WO2020040191A1 - ポリアミド組成物及び該ポリアミド組成物からなる成形品 - Google Patents

ポリアミド組成物及び該ポリアミド組成物からなる成形品 Download PDF

Info

Publication number
WO2020040191A1
WO2020040191A1 PCT/JP2019/032623 JP2019032623W WO2020040191A1 WO 2020040191 A1 WO2020040191 A1 WO 2020040191A1 JP 2019032623 W JP2019032623 W JP 2019032623W WO 2020040191 A1 WO2020040191 A1 WO 2020040191A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
polyamide composition
acid
aromatic vinyl
aromatic
Prior art date
Application number
PCT/JP2019/032623
Other languages
English (en)
French (fr)
Inventor
詩門 金井
直人 菅井
宇治 重松
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to EP19851061.2A priority Critical patent/EP3842494A4/en
Priority to JP2020538431A priority patent/JPWO2020040191A1/ja
Priority to US17/269,655 priority patent/US11970612B2/en
Priority to CN201980055336.9A priority patent/CN112585216B/zh
Priority to KR1020217004331A priority patent/KR20210047867A/ko
Priority to BR112021002707-6A priority patent/BR112021002707A2/pt
Publication of WO2020040191A1 publication Critical patent/WO2020040191A1/ja
Priority to JP2024042170A priority patent/JP2024069538A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • C08G69/30Solid state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen

Definitions

  • the present invention relates to a polyamide composition and a molded article comprising the polyamide composition.
  • Polyamide is used in various applications such as electric and electronic parts, automobile parts, machine parts, industrial parts, fibers, films, sheets, etc. because of its excellent mechanical properties and moldability.
  • a high flame retardancy based on the UL-94 standard is required. Therefore, methods for flame retarding polyamide compositions using various flame retardants have been proposed.
  • Patent Document 1 proposes a polyamide composition containing a specific polyamide, a specific glass fiber, and a brominated flame retardant, and describes that the composition is excellent in fluidity and the like.
  • Patent Documents 2 and 3 disclose polyamides, brominated polystyrenes, and copolymers of an aromatic vinyl compound and an ⁇ , ⁇ unsaturated dicarboxylic anhydride having a terminal amino group ratio or terminal carboxyl group ratio in a specific range.
  • a flame retardant polyamide resin composition containing the same is proposed, and it is described that the resin composition has excellent thin-wall flame retardancy, extrudability, moldability, and the like.
  • Patent Document 4 in a polyamide composition containing a polyamide having a melting point in a specific range, a flame retardant, and an anti-drip agent, as the anti-drip agent, a fluororesin, an ionomer and a modified aromatic vinyl-based resin are used.
  • a polyamide composition using at least one polymer selected from the group consisting of polymers in a specific range of mass ratio has been proposed, and is a flame retardant suitable as a material for molding an electronic component having a thin portion. It is described that it is excellent in heat resistance, heat resistance, moldability (fluidity) and the like.
  • an object of the present invention is to provide a polyamide composition having a thin and high flame retardancy, and having excellent heat resistance and moldability, and a molded article comprising the polyamide composition.
  • the present inventors contain a specific polyamide, a flame retardant, and an aromatic vinyl-based copolymer, the aromatic vinyl-based copolymer contains a specific structural unit, the aromatic vinyl-based copolymer
  • the glass transition temperature is in a specific range, and it has been found that the above-mentioned problems can be solved by a polyamide composition containing the aromatic vinyl copolymer in a specific ratio.
  • the present invention relates to the following [1] to [13].
  • the aromatic vinyl copolymer (C) contains a structural unit derived from aromatic vinyl and a structural unit derived from ⁇ , ⁇ -unsaturated dicarboxylic anhydride, and the aromatic vinyl copolymer (C) C) a glass transition temperature of 140 ° C. or higher,
  • the content of the aromatic vinyl copolymer (C) is 0.3 to 2 with respect to the total content of the polyamide (A), the flame retardant (B) and the aromatic vinyl copolymer (C).
  • a polyamide composition which is 0.0% by mass.
  • the semi-aromatic polyamide more than 50 mol% of the structural units derived from dicarboxylic acid constituting the semi-aromatic polyamide are structural units derived from aromatic dicarboxylic acid, and the semi-aromatic polyamide
  • the aliphatic diamine is at least one selected from the group consisting of 1,6-hexanediamine, 1,9-nonanediamine, 2-methyl-1,8-octanediamine, and 1,10-decanediamine.
  • the ⁇ , ⁇ -unsaturated dicarboxylic anhydride is at least one selected from the group consisting of maleic anhydride and monoalkyl maleic anhydride having an alkyl group having 1 to 3 carbon atoms, [1] A polyamide composition according to any one of the above [6]. [8] The composition of [1] to [7], wherein the content of the constituent unit derived from the ⁇ , ⁇ -unsaturated dicarboxylic anhydride in the aromatic vinyl copolymer (C) is 18 to 50% by mass. Any polyamide composition.
  • Polyamide composition [13] A molded article comprising the polyamide composition of any one of [1] to [12].
  • the present invention it is possible to provide a polyamide composition which is thin and has high flame retardancy, and has excellent heat resistance and moldability, and a molded article comprising the polyamide composition.
  • the polyamide composition of the present invention comprises a polyamide (A) having a melting point of 280 ° C. or higher (hereinafter, also simply referred to as “polyamide (A)”), a flame retardant (B), and an aromatic vinyl copolymer (C). (Hereinafter, also referred to as “copolymer (C)”).
  • the copolymer (C) contains structural units derived from aromatic vinyl and structural units derived from ⁇ , ⁇ -unsaturated dicarboxylic anhydride, and the copolymer (C) has a glass transition temperature of 140. ° C or more, and the content of the copolymer (C) is 0.3 to 2.0% by mass based on the total content of the polyamide (A), the flame retardant (B) and the copolymer (C). It is.
  • the polyamide composition of the present invention contains a polyamide (A) having a specific melting point, a flame retardant (B), and a specific aromatic vinyl-based copolymer (C). By containing it in a specific ratio, it has high flame retardancy in a thin wall, and has excellent heat resistance and moldability. The reason for this is not clear, but is presumed as follows. Since the melting point of the polyamide (A) according to the present invention is 280 ° C. or higher and the glass transition temperature of the copolymer (C) is 140 ° C. or higher, heat resistance is improved.
  • the viscosity of the polyamide composition is increased and the polyamide composition is melted. It is considered that the tension is improved, which leads to suppression of drip. Further, since the amount of carboxyl group terminals is reduced by the reaction, the decomposition of the polyamide (A) at a high temperature is also suppressed. As a result, it is considered that the flame retardancy of a thin wall can be improved.
  • the viscosity of the polyamide composition does not become too high, and a high level of flame retardancy and excellent moldability with a thin wall are obtained. It is thought that both can be compatible.
  • the polyamide composition of the present invention contains a polyamide (A) having a melting point of 280 ° C or higher.
  • the polyamide (A) include a condensation polymer of a dicarboxylic acid and a diamine, a ring-opening polymer of a cyclic lactam, and a condensation polymer of an aminocarboxylic acid.
  • “to unit” (where “to” indicates a monomer) means “a structural unit derived from”, and for example, “dicarboxylic acid unit” means “to a dicarboxylic acid”.
  • “Diamine unit” means “constituent unit derived from diamine”.
  • dicarboxylic acid examples include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecandioic acid, dodecandioic acid, dimethylmalonic acid, and 2,2-diethylsuccinic acid
  • Aliphatic dicarboxylic acids such as 2,3-dimethylglutaric acid, 2-methyladipic acid and trimethyladipic acid; 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, Alicyclic dicarboxylic acids such as cycloheptanedicarboxylic acid, cyclooctanedicarboxylic acid and cyclodecanedicarboxylic acid; terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid
  • Polyamide (A) may be used as long as the effects of the present invention are not impaired, and a structural unit derived from a trivalent or higher polycarboxylic acid such as trimellitic acid, trimesic acid or pyromellitic acid can be melt-molded. May be included.
  • diamine examples include aliphatic diamine, alicyclic diamine, and aromatic diamine.
  • aliphatic diamine ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, Linear aliphatic diamines such as 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine; 1-butyl-1,2- Ethanediamine, 1,1-dimethyl-1,4-butanediamine, 1-ethyl-1,4-butanediamine, 1,2-dimethyl-1,4-butanediamine, 1,3-dimethyl-1,4- Butanediamine, 1,4-dimethyl-1,4-butanediamine, 2,3-dimethyl-1,4-butanediamine, 2-methyl-1,5-pentan
  • Examples of the alicyclic diamine include cyclohexanediamine, methylcyclohexanediamine, isophoronediamine, norbornanedimethylamine, and tricyclodecanedimethylamine.
  • Examples of the aromatic diamine include p-phenylenediamine, m-phenylenediamine, p-xylylenediamine, m-xylylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, and 4,4′- And diaminodiphenyl ether.
  • One of these diamines can be used alone, or two or more can be used in combination.
  • the polyamide (A) may further contain a structural unit derived from a polyvalent amine having a valency of 3 or more such as bis (hexamethylene) triamine as long as the effects of the present invention are not impaired.
  • Examples of the cyclic lactam include acetolactam, propiolactam, butyrolactam, valerolactam, caprolactam, enantholactam, capryloractam, pelargolactam, caprinolactam, laurolactam and the like.
  • Examples of the aminocarboxylic acid include aminopropionic acid, aminobutyric acid, aminovaleric acid, aminocaproic acid, aminoenanoic acid, aminocaprylic acid, aminopelargonic acid, aminocapric acid, and aminolauric acid.
  • Polyamide (A) is a monomer having the above-mentioned dicarboxylic acid, diamine, cyclic lactam, aminocarboxylic acid, trivalent or higher polyvalent carboxylic acid, or trivalent or higher polyamine, and has a melting point of 280 ° C. or higher. It is preferable to use them as an aliphatic polyamide, a wholly aromatic polyamide or a semi-aromatic polyamide in appropriate combination.
  • “a wholly aromatic polyamide” means that more than 50 mol% of the dicarboxylic acid units constituting the polyamide are aromatic dicarboxylic acid units, and 50% of the diamine units constituting the polyamide.
  • a polyamide in which more than mol% is an aromatic diamine unit.
  • “semi-aromatic polyamide” means that more than 50 mol% of the dicarboxylic acid units constituting the polyamide are aromatic dicarboxylic acid units, and 50% of the diamine units constituting the polyamide.
  • a polyamide in which more than mol% is an aliphatic diamine unit, or more than 50 mol% of dicarboxylic acid units constituting the polyamide are aliphatic dicarboxylic acid units and 50 mol of a diamine unit constituting the polyamide % Refers to a polyamide having more than one aromatic diamine unit.
  • At least one selected from the group consisting of aliphatic polyamides and semi-aromatic polyamides is preferable, and semi-aromatic polyamides are more preferable, from the viewpoints of flame retardancy, heat resistance, and moldability with a thin wall.
  • Examples of the aliphatic polyamide include a ring-opening polymer of the cyclic lactam, a condensation polymer of the aminocarboxylic acid, and a condensation polymer of the aliphatic dicarboxylic acid and the aliphatic diamine. From the viewpoints of flame retardancy, heat resistance and moldability, a condensation polymer of the aliphatic dicarboxylic acid and the aliphatic diamine is preferable, and polyamide 46 is more preferable from the viewpoint of easy production.
  • the semi-aromatic polyamide more than 50 mol% of the dicarboxylic acid units constituting the semi-aromatic polyamide are aromatic dicarboxylic acid units from the viewpoint of flame retardancy, heat resistance and moldability in a thin wall. It is preferable that more than 50 mol% of the diamine units constituting the semi-aromatic polyamide are aliphatic diamine units.
  • aromatic dicarboxylic acid constituting the semi-aromatic polyamide examples include the above-mentioned aromatic dicarboxylic acids. Among them, phthalic acid, isophthalic acid and terephthalic acid are preferred, isophthalic acid and terephthalic acid are more preferred, and terephthalic acid is even more preferred. From the viewpoint of heat resistance, the content of aromatic dicarboxylic acid units in all dicarboxylic acid units constituting the semi-aromatic polyamide is preferably 60 mol% or more, more preferably 70 mol% or more, and still more preferably 80 mol% or more. % Or more, more preferably 90 mol% or more, and 100 mol% or less.
  • the semi-aromatic polyamide may include a dicarboxylic acid unit other than the aromatic dicarboxylic acid unit.
  • Such other dicarboxylic acids include the above-mentioned aliphatic dicarboxylic acids and alicyclic dicarboxylic acids.
  • the content of other dicarboxylic acid units in all dicarboxylic acid units constituting the semi-aromatic polyamide is preferably 40 mol% or less, more preferably 30 mol% or less, still more preferably 20 mol% or less, and still more preferably. Is 10 mol% or less.
  • Examples of the aliphatic diamine constituting the semi-aromatic polyamide include the aliphatic diamines described above.
  • the number of carbon atoms of the aliphatic diamine is preferably 4 or more, more preferably 6 or more, further preferably 8 or more, and more preferably 18 or less, from the viewpoint of excellent properties such as heat resistance and low water absorption. More preferably, it is 12 or less.
  • Examples of the aliphatic diamine include 1,6-hexanediamine, 1,9-nonanediamine, 2-methyl-1,8-octanediamine, and 1,10-hexanediamine from the viewpoint of excellent properties such as heat resistance and low water absorption.
  • At least one selected from the group consisting of -decanediamine more preferably at least one selected from the group consisting of 1,9-nonanediamine and 2-methyl-1,8-octanediamine; More preferably, it is used in combination with 2-methyl-1,8-octanediamine.
  • the content of the aliphatic diamine unit in all the diamine units constituting the semi-aromatic polyamide is preferably 60 mol% or more, more preferably 70 mol% or more, further preferably 80 mol% or more, and still more preferably 90 mol% or more. Not less than 100 mol% and not more than 100 mol%.
  • the semi-aromatic polyamide may include other diamine units other than the aliphatic diamine units.
  • Examples of such other diamines include the aforementioned aromatic diamines and alicyclic diamines.
  • the content of other diamine units in all the diamine units constituting the semi-aromatic polyamide is preferably 40 mol% or less, more preferably 30 mol% or less, still more preferably 20 mol% or less, and still more preferably 10 mol% or less. Mol% or less.
  • 1,9-nonanediamine and 2-methyl-1,8-octanediamine are used in combination as the aliphatic diamine, from the viewpoint of heat resistance, 1,9-nonanediamine and 2-methyl-1,8-diamine are used.
  • the molar ratio with octanediamine (1,9-nonanediamine / 2-methyl-1,8-octanediamine) is preferably in the range of 95/5 to 40/60, more preferably in the range of 90/10 to 50/50. , 90/10 to 60/40.
  • the semi-aromatic polyamide may include a structural unit derived from a cyclic lactam and / or an aminocarboxylic acid.
  • these structural units include structural units derived from cyclic lactams such as caprolactam and laurolactam; and aminocarboxylic acids such as 11-aminoundecanoic acid and 12-aminododecanoic acid.
  • the total content of the cyclic lactam unit and the aminocarboxylic acid unit in the semi-aromatic polyamide is 40 mol% or less based on 100 mol% of the dicarboxylic acid unit and the diamine unit constituting the semi-aromatic polyamide. It is more preferably at most 20 mol%.
  • the semi-aromatic polyamide examples include polytetramethylene terephthalamide (polyamide 4T), polyhexamethylene terephthalamide (polyamide 6T), polynonamethylene terephthalamide (polyamide 9T), and polydecamethylene terephthalamide (polyamide). 10T), polyhexamethylene isophthalamide (polyamide 6I), a copolymer of polyamide 6I and polyamide 6T (polyamide 6I / 6T), and a copolymer of polyamide 6T and polyundecaneamide (polyamide 11) (polyamide 6T / 11) and the like.
  • At least one selected from the group consisting of polyamide 4T, polyamide 6T, polyamide 9T and polyamide 10T is preferred, at least one selected from the group consisting of polyamide 9T and polyamide 10T is more preferred, and polyamide 9T is even more preferred.
  • terminal blocking agent a monofunctional compound having reactivity with an amino group or a carboxyl group at a polyamide terminal can be used.From the viewpoints of reactivity and stability of the capping terminal, monocarboxylic acid or Monoamines are preferred, and monocarboxylic acids are more preferred from the viewpoint of easy handling. In addition, monoisocyanates, monoacid halides, monoesters, monoalcohols, and the like can also be used as terminal blocking agents.
  • the monocarboxylic acid used as the terminal blocking agent those having reactivity with an amino group can be used.
  • acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid Aliphatic monocarboxylic acids such as tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid and isobutyric acid; alicyclic monocarboxylic acids such as cyclohexanecarboxylic acid; benzoic acid, toluic acid, ⁇ -naphthalenecarboxylic acid, ⁇ -Aromatic monocarboxylic acids such as naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid and phenylacetic acid; and arbitrary mixtures thereof.
  • acetic acid propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, benzoic acid, etc. Acids are preferred.
  • the monoamine used as the terminal blocking agent those having reactivity with a carboxyl group can be used.
  • methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine Aliphatic monoamines such as dimethylamine, diethylamine, dipropylamine and dibutylamine; alicyclic monoamines such as cyclohexylamine and dicyclohexylamine; aromatic monoamines such as aniline, toluidine, diphenylamine and naphthylamine; arbitrary mixtures thereof; be able to.
  • butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, and aniline are preferred from the viewpoints of reactivity, boiling point, stability of the sealed end, and price.
  • the polyamide (A) used in the present invention can be produced by any method known as a method for producing a crystalline polyamide. For example, by a solution polymerization method or interfacial polymerization method using dicarboxylic acid and diamine as raw materials in the form of acid chloride, a melt polymerization method using dicarboxylic acid and diamine as raw materials, a solid phase polymerization method, a melt extrusion polymerization method, and the like. Can be manufactured.
  • the polyamide (A) is prepared by, for example, adding a diamine, a dicarboxylic acid, and, if necessary, a catalyst and an endcapping agent at a time to produce a nylon salt, and then polymerizing the polyamide at a temperature of 200 to 250 ° C. To produce a prepolymer, and then polymerized by solid phase polymerization or by using a melt extruder. When the final stage of the polymerization is carried out by solid phase polymerization, it is preferably carried out under reduced pressure or under an inert gas flow. If the polymerization temperature is in the range of 200 to 280 ° C., the polymerization rate is high and the productivity is excellent. Coloring and gelation can be effectively suppressed.
  • the polymerization temperature in the case where the final stage of the polymerization is carried out by a melt extruder is preferably 370 ° C. or lower.
  • Examples of the catalyst that can be used in producing the polyamide (A) include phosphoric acid, phosphorous acid, hypophosphorous acid, and salts or esters thereof.
  • Examples of the above salts or esters include phosphoric acid, phosphorous acid or hypophosphorous acid, and metals such as potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, and antimony.
  • Ammonium salts of phosphoric acid, phosphorous acid or hypophosphorous acid ethyl ester, isopropyl ester, butyl ester, hexyl ester, isodecyl ester, octadecyl ester, decyl of phosphoric acid, phosphorous acid or hypophosphorous acid Esters, stearyl esters, phenyl esters and the like can be mentioned. Among them, sodium hypophosphite monohydrate or phosphorous acid is preferred.
  • the polyamide (A) has an intrinsic viscosity [ ⁇ ] measured at 30 ° C. using concentrated sulfuric acid as a solvent, preferably 0.60 to 1.2 dl / g, more preferably 0.65 to 1.1 dl. / G.
  • the intrinsic viscosity [ ⁇ ] of the polyamide (A) is measured by the method described in Examples.
  • the melting point of the polyamide (A) is 280 ° C. or higher, preferably 290 ° C. or higher, more preferably 300 ° C. or higher, in addition to the viewpoint of heat resistance, since the effects of the present invention are more remarkably exhibited.
  • the temperature is preferably 350 ° C. or lower, more preferably 340 ° C. or lower, and further preferably 330 ° C. or lower.
  • the melting point of the polyamide (A) is measured by the method described in Examples.
  • the polyamide composition of the present invention contains a flame retardant (B).
  • the flame retardant (B) include phosphorus-based flame retardants; halogen-based flame retardants such as bromine-based flame retardants and chlorine-based flame retardants.
  • phosphorus-based flame retardants include red phosphorus; aliphatic phosphate esters such as trimethyl phosphate and triethyl phosphate; triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, and cresyl di 2,6-xylenyl.
  • Aromatic phosphates such as phosphate, tris (t-butylated phenyl) phosphate, tris (i-propylated phenyl) phosphate, 2-ethylhexyldiphenyl phosphate; tris (dichloropropyl) phosphate, tris ( ⁇ -chloropropyl) phosphate
  • Halogen-containing phosphoric acid esters such as tris (chloroethyl) phosphate and tris (tribromoneopentyl) phosphate; 1,3-phenylenebis (diphenyl phosphate);
  • Aromatic condensed phosphoric acid esters such as lenbis (dixylenyl) phosphate and bisphenol A bis (diphenylphosphate); 2,2-bis (chloromethyl) trimethylenebis (bis (2-chloroethyl) phosphate), polyoxyalkylenebisdichloroalkyl Halogen-containing condensed phosphoric acid esters such
  • chlorinated flame retardant examples include chlorinated paraffin, chlorinated polyethylene, dodecachloropentacyclooctadeca-7,15-diene (trade name “Dechlorane Plus 25” manufactured by Oxydental Chemical Co., Ltd.), and hetic anhydride.
  • brominated polystyrene may be polybrominated styrene); brominated polyphenylene oxide; brominated bisphenol type epoxy polymer; brominated styrene-maleic anhydride polymer; brominated epoxy resin Brominated phenoxy resin; brominated polybenzyl (meth) acrylate such as polypentabromobenzyl acrylate; bis (pentabromophenyl) ethane, 1,2-bis (2,4,6-tribromophenoxy) ethane, 2,4 Bromine-containing polycyclic compounds such as 2,6-tris (2,4,6-tribromophenoxy) -1,3,5-triazine, 2,6-dibromophenol, 2,4-dibromophenol and polybromophenylindane; Tetrabromobisphenol A, tetrabromobisphenol A-bis (dibromopropyl Ether), tetrab
  • the flame retardant (B) is preferably at least one selected from the group consisting of a phosphorus-based flame retardant and a bromine-based flame retardant, from the viewpoint of thin-walled flame retardancy, heat resistance, and moldability, and more preferably a brominated flame retardant. preferable.
  • brominated flame retardants include brominated polystyrene, brominated polyphenylene oxide, brominated epoxy resin, brominated polybenzyl (meth) acrylate, bromine-containing polycyclic compound, tetrabromobisphenol A and its derivatives, tetrabromobisphenol S and its derivatives And at least one selected from the group consisting of polybrominated diphenyl ethers, bromine-containing cycloaliphatic compounds, bromine-containing phthalic acid compounds, and bromine-containing isocyanuric acid compounds; brominated polystyrene, brominated polyphenylene oxide, and brominated epoxy resins , Polypentabromobenzyl acrylate, bis (pentabromophenyl) ethane, 2,4,6-tris (2,4,6-tribromophenoxy) -1,3,5-triazine, polybromophenylindane, tetrabromo Sphenol A-bis (dibrobro
  • brominated polystyrene at least one selected from the group consisting of brominated polystyrene, brominated epoxy resin, and N, N-ethylenebis (tetrabromophthal) imide is more preferable from the viewpoint of withstanding molding at high temperatures, and brominated polystyrene is more preferable. Even more preferred.
  • the method for producing brominated polystyrene is not particularly limited. For example, a method in which styrene is polymerized to produce polystyrene and then the benzene ring of polystyrene is brominated, or brominated styrene (bromostyrene, dibromostyrene, tribromostyrene, etc.) is used.
  • the bromine atom content in the brominated polystyrene is preferably from 55 to 75% by mass.
  • the content of bromine atoms is 55% by mass or more, the content of brominated polystyrene for satisfying the amount of bromine required for flame retardancy is reduced, and the mechanical properties and heat resistance are not reduced. High flame retardancy can be imparted.
  • the content of bromine atoms is 75% by mass or less, the thermal stability of the brominated polystyrene is reduced and the thermal decomposition at the time of melt molding is reduced, gas generation is suppressed, and discoloration due to heat can be suppressed. .
  • the polyamide composition of the present invention preferably contains a flame retardant auxiliary agent in addition to the bromine-based flame retardant, from the viewpoint of imparting excellent flame retardancy with a small thickness with a small amount of flame retardant.
  • the flame retardant aid include antimony trioxide, antimony pentoxide, sodium antimonate, sodium oxide, tin oxide, zinc stannate, zinc oxide, iron oxide, magnesium hydroxide, calcium hydroxide, zinc borate, kaolin clay. , Calcium carbonate and the like.
  • One of these flame retardant aids may be used alone, or two or more thereof may be used in combination.
  • These flame retardant aids may be treated with a silane coupling agent, a titanium coupling agent, or the like. Among them, zinc borate and zinc stannate are preferred, and zinc stannate is more preferred.
  • the polyamide composition of the present invention contains an aromatic vinyl copolymer (C) (copolymer (C)).
  • the copolymer (C) contains an aromatic vinyl unit and an ⁇ , ⁇ -unsaturated dicarboxylic anhydride unit, and the glass transition temperature of the copolymer (C) is 140 ° C. or higher.
  • Such an aromatic vinyl is a compound having an aromatic ring and a vinyl group, and examples thereof include styrene, 2-methylstyrene, ⁇ -methylstyrene, and p-methylstyrene.
  • styrene and ⁇ -methylstyrene are preferred, and styrene is more preferred.
  • the ⁇ , ⁇ -unsaturated dicarboxylic anhydride include maleic anhydride, monoalkyl maleic anhydride having an alkyl group having 1 to 3 carbon atoms, and dialkyl maleic anhydride having an alkyl group having 1 to 3 carbon atoms. Is mentioned. Among them, at least one selected from the group consisting of maleic anhydride and monoalkyl maleic anhydride is preferable, at least one selected from the group consisting of maleic anhydride and citraconic anhydride is more preferable, and maleic anhydride is further preferable.
  • the content of ⁇ , ⁇ -unsaturated dicarboxylic anhydride units in the copolymer (C) is preferably from 18 to 50% by mass.
  • the content of the ⁇ , ⁇ -unsaturated dicarboxylic anhydride unit is 18% by mass or more, the ⁇ , ⁇ -unsaturated dicarboxylic anhydride unit in the copolymer (C) becomes a carboxyl group of the polyamide (A).
  • the polyamide composition is increased in viscosity, the melt tension is improved, drip is suppressed, and the amount of the carboxyl group terminal is reduced by the reaction.
  • Decomposition of (A) is also suppressed, and flame retardancy with a thin wall can be improved.
  • the content of the ⁇ , ⁇ -unsaturated dicarboxylic anhydride unit is 50% by mass or less, the viscosity of the polyamide composition does not become too high, and both high flame retardancy at a thin wall and excellent moldability are compatible. it can.
  • the content of the ⁇ , ⁇ -unsaturated dicarboxylic anhydride unit in the copolymer (C) is more preferably 19% by mass or more, further preferably 20% by mass or more, and 40% by mass or less. Is more preferably 30% by mass or less, further preferably 28% by mass or less, and particularly preferably 25% by mass or less.
  • the content of the ⁇ , ⁇ -unsaturated dicarboxylic anhydride unit in the copolymer (C) is more preferably from 18 to 40% by mass, still more preferably from 19 to 30% by mass, and more preferably from 20 to 28% by mass. Is more preferable, and 20 to 25% by mass is particularly preferable.
  • the copolymer (C) may further have a constituent unit other than the aromatic vinyl unit and the ⁇ , ⁇ -unsaturated dicarboxylic anhydride unit, but the aromatic vinyl unit and the aromatic vinyl unit in the copolymer (C) may be used.
  • the total content of ⁇ , ⁇ -unsaturated dicarboxylic anhydride units is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass.
  • the glass transition temperature of the copolymer (C) is 140 ° C. or higher, preferably 145 ° C. or higher, more preferably 150 ° C. or higher, from the viewpoint of flame retardancy and heat resistance at a thin wall. From the viewpoint of suppressing the thermal decomposition or the like of the polyamide during the heating, the temperature is preferably 200 ° C or lower, more preferably 180 ° C or lower, further preferably 160 ° C or lower.
  • the range of the glass transition temperature of the copolymer (C) is preferably from 140 to 200 ° C, more preferably from 145 to 180 ° C, even more preferably from 150 to 160 ° C.
  • the glass transition temperature of the copolymer (C) is measured by the method described in Examples.
  • the weight average molecular weight (Mw) of the copolymer (C) is preferably 10,000 or more, more preferably 20,000 or more, and still more preferably 30,000 or more, from the viewpoint of flame retardancy and heat resistance in a thin wall. , More preferably 40,000 or more, particularly preferably 50,000 or more, and preferably 500,000 or less, more preferably 400,000 or less, further preferably 300,000 or less, and particularly preferably 200,000 or less. 000 or less.
  • the range of the weight average molecular weight (Mw) of the copolymer (C) is more preferably from 10,000 to 500,000, further preferably from 20,000 to 400,000, and particularly preferably from 30,000 to 300,000. , 50,000 to 200,000.
  • the weight average molecular weight (Mw) is measured by gel permeation chromatography (GPC) in terms of polystyrene.
  • the copolymer (C) may be a commercially available product or a product synthesized by a known method.
  • the bonding form between the aromatic vinyl unit and the ⁇ , ⁇ -unsaturated dicarboxylic anhydride unit is not particularly limited, and may be any of random polymerization, block polymerization, and graft polymerization. It is preferable that the copolymer (C) is in the form of random polymerization or block polymerization because the effect is more remarkable.
  • the copolymer (C) is obtained by reacting an aromatic vinyl with an ⁇ , ⁇ -unsaturated dicarboxylic anhydride. It is preferably obtained by the above.
  • Commercial products of the copolymer (C) include DYLARK series (trade name, manufactured by NOVA Chemicals), XIRAN series (trade name, manufactured by Polyscope) and the like.
  • the polyamide composition of the present invention preferably further contains a filler (D) from the viewpoint of improving the flame retardancy, heat resistance, moldability and mechanical strength of a thin wall.
  • a filler (D) those having various forms such as fibrous, flat, acicular, powder, and cloth can be used.
  • fibrous fillers such as glass fiber, carbon fiber, aramid fiber, liquid crystal polymer (LCP) fiber, gypsum fiber, brass fiber, ceramics fiber, and boron whisker fiber; plate-like fillers such as glass flake, mica, and talc Fillers: Potassium fillers such as potassium titanate whiskers, aluminum borate whiskers, calcium carbonate whiskers, magnesium sulfate whiskers, wollastonite, sepiolite, zonotolite, zinc oxide whiskers; silica, alumina, barium carbonate, magnesium carbonate, nitrided Aluminum, boron nitride, potassium titanate, titanium oxide, aluminum silicate (kaolin, clay, pyrophyllite, bentonite), calcium silicate, magnesium silicate (atapulgite), aluminum borate, calcium sulfate, sulfur Powders of barium, magnesium sulfate, asbestos, glass beads, carbon black, graphite, carbon nanotubes, silicon carbide, sericite,
  • Fillers such as cloth fillers such as glass cloth. These may be used alone or in combination of two or more.
  • the surface of these fillers (D) is used for the purpose of enhancing the dispersibility in the polyamide (A) or the adhesiveness with the polyamide (A), for the purpose of improving the dispersibility in the polyamide (A).
  • the surface may be treated with a high molecular compound such as a resin, a urethane resin, an epoxy resin, or another low molecular compound.
  • the fillers (D) at least one selected from the group consisting of fibrous fillers and needle-like fillers is preferable, since a molded article having low cost and high mechanical strength can be obtained.
  • the filler (D) is preferably glass fiber from the viewpoint of high strength and low cost, and is preferably an acicular filler from the viewpoint of obtaining a molded product having high surface smoothness.
  • the filler (D) is preferably at least one selected from the group consisting of glass fibers, wollastonite, potassium titanate whiskers, calcium carbonate whiskers, and aluminum borate whiskers, and is selected from the group consisting of glass fibers and wollastonite. At least one type is more preferable, and glass fiber is still more preferable.
  • the average fiber length of the glass fibers is preferably 1 to 10 mm, more preferably 1 to 7 mm, and still more preferably 2 to 4 mm.
  • the average fiber diameter of the glass fibers is preferably from 6 to 20 ⁇ m, more preferably from 6 to 15 ⁇ m, from the viewpoint of obtaining mechanical strength.
  • the average fiber length and the average fiber diameter of the glass fibers can be obtained by measuring the fiber length and the fiber diameter of 400 glass fibers arbitrarily selected by image analysis using electron microscopy, and obtaining the respective weight average values. it can.
  • the average fiber length and average fiber diameter of the glass fibers in the polyamide composition or in the molded article composed of the polyamide composition are determined, for example, by dissolving the polyamide composition or the molded article in an organic solvent and extracting the glass fibers. However, it can be determined by image analysis using electron microscopy as described above.
  • the polyamide composition of the present invention may contain, if necessary, an anti-drip agent such as polytetrafluoroethylene powder; an antioxidant such as a phenol-based or phosphorus-based agent; a release agent such as a polyolefin-based wax; a light stabilizer; An antistatic agent; a crystal nucleating agent; a plasticizer; a lubricant, and other components other than those described above.
  • an anti-drip agent such as polytetrafluoroethylene powder
  • an antioxidant such as a phenol-based or phosphorus-based agent
  • a release agent such as a polyolefin-based wax
  • a light stabilizer such as a polyolefin-based wax
  • An antistatic agent such as a crystal nucleating agent; a plasticizer; a lubricant, and other components other than those described above.
  • the content of the polyamide (A) in the polyamide composition of the present invention is preferably 20 to 80% by mass.
  • the content of the polyamide (A) is 20% by mass or more, molding is easy, the heat resistance and mechanical properties of the obtained molded product are good, and when it is 80% by mass or less, flame retardancy is good. It is. From this viewpoint, the content of the polyamide (A) is more preferably 30 to 70% by mass, and still more preferably 35 to 60% by mass.
  • the content of the flame retardant (B) in the polyamide composition of the present invention is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the polyamide (A).
  • the content of the flame retardant (B) is 1 part by mass or more, the flame retardancy is improved, and when the content of the flame retardant (B) is 100 parts by mass or less, mechanical properties of the obtained polyamide composition. Can be suppressed.
  • the content of the flame retardant (B) is more preferably 5 to 90 parts by mass, still more preferably 10 to 70 parts by mass, and still more preferably 20 to 60 parts by mass with respect to 100 parts by mass of the polyamide (A). Parts by weight, particularly preferably 30 to 55 parts by weight.
  • the content of the flame retardant aid is preferably from 0.1 to 50 parts by mass, more preferably from 1 to 30 parts by mass, per 100 parts by mass of the polyamide (A).
  • the content of the copolymer (C) in the polyamide composition of the present invention is from 0.3 to 2. based on the total content of the polyamide (A), the flame retardant (B) and the copolymer (C). 0% by mass.
  • the constituent part of the copolymer (C) in which the copolymer (C) has reacted with the polyamide is also included in the calculation as the content of the copolymer (C) in the polyamide composition.
  • the ⁇ , ⁇ -unsaturated dicarboxylic anhydride unit in the copolymer (C) may be a carboxyl group terminal or amino group of the polyamide (A).
  • the viscosity of the polyamide composition is increased, the melt tension is improved, dripping is suppressed, and the amount of the carboxyl group terminal is further reduced by the reaction. Is also suppressed, and the flame retardancy with a thin wall can be improved.
  • the content of the copolymer (C) is 2.0% by mass or less, the viscosity of the polyamide composition does not become too high, and it is possible to achieve both high flame retardancy at a thin wall and excellent moldability.
  • the content of the copolymer (C) is preferably at least 0.4% by mass, based on the total content of the polyamide (A), the flame retardant (B), and the copolymer (C).
  • the copolymer (C) is preferably from 0.4 to 2.0% by mass, more preferably from 0.5 to 1.8% by mass, still more preferably from 0.6 to 1.8% by mass.
  • the content is more preferably from 0.7 to 1.7% by mass, particularly preferably from 1.0 to 1.7% by mass, and most preferably from 1.3 to 1.6% by mass.
  • the total content of the polyamide (A), the flame retardant (B) and the copolymer (C) in the polyamide composition of the present invention is not particularly limited, but from the viewpoints of flame retardancy, heat resistance and moldability at a thin wall. , Preferably 40% by mass or more, more preferably 50% by mass or more, and still more preferably 60% by mass or more.
  • the content is preferably 1 to 100 parts by mass of the polyamide (A) from the viewpoint of obtaining a molded article having high mechanical strength.
  • the amount is 100 parts by mass, more preferably 5 to 90 parts by mass, and still more preferably 10 to 80 parts by mass.
  • the content of the other components in the polyamide composition of the present invention is preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less.
  • the polyamide composition of the present invention can be prepared by mixing the above-mentioned components according to a known method. More specific preparation methods include, for example, a method of adding each component during the polycondensation reaction of the polyamide (A), a method of dry blending the polyamide (A) and each component, and a method of melt-mixing each component using an extruder. And the like. Among these, a method in which each component is melt-kneaded using an extruder is preferable because the operation is easy and a uniform composition can be obtained.
  • the extruder used at this time is preferably of a twin screw type.
  • the melt-kneading temperature is from a temperature 5 ° C.
  • the temperature range is preferably 10 ° C. to 20 ° C. higher than the melting point.
  • the form of the polyamide composition is not particularly limited, and may be, for example, pellets.
  • the polyamide composition of the present invention has good moldability, and is generally formed by a molding method employed for a thermoplastic resin composition such as injection molding, extrusion molding, press molding, blow molding, calendar molding, and casting.
  • a molded article can be formed.
  • a molding method obtained by combining the above-described molding methods can be employed.
  • injection molding is preferred in terms of ease of molding, mass productivity, cost, and the like.
  • the polyamide composition of the present invention and another polymer can be formed into a composite.
  • the polyamide composition of the present invention can be compounded with a molded article or cloth made of metal.
  • the polyamide composition of the present invention under the conditions of a cylinder temperature of 20 ° C. higher than the melting point of the polyamide (A), an injection pressure of 74 MPa, and a mold temperature of 140 ° C., the polyamide composition is formed in a mold having a thickness of 0.5 mm and a width of 40 mm.
  • the flow length when the melt of the product is injection-molded is preferably 40 mm or more. This makes it possible to achieve both high flame retardancy with a thin wall and excellent moldability.
  • the flow length is more preferably equal to or greater than 45 mm, more preferably equal to or greater than 48 mm, still more preferably equal to or greater than 50 mm, particularly preferably equal to or greater than 53 mm, and is preferably equal to or less than 70 mm, more preferably equal to or less than 65 mm, and still more preferably equal to or less than 60 mm. Preferably, it is even more preferably 56 mm or less, and may be 54 mm or less, or even 52 mm or less.
  • the flow length is an average value of the flow lengths Ln of the obtained five test pieces when five test pieces were prepared in a mold having a thickness of 0.5 mm and a width of 40 mm under the above conditions. Specifically, it is measured by the method described in Examples.
  • the polyamide composition of the present invention preferably has a melt flow rate (MFR) at a temperature of 320 ° C and a load of 2.16 kg of 15 g / 10 minutes or less.
  • MFR melt flow rate
  • the melt flow rate is more preferably 1 to 13 g / 10 minutes, further preferably 2 to 10 g / 10 minutes, and still more preferably 3 to 7 g / 10 minutes.
  • the MFR is based on JIS K 7210-1: 2014 at a temperature of 320 ° C. and a load of 2.16 kg, and the amount of molten resin (g / g / 2.095 mm, length 8.000 mm) flowing out from a standard die (g / g). 10 minutes).
  • the molded article of the present invention is composed of the polyamide composition of the present invention, and undergoes the above-described molding process, and is used for electrical and electronic parts, automobile parts, industrial parts, fibers, films, sheets, household articles, and other arbitrary shapes and It can be used as various molded products for applications.
  • Examples of electrical and electronic components include FPC connectors, BtoB connectors, card connectors, SMT connectors (such as coaxial connectors), and connectors such as memory card connectors; SMT relays; SMT bobbins; sockets such as memory sockets and CPU sockets; command switches; Switches such as switches; optical components such as optical fiber components and optical sensors; LED application components such as LED reflectors; and electronic substrates such as solar cell substrates, LED mounting substrates, flexible printed wiring boards, and resin molded circuit boards.
  • Automotive parts include, for example, thermostat housings, radiator tanks, radiator hoses, water outlets, water pump housings, cooling parts such as rear joints; intercooler tanks, intercooler cases, turbo duct pipes, EGR cooler cases, resonators, throttle bodies, intake manifolds , Tail pipes and other intake / exhaust system parts; fuel delivery pipes, gasoline tanks, quick connectors, canisters, pump modules, fuel piping, oil strainers, lock nuts, seal materials, and other fuel system parts; mount brackets, torque rods, cylinder head covers Structural parts such as: bearing retainer, gear tensioner, headlamp actuator gear, sliding door roller Drive system parts such as clutch peripheral parts; brake system parts such as air brake tubes; wiring harness connectors in the engine room, motor parts, sensors, on-board electrical parts such as ABS bobbins, combination switches, and on-board switches; slide door dampers, drivers Mirror stays, door mirror brackets, inner mirror stays, roof rails, engine mount brackets, air cleaner inrate pipes, door checkers, plastic chains, emblems, clips,
  • Industrial parts include, for example, gas pipes, oilfield mining pipes, hoses, termite control cables (communication cables, pass cables, etc.), paint parts of powder coating products (such as inner coating of water pipes), submarine oilfield pipes, pressure-resistant hoses, Hydraulic tubes, paint tubes, fuel pumps, separators, supercharge ducts, butterfly valves, conveyor roller bearings, railroad sleeper spring supports, outboard engine covers, generator engine covers, irrigation valves, large switches (Switches) and monofilaments (extruded yarns) such as fishing nets.
  • an airbag base fabric for example, an airbag base fabric, a heat-resistant filter, a reinforcing fiber, a bristle for a brush, a fishing line, a tire cord, an artificial turf, a carpet, a fiber for a seat, and the like can be mentioned.
  • films and sheets include heat-resistant adhesive tapes such as heat-resistant masking tapes and industrial tapes; materials for magnetic tapes such as cassette tapes, magnetic tapes for data storage for digital data storage, and video tapes; Food packaging materials such as individual packaging and meat processing products; and electronic component packaging materials such as semiconductor package packaging.
  • the polyamide composition of the present invention is particularly excellent in flame retardancy, heat resistance and moldability in a thin portion, so that it can be suitably used for electric and electronic parts, and electric and electronic parts including an SMT step, more specifically, Can be suitably used for SMT compatible connectors, SMT relays, SMT bobbins, sockets, command switches, SMT switches, and the like.
  • melting point The melting point of the polyamide (A) was raised from 30 ° C. to 360 ° C. at a rate of 10 ° C./min under a nitrogen atmosphere using a differential scanning calorimeter “DSC822” manufactured by METTLER TOLEDO.
  • the peak temperature of the melting peak appearing at that time was defined as the melting point (° C.).
  • the peak temperature of the melting peak on the highest temperature side was defined as the melting point.
  • the intrinsic viscosity ( ⁇ inh ) was calculated by the following formula, and the value obtained by extrapolating the inherent viscosity ( ⁇ inh ) to a concentration of 0 was defined as the intrinsic viscosity [ ⁇ ] of the polyamide (A).
  • ⁇ inh (dl / g) [ln (t 1 / t 0 )] / c
  • t 0 represents the flow time (second) of the solvent
  • t 1 represents the flow time (second) of the sample solution
  • c represents the solution concentration (g / dl).
  • Glass-transition temperature The glass transition temperature of the copolymer (C) was measured by a method according to JIS K 7121: 1987.
  • the flame retardancy was evaluated according to the UL-94 standard. Using the polyamide composition obtained in each of the Examples and Comparative Examples, injection molding (mold temperature: 140 ° C.) was performed at a cylinder temperature of about 20 ° C. higher than the melting point of the polyamide, and a thickness of 0.3 mm, a width of 13 mm, A test piece having a length of 125 mm was obtained. Next, the upper end of the test piece was clamped to fix the test piece vertically, and a lower end of the test piece was exposed to a predetermined flame for 10 seconds, and the burning time (first time) of the test piece was measured.
  • V-1 T was 250 seconds or less, M was 30 seconds or less, it did not burn up to the clamp, and did not ignite cotton 12 inches below even if the flaming melt fell.
  • V-2 T was less than 250 seconds, M was less than 30 seconds, the flame did not burn up, the melted flame dropped and ignited the cotton 12 inches below.
  • Examples 1 to 9, Comparative Examples 1 and 2 Filler so that the composition of polyamide (A), flame retardant (B), copolymer (C), filler (D), flame retardant aid, and other components is as shown in Table 1.
  • the filler (D) was supplied from a side feeder and melt-kneaded at 320 ° C.
  • the melt-kneaded polyamide composition was extruded into strands, cooled, and then cut to obtain pellets of the polyamide composition. Using the obtained pellets, test pieces having a predetermined shape were prepared according to the method described above, and various physical properties were evaluated. Table 1 shows the results.
  • Anti-drip agent Mitsui DuPont Fluorochemicals Co., Ltd., trade name “640-J” (polytetrafluoroethylene powder)
  • Antioxidant Sumitomo Chemical Co., Ltd., trade name "Sumilizer GA-80" (3,9-bis @ 1,1-dimethyl-2- [ ⁇ - (3-t-butyl-4-hydroxy-5) -Methylphenyl) propionyloxy] ethyl ⁇ -2,4,8,10-tetraoxaspiro [5.5] undecane)
  • -Release agent manufactured by Mitsui Chemicals, Inc., trade name "High Wax 200P” (polyolefin-based wax)
  • Crystal nucleating agent trade name “ML112” (Talc), manufactured by Fuji Talc Industry Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

融点が280℃以上であるポリアミド(A)、難燃剤(B)、及び芳香族ビニル系共重合体(C)を含有するポリアミド組成物であり、該芳香族ビニル系共重合体(C)が、芳香族ビニルに由来する構成単位とα,β-不飽和ジカルボン酸無水物に由来する構成単位とを含み、該芳香族ビニル系共重合体(C)のガラス転移温度が140℃以上であり、該芳香族ビニル系共重合体(C)の含有量が、ポリアミド(A)、難燃剤(B)及び芳香族ビニル系共重合体(C)の合計含有量に対して、0.3~2.0質量%である、ポリアミド組成物、及び該ポリアミド組成物からなる成形品である。

Description

ポリアミド組成物及び該ポリアミド組成物からなる成形品
 本発明は、ポリアミド組成物及び該ポリアミド組成物からなる成形品に関する。
 ポリアミドは、機械的特性、成形性等に優れることから、電気電子部品、自動車部品、機械部品、産業部品、繊維、フィルム、シート等の様々な用途で使用されている。特に電気電子部品用途においては、UL-94規格に基づく高度な難燃性が要求されることから、種々の難燃剤によるポリアミド組成物の難燃化の方法が提案されている。
 例えば、特許文献1では、特定のポリアミド、特定のガラス繊維及び臭素系難燃剤を含有するポリアミド組成物が提案され、流動性等に優れることが記載されている。
 また、特許文献2~3では、末端アミノ基比率又は末端カルボキシル基比率が特定の範囲にあるポリアミド、臭素化ポリスチレン、及び芳香族ビニル化合物とα,β不飽和ジカルボン酸無水物の共重合体を含む難燃性ポリアミド樹脂組成物が提案され、薄肉での難燃性、押出加工性、成型加工性等に優れることが記載されている。
 また、特許文献4では、融点が特定の範囲であるポリアミド、難燃剤、及び滴下防止剤を含有してなるポリアミド組成物において、前記滴下防止剤として、フッ素樹脂と、アイオノマーおよび変性芳香族ビニル系重合体からなる群から選ばれる少なくとも1種の重合体とを、特定の範囲の質量比で用いる、ポリアミド組成物が提案され、薄肉部を有する電子部品を成形するための材料として好適な難燃性、耐熱性、成形性(流動性)等に優れることが記載されている。
特開2003-82228号公報 特開2007-291249号公報 特開2007-291250号公報 国際公開第2009/017043号
 ここで、電気電子部品に関して、その実装において、製品サイズの小型化、軽量化に伴う部品の小型化、薄肉化に伴い、薄肉でのより高度な難燃性が求められている。また、近年の表面実装技術(SMT)の進歩に伴うリフローハンダ耐熱性を必要とする電気電子部品や、耐熱性への要求が高まる自動車部品等においては、ポリアミド組成物の耐熱性及び成形性の更なる向上が求められている。しかしながら、特許文献1~3の技術では、薄肉での高度な難燃性、耐熱性及び成形性において十分に満足できるものではない。また、特許文献4の技術では、難燃性、耐熱性、成形性等が改善されるものの、更なる性能の向上が望まれている。
 以上の事情を鑑み、本発明は、薄肉での高度な難燃性を有し、かつ優れた耐熱性及び成形性を有するポリアミド組成物及び該ポリアミド組成物からなる成形品を提供することを目的とする。
 本発明者らは、特定のポリアミド、難燃剤、及び芳香族ビニル系共重合体を含有し、該芳香族ビニル系共重合体が特定の構成単位を含み、該芳香族ビニル系共重合体のガラス転移温度が特定の範囲であり、該芳香族ビニル系共重合体を特定の割合で含有するポリアミド組成物により、上記課題を解決できることを見出し、当該知見に基づいてさらに検討を重ねて本発明を完成させた。
 すなわち本発明は、下記[1]~[13]に関する。
[1] 融点が280℃以上であるポリアミド(A)、難燃剤(B)、及び芳香族ビニル系共重合体(C)を含有するポリアミド組成物であり、
 該芳香族ビニル系共重合体(C)が、芳香族ビニルに由来する構成単位とα,β-不飽和ジカルボン酸無水物に由来する構成単位とを含み、該芳香族ビニル系共重合体(C)のガラス転移温度が140℃以上であり、
 該芳香族ビニル系共重合体(C)の含有量が、ポリアミド(A)、難燃剤(B)及び芳香族ビニル系共重合体(C)の合計含有量に対して、0.3~2.0質量%である、ポリアミド組成物。
[2] ポリアミド(A)が半芳香族ポリアミドである、[1]のポリアミド組成物。
[3] 前記半芳香族ポリアミドにおいて、該半芳香族ポリアミドを構成するジカルボン酸に由来する構成単位のうちの50モル%超が芳香族ジカルボン酸に由来する構成単位であり、かつ該半芳香族ポリアミドを構成するジアミンに由来する構成単位のうちの50モル%超が炭素数4~18の脂肪族ジアミンに由来する構成単位である、[2]のポリアミド組成物。
[4] 前記脂肪族ジアミンが、1,6-ヘキサンジアミン、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン、及び1,10-デカンジアミンからなる群より選ばれる少なくとも1種である、[3]のポリアミド組成物。
[5] 難燃剤(B)が臭素系難燃剤である、[1]~[4]のいずれかのポリアミド組成物。
[6] 前記芳香族ビニルに由来する構成単位が、スチレン及びα-メチルスチレンからなる群より選ばれる少なくとも1種、に由来する構成単位を含む、[1]~[5]のいずれかのポリアミド組成物。
[7] 前記α,β-不飽和ジカルボン酸無水物が、無水マレイン酸及び炭素数1以上3以下のアルキル基を有するモノアルキル無水マレイン酸からなる群より選ばれる少なくとも一種である、[1]~[6]のいずれかのポリアミド組成物。
[8] 芳香族ビニル系共重合体(C)中のα,β-不飽和ジカルボン酸無水物に由来する構成単位の含有量が18~50質量%である、[1]~[7]のいずれかのポリアミド組成物。
[9] 芳香族ビニル系共重合体(C)の重量平均分子量(Mw)が10,000~500,000である、[1]~[8]のいずれかのポリアミド組成物。
[10] 更に充填剤(D)を含有する、[1]~[9]のいずれかのポリアミド組成物。
[11] 前記ポリアミド組成物が、ポリアミド(A)、難燃剤(B)、及び芳香族ビニル系共重合体(C)を、溶融混錬して得られる[1]~[9]のいずれかのポリアミド組成物。
[12] 前記ポリアミド組成物が、ポリアミド(A)、難燃剤(B)、芳香族ビニル系共重合体(C)、及び充填剤(D)を、溶融混錬して得られる[10]のポリアミド組成物
[13] [1]~[12]のいずれかのポリアミド組成物からなる成形品。
 本発明によれば、薄肉での高度な難燃性を有し、かつ優れた耐熱性及び成形性を有するポリアミド組成物及び該ポリアミド組成物からなる成形品を提供することができる。
[ポリアミド組成物]
 本発明のポリアミド組成物は、融点が280℃以上であるポリアミド(A)(以下、単に「ポリアミド(A)」とも称する)、難燃剤(B)、及び芳香族ビニル系共重合体(C)(以下、「共重合体(C)」とも称する)を含有する。そして、共重合体(C)は、芳香族ビニルに由来する構成単位とα,β-不飽和ジカルボン酸無水物に由来する構成単位とを含み、共重合体(C)のガラス転移温度が140℃以上であり、共重合体(C)の含有量が、ポリアミド(A)、難燃剤(B)及び共重合体(C)の合計含有量に対して、0.3~2.0質量%である。
 本発明のポリアミド組成物は、特定の融点を有するポリアミド(A)、難燃剤(B)、及び特定の芳香族ビニル系共重合体(C)を含有し、該芳香族ビニル系共重合体を特定の割合で含有することにより、薄肉での高度な難燃性を有し、かつ優れた耐熱性及び成形性を有する。この理由については定かではないが、以下のように推察される。
 本発明に係るポリアミド(A)の融点が280℃以上であり、共重合体(C)のガラス転移温度が140℃以上であるため耐熱性が向上する。また、共重合体(C)中のα,β-不飽和ジカルボン酸無水物単位がポリアミド(A)のカルボキシル基末端又はアミノ基末端と反応することにより、ポリアミド組成物が高粘度化され、溶融張力が向上し、ドリップの抑制につながっていると考えられる。更に該反応によりカルボキシル基末端量が低減されるため、高温下におけるポリアミド(A)の分解も抑制される。その結果、薄肉での難燃性を向上させることができると考えられる。また、ポリアミド組成物中の共重合体(C)の含有量を特定の割合とすることにより、ポリアミド組成物の粘度が高くなり過ぎず、薄肉での高度な難燃性と優れた成形性とを両立できると考えられる。
<ポリアミド(A)>
 本発明のポリアミド組成物は、融点が280℃以上であるポリアミド(A)を含有する。
 ポリアミド(A)としては、ジカルボン酸とジアミンとの縮重合物、環状ラクタムの開環重合物、アミノカルボン酸の縮重合物などが挙げられる。
 なお、本明細書において、「~単位」(ここで「~」は単量体を示す)とは「~に由来する構成単位」を意味し、例えば「ジカルボン酸単位」とは「ジカルボン酸に由来する構成単位」を意味し、「ジアミン単位」とは「ジアミンに由来する構成単位」を意味する。
 前記ジカルボン酸としては、例えばマロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、ジメチルマロン酸、2,2-ジエチルコハク酸、2,2-ジメチルグルタル酸、2-メチルアジピン酸、トリメチルアジピン酸等の脂肪族ジカルボン酸;1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、シクロヘプタンジカルボン酸、シクロオクタンジカルボン酸、シクロデカンジカルボン酸等の脂環式ジカルボン酸;テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,4-フェニレンジオキシジ酢酸、1,3-フェニレンジオキシジ酢酸、ジフェン酸、ジフェニルメタン-4,4’-ジカルボン酸、ジフェニルスルホン-4,4’-ジカルボン酸、4,4’-ビフェニルジカルボン酸等の芳香族ジカルボン酸などが挙げられる。これらのジカルボン酸は1種を単独で使用することもできるし、2種以上を併用することもできる。
 ポリアミド(A)は、本発明の効果を損なわない範囲内において、さらにトリメリット酸、トリメシン酸、ピロメリット酸などの3価以上の多価カルボン酸由来の構成単位を溶融成形が可能な範囲で含んでもよい。
 前記ジアミンとしては、脂肪族ジアミン、脂環式ジアミン、芳香族ジアミンなどが挙げられる。脂肪族ジアミンとしては、エチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン等の直鎖状脂肪族ジアミン;1-ブチル-1,2-エタンジアミン、1,1-ジメチル-1,4-ブタンジアミン、1-エチル-1,4-ブタンジアミン、1,2-ジメチル-1,4-ブタンジアミン、1,3-ジメチル-1,4-ブタンジアミン、1,4-ジメチル-1,4-ブタンジアミン、2,3-ジメチル-1,4-ブタンジアミン、2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、2,5-ジメチル-1,6-ヘキサンジアミン、2,4-ジメチル-1,6-ヘキサンジアミン、3,3-ジメチル-1,6-ヘキサンジアミン、2,2-ジメチル-1,6-ヘキサンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、2,4-ジエチル-1,6-ヘキサンジアミン、2,2-ジメチル-1,7-ヘプタンジアミン、2,3-ジメチル-1,7-ヘプタンジアミン、2,4-ジメチル-1,7-ヘプタンジアミン、2,5-ジメチル-1,7-ヘプタンジアミン、2-メチル-1,8-オクタンジアミン、3-メチル-1,8-オクタンジアミン、4-メチル-1,8-オクタンジアミン、1,3-ジメチル-1,8-オクタンジアミン、1,4-ジメチル-1,8-オクタンジアミン、2,4-ジメチル-1,8-オクタンジアミン、3,4-ジメチル-1,8-オクタンジアミン、4,5-ジメチル-1,8-オクタンジアミン、2,2-ジメチル-1,8-オクタンジアミン、3,3-ジメチル-1,8-オクタンジアミン、4,4-ジメチル-1,8-オクタンジアミン、5-メチル-1,9-ノナンジアミン等の分岐鎖状脂肪族ジアミンなどが挙げられる。
 脂環式ジアミンとしては、シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン、ノルボルナンジメチルアミン、トリシクロデカンジメチルアミンなどが挙げられる。
 芳香族ジアミンとしては、p-フェニレンジアミン、m-フェニレンジアミン、p-キシリレンジアミン、m-キシリレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテルなどが挙げられる。
 これらのジアミンは、1種を単独で使用することもできるし、2種以上を併用することもできる。
 ポリアミド(A)は、本発明の効果を損なわない範囲内において、さらにビス(ヘキサメチレン)トリアミンなどの3価以上の多価アミン由来の構成単位を溶融成形が可能な範囲で含んでもよい。
 前記環状ラクタムとしては、アセトラクタム、プロピオラクタム、ブチロラクタム、バレロラクタム、カプロラクタム、エナントラクタム、カプリロラクタム、ペラルゴラクタム、カプリノラクタム、ラウロラクタムなどが挙げられる。
 前記アミノカルボン酸としては、アミノプロピオン酸、アミノ酪酸、アミノバレリアン酸、アミノカプロン酸、アミノエナント酸、アミノカプリル酸、アミノペラルゴン酸、アミノカプリン酸、アミノラウリン酸などが挙げられる。
 ポリアミド(A)は、前記のジカルボン酸、ジアミン、環状ラクタム、アミノカルボン酸、3価以上の多価カルボン酸、3価以上の多価アミンなどの単量体を、融点が280℃以上となるように適宜組み合わせて、脂肪族ポリアミド、全芳香族ポリアミド又は半芳香族ポリアミドとして用いることが好ましい。
 なお、本発明において「全芳香族ポリアミド」とは、該ポリアミドを構成するジカルボン酸単位のうちの50モル%超が芳香族ジカルボン酸単位であり、かつ該ポリアミドを構成するジアミン単位のうちの50モル%超が芳香族ジアミン単位であるポリアミドをいう。
 また、本発明において「半芳香族ポリアミド」とは、該ポリアミドを構成するジカルボン酸単位のうちの50モル%超が芳香族ジカルボン酸単位であり、かつ該ポリアミドを構成するジアミン単位のうちの50モル%超が脂肪族ジアミン単位であるポリアミド、又は該ポリアミドを構成するジカルボン酸単位のうちの50モル%超が脂肪族ジカルボン酸単位であり、かつ該ポリアミドを構成するジアミン単位のうちの50モル%超が芳香族ジアミン単位であるポリアミドをいう。
 これらの中でも、薄肉での難燃性、耐熱性及び成形性の観点から、脂肪族ポリアミド及び半芳香族ポリアミドからなる群より選ばれる少なくとも1種が好ましく、半芳香族ポリアミドがより好ましい。
 前記脂肪族ポリアミドとしては、前記環状ラクタムの開環重合物、前記アミノカルボン酸の縮重合物、又は前記脂肪族ジカルボン酸と前記脂肪族ジアミンとの縮重合物などが挙げられ、中でも、薄肉での難燃性、耐熱性及び成形性の観点から、前記脂肪族ジカルボン酸と前記脂肪族ジアミンとの縮重合物が好ましく、製造容易性の観点から、ポリアミド46がより好ましい。
 前記半芳香族ポリアミドとしては、薄肉での難燃性、耐熱性及び成形性の観点から、該半芳香族ポリアミドを構成するジカルボン酸単位のうちの50モル%超が芳香族ジカルボン酸単位であり、かつ該半芳香族ポリアミドを構成するジアミン単位のうちの50モル%超が脂肪族ジアミン単位であるものが好ましい。
 前記半芳香族ポリアミドを構成する芳香族ジカルボン酸としては、前述の芳香族ジカルボン酸が挙げられる。中でもフタル酸、イソフタル酸、テレフタル酸が好ましく、イソフタル酸、テレフタル酸がより好ましく、テレフタル酸がさらに好ましい。前記半芳香族ポリアミドを構成する全ジカルボン酸単位中の芳香族ジカルボン酸単位の含有量は、耐熱性の観点から、好ましくは60モル%以上、より好ましくは70モル%以上、さらに好ましくは80モル%以上、よりさらに好ましくは90モル%以上であり、そして、100モル%以下である。
 前記半芳香族ポリアミドは、芳香族ジカルボン酸単位以外の他のジカルボン酸単位を含んでもよい。かかる他のジカルボン酸としては、前述の脂肪族ジカルボン酸、脂環式ジカルボン酸が挙げられる。前記半芳香族ポリアミドを構成する全ジカルボン酸単位中の他のジカルボン酸単位の含有量は、好ましくは40モル%以下、より好ましくは30モル%以下、さらに好ましくは20モル%以下、よりさらに好ましくは10モル%以下である。
 前記半芳香族ポリアミドを構成する脂肪族ジアミンとしては、前述の脂肪族ジアミンが挙げられる。該脂肪族ジアミンの炭素数は、耐熱性、低吸水性などの諸物性に優れる観点から、好ましくは4以上、より好ましくは6以上、さらに好ましくは8以上であり、また、好ましくは18以下、より好ましくは12以下である。
 前記脂肪族ジアミンとしては、耐熱性、低吸水性などの諸物性に優れる観点から、1,6-ヘキサンジアミン、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン、及び1,10-デカンジアミンからなる群より選ばれる少なくとも1種が好ましく、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンからなる群より選ばれる少なくとも1種がより好ましく、1,9-ノナンジアミンと2-メチル-1,8-オクタンジアミンとの併用がさらに好ましい。
 前記半芳香族ポリアミドを構成する全ジアミン単位中の脂肪族ジアミン単位の含有量は、好ましくは60モル%以上、より好ましくは70モル%以上、さらに好ましくは80モル%以上、よりさらに好ましくは90モル%以上であり、そして、100モル%以下である。
 前記半芳香族ポリアミドは、脂肪族ジアミン単位以外の他のジアミン単位を含んでもよい。かかる他のジアミンとしては、前述の芳香族ジアミン、脂環式ジアミンが挙げられる。前記半芳香族ポリアミドを構成する全ジアミン単位中の他のジアミン単位の含有量は、好ましくは40モル%以下、より好ましくは30モル%以下、さらに好ましくは20モル%以下、よりさらに好ましくは10モル%以下である。
 前記脂肪族ジアミンとして、1,9-ノナンジアミンと2-メチル-1,8-オクタンジアミンとを併用する場合には、耐熱性の観点から、1,9-ノナンジアミンと2-メチル-1,8-オクタンジアミンとのモル比(1,9-ノナンジアミン/2-メチル-1,8-オクタンジアミン)は、95/5~40/60の範囲が好ましく、90/10~50/50の範囲がより好ましく、90/10~60/40の範囲がさらに好ましい。
 また、前記半芳香族ポリアミドは環状ラクタム及び/又はアミノカルボン酸に由来する構成単位を含んでもよい。これらの構成単位としては、例えば、カプロラクタム、ラウロラクタム等の環状ラクタム;11-アミノウンデカン酸、12-アミノドデカン酸等のアミノカルボン酸などに由来する構成単位を挙げることができる。前記半芳香族ポリアミド中の環状ラクタム単位及びアミノカルボン酸単位の合計の含有量は、該半芳香族ポリアミドを構成するジカルボン酸単位とジアミン単位の合計100モル%に対して、40モル%以下が好ましく、20モル%以下がより好ましい。
 前記半芳香族ポリアミドとしては、具体的には、ポリテトラメチレンテレフタルアミド(ポリアミド4T)、ポリヘキサメチレンテレフタルアミド(ポリアミド6T)、ポリノナメチレンテレフタルアミド(ポリアミド9T)、ポリデカメチレンテレフタルアミド(ポリアミド10T)、ポリヘキサメチレンイソフタルアミド(ポリアミド6I)、ポリアミド6Iとポリアミド6Tとの共重合体(ポリアミド6I/6T)、及びポリアミド6Tとポリウンデカンアミド(ポリアミド11)との共重合体(ポリアミド6T/11)などが挙げられる。中でも、ポリアミド4T、ポリアミド6T、ポリアミド9T及びポリアミド10Tからなる群より選ばれる少なくとも1種が好ましく、ポリアミド9T及びポリアミド10Tからなる群より選ばれる少なくとも1種がより好ましく、ポリアミド9Tがさらに好ましい。
 本発明に用いられるポリアミド(A)は、その分子鎖の末端基の10%以上が末端封止剤により封止されていることが好ましい。分子鎖の末端基が末端封止剤により封止されている割合(末端封止率)は、20%以上であることがより好ましい。
 末端封止剤としては、ポリアミド末端のアミノ基又はカルボキシル基との反応性を有する単官能性の化合物を用いることができ、反応性及び封止末端の安定性などの観点から、モノカルボン酸又はモノアミンが好ましく、取扱いの容易さなどの点から、モノカルボン酸がより好ましい。その他、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類などを末端封止剤として使用することもできる。
 末端封止剤として使用されるモノカルボン酸としては、アミノ基との反応性を有するものを用いることができ、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸;シクロヘキサンカルボン酸等の脂環式モノカルボン酸;安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸;これらの任意の混合物などを挙げることができる。中でも、反応性、封止末端の安定性、価格などの観点から、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、安息香酸が好ましい。
 末端封止剤として使用されるモノアミンとしては、カルボキシル基との反応性を有するものを用いることができ、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン;シクロヘキシルアミン、ジシクロヘキシルアミン等の脂環式モノアミン;アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミン;これらの任意の混合物などを挙げることができる。中でも、反応性、沸点、封止末端の安定性、価格などの観点から、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、シクロヘキシルアミン、アニリンが好ましい。
 ポリアミド(A)の末端封止率は、ポリアミド(A)に存在しているカルボキシル基末端、アミノ基末端及び末端封止剤によって封止された末端基の数をそれぞれ測定し、下記の式(1)に従って求められる。各末端基の数は、精度、簡便さの観点から、H-NMRにより各末端基に対応する特性シグナルの積分値より求めることが好ましい。
 末端封止率(%)=〔(T-S)/T〕×100   (1)
[式中、Tはポリアミド(A)の分子鎖の末端基の総数(これは通常、ポリアミド分子の数の2倍に等しい)を表し、Sは封止されずに残ったカルボキシル基末端及びアミノ基末端の合計数を表す。]
 本発明に用いられるポリアミド(A)は、結晶性ポリアミドを製造する方法として知られている任意の方法を用いて製造することができる。例えば、酸クロライドの形としたジカルボン酸とジアミンとを原料とする溶液重合法又は界面重合法、ジカルボン酸とジアミンを原料とする溶融重合法、固相重合法、溶融押出重合法などの方法により製造することができる。
 ポリアミド(A)は、例えば、最初にジアミン、ジカルボン酸、及び必要に応じて触媒や末端封止剤を一括して添加してナイロン塩を製造した後、200~250℃の温度において加熱重合してプレポリマーとし、さらに固相重合するか、あるいは溶融押出機を用いて重合することにより製造することができる。重合の最終段階を固相重合により行う場合、減圧下又は不活性ガス流動下に行うのが好ましく、重合温度が200~280℃の範囲内であれば、重合速度が大きく、生産性に優れ、着色やゲル化を有効に抑制することができる。重合の最終段階を溶融押出機により行う場合の重合温度としては、370℃以下であるのが好ましく、かかる条件で重合すると、分解がほとんどなく、劣化の少ないポリアミド(A)が得られる。
 ポリアミド(A)を製造するに際して使用することができる触媒としては、例えば、リン酸、亜リン酸、次亜リン酸、それらの塩又はエステルが挙げられる。上記の塩又はエステルとしては、リン酸、亜リン酸又は次亜リン酸と、カリウム、ナトリウム、マグネシウム、バナジウム、カルシウム、亜鉛、コバルト、マンガン、錫、タングステン、ゲルマニウム、チタン、アンチモン等の金属との塩;リン酸、亜リン酸又は次亜リン酸のアンモニウム塩;リン酸、亜リン酸又は次亜リン酸のエチルエステル、イソプロピルエステル、ブチルエステル、ヘキシルエステル、イソデシルエステル、オクタデシルエステル、デシルエステル、ステアリルエステル、フェニルエステルなどが挙げられる。中でも、次亜リン酸ナトリウム一水和物又は亜リン酸が好ましい。
 ポリアミド(A)は、濃硫酸を溶媒として用いて30℃の条件下で測定した極限粘度[η]が、好ましくは0.60~1.2dl/g、より好ましくは0.65~1.1dl/gである。極限粘度[η]が0.60dl/g以上のポリアミド(A)を使用すれば、得られる成形品の機械的特性が良好になる。また極限粘度[η]が1.2dl/g以下のポリアミド(A)を使用すれば、成形性がより向上する。
 ポリアミド(A)の極限粘度[η]は、実施例に記載の方法により測定される。
 ポリアミド(A)の融点は、耐熱性の観点の他、本発明の効果がより顕著に奏されることなどから、280℃以上であり、好ましくは290℃以上、より好ましくは300℃以上であり、そして、溶融成形する際のポリアミドの熱分解等を抑制する観点から、好ましくは350℃以下、より好ましくは340℃以下、さらに好ましくは330℃以下である。
 ポリアミド(A)の融点は、実施例に記載の方法により測定される。
<難燃剤(B)>
 本発明のポリアミド組成物は、難燃剤(B)を含有する。
 難燃剤(B)としては、リン系難燃剤;臭素系難燃剤、塩素系難燃剤等のハロゲン系難燃剤などが挙げられる。
 リン系難燃剤としては、赤リン;トリメチルホスフェート、トリエチルホスフェート等の脂肪族リン酸エステル;トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、クレジルジ2,6-キシレニルホスフェート、トリス(t-ブチル化フェニル)ホスフェート、トリス(i-プロピル化フェニル)ホスフェート、2-エチルヘキシルジフェニルホスフェート等の芳香族リン酸エステル;トリス(ジクロロプロピル)ホスフェート、トリス(β-クロロプロピル)ホスフェート、トリス(クロロエチル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等の含ハロゲンリン酸エステル;1,3-フェニレンビス(ジフェニルホスフェート)、1,3-フェニレンビス(ジキシレニル)ホスフェート、ビスフェノールAビス(ジフェニルホスフェート)等の芳香族縮合リン酸エステル;2,2-ビス(クロロメチル)トリメチレンビス(ビス(2-クロロエチル)ホスフェート)、ポリオキシアルキレンビスジクロロアルキルホスフェート等の含ハロゲン系縮合リン酸エステル;リン酸アミド;ポリリン酸アンモニウム、ポリリン酸メラミン等のリン酸塩;ホスファゼン化合物などが挙げられる。
 塩素系難燃剤としては、塩素化パラフィン、塩素化ポリエチレン、ドデカクロロペンタシクロオクタデカ-7,15-ジエン(オキシデンタルケミカル社製、商品名「デクロランプラス25」)、無水ヘット酸などが挙げられる。
 臭素系難燃剤としては、臭素化ポリスチレン(ポリ臭素化スチレンであってもよい);臭素化ポリフェニレンオキシド;臭素化ビスフェノール型エポキシ系重合体;臭素化スチレン-無水マレイン酸重合体;臭素化エポキシ樹脂;臭素化フェノキシ樹脂;ポリペンタブロモベンジルアクリレート等の臭素化ポリベンジル(メタ)アクリレート;ビス(ペンタブロモフェニル)エタン、1,2-ビス(2,4,6-トリブロモフェノキシ)エタン、2,4,6-トリス(2,4,6-トリブロモフェノキシ)-1,3,5-トリアジン、2,6-ジブロモフェノール、2,4-ジブロモフェノール、ポリブロモフェニルインダン等の臭素含有多環化合物;テトラブロモビスフェノールA、テトラブロモビスフェノールA-ビス(ジブロモプロピルエーテル)、テトラブロモビスフェノールA-ビス(アリールエーテル)、テトラブロモビスフェノールAポリカーボネート、テトラブロモビスフェノールAエポキシオリゴマー等のテトラブロモビスフェノールA及びその誘導体;テトラブロモビスフェノールS、テトラブロモビスフェノールS-ビス(ジブロモプロピルエーテル)等のテトラブロモビスフェノールS及びその誘導体;デカブロモジフェニルエーテル、オクタブロモジフェニルエーテル等のポリ臭素化ジフェニルエーテル;デカブロモビフェニル等のポリ臭素化ビフェニル;臭素化ポリカーボネート;ヘキサブロモシクロドデカン等の臭素含有環状脂肪族化合物;臭素化架橋芳香族重合体;テトラブロモ無水フタル酸、N,N-エチレンビス(テトラブロモフタル)イミド等の臭素含有フタル酸化合物;トリス(ペンタブロモベンジル)イソシアヌレート、トリス(ジブロモプロピル)イソシアヌレート等の臭素含有イソシアヌル酸化合物などが挙げられる。これらの難燃剤は、1種を単独で使用することもできるし、2種以上を併用することもできる。臭素系難燃剤における臭素原子の含有量は15~87質量%であることが好ましい。
 難燃剤(B)は、薄肉での難燃性、耐熱性及び成形性の観点から、リン系難燃剤及び臭素系難燃剤からなる群より選ばれる少なくとも1種が好ましく、臭素系難燃剤がより好ましい。
 臭素系難燃剤としては、臭素化ポリスチレン、臭素化ポリフェニレンオキシド、臭素化エポキシ樹脂、臭素化ポリベンジル(メタ)アクリレート、臭素含有多環化合物、テトラブロモビスフェノールA及びその誘導体、テトラブロモビスフェノールS及びその誘導体、ポリ臭素化ジフェニルエーテル、臭素含有環状脂肪族化合物、臭素含有フタル酸化合物、並びに臭素含有イソシアヌル酸化合物からなる群より選ばれる少なくとも1種が好ましく、臭素化ポリスチレン、臭素化ポリフェニレンオキシド、臭素化エポキシ樹脂、ポリペンタブロモベンジルアクリレート、ビス(ペンタブロモフェニル)エタン、2,4,6-トリス(2,4,6-トリブロモフェノキシ)-1,3,5-トリアジン、ポリブロモフェニルインダン、テトラブロモビスフェノールA-ビス(ジブロモプロピルエーテル)、テトラブロモビスフェノールAポリカーボネート、テトラブロモビスフェノールS-ビス(ジブロモプロピルエーテル)、デカブロモジフェニルエーテル、ヘキサブロモシクロドデカン、N,N-エチレンビス(テトラブロモフタル)イミド、及びトリス(ジブロモプロピル)イソシアヌレートからなる群より選ばれる少なくとも1種がより好ましい。中でも高温での成形にも耐えうる観点から、臭素化ポリスチレン、臭素化エポキシ樹脂及びN,N-エチレンビス(テトラブロモフタル)イミドからなる群より選ばれる少なくとも1種がさらに好ましく、臭素化ポリスチレンがよりさらに好ましい。
 臭素化ポリスチレンの製造方法に特に制限はなく、例えば、スチレンを重合してポリスチレンを製造した後、ポリスチレンのベンゼン環を臭素化する方法や、臭素化スチレン(ブロモスチレン、ジブロモスチレン、トリブロモスチレン等)を重合する方法などにより製造することができる。
 臭素化ポリスチレン中の臭素原子の含有量は55~75質量%が好ましい。臭素原子の含有量が55質量%以上であると、難燃化に必要な臭素量を満足させるための臭素化ポリスチレンの含有量を低減し、機械的特性、耐熱性を低下せずに、薄肉での高度な難燃性を付与することができる。また、臭素原子の含有量が75質量%以下であると、臭素化ポリスチレンの熱安定性の低下及び溶融成形時の熱分解を低減し、ガス発生を抑制し熱による変色を抑制することができる。
<難燃助剤>
 本発明のポリアミド組成物は、少量の難燃剤で薄肉での優れた難燃性を付与する観点から、前記臭素系難燃剤に加えて難燃助剤を含有することが好ましい。難燃助剤としては、例えば、三酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウム、酸化ナトリウム、酸化錫、錫酸亜鉛、酸化亜鉛、酸化鉄、水酸化マグネシウム、水酸化カルシウム、硼酸亜鉛、カオリンクレー、炭酸カルシウムなどを挙げることができる。これらの難燃助剤は、1種を単独で使用してもよいし、2種以上を併用することもできる。これらの難燃助剤は、シランカップリング剤、チタンカップリング剤などで処理されていてもよい。中でも、硼酸亜鉛、錫酸亜鉛が好ましく、錫酸亜鉛がより好ましい。
<芳香族ビニル系共重合体(C)>
 本発明のポリアミド組成物は、芳香族ビニル系共重合体(C)(共重合体(C))を含有する。ここで当該共重合体(C)は、芳香族ビニル単位とα,β-不飽和ジカルボン酸無水物単位とを含み、該共重合体(C)のガラス転移温度が140℃以上である。
 かかる芳香族ビニルは、芳香環とビニル基とを有する化合物であり、例えばスチレン、2-メチルスチレン、α-メチルスチレン、p-メチルスチレンなどが挙げられる。中でも、スチレン、α-メチルスチレンが好ましく、スチレンがより好ましい。
 α,β-不飽和ジカルボン酸無水物としては、無水マレイン酸、炭素数1以上3以下のアルキル基を有するモノアルキル無水マレイン酸、炭素数1以上3以下のアルキル基を有するジアルキル無水マレイン酸などが挙げられる。中でも無水マレイン酸及びモノアルキル無水マレイン酸からなる群より選ばれる少なくとも1種が好ましく、無水マレイン酸及び無水シトラコン酸からなる群より選ばれる少なくとも1種がより好ましく、無水マレイン酸がさらに好ましい。
 共重合体(C)中のα,β-不飽和ジカルボン酸無水物単位の含有量は18~50質量%が好ましい。α,β-不飽和ジカルボン酸無水物単位の含有量が18質量%以上であると、共重合体(C)中のα,β-不飽和ジカルボン酸無水物単位がポリアミド(A)のカルボキシル基末端又はアミノ基末端と反応することにより、ポリアミド組成物が高粘度化され、溶融張力が向上し、ドリップを抑制すると共に、更に該反応によりカルボキシル基末端量が低減されるため、高温下におけるポリアミド(A)の分解も抑制され、薄肉での難燃性を向上させることができる。α,β-不飽和ジカルボン酸無水物単位の含有量が50質量%以下であると、ポリアミド組成物の粘度が高くなり過ぎず、薄肉での高度な難燃性と優れた成形性とを両立できる。当該観点から、共重合体(C)中のα,β-不飽和ジカルボン酸無水物単位の含有量は、19質量%以上がより好ましく、20質量%以上がさらに好ましく、また、40質量%以下がより好ましく、30質量%以下がさらに好ましく、28質量%以下がよりさらに好ましく、25質量%以下が特に好ましい。共重合体(C)中のα,β-不飽和ジカルボン酸無水物単位の含有量の範囲としては、18~40質量%がより好ましく、19~30質量%がさらに好ましく、20~28質量%がさらに好ましく、20~25質量%が特に好ましい。
 共重合体(C)は、更に芳香族ビニル単位及びα,β-不飽和ジカルボン酸無水物単位以外の構成単位を有してもよいが、共重合体(C)中の芳香族ビニル単位及びα,β-不飽和ジカルボン酸無水物単位の合計含有量は80質量%以上が好ましく、90質量%以上がより好ましく、100質量%であることがさらに好ましい。
 共重合体(C)のガラス転移温度は、薄肉での難燃性及び耐熱性の観点から、140℃以上であり、好ましくは145℃以上、より好ましくは150℃以上であり、そして、溶融成形する際のポリアミドの熱分解等を抑制する観点から、好ましくは200℃以下、より好ましくは180℃以下、さらに好ましくは160℃以下である。共重合体(C)のガラス転移温度の範囲としては、140~200℃が好ましく、145~180℃がより好ましく、150~160℃が更に好ましい。共重合体(C)のガラス転移温度は、実施例に記載の方法により測定される。
 共重合体(C)の重量平均分子量(Mw)は、薄肉での難燃性及び耐熱性の観点から、好ましくは10,000以上、より好ましくは20,000以上、さらに好ましくは30,000以上、よりさらに好ましくは40,000以上、特に好ましくは50,000以上であり、また、好ましくは500,000以下、より好ましくは400,000以下、さらに好ましくは300,000以下、特に好ましくは200,000以下である。共重合体(C)の重量平均分子量(Mw)の範囲としては、10,000~500,000がより好ましく、20,000~400,000がさらに好ましく、30,000~300,000が特に好ましく、50,000~200,000が最も好ましい。重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(GPC)によりポリスチレン換算にて測定される。
 共重合体(C)は、市販品でもよく、既知の方法によって合成されたものでもよい。また、芳香族ビニル単位とα,β-不飽和ジカルボン酸無水物単位との結合形態は、特に限定されず、ランダム重合、ブロック重合、グラフト重合のいずれの形態のものでもよいが、本発明の効果がより顕著に奏されることなどから、ランダム重合またはブロック重合の形態であることが好ましく、共重合体(C)は、芳香族ビニルとα,β-不飽和ジカルボン酸無水物とを反応させることにより得られたものであることが好ましい。
 共重合体(C)の市販品としては、DYLARKシリーズ(商品名、NOVA Chemicals社製)、XIRANシリーズ(商品名、Polyscope社製)などが挙げられる。
<充填剤(D)>
 本発明のポリアミド組成物は、薄肉での難燃性、耐熱性、成形性及び機械的強度を向上させる点から、更に充填剤(D)を含有することが好ましい。
 充填剤(D)としては、繊維状、平板状、針状、粉末状、クロス状などの各種形態を有するものを使用することができる。具体的には、ガラス繊維、炭素繊維、アラミド繊維、液晶ポリマー(LCP)繊維、石膏繊維、黄銅繊維、セラミックス繊維、ボロンウィスカ繊維等の繊維状充填剤;ガラスフレーク、マイカ、タルク等の平板状充填剤;チタン酸カリウムウィスカー、ホウ酸アルミニウムウィスカー、炭酸カルシウムウィスカー、硫酸マグネシウムウィスカー、ワラストナイト、セピオライト、ゾノトライト、酸化亜鉛ウィスカー等の針状充填剤;シリカ、アルミナ、炭酸バリウム、炭酸マグネシウム、窒化アルミニウム、窒化ホウ素、チタン酸カリウム、酸化チタン、ケイ酸アルミニウム(カオリン、クレー、パイロフィライト、ベントナイト)、ケイ酸カルシウム、ケイ酸マグネシウム(アタパルジャイト)、ホウ酸アルミニウム、硫酸カルシウム、硫酸バリウム、硫酸マグネシウム、アスベスト、ガラスビーズ、カーボンブラック、グラファイト、カーボンナノチューブ、炭化ケイ素、セリサイト、ハイドロタルサイト、二硫化モリブデン、フェノール樹脂粒子、架橋スチレン系樹脂粒子、架橋アクリル系樹脂粒子等の粉末状充填剤;ガラスクロス等のクロス状充填剤などが挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
 これらの充填剤(D)の表面は、ポリアミド(A)中への分散性を高める目的で、あるいはポリアミド(A)との接着性を高める目的で、シランカップリング剤、チタンカップリング剤、アクリル樹脂、ウレタン樹脂、エポキシ樹脂等の高分子化合物、又はその他低分子化合物によって表面処理されていてもよい。
 充填剤(D)の中でも、低コストであり、機械的強度が高い成形品が得られることから、繊維状充填剤及び針状充填剤からなる群より選ばれる少なくとも1種が好ましい。充填剤(D)は、高強度、低コストの観点からはガラス繊維が好ましく、表面平滑性の高い成形品が得られる観点からは針状充填剤が好ましい。充填剤(D)としてはガラス繊維、ワラストナイト、チタン酸カリウムウィスカー、炭酸カルシウムウィスカー及びホウ酸アルミニウムウィスカーからなる群より選ばれる少なくとも1種が好ましく、ガラス繊維及びワラストナイトからなる群より選ばれる少なくとも1種がより好ましく、ガラス繊維がさらに好ましい。
 ガラス繊維の平均繊維長は、好ましくは1~10mm、より好ましくは1~7mm、さらに好ましくは2~4mmである。また、ガラス繊維の平均繊維径は、機械的強度を得る観点から、好ましくは6~20μm、より好ましくは6~15μmである。
 ガラス繊維の平均繊維長及び平均繊維径は、電子顕微鏡法を用いた画像解析により任意に選択した400本のガラス繊維の繊維長及び繊維径をそれぞれ測定し、それぞれの重量平均値により求めることができる。
 また、ポリアミド組成物中、又は該ポリアミド組成物からなる成形品中における、ガラス繊維の平均繊維長及び平均繊維径は、例えば有機溶媒中でポリアミド組成物又は成形品を溶解させ、ガラス繊維を抽出し、上記と同様に電子顕微鏡法を用いた画像解析により求めることができる。
<他の成分>
 本発明のポリアミド組成物は、必要に応じて、ポリテトラフルオロエチレン粉末等のドリップ防止剤;フェノール系、リン系等の酸化防止剤;ポリオレフィン系ワックス等の離型剤;光安定剤;着色剤;帯電防止剤;結晶核剤;可塑剤;滑剤などの、上記した以外の他の成分を更に含有することもできる。
<ポリアミド組成物中の各成分の含有量>
 本発明のポリアミド組成物中のポリアミド(A)の含有量は、好ましくは20~80質量%である。ポリアミド(A)の含有量が20質量%以上であると、成形が容易であり、得られる成形品の耐熱性や機械的特性が良好であり、80質量%以下であると難燃性が良好である。当該観点から、上記ポリアミド(A)の含有量は、より好ましくは30~70質量%、さらに好ましくは35~60質量%である。
 本発明のポリアミド組成物中の難燃剤(B)の含有量は、ポリアミド(A)100質量部に対して、1~100質量部が好ましい。難燃剤(B)の含有量が1質量部以上であると、難燃性が向上し、難燃剤(B)の含有量が100質量部以下であると、得られるポリアミド組成物の機械的特性の低下を抑制することができる。当該観点から、難燃剤(B)の含有量は、ポリアミド(A)100質量部に対し、より好ましくは5~90質量部、さらに好ましくは10~70質量部、よりさらに好ましくは20~60質量部、特に好ましくは30~55質量部である。
 難燃助剤を用いる場合には、難燃助剤の含有量は、ポリアミド(A)100質量部に対して、0.1~50質量部が好ましく、1~30質量部がより好ましい。
 本発明のポリアミド組成物中の共重合体(C)の含有量は、ポリアミド(A)、難燃剤(B)及び共重合体(C)の合計含有量に対して、0.3~2.0質量%である。ここで、共重合体(C)がポリアミドと反応した共重合体(C)の構成部分も、ポリアミド組成物中の共重合体(C)の含有量として、計算に加えることとする。共重合体(C)の含有量が0.3質量%以上であると、共重合体(C)中のα,β-不飽和ジカルボン酸無水物単位がポリアミド(A)のカルボキシル基末端又はアミノ基末端と反応することにより、ポリアミド組成物が高粘度化され、溶融張力が向上し、ドリップを抑制すると共に、更に該反応によりカルボキシル基末端量が低減されるため、高温下におけるポリアミド(A)の分解も抑制され、薄肉での難燃性を向上させることができる。また、共重合体(C)の含有量が2.0質量%以下であると、ポリアミド組成物の粘度が高くなり過ぎず、薄肉での高度な難燃性と優れた成形性とを両立できる。当該観点から、共重合体(C)の含有量は、ポリアミド(A)、難燃剤(B)及び共重合体(C)の合計含有量に対して、好ましくは0.4質量%以上、より好ましくは0.5質量%以上、さらに好ましくは0.6質量%以上、よりさらに好ましくは0.7質量%以上、特に好ましくは1.0質量%以上、最も好ましくは1.3質量%以上であり、また、より好ましくは1.8質量%以下、さらに好ましくは1.7質量%以下、よりさらに好ましくは1.6質量%以下である。共重合体(C)の範囲としては、0.4~2.0質量%が好ましく、0.5~1.8質量%がより好ましく、0.6~1.8質量%がさらに好ましく、0.7~1.7質量%がよりさらに好ましく、1.0~1.7質量%が特に好ましく、1.3~1.6質量%が最も好ましい。
 本発明のポリアミド組成物中のポリアミド(A)、難燃剤(B)及び共重合体(C)の合計含有量は特に制限されないが、薄肉での難燃性、耐熱性及び成形性の観点から、好ましくは40質量%以上、より好ましくは50質量%以上、さらに好ましくは60質量%以上である。
 本発明のポリアミド組成物が充填剤(D)を含有する場合は、その含有量は、機械的強度が高い成形品を得る観点から、ポリアミド(A)100質量部に対して、好ましくは1~100質量部、より好ましくは5~90質量部、さらに好ましくは10~80質量部である。
 前述の他の成分を用いる場合、本発明のポリアミド組成物中の他の成分の含有量は、好ましくは30質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下である。
 本発明のポリアミド組成物は、上記した各成分を、公知の方法に従って混合することにより調製することができる。より具体的な調製方法としては、例えば、ポリアミド(A)の縮重合反応時に各成分を添加する方法、ポリアミド(A)と各成分をドライブレンドする方法、押出機を用いて各成分を溶融混錬する方法などが挙げられる。これらの中でも操作が容易であること、均一な組成物が得られることなどから、押出機を用いて各成分を溶融混錬する方法が好ましい。この際に用いられる押出機は2軸スクリュー型のものが好ましく、溶融混錬温度としては、分散性と樹脂劣化防止の両立の観点からポリアミド(A)の融点より5℃高い温度から370℃以下の範囲内であることが好ましく、融点よりも10℃~20℃高い温度範囲が更に好ましい。ポリアミド組成物の形態に特に制限はなく、例えばペレットとすることができる。
 本発明のポリアミド組成物は、成形性が良好であり、射出成形、押出成形、プレス成形、ブロー成形、カレンダー成形、流延成形などの一般に熱可塑性樹脂組成物に対して採用される成形方法により、成形品を成形することができる。また上記の成形方法を組み合わせた成形方法を採用することもできる。特に、成形の容易さ、量産性、コストなどの面で射出成形が好ましい。また、本発明のポリアミド組成物と他のポリマーとを複合成形することもできる。さらに、本発明のポリアミド組成物を、金属からなる成形体や布帛などと複合化することも可能である。
 本発明のポリアミド組成物において、ポリアミド(A)の融点よりも20℃高いシリンダー温度、射出圧力74MPa、金型温度140℃の条件下、厚さ0.5mm、幅40mmの金型で該ポリアミド組成物の溶融物を射出成形したときの流動長は、40mm以上であることが好ましい。これにより、薄肉での高い難燃性と優れた成形性とを両立することができる。当該観点から上記流動長は、45mm以上がより好ましく、48mm以上がさらに好ましく、50mm以上がよりさらに好ましく、53mm以上が特に好ましく、また、70mm以下が好ましく、65mm以下がより好ましく、60mm以下がさらに好ましく、56mm以下がよりさらに好ましく、54mm以下、さらには52mm以下であってもよい。
 なお、前記流動長は、前記条件下、厚さ0.5mm、幅40mmの金型で試験片を5本作製した際における、得られた5本の試験片の流動長Lnの平均値であり、具体的には実施例に記載の方法により測定される。
 本発明のポリアミド組成物の温度320℃、荷重2.16kgにおけるメルトフローレート(MFR)は、15g/10分以下であることが好ましい。これにより、薄肉での高い難燃性と優れた成形性とを両立することができる。当該観点から、上記メルトフローレートは、1~13g/10分がより好ましく、2~10g/10分がさらに好ましく、3~7g/10分がよりさらに好ましい。前記MFRは、JIS K 7210-1:2014に準拠して、温度320℃、荷重2.16kgにて、標準ダイ(直径2.095mm、長さ8.000mm)から流出する溶融樹脂量(g/10分)を測定することにより求めることができる。
[成形品]
 本発明の成形品は、本発明のポリアミド組成物からなり、上述したような成形プロセスを経て、電気電子部品、自動車部品、産業部品、繊維、フィルム、シート、家庭用品、その他の任意の形状及び用途の各種成形品として使用することができる。
 電気電子部品としては、例えばFPCコネクタ、BtoBコネクタ、カードコネクタ、SMTコネクタ(同軸コネクタ等)、メモリーカードコネクタ等のコネクタ;SMTリレー;SMTボビン;メモリーソケット、CPUソケット等のソケット;コマンドスイッチ、SMTスイッチ等のスイッチ;光ファイバー部品、光センサー等の光学部品;LEDリフレクタ等のLED用途部品;太陽電池基板、LED実装基板、フレキシブルプリント配線板、樹脂成形回路基板等の電子基板などが挙げられる。
 自動車部品としては、例えばサーモスタットハウジング、ラジエータータンク、ラジエーターホース、ウォーターアウトレット、ウォーターポンプハウジング、リアジョイント等の冷却部品;インタークーラータンク、インタークーラーケース、ターボダクトパイプ、EGRクーラーケース、レゾネーター、スロットルボディ、インテークマニホールド、テールパイプ等の吸排気系部品;燃料デリバリーパイプ、ガソリンタンク、クイックコネクタ、キャニスター、ポンプモジュール、燃料配管、オイルストレーナー、ロックナット、シール材等の燃料系部品;マウントブラケット、トルクロッド、シリンダヘッドカバー等の構造部品;ベアリングリテイナー、ギアテンショナー、ヘッドランプアクチュエータギア、スライドドアローラー、クラッチ周辺部品等の駆動系部品;エアブレーキチューブなどのブレーキ系統部品;エンジンルーム内のワイヤーハーネスコネクタ、モーター部品、センサー、ABSボビン、コンビネーションスイッチ、車載スイッチ等の車載電装部品;スライドドアダンパー、ドラミラーステイ、ドアミラーブラケット、インナーミラーステイ、ルーフレール、エンジンマウントブラケット、エアクリーナーのインレートパイプ、ドアチェッカー、プラチェーン、エンブレム、クリップ、ブレーカーカバー、カップホルダー、エアバック、フェンダー、スポイラー、ラジエーターサポート、ラジエーターグリル、ルーバー、エアスクープ、フードバルジ、バックドア、フューエルセンダーモジュール等の内外装部品などが挙げられる。
 産業部品としては、例えばガスパイプ、油田採掘用パイプ、ホース、防蟻ケーブル(通信ケーブル、パスケーブルなど)、粉体塗装品の塗料部(水道管の内側コーティングなど)、海底油田パイプ、耐圧ホース、油圧チューブ、ペイント用チューブ、燃料ポンプ、セパレーター、スーパーチャージ用ダクト、バタフライバルブ、搬送機ローラー軸受、鉄道の枕木バネ受け、船外機エンジンカバー、発電機用エンジンカバー、灌漑用バルブ、大型開閉器(スイッチ)、漁網などのモノフィラメント(押出糸)などが挙げられる。
 繊維としては、例えばエアバック基布、耐熱フィルター、補強繊維、ブラシ用ブリッスル、釣糸、タイヤコード、人工芝、絨毯、座席シート用繊維などが挙げられる。
 フィルムやシートとしては、例えば耐熱マスキング用テープ、工業用テープ等の耐熱粘着テープ;カセットテープ、デジタルデータストレージ向けデータ保存用磁気テープ、ビデオテープ等の磁気テープ用材料;レトルト食品のパウチ、菓子の個包装、食肉加工品の包装等の食品包装材料;半導体パッケージ用の包装等の電子部品包装材料などが挙げられる。
 中でも、本発明のポリアミド組成物は、特に薄肉部での難燃性、耐熱性及び成形性に優れるため、電気電子部品に好適に用いることができ、SMT工程を含む電気電子部品、より具体的にはSMT対応のコネクタ、SMTリレー、SMTボビン、ソケット、コマンドスイッチ、SMTスイッチなどに好適に用いることができる。
 以下、実施例及び比較例を用いて本発明をより詳細に説明するが、本発明は下記実施例に限定されるものではない。
 なお、実施例及び比較例における各評価は、以下に示す方法に従って行った。
(融点)
 ポリアミド(A)の融点は、メトラー・トレド(株)製の示差走査熱量分析装置「DSC822」を使用して、窒素雰囲気下で、30℃から360℃へ10℃/分の速度で昇温した時に現れる融解ピークのピーク温度を融点(℃)とした。なお、融解ピークが複数ある場合は最も高温側の融解ピークのピーク温度を融点とした。
(極限粘度[η])
 濃硫酸(濃度:98質量%)を溶媒として、溶液濃度cがそれぞれ0.05、0.1、0.2、及び0.4g/dlとなるように調製したポリアミド(A)の濃硫酸溶液(試料溶液)を準備し、30℃の恒温槽中で、Ubellohde型粘度計を用いて溶媒の流下時間tと各濃度の試料溶液の流下時間tとを測定した。下記式によりインヘレント粘度(ηinh)を算出し、インヘレント粘度(ηinh)を濃度0に外挿した値をポリアミド(A)の極限粘度[η]とした。
 ηinh(dl/g)=[ln(t/t)]/c
[式中、tは溶媒の流下時間(秒)を表し、tは試料溶液の流下時間(秒)を表し、cは溶液濃度(g/dl)を表す。]
(ガラス転移温度)
 共重合体(C)のガラス転移温度は、JIS K 7121:1987に準拠した方法により測定した。
(難燃性)
 UL-94規格の規定に準じて難燃性の評価を行った。
 各実施例及び比較例で得られたポリアミド組成物を用い、ポリアミドの融点よりも約20℃高いシリンダー温度で射出成形(金型温度:140℃)を行い、厚さ0.3mm、幅13mm、長さ125mmの試験片を得た。次いで、該試験片の上端をクランプで止めて試験片を垂直に固定し、下端に所定の炎を10秒間当てて離し、試験片の燃焼時間(1回目)を測定した。消火したら直ちに再び下端に炎を当てて離し、試験片の燃焼時間(2回目)を測定した。試験片5個について同じ測定を繰り返し、1回目の燃焼時間のデータ5個と、2回目の燃焼時間のデータ5個の、計10個のデータを得た。10個のデータの合計をT、10個のデータのうち最大値をMとし、下記評価基準に従って評価した。
 また、接炎中のドリップの有無を目視にて確認した。
〔評価基準〕
 V-0:Tが50秒以下、Mが10秒以下で、クランプまで燃え上がらず、炎のついた溶融物が落ちても12インチ下の木綿に着火しなかった。
 V-1:Tが250秒以下、Mが30秒以下で、クランプまで燃え上がらず、炎のついた溶融物が落ちても12インチ下の木綿に着火しなかった。
 V-2:Tが250秒以下、Mが30秒以下で、クランプまで燃え上がらず、炎のついた溶融物が落ちて12インチ下の木綿に着火した。
(変形量)
 難燃性評価を実施した試験片の長さの変形量を以下の方法で評価した。難燃性評価の際にドリップが発生した試験片は除き、ドリップが生じなかった試験片n個の難燃性評価前後の長さを測定し、下記式にしたがって変形量を算出した。また、全ての試験片でドリップが生じた場合、変形量は×とした。変形量の数値が小さいほど難燃性に優れる。
 変形量=〔(難燃性評価後の試験片n個の長さの合計)-(難燃性評価前の試験片n個の長さの合計)〕/n
(成形性(流動長))
 日精樹脂工業(株)製射出成型機UH-1000(型締め力80t)を用い、ポリアミド(A)の融点よりも20℃高いシリンダー温度、射出圧力74MPa、金型温度140℃の条件下、厚さ0.5mm、幅40mmの金型で試験片を一本ずつ5本作製した。作製した5本の試験片の流動長Lnの平均値を算出し、ポリアミド組成物の流動長とした。これを成形性の評価の指標とした。流動長の数値が高いほど成形性に優れ、流動長が40mm以上であれば実用に供することができる。
製造例1(ポリアミドPA1の製造)
 テレフタル酸7882.0g、1,9-ノナンジアミン:2-メチル-1,8-オクタンジアミン=85:15(モル比)のジアミン混合物7742.9g、末端封止剤として安息香酸280.8g、次亜リン酸ナトリウム一水和物16.0g、及び蒸留水4Lを、内容積40Lのオートクレーブに入れ、窒素置換した。2時間かけて内部温度を200℃に昇温した。この時、オートクレーブは2MPaまで昇圧した。その後、内部温度215℃に保ち、水蒸気を徐々に抜いて圧力を2MPaに保ちながら2時間反応させた。次いで、30分かけて圧力を1.2MPaまで下げ、プレポリマーを得た。このプレポリマーを6mm以下の大きさまで粉砕し、120℃、減圧下で12時間乾燥した。これを温度230℃、圧力13.3Paの条件で10時間固相重合し、融点306℃、極限粘度[η]=0.93dl/gのポリアミドPA1を得た。
実施例1~9、比較例1~2
 ポリアミド(A)、難燃剤(B)、共重合体(C)、充填剤(D)、難燃助剤、及び他の成分の配合組成が表1に示したようになるように、充填剤(D)以外の成分を、東芝機械(株)製の二軸押出機(スクリュー径26mmφ、L/D=46、回転数150rpm、吐出量10kg/h)の最上流部のホッパーより供給し、また、充填剤(D)を、サイドフィーダーより供給して320℃にて溶融混練した。溶融混練されたポリアミド組成物をストランド状に押出し、冷却後、切断して、ポリアミド組成物のペレットを得た。得られたペレットを使用し、前記した方法に従って所定形状の試験片を作製し、各種物性を評価した。結果を表1に示す。
 なお、表1中に示す各成分は以下の通りである。
〔ポリアミド(A)〕
・製造例1で得られたポリアミドPA1
〔難燃剤(B)〕
・臭素系難燃剤B1:Chemtura社製、商品名「Firemaster CP-44HF」(グリシジルメタクリレート変性ポリ臭素化スチレン)
・リン系難燃剤B2:クラリアント社製、商品名「Exolit OP1230」
〔共重合体(C)〕
・共重合体C1:Polyscope社製、商品名「XIRAN SZ 23110」(スチレン-無水マレイン酸共重合体、無水マレイン酸の含有量:23質量%、ガラス転移温度:150℃、重量平均分子量(Mw):110,000)
・共重合体C2:Polyscope社製、商品名「XIRAN SZ 28065」(スチレン-無水マレイン酸共重合体、無水マレイン酸の含有量:28質量%、ガラス転移温度:165℃、重量平均分子量(Mw):65,000)
・共重合体C3:Polyscope社製、商品名「XIRAN SZ 26180」(スチレン-無水マレイン酸共重合体、無水マレイン酸の含有量:26質量%、ガラス転移温度:160℃、重量平均分子量(Mw):180,000)
〔充填剤(D)〕
・充填剤D1:日東紡績(株)製、商品名「CS-3G-225S」(ガラス繊維、断面形状:丸型、平均繊維径:9.5μm、平均繊維長:3mm)
〔難燃助剤〕
・難燃助剤1:日本軽金属(株)製、商品名「Flamtard S」(錫酸亜鉛)
〔他の成分〕
・ドリップ防止剤:三井・デュポンフロロケミカル(株)製、商品名「640-J」(ポリテトラフルオロエチレン粉末)
・酸化防止剤:住友化学(株)製、商品名「Sumilizer GA-80」(3,9-ビス{1,1-ジメチル-2-〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕エチル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン)
・離型剤:三井化学(株)製、商品名「ハイワックス 200P」(ポリオレフィン系ワックス)
・結晶核剤:富士タルク工業(株)製、商品名「ML112」(タルク)
Figure JPOXMLDOC01-appb-T000001

 *1:ポリアミド(A)、難燃剤(B)及び共重合体(C)の合計含有量に対する共重合体(C)の含有量を示す。
 *2:実施例1については、試験片5個のうちドリップが生じなかったものは3個であったため、変形量はドリップが生じなかった3個の試験片を用いて算出した。
 表1に示すとおり、本発明のポリアミド組成物によれば、薄肉での難燃性に優れる成形品を得ることができ、耐熱性及び成形性にも優れることがわかる。
 

Claims (13)

  1.  融点が280℃以上であるポリアミド(A)、難燃剤(B)、及び芳香族ビニル系共重合体(C)を含有するポリアミド組成物であり、
     該芳香族ビニル系共重合体(C)が、芳香族ビニルに由来する構成単位とα,β-不飽和ジカルボン酸無水物に由来する構成単位とを含み、該芳香族ビニル系共重合体(C)のガラス転移温度が140℃以上であり、
     該芳香族ビニル系共重合体(C)の含有量が、ポリアミド(A)、難燃剤(B)及び芳香族ビニル系共重合体(C)の合計含有量に対して、0.3~2.0質量%である、ポリアミド組成物。
  2.  ポリアミド(A)が半芳香族ポリアミドである、請求項1に記載のポリアミド組成物。
  3.  前記半芳香族ポリアミドにおいて、該半芳香族ポリアミドを構成するジカルボン酸に由来する構成単位のうちの50モル%超が芳香族ジカルボン酸に由来する構成単位であり、かつ該半芳香族ポリアミドを構成するジアミンに由来する構成単位のうちの50モル%超が炭素数4~18の脂肪族ジアミンに由来する構成単位である、請求項2に記載のポリアミド組成物。
  4.  前記脂肪族ジアミンが、1,6-ヘキサンジアミン、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン、及び1,10-デカンジアミンからなる群より選ばれる少なくとも1種である、請求項3に記載のポリアミド組成物。
  5.  難燃剤(B)が臭素系難燃剤である、請求項1~4のいずれか1項に記載のポリアミド組成物。
  6.  前記芳香族ビニルに由来する構成単位が、スチレン及びα-メチルスチレンからなる群より選ばれる少なくとも1種、に由来する構成単位を含む、請求項1~5のいずれか1項に記載のポリアミド組成物。
  7.  前記α,β-不飽和ジカルボン酸無水物が、無水マレイン酸及び炭素数1以上3以下のアルキル基を有するモノアルキル無水マレイン酸からなる群より選ばれる少なくとも一種である、請求項1~6のいずれか1項に記載のポリアミド組成物。
  8.  芳香族ビニル系共重合体(C)中のα,β-不飽和ジカルボン酸無水物に由来する構成単位の含有量が18~50質量%である、請求項1~7のいずれか1項に記載のポリアミド組成物。
  9.  芳香族ビニル系共重合体(C)の重量平均分子量(Mw)が10,000~500,000である、請求項1~8のいずれか1項に記載のポリアミド組成物。
  10.  更に充填剤(D)を含有する、請求項1~9のいずれか1項に記載のポリアミド組成物。
  11.  前記ポリアミド組成物が、ポリアミド(A)、難燃剤(B)、及び芳香族ビニル系共重合体(C)を、溶融混錬して得られる請求項1~9いずれか1項に記載のポリアミド組成物。
  12.  前記ポリアミド組成物が、ポリアミド(A)、難燃剤(B)、芳香族ビニル系共重合体(C)、及び前記充填剤(D)を、溶融混錬して得られる請求項10に記載のポリアミド組成物
  13.  請求項1~12のいずれか1項に記載のポリアミド組成物からなる成形品。
     
PCT/JP2019/032623 2018-08-24 2019-08-21 ポリアミド組成物及び該ポリアミド組成物からなる成形品 WO2020040191A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP19851061.2A EP3842494A4 (en) 2018-08-24 2019-08-21 POLYAMIDE COMPOSITION AND MOLDED PRODUCT FROM THIS POLYAMIDE COMPOSITION
JP2020538431A JPWO2020040191A1 (ja) 2018-08-24 2019-08-21 ポリアミド組成物及び該ポリアミド組成物からなる成形品
US17/269,655 US11970612B2 (en) 2018-08-24 2019-08-21 Polyamide composition and molded product composed of said polyamide composition
CN201980055336.9A CN112585216B (zh) 2018-08-24 2019-08-21 聚酰胺组合物和由该聚酰胺组合物形成的成型品
KR1020217004331A KR20210047867A (ko) 2018-08-24 2019-08-21 폴리아미드 조성물 및 그 폴리아미드 조성물로 이루어지는 성형품
BR112021002707-6A BR112021002707A2 (pt) 2018-08-24 2019-08-21 composição de poliamida e produto moldado da referida composição de poliamida
JP2024042170A JP2024069538A (ja) 2018-08-24 2024-03-18 ポリアミド組成物及び該ポリアミド組成物からなる成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018157560 2018-08-24
JP2018-157560 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020040191A1 true WO2020040191A1 (ja) 2020-02-27

Family

ID=69593272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032623 WO2020040191A1 (ja) 2018-08-24 2019-08-21 ポリアミド組成物及び該ポリアミド組成物からなる成形品

Country Status (8)

Country Link
US (1) US11970612B2 (ja)
EP (1) EP3842494A4 (ja)
JP (2) JPWO2020040191A1 (ja)
KR (1) KR20210047867A (ja)
CN (1) CN112585216B (ja)
BR (1) BR112021002707A2 (ja)
TW (1) TWI820190B (ja)
WO (1) WO2020040191A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151218A (en) * 1975-12-29 1979-04-24 Monsanto Company Fire retardant polymers of styrene and maleic anhydride
JPH08239574A (ja) * 1995-03-02 1996-09-17 Japan Synthetic Rubber Co Ltd 難燃性樹脂組成物
JP2003082228A (ja) 2001-09-14 2003-03-19 Kuraray Co Ltd ポリアミド組成物
JP2007291249A (ja) 2006-04-25 2007-11-08 Asahi Kasei Chemicals Corp 難燃性ポリアミド樹脂組成物
JP2007291250A (ja) 2006-04-25 2007-11-08 Asahi Kasei Chemicals Corp 難燃性ポリアミド樹脂組成物
WO2009017043A1 (ja) 2007-08-01 2009-02-05 Kuraray Co., Ltd. ポリアミド組成物
WO2011013517A1 (ja) * 2009-07-29 2011-02-03 東レ株式会社 ポリマーアロイとその製造方法および成形品
JP2013181046A (ja) * 2012-02-29 2013-09-12 Toray Ind Inc 熱可塑性樹脂組成物およびその成形品
CN103951955A (zh) * 2014-05-12 2014-07-30 东莞市信诺橡塑工业有限公司 Pc/pa6组合物及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2920918A1 (de) * 1979-05-23 1980-11-27 Hoechst Ag Copolymere substituierter piperidine, ihre herstellung und verwendung
US5023285A (en) * 1988-07-25 1991-06-11 G E Specialty Chemicals Bis (tri-tertiary-alkylphenoxy) diphosphaspiroundecanes
NL1006347C2 (nl) 1997-06-18 1998-12-21 Dsm Nv Vlamdovende polymeersamenstelling.
CA2386717A1 (en) * 2001-05-21 2002-11-21 Kuraray Co., Ltd. Polyamide composition
KR101755055B1 (ko) * 2009-09-14 2017-07-06 미츠비시 가스 가가쿠 가부시키가이샤 난연성 폴리아미드 수지 조성물
TWI506063B (zh) * 2010-11-17 2015-11-01 Unitika Ltd 半芳香族聚醯胺膜,及其製造方法
KR102189978B1 (ko) * 2013-06-13 2020-12-11 주식회사 쿠라레 폴리아미드 수지 조성물 및 그것으로 이루어지는 성형품
ES2796076T3 (es) * 2013-09-04 2020-11-25 Ube Industries Tubo laminado
TW201534999A (zh) * 2014-02-14 2015-09-16 Fujifilm Corp 亮度提升薄膜、光學薄片構件及液晶顯示元件
JP6575524B2 (ja) * 2014-09-12 2019-09-18 宇部興産株式会社 積層チューブ
KR102405014B1 (ko) * 2014-12-26 2022-06-07 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 열가소성 수지 조성물 및 이를 포함하는 성형체

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151218A (en) * 1975-12-29 1979-04-24 Monsanto Company Fire retardant polymers of styrene and maleic anhydride
JPH08239574A (ja) * 1995-03-02 1996-09-17 Japan Synthetic Rubber Co Ltd 難燃性樹脂組成物
JP2003082228A (ja) 2001-09-14 2003-03-19 Kuraray Co Ltd ポリアミド組成物
JP2007291249A (ja) 2006-04-25 2007-11-08 Asahi Kasei Chemicals Corp 難燃性ポリアミド樹脂組成物
JP2007291250A (ja) 2006-04-25 2007-11-08 Asahi Kasei Chemicals Corp 難燃性ポリアミド樹脂組成物
WO2009017043A1 (ja) 2007-08-01 2009-02-05 Kuraray Co., Ltd. ポリアミド組成物
WO2011013517A1 (ja) * 2009-07-29 2011-02-03 東レ株式会社 ポリマーアロイとその製造方法および成形品
JP2013181046A (ja) * 2012-02-29 2013-09-12 Toray Ind Inc 熱可塑性樹脂組成物およびその成形品
CN103951955A (zh) * 2014-05-12 2014-07-30 东莞市信诺橡塑工业有限公司 Pc/pa6组合物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3842494A4

Also Published As

Publication number Publication date
BR112021002707A2 (pt) 2021-05-11
CN112585216A (zh) 2021-03-30
JPWO2020040191A1 (ja) 2021-08-10
TWI820190B (zh) 2023-11-01
TW202016213A (zh) 2020-05-01
US11970612B2 (en) 2024-04-30
JP2024069538A (ja) 2024-05-21
KR20210047867A (ko) 2021-04-30
EP3842494A4 (en) 2022-06-22
US20210198488A1 (en) 2021-07-01
EP3842494A1 (en) 2021-06-30
CN112585216B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
JP7356432B2 (ja) ポリアミド及びポリアミド組成物
JP3986889B2 (ja) ポリアミド組成物
JP6226704B2 (ja) ポリアミド樹脂組成物
US20030023008A1 (en) Polyamide composition
US6414064B1 (en) Polyamide resin composition
WO2013042541A1 (ja) 半芳香族ポリアミドおよびそれからなる成形体
JP7141017B2 (ja) ポリアミド組成物
JP2020029539A (ja) ポリアミド組成物
JP2003119378A (ja) ポリアミド樹脂組成物
JP2006002113A (ja) ポリアミド樹脂組成物およびその成形品
JP7364571B2 (ja) ポリアミド組成物、該ポリアミド組成物の製造方法、及び該ポリアミド組成物からなる成形品
JP2020029538A (ja) ポリアミド組成物
CN112585216B (zh) 聚酰胺组合物和由该聚酰胺组合物形成的成型品
JP2002309083A (ja) ポリアミド組成物
WO2021106888A1 (ja) ポリアミド樹脂組成物及びその成形体
JPWO2019155982A1 (ja) 熱可塑性樹脂組成物およびそれを成形してなる成形体
JP2004002811A (ja) ポリアミド樹脂組成物
JP2000230118A (ja) 難燃性ポリアミド組成物
JP2000198922A (ja) ポリアミド組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851061

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538431

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2101000951

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021002707

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019851061

Country of ref document: EP

Effective date: 20210324

ENP Entry into the national phase

Ref document number: 112021002707

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210212