WO2020037873A1 - 一种近红外荧光粉以及含该荧光粉的发光装置 - Google Patents

一种近红外荧光粉以及含该荧光粉的发光装置 Download PDF

Info

Publication number
WO2020037873A1
WO2020037873A1 PCT/CN2018/118645 CN2018118645W WO2020037873A1 WO 2020037873 A1 WO2020037873 A1 WO 2020037873A1 CN 2018118645 W CN2018118645 W CN 2018118645W WO 2020037873 A1 WO2020037873 A1 WO 2020037873A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
light
fluorescent powder
infrared phosphor
phosphor according
Prior art date
Application number
PCT/CN2018/118645
Other languages
English (en)
French (fr)
Inventor
刘荣辉
刘元红
陈晓霞
马小乐
高慰
陈明月
Original Assignee
有研稀土新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有研稀土新材料股份有限公司 filed Critical 有研稀土新材料股份有限公司
Priority to KR1020197029177A priority Critical patent/KR102391310B1/ko
Publication of WO2020037873A1 publication Critical patent/WO2020037873A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7706Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7712Borates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/778Borates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7797Borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the invention belongs to the technical field of luminescent materials, in particular to a near-infrared phosphor, and further discloses a preparation method thereof, and a light-emitting device containing the phosphor.
  • near-infrared LEDs In recent years, with the rapid development of near-infrared spectroscopy in the fields of facial recognition, iris recognition, security monitoring, lidar, health detection, 3D sensing, etc., near-infrared LEDs also have good directivity and low power consumption. And a series of advantages such as small size have become the focus of international research.
  • the main implementation method of near-infrared LED is to adopt the method of near-infrared semiconductor chip.
  • the core technology of near-infrared chip technology is monopolized by foreign countries, and it has problems such as high cost and immature technology. Therefore, a near-infrared LED with a blue light chip composite near-infrared luminescent material is introduced.
  • the implementation of the composite package has the advantages of simple preparation process, low cost, and high luminous efficiency, and has attracted widespread attention internationally. Therefore, it is urgent to develop new near-infrared light emitting materials with different wavelength bands for infrared LEDs to realize their diverse application needs.
  • the near-infrared phosphor with a peak wavelength of 780-1700nm which can be used for food detection, it has the most extensive practical application value in many fields such as facial recognition, iris recognition, security monitoring, lidar, health detection, and 3D sensing. Requirements for different applications. Because the perovskite-type composite oxide has a stable crystal structure, it can be partially replaced by other ions with a similar radius while maintaining its crystal structure substantially unchanged. Therefore, a perovskite system doped with rare earth ions and transition metal ions was used as the research object.
  • a solid solution was constructed through ion substitution to prepare a broad-spectrum or multispectral near-infrared phosphor with a main peak in the range of 780-1700 nm. Adjustable and controllable; By improving the reaction conditions, good shape and controllable grains are obtained, so as to reach the application standard, and has a wider application prospect.
  • Chinese patent CN107573937A discloses a type of structure such as MBO 3 : Cr 3+ borate phosphor, where M is Sc, Al, Lu, Gd or Y element, and the phosphor can be effectively excited by blue light (420-520nm). Capable of emitting near-infrared light in the 700-920nm range.
  • M is Al, Lu, Gd or Y
  • the emission spectrum is similar to that of M when Sc.
  • this patent is mainly devoted to the research on the preparation method of MBO 3 : Cr 3+ and the influence of reaction temperature and reaction time, but its spectral performance is not discussed.
  • a near-infrared phosphor is disclosed. ScBO 3 : Cr 3+ , the phosphor exhibits near-infrared broadband emission with a main peak at 800 nm under the excitation of a blue light chip, and the quantum efficiency is 65%.
  • the near-infrared phosphor and the blue light chip are used for packaging. The output power of the near-infrared light is 26mW, and the energy conversion efficiency is lower by only 7%.
  • the known near-infrared powder MBO 3 : Cr 3+ developed in the prior art mostly has an emission peak at about 800 nm, which not only has a narrow emission wavelength range and low luminous intensity, but also has no controllable emission wavelength and limits The application scope and application effect of the phosphor are described.
  • the technical problem to be solved by the present invention is to provide a near-infrared phosphor, which has the advantages of broad-spectrum or multi-spectrum emission, adjustable spectrum, and high luminous efficiency, and can meet facial recognition and iris recognition. , Material monitoring, security monitoring, lidar, health detection, 3D sensing and other fields.
  • the second technical problem to be solved by the present invention is to provide a light-emitting device that can realize efficient near-infrared light emission under blue or red light excitation, so as to solve the problems of poor stability and low light-emitting efficiency of existing near-infrared light-emitting materials and light-emitting devices. .
  • a near-infrared phosphor according to the present invention includes an inorganic compound with a chemical formula of A x R p O r : D y , wherein:
  • the A element is selected from one or two of Sc, Y, La, Lu or Gd elements;
  • the R element includes a Ga element, and one of Al, B, or In elements can be selectively added;
  • the D element includes a Cr element, and one of Ce, Eu, Tb, Bi, Dy, Yb, Pr, Nd, or Er can be selectively added;
  • the A element and the R element are not Ga elements at the same time.
  • the molar content ratio of the Ga element to the R element is 30% or more.
  • the A element is a Sc element.
  • the D element is a Cr element.
  • the invention also discloses a method for preparing the near-infrared phosphor, including the following steps:
  • the obtained mixture is sintered in the air or a protective atmosphere at 1200-1500 ° C for 2-10 hours to obtain a roasted product; the obtained roasted product is subjected to post-treatment such as crushing, grinding, classification and sieve washing to obtain the required near infrared Phosphor.
  • the compounds corresponding to the A, R, and D elements include oxides, carbonates, and / or nitrates.
  • the invention also discloses a light-emitting device, which includes a light source and a light-emitting material, and the light-emitting material includes the near-infrared phosphor.
  • the light source is a semiconductor chip with an emission peak wavelength range of 350-500 nm.
  • the near-infrared phosphor according to the present invention includes an inorganic compound having a composition formula of A x R p O r .
  • the compound uses a perovskite A x R p O r structure as a matrix, and is doped with a selected rare earth ion or transition metal. Ion, the excited peak of the prepared phosphor is located at 350-750nm, and it exhibits broadband or multispectral emission under the excitation of ultraviolet, blue or red light, and the main emission peak is at 780-1600nm.
  • the solid solution is constructed by ion substitution and other methods.
  • near-infrared phosphor materials with different emission wavelengths can be prepared, which not only significantly improves the luminous intensity of the phosphor, but also achieves the spectrum controllability and further expand Its scope of application.
  • the near-infrared phosphor of the present invention can also be co-doped with ions to promote the efficient emission of doped ions in the manner of energy transfer, which further improves the luminous intensity of the near-infrared phosphor and can achieve better application effects.
  • the near-infrared light-emitting material obtained by the present invention can be used to prepare a light-emitting device.
  • the light-emitting device can emit broadband near-infrared light under the excitation of a blue light chip and an ultraviolet chip, and can realize the adjustable and controllable effect of the spectrum by compounding multiple phosphors. .
  • the light-emitting device of the invention can meet the requirements of various fields such as light-effect communication, facial iris recognition, security monitoring, anti-counterfeiting, lidar, food detection, digital medical treatment, 3D sensing, and the like; and it can avoid light emission using a near-infrared chip directly.
  • the disadvantages of high device cost and poor stability have become a new way to generate near-infrared light.
  • FIG. 1 is an excitation and emission spectrum diagram of a phosphor sample prepared in Comparative Example 1 of the present invention, the detection wavelength on the left curve is 810 nm, and the excitation wavelength on the right curve is 460 nm;
  • FIG. 2 is an excitation and emission spectrum diagram of the phosphor sample prepared in Example 1 of the present invention.
  • the detection wavelength on the left curve is 835 nm, and the excitation wavelength on the right curve is 460 nm.
  • the near-infrared phosphor according to this embodiment includes a compound with a composition formula of Sc 0.98 BO 3 : Cr 0.02 .
  • the obtained near-infrared luminescent material sample is subjected to an excitation test, and the excitation and emission spectrum diagrams of the obtained sample are shown in FIG. 1. It can be seen that the emission peak of the phosphor is located at 810 nm and the relative luminous intensity is 100.
  • the near-infrared phosphor according to this embodiment includes a compound with a composition formula of Sc 0.98 GaO 3 : Cr 0.02 .
  • the obtained near-infrared luminescent material sample is subjected to an excitation test, and the excitation and emission spectrum diagrams of the obtained sample are shown in FIG. 2. It can be seen that the emission peak of the phosphor is located at 835 nm and the relative luminous intensity is 130.
  • the near-infrared phosphor according to this embodiment includes a compound with a composition formula of Sc 0.98 Ga 0.3 B 0.7 O 3 : Cr 0.02 .
  • Sc 2 O 3 , Ga 2 O 3 and Cr 2 O 3 were accurately weighed and mixed according to the stoichiometric ratio of chemical formula Sc 0.98 Ga 0.3 B 0.7 O 3 : Cr 0.02 ; the obtained mixture was calcined in a reducing atmosphere at 1400 ° C. for 8 h
  • the roasted product is obtained after the temperature is lowered; the obtained roasted product is subjected to post-processing such as crushing, grinding, classification, sieving and washing to obtain a near-infrared phosphor powder sample. It was determined that the emission peak of the phosphor was at 826 nm and the relative luminous intensity was 150.
  • the compound composition formula of the near-infrared phosphor and the light-emitting device containing the phosphor described in Examples 3-26 are shown in Table 1 below.
  • the preparation method of the materials in each example is the same as that in Example 1, only The chemical formula composition of the target compound in each embodiment is selected, and a proper amount of the compound is selected for mixing, grinding, and firing to obtain a desired near-infrared luminescent substance.

Abstract

本发明属于发光材料技术领域,尤其涉及一种近红外荧光粉,并进一步公开其制备方法,以及含该荧光粉的发光装置。本发明所述近红外荧光粉包括组成式为A xR pO r的无机化合物,该化合物以A xR pO r结构为基质,通过掺杂特定的稀土离子或过渡金属离子,制备的荧光粉的激发峰位于350-750nm,在紫外光、蓝光或红光激发下呈现宽带发射,发射主峰位于700-1600nm。通过离子取代等方式构筑固溶体,由于晶体场劈裂的影响,可制得不同发射波长的近红外荧光粉材料,不仅显著提升了荧光粉的发光强度,且实现了光谱的可调控性,进一步扩大其应用范围。

Description

一种近红外荧光粉以及含该荧光粉的发光装置
本申请基于申请号为201810969498.0、申请日为2018年8月23日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明属于发光材料技术领域,尤其涉及一种近红外荧光粉,并进一步公开其制备方法,以及含该荧光粉的发光装置。
背景技术
近年来,随着近红外光谱技术在面部识别、虹膜识别、安防监控、激光雷达、健康检测、3D传感等领域的应用得到快速发展,近红外LED也因其具有指向性好、功耗低以及体积小等一系列优点已成为国际研究焦点。
目前,近红外LED的主要实现方式是采用近红外半导体芯片的方法,近红外芯片技术核心技术受国外垄断,且具有成本高、技术不成熟等问题。因此,推出蓝光芯片复合近红外发光材料的近红外LED,该复合封装的实现方式具有制备工艺简单、成本低、发光效率高等优点,在国际上受到广泛关注。因此,开发红外LED用不同波段的新型近红外发光材料,实现其多样化的应用需求迫在眉睫。
鉴于峰值波长位于780-1700nm的近红外荧光粉可用于食品检测,面部识别、虹膜识别、安防监控、激光雷达、健康检测和3D传感等多领域中,具有最为广泛的实际应用价值,可以满足不同应用的需求。由于钙钛矿型复合氧化物具有稳定的晶体结构,能够被半径相近的其他离子部分取代而保持其晶体结构基本不变。因此,以稀土离子与过渡金属离子掺杂的钙钛矿体系为研究对象,通过离子取代,构筑固溶体,制备发射主峰于780-1700 nm范围的宽谱或者多谱近红外荧光粉,且以实现可调可控;通过改善反应条件,获得形貌良好且可控的晶粒,从而达到应用标准,具有较广泛的应用前景。
如中国专利CN107573937A公开了一类结构如MBO 3:Cr 3+硼酸盐荧光粉,其中M为Sc、Al、Lu、Gd或Y元素,该荧光粉可被蓝光(420-520nm)有效激发,能够发射700-920nm范围的近红外光。当M为Al、Lu、Gd或Y时,发射光谱均与M为Sc的发射光谱类似。此外,该专利主要致力于研究MBO 3:Cr 3+的制备方法,探讨反应温度与反应时间的影响,但对其光谱性能却并未探讨。
又如非专利文献《Photoluminescence Properties of a ScBO 3:Cr 3+Phosphor and Its Applications for Broadband Near-infrared LEDs》[J].RSC Adv,2018,8,12035-12042.公开了一种近红外荧光粉ScBO 3:Cr 3+,该荧光粉在蓝光芯片的激发下,呈现主峰位于800nm的近红外宽带发射,量子效率为65%。并采用该近红外荧光粉与蓝光芯片进行封装,近红外光的输出功率为26mW,其能量转换效率较低仅为7%。
可见,现有技术中开发的已知近红外粉MBO 3:Cr 3+,其发射主峰多位于800nm左右,不仅发射波长范围窄且发光强度较低,而且发射波长不具有可调控性,也限制了该荧光粉的应用范围和应用效果。
发明内容
为此,本发明所要解决的技术问题在于提供一种近红外荧光粉,该近红外荧光粉具有宽谱或者多谱发射,且光谱可调控,发光效率高的优势,能够满足面部识别、虹膜识别、安防监控、激光雷达、健康检测、3D传感等领域的材料性能要求。
本发明所要解决的第二个技术问题在于提供一种蓝光或红光激发下可以实现高效近红外光发射的发光装置,以解决现有近红外发光材料和发光装置稳定性差、发光效率低的问题。
为解决上述技术问题,本发明所述的一种近红外荧光粉,该荧光粉包含化学式为A xR pO r:D y的无机化合物,其中,
所述A元素选自Sc、Y、La、Lu或Gd元素中的一种或两种;
所述R元素包括Ga元素,并可选择性的添加Al、B或In元素中的一种;
所述D元素包括Cr元素,并可选择性的添加Ce、Eu、Tb、Bi、Dy、Yb、Pr、Nd或Er元素中的一种;
且所述参数x、p、r和y满足如下条件:0.8≤x≤1.2,0.8≤p≤1.2,2≤r≤4,0.0001≤y≤0.25。
优选的,所述A元素和R元素不同时为Ga元素。
优选的,所述参数x、p、r和y满足如下条件:(x+y):p:r=1:1:3。
更优的,所述R元素中,Ga元素占所述R元素的摩尔含量比例大于等于30%。
更优的,所述A元素为Sc元素。
更优的,所述D元素为Cr元素。
本发明还公开了一种制备所述近红外荧光粉的方法,包括如下步骤:
(1)以选定的A、R和D元素所对应的化合物为原料,按选定的化学计量比混匀;所得混合物;
(2)将所得混合物在1200-1500℃,于空气或保护气氛中进行烧结2-10h,获得焙烧产物;所得焙烧产物经过破碎、研磨、分级和筛洗的后处理,即得所需近红外荧光粉。
进一步的,所述A、R和D元素所对应的化合物包括氧化物、碳酸盐和/或硝酸盐。
本发明还公开了一种发光装置,包含光源和发光材料,所述发光材料包括所述的近红外荧光粉。
所述光源为发射峰值波长范围为350-500nm的半导体芯片。
本发明所述近红外荧光粉包括组成式为A xR pO r的无机化合物,该化合物以钙钛矿型A xR pO r结构为基质,通过掺杂选定的稀土离子或过渡金属离子,制备的荧光粉的激发峰位于350-750nm,在紫外光、蓝光或红光激发下呈现宽带或者多谱发射,发射主峰位于780-1600nm。通过离子取代等方式构筑固溶体,由于晶体场劈裂的影响,可制得不同发射波长的近红外荧光粉材料,不仅显著提升了荧光粉的发光强度,且实现了光谱的可调控性,进一步扩大其应用范围。本发明所述近红外荧光粉也可通过离子共掺杂,以能量传递的方式,促使掺杂离子的高效发射,进一步提升了该近红外荧光粉的发光强度,可达到更好的应用效果。
本发明所得的近红外发光材料可用于制备发光装置,所述发光装置能够在蓝光芯片、紫外芯片激发下发射宽带近红外光,且可以通过复合多种荧光粉,实现光谱的可调可控效果。本发明所述发光装置可以满足光效通讯、脸部虹膜识别、安防监控、防伪、激光雷达、食品检测、数位医疗、3D传感等多种领域需求;而且避免了直接使用近红外芯片的发光装置成本高,稳定性差的弊端,成为产生近红外光的新途径。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中,
图1为本发明对比例1制得荧光粉样品的激发与发射光谱图,左侧曲线检测波长为810nm,右侧曲线激发波长为460nm;
图2为本发明实施例1制得荧光粉样品的激发与发射光谱图,左侧曲线检测波长为835nm,右侧曲线激发波长为460nm。
具体实施方式
对比例
本实施例所述的近红外荧光粉,其包含的化合物组成式为Sc 0.98BO 3:Cr 0.02
按化学式Sc 0.98BO 3:Cr 0.02的化学计量比,准确称取Sc 2O 3、H 3BO 3和Cr 2O 3均匀混合,得到混合物;将所得混合物于空气氛围下,1300℃煅烧8h,降温后获得焙烧产物;将所得焙烧产物进行破碎、研磨、分级、筛洗等后处理,即可得到近红外发光材料样品。
将所得近红外发光材料样品进行激发测试,得到样品的激发与发射光谱图如附图1所示。可见,该荧光粉的发射峰位于810nm,相对发光强度为100。
实施例1
本实施例所述的近红外荧光粉,其包含的化合物组成式为Sc 0.98GaO 3:Cr 0.02
按化学式Sc 0.98GaO 3:Cr 0.02的化学计量比,准确称取Sc 2O 3、Ga 2O 3和Cr 2O 3均匀混合,得到混合物;将所得混合物于还原气氛下,1400℃煅烧8h,降温后获得焙烧产物;将所得焙烧产物进行破碎、研磨、分级、筛洗等后处理,即可得到近红外荧光粉样品。
将所得近红外发光材料样品进行激发测试,得到样品的激发与发射光谱图如附图2所示。可见,该荧光粉的发射峰位于835nm,相对发光强度为130。
实施例2
本实施例所述的近红外荧光粉,其包含的化合物组成式为Sc 0.98Ga 0.3B 0.7O 3:Cr 0.02
按化学式Sc 0.98Ga 0.3B 0.7O 3:Cr 0.02的化学计量比,准确称取Sc 2O 3、Ga 2O 3和Cr 2O 3均匀混合;将所得混合物于还原气氛下,1400℃煅烧8h,降温后获得焙烧产物;将所得焙烧产物进行破碎、研磨、分级、筛洗等后处理,即可得到近红外荧光粉样品。经测定,该荧光粉的发射峰位于826nm,相 对发光强度为150。
实施例3-26
实施例3-26所述的近红外荧光粉以及含该荧光粉的发光装置,其化合物组成式分别见下表1中列出,各实施例中材料的制备方法同实施例1,只需根据各实施例中目标化合物的化学式组成,选择适当计量的化合物进行混合、研磨、焙烧,得到所需的近红外发光物质。
对各实施例中制得发光物质的性能进行检测,其测试结果见下表1所示。
表1 实施例和对比例分子式以及发光性能,激发波长为460nm
Figure PCTCN2018118645-appb-000001
Figure PCTCN2018118645-appb-000002
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种近红外荧光粉,其特征在于,该荧光粉包含化学式为A xR pO r:D y的无机化合物,其中,
    所述A元素选自Sc、Y、La、Lu、Ga或Gd元素中的一种或两种;
    所述R元素包括Ga元素,并可选择性的添加Al、B或In元素中的一种;
    所述D元素包括Cr元素,并可选择性的添加Ce、Eu、Tb、Bi、Dy、Yb、Pr、Nd或Er元素中的一种;
    且所述参数x、p、r和y满足如下条件:0.8≤x≤1.2,0.8≤p≤1.2,2≤r≤4,0.0001≤y≤0.25。
  2. 根据权利要求1所述的近红外荧光粉,其特征在于,所述A元素和R元素不同时为Ga元素。
  3. 根据权利要求1或2所述的近红外荧光粉,其特征在于,所述参数x、p、r和y满足如下条件:(x+y):p:r=1:1:3。
  4. 根据权利要求1-3任一项所述的近红外荧光粉,其特征在于,所述R元素中,Ga元素占所述R元素的摩尔含量比例大于等于30%。
  5. 根据权利要求1-4任一项所述的近红外荧光粉,其特征在于,所述A元素为Sc元素。
  6. 根据权利要求1-5任一项所述的近红外荧光粉,其特征在于,所述D元素为Cr元素。
  7. 一种制备权利要求1-6任一项所述近红外荧光粉的方法,其特征在于,包括如下步骤:
    (1)以选定的A、R和D元素所对应的化合物为原料,按选定的化学计量比混匀;所得混合物;
    (2)将所得混合物在1200-1500,℃于空气或保护气氛中进行烧结 2-10h,获得焙烧产物;所得焙烧产物经过破碎、研磨、分级和筛洗的后处理,即得所需近红外荧光粉。
  8. 根据权利要求7所述的制备所述近红外荧光粉的方法,其特征在于,所述A、R和D元素所对应的化合物包括氧化物、碳酸盐和/或硝酸盐。
  9. 一种发光装置,包含光源和发光材料,其特征在于,所述发光材料包括权利要求1-6中任一项所述的近红外荧光粉。
  10. 根据权利要求9所述的发光装置,其特征在于,所述光源为发射峰值波长范围为350-500nm的半导体芯片。
PCT/CN2018/118645 2018-08-23 2018-11-30 一种近红外荧光粉以及含该荧光粉的发光装置 WO2020037873A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020197029177A KR102391310B1 (ko) 2018-08-23 2018-11-30 근적외선 형광 분말 및 상기 형광 분말을 함유하는 발광 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810969498 2018-08-23
CN201810969498.0 2018-08-23

Publications (1)

Publication Number Publication Date
WO2020037873A1 true WO2020037873A1 (zh) 2020-02-27

Family

ID=69592257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118645 WO2020037873A1 (zh) 2018-08-23 2018-11-30 一种近红外荧光粉以及含该荧光粉的发光装置

Country Status (3)

Country Link
KR (1) KR102391310B1 (zh)
CN (1) CN110857389B (zh)
WO (1) WO2020037873A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114717001A (zh) * 2022-04-24 2022-07-08 江西离子型稀土工程技术研究有限公司 一种氧化物近红外发光材料及其制备方法和应用
CN115044374A (zh) * 2022-06-29 2022-09-13 旭宇光电(深圳)股份有限公司 一种红色发光材料及其制备方法和发光装置
CN115125002A (zh) * 2021-03-25 2022-09-30 中国科学院宁波材料技术与工程研究所 一种硅基石榴石近红外荧光材料及其制备方法和应用
CN115197702A (zh) * 2021-04-08 2022-10-18 中国科学院宁波材料技术与工程研究所 一种氟化物盐近红外荧光粉及其制备方法和应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3795655B1 (en) * 2019-07-09 2022-11-23 Grirem Advanced Materials Co., Ltd. Red and near-infrared light-emitting material and light-emitting device
CN110408393B (zh) * 2019-07-09 2021-03-19 有研稀土新材料股份有限公司 一种红光及近红外发光材料和发光器件
KR102554970B1 (ko) * 2019-07-09 2023-07-11 그리렘 어드밴스드 머티리얼스 캄파니 리미티드 적색광 및 근적외선 발광재료와 발광소자
CN111892929B (zh) * 2020-06-23 2021-11-16 中山大学 一种x射线激活的超长紫外长余辉发光材料及其制备方法和应用
WO2022116726A1 (zh) * 2020-12-04 2022-06-09 有研稀土新材料股份有限公司 一种发光材料及包含其的发光器件
CN114672310A (zh) * 2020-12-24 2022-06-28 中国科学院宁波材料技术与工程研究所 一种焦磷酸盐近红外荧光粉及其制备方法和应用
CN113698926A (zh) * 2021-06-22 2021-11-26 广东工业大学 一种窄带发射荧光粉及其制备方法和应用
CN113481006B (zh) * 2021-07-14 2023-05-16 广东工业大学 一种近红外宽光谱荧光材料及其制备方法与应用
CN113817468B (zh) * 2021-09-27 2022-10-25 华南理工大学 一种氧化物近红外发光材料及其制备方法与发光装置
CN114672306A (zh) * 2022-03-28 2022-06-28 华南农业大学 一种近红外荧光粉、制备方法及其形成的led器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050189863A1 (en) * 2004-02-27 2005-09-01 Dowa Mining Co., Ltd. Phosphor, light source and LED
CN100367521C (zh) * 1996-09-20 2008-02-06 西门子公司 波长变换填料及含有这种填料的光学元件
CN106085425A (zh) * 2016-06-02 2016-11-09 北京宇极科技发展有限公司 一种led用近红外荧光材料、其制备方法及应用
CN107118770A (zh) * 2017-06-16 2017-09-01 河北大学 一种近红外色荧光粉及其制备方法
CN108148593A (zh) * 2018-01-29 2018-06-12 东南大学 一种用于近红外led的荧光粉材料及其制备方法
CN108231979A (zh) * 2017-01-24 2018-06-29 江苏博睿光电有限公司 一种红外led光源

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100985632B1 (ko) * 2008-02-13 2010-10-05 부경대학교 산학협력단 이트륨알루미늄페로브스카이트(와이에이피)계 형광체 및 그의 제조방법
CN105567236B (zh) * 2014-10-15 2018-07-20 有研稀土新材料股份有限公司 石榴石型荧光粉和制备方法及包含该荧光粉的装置
CN107573937A (zh) * 2017-08-01 2018-01-12 东南大学 一种用于近红外led的荧光粉材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100367521C (zh) * 1996-09-20 2008-02-06 西门子公司 波长变换填料及含有这种填料的光学元件
US20050189863A1 (en) * 2004-02-27 2005-09-01 Dowa Mining Co., Ltd. Phosphor, light source and LED
CN106085425A (zh) * 2016-06-02 2016-11-09 北京宇极科技发展有限公司 一种led用近红外荧光材料、其制备方法及应用
CN108231979A (zh) * 2017-01-24 2018-06-29 江苏博睿光电有限公司 一种红外led光源
CN107118770A (zh) * 2017-06-16 2017-09-01 河北大学 一种近红外色荧光粉及其制备方法
CN108148593A (zh) * 2018-01-29 2018-06-12 东南大学 一种用于近红外led的荧光粉材料及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115125002A (zh) * 2021-03-25 2022-09-30 中国科学院宁波材料技术与工程研究所 一种硅基石榴石近红外荧光材料及其制备方法和应用
CN115197702A (zh) * 2021-04-08 2022-10-18 中国科学院宁波材料技术与工程研究所 一种氟化物盐近红外荧光粉及其制备方法和应用
CN115197702B (zh) * 2021-04-08 2024-03-22 中国科学院宁波材料技术与工程研究所 一种氟化物盐近红外荧光粉及其制备方法和应用
CN114717001A (zh) * 2022-04-24 2022-07-08 江西离子型稀土工程技术研究有限公司 一种氧化物近红外发光材料及其制备方法和应用
CN115044374A (zh) * 2022-06-29 2022-09-13 旭宇光电(深圳)股份有限公司 一种红色发光材料及其制备方法和发光装置

Also Published As

Publication number Publication date
CN110857389A (zh) 2020-03-03
KR20200023265A (ko) 2020-03-04
CN110857389B (zh) 2022-08-19
KR102391310B1 (ko) 2022-04-26

Similar Documents

Publication Publication Date Title
WO2020037873A1 (zh) 一种近红外荧光粉以及含该荧光粉的发光装置
KR102487738B1 (ko) 근적외선 발광 재료 및 상기 재료로 제조되는 발광 장치
CN110157424B (zh) 一种近红外荧光粉以及含该荧光粉的发光装置
CN108865139B (zh) 一种宽谱带发射近红外发光物质及包含该物质的发光器件
CN108913135B (zh) 一种宽谱带发射近红外发光物质及包含该物质的发光器件
CN110330970B (zh) 一种红光及近红外发光材料、制备方法及发光器件
CN109135747B (zh) 一种氮化物发光材料及包含其的发光装置
CN115558491B (zh) 一种宽带短波红外荧光粉及其制备方法和发光器件
CN112342021A (zh) 一种近红外宽带发射的发光材料、其制备方法及包含该材料的发光装置
CN113201342A (zh) Ce3+激活的硅酸盐宽带绿色荧光粉及制备方法和应用
CN104403668B (zh) 一种硅酸盐绿色荧光粉及其制备方法
CN107722982A (zh) 荧光增强的硅基氮氧化物青色荧光粉及其制备方法
CN106147759A (zh) 一种白光led用硼酸盐基质荧光粉及其制备方法
CN107298582B (zh) 一种陶瓷材料及其制备方法和荧光陶瓷器件
WO2021237799A1 (zh) 一种氮化物近红外荧光材料及其制备方法和应用
CN106929016B (zh) 一种蓝色到绿色颜色可调硅酸盐荧光粉及其制备方法
CN115058247B (zh) 一种短波红外发光材料及其制备方法和应用
WO2022116726A1 (zh) 一种发光材料及包含其的发光器件
CN114276807B (zh) 一种近红外荧光粉和制备方法以及使用其的近红外光源
WO2022252400A1 (zh) 一种近红外发光物质及包含该物质的发光器件
CN115322779A (zh) 一种多元共激活高效率宽带发射近红外荧光粉及其制备方法和应用
CN114836204A (zh) 一种超宽带近红外发光材料及其制备方法和应用
CN104774608B (zh) 一种稀土掺杂α’相Sr2SiO4纳米粉体及其制备方法
CN114574206A (zh) 一种可用于白色发光二极管的荧光粉及其合成方法与应用
Xiaoxia et al. Photoluminescence characteristics of Gd2Mo3O9: Eu phosphor particles by solid state reaction method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20197029177

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931065

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18931065

Country of ref document: EP

Kind code of ref document: A1