WO2020040607A1 - 칼코겐 화합물, 이의 제조 방법, 및 이를 포함하는 열전소자 - Google Patents

칼코겐 화합물, 이의 제조 방법, 및 이를 포함하는 열전소자 Download PDF

Info

Publication number
WO2020040607A1
WO2020040607A1 PCT/KR2019/010787 KR2019010787W WO2020040607A1 WO 2020040607 A1 WO2020040607 A1 WO 2020040607A1 KR 2019010787 W KR2019010787 W KR 2019010787W WO 2020040607 A1 WO2020040607 A1 WO 2020040607A1
Authority
WO
WIPO (PCT)
Prior art keywords
chalcogen compound
compound
temperature
chalcogen
face
Prior art date
Application number
PCT/KR2019/010787
Other languages
English (en)
French (fr)
Inventor
김민경
박철희
박치성
정명진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020518791A priority Critical patent/JP7109850B2/ja
Priority to US16/756,019 priority patent/US11245062B2/en
Priority to EP19851005.9A priority patent/EP3686156B1/en
Priority to CN201980005259.6A priority patent/CN111247092B/zh
Publication of WO2020040607A1 publication Critical patent/WO2020040607A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/78Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/38Particle morphology extending in three dimensions cube-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a novel chalcogen compound, which exhibits excellent phase stability even at a low temperature, in particular, a driving temperature range of a thermoelectric device, exhibits excellent thermoelectric properties with low thermal conductivity, a method for preparing the same, and a thermoelectric device including the same.
  • thermoelectric conversion materials using waste heat as one of alternative energy is being accelerated.
  • thermoelectric conversion material depends on ZT, which is a thermoelectric performance index value of the thermoelectric conversion material.
  • ZT is determined according to Seebeck coefficient, electrical conductivity, thermal conductivity, and the like, as shown in Equation 1 below. More specifically, ZT is proportional to the square and electrical conductivity of the Seebeck coefficient and inversely proportional to thermal conductivity.
  • Equation 1 ⁇ is the electrical conductivity, S is the Seebeck coefficient, k is the thermal conductivity, T is the absolute temperature
  • thermoelectric conversion material having a crystal lattice structure related to or similar to sodium chloride (NaCl) and having some of the lattice sites empty It is known that exhibits excellent thermoelectric conversion characteristics. Materials with such a crystal lattice structure exhibit good electrical conductivity and low thermal conductivity as some of the lattice sites become vacancy. Accordingly, excellent thermoelectric conversion characteristics can be exhibited.
  • thermoelectric conversion material in which the cavity has the same face-centered cubic lattice as sodium chloride, and some of the lattice sites are empty.
  • the thermal conductivity is low by including some of the pores inside the lattice, but the output factor is also low.
  • thermoelectric material capable of simultaneously realizing a high output factor resulting from the face-centered cubic lattice structure and low thermal conductivity due to the introduction of the vacancy.
  • an object of the present invention is to provide a novel chalcogen compound and a method for producing the same, which exhibits excellent thermoelectric properties in a low to medium temperature range of 100 to 300 ° C with low thermal conductivity.
  • an object of the present invention is to provide a thermoelectric element including the chalcogen compound and exhibiting excellent thermoelectric characteristics.
  • the present invention provides a chalcogen compound represented by the following formula (1):
  • V is Vacancy
  • the present invention is the step of mixing the raw material of Sn, Sb, Te and In so that the molar ratio of Sn: Sb: Te: In is (ax): 2: (a + 3): x and then melt reaction (where 14 ⁇ a ⁇ 16, and 0 ⁇ x ⁇ 0.5); Heat-treating the resultant product obtained as a result of the melting reaction; Grinding the resultant product obtained as a result of the heat treatment; And sintering the pulverized result.
  • the present invention also provides a thermoelectric element comprising the chalcogen compound as a thermoelectric conversion material.
  • the chalcogenide compound of Formula 1 has a face-centered cubic lattice structure consisting of Sn, Sb, Te, and In, and some of the lattice sites are vacant.
  • Vacancy; V
  • ZT thermoelectric performance index
  • the chalcogenide compound of the embodiment has a void (V) in the face-centered cubic lattice structure, except for the positions filled with Sn, Sb, and Te, and In fills a portion of the Sn positions. More specifically, Te fills the anion sites of the face-centered cubic lattice, Sn and Sb fills the cation sites of the face-centered cubic lattice, and is located in the empty positions of the remaining cation sites except for the sites filled by Sn and Sb. In is filled with a part of Sn and the void V is included. In this case, the substitution of In for Sn may be confirmed that the lattice constant decreases as the substitution amount of In metal increases.
  • Figure 2 is a schematic diagram showing the crystal structure of the chalcogen compound according to an embodiment of the present invention. 2 is only an example for describing the present invention and the present invention is not limited thereto.
  • the chalcogenide compound of one embodiment basically has the same face-centered cubic lattice structure as SnTe, but the vacancy (V) is introduced into a cationic site.
  • the chalcogenide compound powder calculated by the TOPAS program has a lattice constant of 6.2850 to 6.2900 mm 3 and an Rwp (weighted pattern R) of 4.900 to 5.100.
  • Rwp weighted pattern R
  • the radius of Sn 2+ (118 pm) is larger than In 3+ (80 pm)
  • the lattice constant decreases and the ratio of [Sn] / [Sb] decreases.
  • the lattice constant increases because the radius of Sn 2+ (118 pm) is larger than the radius of Sb 3+ (76 pm).
  • thermoelectric performance index S 2 ⁇ T / k (S: Seebeck coefficient, ⁇ : electrical conductivity, T: absolute temperature and k: thermal conductivity), and the thermal conductivity of the chalcogenide compound is dependent on the phonon's movement. By hindering the phonon's movement through the introduction of heavy elements or vacancy in the lattice.
  • the chalcogenide compound of Chemical Formula 1 may reduce the hole charge concentration of the charge carrier due to the addition of In, and as a result, the thermal conductivity contributed by the charge carrier may be reduced. have. At the same time, the thermal conductivity can be further reduced due to the presence of the vacancy.
  • the electrical conductivity is lowered and the Seebeck coefficient is increased, so that the output factor, in particular, the output factor (PF) in the low to medium temperature region of 100 to 300 ° C. Can be improved, and as a result, the thermoelectric performance index can be increased.
  • In represents an improvement effect of the thermoelectric performance index by maintaining the output factor and reducing the thermal conductivity.
  • the void (V) is a state in which the atoms of the lattice point is missing in a specific crystal lattice structure, the void (V) in the chalcogenide compound of the embodiment plays a very important role in forming the same face-centered cubic lattice structure as sodium chloride Do. If the voids V are filled with In, Sn, Sb, and Te, the secondary phases having a crystal structure other than the face-centered cubic lattice structure are formed together, resulting in deterioration of physical properties such as electrical conductivity. It has a very limited problem to be applied as a conversion material.
  • the vacancy (V) facilitates the diffusion of atoms
  • heat treatment, deformation, precipitation, or phase transformation may vary depending on the presence or absence of the vacancy.
  • the lattice thermal conductivity may be exhibited by the phonon scattering of the vacancy, thereby exhibiting excellent thermoelectric conversion characteristics.
  • chalcogenide compounds having a single-phase face lattice lattice structure are formed, and exhibit excellent thermoelectric properties.
  • thermoelectric properties may be 0 ⁇ x ⁇ 0.2 or 0.01 ⁇ x ⁇ 0.2, or 0.1 ⁇ x ⁇ 0.2.
  • the thermoelectric performance index can be greatly improved through the introduction of vacancy and the reduction of thermal conductivity by In while maintaining excellent output factor characteristics resulting from the face centered cubic structure.
  • the chalcogen compound of the embodiment can be used as a thermoelectric conversion material in various fields and applications, including various thermoelectric cooling systems or thermoelectric power generation systems.
  • the manufacturing method is a step of melting and reacting the raw materials of Sn, Sb, Te and In so that the molar ratio of Sn: Sb: Te: In is (ax): 2: (a + 3): x (Where 14 ⁇ a ⁇ 16 and 0 ⁇ x ⁇ 0.5); Heat-treating the resultant product obtained as a result of the melting reaction; Grinding the resultant product obtained as a result of the heat treatment; And sintering the pulverized result.
  • the raw material including the Sn, Sb, Te, and In for example, a powder or shot of the Sn, Sb, Te and In may be used.
  • a powder such as In 2 Se may be used.
  • a powdering process through grinding or milling may be optionally further performed before mixing the raw materials.
  • the mixing of these raw materials is such that the molar ratio of each element in Formula 1, specifically, the molar ratio of Sn, Sb, Te, and In corresponds to (ax): 2: (a + 3): x.
  • the raw materials can be carried out by grinding or milling and optionally pelletizing.
  • a and x are as described above.
  • the mixture thus formed may be in powder state, pellet state, ingot state, or the like, depending on the formation process.
  • the reaction between the raw materials of the metal is made, and the result of the reaction is obtained in the form of a melt.
  • the melting process may be carried out by charging the mixture to a quartz tube and then heating to a temperature of 700 to 900 ° C, more specifically 750 to 800 ° C in a vacuum and sealed state.
  • the mixture in order to prevent the reaction between the raw material and the quartz tube, the mixture may be first put into a graphite crucible and then charged into the quartz tube.
  • a cooling process for the prepared melt may optionally be further performed in order to shorten the subsequent heat treatment process time.
  • the cooling process includes all of the cooling using a medium and the like, and the cooling method used in the field of thermoelectric materials may be applied without limitation. For example, it may be performed by natural cooling or cold wind cooling, and may be performed until the temperature of the melt reaches a room temperature (23 ⁇ 5 ° C.) level.
  • the heat treatment is a process for forming a single phase of the face-centered cubic lattice structure, specifically, may be performed for 24 to 72 hours at a temperature of 550 to 640 °C, more specifically 600 to 640 °C.
  • the heat treatment may be performed in a furnace such as an electric furnace, and may be performed in a vacuum or inert gas atmosphere.
  • the heat treatment step may be performed in a single step, or may be performed in two or more multi-steps.
  • the grinding process may be carried out using a method and apparatus for manufacturing a thermoelectric conversion material previously known, and through this grinding step, a powdery product may be obtained.
  • the step of forming an ingot by cooling the resultant of the heat treatment step may be optionally further performed.
  • the cooling process may be performed using various cooling media, and any cooling apparatus / method previously applied in the manufacturing of the thermoelectric conversion material may be applied without any particular limitation.
  • the grinding step may be performed on the ingot.
  • a sintering process for the pulverized result is performed.
  • the chalcogen compound of the above-described embodiment in the sintered body state can be prepared.
  • Such a sintering process may be performed by a spark plasma sintering method well known to those skilled in the art.
  • the sintering process may be performed at a temperature of 550 to 640 ° C. and a pressure of 10 to 100 MPa, and more specifically at a temperature of 600 to 640 ° C., for 5 to 10 minutes under a pressure of 30 to 100 MPa.
  • a cooling process may optionally be further performed, and the cooling process may be performed according to a conventional method as described above.
  • thermoelectric conversion materials such as thermoelectric conversion materials or chalcogen compounds
  • reaction conditions and methods may be described in the following examples. Therefore, further description thereof will be omitted.
  • thermoelectric element comprising a chalcogen compound of the above-described embodiment as a thermoelectric conversion material.
  • a thermoelectric element may include a chalcogen compound (thermoelectric conversion material) of the embodiment as a p-type or n-type thermoelectric conversion material, and for this purpose, an additional p-type element or n-type element may be used as the thermoelectric conversion material of the embodiment. It may be included in an additional doped state.
  • the type or doping method of the p-type element or n-type element that can be used at this time is not particularly limited, and the elements and doping methods that have been generally used to apply the thermoelectric conversion material to p-type or n-type can be applied. have.
  • the thermoelectric element may include a thermoelectric element formed by obtaining the p-type or n-type thermoelectric conversion material in a sintered state, and then processing and molding the thermoelectric element, and together with the insulating substrate and the electrode.
  • the coupling structure of the thermoelectric element, the insulating substrate, and the electrode may be in accordance with the structure of a conventional thermoelectric element.
  • a sapphire substrate, a silicon substrate, a Pyrex substrate, a quartz substrate, or the like may be used as the insulating substrate, and an electrode containing any metal or a conductive metal compound may be used as the electrode.
  • thermoelectric device includes the thermoelectric conversion material of one embodiment, and thus may exhibit excellent thermoelectric conversion characteristics, and may be preferably applied to a thermoelectric cooling system or a thermoelectric power generation system in various fields and applications.
  • a novel chalcogen compound exhibiting an excellent thermoelectric index (ZT) and a method for producing the same may be provided by improving the output factor in the low temperature region together with reducing the thermal conductivity.
  • a thermoelectric element exhibiting excellent thermoelectric characteristics can be provided.
  • 1 is a schematic diagram showing a face-centered cubic lattice structure.
  • FIG. 2 is a schematic diagram showing a lattice structure of the chalcogenide compound according to an embodiment of the present invention.
  • XRD X-ray diffraction analysis
  • Figure 5 is a graph showing the results of measuring the electrical conductivity according to the temperature for the chalcogen compounds of Examples 1 to 4, and Comparative Examples 1 to 5.
  • FIG. 6 is a graph showing the results of measuring the Seebeck coefficient according to temperature for the chalcogen compounds of Examples 1 to 4 and Comparative Examples 1 to 5.
  • FIG. 6 is a graph showing the results of measuring the Seebeck coefficient according to temperature for the chalcogen compounds of Examples 1 to 4 and Comparative Examples 1 to 5.
  • Figure 7 is a graph showing the results of measuring the output factor for each temperature for the chalcogen compounds of Examples 1 to 4, and Comparative Examples 1 to 5.
  • thermoelectric performance index (ZT) according to temperature for the chalcogen compounds of Examples 1 to 4 and Comparative Examples 1 to 5.
  • Example 10 is a graph showing the average value of the output factor according to the indium substitution amount in the chalcogen compound of Examples 1 to 2, and Comparative Example 1 (temperature range: 100 ⁇ 500 °C).
  • thermoelectric performance index is a graph showing the average value of the thermoelectric performance index according to the indium substitution amount in the chalcogen compound of Examples 1 to 2, and Comparative Example 1 (temperature range: 100 ⁇ 500 °C).
  • thermoelectric performance index is a graph showing the average value of the thermoelectric performance index according to the indium substitution amount in the chalcogen compound of Examples 3 to 4, and Comparative Example 2 (temperature range: 100 ⁇ 500 °C).
  • Sn shot, Sb shot, and Te shot which are high purity raw materials, were weighed in a molar ratio of 14: 2: 17, put into a graphite crucible, and then charged into a quartz tube. The inside of the quartz tube was vacuumed and sealed. Then, the raw material was maintained at 750 ° C. for 12 hours in an electric furnace, and then slowly cooled to room temperature. Next, heat treatment was performed at a temperature of 640 ° C. for 48 hours, and the ingot was obtained after cooling the quartz tube in which the reaction proceeded with water.
  • the ingot was finely ground into a powder having a particle diameter of 75 ⁇ m or less, and sintered under a discharge plasma sintering method (SPS) for 8 minutes at a pressure of 50 MPa and a temperature of 600 ° C. to prepare a chalcogen compound.
  • SPS discharge plasma sintering method
  • Sn shot, Sb shot and Te shot which are high purity raw materials, were weighed in a molar ratio of 16: 2: 19 and placed in a graphite crucible, and then charged into a quartz tube. The inside of the quartz tube was vacuumed and sealed. Then, the raw material was kept at 750 ° C. for 12 hours in an electric furnace, and then slowly cooled to room temperature. Next, heat treatment was performed at a temperature of 640 ° C. for 48 hours, and the ingot was obtained after cooling the quartz tube in which the reaction proceeded with water.
  • the ingot was finely ground into a powder having a particle diameter of 75 ⁇ m or less, and sintered under a discharge plasma sintering method (SPS) for 8 minutes at a pressure of 50 MPa and a temperature of 600 ° C. to prepare a chalcogen compound.
  • SPS discharge plasma sintering method
  • the ingot was finely ground into a powder having a particle diameter of 75 ⁇ m or less, and sintered under a discharge plasma sintering method (SPS) for 8 minutes at a pressure of 50 MPa and a temperature of 600 ° C. to prepare a chalcogen compound.
  • SPS discharge plasma sintering method
  • the ingot was finely ground into a powder having a particle diameter of 75 ⁇ m or less, and sintered under a discharge plasma sintering method (SPS) for 8 minutes at a pressure of 50 MPa and a temperature of 600 ° C. to prepare a chalcogen compound.
  • SPS discharge plasma sintering method
  • Sn shot, Sb shot, and Te shot which are high purity raw materials, were weighed in a molar ratio of 10: 2: 13, put into a graphite crucible, and then charged into a quartz tube. The inside of the quartz tube was vacuumed and sealed. Then, the raw material was kept at 750 ° C. for 12 hours in an electric furnace, and then slowly cooled to room temperature. Next, heat treatment was performed at a temperature of 640 ° C. for 48 hours, and the ingot was obtained after cooling the quartz tube in which the reaction proceeded with water.
  • the ingot was finely ground into a powder having a particle diameter of 75 ⁇ m or less, and sintered under a discharge plasma sintering method (SPS) for 8 minutes at a pressure of 50 MPa and a temperature of 600 ° C. to prepare a chalcogen compound.
  • SPS discharge plasma sintering method
  • the ingot was finely ground into a powder having a particle diameter of 75 ⁇ m or less, and sintered under a discharge plasma sintering method (SPS) for 8 minutes at a pressure of 50 MPa and a temperature of 600 ° C. to prepare a chalcogen compound.
  • SPS discharge plasma sintering method
  • the ingot was finely ground into a powder having a particle diameter of 75 ⁇ m or less, and sintered under a discharge plasma sintering method (SPS) for 8 minutes at a pressure of 50 MPa and a temperature of 600 ° C. to prepare a chalcogen compound.
  • SPS discharge plasma sintering method
  • a chalcogenide compound was prepared in the same manner as in Comparative Example 1 except that a high purity raw material Sn shot, In powder, Sb shot, and Te shot were used in a molar ratio of 13.9: 0.1: 2: 17.
  • a chalcogenide compound was prepared in the same manner as in Comparative Example 1 except that a high purity raw material of Sn shot, In powder, Sb shot, and Te shot was used in a molar ratio of 13.8: 0.2: 2: 17.
  • a chalcogen compound was prepared in the same manner as in Comparative Example 1 except that a high purity raw material, Sn shot, In powder, Sb shot, and Te shot, was used at a molar ratio of 15.9: 0.1: 2: 19.
  • a chalcogenide compound was prepared in the same manner as in Comparative Example 1 except that a high purity raw material of Sn shot, In powder, Sb shot, and Te shot was used at a molar ratio of 15.8: 0.2: 2: 19.
  • the chalcogen compounds of Examples 1 to 4 and Comparative Examples 1 and 2 were found to have the same lattice structure as SnTe, which is known to have a face-centered cubic lattice structure.
  • the chalcogenide compound of Comparative Example 4 having a composition including In instead of Sb and the chalcogenide compound of Comparative Example 5 having an unsubstituted composition also have the same lattice structure as SnTe. It became. However, Comparative Example 3 in which In is substituted in excess, Sn, In, Sb, Te, and V include all, but Comparative Example 6 in which the pore content is less than 1, and Fe is substituted for part of Sn instead of In. Although the chalcogenide compound of Comparative Example 7 has a lattice structure similar to SnTe, it was confirmed that a composition (Sn 0.905 In 0.095 Te) in which In is substituted for Sn is mixed. Accordingly, in Comparative Examples 6 and 7, due to the presence of the secondary phase having a different composition, it can be expected that the thermoelectric performance is lower than that of the embodiments.
  • V vacancy
  • vacancy (0, 0, 0) randomly located at site (random distribution)
  • Te 0.5, 0.5, 0.5
  • the chalcogenide compounds of Examples 1 to 4 contain vacancy (V), and it can be seen that the concentration of Sn decreases as a part of Sn is replaced with In.
  • the lattice constant value gradually decreased as the amount of In (x) in the face-centered cubic lattice increased (Comparative Example 1> Example 1> Example 2), (Comparative Example 2> Example).
  • Example 3> Example 4 This means that since the radius of Sn 2+ (118 pm) is larger than In 3+ (80 pm), the lattice constant decreases as In content increases, that is, as the amount of In substitution for Sn increases.
  • Comparative Example 3 In is substituted for Sn to fill the intrinsic vacancy of Sn to reduce the hole concentration, and the number of electrons supplied by the remaining In acting as In 3+ after filling the vacancy By increasing, the concentration of the hole, which is the main charge carrier, is further reduced. As a result, the electrical conductivity drastically decreased.
  • the chalcogenide compound of Comparative Example 3 exhibited the characteristics of the semiconductor with the tendency of increasing the electrical conductivity as the measurement temperature was increased.
  • Comparative Example 4 unlike Comparative Example 5, in which Sb is included without In, the number of electrons supplied is reduced due to the atomic number lower than Sb, and conversely, the concentration of the hole which is the main charge carrier is increased. The electrical conductivity was higher than that of Comparative Example 5.
  • Seebeck coefficient (S) of the chalcogen compound specimens prepared in Examples 1 to 4 and Comparative Examples 1 to 5 was measured according to temperature change, and the results are shown in FIG. 6.
  • the Seebeck coefficient measurement was performed in a temperature range of 100 to 500 ° C. using a measuring instrument ULCAC ZEM-3 and applying a differential voltage / temperature technique.
  • the positive charge Seebeck coefficients in Examples 1 to 4 and Comparative Examples 1 to 5 show that the main charge carrier of the material is a hole, which is a P-type semiconductor. It shows the characteristic to material.
  • Comparative Example 3 As shown in FIG. 5, the electrical conductivity characteristics of the semiconductor were exhibited, thereby deviating from the Seebeck coefficient change tendency of Comparative Examples 1 to 2 and Examples 1 to 4, and The case showed low Seebeck coefficient due to high electrical conductivity.
  • Comparative Examples 1 and 2 showed a low output factor in the low temperature part, but the tendency of the output factor to increase as it moved to the high temperature part was confirmed.
  • Comparative Example 3 low power factor was shown due to low electrical conductivity and low Seebeck coefficient. In Comparative Example 4, despite the low Seebeck coefficient, the output factor was shown with high electrical conductivity, but the output factor showed a tendency to decrease as the measurement temperature was increased.
  • thermal conductivity is measured by using a laser scintillation method using a Netzsch LFA467 device, which is a thermal conductivity measurement device, and measuring the thermal diffusivity (D) and the heat capacity (C p ), and then the measured value is represented by Equation 2 below. Applied to yield thermal conductivity (k).
  • Equation 2 D is a thermal diffusivity, C p is a heat capacity, ⁇ is a sample density measured by the Archimedes method.
  • L is a value calculated from the Seebeck coefficient with temperature.
  • Comparative Examples 1 to 2 increase total thermal conductivity due to an increase in charge concentration as the Sn content increases, but Examples 1 to 4 are relatively lower than Comparative Examples 1 to 2. It was confirmed to show thermal conductivity. This means that the decrease in the hole charge concentration due to In substitution and the thermal conductivity contributed by the charge carriers is reduced. This has the same tendency as the electrical conductivity of FIG.
  • thermoelectric performance index was calculated according to the temperature change, and the results are shown in FIG. 9.
  • thermoelectric performance index S 2 ⁇ T / K, and is calculated using the values of S (seebeck coefficient), ⁇ (electric conductivity), T (absolute temperature) and k (thermal conductivity) obtained in the above experiments. It was.
  • Comparative Examples 1 to 2 show low ZT at a low temperature part as the content of Sn increases, and ZT increases as it moves to the high temperature part, but Examples 1 to 4 show relative Z from the low temperature part as In is substituted for Sn. It showed high ZT and similar or slightly high ZT at high temperature. In particular, in the case of Example 3 ZT showed a high value of about 0.94 (at 500 °C).
  • 10 is a graph showing the average value of the output factor according to the indium substitution amount, that is, the x value in the formula (1) in the chalcogen compounds of Examples 1 to 2, and Comparative Example 1
  • Figure 11 is a thermoelectric performance index of these compounds It is a graph showing the average value.
  • 12 is a graph showing the output factor average value according to the indium substitution amount in the chalcogen compound of Examples 3 to 4 and Comparative Example 2
  • Figure 13 is a graph showing the average value of the thermoelectric performance index of these compounds. 10 to 13, the unit of indium substitution amount is on a molar basis.
  • thermoelectric performance indexes of FIGS. 11 Examples 1 to 2 and Comparative Example 1 and 13 (Examples 3 to 4 and Comparative Example 2)
  • substitution for Sn sites was performed .
  • the average value of the thermoelectric performance index also increased.
  • Table 3 it can be seen that the average ZT value at 100 to 500 °C of Examples 1 to 4, 27 to 36% increased compared to Comparative Examples 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명에서는 열 전도도 감소와 함께 저온 영역에서의 출력인자 향상으로, 우수한 열전 성능 지수를 나타내는, 하기 화학식 1의 신규 칼코겐 화합물, 이의 제조 방법 및 이를 포함하는 열전소자가 제공된다: [화학식 1] V1Sna-x InxSb2Tea+3 상기 화학식 1에서, V, a, x는 명세서 중에서 정의한 바와 같다.

Description

칼코겐 화합물, 이의 제조 방법, 및 이를 포함하는 열전소자
관련 출원(들)과의 상호 인용
본 출원은 2018년 8월 24일자 한국 특허 출원 제10-2018-0099493호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 저온, 특히 열전소자의 구동 온도 범위에서도 우수한 상(phase) 안정성을 나타내며, 낮은 열 전도도와 함께 우수한 열전 특성을 나타내는 신규 칼코겐 화합물, 이의 제조 방법 및 이를 포함하는 열전소자에 관한 것이다.
최근 자원 고갈 및 연소에 의한 환경 문제로 인해, 대체에너지 중 하나로 폐열을 이용한 열전 변환 재료에 대한 연구가 가속화되고 있다.
이러한 열전 변환 재료의 에너지 변환 효율은, 열전 변환 재료의 열전 성능지수 값인 ZT에 의존한다. 여기서, ZT는 하기 수학식 1에서와 같이 제벡(Seebeck) 계수, 전기 전도도 및 열 전도도 등에 따라 결정되는데, 보다 구체적으로는 제벡 계수의 제곱 및 전기 전도도에 비례하며, 열 전도도에 반비례한다.
[수학식 1]
ZT = S2σT/k
(상기 수학식 1 에서, σ는 전기전도도, S는 제백계수, k는 열 전도도이며, T는 절대온도이다)
따라서, 열전 변환 소자의 에너지 변환 효율을 높이기 위해서는, 제벡 계수(S) 또는 전기 전도도(σ)가 높아 높은 출력 인자(PF=σS2)를 나타내거나 열 전도도(k)가 낮은 열전 변환 재료의 개발이 필요하다.
이전부터 알려진 다양한 열전 변환 재료들 중에서도, 예를 들어, PbTe, Bi2Te3, 또는 SnSe 등과 같이, 염화나트륨(NaCl)과 관련되거나 유사한 결정 격자 구조를 가지며, 격자 자리 중 일부가 비어 있는 열전 변환 재료가 우수한 열전 변환 특성을 나타내는 것으로 알려져 있다. 이러한 결정 격자 구조를 갖는 재료들은 우수한 전기 전도도를 나타내며, 또 격자 자리 중 일부가 빈 자리(공공; vacancy)로 됨에 따라 낮은 열 전도도를 나타낸다. 이에 따라, 우수한 열전 변환 특성을 나타낼 수 있다.
그러나, 도 1에서와 같이 염화나트륨과 동일한 면심 입방 격자 구조(face-centered cubic lattice)를 가지면서, 격자 자리 중 일부가 빈 자리인 공공으로 된 열전 변환 소재는 거의 알려진 바 없다.
일반적으로 복잡한 결정 구조를 가질수록(high symmetric), 또 구성 원자가 무거울수록 포논(phonon)의 이동을 방해하여 열전도도가 낮아질 수 있으며, 격자 내에 공공(vacancy)이 있을 경우, 열전도도가 더욱 낮아질 수 있다.
종래 개발된 면심 입방 격자 구조(face-centered cubic lattice 또는 rock-salt 구조)의 Sn4Bi2Se7의 경우, 격자 내부에 공공을 일부 포함하여 열전도도가 낮으나, 출력 인자 역시 낮은 문제점이 있다.
이에 따라, 면심 입방 격자 구조로부터 기인하는 높은 출력 인자 및 공공의 도입에 따른 낮은 열전도도를 동시에 구현할 수 있는 열전 소재의 개발이 요구된다.
이에 본 발명은 낮은 열 전도도와 함께 100 내지 300℃의 중저온 영역에서 높은 출력인자를 가져 우수한 열전특성을 나타내는, 신규한 칼코겐 화합물 및 이의 제조 방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 칼코겐 화합물을 포함하여, 우수한 열전 특성을 나타내는 열전 소자를 제공하는 것을 목적으로 한다.
본 발명은 하기 화학식 1로 표시되는 칼코겐 화합물을 제공한다:
[화학식 1]
V1Sna-xInxSb2Tea+3
상기 화학식 1에서,
V는 공공(Vacancy)이고,
14≤a≤16이고, 0<x≤0.5이다.
본 발명은 또한, Sn, Sb, Te 및 In의 원료 물질을 Sn:Sb:Te:In의 몰비가 (a-x):2:(a+3):x이 되도록 혼합한 후 용융 반응시키는 단계(이때, 14≤a≤16이고, 0<x≤0.5); 상기 용융 반응의 결과로 수득된 결과물을 열처리 하는 단계; 상기 열처리 결과로 수득된 결과물을 분쇄하는 단계; 및 상기 분쇄된 결과물을 소결하는 단계를 포함하는, 상기 칼코겐 화합물의 제조 방법을 제공한다.
또한, 본 발명은 상기 칼코겐 화합물을 열전 변환 재료로 포함하는 열전 소자를 제공한다.
발명의 일 구현예에 따른 상기 화학식 1의 칼코겐 화합물은, Sn, Sb, Te 및 In으로 이루어진 면심 입방 격자 구조(face-centered cubic lattice)를 갖되, 격자 자리 중 일부가 빈 자리인 공공(空孔, Vacancy; V)을 포함함으로써, 면심 입방 격자 구조의 atomic connectivity로부터 기인하는 높은 출력 인자, 및 공공의 도입에 따른 낮은 열 전도도를 동시에 구현할 수 있다. 또, 상기 Sn의 일부를 채운 In에 의해, 우수한 열전성능지수(ZT)를 유지하면서도 100 내지 400℃ 구간의 출력 인자를 향상시키고, 열 전도도를 감소시킬 수 있다.
구체적으로 상기 일 구현예의 칼코겐 화합물은 면심 입방 격자 구조에서, 상기 Sn, Sb 및 Te가 채운 자리를 제외한 빈 자리인 공공(V)을 갖고, 상기 In은 상기 Sn 자리의 일부를 채우고 있다. 보다 구체적으로는, 상기 Te는 면심 입방 격자의 음이온 자리를 채우고 있고, 상기 Sn 및 Sb는 면심 입방 격자의 양이온 자리를 채우고 있으며, 상기 Sn 및 Sb가 채운 자리를 제외하고 남은 양이온 자리의 빈 자리에 공공(V)을 포함하고, 또 상기 Sn의 일부를 In이 채우고 있다. 이때, 상기 Sn에 대한 In의 치환은, In 금속의 치환량이 증가할수록 격자상수가 감소하는 것으로 확인할 수 있다.
도 2는 본 발명의 일 구현예에 따른 칼코겐 화합물의 결정구조를 나타낸 모식도이다. 도 2는 본 발명을 설명하기 위한 일 예일뿐 본 발명이 이에 한정되는 것은 아니다.
도 2를 참조하여 설명하면, 상기 일 구현예의 칼코겐 화합물은 기본적으로 SnTe와 동일한 면심 입방 격자 구조를 가지나, 양이온 자리(cationic site)에 공공(V)이 도입되어 있다. 상세하게는 공공(V), Sn, Sb, 그리고 In이 (x, y, z) = (0, 0, 0) 자리에 무작위로 위치하고 있고(random distribution), Te의 경우 (0.5, 0.5, 0.5) 자리에 위치하고 있다. 이는 후술하는 실험예에 기재된 바와 같이, TOPAS 프로그램으로 계산된 칼코겐 화합물 분말의 Rietveld refinement 결과로부터 확인될 수 있다.
구체적으로 TOPAS 프로그램으로 계산된 칼코겐 화합물 분말은 격자 상수가 6.2850 내지 6.2900 Å이고, Rwp (weighted pattern R)가 4.900 내지 5.100이다. 또 칼코겐 화합물 내 Sn에 대한 In의 치환량이 증가할수록 Sn2+(118 pm)의 반경이 In3+(80 pm) 보다 크기 때문에 격자상수는 감소하고, 감소 [Sn]/[Sb]의 비율이 증가할수록 Sn2+(118 pm)의 반경이 Sb3+(76 pm) 반경보다 크기 때문에 격자상수가 증가하게 된다. 이에 따라 상기 칼코겐 화합물은 화학식 1에서 a=14일 때, 격자 상수가 6.2850 내지 6.2860 Å이고, Rwp가 5.900 내지 5.990이며, a=16일 때 격자 상수가 6.2880 내지 6.2900 Å이고, Rwp 이 4.900 내지 5.100이다.
열전성능지수는 ZT = S2σT/k (S: 제벡계수, σ: 전기전도도, T: 절대온도 및 k:열 전도도)로 정의되며, 칼코겐 화합물의 열 전도도는 포논(phonon)의 이동에 의한 것으로, 중원소(heavy element) 혹은 격자 내 공공의 도입을 통해 포논의 이동을 방해함으로써 낮출 수 있다. 이에 후술하는 실험예에서도 입증되는 바와 같이, 상기 화학식 1의 칼코겐 화합물은 In의 첨가로 인해 전하운반자인 홀(hole) 전하농도가 감소하고, 그 결과 전하운반자가 기여하는 열 전도도가 감소될 수 있다. 동시에 상기 공공의 존재로 인해 열 전도도는 더욱 감소될 수 있다. 또, 각 양이온 자리를 채우고 있는 Sn 및 Sb와 함께 상기 In이 추가적으로 전자를 제공함으로써, 전기전도도는 낮아지고 제벡계수는 증가하게 됨으로써 출력인자, 특히 100 내지 300℃ 중저온 영역의 출력인자(PF)가 향상되게 되고, 그 결과로서 열전성능지수가 증가될 수 있다.
상기 일 구현예의 칼코겐 화합물에 있어서, 상기 In은 출력인자 유지 및 열 전도도 감소에 의한 열전 성능 지수의 개선 효과를 나타낸다.
한편, 공공(V)은 특정 결정 격자 구조에서 격자점의 원자가 빠진 상태인 것으로, 상기 일 구현예의 칼코겐 화합물에 있어서 공공(V)는 염화나트륨과 동일한 면심 입방 격자 구조를 형성하도록 하는데 매우 중요한 역할을 하다. 만약 상기 공공(V)을 In, Sn, Sb 및 Te로 모두 채워 없애게 되면, 면심 입방 격자 구조 이외의 다른 결정 구조를 가진 이차상들이 함께 형성되고, 그 결과 전기 전도도 등의 물성이 저하되어 열전 변환 소재로 적용하기에 매우 제한적인 문제점을 갖는다. 또, 상기 공공(V)은 원자들의 확산을 용이하게 해주기 때문에, 상기 공공의 유무에 따라 열처리, 변형, 석출, 또는 상 변태 등이 달라질 수 있다. 상기 일 구현예의 칼코겐 화합물의 경우, 상기 공공의 포논 산란(phonon scattering)에 의해 낮은 격자 열 전도도가 나타낼 수 있으며, 이에 기인하여 우수한 열전 변환 특성을 나타낼 수 있다.
또, 상기 칼코겐 화합물에 있어서, Sn, Sb, Te 및 In는 (a-x) : 2 : (a+3) : x의 몰비로 포함되며, (Sn + In) : Sb : Te의 몰비는 a: 2 : a+3의 관계를 충족하여야 한다. Sn은 Sn2+, Sb은 Sb3+, Te은 Te2-의 상태로 결합 하기 때문에, 상기한 몰비 관계로 포함될 때, 2a + (3x2) - 2(a+3) = 0으로 전하 중성(charge neutrality)을 맞출 수 있다.
또, 상기 a 및 x는 각각 14≤a≤16이고, 0<x≤0.5이다. 이와 같은 조건을 충족할 때 단일상의 면심 입자 격자 구조를 갖는 칼코겐 화합물이 형성되며, 우수한 열전 특성을 나타낼 수 있다.
만약 In의 x의 함량이 0인 경우, 칼코겐 화합물 내 In 금속이 존재하지 않으므로, In 금속의 Sn 치환에 따른 개선 효과를 얻을 수 없다. 또 x가 0.5를 초과하면 면심 입방 격자 구조 이외의 구조를 갖는 이차상이 형성될 수 있으며, 이는 열전특성 저하를 초래한다. x 함량의 제어 및 이에 따른 열전 특성 개선 효과의 우수함을 고려할 때, 0<x≤0.2 혹은 0.01≤x≤0.2, 혹은 0.1≤x≤0.2일 수 있다.
상기와 같은 화학식 1의 칼코겐 화합물은, 공공을 포함하고, 또 Sn의 일부를 In으로 치환하여 포함함으로써, 종래 Sn4Bi2Se7 등의 열전소재가 가진 낮은 출력인자의 문제점을 해결하여, 면심 입방 구조로부터 기인하는 우수한 출력인자 특성을 유지하면서도 공공의 도입 및 In에 의한 열 전도도 감소를 통해 열전성능지수를 크게 향상시킬 수 있다. 그 결과, 상기 일 구현예의 칼코겐 화합물은 각종 열전 냉각 시스템 또는 열전 발전 시스템 등을 비롯한 여러 가지 분야 및 용도에서, 열전 변환 소재로서 매우 바람직하게 사용될 수 있다.
한편, 본 발명의 다른 구현예에 따르면, 상술한 칼코겐 화합물의 제조 방법이 제공된다.
구체적으로 상기 제조방법은, Sn, Sb, Te 및 In의 원료 물질을 Sn:Sb:Te:In의 몰비가 (a-x):2:(a+3):x이 되도록 혼합한 후 용융 반응시키는 단계(이때, 14≤a≤16이고, 0<x≤0.5); 상기 용융 반응의 결과로 수득된 결과물을 열처리 하는 단계; 상기 열처리 결과로 수득된 결과물을 분쇄하는 단계; 및 상기 분쇄된 결과물을 소결하는 단계를 포함할 수 있다.
상기 제조 방법에 있어서, 상기 Sn, Sb, Te 및 In을 포함한 원료 물질로는, 예를 들어, Sn, Sb, Te 및 In의 분말 또는 숏(shot; 모가 없는 입자)이 사용될 수 있다. 또, In2Se와 같은 분말이 사용될 수도 있다. 또, 필요한 경우, 상기한 원료물질의 혼합 전에 그라인딩 혹은 밀링을 통한 분말화 공정이 선택적으로 더 수행될 수도 있다.
또, 이들 각 원료물질의 혼합은 상기 화학식 1에서의 각 원소들의 몰비, 구체적으로 Sn, Sb, Te 및 In의 몰비가 (a-x) : 2 : (a+3) : x에 대응하는 비율로 각 원료물질을 혼합한 후, 그라인딩 또는 밀링하고, 선택적으로 펠릿화함으로써 수행될 수 있다. 이때 상기 a 및 x는 앞서 설명한 바와 같다. 이렇게 형성된 혼합물은 그 형성 공정에 따라 분말 상태, 펠릿 상태 또는 잉곳 상태 등으로 될 수도 있다.
다음으로, 상기에서 제조한 혼합물에 대한 용융 공정이 수행된다.
상기 용융 공정 동안에 상기한 금속의 원료물질간의 반응이 이루어지게 되며, 반응의 결과물이 용융물의 형태로 수득되게 된다.
구체적으로 상기 용융 공정은 상기한 혼합물을 석영관에 장입한 후, 진공 및 밀봉 상태에서 700 내지 900℃, 보다 구체적으로는 750 내지 800℃ 온도로 가열함으로써 수행될 수 있다. 이때, 원료 물질과 석영관의 반응을 방지하기 위하여 상기 혼합물을 흑연 도가니(carbon crucible)에 먼저 넣은 후 석영관에 장입할 수도 있다.
상기 용융 공정의 완료 후, 후속의 열처리 공정 시간의 단축을 위하여, 제조된 용융물에 대한 냉각 공정이 선택적으로 더 수행될 수도 있다.
상기 냉각 공정은 매체를 이용한 냉각 등을 모두 포함하며, 열전 재료 분야에서 사용되는 냉각 방법을 제한 없이 적용할 수 있다. 일례로 자연 냉각 또는 냉풍 냉각에 의해 수행될 수 있으며, 용융물의 온도가 상온(23±5℃) 수준이 될 때까지 수행될 수 있다.
다음으로, 상기 용융 공정의 결과로 수득된 용융물에 대해 열처리 공정이 수행된다.
상기 열처리는 면심 입방 격자 구조의 단일상을 형성하기 위한 공정으로, 구체적으로 550 내지 640℃, 보다 구체적으로는 600 내지 640℃의 온도에서 24 내지 72시간 동안 수행될 수 있다. 또 상기 열처리는 전기로 등의 노(furnace)에서 수행될 수도 있으며, 진공 또는 불활성 기체 분위기 하에서 진행될 수 있다. 또 상기 열처리 단계는 단일 단계로 진행될 수도 있고, 2단계 이상의 다단계로 진행될 수도 있다.
다음으로, 상기 열처리 단계 이후, 열처리된 결과물에 대한 분쇄 공정이 수행된다.
상기 분쇄 공정은 이전부터 알려진 열전 변환 재료의 제조 방법 및 장치를 이용하여 수행될 수 있으며, 이러한 분쇄 단계를 거쳐 분말 상태의 결과물을 얻을 수 있다.
한편, 상기 열처리 단계 및 분쇄 단계 사이에는, 상기 열처리 단계의 결과물을 냉각하여 잉곳을 형성하는 단계가 선택적으로 더 수행될 수도 있다.
이때 상기 냉각 공정은 각종 냉각 매체를 이용하여 수행될 수 있으며, 이전부터 열전 변환 재료의 제조 과정에서 적용되던 냉각 장치/방법이 별다른 제한 없이 모두 적용될 수 있다. 이러한 냉각 단계를 통한 잉곳 형성의 경우, 이러한 잉곳에 대해 상기 분쇄 단계를 진행할 수 있다.
상술한 분쇄 단계 후에는, 상기 분쇄된 결과물에 대한 소결 공정이 수행된다. 이러한 소결 단계의 진행에 의해, 소결체 상태로 이미 상술한 일 구현예의 칼코겐 화합물이 제조될 수 있다. 이러한 소결 공정은 당업자에게 잘 알려진 방전 플라즈마 소결법(Spark Plasma Sintering) 등에 의해 진행될 수 있다.
상기 소결 공정은 구체적으로 550 내지 640℃의 온도 및 10 내지 100MPa의 압력 하에서 진행될 수 있으며, 보다 구체적으로는 600 내지 640℃의 온도에서, 30 내지 100MPa의 압력 하에 5 내지 10 분 동안 진행될 수 있다.
그리고, 상기 소결 공정 후에는 냉각 공정이 선택적으로 더 수행될 수 있으며, 상기 냉각 공정은 앞서 설명한 바와 같이 통상의 방법에 따라 수행될 수 있다.
다만, 상술한 각 단계는 열전 변환 재료 또는 칼코겐 화합물 등의 금속 화합물을 형성하는 통상적인 제조 조건, 방법 및 장치를 적용하여 수행될 수 있으며, 구체적인 반응 조건 및 방법은 후술하는 실시예에 기재되어 있으므로, 이에 관한 추가적인 설명은 생략하기로 한다.
한편, 발명의 또 다른 구현예에 따르면, 상술한 일 구현예의 칼코겐 화합물을 열전 변환 재료로 포함하는 열전소자를 제공한다. 이러한 열전소자는 상기 일 구현예의 칼코겐 화합물(열전 변환 재료)을 p형 또는 n형 열전 변환 재료로서 포함할 수 있으며, 이를 위해 상기 일 구현예의 열전 변환 재료로서 추가적인 p형 원소 또는 n형 원소를 추가 도핑한 상태로 포함할 수 있다. 다만, 이때 사용 가능한 p형 원소 또는 n형 원소의 종류나 도핑 방법은 특히 제한되지 않으며, 이전부터 열전 변환 재료를 p형 또는 n형으로 적용하기 위해 일반적으로 사용되던 원소 및 도핑 방법을 적용할 수 있다.
상기 열전소자는 이러한 p형 또는 n형 열전 변환 재료를 소결 상태로 얻은 후, 가공 및 성형하여 형성된 열전 엘리먼트를 포함할 수 있으며, 이와 함께 절연기판 및 전극을 포함할 수 있다. 이러한 열전 엘리먼트, 절연기판 및 전극의 결합 구조는 통상적인 열전소자의 구조에 따를 수 있다.
또한, 상기 절연기판으로는 사파이어 기판, 실리콘 기판, 파이렉스 기판 또는 석영 기판 등을 사용할 수 있고, 전극으로는 임의의 금속 또는 도전성 금속 화합물을 포함하는 전극을 사용할 수 있다.
상술한 열전소자는 일 구현예의 열전 변환 재료를 포함함에 따라, 우수한 열전 변환 특성 등을 나타낼 수 있으며, 다양한 분야 및 용도에서, 열전 냉각 시스템 또는 열전 발전 시스템 등으로 바람직하게 적용될 수 있다.
본 발명에 따르면, 열 전도도 감소와 함께 저온 영역에서의 출력인자 향상으로, 우수한 열전 성능 지수(ZT)를 나타내는 신규 칼코겐 화합물 및 이의 제조 방법이 제공될 수 있다. 또, 이러한 칼코겐 화합물을 적용하여, 우수한 열전 특성을 나타내는 열전 소자가 제공될 수 있다.
도 1은 면심 입방 격자 구조를 나타내는 모식도이다.
도 2는 본 발명의 일 구현예에 따른 칼코겐 화합물의 격자 구조를 나타낸 모식도이다.
도 3은 실시예 1 내지 4, 및 비교예 1 내지 2에서 제조한 칼코겐 화합물 분말에 대한 X선 회절 분석(XRD) 결과를 나타내는 도면이다.
도 4는 비교예 3 내지 7 에서 제조한 칼코겐 화합물 분말에 대한 X선 회절 분석 결과를 나타내는 도면이다.
도 5는 실시예 1 내지 4, 및 비교예 1 내지 5의 칼코겐 화합물에 대한 온도별 전기 전도도를 측정한 결과를 나타낸 그래프이다.
도 6은 실시예 1 내지 4, 및 비교예 1 내지 5의 칼코겐 화합물에 대한 온도별 제백계수를 측정한 결과를 나타낸 그래프이다.
도 7은 실시예 1 내지 4, 및 비교예 1 내지 5의 칼코겐 화합물에 대한 온도별 출력인자를 측정한 결과를 나타낸 그래프이다.
도 8은 실시예 1 내지 4, 및 비교예 1 내지 5의 칼코겐 화합물에 대한 온도별 총 열 전도도를 측정한 결과를 나타낸 그래프이다.
도 9는 실시예 1 내지 4, 및 비교예 1 내지 5의 칼코겐 화합물에 대한 온도별 열전 성능 지수(ZT)를 나타낸 그래프이다.
도 10은 실시예 1 내지 2, 및 비교예 1의 칼코겐 화합물에서의 인듐 치환량에 따른 출력인자의 평균값을 나타낸 그래프이다(온도영역: 100~500℃).
도 11은 실시예 1 내지 2, 및 비교예 1의 칼코겐 화합물에서의 인듐 치환량에 따른 열전 성능 지수의 평균값을 나타낸 그래프이다(온도영역: 100~500℃).
도 12는 실시예 3 내지 4, 및 비교예 2의 칼코겐 화합물에서의 인듐 치환량에 따른 출력인자 평균값을 나타낸 그래프이다(온도영역: 100~500℃).
도 13은 실시예 3 내지 4, 및 비교예 2의 칼코겐 화합물에서의 인듐 치환량에 따른 열전 성능 지수의 평균값을 나타낸 그래프이다(온도영역: 100~500℃).
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
비교예 1 :
Figure PCTKR2019010787-appb-I000001
의 칼코켄 화합물 제조
고순도 원료 물질인 Sn shot, Sb shot 및 Te shot을 14 : 2 : 17 의 몰비로 무게를 측정하여 흑연 도가니 (carbon crucible)에 넣은 후, 석영관에 장입하였다. 석영관 내부는 진공되고 밀봉되었다. 그리고 상기 원료 물질을 750 ℃, 12시간 동안 전기로 내부에서 항온 유지한 후 상온으로 서서히 냉각시켰다. 다음으로 640 ℃의 온도에서 48시간 동안 열처리를 실시하였으며 상기 반응이 진행된 석영관을 물로서 냉각시킨 후 잉곳을 얻었다. 상기 잉곳을 입경 75 μm 이하의 분말로 곱게 분쇄하고, 50 MPa 의 압력, 600 ℃의 온도에서 8분 동안 방전 플라즈마 소결법 (SPS)에 따라 소결하여 칼코겐 화합물을 제조하였다.
비교예 2 :
Figure PCTKR2019010787-appb-I000002
의 칼코켄 화합물 제조
고순도 원료 물질인 Sn shot, Sb shot 및 Te shot을 16: 2 : 19 의 몰비로 무게를 측정하여 흑연 도가니 (carbon crucible)에 넣은 후, 석영관에 장입하였다. 석영관 내부는 진공되고 밀봉되었다. 그리고 상기 원료 물질을 750 ℃, 12시간 동안 전기로 내부에서 항온 유지한 후 상온으로 서서히 냉각시켰다. 다음으로 640 ℃의 온도에서 48시간 동안 열처리를 실시하였으며 상기 반응이 진행된 석영관을 물로서 냉각시킨 후 잉곳을 얻었다. 상기 잉곳을 입경 75 μm 이하의 분말로 곱게 분쇄하고, 50 MPa 의 압력, 600 ℃의 온도에서 8분 동안 방전 플라즈마 소결법 (SPS)에 따라 소결하여 칼코겐 화합물을 제조하였다.
비교예 3 :
Figure PCTKR2019010787-appb-I000003
의 칼코켄 화합물 제조
고순도 원료 물질인 Sn shot, In 분말, Sb shot 및 Te shot 을 13.2: 0.8 : 2 : 17 의 몰비로 무게를 측정하여 흑연 도가니 (carbon crucible)에 넣은 후, 석영관에 장입하였다. 석영관 내부는 진공되고 밀봉되었다. 그리고 상기 원료 물질을 750 ℃, 12시간 동안 전기로 내부에서 항온 유지한 후 상온으로 서서히 냉각시켰다. 다음으로 640 ℃의 온도에서 48시간 동안 열처리를 실시하였으며 상기 반응이 진행된 석영관을 물로서 냉각시킨 후 잉곳을 얻었다. 상기 잉곳을 입경 75 μm 이하의 분말로 곱게 분쇄하고, 50 MPa 의 압력, 600 ℃의 온도에서 8분 동안 방전 플라즈마 소결법 (SPS)에 따라 소결하여 칼코겐 화합물을 제조하였다.
비교예 4 :
Figure PCTKR2019010787-appb-I000004
의 칼코켄 화합물 제조
고순도 원료 물질인 Sn shot, In 분말 및 Te shot 을 10 : 2 : 13의 몰비로 무게를 측정하여 흑연 도가니 (carbon crucible)에 넣은 후, 석영관에 장입하였다. 석영관 내부는 진공되고 밀봉되었다. 그리고 상기 원료 물질을 750 ℃, 12시간 동안 전기로 내부에서 항온 유지한 후 상온으로 서서히 냉각시켰다. 다음으로 640 ℃의 온도에서 48시간 동안 열처리를 실시하였으며 상기 반응이 진행된 석영관을 물로서 냉각시킨 후 잉곳을 얻었다. 상기 잉곳을 입경 75 μm 이하의 분말로 곱게 분쇄하고, 50 MPa 의 압력, 600℃의 온도에서 8분 동안 방전 플라즈마 소결법 (SPS)에 따라 소결하여 칼코겐 화합물을 제조하였다.
비교예 5 :
Figure PCTKR2019010787-appb-I000005
의 칼코켄 화합물 제조
고순도 원료 물질인 Sn shot, Sb shot 및 Te shot 을 10: 2 : 13 의 몰비로 무게를 측정하여 흑연 도가니 (carbon crucible)에 넣은 후, 석영관에 장입하였다. 석영관 내부는 진공되고 밀봉되었다. 그리고 상기 원료 물질을 750 ℃, 12시간 동안 전기로 내부에서 항온 유지한 후 상온으로 서서히 냉각시켰다. 다음으로 640 ℃의 온도에서 48시간 동안 열처리를 실시하였으며 상기 반응이 진행된 석영관을 물로서 냉각시킨 후 잉곳을 얻었다. 상기 잉곳을 입경 75 μm 이하의 분말로 곱게 분쇄하고, 50 MPa 의 압력, 600 ℃의 온도에서 8분 동안 방전 플라즈마 소결법 (SPS)에 따라 소결하여 칼코겐 화합물을 제조하였다.
비교예 6 :
Figure PCTKR2019010787-appb-I000006
의 칼코켄 화합물 제조
고순도 원료 물질인 Sn shot, In 분말, Sb shot 및 Te shot 을 13.9: 0.4 : 2 : 17 의 몰비로 무게를 측정하여 흑연 도가니 (carbon crucible)에 넣은 후, 석영관에 장입하였다. 석영관 내부는 진공되고 밀봉되었다. 그리고 상기 원료 물질을 750 ℃, 12시간 동안 전기로 내부에서 항온 유지한 후 상온으로 서서히 냉각시켰다. 다음으로 640 ℃의 온도에서 48시간 동안 열처리를 실시하였으며 상기 반응이 진행된 석영관을 물로서 냉각시킨 후 잉곳을 얻었다. 상기 잉곳을 입경 75 μm 이하의 분말로 곱게 분쇄하고, 50 MPa 의 압력, 600 ℃의 온도에서 8분 동안 방전 플라즈마 소결법 (SPS)에 따라 소결하여 칼코겐 화합물을 제조하였다.
비교예 7 :
Figure PCTKR2019010787-appb-I000007
의 칼코켄 화합물 제조
고순도 원료 물질인 Sn shot, Fe 분말, Sb shot 및 Te shot 을 13.9: 0.1 : 2 : 17 의 몰비로 무게를 측정하여 흑연 도가니 (carbon crucible)에 넣은 후, 석영관에 장입하였다. 석영관 내부는 진공되고 밀봉되었다. 그리고 상기 원료 물질을 750 ℃, 12시간 동안 전기로 내부에서 항온 유지한 후 상온으로 서서히 냉각시켰다. 다음으로 640 ℃의 온도에서 48시간 동안 열처리를 실시하였으며 상기 반응이 진행된 석영관을 물로서 냉각시킨 후 잉곳을 얻었다. 상기 잉곳을 입경 75 μm 이하의 분말로 곱게 분쇄하고, 50 MPa 의 압력, 600 ℃의 온도에서 8분 동안 방전 플라즈마 소결법 (SPS)에 따라 소결하여 칼코겐 화합물을 제조하였다.
실시예 1 :
Figure PCTKR2019010787-appb-I000008
의 칼코켄 화합물 제조
고순도 원료 물질인 Sn shot, In 분말, Sb shot 및 Te shot을 13.9 : 0.1 : 2 : 17 의 몰비를 사용한 것을 제외하고는 비교예 1와 동일한 방법으로 칼코겐 화합물을 제조하였다.
실시예 2 :
Figure PCTKR2019010787-appb-I000009
의 칼코켄 화합물 제조
고순도 원료 물질인 Sn shot, In 분말, Sb shot 및 Te shot을 13.8 : 0.2 : 2 : 17 의 몰비를 사용한 것을 제외하고는 비교예 1와 동일한 방법으로 칼코겐 화합물을 제조하였다.
실시예 3 :
Figure PCTKR2019010787-appb-I000010
의 칼코켄 화합물 제조
고순도 원료 물질인 Sn shot, In 분말, Sb shot 및 Te shot을 15.9 : 0.1 : 2 : 19 의 몰비를 사용한 것을 제외하고는 비교예 1와 동일한 방법으로 칼코겐 화합물을 제조하였다.
실시예 4 :
Figure PCTKR2019010787-appb-I000011
의 칼코켄 화합물 제조
고순도 원료 물질인 Sn shot, In 분말, Sb shot 및 Te shot을 15.8 : 0.2 : 2 : 19 의 몰비를 사용한 것을 제외하고는 비교예 1와 동일한 방법으로 칼코겐 화합물을 제조하였다.
실험예
1. XRD 패턴에 따른 상 분석
실시예 1 내지 4, 및 비교예 1 내지 2 에서 제조한 칼코겐 화합물 분말에 대해 하기 조건에서 X선 회절 분석을 수행하고, 그 결과를 도 3에 도시하였다. 또, 비교예 3 내지 7에서 제조한 칼코겐 화합물 분말에 대해서도 동일한 방법으로 X선 회절 분석을 수행하고 그 결과를 도 4에 도시하였다.
X-선 회절 분석은, 상기 실시예 및 비교예에서 제조한 각각의 칼코겐 화합물 시료를 잘 분쇄하여 X-선 회절 분석기(Bruker D8-Advance XRD)의 샘플 홀더에 충전하였으며, X-선은 Cu Kα1 (λ=1.5405Å), 인가 전압 40kV, 인가 전류 40mA로 0.02도 간격으로 스캔하여 측정하였다.
도 3에 나타난 바와 같이, 실시예 1 내지 4, 및 비교예 1 내지 2 의 칼코겐 화합물은, 종래 면심 입방 격자 구조를 갖는 것으로 알려진 SnTe와 동일한 격자 구조를 갖는 것으로 확인 되었다.
한편, 도 4에 나타난 바와 같이, Sb 대신에 In을 포함하는 조성을 갖는 비교예 4의 칼코겐 화합물 및 In이 치환되지 않은 조성을 갖는 비교예 5의 칼코겐 화합물 역시 SnTe와 동일한 격자 구조를 갖는 것으로 확인되었다. 그러나, In이 과량으로 치환된 비교예 3, Sn, In, Sb, Te 및 공공(V)을 모두 포함하지만, 공공의 함량이 1 미만인 비교예 6, 그리고 In 대신에 Sn의 일부를 Fe가 치환한 비교예 7의 칼코겐 화합물은, SnTe과 유사한 격자 구조를 갖기는 하나, Sn 자리에 In이 치환된 조성(Sn0.905In0.095Te)이 혼재되어 있는 것으로 확인되었다. 이에 따라 비교예 6 및 7의 경우 상이한 조성을 갖는 이차상의 존재로 인해 실시예들에 비해 열전 성능이 저하됨을 예상할 수 있다.
상기한 결과로부터, Sn : Te의 몰비가 (a-x) : (a+3)(이때 14≤a≤16이고, 0<x≤0.5)을 충족하는 조건에서, 공공을 포함하고, Sn의 일부를 In이 치환하는 경우, 이차상의 형성 없이 안정적인 면심 입방 격자 구조를 가짐을 알 수 있다.
2. TOPAS 프로그램을 이용한 결정 구조 분석
TOPAS 프로그램(R.W. Cheary, A. Coelho, J. Appl. Crystallogr. 25 (1992) 109-121; Bruker AXS, TOPAS 4.2, Karlsruhe, Germany (2009))을 이용하여, 상기 실험에서 얻은 XRD 분석 결과로부터 실시예 1 내지 4, 및 비교예 1 내지 2 의 각 분말 상태 칼코겐 화합물의 격자 상수(Lattice parameter)를 계산하였으며, 그 결과를 하기 표 1에 나타내었다. 또, TOPAS 프로그램을 통해 계산된 실시예 1 내지 4, 및 비교예 1 내지 2의 칼코겐 화합물의 리트벨트 구조 검증(Rietveld refinement) 결과를 하기 표 2에 나타내었다.
Figure PCTKR2019010787-appb-T000001
Figure PCTKR2019010787-appb-T000002
상기 표 1과 2, 그리고 도 2를 참조하여 칼코겐 화합물에 대한 scheme을 살펴보면, 실시예 1 내지 4의 칼코겐 화합물에 있어서 V(vacancy), Sn, Sb 및 In은 (x, y, z)=(0, 0, 0) site에 무작위로 위치하고 있고(random distribution), Te의 경우 (0.5, 0.5, 0.5) site에 위치하고 있다. 이는 상기 표 1에 나타내었듯이 TOPAS 프로그램을 통해 계산된 리트벨트 구조 검증 결과와 동일하게 나타났으며, 실제 조성을 계산한 결과 초기에 넣어준 nominal 조성과 매우 유사함을 알 수 있다. 이를 통해 실시예 1 내지 4의 칼코겐 화합물은 공공(V)을 포함하고 있으며, Sn의 일부를 In으로 치환함에 따라 Sn의 농도가 감소하게 됨을 알 수 있다.
또, 상기 표 1을 참고하면, 면심 입방 격자 내의 In의 함량(x)가 증가할수록 격자상수 값이 점진적으로 감소하였다 (비교예 1> 실시예 1> 실시예 2), (비교예 2> 실시예 3> 실시예4). 이는 Sn2+(118 pm)의 반경이 In3+(80 pm) 보다 크기 때문에 In의 함량이 증가할수록, 즉 Sn에 대한 In 치환량이 증가할수록 격자상수가 감소함을 의미한다.
또, [Sn]/[Sb]의 비율이 증가할 경우, Sn2+(118 pm)의 반경이 Sb3+(76 pm) 반경보다 크기 때문에 격자상수가 증가함을 확인할 수 있다 (비교예 2> 비교예 1), (실시예 3> 실시예 1), (실시예 4> 실시예 2).
2. 전기전도도의 온도 의존성
실시예 1 내지 4, 및 비교예 1 내지 5에서 제조한 칼코겐 화합물 시편에 대하여 전기전도도를 온도변화에 따라 측정하고, 그 결과를 도 5에 나타내었다. 상기 전기전도도 측정은 비저항 측정 장비인 ULVAC 사 ZEM-3을 사용하고, 직류사탐침법을 통하여 100 내지 500℃의 온도 영역에서 수행되었다.
도 5를 참고하면, 비교예 1 내지 2의 경우 Sn 함량이 증가할수록 전기전도도값이 증가하였다. 이는 Sn 원자당 Sb 대비 1개의 전자(electron)를 덜 공급하게 되기 때문에(Sn2+ vs. Sb3+비교) Sn 함량이 증가할수록 공급되는 전자의 개수가 감소하고, 반대로 소재의 주요 전하운반자인 홀 (hole) 의 농도가 증가하기 때문이다.
또, 비교예 3의 경우, Sn 자리에 In이 치환되어 Sn의 진성 공공(intrinsic vacancy)을 채움으로써 홀 농도를 감소시키고, 또 공공을 채우고 남은 In이 In3+로 작용하여 공급되는 전자의 개수를 증가시킴으로써, 주요 전하 운반자인 홀의 농도를 추가적으로 감소시킨다. 그 결과 전기전도도가 급격히 감소하였다. 또, 비교예 3의 칼코겐 화합물은 비교예 1 내지 2, 및 실시예 1 내지 4와 달리, 측정온도가 증가할수록 전기전도도가 증가하는 경향성으로 반도체의 특성을 나타내었다.
또, 비교예 4는 비교예 5와 달리 Sb을 포함하지 않고 In을 포함하는 경우로, In이 Sb 대비 낮은 원자번호로 인해 공급되는 전자의 개수가 감소하고, 반대로 주요 전하 운반자인 홀의 농도를 증가시켜, 비교예 5에 비해 높은 전기전도도를 나타내었다.
한편, 실시예 1 내지 2와 비교예 1을, 그리고 실시예 3 내지 4와 비교예 2를 비교하면 Sn 자리를 In이 치환할수록 In이 Sn의 진성 공공을 채움으로써 홀 농도의 감소로 전기전도도가 상대적으로 감소함을 알 수 있다.
3. 제벡계수의 온도 의존성
실시예 1 내지 4, 및 비교예 1 내지 5에서 제조된 칼코겐 화합물 시편에 대하여 제벡계수(S)를 온도 변화에 따라 측정하고, 그 결과를 도 6에 나타내었다. 상기 제벡계수 측정은 측정 장비 ULCAC 사 ZEM-3을 사용하고, differential voltage/temperature technique을 적용하여 100 내지 500℃의 온도 영역에서 수행되었다.
도 6에 도시된 바와 같이, 실시예 1 내지 4, 및 비교예 1 내지 5에서 양 (+) 의 제벡계수를 나타내는 것으로부터 소재의 주요 전하 운반자가 홀 (hole) 임을 알 수 있으며 이는 P형 반도체 소재로의 특성을 나타낸다.
비교예 1 내지 2 에서 Sn 함량이 증가할수록 제벡계수는 감소하는 경향성을 나타내었다.
한편, 비교예 1 과 실시예 1 내지 2의 경우, Sn 자리에 In을 치환함에 따라 제벡계수가 증가하는 경향성이 나타났다. 마찬가지로 비교예 2 와 실시예 3 내지 4의 경우에도 Sn 자리에 In을 치환함에 따라 제벡계수가 증가하는 경향성이 나타났다. 이는 제벡계수의 경우 전하운반자 농도 측면에서 전기전도도와 반대 경향성을 가지기 때문이다(전하운반자 농도가 클수록 전기전도도는 증가하나 제벡계수는 감소함).
또, 비교예 3의 경우 도 5에서 확인된 바와 같이 반도체의 전기전도도 특성을 나타내기 때문에, 비교예 1 내지 2, 및 실시예 1 내지 4의 제벡계수 변화 경향성에서 벗어났으며, 비교예 4의 경우 높은 전기전도도로 인해 낮은 제벡계수를 나타내었다.
4. 출력인자의 온도 의존성
실시예 1 내지 4, 및 비교예 1 내지 5에서 제조한 칼코겐 화합물 시편에 대하여 출력인자를 온도변화에 따라 계산하고, 그 결과를 도 7에 나타내었다.
출력인자는 Power factor(PF) = σS2로 정의되며, 도 5 및 도 6에 나타난 σ(전기전도도) 및 S(제벡계수)의 값을 이용하여 계산하였다.
도 7에 도시된 바와 같이, 비교예 1 내지 2는 저온부에서는 낮은 출력인자를 보이다가 고온부로 이동할수록 출력인자가 증가하게 되는 경향성이 확인되었다.
또 비교예 3의 경우, 낮은 전기전도도와 낮은 제벡계수로 인해 낮은 출력인자를 나타내었다. 비교예 4의 경우 낮은 제벡계수 임에도 불구하고 높은 전기전도도로 출력인자를 나타내었으나, 측정온도가 증가할수록 출력인자가 감소하는 경향성을 나타내었다.
5. 열 전도도의 온도 의존성
실시예 1 내지 4, 및 비교예 1 내지 5에서 제조한 칼코겐 화합물 시편에 대하여 열 전도도를 온도 변화에 따라 측정하고, 그 결과를 도 8에 나타내었다.
상세하게는, 상기 열 전도도는 열 전도도 측정 장비인 Netzsch 사 LFA467 장비를 사용하고 레이저 섬광법을 적용하여, 열확산도(D) 및 열용량(Cp)을 측정한 후, 측정 값을 하기 수학식 2에 적용하여 열 전도도 (k)를 산출하였다.
[수학식 2]
열 전도도(k)=DρCp
상기 수학식 2에서, D는 열확산도이고, Cp는 열용량이며, ρ는 아르키메데스법으로 측정된 샘플 밀도이다.
또, 총 열 전도도(k = kL + kE)는 격자열 전도도(kL)와 Wiedemann-Franz law (kE= LσT)에 따라 계산된 열 전도도(kE)로 구분되며, 로렌츠수(L)는 온도에 따른 제벡계수로부터 계산된 값을 사용하였다.
도 8을 참고하면, 비교예 1 내지 2는 Sn 함량이 증가함에 따라 전하농도의 할수록 전하농도의 증가로 인해 총 열 전도도가 증가하나, 실시예 1 내지 4는 비교예 1 내지 2 대비 상대적으로 낮은 열 전도도를 보임을 확인하였다. 이는 In 치환에 따른 홀 전하 농도의 감소와 이에 따른 전하운반자가 기여하는 열 전도도가 감소한 것을 의미한다. 이는 도 5의 전기전도도와 동일한 경향성을 갖는다.
6. 열전성능지수(ZT)의 온도 의존성
실시예 1 내지 4, 및 비교예 1 내지 5에서 제조한 칼코겐 화합물 시편에 대하여 열전성능지수를 온도 변화에 따라 계산하고, 그 결과를 도 9에 나타내었다.
열전성능지수는 ZT = S2σT/K 로 정의되며, 상기한 실험들에서 얻어진 S(제벡계수), σ(전기전도도), T(절대온도) 및 k (열 전도도)의 값을 이용하여 계산하였다.
도 9를 참고하면, 비교예 1 내지 2는 Sn의 함량 증가에 따라 저온부에서 낮은 ZT를 보이다가 고온부로 이동할수록 ZT가 증가하지만, 실시예 1 내지 4는 Sn 자리에 In을 치환할수록 저온부에서부터 상대적으로 높은 ZT를 보이며 고온부에서는 유사 혹은 소폭 높은 ZT를 나타내었다. 특히, 실시예 3의 경우 ZT가 약 0.94 (at 500℃)로 높은 값을 나타내었다.
7. 평균 열전특성
상기에서의 실험 결과를 토대로, 100 내지 500℃에서의 평균 출력인자(PFaverage), 평균 열 전도도(Ktot,average), 평균 열전성능지수(ZTaverage)을 계산하였다. 그 결과를 하기 표 3, 및 도 10 내지 도 13에 나타내었다.
도 10은 실시예 1 내지 2, 및 비교예 1의 칼코겐 화합물에서의 인듐 치환량, 즉 화학식 1에서의 x값에 따른 출력인자의 평균값을 나타낸 그래프이고, 도 11은 이들 화합물의 열전 성능 지수의 평균값을 나타낸 그래프이다. 또, 도 12는 실시예 3 내지 4, 및 비교예 2의 칼코겐 화합물에서의 인듐 치환량에 따른 출력인자 평균값을 나타낸 그래프이고, 도 13은 이들 화합물의 열전 성능 지수의 평균값을 나타낸 그래프이다. 또 도 10 내지 도 13에서 인듐 치환량의 단위는 몰 기준이다.
Figure PCTKR2019010787-appb-T000003
상기 표 3에서 100 내지 500℃에서의 평균 열 전도도를 참고하면, 실시예 1 내지 4는, 비교예 1 내지 2 대비 평균 열전도도가 18~28 % 감소한 것을 확인할 수 있다.
한편, 도 10(실시예 1 내지 2, 및 비교예 1)과 도 12(실시예 3 내지 4, 및 비교예 2)의 출력인자 평균값 결과로부터, Sn 자리에 In을 치환한 경우, 그리고 In의 치환량이 증가할수록 출력인자, 특히 저온부의 평균 출력인자가 향상되는 경향성이 확인되었다. 이에 대해 상기 표 3을 참고하여, 100 내지 500℃ 구간의 평균 출력인자 계산 시, 실시예 1 내지 4의 100 내지 500 ℃에서의 평균 출력인자 값이, 비교예 1 및 2에 비해 약 16~19% 증가한 것을 확인할 수 있다.
또한, 도 11(실시예 1 내지 2 및 비교예 1)과 도 13(실시예 3 내지 4, 및 비교예 2)의 열전 성능 지수의 평균값(ZTave.) 결과로부터, Sn 자리에 대한 In 치환 및 그 치환량이 증가함에 따라 열전 성능 지수의 평균값 또한 증가하였다. 상기 표 3을 참고하여 계산시, 실시예 1 내지 4의 100 내지 500 ℃에서의 평균 ZT 값은, 비교예 1 내지 2 대비 27~36 % 증가한 것을 확인할 수 있다.

Claims (15)

  1. 하기 화학식 1로 표시되는 칼코겐 화합물:
    [화학식 1]
    V1Sna-x InxSb2Tea+3
    상기 화학식 1에서,
    V는 공공이고,
    14≤a≤16이고, 0<x≤0.5이다.
  2. 제 1 항에 있어서,
    0.01≤x≤0.2인, 칼코겐 화합물.
  3. 제 1 항에 있어서,
    면심 입방 격자 구조를 갖는 칼코겐 화합물.
  4. 제 3 항에 있어서,
    상기 V(공공)은 상기 면심 입방 격자 구조에서 Sn, Sb, 및 Te가 채운 자리를 제외한 빈 자리이고,
    상기 In은 Sn의 일부를 대체하여 치환된, 칼코겐 화합물.
  5. 제 3 항에 있어서,
    상기 Te는 면심 입방 격자 구조의 음이온 자리를 채우고 있고,
    상기 Sn 및 Sb는 면심 입방 격자 구조의 양이온 자리를 채우고 있으며,
    상기 In은 상기 Sn의 일부를 대체하여 치환되고,
    상기 V(공공)은 상기 Sn, Sb, 및 In이 채운 자리를 제외하고 남은 양이온 자리의 빈 자리인, 칼코겐 화합물.
  6. 제 3 항에 있어서,
    상기 V(공공), Sn, Sb, 그리고 In은 (x, y, z) = (0, 0, 0) 자리에 무작위로 위치하고 있고, Te는 (x, y, z) = (0.5, 0.5, 0.5) 자리에 위치하고 있는, 칼코겐 화합물.
  7. 제 1 항에 있어서,
    상기 화학식 1에서 a=14이고, 면심 입방 격자 구조를 가지며, 격자 상수가 6.2850 내지 6.2860 Å이고, Rwp (weighted pattern R)가 5.900 내지 5.990인, 칼코겐 화합물.
  8. 제 1 항에 있어서,
    상기 화학식 1에서 a=16이고, 면심 입방 격자 구조를 가지며, 격자 상수가 6.2880 내지 6.2890 Å이고, Rwp (weighted pattern R)이 4.900 내지 5.100인, 칼코겐 화합물.
  9. 제 1 항에 있어서,
    V1Sn13.9In0.1Sb2Te17, V1Sn13.8In0.2Sb2Te17, V1Sn15.9In0.1Sb2Te19 및 V1Sn15.8In0.2Sb2Te19로 이루어진 군에서 선택되는, 칼코겐 화합물.
  10. Sn, Sb, Te 및 In을 각각 포함하는 원료 물질을 Sn:Sb:Te:In의 몰비가 (a-x):2:(a+3):x이 되도록 혼합한 후 용융 반응시키는 단계;
    상기 용융 반응의 결과로 수득된 결과물을 열처리 하는 단계;
    상기 열처리 결과로 수득된 결과물을 분쇄하는 단계; 및
    상기 분쇄된 결과물을 소결하는 단계를 포함하는, 제 1 항의 칼코겐 화합물의 제조 방법.
  11. 제 10 항에 있어서,
    상기 용융 반응은 700 내지 900℃의 온도에서 수행되는, 칼코겐 화합물의 제조 방법.
  12. 제 10 항에 있어서,
    상기 열처리는 550 내지 640℃의 온도에서 수행되는, 칼코겐 화합물의 제조 방법.
  13. 제 10 항에 있어서,
    상기 열처리 단계 및 분쇄 단계 사이에, 상기 열처리 단계의 결과물을 냉각하여 잉곳을 형성하는 단계를 더 포함하는, 칼코겐 화합물의 제조 방법.
  14. 제 10 항에 있어서,
    상기 소결은 550 내지 640℃의 온도 및 10 내지 100MPa의 압력 하에서 방전 플라즈마 소결법에 의해 수행되는, 칼코겐 화합물의 제조 방법.
  15. 제 1 항 내지 제 9 항 중 어느 한 항에 따른 칼코겐 화합물을 포함하는 열전 소자.
PCT/KR2019/010787 2018-08-24 2019-08-23 칼코겐 화합물, 이의 제조 방법, 및 이를 포함하는 열전소자 WO2020040607A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020518791A JP7109850B2 (ja) 2018-08-24 2019-08-23 カルコゲン化合物、その製造方法、およびそれを含む熱電素子
US16/756,019 US11245062B2 (en) 2018-08-24 2019-08-23 Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same
EP19851005.9A EP3686156B1 (en) 2018-08-24 2019-08-23 Chalcogen compound, method for producing same, and thermoelement comprising same
CN201980005259.6A CN111247092B (zh) 2018-08-24 2019-08-23 含硫属元素的化合物、其制备方法和包含其的热电元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180099493A KR102573731B1 (ko) 2018-08-24 2018-08-24 칼코겐 화합물, 이의 제조 방법, 및 이를 포함하는 열전소자
KR10-2018-0099493 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020040607A1 true WO2020040607A1 (ko) 2020-02-27

Family

ID=69593287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010787 WO2020040607A1 (ko) 2018-08-24 2019-08-23 칼코겐 화합물, 이의 제조 방법, 및 이를 포함하는 열전소자

Country Status (6)

Country Link
US (1) US11245062B2 (ko)
EP (1) EP3686156B1 (ko)
JP (1) JP7109850B2 (ko)
KR (1) KR102573731B1 (ko)
CN (1) CN111247092B (ko)
WO (1) WO2020040607A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6312617B1 (en) * 1998-10-13 2001-11-06 Board Of Trustees Operating Michigan State University Conductive isostructural compounds
KR20100009521A (ko) * 2008-07-18 2010-01-27 삼성전자주식회사 열전재료 및 칼코게나이드 화합물
KR20110079490A (ko) * 2009-12-31 2011-07-07 한국전기연구원 도핑재 첨가에 의한 쌍정이 형성된 Te계 열전재료의 제조방법 및 그 열전재료
KR20170041540A (ko) * 2015-10-07 2017-04-17 서울대학교산학협력단 칼코겐화합물 열전소재 및 이를 포함하는 열전소자

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100385694C (zh) * 1999-03-10 2008-04-30 日立金属株式会社 热电转换材料及其制作方法
US8481843B2 (en) * 2003-09-12 2013-07-09 Board Of Trustees Operating Michigan State University Silver-containing p-type semiconductor
CA2646191A1 (en) * 2006-03-16 2007-09-20 Basf Se Doped lead tellurides for thermoelectric applications
WO2008067815A2 (en) 2006-12-04 2008-06-12 Aarhus Universitet Use of thermoelectric materials for low temperature thermoelectric purposes
EP1930960A1 (en) * 2006-12-04 2008-06-11 Aarhus Universitet Use of thermoelectric materials for low temperature thermoelectric purposes
US9905744B2 (en) 2013-06-17 2018-02-27 University Of Houston System Systems and methods for the synthesis of high thermoelectric performance doped-SnTe materials
WO2018080085A1 (ko) * 2016-10-31 2018-05-03 주식회사 엘지화학 칼코겐 화합물, 이의 제조 방법 및 이를 포함하는 열전소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6312617B1 (en) * 1998-10-13 2001-11-06 Board Of Trustees Operating Michigan State University Conductive isostructural compounds
KR20100009521A (ko) * 2008-07-18 2010-01-27 삼성전자주식회사 열전재료 및 칼코게나이드 화합물
KR20110079490A (ko) * 2009-12-31 2011-07-07 한국전기연구원 도핑재 첨가에 의한 쌍정이 형성된 Te계 열전재료의 제조방법 및 그 열전재료
KR20170041540A (ko) * 2015-10-07 2017-04-17 서울대학교산학협력단 칼코겐화합물 열전소재 및 이를 포함하는 열전소자

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BANIK, ANANYA: "The origin of low thermal conductivity in Snl-xSbxTe: phonon scattering via layered intergrowth nanostructures", ENERGY & ENVIRONMENTAL SCIENCE, 20 April 2016 (2016-04-20), XP055689025 *
BRUKER AXS, TOPAS 4.2, 2009
R.W. CHEARYA. COELHO, J. APPL. CRYSTALLOGR., vol. 25, 1992, pages 109 - 121

Also Published As

Publication number Publication date
CN111247092A (zh) 2020-06-05
EP3686156A4 (en) 2021-01-27
KR20200023102A (ko) 2020-03-04
JP7109850B2 (ja) 2022-08-01
EP3686156B1 (en) 2022-01-26
CN111247092B (zh) 2023-03-31
US11245062B2 (en) 2022-02-08
KR102573731B1 (ko) 2023-08-31
JP2020536034A (ja) 2020-12-10
US20200295247A1 (en) 2020-09-17
EP3686156A1 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
WO2012026775A2 (en) Thermoelectric material, and thermoelectric module and thermoelectric device comprising the thermoelectric material
CN107710429B (zh) P型方钴矿热电材料、其制备方法和包含其的热电装置
KR102094451B1 (ko) 칼코겐 화합물, 이의 제조 방법 및 이를 포함하는 열전소자
US11024438B2 (en) Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same
US11097947B2 (en) Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same
WO2020040607A1 (ko) 칼코겐 화합물, 이의 제조 방법, 및 이를 포함하는 열전소자
WO2020050466A1 (ko) 주석 디셀레니드계 열전소재 및 이의 제조 방법
US20230371382A1 (en) Thermoelectric Material, Method for Producing Same, and Thermoelectric Power Generation Element
WO2016052948A1 (ko) 화합물 반도체 및 그 제조방법
CN109415208B (zh) 含有硫属元素的化合物、其制备方法和包含其的热电元件
WO2015034321A1 (ko) 열전 재료 제조 방법
US11306004B2 (en) Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same
KR102121435B1 (ko) 칼코겐 화합물, 이의 제조 방법, 및 이를 포함하는 열전소자
WO2015057000A1 (ko) 열전 재료 및 그 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020518791

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851005

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019851005

Country of ref document: EP

Effective date: 20200420

NENP Non-entry into the national phase

Ref country code: DE