WO2020042567A1 - 色轮转速检测装置、光源系统及投影设备 - Google Patents

色轮转速检测装置、光源系统及投影设备 Download PDF

Info

Publication number
WO2020042567A1
WO2020042567A1 PCT/CN2019/076638 CN2019076638W WO2020042567A1 WO 2020042567 A1 WO2020042567 A1 WO 2020042567A1 CN 2019076638 W CN2019076638 W CN 2019076638W WO 2020042567 A1 WO2020042567 A1 WO 2020042567A1
Authority
WO
WIPO (PCT)
Prior art keywords
color wheel
light
temperature
light source
electrically connected
Prior art date
Application number
PCT/CN2019/076638
Other languages
English (en)
French (fr)
Inventor
谢颂婷
熊再祥
后国波
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Priority to JP2021510831A priority Critical patent/JP7183394B2/ja
Priority to US17/272,093 priority patent/US11353475B2/en
Publication of WO2020042567A1 publication Critical patent/WO2020042567A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/08Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
    • G01K3/14Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values in respect of space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/005Circuits arrangements for indicating a predetermined temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/006Details of instruments used for thermal compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light

Definitions

  • the present invention relates to the field of projection technology, and in particular, to a color wheel rotation speed detection device, a light source system, and a projection device.
  • laser projectors are equipped with a color wheel speed detector behind the color wheel to detect the speed of the color wheel and feed it back to the processor in a timely manner.
  • the main chip supplies a constant current to the power source VCC according to the detected value of the color wheel speed.
  • the board sends out a control signal for turning on or off the excitation light source, thereby controlling the output of the driving voltage of the driving circuit.
  • the present invention provides a color wheel rotation speed detection device which can effectively reduce the influence of the temperature increase on the accuracy of the color wheel rotation speed.
  • the invention also provides a light source system and a projection device.
  • a color wheel rotation speed detecting device includes:
  • a first processing unit configured to compare an external ambient temperature with a preset temperature, and when the external ambient temperature is greater than the preset temperature, the first processing unit outputs a logic level
  • Lighting unit including:
  • Temperature compensation circuit including:
  • An input terminal is electrically connected to the first processing unit
  • the first end is electrically connected to the light-emitting body
  • the temperature compensation circuit adjusts a resistance value of a line where the light emitting body is located according to the logic level and an external ambient temperature, so that a driving current of the light emitting body is within a preset current range;
  • a reflection unit disposed on a moving color wheel for reflecting the detection light, the reflection unit being periodically located on an optical path of the detection light driven by the color wheel;
  • the detection and control unit is configured to receive the detection light periodically emitted by the reflection unit, and calculate the number of times the detection light is incident to determine the rotation speed of the color wheel.
  • the temperature compensation circuit further includes:
  • the resistance between the second terminal and the reference ground is fixed
  • the resistance between the reference ground and the ground varies with the external ambient temperature
  • the first processing unit does not output the logic level, the first terminal is electrically connected to the second terminal;
  • the first processing unit If the first processing unit outputs the logic level, the first terminal is electrically connected to the third terminal.
  • the preset current range is a first current range
  • the preset current range is a second current range
  • the first current range is different from the second current range.
  • the temperature compensation circuit further includes:
  • a current-limiting resistor electrically connected between the second terminal and a reference ground
  • the thermistor is electrically connected between the third terminal and a reference ground.
  • the resistance value of the luminous body increases as the external ambient temperature increases, and the thermistor is a negative temperature coefficient thermistor.
  • the temperature compensation circuit further includes a relay and a switch circuit
  • the relay includes a static contact and two moving contacts, the first end is the static contact of the relay, and the second end and the third end are the two moving contacts, respectively;
  • the switching circuit includes an output terminal and the input terminal, and the output terminal is electrically connected to the coil in the relay;
  • the switch circuit When the logic level is output by the first processing unit, the switch circuit is turned on, and a current flows through a circuit where the coil and the output terminal are located.
  • the switching circuit further includes a zener diode connected in parallel to both ends of the relay.
  • the switch circuit includes a triode, a base of the triode is electrically connected to the input terminal, and a collector or an emitter of the triode is connected to the output terminal.
  • the switching circuit includes a photocoupler
  • the photocoupler includes an inverter, a light emitting diode, and a phototransistor;
  • the inverter is connected between the first processing unit and the input terminal, one electrode of the light emitting diode is electrically connected to the input terminal, and one electrode of the phototransistor is the output terminal.
  • the reflecting unit is a reflecting mirror or a reflecting film or reflecting surface provided on a surface of the color wheel.
  • the color wheel rotation speed detecting device further includes a temperature sensing device, the temperature sensing device is configured to sense an external environment temperature, and is configured to transmit a temperature signal corresponding to the external environment temperature to the first processing unit.
  • the detection and control unit includes:
  • Phototransistor for converting the received periodic detection light into an electrical pulse signal
  • a comparator circuit electrically connected to the phototransistor and configured to compare the electrical pulse signal with a preset voltage value and output a comparison result
  • the second processing unit counts the electrical pulses according to the comparison result.
  • the light source system includes:
  • Excitation light source for emitting excitation light
  • a color wheel configured to generate at least one color of fluorescence under irradiation of the excitation light
  • a light source driving circuit electrically connected to the excitation light source
  • the detection and control unit is configured to output a control signal to the light source driving circuit according to the rotation speed of the color wheel, and the light source driving circuit provides a driving current to the excitation light source according to the control signal.
  • a projection device includes the light source system as described above.
  • the temperature compensation circuit in the color wheel speed detecting device dynamically adjusts the resistance value of the line where the light emitter is located according to the external ambient temperature, so that the driving current of the light body is within a preset current range. The accuracy of detection does not decrease with changes in the external ambient temperature.
  • FIG. 1 is a schematic block diagram of a light source system according to an embodiment of the present invention.
  • FIG. 2 is a change curve of the internal resistance of the light emitter with the external ambient temperature.
  • FIG. 3 is a change curve of a driving current of a light emitting body with an external ambient temperature when the light emitting body is grounded through a fixed resistance device.
  • FIG. 4 is a circuit diagram of the color wheel rotation speed detecting device shown in FIG. 1 in the first embodiment.
  • FIG. 5 is a schematic diagram of output waveforms of the collector electrode B and the comparator output terminal D in the detection and control unit.
  • FIG. 6 is a schematic structural diagram of the color wheel shown in FIG. 1.
  • FIG. 7 is a change curve of the internal resistance of the light emitting body and the resistance value of the thermistor with the external ambient temperature.
  • FIG. 8 is a change curve of the resistance value of the branch where the light emitter is located with the external ambient temperature.
  • FIG. 9 is a change curve of a driving current of a light emitting body with an external ambient temperature.
  • FIG. 10 is a schematic diagram of another embodiment of the color wheel rotation speed detecting device shown in FIG. 1.
  • Excitation light source 101 Light source driving circuit 102 Color wheel 103 Color wheel speed detection device 200, 300 Lighting unit 201 illuminator 210 Temperature compensation circuit 230, 330 First end 231 Second end 232 Third end 233 Relay 234, 334 Switch circuit 235, 325 Input 236, 336 Output 237, 337 First processing unit 203, 303 Reflection unit 205 Detection and control unit 207 Phototransistor Q collector B Non-inverting input C Output D Comparator circuit 273 Second processing unit 275 power supply VCC, VCC2
  • An embodiment of the present invention provides a color wheel rotation speed detection device for color wheel rotation speed detection in a light source system, which can be applied to a projection device, and the projection device may include an LCD (Liquid Crystal Display) , An optical-mechanical system in LCOS (Liquid Crystal on Silicon), that is, liquid crystal with silicon, also called silicon-based liquid crystal;
  • LCD Liquid Crystal Display
  • LCOS Liquid Crystal on Silicon
  • FIG. 1 is a schematic block diagram of a light source system 10 according to an embodiment of the present invention.
  • the light source system 10 includes an excitation light source 101, a light source driving circuit 102, a color wheel 103, and a color wheel rotation speed detecting device 200.
  • the excitation light source 101 is electrically connected to the light source driving circuit 102
  • the light source driving circuit 102 is electrically connected to the color wheel rotation speed detecting device 200.
  • the color wheel 103 performs periodic motion under the driving of the driving device.
  • the color wheel speed detecting device 200 outputs a control signal to the light source driving circuit 102 according to the speed of the color wheel 103.
  • the light source driving circuit 102 provides driving for the excitation light source 101 according to the control signal.
  • the current, the excitation light source 101 is used to emit excitation light under the driving of the light source driving circuit 102
  • the color wheel 103 generates at least one color of fluorescence under the excitation of the excitation light.
  • the excitation light source 101 is a blue light source for emitting blue excitation light. It can be understood that the excitation light source 101 is not limited to a blue light source, and the excitation light source 101 may also be a red light source, a green light source, or an ultraviolet light source.
  • a blue laser is provided in the excitation light source 101 for emitting blue excitation light. In other embodiments, the blue laser in the excitation light source 101 may also be replaced with a blue light emitting diode.
  • One or two blue lasers or blue laser arrays can be set in the excitation light source 101. It can be understood that the number of lasers can be flexibly set according to needs.
  • the excitation light source 101 may further be provided with a light homogenizing device for homogenizing the laser, and the light homogenizing device may be a light homogenizing rod or a fly-eye lens.
  • a scattering film for decoherence may be provided in the light homogenizing device. The light emitted from the light homogenizing device is used to irradiate the color wheel 103.
  • the color wheel 103 includes a substrate and a driving device provided on the substrate.
  • the substrate is circular, and the surface of the substrate is provided with a plurality of color sections, and each color section is provided with a different wavelength conversion material (such as a phosphor or a quantum dot).
  • the wavelength conversion material is used to receive the excitation light and convert the excitation light into at least one color (or wavelength range) of other wavelength ranges for fluorescence emission.
  • the substrate surface is provided with three color sections, which are a blue area, a red area, and a green area, respectively.
  • the blue region is provided with a scattering material for scattering the excitation light and then emitting the scattering light to change a divergence angle of the excitation light and perform a decoherent process on the excitation light.
  • the red area and the green area are respectively provided with red and green phosphors to convert blue excitation light into red fluorescence and green fluorescence and emit.
  • a blue region and a yellow region are provided on the substrate surface of the color wheel 103. The blue region is used to scatter the excitation light, and the yellow region is used to convert the excitation light into yellow fluorescence. It can be understood that the color wheel 103 can also be provided with various sections of other colors on the surface, and is not limited thereto.
  • the surface of the color wheel 103 is provided with a first red region, a second red region, a green region, and a blue region, wherein the blue region is used to scatter the excitation light and the green Area is used to convert the excitation light into green fluorescence, and the first red area and the second red area are used to convert the excitation light into broad-spectrum red fluorescence and narrow-spectrum red fluorescence, respectively, by adjusting the The ratio of the broad-spectrum red fluorescence and the narrow-spectrum red fluorescence is to dynamically adjust the color gamut range of the light emitted by the light source system 10.
  • the substrate is further provided with a filter unit for filtering light emitted from different color sections of the color wheel 103.
  • the filter unit is disposed on an edge of the substrate or on a bottom surface of the substrate.
  • the driving device is disposed at the geometric center of the bottom surface of the substrate, and is used to drive the substrate to rotate periodically. Different color sections on the substrate are periodically located on the optical path of the excitation light.
  • the color wheel 103 emits three primary colors in sequence. Light.
  • the substrate of the color wheel 103 has a strip shape, and a driving device is disposed at one end of the strip substrate, and the driving device drives the substrate to perform a periodic reciprocating motion.
  • the light source driving circuit 102 is electrically connected to the excitation light source 101 and is configured to provide a driving current for the excitation light source 101.
  • the excitation light source 101 emits the excitation light according to the driving current, and the optical power of the excitation light increases as the driving current increases.
  • the light source driving circuit 102 is electrically connected to the driving devices of the excitation light source 101 and the color wheel 103, respectively, for providing the driving current to the excitation light source 101 and the current required for the operation of the color wheel 103.
  • the light source driving circuit 102 dynamically changes the driving current with the rotation speed of the color wheel 103, thereby adjusting the energy conversion efficiency of the wavelength conversion material in each color section. Specifically, as the color wheel 103 rotates periodically, each color segment on the color wheel 103 sequentially receives the excitation light, and the light source driving circuit 102 changes the color segment according to each color segment that receives the excitation light. Drive current.
  • the color wheel rotation speed detecting device 200 includes a light emitting unit 201 for emitting detection light, a first processing unit 203 electrically connected to the light emitting unit 201, and a reflection light emitting unit provided on the color wheel 103.
  • the light emitting unit 201 includes a light emitting body 210 and a temperature compensation circuit 230 electrically connected to the light emitting body 210.
  • the light emitting body 210 is configured to emit detection light.
  • the light emitting body 210 may include a laser or a light emitting diode.
  • the light emitting body 210 is a light emitting diode, and the internal resistance of the light emitting body 210 varies with temperature.
  • FIG. 2 is a curve of the internal resistance of the light emitting body 210 as a function of the external ambient temperature.
  • FIG. 3 is a case where the light emitting body 210 is grounded through a fixed resistance device. Change curve of external ambient temperature.
  • the light emitting body 210 can work normally when the external ambient temperature ranges from -25 ° C to 85 ° C. It can be seen from FIG. 2 that the internal resistance curve of the light emitting body 210 turns at 25 ° C.
  • the preset temperature is set to 25 ° C. based on the light emitting body 210.
  • the preset temperature may change accordingly.
  • the internal resistance of the light emitting body 210 does not change with temperature and is constant at 24 ⁇ .
  • 24 ⁇ is only the internal resistance of a light emitting body 210.
  • the driving current remains unchanged at 50 mA; when the external ambient temperature is in the range of 25 ° C to 85 ° C, the internal resistance of the light emitting body 210 ranges from 24 ⁇ to 120 ⁇ .
  • the detection and control unit 207 cannot detect the detection light emitted from the reflection unit 205, which further affects the detection accuracy of the color wheel rotation speed detection device 200.
  • the first processing unit 203 is configured to apply external light.
  • the ambient temperature is compared with the preset temperature.
  • the first processing unit 203 outputs a logic level.
  • the logic level is a high level.
  • the temperature compensation circuit 230 electrically connected to the light emitting body 210 includes a first terminal 231 and an input terminal 236.
  • the input terminal 236 is electrically connected to the first processing unit 203 and is used to receive an output signal of the first processing unit 203; the first terminal 231 is used to be electrically connected to the light emitting body 210.
  • the temperature compensation circuit 230 is configured to dynamically adjust the resistance of the line where the light emitting body 210 is located according to the output signal of the first processing unit 203, so that the driving current of the light emitting body 210 is within a preset current range, thereby keeping the light emitting brightness of the light emitting body 210 reflected.
  • the reflection from the unit 205 can always be detected by the detection and control unit 207.
  • FIG. 4 is a circuit diagram of the color wheel rotation speed detecting device 200 shown in FIG. 1 in the first embodiment.
  • the temperature compensation circuit 230 further includes a second terminal 232 and a third terminal 233.
  • the resistance between the second terminal 232 and the reference ground is a fixed value, and a limited current resistance R2 is set between the second terminal 232 and the reference ground; the resistance between the third terminal 233 and the reference ground varies with the external ambient temperature
  • a thermistor R3 is provided between the third terminal 233 and the reference ground.
  • the thermistor R3 is a negative temperature coefficient thermistor.
  • the first processing unit 203 does not output the logic level, the first terminal 231 is electrically connected to the second terminal 232, and the light emitting body 210 is grounded through the current limiting resistor R2; if the external ambient temperature is greater than 25 °C, the first processing unit 203 outputs the logic level, the first terminal 231 and the third terminal 233 are electrically connected, the light emitting body 210 is grounded through the thermistor R3, and the thermistor R3 automatically adjusts the resistance value according to the external ambient temperature. Therefore, when the resistance value of the light body 210 changes with temperature, the resistance value of the light body 210 is compensated.
  • the temperature compensation circuit 200 further includes a relay 234 and a switching circuit 235.
  • the relay 234 is a switching relay and includes a coil, a static contact, and two moving contacts.
  • the first terminal 231 is a static contact of the relay 234, and the second terminal 232 and the third terminal 233 are the two moving contacts, respectively.
  • the temperature compensation circuit 230 further includes a zener diode 238 connected in parallel across the relay 234. It can be understood that, in other embodiments, the Zener diode 238 may be omitted or other protection devices may be used.
  • the switching circuit 235 includes an input terminal 236 and an output terminal 237.
  • the output terminal 237 is electrically connected to the coil in the relay 234.
  • the switch circuit 235 When the first processing unit 203 outputs the logic level, the switch circuit 235 is turned on, a current flows through the coil and the line where the output terminal 237 is located, the relay 234 is attracted, and the first terminal 231 is disconnected from the second terminal.
  • 232 is electrically connected to the third terminal 233, and the light emitting body 210 is grounded through the thermistor R3.
  • the switch circuit 235 is turned off, no current flows in the line where the coil and the output terminal 237 are located, the relay 234 is released, and the first terminal 231 is disconnected from the third terminal.
  • 233 is electrically connected, and is electrically connected to the second terminal 232, and the light emitting body 210 is grounded through the current limiting resistor R2.
  • the switching circuit 235 includes a transistor, the base of the transistor is electrically connected to the input terminal 236, and the collector of the transistor is the output terminal 237. In one embodiment, the emitter of the transistor is an output terminal 237.
  • the color wheel rotation speed detecting device 200 further includes a temperature sensing device 209.
  • the temperature sensing device 209 is configured to sense an external ambient temperature and is used to transmit a temperature signal corresponding to the external ambient temperature to the first processing unit 203.
  • the first processing unit 203 includes a temperature sensing unit, so that the temperature sensing device 209 is omitted.
  • the detection and control unit 207 is configured to receive the detection light periodically emitted by the reflection unit 205, and calculate the number of times of the received detection light to determine the rotation speed of the color wheel 103.
  • the detection and control unit 207 includes a phototransistor Q, a comparator circuit 273, and a second processing unit 275.
  • the phototransistor Q is used to convert the received periodic detection light into a corresponding electrical pulse signal.
  • the comparator circuit 273 is electrically connected to the phototransistor Q and is used to perform the electrical pulse signal with a preset voltage value. Compare and output a comparison result; the second processing unit 275 counts the electrical pulses according to the comparison result.
  • the collector B of the phototransistor Q is electrically connected to the power source VCC through a current limiting resistor, and the emitter of the phototransistor Q is grounded.
  • the phototransistor Q is turned off, and the voltage at the collector B is The output voltage of the power source VCC;
  • the reflection unit 205 on the color wheel 103 rotates to a preset position, the detection light emitted by the light emitting body 210 is irradiated onto the reflection unit 205, and the reflection unit 205 reflects the detection light to the phototransistor Q,
  • the phototransistor Q is turned on, and the voltage at the collector point B is close to 0V.
  • the collector B of the phototransistor Q is electrically connected to the input terminal of the comparator circuit 273.
  • the comparator circuit 273 is composed of a comparator and a passive element.
  • a non-inverting input terminal C of the comparator is electrically connected to the power source VCC through a voltage dividing circuit, and a reverse input terminal of the comparator is electrically connected to the collector B.
  • the voltage dividing circuit divides the voltage provided by the power source VCC and obtains a preset voltage input to the non-inverting input terminal C.
  • the comparator compares the voltage at the collector B with the preset voltage. When the voltage at B is less than the preset voltage, the comparator outputs a high level, and if the voltage at the collector B is greater than the preset voltage, the comparator outputs a low level.
  • the first processing unit 203 may be a microprocessor
  • the second processing unit 275 may be a main processing chip of a projection device.
  • the first processing unit 203 and the second processing unit 275 may be the same processing chip.
  • the first processing unit 203 and the second processing unit 275 may be a central processing unit (CPU), and may also be other general-purpose processors, digital signal processors (DSP), Application-specific integrated circuits (Application Specific Integrated Circuits, ASICs), ready-made programmable gate arrays (Field-Programmable Gate Arrays, FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the power source VCC outputs a voltage of 3.3V, and simultaneously supplies power to the phototransistor Q, the voltage dividing circuit, and the comparator.
  • the collector B When the phototransistor Q is turned off, the collector B outputs 3.3V, the voltage at the non-inverting input C is less than the voltage at the collector B, and the comparator output voltage is 0; when the phototransistor Q is turned on, the collector B outputs voltage Between 0 and 0.5V, the voltage at the non-inverting input terminal C is greater than the voltage at the collector B, and the comparator output voltage is 3.3V.
  • FIG. 5 it is a schematic diagram of output waveforms of the collector B and the comparator output terminal D.
  • the comparator outputs an electrical pulse signal corresponding to the output of the collector B and an electrical signal corresponding to the rotation period of the color wheel 103.
  • the inverting input terminal of the comparator is electrically connected to the power source VCC through a voltage dividing circuit, and the non-inverting input terminal C of the comparator is electrically connected to the collector B.
  • FIG. 6 is a schematic structural diagram of the color wheel 103 shown in FIG. 1.
  • the reflection unit 205 is disposed on the moving color wheel 103.
  • the reflection unit 205 is periodically located on the light path where the light emitting body 210 emits the detection light driven by the color wheel 103.
  • the reflection unit 205 is configured to reflect the detection light.
  • the reflection unit 205 may be a reflection mirror or a reflection film or a reflection surface disposed on the surface of the color wheel 103.
  • a light blocking element is disposed between the light emitting body 210 and the detection and control unit 207. Further, the light blocking element is provided between the light emitting body 210 and the phototransistor Q to prevent the detection light emitted by the light emitting body 210 from passing through the reflection unit.
  • the reflection of 205 irradiates the phototransistor Q.
  • FIG. 7 is a curve of the internal resistance of the light-emitting body 210 and the resistance of the thermistor as a function of the external ambient temperature.
  • the driving voltage of the branch where the light emitting body 210 is increased is increased, so that when the light emitting body 210 is grounded through the current limiting resistor R2, the light emitting body 210 can work normally.
  • the driving voltage of the branch where the light emitting body 210 is located is 1.4V, and when the external ambient temperature is less than 25 ° C., the internal resistance of the light emitting body 210 is 24 ⁇ , the driving current is 50mA, and the current limiting resistance R2 is 4 ⁇ .
  • the temperature coefficient of the internal resistance of the light emitting body 210 is 1.6, so the negative temperature coefficient of the thermistor R3 is -1.6. It has been found through experiments that when the driving current of the light emitting body 210 is 20 mA, the voltage value at the collector B is just smaller than the voltage generated by the power source VCC at point C of the non-inverting input terminal after the partial voltage is 1.65V.
  • the light emitting body 210 The internal resistance is 70 ⁇ . It is not difficult to conclude that the resistance of the thermistor R3 at 116C is 116 ⁇ . Thereby determining the parameters of the thermistor R3. It can be understood that the thermistor R3 can be flexibly selected according to requirements.
  • FIG. 8 is a change curve of the resistance value of the branch where the light emitting body 210 is located according to the external ambient temperature
  • FIG. 9 is a change curve of the driving current of the light emitting body 210 according to the external ambient temperature.
  • the driving current of the light emitter 210 is always greater than 20mA, thereby ensuring that the detection light emitted by the light emitter 210 can always be detected after being reflected by the reflection unit 205.
  • the control unit 207 detects that the detection accuracy of the color wheel rotation speed detecting device 200 does not decrease with the change of the external environment temperature.
  • the preset current range is the first current range. For example, 45 to 55 mA; when the external ambient temperature is greater than the preset temperature, the preset current range is a second current range, for example, 20 to 30 mA; wherein the first current range and the second current range different.
  • the first current range and the second current range can be set as required.
  • the switching circuit 325 includes a photocoupler, and the photocoupler includes a light emitting diode and a phototransistor inside; wherein an electrode of the light emitting diode is electrically connected to the input terminal 336, and an electrode of the phototransistor is Output terminal 337.
  • the negative electrode of the light emitting diode is electrically connected to the input terminal 336, and the collector of the phototransistor is the output terminal 337, and is electrically connected to the coil of the relay 334.
  • the temperature compensation circuit 330 further includes an inverter connected between the first processing unit 303 and the input terminal 336, and the anode of the light emitting diode is electrically connected to the power source VCC2.
  • the first processing unit 303 When the external ambient temperature is greater than 25 ° C, the first processing unit 303 outputs a high level, which is converted to a low level after the inverter, the light emitting diode in the photocoupler emits light, the photocoupler is turned on, and the relay 334 pull-in. When the external ambient temperature is less than 25 ° C, the first processing unit 303 outputs a low level, which is converted to a high level after the inverter. The light emitting diode in the photocoupler does not emit light, and the photocoupler is turned off. Relay 334 is released.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Nonlinear Science (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Optical Transform (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

一种色轮转速检测装置(200)、光源系统(10)及投影设备,色轮转速检测装置(200),包括:第一处理单元(203),用于将外部环境温度与预设温度进行比较,当外部环境温度大于预设温度时,第一处理单元(203)输出逻辑电平;发光单元(201),包括:发光体(210),用于发出检测光;温度补偿电路(230),温度补偿电路(230)根据逻辑电平及外部环境温度,调整发光体(210)所在线路的阻值,使得发光体(210)的驱动电流位于预设电流范围内;反射单元(205),设置于运动的色轮(103)上并用于反射检测光,检测与控制单元(207),用于接收反射单元(205)周期性出射的检测光,并计算检测光的入射次数,以确定色轮(103)的转速。色轮转速检测装置(200)的检测精准度不随外部环境温度的变化而降低。

Description

色轮转速检测装置、光源系统及投影设备 技术领域
本发明涉及投影技术领域,尤其涉及一种色轮转速检测装置、光源系统及投影设备。
背景技术
本部分旨在为权利要求书中陈述的本发明的具体实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
目前激光投影仪在色轮后面都会安装一个色轮转速检测器,以检测色轮的转速并以频率的方式及时反馈给处理器,主芯片根据检测到的色轮转速值,向电源VCC恒流板发出打开或关闭激发光源的控制信号,从而控制驱动电路的驱动电压的输出。
但产品在实际工作中,色轮转速检测器测量会出现一定误差,从而影响主芯片对激光电流的控制。其中影响色轮转速的一个重要原因是由于产品内部的散热不佳导致色轮转速检测芯片周围的温度升高,进而影响对色轮转速值的读取最终影响主芯片对电源VCC恒流板的控制。
发明内容
为解决现有技术温度升高导致的色轮转速检测准确度不高的技术问题,本发明提供一种可以有效减小温度升高对色轮转速检测准确度影响的色轮转速检测装置,本发明还提供一种光源系统及投影设备。
一种色轮转速检测装置,包括:
第一处理单元,用于将外部环境温度与预设温度进行比较,当外部环境温度大于所述预设温度时,所述第一处理单元输出逻辑电平;
发光单元,包括:
发光体,用于发出检测光;
温度补偿电路,包括:
输入端,与所述第一处理单元电连接;及
第一端,与所述发光体电连接;
所述温度补偿电路根据所述逻辑电平及外部环境温度,调整所述发光体所在线路的阻值,使得所述发光体的驱动电流位于预设电流范围内;
反射单元,设置于运动的色轮上用于反射所述检测光,所述反射单元在所述色轮带动下周期性位于所述检测光的光路上;及
检测与控制单元,用于接收所述反射单元周期性出射的检测光,并计算入射检测光的次数,以确定所述色轮的转速。
进一步地,所述温度补偿电路还包括:
第二端,与参考地之间的阻值为固定值;及
第三端,与参考地之间的阻值随外部环境温度变化;
若所述第一处理单元未输出所述逻辑电平,则所述第一端与所述第二端电连接;
若所述第一处理单元输出所述逻辑电平,则所述第一端与所述第三端电连接。
进一步地,当外部环境温度小于所述预设温度时,所述预设电流范围为第一电流范围;
当外部环境温度大于所述预设温度时,所述预设电流范围为第二电流范围;
其中,所述第一电流范围与所述第二电流范围不同。
进一步地,所述温度补偿电路还包括:
电连接于所述第二端与参考地之间的限流电阻;及
电连接于所述第三端与参考地之间的热敏电阻。
进一步地,所述发光体的阻值随外部环境温度的升高而增大,所述热敏电阻为负温度系数热敏电阻。
进一步地,所述温度补偿电路还包括继电器及开关电路;
所述继电器包括一静触点及两动触点,所述第一端为所述继电器的静触点,所述第二端与所述第三端分别为所述两动触点;
所述开关电路包括输出端及所述输入端,所述输出端与所述继电器中线圈电连接;
当所述第一处理单元输出所述逻辑电平时,所述开关电路导通,所述线圈与所述输出端所在的线路中有电流流过。
进一步地,所述开关电路还包括并联于所述继电器两端的稳压二极管。
进一步地,所述开关电路包括三极管,所述三极管的基极电连接所述输入端,所述三极管的集电极或发射极为所述输出端。
进一步地,所述开关电路包括光电耦合器,
所述光电耦合器包括反相器、发光二极管及光敏三极管;
其中,所述反相器连接在所述第一处理单元及所述输入端之间,所述发光二极管的一电极电连接所述输入端,所述光敏三极管的一电极为所述输出端。
进一步地,所述反射单元为反射镜或设置于所述色轮表面的反射膜或反射面。
进一步地,色轮转速检测装置还包括温度感测器件,所述温度感测器件用于感测外部环境温度,并用于将对应外部环境温度的温度信号传输至所述第一处理单元。
进一步地,所述检测与控制单元包括:
光敏三极管,用于将接收到的周期性的检测光转换为电脉冲信号;
比较器电路,与所述光敏三极管电连接,用于将所述电脉冲信号与预设电压值进行比较,并输出比较结果;
第二处理单元,根据所述比较结果对所述电脉冲进行计数。
进一步地,所述光源系统包括:
激发光源,用于发出激发光;
色轮,用于在所述激发光的照射下产生至少一种颜色的荧光;
光源驱动电路,与所述激发光源电连接;及
如上所述的色轮转速检测装置;
所述检测与控制单元用于根据所述色轮的转速输出控制信号至所述光源驱动电路,所述光源驱动电路根据所述控制信号为所述激发光 源提供驱动电流。
一种投影设备,包括如上所述的光源系统。
本发明提供的色轮转速检测装置中的温度补偿电路根据外部环境温度动态调整所述发光体所在线路的阻值,使得所述发光体的驱动电流位于预设电流范围内,色轮转速检测装置的检测精准度不随外部环境温度的变化而降低。
附图说明
为了更清楚地说明本发明实施例/方式技术方案,下面将对实施例/方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例/方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施方式提供的光源系统的原理方框图。
图2为发光体的内阻随外部环境温度的变化曲线。
图3为发光体通过固定阻值器件接地的情况下,发光体的驱动电流随外部环境温度的变化曲线。
图4为图1所示的色轮转速检测装置在第一实施方式中的电路图。
图5为集电极B与检测与控制单元中的比较器输出端D输出波形示意图。
图6为图1所示的色轮的结构示意图。
图7为发光体的内阻与热敏电阻的阻值随外部环境温度的变化曲线。
图8为发光体所在支路的阻值随外部环境温度的变化曲线。
图9为发光体的驱动电流随外部环境温度的变化曲线。
图10为图1所示的色轮转速检测装置的另一实施方式示意图。
主要元件符号说明
光源系统 10
激发光源 101
光源驱动电路 102
色轮 103
色轮转速检测装置 200、300
发光单元 201
发光体 210
温度补偿电路 230、330
第一端 231
第二端 232
第三端 233
继电器 234、334
开关电路 235、325
输入端 236、336
输出端 237、337
第一处理单元 203、303
反射单元 205
检测与控制单元 207
光敏三极管 Q
集电极 B
同相输入端 C
输出端 D
比较器电路 273
第二处理单元 275
电源 VCC、VCC2
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施例对本发明进行详细描述。需要说明的是,在不冲 突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
本发明实施方式提供一种色轮转速检测装置,用于光源系统中的色轮转速检测,所述光源系统能够应用于投影设备中,所述投影设备可以包括LCD(Liquid Crystal Display,液晶显示器)、LCOS(Liquid Crystal on Silicon,即液晶附硅,也叫硅基液晶)、DMD(Digital Mirror Device,Digital Micromirror Device,数字微镜元件)中的一种光机系统。
请参阅图1,为本发明实施方式提供的光源系统10的原理方框图。光源系统10包括激发光源101、光源驱动电路102、色轮103及色轮转速检测装置200。其中,激发光源101与光源驱动电路102电连接,光源驱动电路102与色轮转速检测装置200电连接。色轮103在驱动装置的带动下做周期性运动,色轮转速检测装置200根据色轮103的转速输出控制信号至光源驱动电路102,光源驱动电路102根据所述控制信号为激发光源101提供驱动电流,激发光源101用于在光源驱动电路102的驱动下发出激发光,色轮103在所述激发光的激发下产出至少一种颜色的荧光。
本实施方式中,激发光源101为蓝色光源,用于发出蓝色激发光。可以理解的是,激发光源101不限于蓝色光源,激发光源101还可以是红色光源、绿色光源或紫外光源。激发光源101中设置有蓝色激光器用于发出蓝色激发光。在其他实施方式中,还可以将激发光源101中的蓝色激光器替换为蓝色发光二级管。激发光源101中可以设置一个或两个蓝色激光器或蓝色激光器阵列,可以理解的是,可以根据需 要灵活设置激光器的数量。激发光源101中还可以设置用于对所述激光器进行匀光的匀光器件,所述匀光器件可以是匀光棒或复眼透镜。在一种实施方式中,所述匀光器件中可以设置用于消相干的散射膜。所述匀光器件出射的光线用于照射至色轮103。
色轮103包括基板及设置于基板上的驱动装置。在本实施方式中,所述基板呈圆形,所述基板的表面设置有多个颜色区段,每个颜色区段设置有不同的波长转换材料(比如荧光粉或量子点等),所述波长转换材料用于接收所述激发光,并将所述激发光转换为其他波长范围的至少一种颜色(或波长范围)的荧光出射。在本实施方式中,所述基板表面设置有三个颜色区段,分别为蓝色区、红色区及绿色区。所述蓝色区设置有散射材料,用于将所述激发光散射后出射,以改变所述激发光的发散角并对所述激发光进行消相干处理。所述红色区与所述绿色区分别设置有红色及绿色荧光粉,以将蓝色激发光转换为红色荧光及绿色荧光出射。在一种实施方式中,色轮103的基板表面设置有蓝色区及黄色区,所述蓝色区用于对激发光进行散射,所述黄色区用于将所述激发光转换为黄色荧光,可以理解的是,色轮103表面还可以设置其他颜色的各个区段,并不以此为限。在一种实施方式中,色轮103表面设置有第一红色区、第二红色区、绿色区及蓝色区,其中,所述蓝色区用于对所述激发光进行散射,所述绿色区用于将所述激发光转换为绿色荧光,所述第一红色区与所述第二红色区用于将所述激发光分别转换为宽谱红色荧光及窄谱红色荧光,通过调节所述宽谱红色荧光及所述窄谱红色荧光的占比,从而动态调整光源系统10出射光的色域范围。
在一种实施方式中,所述基板上还设置有滤光单元,用于将色轮103不同颜色区段出射的光线进行滤光。优选地,所述滤光单元设置于所述基板的边缘,或设置于所述基板的底面。
所述驱动装置设置于所述基板底面的几何中心,用于带动基板周期性旋转,所述基板上的不同颜色区段周期性位于所述激发光的光路上,色轮103时序出射三种基色光。在一种实施方式中,色轮103的基板呈条形,驱动装置设置于条形基板的一端,所述驱动装置带动所 述基板做周期性的往复运动。
本实施方式中,光源驱动电路102与激发光源101电连接,用于为激发光源101提供驱动电流。激发光源101根据所述驱动电流发出所述激发光,所述激发光的光功率随着所述驱动电流增大而增大。在一种实施方式中,光源驱动电路102分别与激发光源101及色轮103的驱动装置电连接,用以提供所述驱动电流至激发光源101,以及提供色轮103运作所需的电流。光源驱动电路102随着色轮103的转速动态地改变驱动电流,以此调整各颜色区段中的波长转换材料的能量转换效率。具体而言,随着色轮103周期性的转动,色轮103上的各颜色区段依序地接收所述激发光,而光源驱动电路102根据接收所述激发光的各颜色区段改变所述驱动电流。
如图1所示,色轮转速检测装置200包括:用于发出检测光的发光单元201、及与发光单元201电连接的第一处理单元203、设置于色轮103上的用于反射发光单元201出射的检测光的反射单元205,及用于接收反射单元205周期性出射的检测光,并计算所述检测光的入射次数的检测与控制单元207。
具体地,发光单元201,包括:发光体210及与发光体210电连接的温度补偿电路230。其中,发光体210用于发出检测光。发光体210可以包括激光器或发光二极管,本发明实施方式中,发光体210为发光二极管,并且,发光体210的内阻随温度变化。
请结合图1参阅2-图3,图2为发光体210的内阻随外部环境温度的变化曲线,图3为发光体210通过固定阻值器件接地的情况下,发光体210的驱动电流随外部环境温度的变化曲线。本发明实施方式中,发光体210在外部环境温度范围为-25℃~85℃范围内时可以正常工作。从图2中可以看出,发光体210在25℃时内阻曲线发生转折,本发明实施方式中,基于发光体210将预设温度设置为25℃。可以理解的是,当采用不同的发光体210时,所述预设温度可能会相应发生变化。如图2及图3所示,发光体210的在-25℃~25℃的环境中,内阻不随温度变化,恒定为24Ω,24Ω仅是一款发光体210的内阻,当采用不同的发光体210时,阻值可能会不同。驱动电流保持50mA不 变;当外部环境温度在25℃-85℃范围内时,发光体210的内阻范围为24Ω~120Ω。随着外部环境的温度的逐步升高,发光体210的内阻逐渐增大,发光体210的驱动电流逐渐减小,发光体210的发光亮度逐渐降低。由于发光体210的发光亮度较低会导致检测与控制单元207无法检测到反射单元205出射的检测光,进而影响到色轮转速检测装置200的检测准确性。
如图1所示,为避免发光体210的发光亮度随温度升高而降低,进而影响到色轮转速检测装置200的检测准确性,本发明实施方式中,第一处理单元203用于将外部环境温度与所述预设温度进行比较,当外部环境温度大于所述预设温度时,第一处理单元203输出逻辑电平,在本发明实施方式中,所述逻辑电平为高电平。与发光体210电连接的温度补偿电路230包括第一端231及输入端236。输入端236与第一处理单元203电连接,用于接收第一处理单元203的输出信号;第一端231用于与发光体210电连接。温度补偿电路230用于根据第一处理单元203的输出信号动态调整发光体210所在线路的阻值,使得发光体210的驱动电流位于预设电流范围内,进而保持发光体210的发光亮度经反射单元205的反射后始终能够被检测与控制单元207检测到。
具体地,请参阅图4,为图1所示的色轮转速检测装置200在第一实施方式中的电路图。温度补偿电路230还包括:第二端232与第三端233。其中,第二端232与参考地之间的阻值为固定值,第二端232与参考地之间设置有限流电阻R2;第三端233与参考地之间的阻值随外部环境温度变化,第三端233与参考地之间设置有热敏电阻R3。在本实施方式中,由于发光体210的内阻随温度升高而线性增大,为对发光体210的阻值进行温度补偿,热敏电阻R3为负温度系数热敏电阻。
若外部环境温度小于25℃,则第一处理单元203不输出所述逻辑电平,第一端231与第二端232电连接,发光体210通过限流电阻R2接地;若外部环境温度大于25℃,则第一处理单元203输出所述逻辑电平,第一端231与第三端233电连接,发光体210通过热敏电阻R3 接地,热敏电阻R3根据外部环境温度自动调整阻值,从而对当光体210的阻值随温度变化后,实现对发光体210的阻值进行补偿。
温度补偿电路200还包括继电器234及开关电路235。继电器234为转换型继电器,包括一线圈、一静触点及两动触点。第一端231为继电器234的静触点,第二端232与第三端233分别为所述两动触点。温度补偿电路230还包括并联于继电器234两端的稳压二极管238。可以理解的是,在其他实施方式中,可以省略稳压二极管238或采用其他的保护器件。
开关电路235包括输入端236及输出端237,输出端237与继电器234中线圈电连接。当第一处理单元203输出所述逻辑电平时,开关电路235导通,所述线圈与输出端237所在的线路中有电流流过,继电器234吸合,第一端231断开与第二端232的电连接,并与第三端233实现电连接,发光体210经过热敏电阻R3接地。当第一处理单元203未输出所述逻辑电平时,开关电路235关断,所述线圈与输出端237所在的线路中没有电流流过,继电器234释放,第一端231断开与第三端233的电连接,并与第二端232实现电连接,发光体210经过限流电阻R2接地。
本实施方式中,开关电路235包括三极管,所述三极管的基极电连接输入端236,所述三极管的集电极为输出端237。在一种实施方式中,三极管的发射极为输出端237。
如图3所示,色轮转速检测装置200还包括温度感测器件209,温度感测器件209用于感测外部环境温度,并用于将对应外部环境温度的温度信号传输至第一处理单元203。可以理解的是,在其他实施方式中,第一处理单元203包括温度感测单元,从而省略温度感测器件209。
检测与控制单元207用于接收所述反射单元205周期性出射的检测光,并计算接收到的检测光的次数,以确定色轮103的转速。检测与控制单元207包括:光敏三极管Q、比较器电路273及第二处理单元275。其中,光敏三极管Q用于将接收到的周期性的检测光转换为对应的电脉冲信号;比较器电路273,与光敏三极管Q电连接,用于 将所述电脉冲信号与预设电压值进行比较,并输出比较结果;第二处理单元275,根据所述比较结果对所述电脉冲进行计数。
具体地,光敏三极管Q的集电极B经过限流电阻电连接电源VCC,光敏三极管Q的发射极接地,当没有检测光照射至反射单元205时,光敏三极管Q关断,集电极B处电压为电源VCC的输出电压;当色轮103上的反射单元205转动至预设位置时,发光体210发出的检测光照射至反射单元205上,反射单元205将所述检测光反射至光敏三极管Q,光敏三极管Q导通,集电极B点电压接近0V。
光敏三极管Q的集电极B与比较器电路273的输入端电连接。比较器电路273由比较器及被动元件组成,所述比较器的同相输入端C通过分压电路电连接电源VCC,所述比较器的反向输入端与集电极B电连接。所述分压电路对电源VCC提供的电压进行分压并得到输入至同相输入端C的预设电压,所述比较器将集电极B处的电压与所述预设电压进行比较,若集电极B处的电压小于所述预设电压,则所述比较器输出高电平,若集电极B处的电压大于所述预设电压,则所述比较器输出低电平。
本发明实施方式中,第一处理单元203可以为微处理器,第二处理单元275可以为投影设备的主处理芯片。在一种实施方式中,第一处理单元203与第二处理单元275可以为同一处理芯片。可以理解的是,第一处理单元203与第二处理单元275可以分别是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在本实施方式中,电源VCC输出3.3V电压,同时为光敏三极管Q及所述分压电路及所述比较器供电。光敏三极管Q关断时,集电极B输出3.3V,同相输入端C处的电压小于集电极B处的电压,所述比较器输出电压为0;光敏三极管Q导通时,集电极B输出电压在0~0.5V 之间,同相输入端C处的电压大于集电极B处的电压,所述比较器输出电压为3.3V。如图5所示,为集电极B与所述比较器输出端D输出波形示意图。随着色轮103周期性运动,所述比较器输出与集电极B输出的电脉冲信号、及与色轮103旋转周期对应的电信号。在一种实施方式中,比较器的反向输入端通过分压电路电连接电源VCC,所述比较器的同相输入端C与集电极B电连接。
请参阅图6,为图1所示的色轮103的结构示意图。反射单元205设置于运动的色轮103上,反射单元205在色轮103带动下周期性位于发光体210出射检测光所在的光路上,反射单元205用于反射所述检测光。可以理解的是,反射单元205可以为反射镜或设置于色轮103表面的反射膜或反射面。发光体210与检测与控制单元207之间设置有光阻隔元件,进一步地,所述光阻隔元件设置于发光体210及光敏三极管Q之间,以避免发光体210出射的检测光不经过反射单元205的反射而照射至光敏三极管Q。
请结合图4参阅图7,图7为发光体210的内阻与热敏电阻的阻值随外部环境温度的变化曲线。色轮转速检测装置200中,增大发光体210所在支路的驱动电压,使得发光体210通过限流电阻R2接地时,发光体210能够正常工作。本实施方式中,发光体210所在支路的驱动电压为1.4V,外部环境温度小于25℃时,发光体210内阻为24Ω,驱动电流为50mA,限流电阻R2为4Ω。外部环境温度小于25℃时,根据图7所示的发光体210内阻随温度的变化曲线,可以求得发光体210的内阻与外部环境温度之间的函数关系,及热敏电阻R3的阻值与外部环境温度的关系。具体地,发光体210的内阻温度系数为1.6,因此热敏电阻R3的负温度系数为-1.6。经过试验发现,当发光体210的驱动电流为20mA时,此时集电极B处的电压值刚好小于电源VCC在经过分压后在同相输入端C点产生的电压1.65V,这时发光体210内部的内阻为70Ω。不难得出,热敏电阻R3在25℃时的阻值为116Ω。从而确定热敏电阻R3的参数。可以理解的是,可以根据需要灵活选择热敏电阻R3。
请参阅图8-图9,图8为发光体210所在支路的阻值随外部环境 温度的变化曲线,图9为发光体210的驱动电流随外部环境温度的变化曲线。经过温度补偿电路230的修正后,当外部环境温度低于所述预设温度时,发光体210所在支路的阻值保持在28Ω,驱动电流为50mA;当外部环境温度大于所述预设温度时,发光体210所在支路的阻值保持在140Ω,驱动电流为20mA,发光体210的驱动电流始终大于20mA,从而保障了发光体210发出的检测光经过反射单元205反射后始终能被检测及控制单元207检测到,色轮转速检测装置200的检测精准度不随外部环境温度的变化而降低。
可以理解的是,由于发光体210所在支路的阻值及驱动电流是一定范围内波动的,故当外部环境温度小于所述预设温度时,所述预设电流范围为第一电流范围,比如45~55mA;当外部环境温度大于所述预设温度时,所述预设电流范围为第二电流范围,比如,20~30mA;其中,所述第一电流范围与所述第二电流范围不同。在其他实施方式中,可以根据需要设置所述第一电流范围及所述第二电流范围。
请参阅图10,为图1所示的色轮转速检测装置300的另一实施方式示意图。本实施方式中,开关电路325包括光电耦合器,所述光电耦合器内部包括发光二极管及光敏三极管;其中,所述发光二极管的一电极与输入端336电连接,所述光敏三极管的一电极为输出端337。具体地,所述发光二极管的负极电连接输入端336,所述光敏三极管的的集电极为输出端337,并与继电器334的线圈电连接。温度补偿电路330还包括连接在第一处理单元303及输入端336之间的反相器,所述发光二极管的正极与电源VCC2电连接。
当外部环境温度大于25℃时,第一处理单元303输出高电平,经过所述反相器后转换为低电平,所述光电耦合器中的发光二极管发光,光电耦合器导通,继电器334吸合。当外部环境温度小于25℃时,第一处理单元303输出低电平,经过所述反相器后转换为高电平,所述光电耦合器中的发光二极管不发光,光电耦合器关断,继电器334释放。
需要说明的是,在本发明的精神或基本特征的范围内,适用于第一实施方式中的各具体方案也可以相应的适用于第二实施方式中,为 节省篇幅及避免重复起见,在此就不再赘述。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。装置权利要求中陈述的多个装置也可以由同一个装置或系统通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

Claims (14)

  1. 一种色轮转速检测装置,其特征在于,包括:
    第一处理单元,用于将外部环境温度与预设温度进行比较,当外部环境温度大于所述预设温度时,所述第一处理单元输出逻辑电平;
    发光单元,包括:
    发光体,用于发出检测光;
    温度补偿电路,包括:
    输入端,与所述第一处理单元电连接;及
    第一端,与所述发光体电连接;
    所述温度补偿电路根据所述逻辑电平及外部环境温度,调整所述发光体所在线路的阻值,使得所述发光体的驱动电流位于预设电流范围内;
    反射单元,设置于运动的色轮上并用于反射所述检测光,所述反射单元在所述色轮带动下周期性位于所述检测光的光路上;及
    检测与控制单元,用于接收所述反射单元周期性出射的检测光,并计算所述检测光的入射次数,以确定所述色轮的转速。
  2. 如权利要求1所述的色轮转速检测装置,其特征在于,所述温度补偿电路还包括:
    第二端,与参考地之间的阻值为固定值;及
    第三端,与参考地之间的阻值随外部环境温度变化;
    若所述第一处理单元未输出所述逻辑电平,则所述第一端与所述第二端电连接;
    若所述第一处理单元输出所述逻辑电平,则所述第一端与所述第三端电连接。
  3. 如权利要求2所述的色轮转速检测装置,其特征在于,
    当外部环境温度小于所述预设温度时,所述预设电流范围为第一电流范围;
    当外部环境温度大于所述预设温度时,所述预设电流范围为第二电流范围;
    其中,所述第一电流范围与所述第二电流范围不同。
  4. 如权利要求2所述的色轮转速检测装置,其特征在于,所述温度补偿电路还包括:
    电连接于所述第二端与参考地之间的限流电阻;及
    电连接于所述第三端与参考地之间的热敏电阻。
  5. 如权利要求4所述的色轮转速检测装置,其特征在于,所述发光体的阻值随外部环境温度的升高而增大,所述热敏电阻为负温度系数热敏电阻。
  6. 如权利要求2所述的色轮转速检测装置,其特征在于,所述温度补偿电路还包括继电器及开关电路;
    所述继电器包括一静触点及两动触点,所述第一端为所述继电器的静触点,所述第二端与所述第三端分别为所述两动触点;
    所述开关电路包括输出端及所述输入端,所述输出端与所述继电器中线圈电连接;
    当所述第一处理单元输出所述逻辑电平时,所述开关电路导通,所述线圈与所述输出端所在的线路中有电流流过。
  7. 如权利要求6所述的色轮转速检测装置,其特征在于,所述开关电路还包括并联于所述继电器两端的稳压二极管。
  8. 如权利要求6所述的色轮转速检测装置,其特征在于,所述开关电路包括三极管,所述三极管的基极电连接所述输入端,所述三极管的集电极或发射极为所述输出端。
  9. 如权利要求6所述的色轮转速检测装置,其特征在于,所述开关电路包括光电耦合器,所述光电耦合器包括反相器、发光二极管及光敏三极管;
    其中,所述反相器连接在所述第一处理单元及所述输入端之间,所述发光二极管的一电极电连接所述输入端,所述光敏三极管的一电极为所述输出端。
  10. 如权利要求1-9任意一项所述的色轮转速检测装置,其特征在于,所述反射单元为反射镜或设置于所述色轮表面的反射膜或反射面。
  11. 如权利要求1-9任意一项所述的色轮转速检测装置,其特征在 于,色轮转速检测装置还包括温度感测器件,所述温度感测器件用于感测外部环境温度,并用于将对应外部环境温度的温度信号传输至所述第一处理单元。
  12. 如权利要求1-9任意一项所述的色轮转速检测装置,其特征在于,所述检测与控制单元包括:
    光敏三极管,用于将接收到的周期性的检测光转换为电脉冲信号;
    比较器电路,与所述光敏三极管电连接,用于将所述电脉冲信号与预设电压值进行比较,并输出比较结果;
    第二处理单元,根据所述比较结果对所述电脉冲进行计数。
  13. 一种光源系统,其特征在于,所述光源系统包括:
    激发光源,用于发出激发光;
    色轮,用于在所述激发光的照射下产生至少一种颜色的荧光;
    光源驱动电路,与所述激发光源电连接;及
    如权利要求1-12任意一项所述的色轮转速检测装置;
    所述检测与控制单元用于根据所述色轮的转速输出控制信号至所述光源驱动电路,所述光源驱动电路根据所述控制信号为所述激发光源提供驱动电流。
  14. 一种投影设备,其特征在于,包括如权利要求13所述的光源系统。
PCT/CN2019/076638 2018-08-31 2019-03-01 色轮转速检测装置、光源系统及投影设备 WO2020042567A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021510831A JP7183394B2 (ja) 2018-08-31 2019-03-01 カラーホイール回転数検出装置、光源システム及び投影装置
US17/272,093 US11353475B2 (en) 2018-08-31 2019-03-01 Detecting device for detecting rotation speed of color wheel, light source system and projection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811014356.5 2018-08-31
CN201811014356.5A CN110873812B (zh) 2018-08-31 2018-08-31 色轮转速检测装置、光源系统及投影设备

Publications (1)

Publication Number Publication Date
WO2020042567A1 true WO2020042567A1 (zh) 2020-03-05

Family

ID=69642857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076638 WO2020042567A1 (zh) 2018-08-31 2019-03-01 色轮转速检测装置、光源系统及投影设备

Country Status (4)

Country Link
US (1) US11353475B2 (zh)
JP (1) JP7183394B2 (zh)
CN (1) CN110873812B (zh)
WO (1) WO2020042567A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095617A1 (ja) * 2021-11-29 2023-06-01 パナソニックIpマネジメント株式会社 制御装置および投写型映像表示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112986606B (zh) * 2021-03-11 2023-07-25 铜陵有色金属集团股份有限公司工程技术分公司 一种风机速度及加速度测试仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060126030A1 (en) * 2004-12-13 2006-06-15 Samsung Electronics Co., Ltd. Color wheel apparatus and optical engine having the same
CN101750855A (zh) * 2008-12-19 2010-06-23 绎立锐光科技开发(深圳)有限公司 投影系统、调色装置的保护方法及装置
CN103235470A (zh) * 2013-03-07 2013-08-07 芜湖雅图数字视频技术有限公司 一种保护荧光色轮的方法及设备
CN106124792A (zh) * 2016-06-13 2016-11-16 海信集团有限公司 一种色轮转速测量方法及装置
CN106468719A (zh) * 2015-08-14 2017-03-01 台达电子工业股份有限公司 色轮转速检测模块
CN206514947U (zh) * 2016-10-26 2017-09-22 深圳市光峰光电技术有限公司 色轮信号检测装置及投影装置
CN108073026A (zh) * 2016-11-15 2018-05-25 深圳市光峰光电技术有限公司 光源装置、光源装置启动方法及相关投影设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553857Y2 (zh) * 1976-09-14 1980-12-13
JPH0669600A (ja) * 1992-08-13 1994-03-11 Sony Corp 半導体レーザのapc温度補償回路及びこれを用いた半導体レーザ装置
US5245179A (en) * 1992-10-08 1993-09-14 Umax Data System Inc. Cylindrical color filter driver for an optical reader
JP3995179B2 (ja) 1999-03-24 2007-10-24 日本碍子株式会社 高精度型光電気変換器
JP2001045648A (ja) 1999-08-02 2001-02-16 Yazaki Corp 回路遮断装置
US6598007B2 (en) * 2000-01-05 2003-07-22 Texas Instruments Incorporated Digital control loop
US6755554B2 (en) * 2000-05-25 2004-06-29 Matsushita Electric Industrial Co., Ltd. Color wheel assembly and color sequential display device using the same, color wheel unit and color sequential display device using the same, and color sequential display device
JP4050580B2 (ja) 2002-09-13 2008-02-20 ホーチキ株式会社 フォトカプラ回路
US6950217B2 (en) * 2004-01-02 2005-09-27 Reflectivity, Inc. Spatial light modulators having photo-detectors for use in display systems
JP2007315862A (ja) 2006-05-24 2007-12-06 Nikon Corp 計数装置、絞り制御装置およびカメラ
JP5000429B2 (ja) * 2007-08-23 2012-08-15 オリンパスメディカルシステムズ株式会社 光源装置
JP2009086609A (ja) 2007-10-01 2009-04-23 Zero Rabo Kk 回転位置検出回路及びプロジェクタ装置
JP2013148453A (ja) 2012-01-19 2013-08-01 Sharp Corp 回転位置検出回路及びプロジェクター
CN104880890A (zh) * 2014-02-27 2015-09-02 中强光电股份有限公司 投影装置及其亮度调校方法
CN204178109U (zh) * 2014-09-03 2015-02-25 深圳市绎立锐光科技开发有限公司 一种色轮散热装置、色轮装置及发光装置
US9832433B2 (en) * 2015-11-04 2017-11-28 Hisense Co., Ltd. Laser light source, method for controlling dual color wheels of light source, and laser projection device
US10006610B2 (en) * 2015-11-04 2018-06-26 Hisnese Co., Ltd. Laser light source, method for controlling dual color wheels of light source, and laser projection device
CN105759549A (zh) * 2016-04-15 2016-07-13 苏州佳世达光电有限公司 色光产生组件、投影装置及投影方法
CN206541947U (zh) 2017-03-22 2017-10-03 仝达机电工业(惠州)有限公司 一种pcb快插端子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060126030A1 (en) * 2004-12-13 2006-06-15 Samsung Electronics Co., Ltd. Color wheel apparatus and optical engine having the same
CN101750855A (zh) * 2008-12-19 2010-06-23 绎立锐光科技开发(深圳)有限公司 投影系统、调色装置的保护方法及装置
CN103235470A (zh) * 2013-03-07 2013-08-07 芜湖雅图数字视频技术有限公司 一种保护荧光色轮的方法及设备
CN106468719A (zh) * 2015-08-14 2017-03-01 台达电子工业股份有限公司 色轮转速检测模块
CN106124792A (zh) * 2016-06-13 2016-11-16 海信集团有限公司 一种色轮转速测量方法及装置
CN206514947U (zh) * 2016-10-26 2017-09-22 深圳市光峰光电技术有限公司 色轮信号检测装置及投影装置
CN108073026A (zh) * 2016-11-15 2018-05-25 深圳市光峰光电技术有限公司 光源装置、光源装置启动方法及相关投影设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095617A1 (ja) * 2021-11-29 2023-06-01 パナソニックIpマネジメント株式会社 制御装置および投写型映像表示装置

Also Published As

Publication number Publication date
JP7183394B2 (ja) 2022-12-05
CN110873812A (zh) 2020-03-10
CN110873812B (zh) 2021-08-24
US20210325418A1 (en) 2021-10-21
JP2021536038A (ja) 2021-12-23
US11353475B2 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
JP6452172B2 (ja) 照明装置、ホイール劣化検出方法及びプロジェクタ
US8496333B2 (en) Illumination module having wavelength conversion unit, projection apparatus, and light source control method
US9891513B2 (en) Illumination unit and display
US20070165194A1 (en) Image display apparatus and control method therefor
WO2020042567A1 (zh) 色轮转速检测装置、光源系统及投影设备
US20150015850A1 (en) Laser light source module for projection system
US10382730B1 (en) Projection-type video image display apparatus
US10481389B2 (en) Curved-surface apparatus for wavelength converting
US8598811B2 (en) Projection-type display device and method of controlling thereof
US8820941B2 (en) Projection apparatus and light source adjusting method thereof
JP2007250236A (ja) 放電灯点灯装置及びプロジェクタ
JP2014164289A (ja) 光源装置および投写型映像表示装置
US10935875B2 (en) Projector with a dust resistance capability for long term operations
JP6590432B2 (ja) プロジェクタ及び駆動制御方法
US20140225518A1 (en) Semiconductor light source apparatus and projection type image displaying apparatus
KR101091209B1 (ko) 프로젝션 시스템
US11106120B2 (en) Projection device and light source system and projection method thereof
JP2018097282A (ja) 光源装置および画像投射装置
JP2016173451A5 (zh)
US20200186770A1 (en) Projection system, protection circuit and current monitoring method of image resolution enhancement device
JP6303542B2 (ja) 光源装置及び画像投影装置
KR20070072078A (ko) 투사형 영상표시기기의 제어장치 및 방법
TWM420737U (en) Light source module of micro projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021510831

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854789

Country of ref document: EP

Kind code of ref document: A1