26は、図1に示すように、整流回路22と受電制御部27とに接続されており、整流回路22およびDC/DC回路23間の電圧値および電流値を検出して、受電制御部27へ通知する。
 受電制御部27は、図1に示すように、DC/DC制御部24、状態検出部26および無線通信部28と接続されている。そして、受電制御部27は、状態検出部26において検出された電圧値および電流値と、予め設定された基準電圧値および基準電流値とを比較して、基準電圧値および基準電流値よりも大きい場合には、受電電力量に問題なしと判断し、DC/DC制御部24へDC/DC回路23からバッテリ25へ出力するように通知する。また、受電制御部27は、状態検出部26において検出された電圧値および電流値を、無線通信部28へ送信する。さらに、受電制御部27は、無線通信部28から非接触給電装置10側の無線通信部16に対してデータ(電圧値および電流値)を送信する際に、データにシリアル番号等を付した電文を作成し、無線通信部28から送信する(図6参照)。
 無線通信部28は、CPUを含む回路によって構成されており、図1に示すように、受電制御部27に接続されている。そして、無線通信部28は、受電制御部27から受信したデータ(受電電力の電圧値および電流値等)およびシリアル番号、誤り検出符号(CRC(Cyclic Redundancy Check))を含む電文(図6参照)を、非接触給電装置10側の無線通信部16に対して送信する。
 <非接触給電装置10における起動時の処理>
 本実施形態の非接触給電装置10において行われる起動の処理(低出力給電)について、図2に示すフローチャートを用いて説明すれば以下の通りである。
 すなわち、本実施形態の非接触給電装置10では、給電対象となる受電装置20に対して給電を行う前段階の処理として、通常の給電よりも低い電力を出力しながら、受電装置20が通信可能な位置に配置されるまで待機する。
 具体的には、図2に示すように、非接触給電装置10の電源が投入されると、ステップS11では、受電装置20が通信可能な範囲に配置されているか否かに関わらず、通常時に受電装置20に対して給電される電力よりも低い電力での給電(低出力給電)が行われる。
 ここでは、給電制御部15が、DC/AC回路12からの出力が低出力になるように、DC/AC制御部14へ指示する。これにより、給電コイル部13からは、通常の給電時よりも低い電力が出力される。
 なお、この低出力給電は、非接触給電装置10の起動後、例えば、通信可能な範囲内に配置された受電装置20から無線通信を受信するまで、あるいは、非接触給電装置10の電源がオフになるまで継続して行われる。
 次に、ステップS12では、無線通信部16が、低出力給電された受電装置20の無線通信部28から無線(データ)を受信するまで待機し、受電装置20の無線通信部28から無線(データ)を受信すると、ステップS13へ進む。
 次に、ステップS13では、給電制御部15が、受電装置20から受信した情報に基づいて、給電対象となる受電装置20からの通信であるか否かを確認するために、認証の有無を確認する処理を行う。ここで、給電制御部15において、給電対象として認証された受電装置20であると判定されると、通常の電力での給電を行うために、図5に示す処理フローへ進む。一方、認証不可であった場合には、ステップS14へ進む。
 ここで、認証不可となる理由としては、給電対象ではない装置との通信である場合、低出力給電によって給電された電力が安定した通信を行うために十分でない場合等が考えられる。このため、ステップS14およびステップS15では、後者の理由によって認証不可となった受電装置20を救済するための処理を行う。
 すなわち、ステップS14では、ステップS13において認証されなかった受電装置20に対する低出力給電の電力が最大出力になっているか否かを確認するために、給電制御部15が、補正率が上限に達しているか否かを判定する。
 ここで、補正率が上限に達していない場合には、低出力給電の出力を1段階上げて、再度、認証できないかリトライするために、ステップS15へ進む。
 一方、補正率が上限に達している場合には、給電された電力が不足していることが原因で、十分な通信が行えなかったために認証されなかったとは考えにくいため、給電制御部15は、給電対象ではない装置との通信であると判断して、給電を行うことなく処理を終了する。
 次に、ステップS15では、給電制御部15は、補正率を上げて、再度、低出力給電を実施し、ステップS12において無線を受信するまで待機する。
 なお、ステップS12からステップS15までの処理は、受電装置20が認証されるまで、あるいは、低出力給電の補正率が上限に達するまで繰り返し実施される。
 <受電装置20における処理>
 次に、上述した非接触給電装置10からの低出力給電を受けて通信を行い、非接触給電装置10によって認証された受電装置20側の処理について、図3に示すフローチャートを用いて説明すれば以下の通りである。
 すなわち、図3に示すように、ステップS21では、認証済みの受電装置20の受電コイル部21において、非接触給電装置10側の給電コイル部13から出力された電力を受電する。
 次に、ステップS22では、整流回路22において、受電コイル部21が受電したAC電力をDC電力に整流してDC/DC回路23および状態検出部26へ出力する。
 次に、ステップS23では、状態検出部26が、受電した電力の電圧値および電流値を検出する。
 次に、ステップS24では、受電制御部27が、状態検出部26において検出された電圧値および電流値が、所定値以上であるか否かを判定する。
 ここで、所定値以上である場合には、ステップS25へ進み、所定値未満である場合には、バッテリ25へ電力を充電することなく、受電した電力が不足していることを非接触給電装置10側へ通知するために、ステップS27へ進む。
 次に、ステップS25では、受電制御部27が、ステップS24において、受電した電力が所定値以上であることを確認しているため、DC/DC制御部24が、DC/DC回路23においてDC/DC変換してバッテリ25へ出力するように制御する。
 次に、ステップS26では、DC/DC回路23から出力された電力をバッテリ25に充電する。
 次に、ステップS27では、受電制御部27が、状態検出部26において受電した電力から検出された電圧値および電流値等のデータ、当該データにシリアル番号(連続性を持つ情報)、誤り検出符号(CRC)が付された電文(図6参照)を作成する。
 次に、ステップS28では、受電制御部27が、無線通信部28から非接触給電装置10側の無線通信部16に対して、受電制御部27が作成した受電電力(電圧値および電流値)等のデータにシリアル番号等が付された電文を送信するように、無線通信部28を制御する。そして、ステップS28の処理が完了すると、再び、ステップS21~S28の処理が繰り返し実施される。
 ここで、無線通信部28から非接触給電装置10側へ送信される電文に含まれる受電電力(電圧値および電流値)は、非接触給電装置10側において、給電した電力が受電装置20側において十分な電力であるか否かを検証するために使用される。よって、非接触給電装置10では、受電装置20側から受信した電力値(電圧値および電流値)が受電装置20側によって十分でない場合には、出力を上げて給電するように調整される。
 <非接触給電装置10における電文の解析処理>
 本実施形態の非接触給電装置10の無線通信部16において行われる受電装置20から受信した電文に含まれる電波状況の解析処理について、図4に示すフローチャートを用いて説明すれば以下の通りである。
 すなわち、図4に示すように、ステップS31では、無線通信部16が、受電装置20の無線通信部28から、受電装置20において作成された電文を受信する。
 次に、ステップS32では、無線通信部16において、受信した電文の解析が行われる。より具体的には、無線通信部16では、電文解析によって、受電装置20において受電した電力(電圧値および電流値)を取得し、給電対象以外の装置との通信を遮断するように制御を行う。
 次に、ステップS33では、無線通信部16から給電制御部15に対して、受電された電圧値および電流値等のデータを含む電文の解析結果と、電波強度の解析結果とが通知される。
 なお、電文に含まれる電波強度等の解析処理は、本実施形態のように、CPU等の回路を含む無線通信部16において実施されてもよいし、給電制御部15において実施されてもよい。
 ステップS34では、給電制御部15が、ステップS33において通知された電文の解析結果に基づいて、受電装置20に対して給電する電力が適正であるか否かを判断し、適正でない場合には、出力値を調整して給電される電力が適正化されるようにフィードバック制御を行う。
 <非接触給電装置10における出力補正処理>
 本実施形態の非接触給電装置10において、受電装置20との通信を開始した際に実施される受電装置20から受信したデータに付されたシリアル番号の連続性に基づく給電の出力補正処理について、図5に示すフローチャートを用いて説明すれば以下の通りである。
 すなわち、図5に示すように、ステップS41では、無線通信部16において、受電装置20側から無線を受信するまで待機し、無線を受信すると、ステップS42へ進む。
 次に、ステップS42では、非接触給電装置10の無線通信部16と受電装置20の無線通信部28との通信回数が所定のサンプリング回数になるまでデータを取得する。
 本実施形態では、サンプリング回数が10回に設定されているため、受電装置20から10回分の通信のデータを受信するまでステップS43の処理を繰り返し行う。
 次に、ステップS43では、給電制御部15が、無線通信部16において受信された10回分のデータに付されたシリアル番号の連続性を確認する。より詳細には、給電制御部15は、無線通信部16において受信された10回分のデータに付されたシリアル番号が、1,2,3,4,・・・,10まで連続しているか否かを確認する。
 次に、ステップS44では、サンプリングされたデータ(受信10回分)から得られた出力補正制御の基準値を、記憶部17に保存する。
 なお、本実施形態では、サンプリングされた10個のデータを参考にして、欠損数3個という基準値が記憶部17に保存される。
 次に、ステップS45では、給電制御部15が、ステップS43における確認の結果、無線通信部16において受信された10回分のデータ(シリアル番号)の欠損数が、ステップS43において算出された基準値(本実施形態では、3つ)未満であるか否かを判定する。
 なお、データの欠損数は、受信した10回分のデータのうち、シリアル番号が抜けている数、例えば、シリアル番号1,2,3,4,・・・,10を受信するはずのところ、シリアル番号4,6,8が抜けて、シリアル番号1,2,3,5,7,9,10,11,12,13が付されたデータ10個を受信している場合は、欠損数が3つと判定される。
 ここで、シリアル番号の連続性を参照して、受信データの欠損数が3つ未満である場合には、正常な通信が行われていると判断し、ステップS47へ進む。一方、受信データの欠損数が3つ以上である場合には、非接触給電装置10と受電装置20との間の通信が途切れて正常な通信が行われていないおそれがあると判断し、ステップS46へ進む。
 なお、ステップS45における判定に用いられる基準値(閾値)は、3つに限定されるものではなく、3つよりも大きい値に設定されていてもよいし、例えば、1つあるいは2つ等、3つよりも小さい値に設定されていてもよい。
 次に、ステップS46では、ステップS45において、データの欠損数が3つ以上であると判定されているため、給電制御部15が、記憶部17に保存された補正テーブルを参照して、出力補正制御に用いられる補正率を取得する。
 ここで、記憶部17に保存される補正テーブルは、図7に示すように、10回分のデータの3つ~9つの範囲の欠損数と、出力補正制御に用いられる補正率(%)との関係を示す。
 図7に示す補正テーブルでは、例えば、データ欠損数が3つ以下であった場合には、正常で安定的な通信が行われていると想定されるため、補正率は100%に設定される。
 また、データ欠損数が4つ、5つ、6つであった場合には、やや不安定な通信が行われていると想定されるため、補正率はそれぞれ110%、120%、130%に設定されている。これにより、通信状態がやや不安定になっている場合には、受電装置20へ給電される出力が大きくなるような補正率が選択される。
 さらに、データ欠損数が7つ、8つ、9つであった場合には、不安定な通信が行われていると想定されるため、補正率はさらに大きくなって、それぞれ、140%、150%、160%に設定されている。これにより、通信状態が不安定になっている場合には、受電装置20へ給電される出力がさらに大きくなるような補正率が選択される。
 よって、給電制御部15は、記憶部17に保存された図7に示す補正テーブルを参照することで、受信したデータの欠損数に対応する最適な補正率を容易に取得することができる。
 次に、ステップS47では、給電制御部15は、給電コイル部13から受電装置20側の受電コイル部21へ給電される出力を、補正テーブルを参照して取得された補正率を用いて補正する。
 具体的には、本実施形態の非接触給電システム30において実施される出力補正処理では、給電出力電圧値(V)×補正率(%)という計算式によって、補正後の出力が算出される。
 次に、ステップS48では、給電制御部15が、ステップS47において算出された補正後の出力で、給電コイル部13から受電装置20側の受電コイル部21に対して給電するように、DC/AC制御部14に指示を行う。
 本実施形態では、以上のように、受電装置20と通信を行い受電装置20へ給電する非接触給電装置10において、給電コイル部13と、無線通信部16と、給電制御部15とを備えている。給電コイル部13は、受電装置20へ給電を行う。無線通信部16は、受電装置20側の無線通信部28と通信を行う。給電制御部15は、無線通信部16において受電装置20から送信されたデータの受信が開始された際に、受信したデータに付されたシリアル番号の連続性が損なわれている場合、つまり、受信したデータの欠損数が基準値以上である場合に、給電コイル部13から受電装置20へ給電される出力値を大きくする補正を行う。
 つまり、本実施形態の非接触給電装置10では、給電制御部15が、無線通信部16において受電装置20から受信したデータに付されたシリアル番号の連続性が損なわれている場合(受信したデータの欠損数が基準値以上である場合)には、給電コイル部13から受電装置20へ給電される出力が大きくなるように調整する。
 ここで、例えば、受電装置20側のバッテリ残量がほぼゼロである場合や、非接触給電装置10と受電装置20との位置関係が不適切である場合、ノイズ等の外乱の影響を受けている場合等には、通信環境の悪化のため、受電装置20から受信したデータに含まれる電波が途切れがちになることがある。この場合には、受電装置20から送信されるデータを安定した状態で受信することができないため、安定的に受電装置20に対する給電を行うことができないおそれがある。
 本非接触給電装置10では、通信開始時に通信環境が悪い場合において、受信したデータに付された連続性が損なわれている場合には、給電制御部15が、給電コイル部13から受電装置20(受電コイル部21)へ給電される出力値が大きくなるように補正する。
 これにより、例えば、非接触給電装置10と受電装置20との位置関係が不適切である等の理由により通信環境が悪い場合でも、受電装置20に対する出力が大きくなるように補正されることで、非接触給電装置10と受電装置20との間の通信環境を改善し、安定的に給電を行うことができる。
 この結果、非接触給電装置10と受電装置20との間の通信開始時における通信状態を安定化させ、安定した状態で給電を実施することができる。
 [他の実施形態]
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 (A)
 上記実施形態では、連続的に受信するデータの付加された連続性を持つ情報として、シリアル番号(1,2,3,4,・・・x)を用いた例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、連続性を持つ情報として、シリアル番号の代わりに、アルファベット等の文字(a,b,c,d,・・・,z)、時刻(9:00:00、9:00:01、9:00:02、9:00:03、・・・)等を用いてもよい。
 あるいは、番号、文字、時刻等の組合せを、連続性を持つ情報として用いてもよい。
 (B)
 上記実施形態では、出力補正制御の判定を行う際の基準値(欠損数3つ)を、サンプリングされた所定個数のデータから算出する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、出力補正制御の判定を行う際の基準値としては、予め設定された数値が用いられてもよい。
 (C)
 上記実施形態では、図7に示すように、受電装置20から受信したデータの欠損数と補正率との関係を示す補正テーブルを参照して、非接触給電装置10の給電制御部15が、出力補正制御を実施する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、補正テーブルとしては、データ欠損数と補正率との関係を示すものに限らず、データ欠損割合(%)と補正率との関係を示すものを用いてもよい。
 (D)
 上記実施形態では、単一の非接触給電装置10から単一の受電装置20に対して給電を行う非接触給電システム30の構成を例として挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、単一の非接触給電装置から複数の受電装置に対して、ほぼ同時に給電を行う非接触給電システムであってもよい。
 (E)
 上記実施形態では、給電制御部15において、無線通信部16が受信したデータに付されたシリアル番号(連続性を持つ情報)の連続性の有無に基づいて、出力補正制御を実施するか否かの判定が行われる例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、非接触給電装置10の無線通信部16において、出力補正制御の判定が行われてもよい。
 (F)
 上記実施形態では、受電装置20側と通信を行う無線通信部16と、給電コイル部13からの給電を制御する給電制御部15とが別々に設けられた構成を例として挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、受電装置20側と通信を行う通信機能と、給電コイル部13からの給電を制御する給電制御機能とを備えた1つのマイコンとして、本発明を実現してもよい。
 (G)
 上記実施形態では、非接触給電システム30、非接触給電方法として、本発明を実現した例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、上記実施形態において説明した非接触給電方法をコンピュータに実行させる制御プログラムとして、本発明を実現してもよい。
 この制御プログラムは、図1に示す記憶部17に保存されていればよく、CPU等のハードウェアによって読み出されることで、上述した制御方法をコンピュータに実行させることができる。
 (H)
 上記実施形態では、起動時に、非接触給電装置10から通常の給電時よりも低い出力での給電(低出力給電)を行い、低出力給電された受電装置20からの無線通信を受信するのを待つ例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、起動時から、通常とほぼ同じ出力での給電を行いながら、給電された受電装置20からの無線通信を受信するのを待つ構成であってもよい。
 ただし、この場合には、受電装置20が周囲にない場合でも、常時、高出力の給電が行われてしまうため、非接触給電装置10側の消費電力等を考慮すれば、上記実施形態のように、起動時には、まず低出力給電が行われることが好ましい。
 本発明の非接触給電システムは、受電装置側との通信状態を安定化させ、安定した状態で給電を実施することができるという効果を奏することから、非接触給電方式を採用した各種装置に対して広く適用可能である。
10   非接触給電装置
11   DC入力部
11a  外部コンセント
12   DC/AC回路
13   給電コイル部
14   DC/AC制御部
15   給電制御部
16   無線通信部(第2通信部)
17   記憶部
20   受電装置
21   受電コイル部
22   整流回路
23   DC/DC回路
24   DC/DC制御部
25   バッテリ(負荷)
26   状態検出部
27   受電制御部
28   無線通信部(第1通信部)
30   非接触給電システム

Claims (20)

  1.  非接触給電装置と受電装置との間で通信を行いながら、前記非接触給電装置から前記受電装置に給電する非接触給電システムであって、
     前記非接触給電装置と前記受電装置とを備えており、
     前記受電装置は、
      前記非接触給電装置から給電される受電コイル部と、
      前記非接触給電装置と通信を行うとともに、前記非接触給電装置に送信されるデータに連続性を持つ情報を付加して送信する第1通信部と、
    を有し、
     前記非接触給電装置は、
      前記受電装置の前記受電コイル部へ給電を行う給電コイル部と、
      前記受電装置の前記第1通信部と通信を行う第2通信部と、
      前記第2通信部において前記受電装置の前記第1通信部から送信されたデータの受信が開始された際に、連続的に受信した前記データに付加された前記連続性を持つ情報を参照して、前記連続性が損なわれている場合に、前記給電コイル部から前記受電コイル部へ給電される出力値を大きくする補正を行う給電制御部と、
    を有している、
    非接触給電システム。
  2.  前記連続性を持つ情報には、番号、文字、時刻の少なくとも1つが含まれる、
    請求項1に記載の非接触給電システム。
  3.  前記非接触給電装置は、前記出力値の補正に用いられる補正率と前記連続性を持つ情報が付されたデータの欠損数との関係を示す補正テーブルを保存する記憶部を、さらに有している、
    請求項1または2に記載の非接触給電システム。
  4.  前記給電制御部は、前記記憶部に保存された前記補正テーブルを参照して、前記補正率を求める、
    請求項3に記載の非接触給電システム。
  5.  前記非接触給電装置は、
      電源から電力が入力されるDC入力部と、
      前記DC入力部に入力されたDC電力を前記給電コイル部へAC電力を供給するDC/AC回路と、
      前記給電制御部から受信した信号に基づいて、前記DC/AC回路を制御するDC/AC制御部と、
    をさらに有している、
    請求項1から4のいずれか1項に記載の非接触給電システム。
  6.  前記給電制御部は、PWM(Pulse-Width-Modulation)のDuty制御によって、前記出力値の補正を行う、
    請求項1から5のいずれか1項に記載の非接触給電システム。
  7.  前記給電制御部は、起動されると、前記受電装置の前記第1通信部からの通信を受信するまで、前記受電コイル部へ給電する際の第1出力よりも低い第2出力で給電を行う、
    請求項1から6のいずれか1項に記載の非接触給電システム。
  8.  前記給電制御部は、前記第2出力での給電時に前記受電装置の前記第1通信部から受信したデータに基づいて、前記受電装置が給電対象として認証されているか否かの認証処理を行う、
    請求項7に記載の非接触給電システム。
  9.  前記給電制御部は、前記認証処理において、前記受電装置が給電対象と認証されなかった場合には、前記第2出力を大きくする補正処理を実施し、再度、前記受電装置の前記第1通信部から受信したデータに基づいて、前記受電装置が給電対象として認証されているか否かの認証処理を行う、
    請求項8に記載の非接触給電システム。
  10.  前記受電装置は、
      前記受電コイル部に給電された電力を蓄えるバッテリと、
      前記受電コイル部から前記バッテリへの出力を制御する受電制御部と、
    をさらに有している、
    請求項1から9のいずれか1項に記載の非接触給電システム。
  11.  前記受電装置は、前記受電コイル部に給電された電力を検出する状態検出部を、さらに有している、
    請求項1から10のいずれか1項に記載の非接触給電システム。
  12.  前記受電制御部は、前記状態検出部において検出された電力量に基づいて、前記受電コイル部から前記バッテリへの出力を制御するとともに、前記第1通信部へ通知する、
    請求項11に記載の非接触給電システム。
  13.  非接触給電装置と受電装置との間で通信を行い、前記非接触充電装置から前記受電装置へ給電する非接触給電方法であって、
     前記受電装置の第1通信部から前記非接触給電装置の第2通信部へ、連続性を持つ情報が付加されたデータを送信する通信ステップと、
     前記第2通信部において前記第1通信部から送信されたデータの受信が開始されると、連続的に受信した前記データに付加された前記連続性を持つ情報の連続性が損なわれているか否かを判定する判定ステップと、
     前記判定ステップにおける判定の結果、前記データに付加された前記連続性を持つ情報の連続性が損なわれている場合に、前記非接触給電装置の給電コイル部から前記受電装置の受電コイル部へ給電される出力値を大きくする補正を行う出力補正ステップと、
    を備えた非接触給電方法。
  14.  前記連続性を持つ情報には、番号、文字、時刻の少なくとも1つが含まれる、
    請求項13に記載の非接触給電方法。
  15.  前記出力補正ステップでは、前記非接触給電装置の記憶部に保存され、前記出力値の補正に用いられる補正率と前記連続性を持つ情報が付されたデータの欠損数との関係を示す補正テーブルを参照して、前記補正率を求める、
    請求項13または14に記載の非接触給電方法。
  16.  前記出力補正ステップでは、PWM(Pulse-Width-Modulation)のDuty制御によって、前記出力値の補正を行う、
    請求項13から15のいずれか1項に記載の非接触給電方法。
  17.  起動された後、前記受電装置からの通信を受信するまで、前記受電装置へ給電する際の第1出力よりも低い第2出力で給電を行う低出力給電ステップを、さらに備えている、
    請求項13から16のいずれか1項に記載の非接触給電方法。
  18.  前記第2出力での給電時に前記受電装置から受信したデータに基づいて、前記受電装置が給電対象として認証されているか否かの認証処理を行う認証ステップを、さらに備えている、
    請求項17に記載の非接触給電方法。
  19.  前記認証ステップにおいて、前記受電装置が給電対象と認証されなかった場合には、前記第2出力を大きくする補正処理を実施し、再度、前記受電装置から受信したデータに基づいて、前記受電装置が給電対象として認証されているか否かの認証処理を行う、
    請求項18に記載の非接触給電方法。
  20.  非接触給電装置と受電装置との間で通信を行い、前記非接触充電装置から前記受電装置へ給電する非接触給電プログラムであって、
     前記受電装置の第1通信部から前記非接触給電装置の第2通信部へ、連続性を持つ情報が付加されたデータを送信する通信ステップと、
     前記第2通信部において前記第1通信部から送信されたデータの受信が開始されると、連続的に受信した前記データに付加された前記連続性を持つ情報の連続性が損なわれているか否かを判定する判定ステップと、
     前記判定ステップにおける判定の結果、前記データに付加された前記連続性を持つ情報の連続性が損なわれている場合に、前記非接触給電装置の給電コイル部から前記受電装置の受電コイル部へ給電される出力値を大きくする補正を行う出力補正ステップと、
    を備えた非接触給電方法をコンピュータに実行させる非接触給電プログラム。
PCT/JP2019/005749 2018-08-29 2019-02-18 非接触給電システム、非接触給電方法および非接触給電プログラム WO2020044602A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/265,810 US11223239B2 (en) 2018-08-29 2019-02-18 Contactless power supply system, contactless power supply method, and contactless power supply program
DE112019004331.5T DE112019004331T5 (de) 2018-08-29 2019-02-18 Berührungsloses Stromversorgungssystem, Verfahren für die berührungslose Stromversorgung und Programm für die berührungslose Stromversorgung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-160263 2018-08-29
JP2018160263A JP7001020B2 (ja) 2018-08-29 2018-08-29 非接触給電システム、非接触給電方法および非接触給電プログラム

Publications (1)

Publication Number Publication Date
WO2020044602A1 true WO2020044602A1 (ja) 2020-03-05

Family

ID=69644059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005749 WO2020044602A1 (ja) 2018-08-29 2019-02-18 非接触給電システム、非接触給電方法および非接触給電プログラム

Country Status (4)

Country Link
US (1) US11223239B2 (ja)
JP (1) JP7001020B2 (ja)
DE (1) DE112019004331T5 (ja)
WO (1) WO2020044602A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11223243B2 (en) 2018-08-29 2022-01-11 Omron Corporation Contactless power supply system, contactless power supply method, and contactless power supply program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151064A (ja) * 2001-11-16 2003-05-23 Honda Motor Co Ltd タイヤセンサユニット
JP2007114906A (ja) * 2005-10-19 2007-05-10 Mitsutoyo Corp 測定情報送受信装置および測定システム
JP2010288443A (ja) * 2009-05-13 2010-12-24 Canon Inc 給電装置、その制御方法及び給電通信システム
JP2017184411A (ja) * 2016-03-30 2017-10-05 ミネベアミツミ株式会社 ワイヤレス給電装置、ワイヤレス受電装置およびワイヤレス電力伝送システム
JP2018196290A (ja) * 2017-05-19 2018-12-06 ミネベアミツミ株式会社 ワイヤレス電力伝送システム、およびワイヤレス電力伝送システムの通信方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090258616A1 (en) * 2006-06-21 2009-10-15 Matsushita Electric Industrial Co., Ltd. Multisystem wireless communication apparatus
JP2014195334A (ja) 2011-07-27 2014-10-09 Sanyo Electric Co Ltd 電池内蔵機器と充電台及び電池内蔵機器
JP5872374B2 (ja) 2012-04-25 2016-03-01 三洋電機株式会社 無接点給電方法
JP6555848B2 (ja) 2014-01-16 2019-08-07 キヤノン株式会社 被充電機器、その制御方法、および制御プログラム、並びに非接触充電システム
JP6417992B2 (ja) 2015-02-06 2018-11-07 株式会社Ihi 非接触給電システム
US10998767B2 (en) 2015-08-26 2021-05-04 Rohm Co., Ltd. Power transmission device and non-contact power feeding system for transmitting electric power to power reception device by magnetic resonance
JP6389451B2 (ja) 2015-09-15 2018-09-12 東芝テック株式会社 無線通信装置及びプログラム
JP6634261B2 (ja) 2015-10-15 2020-01-22 ローム株式会社 送電装置及び非接触給電システム
JP6938890B2 (ja) 2016-10-18 2021-09-22 船井電機株式会社 給電装置及び給電方法
US10141980B2 (en) 2017-04-26 2018-11-27 Minebea Mitsumi Inc. Wireless power transmission system, and communication and protection methods for the same
JP7001021B2 (ja) * 2018-08-29 2022-01-19 オムロン株式会社 非接触給電システム、非接触給電方法および非接触給電プログラム
JP7519167B2 (ja) 2018-08-29 2024-07-19 オムロン株式会社 非接触給電装置およびこれを備えた非接触給電システム、非接触給電方法、非接触給電プログラム
JP7243080B2 (ja) 2018-08-29 2023-03-22 オムロン株式会社 非接触給電装置およびこれを備えた非接触給電システム、非接触給電方法、非接触給電プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151064A (ja) * 2001-11-16 2003-05-23 Honda Motor Co Ltd タイヤセンサユニット
JP2007114906A (ja) * 2005-10-19 2007-05-10 Mitsutoyo Corp 測定情報送受信装置および測定システム
JP2010288443A (ja) * 2009-05-13 2010-12-24 Canon Inc 給電装置、その制御方法及び給電通信システム
JP2017184411A (ja) * 2016-03-30 2017-10-05 ミネベアミツミ株式会社 ワイヤレス給電装置、ワイヤレス受電装置およびワイヤレス電力伝送システム
JP2018196290A (ja) * 2017-05-19 2018-12-06 ミネベアミツミ株式会社 ワイヤレス電力伝送システム、およびワイヤレス電力伝送システムの通信方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11223243B2 (en) 2018-08-29 2022-01-11 Omron Corporation Contactless power supply system, contactless power supply method, and contactless power supply program

Also Published As

Publication number Publication date
JP2020036431A (ja) 2020-03-05
US11223239B2 (en) 2022-01-11
US20210167634A1 (en) 2021-06-03
JP7001020B2 (ja) 2022-01-19
DE112019004331T5 (de) 2021-05-27

Similar Documents

Publication Publication Date Title
US9543777B2 (en) Power supplying device and power transmission device
US10199866B2 (en) Control circuit for wireless power receiver and control method
US8400105B2 (en) Non-contact charging system
CN109247039B (zh) 无线充电方法及其装置和系统
US8274254B2 (en) Power transmission control device, power transmission device, power receiving control device, power receiving device, electronic apparatus, method for controlling power transmission, and method for controlling power receiving
US8680715B2 (en) Power supplying device, control method for the same, and power-supplying system
WO2020044605A1 (ja) 非接触給電装置およびこれを備えた非接触給電システム、非接触給電方法、非接触給電プログラム
JP5560609B2 (ja) 送電制御装置、送電装置、受電制御装置、受電装置及び電子機器
US10523061B2 (en) Power receiving device, power feeding device, and electronic apparatus
CN109121446A (zh) 电力传送装置、电力接收装置、控制方法和程序
JP2012065419A (ja) 無線電力送電装置
US20190356171A1 (en) System and method for actively controlling output voltage of a wireless power transfer system
US20150303730A1 (en) Power supplying apparatus, power receiving apparatus, electrical vehicle, charging system, and charging method
WO2020044606A1 (ja) 非接触給電装置およびこれを備えた非接触給電システム、非接触給電方法、非接触給電プログラム
WO2017064968A1 (ja) 受電装置、電子機器および給電システム
WO2020044602A1 (ja) 非接触給電システム、非接触給電方法および非接触給電プログラム
WO2020044603A1 (ja) 非接触給電システム、非接触給電方法および非接触給電プログラム
US20170012476A1 (en) Power supply apparatus and power supply method
JP2014135895A (ja) 充電制御システム及び方法
JP2018057173A (ja) 無線受電装置、無線給電システム、及び無線受電方法
JP5571012B2 (ja) 非接触電力伝送装置
JP7144192B2 (ja) ワイヤレス送電装置、その制御回路
KR102619804B1 (ko) 무선전력 전송장치 및 방법
CN116545043A (zh) 无线充电设备及无线充电控制方法
JP2011097728A (ja) 充電制御システム及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855266

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19855266

Country of ref document: EP

Kind code of ref document: A1