WO2020039879A1 - 絶縁成形体、固体絶縁母線、絶縁成形体の製造方法、及び固体絶縁母線の製造方法 - Google Patents

絶縁成形体、固体絶縁母線、絶縁成形体の製造方法、及び固体絶縁母線の製造方法 Download PDF

Info

Publication number
WO2020039879A1
WO2020039879A1 PCT/JP2019/030186 JP2019030186W WO2020039879A1 WO 2020039879 A1 WO2020039879 A1 WO 2020039879A1 JP 2019030186 W JP2019030186 W JP 2019030186W WO 2020039879 A1 WO2020039879 A1 WO 2020039879A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating
semiconductive layer
layer
hollow
insulating layer
Prior art date
Application number
PCT/JP2019/030186
Other languages
English (en)
French (fr)
Inventor
稔之 沼澤
義和 丹治
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2020538270A priority Critical patent/JP7242005B2/ja
Publication of WO2020039879A1 publication Critical patent/WO2020039879A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/20Bus-bar or other wiring layouts, e.g. in cubicles, in switchyards
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/08Cable junctions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings

Definitions

  • the present disclosure relates to an insulative molded body, a solid insulated bus, a method of manufacturing an insulative molded body, and a method of manufacturing a solid insulated bus.
  • Patent Document 1 discloses a bus connected by combining a rod-shaped conductor and a short stranded wire, a terminal fitting connected to both ends of the bus, an internal semiconductive layer molded on the bus and the terminal fitting, an insulating layer, and A mold insulated contact bus with an outer semiconductive layer is disclosed.
  • the molded insulated contact bus described in Patent Document 1 is provided with a bus bar having terminal fittings connected to both ends, which is installed in a mold, and an inner semiconductive layer, an insulating layer, and an outer semiconductive layer are sequentially molded thereon and insulated. It is made by forming a body.
  • the insulating molded body of the present disclosure An insulating molded body molded into a hollow shape, A cylindrical inner semiconductive layer, An insulating layer provided on the outer periphery of the internal semiconductive layer, An external semiconductive layer provided on the outer periphery of at least an end of the insulating layer, A first hollow end having a first end surface of the insulating layer and a first end surface of the external semiconductive layer, The first end surface of the insulating layer is a machined surface.
  • the solid insulated bus of the present disclosure is: The insulating molded body of the present disclosure, A conductor inserted with a gap into the inner semiconductive layer of the insulating molded body.
  • the manufacturing method of the insulating molded body of the present disclosure A first step of forming a cylindrical internal semiconductive layer, A second step of molding the end of the hollow outer semiconductive layer having an open edge, A third step of disposing the inner semiconductive layer and the end of the outer semiconductive layer in a mold, A fourth step of inserting a core inside the inner semiconductive layer and the end of the outer semiconductive layer, Filling the mold with an insulating material, forming a fifth step of forming an insulating layer that integrates the inner semiconductive layer and the end of the outer semiconductive layer, The third step is performed so as to leave an end portion of the external semiconductive layer near the outer periphery of at least both ends of the internal semiconductive layer, In the fourth step, a gap is formed between an outer peripheral surface of the core and an inner peripheral surface including the opening edge in the outer semiconductive layer, In the fifth step, the insulating material is filled with the gap facing upward, and the insulating material overflows from the gap.
  • the method for manufacturing a solid insulated bus of the present disclosure includes: A step of manufacturing an insulating molded body by the method of manufacturing an insulating molded body of the present disclosure, Inserting a conductor into the inner semiconductive layer from one end side of the insulating molded body.
  • FIG. 1 is a schematic vertical cross-sectional view of a solid insulated bus including the insulating molded body according to the first embodiment.
  • FIG. 2 is a sectional view taken along line II-II of FIG.
  • FIG. 3 is a schematic configuration diagram illustrating an example of a connection structure of the solid insulation bus according to the first embodiment.
  • FIG. 4 is a schematic longitudinal sectional view illustrating an example of a mold used for forming an insulating layer in the first embodiment.
  • FIG. 5 is a schematic longitudinal sectional view of a molded body in Embodiment 1, in which the inner semiconductive layer and the end of the outer semiconductive layer are integrated with an insulating layer.
  • FIG. 1 is a schematic vertical cross-sectional view of a solid insulated bus including the insulating molded body according to the first embodiment.
  • FIG. 2 is a sectional view taken along line II-II of FIG.
  • FIG. 3 is a schematic configuration diagram illustrating an example of a connection structure of the solid insulation bus according
  • FIG. 6 is a schematic longitudinal sectional view of a solid insulated bus bar provided with the insulating molded body according to the second embodiment.
  • FIG. 7 is a schematic longitudinal sectional view illustrating an example of a mold used for forming an insulating layer in the second embodiment.
  • the insulator of the solid insulated bus is an insulating molded body molded using a mold
  • gas such as air in the mold escapes. Instead, voids may occur in the insulating layer. Such voids often occur at the site where the insulating material is finally filled in the mold.
  • the part where the insulating material is filled last is referred to as “final filling part”. If voids are present in the insulating layer, there is a possibility that the quality will be degraded, for example, the insulating properties of that part will be degraded. Therefore, an insulating molded article having a structure in which voids are unlikely to be generated in the insulating layer is desired.
  • One object of the present disclosure is to provide an insulating molded body that can suppress generation of voids in an insulating layer, and a method for manufacturing the same.
  • Another object of the present invention is to provide a solid insulated bus having an insulating molded body and a method for manufacturing the same.
  • the insulating molded body of the present disclosure can suppress generation of voids in the insulating layer.
  • the solid insulated bus of the present disclosure has excellent insulating properties of an insulating layer in an insulating molded body.
  • the method of manufacturing an insulating molded body according to the present disclosure can suppress generation of voids in an insulating layer.
  • the method of manufacturing a solid insulated bus according to the present disclosure can manufacture a solid insulated bus having excellent insulating properties of an insulating layer in an insulating molded body.
  • the insulating molded body includes: An insulating molded body molded into a hollow shape, A cylindrical inner semiconductive layer, An insulating layer provided on the outer periphery of the internal semiconductive layer, An external semiconductive layer provided on the outer periphery of at least an end of the insulating layer, A first hollow end having a first end surface of the insulating layer and a first end surface of the external semiconductive layer, The first end surface of the insulating layer is a machined surface.
  • the insulating molded body of the present disclosure is a processed surface in which the first end surface of the insulating layer is machined at the first hollow end.
  • the processed surface of the first end face of the insulating layer is formed by removing a portion that overflows the insulating material by machining when filling the insulating material into the mold and forming the insulating layer. is there. Since the first end face of the insulating layer is exposed at the end face of the first hollow end, the first end face of the insulating layer is filled with the insulating material at the time of molding the insulating layer into the mold last. It can be provided in the final filling section.
  • the insulating molded body of the present disclosure can suppress generation of voids in the insulating layer.
  • the second hollow end has the second edge of the insulating layer located on the inner peripheral surface of the outer semiconductive layer.
  • the second edge of the insulating layer is located on the inner peripheral surface without reaching the second end surface of the outer semiconductive layer.
  • the end face is not exposed at the end face of the second hollow end. In this case, machining of the end face of the insulating layer at the second hollow end can be omitted.
  • the third hollow end has a third end face of the insulating layer and a third end face of the external semiconductive layer,
  • the third end surface of the insulating layer may be a molding surface molded by a mold.
  • the third end face of the insulating layer at the third hollow end is a molding face formed by a mold, machining of the third end face can be omitted.
  • All hollow ends other than the first hollow end are constituted by at least one of a second hollow end and a third hollow end,
  • the third hollow end has a third end face of the insulating layer and a third end face of the external semiconductive layer,
  • the third end surface of the insulating layer may be a molding surface molded by a mold.
  • all the hollow ends except the first hollow end are constituted by at least one of the second hollow end and the third hollow end. Therefore, the first end surface of the insulating layer at the first hollow end is provided at the final filling portion of the insulating material when the insulating layer is formed. Also, at the second hollow end, the second edge of the insulating layer is located on the inner peripheral surface of the outer semiconductive layer, and at the third hollow end, the third end surface of the insulating layer is a molding surface. is there. Therefore, at the second and third hollow ends, machining of the end surface of the insulating layer is not required.
  • the inner semiconductive layer, the insulating layer, and the outer semiconductive layer are formed of a rubber material.
  • the flexibility of the insulating molded body is improved because the insulating molded body is formed of a rubber material.
  • the solid insulated bus according to the embodiment of the present disclosure includes: An insulating molded article according to any one of the above (1) to (5), A conductor inserted with a gap into the inner semiconductive layer of the insulating molded body.
  • the solid insulated bus of the present disclosure includes the above-described insulating molded body of the present disclosure. Therefore, the solid insulated bus of the present disclosure has few voids in the insulating layer in the insulating molded body, and has excellent insulating properties of the insulating layer.
  • the conductor may be formed of a braided wire.
  • the conductor is formed of a braided wire
  • the solid insulation bus is excellent in flexibility. Therefore, it is easy to align and connect each end of the solid insulated bus to the connection location of each power device to be connected.
  • the connection positions of the power devices may be different in height or the like, or the connection positions may be shifted depending on the installation accuracy of the power devices. In that case, it is necessary to bend the solid insulating bus bar and align each end with each connection object.
  • a braided wire has excellent flexibility and is easy to bend, so the flexibility of the solid insulated bus is improved. Therefore, in the above embodiment, the solid insulated bus is easily bent, and it is easy to cope with a positional shift of the connection portion.
  • the method for manufacturing an insulating molded body includes: A first step of forming a cylindrical internal semiconductive layer, A second step of molding the end of the hollow outer semiconductive layer having an open edge, A third step of disposing the inner semiconductive layer and the end of the outer semiconductive layer in a mold, A fourth step of inserting a core inside the inner semiconductive layer and the end of the outer semiconductive layer, Filling the mold with an insulating material, forming a fifth step of forming an insulating layer that integrates the inner semiconductive layer and the end of the outer semiconductive layer, The third step is performed so as to leave an end portion of the external semiconductive layer near the outer periphery of at least both ends of the internal semiconductive layer, In the fourth step, a gap is formed between an outer peripheral surface of the core and an inner peripheral surface including the opening edge in the outer semiconductive layer, In the fifth step, the insulating material is filled with the gap facing upward, and the insulating material overflows from the gap.
  • the ends of the inner semiconductive layer and the outer semiconductive layer are arranged in a mold. Furthermore, a core is inserted inside the ends of the inner semiconductive layer and the outer semiconductive layer, and between the outer peripheral surface of the core inserted inside the outer semiconductive layer and the inner peripheral surface including the opening edge. Form a gap. Then, the mold is filled with an insulating material with the gap directed upward from the mold, and the insulating layer is formed so as to integrate the inner semiconductive layer and the end of the outer semiconductive layer. According to the above manufacturing method, in the fifth step of forming the insulating layer, the gap provided above the mold is located at the final filling portion.
  • the method for manufacturing an insulating molded body according to the present disclosure can suppress generation of voids in the insulating layer.
  • the manufacturing method of the present disclosure When an insulating molded body is manufactured by the manufacturing method of the present disclosure, a gap formed between the core and the opening edge of the external semiconductive layer is filled with an insulating material, and the end surface of the insulating layer is formed in the opening of the external semiconductive layer. It will be exposed from the edge. A portion formed by overflowing the insulating material from the gap is removed by machining after forming the insulating layer, so that a processed surface is formed on an end surface of the insulating layer. Therefore, the manufacturing method of the present disclosure has an end surface of the insulating layer and an end surface of the external semiconductive layer, and the end surface of the insulating layer is a processed surface, specifically, the first hollow end described above. A part can be formed.
  • the method of manufacturing a solid insulated bus bar according to an embodiment of the present disclosure includes: A step of producing an insulating molded article by the method for producing an insulating molded article according to (8); Inserting a conductor into the inner semiconductive layer from one end side of the insulating molded body.
  • the method of manufacturing a solid insulated busbar of the present disclosure uses an insulating molded body manufactured by the above-described method of manufacturing an insulating molded body of the present disclosure. Therefore, the method for manufacturing a solid insulated bus bar of the present disclosure can manufacture a solid insulated bus bar having few voids in the insulating layer of the insulating molded body and having excellent insulating properties of the insulating layer.
  • FIG. 1 is a longitudinal sectional view taken along the central axis of the solid insulating busbar 1.
  • FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG. 1 and orthogonal to the longitudinal direction of the solid insulating busbar 1.
  • the longitudinal direction of the solid insulating bus 1 refers to the axial direction.
  • FIG. 3 shows an example of a connection structure using the solid insulating busbar 1.
  • GIS Gas Insulated Switchgear
  • the solid insulated bus bar 1 shown in FIG. 1 includes a long conductor 10, terminals 11G and 11T attached to ends of the conductor 10, and an insulating molded body 20 that covers the outer periphery of the conductor 10 and the terminals 11G and 11T.
  • the insulating molded body 20 is formed in a hollow shape.
  • the insulating molded body 20 includes an inner semiconductive layer 21, an insulating layer 22, and an outer semiconductive layer 23 in order from the inside to the outside.
  • the insulating molded body 20 according to the first embodiment has a first hollow end having a first end face 221 of an insulating layer 22 and a first end face 231 of an end 23eg of an external semiconductive layer 23.
  • One of the features is to have a portion.
  • the first hollow end corresponds to the hollow end 50 having the working opening 26.
  • the first end surface 221 of the insulating layer 22 is a machined surface.
  • the solid insulated bus 1 includes a conductor 10, terminals 11G and 11T, and an insulating molded body 20.
  • the conductor 10 is disposed in the insulating molded body 20 by being inserted into the internal semiconductive layer 21 of the insulating molded body 20.
  • the conductor 10 is typically formed of a flexible conductor such as a braided wire or a stranded wire, which has excellent flexibility with respect to a bar. Since the conductor 10 is formed of a flexible conductor having flexibility, the flexibility of the solid insulated bus 1 can be improved.
  • the braided wire is suitable as the conductor 10 because it has better flexibility than the stranded wire.
  • the cross-sectional shape of the conductor 10 is not particularly limited, and various shapes such as a rectangular shape, a circular shape, and an elliptical shape can be adopted.
  • the cross-sectional shape of the conductor 10 is a cross-sectional shape orthogonal to the longitudinal direction of the conductor 10.
  • the conductor 10 is formed of a copper braided wire, and as shown in FIG. 2, the cross-sectional shape of the conductor 10 is rectangular. More specifically, the conductor 10 of this example is configured by stacking three flat braided wires in the thickness direction.
  • the dimensions of the conductor 10 are appropriately set according to the specifications. For example, the length of the conductor 10 is 30 cm or more and 300 cm or less, and the cross-sectional dimension of the conductor 10 represented by the thickness T 10 ⁇ width W 10 in FIG. 2 is 2 mm ⁇ 10 mm or more and 40 mm ⁇ 75 mm or less.
  • Terminals 11G and 11T are attached to ends of the conductor 10.
  • the terminal 11 ⁇ / b> G is attached to the end of the conductor 10 on the GIS side.
  • the terminal 11T is attached to an end of the conductor 10 on the Tr side.
  • the terminal 11G on the GIS side has a flat plate shape.
  • the terminal 11G has a pair of flat terminal pieces that sandwich the end of the conductor 10 from the thickness direction, and is attached with a bolt or the like.
  • the terminal 11G is provided with a through hole 112 penetrating in the thickness direction of the terminal piece.
  • the through-hole 112 is used to fix the conductor lead bar 3G with a bolt 113 when connecting the conductor lead bar 3G shown in FIG.
  • the terminal 11T on the Tr side has a cylindrical base 11b having a pair of semi-cylindrical terminal pieces sandwiching the end of the conductor 10 from the thickness direction, and a tip 11a protruding from the base 11b. And so on.
  • the tip portion 11a of the terminal 11T is thinner than the base portion 11b, and is fitted into an insertion hole 30 formed in the conductor lead bar 3T when connecting the conductor lead bar 3T shown in FIG.
  • the terminals 11G and 11T are formed of, for example, copper.
  • the insulating molded body 20 is a hollow elongated molded body as shown in FIGS.
  • the insulating molded body 20 is formed in a rectangular cylindrical shape having an intermediate portion 20M having a uniform inner and outer diameter.
  • the end 20T on the Tr side of the insulating molded body 20 is formed in a spindle shape thicker than the intermediate portion 20M.
  • the end 20G on the GIS side of the insulating molded body 20 is formed in a hammer head shape substantially orthogonal to the intermediate portion 20M.
  • the insulating molded body 20 of this example is provided with three hollow ends 50, one at the end 20T on the Tr side and two at the end 20G on the GIS side. It is communicated with.
  • the insulating molded body 20 includes a cylindrical inner semiconductive layer 21, an insulating layer 22 provided on an outer periphery of the inner semiconductive layer 21, and an insulating layer 22 provided on at least an outer periphery of an end of the insulating layer 22. External semiconductive layer 23 provided.
  • the insulating molded body 20 of this example is mainly formed of a rubber material. Since the insulating molded body 20 is formed of a rubber material, the flexibility of the insulating molded body 20 is improved, and the flexibility of the solid insulating bus 1 can be improved.
  • the insertion hole 200 is formed in the inner semiconductive layer 21 in the axial direction from one end side which is the Tr side to the other end side which is the GIS side.
  • the conductor 10 with terminals 11G and 11T having the terminals 11G and 11T attached to the ends of the conductor 10 is inserted over the entire length.
  • the cross-sectional shape of the inner periphery of the inner semiconductive layer 21, that is, the portion of the insertion hole 200 where the conductor 10 is disposed has a shape corresponding to the cross-sectional shape of the conductor 10. large. Therefore, as shown in FIG. 2, a gap 12 is formed between the outer peripheral surface of the conductor 10 and the inner peripheral surface of the inner semiconductive layer 21, and the conductor 10 is arranged in the insulating molded body 20 with the gap 12 therebetween. ing. That is, the conductor 10 of this example is inserted into the inner semiconductive layer 21 with the gap 12 therebetween.
  • the inner semiconductive layer 21 of the insulating molded body 20 does not adhere to the outer peripheral surface of the conductor 10, and the rubber material constituting the insulating molded body 20 does not enter the surface of the braided wire constituting the conductor 10. Thereby, independent behavior of the conductor 10 and the insulating molded body 20 is possible. Therefore, when the solid insulating busbar 1 is bent, the movement of the conductor 10 with respect to the insulating molded body 20 in the longitudinal direction can be allowed. As shown in FIG.
  • the cross-sectional shape and the cross-sectional dimension of the inner periphery of the inner semiconductive layer 21 are the cross-sectional shape and the size of the cross-section orthogonal to the axial direction of the insertion hole 200 into which the conductor 10 is inserted.
  • the inner semi-conductive layer 21 has a rectangular cross-sectional shape on the inner periphery.
  • the gap 12 formed between the outer peripheral surface of the conductor 10 and the inner peripheral surface of the inner semiconductive layer 21 in the insulating molded body 20 allows independent behavior of the conductor 10 and the insulating molded body 20. It is.
  • the size of the gap 12 is, for example, 0.2 mm or more and 1.5 mm or less, and further 0.5 mm or more and 1.0 mm or less. When the gap 12 is 0.2 mm or more, independent behavior between the conductor 10 and the insulating molded body 20 can be sufficiently tolerated. 10 is easy to insert.
  • the inner periphery of the inner semiconductive layer 21, that is, the cross-sectional shape of the portion where the terminal 11 ⁇ / b> G is arranged in the insertion hole 200 is a rectangular shape corresponding to the cross-sectional shape of the terminal 11 ⁇ / b> G. Is also big. Therefore, a gap exists between the outer peripheral surface of the terminal 11G and the inner peripheral surface of the internal semiconductive layer 21.
  • the cross-sectional shape of the portion where the base 11b of the terminal 11T is arranged is a circular shape corresponding to the cross-sectional shape of the base 11b.
  • the section of the internal semiconductive layer 21 where the terminals 11T are arranged has a slightly smaller cross-sectional dimension than the base section 11b before the terminals 11T are arranged. Therefore, in a state where the terminal 11T is disposed in the insulating molded body 20, the elastic force of the insulating molded body 20 causes the outer peripheral surface of the base portion 11b of the terminal 11T and the inner peripheral surface of the inner semiconductive layer 21 of the insulating molded body 20 to move. Is adhered. As a result, the terminal 11T is fixed in the insulating molded body 20 in a crimped state, and the conductor 10 with the terminals 11G and 11T and the insulating molded body 20 are integrated.
  • the cross-sectional size of the base 11b of the terminal 11T is larger than the cross-sectional size of the conductor 10
  • the cross-sectional size of the terminal 11G is equal to or smaller than the cross-sectional size of the conductor 10.
  • the inner semiconductive layer 21 and the outer semiconductive layer 23 are formed of a semiconductive material.
  • the insulating layer 22 is formed of an insulating material.
  • the inner semiconductive layer 21 and the outer semiconductive layer 23 are formed of a semiconductive rubber material such as a semiconductive silicone rubber.
  • the insulating layer 22 is formed of an insulating rubber material such as an insulating silicone rubber.
  • the thickness of each of the inner semiconductive layer 21, the insulating layer 22, and the outer semiconductive layer 23 is appropriately set according to the current flowing through the conductor 10, the applied voltage, and the like. In FIG. 2, the thickness of each of the inner semiconductive layer 21 and the outer semiconductive layer 23 in the portion covering the conductor 10 is, for example, 2 mm or more and 15 mm or less.
  • the thickness of the insulating layer 22 is, for example, not less than 5 mm and not more than 30 mm.
  • both ends 23eg and 23et of the outer semiconductive layer 23 and the inner semiconductive layer 21 are formed of a semiconductive rubber material.
  • an intermediate portion 23m connecting between both end portions 23eg and 23et is formed by applying a semiconductive rubber paint on the insulating layer 22.
  • the outer semiconductive layer 23 may be formed of a semiconductive rubber material over its entire length, and both ends 23eg and 23et and the intermediate portion 23m may be integrally formed of a semiconductive rubber material.
  • the insulating layer 22 is formed of an insulating rubber material.
  • connection opening 25T into which the base end of the bushing 4T is fitted is provided at the Tr-side end 20T of the insulating molded body 20.
  • a connection opening 25G into which the base end of the bushing 4G is fitted is provided at the end 20G on the GIS side of the insulating molded body 20.
  • the connection openings 25G and 25T are formed by the insulating layer 22, and the ends 23eg and 23et of the external semiconductive layer 23 are provided on the outer periphery of the insulating layer 22.
  • connection openings 25G and 25T have a truncated cone shape whose diameter decreases from the opening side to the bottom side.
  • the terminals 11G and 11T are exposed at the bottom sides of the connection openings 25G and 25T.
  • the base ends of the bushings 4G, 4T into which the conductor extraction rods 3G, 3T described later are inserted are inserted into the connection openings 25G, 25T, respectively, and the terminals 11G, 11T are connected to the conductor extraction rods 3G, 3T. You. In the case of this example, the base ends of the bushings 4G, 4T are press-fitted into the respective connection openings 25G, 25T.
  • ⁇ ⁇ ⁇ ⁇ Flanges 55 are attached to the ends 23eg and 23et of the external semiconductive layer 23 in the connection openings 25G and 25T.
  • the flange 55 is an annular member attached to the flange 45 provided on the bushings 4G and 4T, and is formed of, for example, brass.
  • connection opening 25T on the Tr side is different from the shape of the connection opening 25G on the GIS side.
  • the connection opening 25 ⁇ / b> T is formed such that the insulating layer 22 protrudes in the axial direction from the end of the internal semiconductive layer 21, and opens on an extension of the internal semiconductive layer 21 in the axial direction.
  • connection opening 25G is formed by protruding the insulating layer 22 in a direction intersecting in the axial direction from the end of the internal semiconductive layer 21, and opening in a direction intersecting in the axial direction of the internal semiconductive layer 21. are doing.
  • the direction intersecting the axial direction is an orthogonal direction.
  • a work opening 26 is provided on the opposite side of the terminal 11G from the connection opening 25G.
  • the work opening 26 is also formed by the insulating layer 22, and an end 23eg of the external semiconductive layer 23 is provided on the outer periphery of the insulating layer 22.
  • the inner peripheral surface of the working opening 26 also has a truncated cone shape whose diameter decreases from the opening side to the bottom side.
  • a flange 56 is attached to the end 23eg of the external semiconductive layer 23 in the work opening 26.
  • connection openings 25G and 25T and the work opening 26 provided at the end of the insulating molded body 20 is provided at a hollow end 50 formed in a hollow shape as shown in FIGS. Have been.
  • the configuration of the hollow end portion 50 will be described mainly with reference to FIG. 5 and appropriately with reference to FIG.
  • the inner semiconductive layer 21 gradually increases in thickness from the vicinity of the end on the Tr side of the conductor 10 toward the terminal 11T, covers the entire circumference of the base 11b with a substantially constant thickness, and further extends in the middle of the tip 11a. It has a length of up to However, the end on the Tr side of the internal semiconductive layer 21 is formed so as not to be in contact with the tip 11a but to overlap with the tip 11a with an interval. The end on the Tr side of the internal semiconductive layer 21 covers the outer periphery on the base end side of the conductor lead bar 3T described later.
  • the end 23et of the external semiconductive layer 23 is formed in a cylindrical body having a length extending from a position substantially corresponding to the Tr-side end of the base 11b of the terminal 11T to the Tr-side end of the solid insulating busbar 1. Have been.
  • the end 23et has a shape in which the inner diameter gradually decreases from the GIS side to the Tr side, so that the thickness increases toward the Tr side.
  • the insulating layer 22 has a length that covers the Tr-side end of the inner semiconductive layer 21 with a substantially constant thickness, and further reaches the opening edge 27 of the end 23et of the outer semiconductive layer 23.
  • the Tr-side end of the insulating layer 22 is formed to protrude in a cylindrical shape from the position of the Tr-side end of the internal semiconductive layer 21 toward the opening edge 27 of the end 23et.
  • the end on the Tr side of the insulating layer 22 has a tapered shape whose thickness decreases toward the opening edge 27 of the end 23et, and has a conical inner peripheral surface whose inner diameter gradually increases.
  • the inner peripheral surface of the hollow end portion 50 having the connection opening 25T is, in order from the GIS side to the Tr side, the inner peripheral surface of the inner semiconductive layer 21, the inner peripheral surface of the insulating layer 22, and the outer semiconductive layer 23. Is constituted by the inner peripheral surface. That is, the Tr-side edge of the internal semiconductive layer 21 and the Tr-side edge of the insulating layer 22 do not reach the end surface of the hollow end 50 having the connection opening 25T.
  • the end face of the hollow end 50 having the connection opening 25 ⁇ / b> T is constituted by the end face of the annular outer semiconductive layer 23, that is, the second end face 232.
  • the hollow end on the GIS side will be described.
  • the hollow end on the GIS side is a T-shaped hollow end as shown in FIG.
  • the hollow end on the GIS side has a central internal space having an axis coaxial with the axial direction of the internal semiconductive layer 21 and a branch branched from the central internal space and having an axis orthogonal to the axial direction of the internal semiconductive layer 21.
  • the central internal space and the branch internal space communicate with each other.
  • the central inner space is constituted by a space on the inner periphery of the inner semiconductive layer 21, that is, the insertion hole 200.
  • the GIS-side hollow end includes a hollow end 50 having a working opening 26 and a hollow end 50 having a connection opening 25G.
  • the internal semiconductive layer 21 extends continuously from the Tr side to the end on the GIS side of the terminal 11G.
  • the end on the GIS side of the internal semiconductive layer 21 has a closed end, and covers the terminal 11G with a substantially constant thickness.
  • a hole 211 is provided at a position slightly on the Tr side from the above-mentioned tip and communicating with a direction perpendicular to the axial direction.
  • the end 23eg of the outer semiconductive layer 23 is formed integrally with the cylindrical head perpendicular to the end on the GIS side of the inner semiconductive layer 21, and is formed in the axial direction of the cylindrical head. And a hollow shaft portion protruding toward the Tr side from an intermediate position of The end 23eg is formed in a T-shaped hollow body. The hollow shaft portion covers up to the vicinity of the end on the GIS side of the conductor 10. The internal space between the cylindrical head and the hollow shaft communicates with each other.
  • the cylindrical head of the end 23eg has openings at both ends, and is formed so as to increase in thickness from the center side toward the opening edges 271 and 272.
  • the hollow shaft portion of the end 23eg extends from the GIS side to the Tr side with a substantially constant thickness, and has an opening edge 273 on the Tr side. That is, the end 23eg has three openings, and all of the openings communicate with the internal space.
  • the insulating layer 22 has a length that covers the inner semiconductive layer 21 up to the end on the GIS side.
  • the end on the GIS side of the insulating layer 22 is provided on the inner peripheral side of the end 23eg of the external semiconductive layer 23, and the inner semiconductive layer 21 is formed so as not to block the hole 211 of the inner semiconductive layer 21.
  • the end on the GIS side of the insulating layer 22 has a tapered shape that is thicker toward the center and thinner toward the opening edges 271 and 272 of the end 23eg, and has a conical inner peripheral surface whose inner diameter gradually increases. Have.
  • the hollow end 50 having the working opening 26 is formed by the insulating layer 22 and the outer semiconductive layer 23.
  • the inner peripheral surface of the hollow end 50 having the working opening 26 is constituted by the inner peripheral surface of the insulating layer 22. That is, the inner peripheral surface of the working opening 26 does not have the internal semiconductive layer 21.
  • the end face of the hollow end portion 50 having the working opening 26 is formed by the end face of the annular insulating layer 22, that is, the first end face 221, and the end face of the external semiconductive layer 23 provided on the outer periphery thereof, that is, the first end face 231. Be composed.
  • the hollow end 50 having the connection opening 25G is formed by the insulating layer 22 and the external semiconductive layer 23.
  • the inner peripheral surface of the hollow end 50 having the connection opening 25G is constituted by the inner peripheral surface of the insulating layer 22 and the inner peripheral surface of the outer semiconductive layer 23 in order from the bottom side to the opening side. That is, the inner peripheral surface of the connection opening 25 ⁇ / b> G does not have the internal semiconductive layer 21.
  • the inner peripheral surface of the outer semiconductive layer 23 includes an opening edge 272.
  • the end face of the hollow end 50 having the connection opening 25G is constituted by the end face of the annular outer semiconductive layer 23, that is, the second end face 232.
  • GIS-side hollow end 50 having the working opening 26 and the connection opening 25G and the Tr-side hollow end 50 having the connection opening 25G communicate with each other in the internal space.
  • the form of the hollow end 50 is as follows.
  • a first form is a form of a first hollow end having a first end surface of an insulating layer and a first end surface of an outer semiconductive layer, wherein the first end surface of the insulating layer is a machined surface. It is.
  • the second form has a second end face of the outer semiconductive layer, and a second end face of the insulating layer located on the inner peripheral surface of the outer semiconductive layer without reaching the second end face of the outer semiconductive layer. It is in the form of a second hollow end.
  • a third form has a third end face of the insulating layer and a third end face of the outer semiconductive layer, and a third hollow end portion in which the third end face of the insulating layer is a molding surface molded by a mold. It is a form of.
  • One of the hollow ends 50 is always constituted by the first hollow end, and the other is constituted by at least one of the second hollow end and the third hollow end. .
  • the hollow end 50 having the working opening 26 is constituted by the first hollow end.
  • the working opening 26 has a first end face 221 of the insulating layer 22 and a first end face 231 of the end 23eg of the external semiconductive layer 23.
  • the first end surface 221 of the insulating layer 22 is a machined surface.
  • each hollow end 50 having the connection openings 25G and 25T is constituted by a second hollow end. As shown in FIG.
  • connection openings 25 ⁇ / b> G and 25 ⁇ / b> T form the second end face 232 of the ends 23 eg and 23 et of the external semiconductive layer 23 and the inner periphery of the external semiconductive layer 23 without reaching the second end face 232.
  • the first end surface 221 of the insulating layer 22 and the first end surface 231 of the end portion 23eg of the external semiconductive layer 23 are exposed at the end surface of the first hollow end portion 50 having the working opening 26. Is provided.
  • the first end face 221 and the first end face 231 are substantially flush.
  • the first end surface 221 is a region formed by a flat surface excluding an inclined surface formed on the inner peripheral side of the opening edge of the working opening 26.
  • the processed surface of the first end face 221 of the insulating layer 22 is formed by machining a portion of the insulating material that overflows when the insulating material is molded by filling the mold with the insulating material. It is formed by removing.
  • the first end surface 221 of the insulating layer 22 is provided at a final filling portion where the insulating material is finally filled in the mold when the insulating layer 22 is formed.
  • the insulating material overflows from the portion of the first end face 221 which becomes the final filling portion of the insulating material when the insulating layer 22 is formed, and the gas in the mold is released. It becomes difficult.
  • the machining includes, for example, cutting, cutting, grinding, polishing, and the like.
  • the processing surface of the first end surface 221 is, for example, a cutting surface, a cutting surface, a grinding surface, a polishing surface, or the like. Each of these processed surfaces has abrasion marks such as cutting marks, cutting marks, grinding marks or polishing marks.
  • the width of the first end face 221 of the insulating layer 22 is, for example, 0.2 mm or more and 1.5 mm or less, and further 0.5 mm or more and 1.0 mm or less.
  • the width of the first end face 221 is a radial length of the first end face 221. If the width of the first end face 221 is 0.2 mm or more, gas in the mold easily escapes from the portion of the first end face 221 when the insulating layer 22 is formed. If the width of the first end face 221 is 1.5 mm or less, the radial thickness of the outer semiconductive layer 23 at the first hollow end 50, that is, the working opening 26, is relatively small. Can be suppressed.
  • the area ratio of voids in the insulating layer 22 in the work opening 26 that is the first hollow end 50 is, for example, 30% or less, and more preferably 10% or less.
  • the area ratio of voids in the insulating layer 22 is 30% or less, a decrease in insulating characteristics can be sufficiently suppressed.
  • the locations where voids are generated in the insulating layer 22 are biased toward the vicinity of the first end face 221, it is possible to suppress the generation of voids in a portion to which electrical stress is applied, and from this point, it is also possible to suppress the deterioration of the insulating characteristics.
  • the area ratio of voids can be determined, for example, as follows.
  • the area along the axial direction from the first end surface 221 is 100 mm 2 (for example, 10 mm ⁇ 10 mm). Observe with a mirror. Then, the area ratio of voids in the observation region is obtained by image processing.
  • the method for manufacturing the insulating molded body 20 includes first to fifth steps described below.
  • Fifth step a step of filling the mold with an insulating material to form the insulating layer 22 shown in FIG. 5
  • each step will be described in detail.
  • a cylindrical inner semiconductive layer 21 is formed.
  • An insertion hole 200 is formed in the internal semiconductive layer 21 along the axial direction from one end, which is the Tr side, to the other end, which is the GIS side.
  • the inner periphery of the internal semiconductive layer 21, that is, the cross-sectional dimension of the portion where the conductor 10 is disposed in the insertion hole 200 is made larger than the cross-sectional dimension of the conductor 10.
  • the formation of the inner semiconductive layer 21 can be performed using a mold. Specifically, by using a mold having a core for forming the insertion hole 200 and filling the mold with a semiconductive material, the inner semiconductive layer 21 is formed from the semiconductive material. In this example, a semiconductive rubber material is used as the semiconductive material.
  • the ends 23eg and 23et of the hollow outer semiconductive layer 23 having an opening edge are formed.
  • the end 23eg of the external semiconductive layer 23 on the GIS side is a T-shaped hollow body as described above, and the three openings communicate with each other in the internal space.
  • the end 23eg is formed into a cylindrical shape at a position where the working opening 26 and the connection opening 25G are formed, thereby forming an inner peripheral surface 230.
  • the end 23et of the external semiconductive layer 23 on the Tr side is a cylindrical body. As shown in FIG.
  • the end 23et is formed into a cylindrical shape at a location where the connection opening 25T is formed, thereby forming an inner peripheral surface 230.
  • the ends 23eg and 23et of the external semiconductive layer 23 can be formed using a mold. Specifically, by using a mold having a core forming the inner peripheral surface 230 and filling the mold with a semiconductive material, the ends 23eg and 23et of the outer semiconductive layer 23 are semiconductive. Mold with material. In this example, a semiconductive rubber material is used as the semiconductive material.
  • the end 23eg of the external semiconductive layer 23 on the GIS side is molded in a state where the flanges 55 and 56 are arranged in the mold, so that the flanges 56 and 55 are respectively formed on the end faces 231 and 232. Integrate.
  • the flange 55 is integrated with the end face 232 by molding with the flange 55 arranged in a mold.
  • the order of the first step and the second step is not particularly limited.
  • the second step may be performed after the first step, or the first step may be performed after the second step. Further, the first step and the second step can be performed simultaneously.
  • the inner semiconductive layer 21 and the ends 23eg and 23et of the outer semiconductive layer 23 are arranged in the mold 9.
  • the end portions 23eg and 23et of the external semiconductive layer 23 are formed at intervals near the outer periphery of at least both ends of the internal semiconductive layer 21.
  • the space formed between the inner semiconductive layer 21 and the ends 23eg and 23et of the outer semiconductive layer 23 is the space filled with the insulating layer 22 shown in FIG.
  • the cores 95a to 95c are inserted inside the ends 23eg and 23et of the inner semiconductive layer 21 and the outer semiconductive layer 23.
  • a gap 92 is formed between the outer peripheral surface of the core 95a and the inner peripheral surface 230 including the opening edge 271 of the outer semiconductive layer 23.
  • the configuration of the mold 9 shown in FIG. 4 will be described.
  • the mold 9 includes a pair of divided dies 91 that can be opened and closed in a direction perpendicular to the vertical direction, with a surface passing through the central axis of the internal semiconductive layer 21 as a divided surface.
  • FIG. 4 shows only one split mold 91. By closing and assembling the pair of split dies 91 in a direction perpendicular to the paper surface, a cavity 90 which is a space for molding the insulating layer 22 shown in FIG.
  • the ends 23eg and 23et of the external semiconductive layer 23 are disposed in the mold 9 with the flanges 55 and 56 fixed to the mold 9.
  • a core 95a and a core 95b that form the working opening 26 and the connection opening 25G shown in FIG. 5 are inserted inside the end 23eg on the GIS side.
  • the core 95a is shaped like a truncated cone and has a gap 92 between the outer peripheral surface of the core 95a and the inner peripheral surface including the opening edge 271 of the end 23eg.
  • the gap 92 is provided above the mold 9.
  • the core 95b has a truncated conical shape and is formed so as to be in close contact with the opening edge 272 of the end 23eg.
  • a core 95c that forms the connection opening 25T shown in FIG. 5 is inserted inside the end 23et on the Tr side.
  • the core 95c has a truncated cone shape and is formed to be in close contact with the opening edge 27 of the end 23et.
  • the core 95c is integrally provided with a rod-shaped portion 96 inserted into the inner semiconductive layer 21, that is, the insertion hole 200.
  • the inner semiconductive layer 21 is arranged in the mold 9 in a state where the rod-shaped portion 96 of the core 95c is inserted into the insertion hole 200 of the inner semiconductive layer 21.
  • the end on the GIS side of the rod portion 96 is sandwiched between the cores 95a and 95b in a direction perpendicular to the core 95c.
  • the end portion 23eg of the inner semiconductive layer 21 and the outer semiconductive layer 23 is placed in the mold 9. , 23et. After that, the cores 95a and 95b are inserted inside the ends 23eg of the external semiconductive layer 23.
  • the order of the third and fourth steps is not particularly limited.
  • the fourth step may be performed after the third step, or the third step may be performed after the fourth step.
  • the ends 23eg and 23et of the inner semiconductive layer 21 and the outer semiconductive layer 23 are arranged.
  • the cores 95a to 95c may be inserted inside the.
  • the ends 23eg and 23et of the inner semiconductive layer 21 and the outer semiconductive layer 23 are removed. May be arranged in the mold 9.
  • the mold 9 with the gap 92 facing upward is filled with an insulating material, and the insulating material overflows from the gap 92.
  • the insulating layer 22 for integrating the inner semiconductive layer 21 and the ends 23eg and 23et of the outer semiconductive layer 23 is formed.
  • an insulating rubber material is used as the insulating material.
  • the mold 9 communicates with a cavity 90 in the mold 9, and communicates with a gate portion 93 for injecting an insulating material into the cavity 90, a gap 92, and an insulation overflowing from the gap 92. And an overflow portion 94 for receiving a conductive material.
  • Gate portion 93 may be a film gate extending along the axial direction of internal semiconductive layer 21.
  • a semiconductive paint is applied to a portion where the insulating layer 22 is exposed between both ends 23eg and 23et of the external semiconductive layer 23 on the molded body shown in FIG. An intermediate portion 23m of the conductive layer 23 is formed.
  • a conductive rubber paint is used as the semiconductive paint.
  • a gap 92 is provided at a position where the working opening 26 is formed, and the gap 92 is filled with an insulating material. Therefore, after the formation of the insulating layer 22, the first end face 221 of the insulating layer 22 is exposed from the opening edge 271 of the external semiconductive layer 23 as shown in FIG. In addition, a processed surface is formed on the first end surface 221 of the insulating layer 22 by removing a surplus portion formed by the overflow portion by the above-described machining.
  • the hollow end portion 50 having the working opening 26 has the first end surface 221 of the insulating layer 22 and the first end surface 231 of the end portion 23eg of the external semiconductive layer 23, and the first end surface 221 is processed. It is constituted by a first hollow end which is a surface.
  • connection openings 25G and 25T are formed so that the insulating layer 22 is located on the inner peripheral surface 230 of the ends 23eg and 23et of the external semiconductive layer 23 as shown in FIG. A second edge 222 will be formed.
  • the hollow end portion 50 having the connection openings 25G and 25T is formed in the second end surface 232 of the end portions 23eg and 23et of the external semiconductive layer 23 and the inner end portions 23eg and 23et without reaching the second end surface 232.
  • the method for manufacturing the solid insulated busbar 1 includes a step of manufacturing the insulative molded body 20 by the above-described method of manufacturing the insulative molded body 20, and a step of inserting the conductor 10 into the internal semiconductive layer 21 from one end of the insulative molded body 20. And.
  • the terminals 11G and 11T are attached to the ends of the conductor 10 to manufacture the conductor 10 with the terminals 11G and 11T. Then, the conductors 10 with the terminals 11G and 11T are inserted into the internal semiconductive layer 21 from one end side, which is the Tr side of the insulating molded body 20, to manufacture the solid insulated bus 1.
  • the gap 12 is formed in the inner semiconductive layer 21 as shown in FIG.
  • the conductor 10 can be inserted in the state of having. Therefore, the inner semiconductive layer 21 does not adhere to the outer peripheral surface of the conductor 10, and the gap 12 allows the conductor 10 to move in the longitudinal direction with respect to the insulating molded body 20 when the solid insulating busbar 1 is bent.
  • the cross-sectional dimension of the portion of the internal semiconductive layer 21 where the base 11b of the terminal 11T is inserted is slightly smaller than the cross-sectional dimension of the base 11b.
  • the base 11b of the terminal 11T is pushed into the inner semiconductive layer 21 to elastically deform the insulating molded body 20, thereby fixing the terminal 11T in the insulating molded body 20 in a crimped state.
  • the conductor 10 with the terminals 11G and 11T and the insulating molded body 20 can be integrated.
  • connection structure 100 using the solid insulating bus 1 will be described with reference to FIG.
  • connection structure 100 shown in FIG. 3 uses the solid insulated bus 1 for connection between the GIS as the partner device 101 and the transformer.
  • the solid insulated bus 1 is connected to the partner device 101 via the conductor extraction rods 3G and 3T.
  • the height position of the connection portion 102 of the partner device 101 is different, and the solid insulated bus 1 is bent and arranged.
  • the connection point 102 is, for example, a lead wire.
  • the base ends of the conductor extraction rods 3G and 3T are connected to the terminals 11G and 11T of the solid insulated busbar 1, respectively, and the end sides are connected to connection points 102 of the GIS or transformer, which is the partner device 101.
  • the terminals 11G and 11T of the solid insulated bus 1 are electrically connected to the connection point 102 of the counterpart device 101 via the conductor extraction rods 3G and 3T, and the GIS and the transformer are electrically connected through the solid insulated bus 1.
  • the conductor extraction rods 3G, 3T are formed of, for example, copper.
  • connection between the terminal 11T on the Tr side and the conductor lead-out bar 3T is performed by fitting the distal end 11a of the terminal 11T into an insertion hole 30 formed on the base end surface of the conductor lead-out bar 3T. I have.
  • connection between the terminal 11G on the GIS side and the conductor lead-out rod 3G is made by connecting the terminal 11G and the base end side end surface of the conductor lead-out rod 3G to the terminal 11G from the working opening 26 side.
  • Bolts 113 are inserted through the formed through holes 112, and the conductor extraction rod 3 ⁇ / b> G is fixed with the bolts 113.
  • the work opening 26 is provided for performing the work of fastening the bolt 113.
  • the bushings 4G, 4T are cylindrical members that cover the outer peripheries of the conductor lead bars 3G, 3T.
  • the conductor lead bars 3G, 3T are inserted through the bushings 4G, 4T so as to penetrate in the longitudinal direction.
  • the bushings 4G, 4T are formed of, for example, an epoxy resin.
  • a bushing 4G, 4T is molded integrally with a resin material such as an epoxy resin forming the bushings 4G, 4T on the outer periphery of the conductor lead bars 3G, 3T. .
  • Insertion areas to be fitted into the connection openings 25G and 25T of the solid insulating busbar 1 are provided on the base ends of the bushings 4G and 4T, respectively.
  • the outer peripheral surface of the insertion region of the bushings 4G, 4T has a shape corresponding to the inner peripheral surface of each of the connection openings 25G, 25T, and is formed in a truncated cone shape tapering toward the base end.
  • the outer diameter of the insertion region of the bushings 4G, 4T is slightly larger than the inner diameter of each of the connection openings 25G, 25T before the bushings 4G, 4T are inserted.
  • the bushings 4G, 4T are provided with flange portions 45 projecting radially outward from the outer peripheral surface.
  • the flange portion 45 is located on the distal end side of the insertion region of the bushings 4G, 4T, and is formed in an annular shape on the outer peripheral surface of the bushings 4G, 4T.
  • the outer peripheral surface of the flange portion 45 projects radially outward from the end surface of the solid insulated busbar 1, specifically, the end surfaces of the connection openings 25G and 25T, and radially outward from the outer peripheral surface of the flange 55. It protrudes.
  • a flange 55 is attached to an end face on the proximal end side of the flange portion 45, and an attachment flange 8 described later is attached to an end face on the distal end side.
  • the flange 55 and the mounting flange 8 are fixed to the flange 45 by bolts.
  • a seal groove is formed on each end face of the flange 55 facing the flange portion 45 and the mounting flange 8, and a seal member is fitted into each seal groove. Thereby, it is possible to prevent water from entering the inside from between the flange portion 45 and the flange 55 and the mounting flange 8.
  • the seal member is, for example, a rubber O-ring.
  • the bushing 4G on the GIS side and the bushing 4T on the Tr side have different shapes.
  • a region opposite to the insertion region across the flange portion 45 is longer than the bushing 4G on the GIS side, and a plurality of flange portions are formed on the outer periphery thereof in a longitudinal direction. . With this flange, the creepage distance is secured.
  • the mounting flange 8 is an annular member interposed between each flange portion 45 of the bushings 4G and 4T and each housing 104 of the partner device 101, and is formed of, for example, brass.
  • the outer peripheral surface of the mounting flange 8 protrudes radially outward from the outer peripheral surface of the flange portion 45.
  • a seal groove is formed on an end face of the mounting flange 8 facing the housing 104, and a seal member is fitted in the seal groove. Thereby, it is possible to prevent water from entering the inside from between the housing 104 and the mounting flange 8.
  • the seal member is, for example, a rubber O-ring.
  • An insulation plug 7 is fitted into a work opening 26 formed at the GIS side end 1G of the solid insulation busbar 1.
  • the insulating plug 7 has a shape corresponding to the inner peripheral surface of the working opening 26, and is formed in a truncated cone shape that tapers toward the bottom side of the working opening 26.
  • the outer diameter of the insulating plug 7 is slightly larger than the inner diameter of the working opening 26 before the insulating plug 7 is inserted. Therefore, when the insulating plug 7 is inserted into the working opening 26, the insulating plug 7 is fixed in the working opening 26 in a crimped state.
  • the lid 6 is attached to the flange 56 provided in the work opening 26, and the inside of the work opening 26 is sealed by the cover 6.
  • the lid 6 is a disk-shaped member, and is formed of, for example, brass.
  • the lid 6 is fixed to the flange 56 with bolts.
  • a seal groove is formed on the end face of the flange 56 facing the lid 6, and a seal member is fitted in the seal groove. This can prevent water from entering the inside from between the lid 6 and the flange 56.
  • the seal member is, for example, a rubber O-ring.
  • Embedded electrodes 71 and 72 are buried in the insulating plug 7 in the vicinity of the bolt 113 connecting the terminal 11G and the conductor lead bar 3G and in the vicinity of the lid 6, respectively.
  • the first end face 221 of the insulating layer 22 is formed by the insulating property at the time of forming the insulating layer 22. It can be provided in the final filling of the material. Thereby, it is possible to suppress the occurrence of voids in the insulating layer 22 by overflowing the insulating material from the portion that becomes the first end surface 221 during the molding of the insulating layer 22 and extracting the gas in the mold.
  • the solid insulating bus 1 of the above-described embodiment includes the insulating molded body 20 of the above-described embodiment, so that the insulating layer 22 in the insulating molded body 20 has few voids, and the insulating layer 22 has excellent insulating properties. Further, since the conductor 10 is inserted into the inner semiconductive layer 21 of the insulating molded body 20 with the gap 12 therebetween, the insulating molded body 20 does not adhere to the outer peripheral surface of the conductor 10. Therefore, when the solid insulated bus 1 is bent, the conductor 10 is allowed to move in the longitudinal direction with respect to the insulating molded body 20, so that the solid insulated bus 1 is easily bent.
  • the gap 92 is formed between the core 95a inserted inside the end 23eg of the external semiconductive layer 23 and the opening edge 271 of the external semiconductive layer 23. Then, an insulating material is filled in the mold 9 with the gap 92 facing upward to form the insulating layer 22.
  • the gap 92 provided above the mold 9 is located at the final filling portion. For this reason, by causing the insulating material to overflow from the gap 92 and evacuating the gas in the mold 9, generation of voids in the formed insulating layer 22 can be suppressed.
  • the insulating layer 22 has few voids and the insulating layer 22 Can be manufactured.
  • the hollow end 50 having the working opening 26 is constituted by the first hollow end, and each of the other hollow ends 50 having the connecting openings 25G and 25T is the second hollow end.
  • the configuration constituted by the hollow end portion has been described.
  • an example in which the hollow end 50 having the Tr-side connection opening 25T in the first embodiment is changed to a third hollow end will be described with reference to FIGS.
  • the insulating molded body 20 of the second embodiment shown in FIG. 6 has the same configuration as the insulating molded body 20 of the first embodiment shown in FIG. 1 except that the configuration of the connection opening 25T is changed to a third hollow end.
  • the same components are denoted by the same reference numerals, and description thereof is omitted.
  • the hollow end 50 having the connection opening 25T is constituted by the third hollow end.
  • the connection opening 25T has a third end face 223 of the insulating layer 22 and a third end face 233 of the end 23et of the external semiconductive layer 23.
  • Reference numeral 223 denotes a molding surface formed by a mold.
  • the third end surface 223 of the insulating layer 22 and the third end surface 233 of the end 23et are provided on the end surface of the third hollow end portion 50 having the connection opening 25T.
  • the third end face 223 and the third end face 233 are substantially flush.
  • a gap 92 is formed between the inner peripheral surface 230 including the opening edge 27 of 23et.
  • the axial end which is the open end of the gap 92, is closed by the split mold 91 and the core 95c constituting the mold 9.
  • a gap 92 shown in FIG. 7 is provided at a location where the connection opening 25T shown in FIG. 6 is formed, and the gap 92 is filled with an insulating material.
  • the third end face 223 of the insulating layer 22 is exposed from the opening edge 27 of the external semiconductive layer 23 as shown in FIG.
  • the open end of the gap 92 is closed by the inner surface of the split mold 91 constituting the mold 9 and the outer peripheral surface of the core 95c. Therefore, the third end face 223 of the insulating layer 22 exposed from the opening edge 27 of the external semiconductive layer 23 is a molding surface formed by the mold 9. That is, the third end surface 223 of the insulating layer 22 has no scratches machined.
  • the hollow end 50 having the connection opening 25T in the first embodiment is constituted by the third hollow end
  • the hollow end having the connection opening 25G shown in FIG. 50 may be constituted by a third hollow end.
  • each hollow end 50 having the connection opening 25G and the connection opening 25T may be constituted by the third hollow end, or only one of the hollow ends 50 may be constituted by the third hollow end. Is also good.
  • the present invention is not limited to the embodiments described above.
  • the shapes of the terminals 11G and 11T on the GIS side and the Tr side and the conductor lead bars 3G and 3T can be changed.
  • the end on the GIS side and the end on the Tr side of the solid insulated busbar 1 may be exchanged so that the terminal 11G is connected to the transformer and the terminal 11T is connected to the GIS. That is, the GIS side is a combination of the terminal 11T and the conductor lead bar 3T, and the transformer side is a combination of the terminal 11G and the conductor lead bar 3G.
  • the terminal 11T of the solid insulated busbar 1 is connected to the connection point 102 of the GIS via the conductor lead rod 3T, and the terminal 11G is connected to the transformer connection point 102 via the conductor lead rod 3G.
  • the connection structure 100 is

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Cable Accessories (AREA)
  • Processing Of Terminals (AREA)

Abstract

中空状に成形された絶縁成形体であって、筒状の内部半導電層と、前記内部半導電層の外周に設けられた絶縁層と、前記絶縁層の少なくとも端部の外周に設けられた外部半導電層と、前記絶縁層の第一端面と、前記外部半導電層の第一端面とを有する第一の中空端部と、を有し、前記絶縁層の第一端面は、機械加工された加工面である、絶縁成形体。

Description

絶縁成形体、固体絶縁母線、絶縁成形体の製造方法、及び固体絶縁母線の製造方法
 本開示は、絶縁成形体、固体絶縁母線、絶縁成形体の製造方法、及び固体絶縁母線の製造方法に関する。
 本出願は、2018年8月24日付の日本国出願の特願2018-157547号に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
 電力機器間の接続に固体絶縁母線が使用されている。特許文献1は、棒状導体と短尺の撚線とを組み合わせて接続した母線と、母線の両端に接続した端末金具と、母線及び端末金具の上にモールドされた内部半導電層、絶縁層、及び外部半導電層とを備えるモールド絶縁連絡母線を開示する。特許文献1に記載のモールド絶縁連絡母線は、両端に端末金具を接続した母線を金型内に設置し、その上に内部半導電層、絶縁層、及び外部半導電層を順にモールドして絶縁体を形成することにより作製する。
特開平10-233244号公報
 本開示の絶縁成形体は、
 中空状に成形された絶縁成形体であって、
 筒状の内部半導電層と、
 前記内部半導電層の外周に設けられた絶縁層と、
 前記絶縁層の少なくとも端部の外周に設けられた外部半導電層と、
 前記絶縁層の第一端面と、前記外部半導電層の第一端面とを有する第一の中空端部と、を有し、
 前記絶縁層の第一端面は、機械加工された加工面である。
 本開示の固体絶縁母線は、
 上記本開示の絶縁成形体と、
 前記絶縁成形体の前記内部半導電層内に隙間を有して挿入される導体と、を備える。
 本開示の絶縁成形体の製造方法は、
 筒状の内部半導電層を成形する第一の工程と、
 開口縁を有する中空の外部半導電層の端部を成形する第二の工程と、
 前記内部半導電層と前記外部半導電層の端部とを金型内に配置する第三の工程と、
 前記内部半導電層及び前記外部半導電層の端部の内側に中子を挿入する第四の工程と、
 前記金型内に絶縁性材料を充填して、前記内部半導電層と前記外部半導電層の端部とを一体化する絶縁層を成形する第五の工程と、を備え、
 前記第三の工程は、前記内部半導電層の少なくとも両端の外周近傍に前記外部半導電層の端部を間隔を開けるように行い、
 前記第四の工程は、前記中子の外周面と前記外部半導電層における前記開口縁を含む内周面との間に隙間を形成し、
 前記第五の工程は、前記隙間を上方に向けて前記絶縁性材料の充填を行い、前記絶縁性材料を前記隙間から溢れさせる。
 本開示の固体絶縁母線の製造方法は、
 上記本開示の絶縁成形体の製造方法により絶縁成形体を製造する工程と、
 前記絶縁成形体の一端側から前記内部半導電層内に導体を挿入する工程と、を備える。
図1は、実施形態1に係る絶縁成形体を備える固体絶縁母線の概略縦断面図である。 図2は、図1のII-II線断面図である。 図3は、実施形態1に係る固体絶縁母線の接続構造の一例を示す概略構成図である。 図4は、実施形態1において、絶縁層の成形に用いる金型の一例を示す概略縦断面図である。 図5は、実施形態1において、内部半導電層と外部半導電層の端部とを絶縁層で一体化した成形体の概略縦断面図である。 図6は、実施形態2に係る絶縁成形体を備える固体絶縁母線の概略縦断面図である。 図7は、実施形態2において、絶縁層の成形に用いる金型の一例を示す概略縦断面図である。
 [本開示が解決しようとする課題]
 固体絶縁母線の絶縁体を金型を用いて成形した絶縁成形体とする場合、金型内に絶縁性材料を充填して絶縁層を成形する際に、金型内の空気などのガスが抜けきらずに、絶縁層にボイドが発生することがある。このようなボイドは、絶縁性材料が金型内に最後に充填される部位で発生することが多い。以下では、絶縁性材料が最後に充填される部位を「最終充填部」と呼ぶ。絶縁層にボイドが存在すると、その部分の絶縁特性が低下するなど、品質の低下を招く虞がある。したがって、絶縁層にボイドが発生し難い構造の絶縁成形体が望まれている。
 本開示は、絶縁層にボイドが発生することを抑制できる絶縁成形体、及びその製造方法を提供することを目的の一つとする。また、絶縁成形体を備える固体絶縁母線及びその製造方法を提供することを別の目的の一つとする。
 [本開示の効果]
 本開示の絶縁成形体は、絶縁層にボイドが発生することを抑制できる。本開示の固体絶縁母線は、絶縁成形体における絶縁層の絶縁特性に優れる。本開示の絶縁成形体の製造方法は、絶縁層にボイドが発生することを抑制できる。本開示の固体絶縁母線の製造方法は、絶縁成形体における絶縁層の絶縁特性に優れる固体絶縁母線を製造できる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の実施形態に係る絶縁成形体は、
 中空状に成形された絶縁成形体であって、
 筒状の内部半導電層と、
 前記内部半導電層の外周に設けられた絶縁層と、
 前記絶縁層の少なくとも端部の外周に設けられた外部半導電層と、
 前記絶縁層の第一端面と、前記外部半導電層の第一端面とを有する第一の中空端部と、を有し、
 前記絶縁層の第一端面は、機械加工された加工面である。
 本開示の絶縁成形体は、第一の中空端部において絶縁層の第一端面が機械加工された加工面である。絶縁層の第一端面の加工面は、金型内に絶縁性材料を充填して絶縁層を成形した際に絶縁性材料を溢れさせた部分を機械加工により除去することで形成されたものである。絶縁層の第一端面は第一の中空端部の端面に露出することになるため、絶縁層の第一端面を、絶縁層の成形時における絶縁性材料が金型内に最後に充填される最終充填部に設けることができる。これにより、絶縁層の成形時に絶縁性材料の最終充填部となる第一端面の部分から絶縁性材料を溢れさせて金型内のガスを抜くことによって、絶縁層にボイドが発生し難くなる。したがって、本開示の絶縁成形体は、絶縁層にボイドが発生することを抑制できる。
 (2)本開示の絶縁成形体の一形態として、
 前記第一の中空端部以外の第二の中空端部を有し、
 前記第二の中空端部は、前記外部半導電層の第二端面と、前記第二端面に達することなく前記外部半導電層の内周面に位置する前記絶縁層の第二端縁とを有することが挙げられる。
 上記形態は、第二の中空端部において、外部半導電層の内周面に位置する絶縁層の第二端縁を有する。第二の中空端部では、絶縁層の第二端縁が外部半導電層の第二端面に達することなく内周面に位置することから、第一の中空端部とは異なり、絶縁層の端面が第二の中空端部の端面に露出していない。この場合、第二の中空端部における絶縁層の端面に対する機械加工を不要とすることができる。
 (3)本開示の絶縁成形体の一形態として、
 前記第一の中空端部以外の第三の中空端部を有し、
 前記第三の中空端部は、前記絶縁層の第三端面と、前記外部半導電層の第三端面とを有し、
 前記絶縁層の第三端面は、金型により成形された成形面であることが挙げられる。
 上記形態は、第三の中空端部において絶縁層の第三端面が金型により成形された成形面であることから、第三端面に対する機械加工を省略することができる。
 (4)本開示の絶縁成形体の一形態として、
 前記第一の中空端部以外の全ての中空端部は、第二の中空端部及び第三の中空端部の少なくとも一方で構成され、
 前記第二の中空端部は、前記外部半導電層の第二端面と、前記第二端面に達することなく前記外部半導電層の内周面に位置する前記絶縁層の第二端縁とを有し、
 前記第三の中空端部は、前記絶縁層の第三端面と、前記外部半導電層の第三端面とを有し、
 前記絶縁層の第三端面は、金型により成形された成形面であることが挙げられる。
 上記形態は、第一の中空端部以外の全ての中空端部が、第二の中空端部及び第三の中空端部の少なくとも一方により構成されている。よって、第一の中空端部における絶縁層の第一端面が、絶縁層の成形時における絶縁製材料の最終充填部に設けられることになる。また、第二の中空端部では、絶縁層の第二端縁が外部半導電層の内周面に位置しており、第三の中空端部では、絶縁層の第三端面が成形面である。そのため、第二及び第三の中空端部において、絶縁層の端面に対する機械加工が不要である。
 (5)本開示の絶縁成形体の一形態として、
 前記内部半導電層、前記絶縁層及び前記外部半導電層がゴム材料で形成されていることが挙げられる。
 上記形態は、絶縁成形体がゴム材料で形成されていることで、絶縁成形体の可撓性が向上する。
 (6)本開示の実施形態に係る固体絶縁母線は、
 上記(1)から(5)のいずれか1つに記載の絶縁成形体と、
 前記絶縁成形体の前記内部半導電層内に隙間を有して挿入される導体と、を備える。
 本開示の固体絶縁母線は、上記本開示の絶縁成形体を備える。したがって、本開示の固体絶縁母線は、絶縁成形体における絶縁層にボイドが少なく、絶縁層の絶縁特性に優れる。
 (7)本開示の固体絶縁母線の一形態として、
 前記導体が編組線で形成されていることが挙げられる。
 上記形態は、導体が編組線で形成されていることで、固体絶縁母線が可撓性に優れる。よって、固体絶縁母線の各端部を接続対象となる各電力機器の接続箇所に位置合わせして接続し易い。電力機器間を固体絶縁母線で接続する場合、それぞれの電力機器の接続箇所の高さ位置などが異なったり、電力機器の据付精度によって接続箇所の位置がずれることがある。その場合、固体絶縁母線を屈曲させて、各端部を各接続対象に位置合わせする必要がある。編組線であれば、可撓性に優れ曲げ易いため、固体絶縁母線の可撓性が向上する。したがって、上記形態は、固体絶縁母線が曲げ易くなり、接続箇所の位置ずれに対応し易くなる。
 (8)本開示の実施形態に係る絶縁成形体の製造方法は、
 筒状の内部半導電層を成形する第一の工程と、
 開口縁を有する中空の外部半導電層の端部を成形する第二の工程と、
 前記内部半導電層と前記外部半導電層の端部とを金型内に配置する第三の工程と、
 前記内部半導電層及び前記外部半導電層の端部の内側に中子を挿入する第四の工程と、
 前記金型内に絶縁性材料を充填して、前記内部半導電層と前記外部半導電層の端部とを一体化する絶縁層を成形する第五の工程と、を備え、
 前記第三の工程は、前記内部半導電層の少なくとも両端の外周近傍に前記外部半導電層の端部を間隔を開けるように行い、
 前記第四の工程は、前記中子の外周面と前記外部半導電層における前記開口縁を含む内周面との間に隙間を形成し、
 前記第五の工程は、前記隙間を上方に向けて前記絶縁性材料の充填を行い、前記絶縁性材料を前記隙間から溢れさせる。
 本開示の絶縁成形体の製造方法は、内部半導電層及び外部半導電層の端部を金型内に配置する。更に、内部半導電層及び外部半導電層の端部の内側に中子を挿入して、外部半導電層の内側に挿入した中子の外周面と開口縁を含む内周面との間に隙間を形成する。そして、その隙間を金型の上方に向けた状態で金型内に絶縁性材料を充填し、内部半導電層と外部半導電層の端部とを一体化するように絶縁層を成形する。上記製造方法によれば、絶縁層を成形する上記第五の工程において、金型の上方に設けた隙間が最終充填部に位置することになる。そのため、絶縁性材料を隙間から溢れさせて金型内のガスを抜くことによって、絶縁層にボイドが発生し難くなる。したがって、本開示の絶縁成形体の製造方法は、絶縁層にボイドが発生することを抑制できる。
 本開示の製造方法により絶縁成形体を製造した場合、中子と外部半導電層の開口縁との間に形成した隙間に絶縁性材料が充填され、絶縁層の端面が外部半導電層の開口縁から露出することになる。隙間から絶縁性材料が溢れて形成された部分は、絶縁層の成形後、機械加工により除去することで、絶縁層の端面に加工面が形成される。したがって、本開示の製造方法は、絶縁層の端面と、外部半導電層の端面とを有し、絶縁層の端面が加工面である中空端部、具体的には上述した第一の中空端部を形成することができる。
 (9)本開示の実施形態に係る固体絶縁母線の製造方法は、
 上記(8)に記載の絶縁成形体の製造方法により絶縁成形体を製造する工程と、
 前記絶縁成形体の一端側から前記内部半導電層内に導体を挿入する工程と、を備える。
 本開示の固体絶縁母線の製造方法は、上記本開示の絶縁成形体の製造方法により製造された絶縁成形体を用いる。したがって、本開示の固体絶縁母線の製造方法は、絶縁成形体における絶縁層にボイドが少なく、絶縁層の絶縁特性に優れる固体絶縁母線を製造することができる。
 [本開示の実施形態の詳細]
 本開示の実施形態に係る絶縁成形体、及び固体絶縁母線の具体例を、以下に図面を参照しつつ説明する。図中の同一符号は、同一名称物を示す。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 [実施形態1]
 図1~図3を参照して、実施形態1に係る絶縁成形体20、及び固体絶縁母線1について説明する。図1は、固体絶縁母線1の中心軸に沿った縦断面図である。図2は、固体絶縁母線1の長手方向に直交し、図1に示すII-II線に沿った断面図である。固体絶縁母線1の長手方向は軸方向のことを指す。図3は、固体絶縁母線1を用いた接続構造の一例を示す。図3に例示する接続構造100は、相手機器101となるガス絶縁開閉装置(GIS:Gas Insulated Switchgear)とトランスとを固体絶縁母線1を介して接続するものである。図3では、GIS及びトランスを図示していないが、GISが左側に位置し、トランスが右側に位置する。以下の説明では、固体絶縁母線1のトランスに接続される一端側をTr側、GISに接続される他端側をGIS側、と呼ぶ。
 図1に示す固体絶縁母線1は、長尺な導体10と、導体10の端部に取り付けられる端子11G、11Tと、導体10及び端子11G、11Tの外周を覆う絶縁成形体20とを備える。絶縁成形体20は、中空状に成形されたものである。絶縁成形体20は、図1、図2に示すように、内側から外側に向かって順に、内部半導電層21、絶縁層22及び外部半導電層23を備える。実施形態1に係る絶縁成形体20は、図1に示すように、絶縁層22の第一端面221と、外部半導電層23の端部23egの第一端面231とを有する第一の中空端部を有することを特徴の1つとする。本例では、第一の中空端部は、作業用開口部26を有する中空端部50に相当する。絶縁層22の第一端面221は、機械加工された加工面である。
 <固体絶縁母線>
 固体絶縁母線1は、図1に示すように、導体10と、端子11G、11Tと、絶縁成形体20とを備える。
 (導体)
 導体10は、図1に示すように、絶縁成形体20の内部半導電層21内に挿入されることにより、絶縁成形体20内に配置されている。導体10は、代表的には、編組線又は撚線など、棒材に対して可撓性に優れる可撓導体で形成されている。導体10が可撓性を有する可撓導体で形成されていることで、固体絶縁母線1の可撓性を向上させることができる。特に、編組線は撚線に比較して可撓性に優れることから、導体10として好適である。導体10の断面形状は、特に限定されるものではなく、例えば矩形状、円形状、楕円形状など種々の形状を採用することができる。導体10の断面形状は、導体10の長手方向に直交する断面の形状である。本例では、導体10が銅の平編組線で形成されており、図2に示すように、導体10の断面形状が矩形状である。より具体的には、本例の導体10は平編組線を厚み方向に3つ重ね合わせて構成されている。導体10の寸法は仕様に応じて適宜設定される。例えば、導体10の長さは30cm以上300cm以下、図2において厚さT10×幅W10で示される導体10の断面寸法は2mm×10mm以上40mm×75mm以下である。
 (端子)
 導体10の端部には、端子11G、11Tが取り付けられている。本例の場合、図1、図3に示すように、端子11Gが導体10のGIS側の端部に取り付けられている。また、端子11Tが導体10のTr側の端部に取り付けられている。本例では、GIS側の端子11Gは、平板状である。具体的には、端子11Gは、導体10の端部を厚み方向から挟み込む一対の平板状の端子片を有し、ボルトなどによって取り付けられている。端子11Gには、端子片の厚み方向に貫通する貫通孔112が設けられている。この貫通孔112は、後述する図3に示す導体引出棒3Gを接続する際に導体引出棒3Gをボルト113で固定するためのものである。一方、Tr側の端子11Tは、導体10の端部を厚み方向から挟み込む一対の半円柱状の端子片を有する円柱状の基部11bと、基部11bから突出する先端部11aとを有し、ボルトなどによって取り付けられている。端子11Tの先端部11aは、基部11bよりも細く、後述する図3に示す導体引出棒3Tを接続する際に導体引出棒3Tに形成された挿入穴30に嵌め込まれる。端子11G、11Tは、例えば銅で形成されている。
 (絶縁成形体)
 絶縁成形体20は、図1、図5に示すように、中空状の長尺の成形体である。絶縁成形体20は、その中間部20Mが一様な内外径を有する角筒状に成形されている。絶縁成形体20のTr側の端部20Tは中間部20Mよりも太い紡錘状に成形されている。絶縁成形体20のGIS側の端部20Gは中間部20Mに略直交するハンマーヘッド状に成形されている。本例の絶縁成形体20は、Tr側の端部20Tに1つ、GIS側の端部20Gに2つ、合計3つの中空端部50を備え、各中空端部50の開口は互いに内部空間で連通されている。
 絶縁成形体20は、図1に示すように、筒状の内部半導電層21と、内部半導電層21の外周に設けられた絶縁層22と、絶縁層22の少なくとも端部の外周に設けられた外部半導電層23とを備える。絶縁層22の内外に内部半導電層21及び外部半導電層23を有することで、導体10に電圧を印加したときに絶縁成形体20にかかる電界ストレスを緩和することができる。本例の絶縁成形体20は、主としてゴム材料で形成されている。絶縁成形体20がゴム材料で形成されていることで、絶縁成形体20の可撓性が向上し、固体絶縁母線1の可撓性を向上させることができる。
 内部半導電層21には、挿入孔200がTr側である一端側からGIS側である他端側に向けて軸方向に沿って形成されている。この挿入孔200には、導体10の端部に端子11G、11Tが取り付けられた端子11G、11T付き導体10が全長に亘って挿入される。
 内部半導電層21の内周、即ち挿入孔200のうち、導体10が配置される部分の断面形状は導体10の断面形状に対応した形状であり、その断面寸法は導体10の断面寸法よりも大きい。そのため、図2に示すように、導体10の外周面と内部半導電層21の内周面との間に隙間12が形成され、導体10が絶縁成形体20内に隙間12をあけて配置されている。つまり、本例の導体10は、内部半導電層21内に隙間12を有して挿入されている。したがって、導体10の外周面に絶縁成形体20の内部半導電層21が密着しておらず、導体10を構成する編組線などの表面に絶縁成形体20を構成するゴム材料が入り込んでいない。これにより、導体10と絶縁成形体20との独立した挙動が可能である。そのため、固体絶縁母線1を曲げる際に絶縁成形体20に対する導体10の長手方向への動きを許容することができる。内部半導電層21の内周の断面形状及び断面寸法とは、図2に示すように、導体10が挿入される挿入孔200の軸方向に直交する断面の形状及びその寸法のことである。本例の場合、図2に示すように、内部半導電層21の内周の断面形状が矩形状である。
 ここで、導体10の外周面と絶縁成形体20における内部半導電層21の内周面との間に形成される隙間12は、導体10と絶縁成形体20との独立した挙動を許容するものである。隙間12の大きさは、例えば0.2mm以上1.5mm以下、更に0.5mm以上1.0mm以下である。隙間12が0.2mm以上であることで、導体10と絶縁成形体20との独立した挙動を十分に許容することができ、また、固体絶縁母線1の製造時に内部半導電層21内に導体10を挿入し易い。
 内部半導電層21の内周、即ち挿入孔200のうち、端子11Gが配置される部分の断面形状は端子11Gの断面形状に対応した矩形状であり、その断面寸法は端子11Gの断面寸法よりも大きい。そのため、端子11Gの外周面と内部半導電層21の内周面との間には、隙間が存在する。一方、内部半導電層21の内周のうち、端子11Tの基部11bが配置される部分の断面形状は基部11bの断面形状に対応した円形状である。本例の場合、内部半導電層21における端子11Tが配置される部分は、端子11Tが配置される前の状態において、その断面寸法が基部11bの断面寸法よりも若干小さい。そのため、端子11Tが絶縁成形体20内に配置された状態では、絶縁成形体20の弾性力によって、端子11Tにおける基部11bの外周面と絶縁成形体20における内部半導電層21の内周面とが密着される。これにより、端子11Tが絶縁成形体20内に圧着状態で固定され、端子11G、11T付き導体10と絶縁成形体20とが一体化される。本例の場合、端子11Tの基部11bの断面寸法が導体10の断面寸法よりも大きく、端子11Gの断面寸法が導体10の断面寸法と同等以下である。
 内部半導電層21及び外部半導電層23は半導電性材料で形成されている。絶縁層22は絶縁性材料で形成されている。本例では、内部半導電層21及び外部半導電層23が、例えば半導電性のシリコーンゴムなどの半導電性ゴム材料で形成されている。また、絶縁層22が、例えば絶縁性のシリコーンゴムなどの絶縁性ゴム材料で形成されている。内部半導電層21、絶縁層22及び外部半導電層23のそれぞれの厚さは、導体10に流れる電流や印加される電圧などに応じて適宜設定される。図2において、導体10を被覆する部分における内部半導電層21及び外部半導電層23の各層の厚さは、例えば2mm以上15mm以下である。また、絶縁層22の厚さは、例えば5mm以上30mm以下である。
 本例では、外部半導電層23の両端部23eg、23et及び内部半導電層21が半導電性ゴム材料で成形されたものである。外部半導電層23のうち、両端部23eg、23et間を繋ぐ中間部23mは、半導電性ゴム塗料を絶縁層22上に塗布して形成されている。外部半導電層23は全長に亘って半導電性ゴム材料で成形されていてもよく、両端部23eg、23et及び中間部23mが半導電性ゴム材料で一体に成形されていてもよい。絶縁層22は、絶縁性ゴム材料で成形されたものである。
 (絶縁成形体の端部)
 本例における絶縁成形体20の端部の構成について、図3を適宜参照しつつ詳しく説明する。絶縁成形体20のTr側の端部20Tには、ブッシング4Tの基端側が嵌め込まれる接続用開口部25Tが設けられている。一方、絶縁成形体20のGIS側の端部20Gには、ブッシング4Gの基端側が嵌め込まれる接続用開口部25Gが設けられている。接続用開口部25G、25Tは、絶縁層22によって形成されており、絶縁層22の外周に外部半導電層23の端部23eg、23etが設けられている。接続用開口部25G、25Tの内周面は、開口側から底側に向かって縮径する円錐台形状になっている。接続用開口部25G、25Tの底側には、端子11G、11Tが露出している。各接続用開口部25G、25Tには、後述する導体引出棒3G、3Tが挿通されたブッシング4G,4Tの基端側がそれぞれ挿入され、端子11G、11Tと導体引出棒3G、3Tとが接続される。本例の場合、各接続用開口部25G、25Tにブッシング4G,4Tの基端側がそれぞれ圧入されている。
 接続用開口部25G、25Tにおける外部半導電層23の端部23eg、23etには、フランジ55が取り付けられている。フランジ55は、ブッシング4G、4Tに設けられたフランジ部45に取り付けられる円環状の部材であり、例えば黄銅で形成されている。
 本例では、図1に示すように、Tr側の接続用開口部25Tの形状とGIS側の接続用開口部25Gの形状とが異なる。接続用開口部25Tは、内部半導電層21の端部から軸方向に絶縁層22が突出して形成されており、内部半導電層21の軸方向の延長線上に開口している。一方、接続用開口部25Gは、内部半導電層21の端部から軸方向に交差する方向に絶縁層22が突出して形成されており、内部半導電層21の軸方向に交差する方向に開口している。本例の場合、上記軸方向に交差する方向は直交方向である。また、接続用開口部25Gとは端子11Gを挟んで反対側に作業用開口部26が設けられている。作業用開口部26も、接続用開口部25Gと同じように、絶縁層22によって形成されており、絶縁層22の外周に外部半導電層23の端部23egが設けられている。作業用開口部26の内周面も、開口側から底側に向かって縮径する円錐台形状になっている。作業用開口部26における外部半導電層23の端部23egには、フランジ56が取り付けられている。
 (中空端部の形態)
 絶縁成形体20の端部に設けられた接続用開口部25G、25T及び作業用開口部26はいずれも、図1、図5に示すように、中空状に形成された中空端部50に設けられている。以下、図5を主に参照し、図1を適宜参照して、中空端部50の構成を説明する。
 接続用開口部25Tを有する中空端部50の構成を説明する。
 内部半導電層21は、導体10のTr側の端部の近傍から端子11T側に向かって徐々に厚みを増し、基部11bの全周を略一定の厚さで覆い、更に先端部11aの途中にまで及ぶ長さを有する。但し、内部半導電層21のTr側の端部は、先端部11aに接することなく、先端部11aとは間隔を開けて重なるように形成されている。この内部半導電層21のTr側の端部は、後述する導体引出棒3Tの基端側の外周を覆う。
 外部半導電層23の端部23etは、端子11Tの基部11bのTr側の端部に略対応する位置から固体絶縁母線1のTr側の端部にまで及ぶ長さを有する筒状体に形成されている。端部23etは、GIS側からTr側に向かって内径が徐々に小さくなることで、Tr側ほど厚みが増す形状である。
 絶縁層22は、内部半導電層21のTr側の端部を略一定の厚さで覆い、更に外部半導電層23の端部23etの開口縁27にまで及ぶ長さを有する。絶縁層22のTr側の端部は、内部半導電層21のTr側の端部の位置から端部23etの開口縁27に向かって筒状に突出して形成されている。絶縁層22のTr側の端部は、端部23etの開口縁27に向かって厚みが薄くなる先細り形状であり、内径が徐々に大きくなる円錐状の内周面を有する。
 接続用開口部25Tを有する中空端部50の内周面は、GIS側からTr側に向かって順に、内部半導電層21の内周面、絶縁層22の内周面及び外部半導電層23の内周面によって構成される。つまり、内部半導電層21のTr側の端縁及び絶縁層22のTr側の端縁は、接続用開口部25Tを有する中空端部50の端面に達していない。接続用開口部25Tを有する中空端部50の端面は、環状の外部半導電層23の端面、即ち第二端面232によって構成される。
 GIS側の中空端部について説明する。GIS側の中空端部は、図5に示すように、T字状の中空端部である。GIS側の中空端部は、内部半導電層21の軸方向と同軸の軸を持つ中央内部空間と、この中央内部空間から分岐し、内部半導電層21の軸方向に直交する軸を持つ分岐内部空間を持つ。これら中央内部空間と分岐内部空間とは連通している。中央内部空間は、内部半導電層21の内周の空間、即ち挿入孔200によって構成される。GIS側の中空端部は、作業用開口部26を有する中空端部50と、接続用開口部25Gを有する中空端部50とを備える。
 内部半導電層21は、Tr側から連続して端子11GのGIS側の端部まで延びる。内部半導電層21のGIS側の端部は、閉じられた先端を有し、端子11Gを略一定の厚さで覆う。但し、内部半導電層21のGIS側の端部には、上記先端から若干Tr側の位置に、軸方向に直交する方向に連通する孔211が設けられている。内部半導電層21内に端子11G、11T付き導体10が挿入された際、GIS側である他端側の端子11Gは孔211の領域が内部半導電層21で覆われず、上記分岐内部空間に露出される。
 外部半導電層23の端部23egは、内部半導電層21のGIS側の端部に対して直交する筒状頭部と、筒状頭部に一体に形成されて筒状頭部の軸方向の中間位置からTr側に向かって突出する中空軸部とを有する。端部23egは、T字状の中空体に形成されている。中空軸部は、導体10のGIS側の端部の近傍までを覆う。筒状頭部と中空軸部との内部空間は連通している。端部23egの筒状頭部は、両端に開口を有し、中央側から開口縁271、272側に向かって厚みを増すように形成されている。端部23egの中空軸部は、GIS側からTr側に向かって略一定の厚さで延び、Tr側に開口縁273を有する。つまり、端部23egは、3つの開口を有し、いずれの開口からも内部空間に連通している。
 絶縁層22は、内部半導電層21のGIS側の端部までを覆う長さを有する。絶縁層22のGIS側の端部は、外部半導電層23の端部23egの内周側に設けられており、内部半導電層21の孔211を塞がないように、内部半導電層21のGIS側の端部から直交する筒状に形成されている。絶縁層22のGIS側の端部は、中央側ほど厚く、端部23egの開口縁271、272に向かって厚みが薄くなる先細り形状であり、内径が徐々に大きくなる円錐状の内周面を有する。
 作業用開口部26を有する中空端部50は、絶縁層22と外部半導電層23とで形成されている。作業用開口部26を有する中空端部50の内周面は、絶縁層22の内周面によって構成される。つまり、作業用開口部26の内周面は内部半導電層21を有しない。作業用開口部26を有する中空端部50の端面は、環状の絶縁層22の端面、即ち第一端面221と、その外周に設けられる外部半導電層23の端面、即ち第一端面231とで構成される。また、接続用開口部25Gを有する中空端部50は、絶縁層22と外部半導電層23とで形成されている。接続用開口部25Gを有する中空端部50の内周面は、底側から開口側に向かって順に、絶縁層22の内周面及び外部半導電層23の内周面によって構成される。つまり、接続用開口部25Gの内周面は内部半導電層21を有しない。上記外部半導電層23の内周面には、開口縁272が含まれる。接続用開口部25Gを有する中空端部50の端面は、環状の外部半導電層23の端面、即ち第二端面232によって構成される。
 作業用開口部26及び接続用開口部25Gを有するGIS側の中空端部50と接続用開口部25Gを有するTr側の中空端部50とは互いに内部空間で連通している。
 中空端部50の形態としては、以下に示す形態が挙げられる。
 〈第一の中空端部〉
 第一の形態は、絶縁層の第一端面と、外部半導電層の第一端面とを有し、絶縁層の第一端面が機械加工された加工面である第一の中空端部の形態である。
 〈第二の中空端部〉
 第二の形態は、外部半導電層の第二端面と、外部半導電層の第二端面に達することなく外部半導電層の内周面に位置する絶縁層の第二端縁とを有する第二の中空端部の形態である。
 〈第三の中空端部〉
 第三の形態は、絶縁層の第三端面と、外部半導電層の第三端面とを有し、絶縁層の第三端面が金型により成形された成形面である第三の中空端部の形態である。
 中空端部50のうち必ず1つは、第一の中空端部により構成され、それ以外は、第二の中空端部及び第三の中空端部の少なくとも一方により構成されていることが挙げられる。
 本例の場合、作業用開口部26を有する中空端部50が第一の中空端部により構成されている。作業用開口部26は、図1に示すように、絶縁層22の第一端面221と、外部半導電層23の端部23egの第一端面231とを有する。そして、絶縁層22の第一端面221が機械加工された加工面である。また、接続用開口部25G、25Tを有するそれぞれの中空端部50は第二の中空端部により構成されている。接続用開口部25G、25Tは、図1に示すように、外部半導電層23の端部23eg、23etの第二端面232と、第二端面232に達することなく外部半導電層23の内周面230に位置する絶縁層22の第二端縁222とを有する。本例の場合、第三の中空端部により構成されたものはない。
 本例では、作業用開口部26を有する第一の中空端部50の端面に、絶縁層22の第一端面221と外部半導電層23の端部23egの第一端面231とが露出して設けられている。第一端面221と第一端面231とは略面一になっている。ここでの第一端面221は、作業用開口部26の開口縁の内周側に形成された傾斜面を除く平坦面により形成されている領域である。
 詳しくは後述するが、絶縁層22の第一端面221の加工面は、金型内に絶縁性材料を充填して絶縁層22を成形した際に絶縁性材料を溢れさせた部分を機械加工により除去することで形成されたものである。絶縁層22の第一端面221は、絶縁層22の成形時における絶縁性材料が金型内に最後に充填される最終充填部に設けることとする。これにより、絶縁層22の成形時に絶縁性材料の最終充填部となる第一端面221の部分から絶縁性材料を溢れさせ、金型内のガスを抜くことによって、絶縁層22にボイドが発生し難くなる。仮に絶縁層22にボイドが発生しても、ボイドの発生場所は第一端面221近傍に偏ることになる。機械加工としては、例えば切断加工、切削加工、研削加工、研磨加工などが挙げられ、第一端面221の加工面は、例えば切断面、切削面、研削面、研磨面などである。これらの各加工面はいずれも切断痕、切削痕、研削痕又は研磨痕といった擦過痕を有する。
 絶縁層22の第一端面221の幅は、例えば0.2mm以上1.5mm以下、更に0.5mm以上1.0mm以下である。上記第一端面221の幅は、第一端面221における径方向の長さである。第一端面221の幅が0.2mm以上であれば、絶縁層22の成形時に第一端面221の部分から金型内のガスが抜け易い。第一端面221の幅が1.5mm以下であれば、第一の中空端部50、即ち作業用開口部26における外部半導電層23の径方向の厚さが相対的に薄くなり過ぎることを抑制できる。
 ここで、第一の中空端部50である作業用開口部26における絶縁層22のボイドの面積率は、例えば30%以下、更に10%以下であることが挙げられる。絶縁層22のボイドの面積率が30%以下であることで、絶縁特性の低下を十分に抑制することができる。また、絶縁層22のボイドの発生場所が第一端面221近傍に偏ることになるので、電気的ストレスがかかる部分へのボイドの発生を抑制でき、この点からも絶縁特性の低下を抑制できる。ボイドの面積率は、例えば次のようにして求めることができる。第一の中空端部50、即ち作業用開口部26における絶縁層22の内周面のうち、第一端面221から軸方向に沿った面積が100mm(例えば10mm×10mm)の範囲を内視鏡などを用いて観察する。そして、観察領域内におけるボイドの面積率を画像処理により求めることが挙げられる。
 <絶縁成形体の製造方法>
 図4、図5を参照して、図1に示す実施形態1の絶縁成形体20の製造方法を説明する。絶縁成形体20の製造方法は、以下に示す第一の工程~第五の工程を備える。
 第一の工程:内部半導電層21を成形する工程
 第二の工程:外部半導電層23の端部23eg、23etを成形する工程
 第三の工程:内部半導電層21と外部半導電層23の端部23eg、23etとを金型9内に配置する工程
 第四の工程:内部半導電層21及び外部半導電層23の端部23eg、23etの内側に中子95a~95cを挿入する工程
 第五の工程:金型内に絶縁性材料を充填して、図5に示す絶縁層22を成形する工程
 第六の工程:図5に示す絶縁層22の所定箇所を機械加工により除去する工程
 以下、各工程について詳しく説明する。
 (第一の工程)
 第一の工程は、筒状の内部半導電層21を成形する。内部半導電層21には、Tr側である一端側からGIS側である他端側に向けて軸方向に沿って挿入孔200を形成する。本例の場合、図2に示すように、内部半導電層21の内周、即ち挿入孔200のうち、導体10が配置される部分の断面寸法を導体10の断面寸法よりも大きくする。内部半導電層21の成形は、金型を用いて行うことができる。具体的には、挿入孔200を形成する中子を有する金型を用い、金型内に半導電性材料を充填することにより、内部半導電層21を半導電性材料で成形する。本例では、半導電性材料に半導電性ゴム材料を使用する。
 (第二の工程)
 第二の工程は、開口縁を有する中空の外部半導電層23の端部23eg、23etを成形する。本例の場合、GIS側の外部半導電層23の端部23egは、上述したように、T字状の中空体とし、3つの開口は内部空間で連通している。端部23egは、図5に示すように、作業用開口部26及び接続用開口部25Gが形成される箇所を筒状に成形し、内周面230を形成する。Tr側の外部半導電層23の端部23etは、筒状体とする。端部23etは、図5に示すように、接続用開口部25Tが形成される箇所を筒状に成形し、内周面230を形成する。外部半導電層23の端部23eg、23etの成形は、金型を用いて行うことができる。具体的には、内周面230を形成する中子を有する金型を用い、金型内に半導電性材料を充填することにより、外部半導電層23の端部23eg、23etを半導電性材料で成形する。本例では、半導電性材料に半導電性ゴム材料を使用する。
 また、本例の場合、GIS側の外部半導電層23の端部23egでは、金型内にフランジ55、56を配置した状態で成形することにより、端面231、232にフランジ56、55をそれぞれ一体化する。Tr側の外部半導電層23の端部23etでは、金型内にフランジ55を配置した状態で成形することにより、端面232にフランジ55を一体化する。
 上記第一の工程及び第二の工程の順序は特に限定されない。例えば、第一の工程の後に第二の工程を行ってもよいし、第二の工程の後に第一の工程を行ってもよい。また、第一の工程と第二の工程とを同時に行うことも可能である。
 (第三の工程)
 第三の工程は、図4に示すように、内部半導電層21と外部半導電層23の端部23eg、23etとを金型9内に配置する。第三の工程では、内部半導電層21の少なくとも両端の外周近傍に外部半導電層23の端部23eg、23etを間隔を開けるように行う。内部半導電層21と外部半導電層23の端部23eg、23etとの間隔で形成される空間が、図5に示す絶縁層22の充填空間となる。
 (第四の工程)
 第四の工程は、内部半導電層21及び外部半導電層23の端部23eg、23etの内側に中子95a~95cを挿入する。第四の工程では、中子95aの外周面と外部半導電層23における開口縁271を含む内周面230との間に隙間92を形成する。
 図4に示す金型9の構成を説明する。金型9は、内部半導電層21の中心軸を通る面を分割面とし、上下方向に直交する方向に開閉可能な一対の分割型91からなる。図4では、一方の分割型91のみを図示している。一対の分割型91を紙面と直交する方向に閉じて組み合わせることで、金型9内に、図5に示す絶縁層22を成形する空間であるキャビティ90が形成される。
 本例の場合、外部半導電層23の端部23eg、23etは、フランジ55、56を金型9に固定して、金型9内に配置する。GIS側の端部23egの内側には、図5に示す作業用開口部26及び接続用開口部25Gを形成する中子95a及び中子95bを挿入する。中子95aは、円錐台状で、中子95aの外周面と端部23egの開口縁271を含む内周面との間に隙間92を有するように形成されている。隙間92は、金型9の上方に向けて設けられている。中子95bは、円錐台状で、端部23egの開口縁272と密着するように形成されている。Tr側の端部23etの内側には、図5に示す接続用開口部25Tを形成する中子95cを挿入する。中子95cは、円錐台状で、端部23etの開口縁27と密着するように形成されている。また、中子95cには、内部半導電層21の内側、即ち挿入孔200に挿入される棒状部96が一体に設けられている。内部半導電層21は、中子95cの棒状部96を内部半導電層21の挿入孔200に挿入した状態で金型9内に配置する。棒状部96のGIS側の端部は、中子95cに直交する方向から両中子95a、95bの間に挟まれる。本例では、内部半導電層21及び外部半導電層23の端部23etの内側に中子95cを挿入した後、金型9内に内部半導電層21と外部半導電層23の端部23eg、23etとを配置する。その後、外部半導電層23の端部23egの内側に中子95a及び中子95bを挿入する。
 上記第三の工程及び第四の工程の順序は特に限定されない。例えば、第三の工程の後に第四の工程を行ってもよいし、第四の工程の後に第三の工程を行ってもよい。具体的には、内部半導電層21と外部半導電層23の端部23eg、23etとを金型9内に配置した後、内部半導電層21及び外部半導電層23の端部23eg、23etの内側に中子95a~95cを挿入してもよい。あるいは、内部半導電層21及び外部半導電層23の端部23eg、23etの内側に中子95a~95cを挿入した後、内部半導電層21と外部半導電層23の端部23eg、23etとを金型9内に配置してもよい。
 (第五の工程)
 第五の工程は、隙間92を上方に向けた金型9内に絶縁性材料を充填し、絶縁性材料を隙間92から溢れさせる。そして、図5に示すように、内部半導電層21と外部半導電層23の端部23eg、23etとを一体化する絶縁層22を成形する。本例では、絶縁性材料に絶縁性ゴム材料を使用する。
 金型9は、図4に示すように、金型9内のキャビティ90に連通し、キャビティ90内に絶縁性材料を注入するゲート部93と、隙間92に連通し、隙間92から溢れた絶縁性材料を受け入れるオーバーフロー部94とを有する。ゲート部93は、内部半導電層21の軸方向に沿って延びるフィルムゲートであってもよい。図4に示す金型9を用いて絶縁層22を成形する場合、ゲート部93からキャビティ90内に絶縁性材料を注入して充填する。キャビティ90内に絶縁性材料が満たされた後、金型9の上方に設けた隙間92から溢れさせた絶縁性材料をオーバーフロー部94へ流出させる。そのため、金型9の上方に設けた隙間92が絶縁性材料の最終充填部に位置することになり、絶縁性材料を隙間92から溢れさせてキャビティ90内のガスを抜くことができる。
 絶縁層22の成形後、内部半導電層21と外部半導電層23の端部23eg、23etとを絶縁層22により一体化した図5に示す成形体を金型9から取り出す。
 (第六の工程)
 絶縁層22には、ゲート部93に形成された絶縁性材料の余剰部分であるバリや、隙間92から絶縁性材料を溢れさせてオーバーフロー部94に形成された余剰部分が残る。第六の工程は、絶縁層22の上記余剰部分を機械加工により除去する。
 更に、絶縁層22の成形後、図5に示す成形体に対し、外部半導電層23の両端部23eg、23et間における絶縁層22が露出する部分に半導電性塗料を塗布して、外部半導電層23の中間部23mを形成する。本例では、半導電性塗料に導電性ゴム塗料を使用する。これにより、図1に示す絶縁成形体20が得られる。
 本例の場合、図5に示すように、作業用開口部26を形成する箇所に隙間92を設けており、隙間92に絶縁性材料が充填されることなる。そのため、絶縁層22の成形後、図5に示すように、絶縁層22の第一端面221が外部半導電層23の開口縁271から露出することになる。また、絶縁層22の第一端面221には、上述した機械加工によりオーバーフロー部により形成された余剰部分を除去することで、加工面が形成されることになる。よって、作業用開口部26を有する中空端部50は、絶縁層22の第一端面221と、外部半導電層23の端部23egの第一端面231とを有し、第一端面221が加工面である第一の中空端部により構成されている。
 図5に示す接続用開口部25Gを形成する箇所では、中子95bと外部半導電層23の開口縁272とが密着している。また、図5に示す接続用開口部25Tも同じように、中子95cと外部半導電層23の開口縁27とが密着している。そのため、絶縁層22の成形後、接続用開口部25G、25Tでは、図5に示すように、外部半導電層23の端部23eg、23etの内周面230に位置するように絶縁層22の第二端縁222が形成されることになる。よって、接続用開口部25G、25Tを有する中空端部50は、外部半導電層23の端部23eg、23etの第二端面232と、第二端面232に達することなく端部23eg、23etの内周面230に位置する絶縁層22の第二端縁222とを有する第二の中空端部により構成されている。
 <固体絶縁母線の製造方法>
 図1に示す実施形態1の固体絶縁母線1の製造方法を説明する。固体絶縁母線1の製造方法は、上述した絶縁成形体20の製造方法により絶縁成形体20を製造する工程と、絶縁成形体20の一端側から内部半導電層21内に導体10を挿入する工程と、を備える。
 本例では、導体10の端部に端子11G、11Tを取り付けて端子11G、11T付き導体10を作製しておく。そして、絶縁成形体20のTr側である一端側から内部半導電層21内に端子11G、11T付き導体10を挿入することで、固体絶縁母線1を製造する。
 本例の場合、内部半導電層21の内周、即ち挿入孔200の断面寸法が導体10の断面寸法よりも大きいことから、図2に示すように、内部半導電層21内に隙間12を有した状態で導体10を挿入することができる。そのため、導体10の外周面に内部半導電層21が密着することがなく、隙間12によって、固体絶縁母線1を曲げる際に絶縁成形体20に対する導体10の長手方向への動きが許容される。また、内部半導電層21における端子11Tの基部11bが挿入される部分の断面寸法が基部11bの断面寸法よりも若干小さくなっている。そのため、端子11Tの基部11bを内部半導電層21内に押し込んで、絶縁成形体20を弾性変形させることによって、端子11Tを絶縁成形体20内に圧着状態で固定する。これにより、端子11G、11T付き導体10と絶縁成形体20とを一体化できる。
 以下、図3を参照して、固体絶縁母線1を用いた接続構造100について説明する。
 図3に示す接続構造100は、相手機器101となるGISとトランスとの接続に固体絶縁母線1を使用している。固体絶縁母線1は、導体引出棒3G、3Tを介して相手機器101に接続されている。接続構造100では、相手機器101の接続箇所102の高さ位置が異なり、固体絶縁母線1を曲げて配置している。上記接続箇所102は、リード線などが挙げられる。
 (導体引出棒)
 導体引出棒3G、3Tは、基端側が固体絶縁母線1の端子11G、11Tにそれぞれ接続され、先端側が相手機器101であるGIS又はトランスの各接続箇所102に接続される。これにより、固体絶縁母線1の端子11G、11Tが導体引出棒3G、3Tを介して相手機器101の接続箇所102に電気的に接続され、GISとトランスとが固体絶縁母線1を介して電気的に接続される。導体引出棒3G、3Tは、例えば銅で形成されている。
 本例では、Tr側の端子11Tと導体引出棒3Tとの接続は、端子11Tの先端部11aを導体引出棒3Tの基端側の端面に形成された挿入穴30に嵌め込むことで行っている。一方、GIS側の端子11Gと導体引出棒3Gとの接続は、端子11Gの面と導体引出棒3Gの基端側の端面とを接触させた状態で、作業用開口部26側から端子11Gに形成された貫通孔112にボルト113を挿通して、導体引出棒3Gをボルト113で固定することで行っている。作業用開口部26は、このボルト113の締結作業を行うために設けられている。
 (ブッシング)
 ブッシング4G、4Tは、導体引出棒3G、3Tの外周を覆う筒状の部材である。ブッシング4G、4Tには、その長手方向に貫通するように導体引出棒3G、3Tが挿通されている。ブッシング4G、4Tは、例えばエポキシ樹脂で形成されている。本例では、導体引出棒3G、3Tの外周にブッシング4G、4Tを構成するエポキシ樹脂などの樹脂材料をモールドして、導体引出棒3G、3Tに対してブッシング4G、4Tが一体成形されている。
 ブッシング4G、4Tの基端側にはそれぞれ、固体絶縁母線1の接続用開口部25G、25Tに嵌め込まれる挿入領域が設けられている。ブッシング4G、4Tの挿入領域の外周面は、各接続用開口部25G、25Tの内周面に対応した形状であり、基端に向かって先細りする円錐台形状に形成されている。ブッシング4G、4Tの挿入領域の外径は、ブッシング4G、4Tが挿入される前の状態における各接続用開口部25G、25Tの内径よりも若干大きい。そのため、ブッシング4G、4Tの基端側を接続用開口部25G、25Tにそれぞれ挿入したとき、ブッシング4G、4Tの挿入領域が接続用開口部25G、25T内に圧着状態で固定される。
 ブッシング4G、4Tには、外周面から径方向外方に突出するフランジ部45がそれぞれ設けられている。フランジ部45は、ブッシング4G、4Tの挿入領域よりも先端側に位置し、ブッシング4G、4Tの外周面に円環状に形成されている。フランジ部45の外周面は、固体絶縁母線1の端面、具体的には接続用開口部25G、25Tの端面よりも径方向外方に突出し、かつ、フランジ55の外周面よりも径方向外方に突出している。フランジ部45の基端側の端面には、フランジ55が取り付けられると共に、先端側の端面には、後述する取付フランジ8が取り付けられる。本例では、フランジ部45に対してフランジ55及び取付フランジ8をボルトで固定する。また、フランジ部45に対向するフランジ55及び取付フランジ8の各端面には、シール溝が形成されており、各シール溝にシール部材が嵌め込まれている。これにより、フランジ部45とフランジ55及び取付フランジ8との間から内部に水が浸入することを防止できる。シール部材は、例えばゴム製のOリングである。
 本例では、GIS側のブッシング4GとTr側のブッシング4Tとで形状が異なっている。Tr側のブッシング4Tは、フランジ部45を挟んで挿入領域とは反対側の領域が、GIS側のブッシング4Gに比べて長く、その外周に複数の鍔部が長手方向に並んで形成されている。この鍔部により、沿面距離を確保している。
 (取付フランジ)
 取付フランジ8は、ブッシング4G、4Tの各フランジ部45と相手機器101の各筐体104との間に介在される円環状の部材であり、例えば黄銅で形成されている。取付フランジ8の外周面は、フランジ部45の外周面よりも径方向外方に突出している。また、筐体104に対向する取付フランジ8の端面には、シール溝が形成されており、シール溝にシール部材が嵌め込まれている。これにより、筐体104と取付フランジ8との間から内部に水が浸入することを防止できる。シール部材は、例えばゴム製のOリングである。
 (その他)
 固体絶縁母線1のGIS側端部1Gに形成された作業用開口部26には、絶縁栓7が嵌め込まれる。絶縁栓7は、作業用開口部26の内周面に対応した形状であり、作業用開口部26の底側に向かって先細りする円錐台形状に形成されている。絶縁栓7の外径は、絶縁栓7が挿入される前の状態における作業用開口部26の内径よりも若干大きい。そのため、絶縁栓7を作業用開口部26に挿入したとき、絶縁栓7が作業用開口部26内に圧着状態で固定される。
 作業用開口部26に設けられたフランジ56には、蓋6が取り付けられ、蓋6によって作業用開口部26内が密封される。蓋6は、円板状の部材であり、例えば黄銅で形成されている。本例では、フランジ56に対して蓋6をボルトで固定する。また、蓋6に対向するフランジ56の端面には、シール溝が形成されており、シール溝にシール部材が嵌め込まれている。これにより、蓋6とフランジ56との間から内部に水が浸入することを防止できる。シール部材は、例えばゴム製のOリングである。
 絶縁栓7には、端子11Gと導体引出棒3Gとを接続するボルト113の近傍、及び蓋6の近傍に、埋込電極71、72がそれぞれ埋設されている。
 《効果》
 上述した実施形態1に係る絶縁成形体20、固体絶縁母線1、絶縁成形体20の製造方法、及び固体絶縁母線1の製造方法は、それぞれ次の効果を奏する。
 上述した実施形態の絶縁成形体20は、作業用開口部26が第一の中空端部により構成されていることで、絶縁層22の第一端面221を、絶縁層22の成形時における絶縁性材料の最終充填部に設けることができる。これにより、絶縁層22の成形時に第一端面221となる部分から絶縁性材料を溢れさせ、金型内のガスを抜くことによって、絶縁層22にボイドが発生することを抑制できる。
 上述した実施形態の固体絶縁母線1は、上述した実施形態の絶縁成形体20を備えることで、絶縁成形体20における絶縁層22にボイドが少なく、絶縁層22の絶縁特性に優れる。また、絶縁成形体20の内部半導電層21内に導体10が隙間12を有して挿入されることで、導体10の外周面に絶縁成形体20が密着していない。そのため、固体絶縁母線1を曲げる際に絶縁成形体20に対する導体10の長手方向への動きが許容されることから、固体絶縁母線1が曲げ易い。
 上述した実施形態の絶縁成形体20の製造方法は、外部半導電層23の端部23egの内側に挿入した中子95aと外部半導電層23の開口縁271との間に隙間92を形成し、その隙間92を上方に向けた金型9内に絶縁性材料を充填して、絶縁層22を成形する。絶縁層22を成形する上述の第五の工程において、金型9の上方に設けた隙間92が最終充填部に位置することになる。そのため、絶縁性材料を隙間92から溢れさせて金型9内のガスを抜くことによって、成形した絶縁層22にボイドが発生することを抑制できる。
 上述した実施形態の固体絶縁母線1の製造方法は、上述した実施形態の絶縁成形体20の製造方法により製造された絶縁成形体20を用いることから、絶縁層22のボイドが少なく、絶縁層22の絶縁特性に優れる固体絶縁母線1を製造することができる。
 [実施形態2]
 実施形態1では、作業用開口部26を有する中空端部50が第一の中空端部により構成され、それ以外の接続用開口部25G、25Tを有するそれぞれの中空端部50がいずれも第二の中空端部により構成されている形態を説明した。実施形態2では、図6、図7を参照して、実施形態1におけるTr側の接続用開口部25Tを有する中空端部50を第三の中空端部の構成に変更した例を説明する。図6に示す実施形態2の絶縁成形体20は、接続用開口部25Tの構成を第三の中空端部に変更した以外は図1に示す実施形態1の絶縁成形体20と同様の構成になっており、同様の構成要素については、同一符号を付してその説明を省略する。
 本例の場合、接続用開口部25Tを有する中空端部50が第三の中空端部により構成されている。接続用開口部25Tは、図6に示すように、絶縁層22の第三端面223と、外部半導電層23における端部23etの第三端面233とを有し、絶縁層22の第三端面223が金型により成形された成形面である。本例では、接続用開口部25Tを有する第三の中空端部50の端面に、絶縁層22の第三端面223と端部23etの第三端面233とが露出して設けられている。第三端面223と第三端面233とは略面一になっている。
 接続用開口部25Tを有する第三の中空端部とする場合、図7に示すように、Tr側の外部半導電層23の端部23etの内側に挿入する中子95cの外周面と端部23etの開口縁27を含む内周面230との間に隙間92を形成する。この隙間92の開放端となる軸方向端部は、金型9を構成する分割型91及び中子95cにより閉塞されている。本例の場合、図6に示す接続用開口部25Tを形成する箇所に、図7に示す隙間92が設けられており、隙間92に絶縁性材料が充填されることなる。そのため、絶縁層22の成形後、図6に示すように、絶縁層22の第三端面223が外部半導電層23の開口縁27から露出することになる。また、隙間92の開放端は、金型9を構成する分割型91の内面及び中子95c外周面により塞がれている。よって、外部半導電層23の開口縁27から露出する絶縁層22の第三端面223は、金型9により形成された成形面になる。つまり、絶縁層22の第三端面223には機械加工された擦過痕がない。
 実施形態2では、実施形態1における接続用開口部25Tを有する中空端部50を第三の中空端部により構成する場合を示したが、図6に示す接続用開口部25Gを有する中空端部50を第三の中空端部により構成するようにしてもよい。この場合、接続用開口部25G及び接続用開口部25Tを有するそれぞれの中空端部50を第三の中空端部により構成してもよいし、一方のみを第三の中空端部により構成してもよい。
 〈変形例〉
 本発明は、上述した実施形態に限定されるものではない。図1、図3に示す固体絶縁母線1及び接続構造100において、GIS側及びTr側の端子11G、11Tや導体引出棒3G、3Tなどの形状を変更することが可能である。例えば、固体絶縁母線1のGIS側の端部とTr側の端部とを入れ替えて、端子11Gをトランスに接続する方とし、端子11TをGISに接続する方とすることも可能である。つまり、GIS側を端子11Tと導体引出棒3Tとの組み合わせとし、トランス側を端子11Gと導体引出棒3Gとの組み合わせとする。この場合、固体絶縁母線1の端子11Tが導体引出棒3Tを介してGISの接続箇所102に接続されると共に、端子11Gが導体引出棒3Gを介してトランスの接続箇所102に接続されるように、接続構造100を構成する。
 1 固体絶縁母線
 10 導体
 11G、11T 端子
  11b 基部  11a 先端部
  112 貫通孔  113 ボルト
 20 絶縁成形体
 20G、20T 端部  20M 中間部
  200 挿入孔
 21 内部半導電層  211 孔
 22 絶縁層
  221 第一端面  222 第二端縁  223 第三端面
 23 外部半導電層
  230 内周面
  231 第一端面  232 第二端面  233 第三端面
 23eg、23et 端部  23m 中間部
 25G、25T 接続用開口部  26 作業用開口部
 27、271、272、273 開口縁
 12 隙間
 50 中空端部
 3G、3T 導体引出棒
  30 挿入穴
 4G、4T ブッシング
  45 フランジ部
 55、56 フランジ
 6 蓋  7 絶縁栓
  71、72 埋込電極
 8 取付フランジ
 9 金型
 90 キャビティ
 91 分割型  92 隙間
 93 ゲート部  94 オーバーフロー部
 95a、95b、95c 中子  96 棒状部
 100 固体絶縁母線の接続構造
  101 相手機器  102 接続箇所
  104 筐体
 T10 厚さ  W10 幅

Claims (9)

  1.  中空状に成形された絶縁成形体であって、
     筒状の内部半導電層と、
     前記内部半導電層の外周に設けられた絶縁層と、
     前記絶縁層の少なくとも端部の外周に設けられた外部半導電層と、
     前記絶縁層の第一端面と、前記外部半導電層の第一端面とを有する第一の中空端部と、を有し、
     前記絶縁層の第一端面は、機械加工された加工面である、
     絶縁成形体。
  2.  前記第一の中空端部以外の第二の中空端部を有し、
     前記第二の中空端部は、前記外部半導電層の第二端面と、前記第二端面に達することなく前記外部半導電層の内周面に位置する前記絶縁層の第二端縁とを有する請求項1に記載の絶縁成形体。
  3.  前記第一の中空端部以外の第三の中空端部を有し、
     前記第三の中空端部は、前記絶縁層の第三端面と、前記外部半導電層の第三端面とを有し、
     前記絶縁層の第三端面は、金型により成形された成形面である請求項1又は請求項2に記載の絶縁成形体。
  4.  前記第一の中空端部以外の全ての中空端部は、第二の中空端部及び第三の中空端部の少なくとも一方で構成され、
     前記第二の中空端部は、前記外部半導電層の第二端面と、前記第二端面に達することなく前記外部半導電層の内周面に位置する前記絶縁層の第二端縁とを有し、
     前記第三の中空端部は、前記絶縁層の第三端面と、前記外部半導電層の第三端面とを有し、
     前記絶縁層の第三端面は、金型により成形された成形面である請求項1に記載の絶縁成形体。
  5.  前記内部半導電層、前記絶縁層及び前記外部半導電層がゴム材料で形成されている請求項1から請求項4のいずれか1項に記載の絶縁成形体。
  6.  請求項1から請求項5のいずれか1項に記載の絶縁成形体と、
     前記絶縁成形体の前記内部半導電層内に隙間を有して挿入される導体と、を備える、
     固体絶縁母線。
  7.  前記導体が編組線で形成されている請求項6に記載の固体絶縁母線。
  8.  筒状の内部半導電層を成形する第一の工程と、
     開口縁を有する中空の外部半導電層の端部を成形する第二の工程と、
     前記内部半導電層と前記外部半導電層の端部とを金型内に配置する第三の工程と、
     前記内部半導電層及び前記外部半導電層の端部の内側に中子を挿入する第四の工程と、
     前記金型内に絶縁性材料を充填して、前記内部半導電層と前記外部半導電層の端部とを一体化する絶縁層を成形する第五の工程と、を備え、
     前記第三の工程は、前記内部半導電層の少なくとも両端の外周近傍に前記外部半導電層の端部を間隔を開けるように行い、
     前記第四の工程は、前記中子の外周面と前記外部半導電層における前記開口縁を含む内周面との間に隙間を形成し、
     前記第五の工程は、前記隙間を上方に向けて前記絶縁性材料の充填を行い、前記絶縁性材料を前記隙間から溢れさせる、
     絶縁成形体の製造方法。
  9.  請求項8に記載の絶縁成形体の製造方法により絶縁成形体を製造する工程と、
     前記絶縁成形体の一端側から前記内部半導電層内に導体を挿入する工程と、を備える、
     固体絶縁母線の製造方法。
PCT/JP2019/030186 2018-08-24 2019-08-01 絶縁成形体、固体絶縁母線、絶縁成形体の製造方法、及び固体絶縁母線の製造方法 WO2020039879A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020538270A JP7242005B2 (ja) 2018-08-24 2019-08-01 絶縁成形体、固体絶縁母線、絶縁成形体の製造方法、及び固体絶縁母線の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-157547 2018-08-24
JP2018157547 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020039879A1 true WO2020039879A1 (ja) 2020-02-27

Family

ID=69593006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030186 WO2020039879A1 (ja) 2018-08-24 2019-08-01 絶縁成形体、固体絶縁母線、絶縁成形体の製造方法、及び固体絶縁母線の製造方法

Country Status (2)

Country Link
JP (1) JP7242005B2 (ja)
WO (1) WO2020039879A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032912A (ja) * 1996-07-17 1998-02-03 Hitachi Cable Ltd Cvケーブルの接続方法
JP2004357452A (ja) * 2003-05-30 2004-12-16 Exsym Corp 電力ケーブル用補強絶縁ブロックの製造方法
JP2005174689A (ja) * 2003-12-10 2005-06-30 Auto Network Gijutsu Kenkyusho:Kk 編組電線及びその配索方法
JP2012050203A (ja) * 2010-08-25 2012-03-08 Swcc Showa Cable Systems Co Ltd 電力ケーブル接続部

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4304616A (en) 1979-04-02 1981-12-08 Raychem Corporation Radially shrinkable sleeves

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032912A (ja) * 1996-07-17 1998-02-03 Hitachi Cable Ltd Cvケーブルの接続方法
JP2004357452A (ja) * 2003-05-30 2004-12-16 Exsym Corp 電力ケーブル用補強絶縁ブロックの製造方法
JP2005174689A (ja) * 2003-12-10 2005-06-30 Auto Network Gijutsu Kenkyusho:Kk 編組電線及びその配索方法
JP2012050203A (ja) * 2010-08-25 2012-03-08 Swcc Showa Cable Systems Co Ltd 電力ケーブル接続部

Also Published As

Publication number Publication date
JP7242005B2 (ja) 2023-03-20
JPWO2020039879A1 (ja) 2021-09-24

Similar Documents

Publication Publication Date Title
US9960530B2 (en) Terminal connection device for a power cable
US5130495A (en) Cable terminator
CN102017828B (zh) 具有包覆模制的法拉第笼的双接口可分离绝缘连接器
KR20140021030A (ko) 케이블 종단 장치, 케이블 종단 장치의 사전 제조 방법, 및 케이블 종단부를 획득하는 방법
JP2009022115A (ja) 固体絶縁スイッチギヤおよびその試験方法
JPWO2020136737A1 (ja) 母線接続装置
WO2020039879A1 (ja) 絶縁成形体、固体絶縁母線、絶縁成形体の製造方法、及び固体絶縁母線の製造方法
JP4615258B2 (ja) 電力ケーブルの終端接続部及び組み立て方法
JP4690378B2 (ja) コネクタ
JP2019204781A (ja) 固体絶縁母線、及び固体絶縁母線の製造方法
US6297570B1 (en) Electric linear motor, in particular the design of the primary part and a method of manufacturing the primary part
JPWO2004051816A1 (ja) スイッチギヤの母線接続構造
JP2000278826A (ja) 絶縁母線接続構造
JP3992184B2 (ja) ケーブル終端接続部
JP5337770B2 (ja) 電力ケーブル接続部
JP6628245B2 (ja) アルミニウム導体ケーブルの端末接続部
JP5238016B2 (ja) 接続母線
JP5191474B2 (ja) ブッシング及びブッシングの接続部
JP2019193416A (ja) ケーブル接続部
JP6570578B2 (ja) ブッシング
KR20190108618A (ko) 가혹한 환경들을 위한 고전력 부싱
JPH08179001A (ja) 電力ケーブル線路の耐電圧試験方式
JP5297446B2 (ja) ゴム母線
JP6880536B2 (ja) 電力ケーブルの端末構造
JP2000324643A (ja) 電力ケーブルの接続部

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538270

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851649

Country of ref document: EP

Kind code of ref document: A1