WO2020037861A1 - 一种煤实验最短自然发火期的测量方法 - Google Patents

一种煤实验最短自然发火期的测量方法 Download PDF

Info

Publication number
WO2020037861A1
WO2020037861A1 PCT/CN2018/117595 CN2018117595W WO2020037861A1 WO 2020037861 A1 WO2020037861 A1 WO 2020037861A1 CN 2018117595 W CN2018117595 W CN 2018117595W WO 2020037861 A1 WO2020037861 A1 WO 2020037861A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
conversion rate
temperature
experiment
stage
Prior art date
Application number
PCT/CN2018/117595
Other languages
English (en)
French (fr)
Inventor
仲晓星
候飞
刘震起
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to AU2018437833A priority Critical patent/AU2018437833B2/en
Publication of WO2020037861A1 publication Critical patent/WO2020037861A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels, explosives
    • G01N33/222Solid fuels, e.g. coal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder

Abstract

一种煤实验最短自然发火期的测量方法,属于煤测试方法,该测量方法首先在设定的氧气浓度气流下做一系列固定升温速率下的程序升温实验,处理获得水分蒸发和吸氧增重两个阶段的动力学参数和最概然机理函数随转化率变化的函数关系式E(α)、g(α)和A(α),然后挑选程序升温过程中的多个温度,在设定的氧气浓度气流下做恒温实验,处理获得各阶段温度随转化率变化的函数关系T(α),获得水分蒸发阶段和吸氧增重阶段所需时间,相加即获得煤样的实验最短自然发火期。该方法解决了现有煤实验最短自然发火期的测量方法复杂、测量准确度低、周期长的问题,具有简单、测量周期短、测试结果准确的优点,为指导煤矿现场生产提供重要依据。

Description

一种煤实验最短自然发火期的测量方法 技术领域
本发明涉及煤测试方法,尤其涉及一种煤实验最短自然发火期的测量方法。
背景技术
我国是世界上煤自燃发火最严重的国家,据统计,国有重点煤矿中存在较为严重煤自燃现象的矿井约占56%。煤的自然发火期是指导煤矿现场生产的重要参数。
目前,自然发火期的测试方法有:统计法、类比法、大型实验台法、小试样绝热实验法、建立发火模型法等。统计法和类比法得结果是根据已有的基础数据获得的,存在经验误差;大型实验台法是通过建立大型发火平台,在实验室模拟井下煤自燃发火的过程,该方法获得的结果虽然准确性较高,但是实验周期长、用煤量大、成本高;小试样绝热实验法是通过建立小试样绝热自燃装置,模拟自燃过程,该方法虽然成本低、周期短,但通过小试样实验很难说明大量煤自燃发火的特性;建立发火模型法是通过抓住影响煤自燃的主要因素而忽略次要因素,获得的结果准确性较差。
发明内容
鉴于上述的分析,本发明旨在提供一种煤实验最短自然发火期的测量方法,用以解决现有煤实验最短自然发火期的测量方法复杂、用煤量大、测量准确度低、周期长的问题。
本发明的目的主要是通过以下技术方案实现的:
本发明的煤实验最短自然发火期测量方法如下:
一种煤实验最短自然发火期的测量方法,包括以下步骤:
步骤S1:对煤样进行程序升温实验,包括水分蒸发阶段和吸氧增重阶段,获得所述阶段不同升温速率下的一系列热重变化数据;
步骤S2:根据所述热重变化数据计算获得所述阶段一系列的转化率;根据所述转化率计算获得不同转化率下的表观活化能,并拟合获得表观活化能与转化率函数;获取最概然机理函数;根据各转化率下的截距和最概然机理函数获得对应转化率下的指前因子,并由动力学补偿效应获得所述阶段的指前因子与转化率函数;
进行恒温实验,在所述阶段中分别选取多个实验温度作为恒温实验温度,获得所述阶段各恒温温度下煤样反应最终剩余热重,根据所述热重计算转化率,拟合获得所述阶段的温度与转化率函数;
步骤S3:对Arrhenius速率方程积分变化获得自然发火期求解公式,分别将所述阶段表观活化能与转化率函数、最概然机理函数、指前因子与转化率函数以及温度与转化率函数带入到所述求解公式中,获得水分蒸发阶段和吸氧增重阶段的反应时间,所述反应时间相加获得煤样实验最短自然发火期。
在上述方案的基础上,本发明还做了如下改进:
进一步地,根据常用固相反应动力学机理函数以及不同转化率对应的温度,获得各转化率下各机理函数对应的概然活化能,与所述表观活化能数值最接近的概然活化能所对应的机理函数,即为最概然机理函数。
进一步地,所述程序升温实验包括如下步骤:在所述步骤S1中,在程序升温仪中分别通入设定氧气浓度的气流,流量为100ml/min;设置初始温度为环境温度,升温速率分别为1℃/min、2℃/min、4℃/min和 8℃/min,实验结束温度为400℃,每次实验均取10mg煤样。
进一步地,所述程序升温实验中阶段转化率计算公式为:
Figure PCTCN2018117595-appb-000001
式中,α为转化率,α>0;m 0为初始热重值,mg;m为反应过程的热重值,mg;M为阶段热重总变化量,mg。
进一步地,所述阶段转化率在0.05-0.95,转化率的间隔为0.05;将转化率对应的温度和对应升温速率带入到Starink方程中,拟合获得所述阶段表观活化能与转化率函数E(α)为:
Figure PCTCN2018117595-appb-000002
其中,C为常数项,C的计算公式为:
Figure PCTCN2018117595-appb-000003
式中,β为程序升温速率,℃/min;T为反应过程温度,K;E为表观活化能,kJ/mol;g(α)为最概然机理函数;A为指前因子;
所述阶段对应转化率下的最概然机理函数g(α)为:
Figure PCTCN2018117595-appb-000004
所述指前因子求解公式为:
Figure PCTCN2018117595-appb-000005
进一步地,所述指前因子与转化率函数关系式为:
lnA=aE+b
其中,a、b为动力学补偿系数;
所述动力学补偿系数a、b由不同转化率下的表观活化能和指前因子拟合获得;
再根据所述表观活化能与转化率函数E(α)获得指前因子与转化率函数A(α)。
进一步地,所述最概然机理函数通过转化率α±0.025范围内的数据进行拟合求解,在计算煤实验最短自然发火期时,在其转化率α±0.025范围内用相同的最概然机理函数。
进一步地,所述自然发火期求解公式为:
Figure PCTCN2018117595-appb-000006
利用所述自然发火期求解公式求得水分蒸发阶段的自然发火期t 1、吸氧增重阶段的自然发火期t 2,即获得煤样的实验最短自然发火期为t 1+t 2
进一步地,在所述步骤S1之前,选取新鲜原煤进行研磨,筛选粒径为120-160目的煤颗粒作为待测煤样。
进一步地,将所述煤样置于阴凉、干燥的位置密封保存;所述恒温实验中的温度为整数。
本发明有益效果如下:
a)本发明提供的煤实验最短自然发火期的测量方法,利用TG-DSC联用同步热分析仪进行程序恒温试验和恒温试验,实验操作方便,每次试验煤样用量仅10mg,用煤量少,试验周期短。
b)本发明提供的煤实验最短自然发火期的测量方法,程序升温实验包括水分蒸发阶段和吸氧增重阶段,通过一系列试验数据,巧妙地进行公式变换推导,获取煤实验最短自然发火期的方法简单,最终煤实验最短自然发火期为水分蒸发阶段和吸氧增重阶段的总时间,测量准确度高,在保证测量准确度的条件下显著地降低了成本,具有广泛的实用性。
本发明中,上述各技术方案之间还可以相互组合,以实现更多的优选组合方案。本发明的其他特征和优点将在随后的说明书中阐述,并且, 部分优点可从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过说明书、权利要求书以及附图中所特别指出的内容中来实现和获得。
附图说明
附图仅用于示出具体实施例的目的,而并不认为是对本发明的限制,在整个附图中,相同的参考符号表示相同的部件。
图1为本发明的煤实验最短自然发火期的测试方法的流程图。
具体实施方式
下面结合附图来具体描述本发明的优选实施例,其中,附图构成本申请一部分,并与本发明的实施例一起用于阐释本发明的原理,并非用于限定本发明的范围。对本发明中部分函数名称、符号含义做如下规定:转化率α、表观活化能E、表观活化能与转化率函数E(α)、各机理函数对应的概然活化能E x、指前因子A、指前因子与转化率函数A(α)、最概然机理函数g(α)、最概然机理函数微分形式f(α)、常用的几种固相反应机理函数g(α) x、反应过程温度T、温度与转化率函数T(α)。
本发明的一个具体实施例,公开了一种煤实验最短自然发火期的测试方法,包括以下步骤:
步骤S1:对煤样进行程序升温实验,包括水分蒸发阶段和吸氧增重阶段,获得水分蒸发阶段和吸氧增重阶段(可简称为“各阶段”)不同升温速率下的一系列热重变化数据;
步骤S2:根据步骤S1中一系列热重变化数据计算获得水分蒸发阶段和吸氧增重阶段一系列的转化率;根据上述一系列的转化率计算获得不同转化率下的表观活化能,并拟合获得表观活化能与转化率函数;根据 常用固相反应动力学机理函数以及不同转化率对应的温度,获得各转化率下各机理函数对应的概然活化能,与表观活化能数值最接近的概然活化能所对应的机理函数,即为最概然机理函数;根据各转化率下的截距和最概然机理函数获得对应转化率下的指前因子,并由动力学补偿效应获得阶段的指前因子与转化率函数;
进行恒温试验,在水分蒸发阶段和吸氧增重阶段中分别选取多个实验温度作为恒温试验温度,获得水分蒸发阶段和吸氧增重阶段各恒温温度下煤样反应最终剩余热重,根据热重计算转化率,拟合获得水分蒸发阶段和吸氧增重阶段的温度与转化率函数;
步骤S3:对Arrhenius速率方程积分变化获得自然发火期求解公式,分别将水分蒸发阶段和吸氧增重阶段表观活化能与转化率函数、最概然机理函数、指前因子与转化率函数以及温度与转化率函数带入到上述自然发火期求解公式中,获得水分蒸发阶段和吸氧增重阶段的反应时间,上述两阶段的反应时间相加获得煤样实验最短自然发火期。
具体步骤如下:
步骤S1:
利用TG-DSC联用同步热分析仪对煤样进行程序升温实验,程序升温实验包括水分蒸发阶段和吸氧增重阶段,煤的低温氧化阶段为程序升温实验获得的煤样热重变化先减少后增加的过程,热重增加过程的末点温度近似为燃点温度,水分蒸发阶段为热重减少过程,吸氧增重阶段为热重增加过程。通过程序升温实验获得水分蒸发阶段和吸氧增重阶段不同升温速率下的一系列热重变化数据,初始热重值、对应温度下的热重值以及研究阶段热重总变化量;程序升温实验包括如下步骤:在程序升温仪中分别通入设定氧气浓度的气流,优选的,氧气浓度为8%~21%,通入气流的流量为100ml/min;实验设置初始温度为环境温度,升温速率分 别为1℃/min、2℃/min、4℃/min和8℃/min,实验结束温度为400℃,每次实验均取10mg煤样,获得不同温速率下的热重变化数据。
在步骤S1之前,选取新鲜原煤进行研磨,筛选粒径为120-160目的煤颗粒作为待测煤样,并将待测煤样置于阴凉、干燥的位置密封保存,避免待测煤样吸水或者发生氧化而影响实验结果。
步骤S2:
煤自然发火期研究的低温氧化阶段分为水分蒸发和吸氧增重两个阶段。根据步骤S1中程序升温实验的各阶段获得的热重变化数据计算获得一系列对应各阶段一定温度下的转化率,转化率为正数,获得的程序升温实验中各阶段对应温度的转化率计算公式为:
Figure PCTCN2018117595-appb-000007
式中,α为转化率,α>0;m 0为初始热重值,mg;m为反应过程的热重值,mg;M为阶段热重总变化量,mg。
计算获得不同转化率下的表观活化能,并拟合获得表观活化能与转化率函数。程序升温实验中各阶段的转化率在0.05-0.95,选取的一系列转化率的间隔为0.05;将转化率对应的温度和对应升温速率带入到Starink方程中,拟合获得的各阶段表观活化能与转化率的函数E(α)为:
Figure PCTCN2018117595-appb-000008
在求解表观活化能的过程中,同时也获得了各转化率对应的常数项C的值,常数项C的计算公式为:
Figure PCTCN2018117595-appb-000009
式中,β为程序升温速率,℃/min;T为反应过程温度,K;E为表观活化能,kJ/mol;g(α)为最概然机理函数;
根据常数项C的表达公式以及各转化率对应的最概然机理函数,带入到如下所示的指前因子求解公式:
Figure PCTCN2018117595-appb-000010
求得转化率在0.05-0.95范围内每隔0.05取一个值下的指前因子,采用动力学补偿效应即lnA与E的内在联系求指前因子与转化率函数,表达式如下式所示,
lnA=aE+b
式中,a、b为动力学补偿系数,根据在0.05-0.95范围内每隔0.05取一个转化率求得的表观活化能和指前因子拟合获得动力学补偿系数,再根据求得的表观活化能与转化率函数关系式E(α),获得指前因子与转化率函数A(α)。
根据常用固相反应动力学机理函数以及各阶段不同转化率对应的温度,获得各阶段不同转化率下各机理函数对应的概然活化能,与表观活化能数值最接近的概然活化能所对应的函数,即为各阶段对应转化率下的最概然机理函数;具体的,将附表1中常用的20种常用固相反应动力学机理函数以及各阶段中转化率在0.05-0.95范围内每隔0.05取一个值所对应的温度带入到Starink方程的变形公式中,获得不同转化率下的机理函数对应的概然活化能,与上述步骤中获得的各转化率对应的表观活化能数值比较,最接近的概然活化能所对应的函数为各阶段对应转化率下的最概然机理函数g(α),
Figure PCTCN2018117595-appb-000011
求转化率在0.05-0.95范围内每隔0.05取一个值下的最概然机理函数时,最概然机理函数通过转化率α±0.025范围内的数据进行拟合求解,如求转化率在0.05处的最概然机理函数,需要拟合的范围为0.025-0.075, 同样的,求转化率在0.9处的最概然机理函数,需要拟合的范围为0.875-0.925,相应的,在计算煤实验最短自然发火期时,在其转化率α±0.025范围内用相应同的最概然机理函数。
表1部分常用固相反应动力学机理函数
Figure PCTCN2018117595-appb-000012
Figure PCTCN2018117595-appb-000013
由于利用Arrhenius速率方程计算该煤样自然发火期的时,需要知道反应过程中温度T关于转化率α的函数T(α),通过现有查阅的参考文献和知识能力很难根据热流、热重曲线推导出T(α)的表达式,为此,本发明通过做恒定温度实验来反应过程中温度T关于转化率α的函数T(α)。
进行恒温试验时,在水分蒸发阶段和吸氧增重阶段中分别选取多个实验温度作为恒温试验温度,通过使反应在一个固定温度下充分进行,获得水分蒸发阶段和吸氧增重阶段各恒温温度下煤样反应最终剩余热重,根据最终剩余热重计算转化率,拟合获得各阶段的温度与转化率的函数T(α)。在各阶段选取的温度可以为反应过程中的任何温度,优选地,选取的温度为整数。
步骤S3:
对Arrhenius速率方程积分变化获得自然发火期求解公式,求解公式如下:
Figure PCTCN2018117595-appb-000014
分别将水分蒸发阶段和吸氧增重阶段的表观活化能与转化率函数、最概然机理函数、指前因子与转化率函数以及温度与转化率函数带入到上述求解公式中,获得水分蒸发阶段的时间t 1和吸氧增重阶段的时间t 2,水分蒸发阶段和吸氧增重阶段的反应时间相加获得煤样实验最短自然发火期t 1+t 2
需要说明的是,水分蒸发阶段和吸氧增重阶段的表观活化能与转化率函数E(α)、最概然机理函数g(α)、指前因子与转化率函数A(α)、温度随转化率变化的函数T(α)、各阶段煤样的实验最短自然发火期时间的求解方法相同。
与现有技术相比,本实施例提供的煤实验最短自然发火期的测量方法,获取煤实验最短自然发火期的方法简单,实验操作方便,用煤量少,测量准确度高,周期短,在保证测量准确度的条件下显著地降低了成本,具有广泛的实用性。
下面以新疆某矿区原煤的自然发火期求取为例,对本实施例做进一步说明:
取新疆某矿区原煤,将其进行研磨,筛选出粒径为120-160目的颗粒作为实验测试煤样,取10mg煤样热分析仪中,热分析仪为美国TA公司生产的SDT-Q600型TG-DSC联用同步热分析仪,每次实验分别通入氧气浓度为21%、16%、12%、8%的气体,每个氧气浓度均在4个升温速率(1℃/min、2℃/min、4℃/min和8℃/min)下进行实验至400℃结束;水分蒸发阶段在温度为30℃、40℃、50℃、60℃、70℃下进行恒温实验,吸氧增重阶段在温度为90℃、110℃、120℃、140℃、160℃下进行恒温实验。
将程序升温实验获得的热重数据转化为转化率,作转化率在0.05-0.95范围内每隔0.05取一个值下的ln(β/T 1.92)关于(-1.0008/RT)的散点图并拟合求得各转化率下的表观活化能E和截距C,也即常数C,并分阶段线性拟合获得表观活化能与转化率函数,获得的新疆某矿区煤样水分蒸发阶段、吸氧增重阶段的活化能与转化率函数具体结果如表2和表3所示;
根据表1中所列常用的20种固相反应理函数,对于一个固定的转化率,作ln[g(α) x/T 1.92]关于(-1.0008/RT)的散点图并拟合获得各机理函数下的概然活化能E x,通过比较表观活化能E与E x的大小,最接近的概然活化能所对应的机理函数为该转化率下的最概然机理函数g(α)。
将获得的常数C(即截距)和最概然机理函数带入到指前因子的求 解公式,获得各转化率下的指前因子。对于任一反应阶段,作lnA关于E的散点图并拟合求得动力学补偿系数a和b的值,再根据表观活化能与转化率函数E(α)获得指前因子与转化率函数A(α);
根据程序升温实验各阶段热重变化值,将恒温实验获得的对应温度下的热重值转化为转化率,并拟合获得温度随转化率变化的函数T(α);
本实施例中的新疆某矿区原煤的自然发火期求取过程中,水分蒸发阶段和吸氧增重阶段的表观活化能与转化率函数E(α)、最概然机理函数g(α)、指前因子与转化率函数A(α)、温度随转化率变化的函数T(α)、各阶段煤样的实验最短自然发火期时间的求解方法相同,得到的相关函数列表见表2~9,其中,表2~4为不同氧气浓度下水分蒸发阶段相关函数列表,表5~8为不同氧气浓度下吸氧增重阶段相关函数列表,表9为温度与转化率对应的T(α)函数列表。
表2不同氧气浓度下水分蒸发阶段E(α)函数列表
Figure PCTCN2018117595-appb-000015
Figure PCTCN2018117595-appb-000016
表3不同氧气浓度水分蒸发阶段各转化率对应最概然机理函数g(α)列表
Figure PCTCN2018117595-appb-000017
Figure PCTCN2018117595-appb-000018
表4不同氧气浓度水分蒸发阶段A(α)函数列表
Figure PCTCN2018117595-appb-000019
表5不同氧气浓度下吸氧增重阶段E(α)函数列表
Figure PCTCN2018117595-appb-000020
表6不同氧气浓度吸氧增重阶段各转化率对应最概然机理函数g(α)列表
Figure PCTCN2018117595-appb-000021
Figure PCTCN2018117595-appb-000022
表7不同氧气浓度吸氧增重阶段A(α)函数
Figure PCTCN2018117595-appb-000023
Figure PCTCN2018117595-appb-000024
表8各阶段温度与转化率对应的T(α)函数关系式
Figure PCTCN2018117595-appb-000025
将获得的动力学参数、温度和指前因子求解结果带入自然发火期求 解公式,获得不同氧气浓度下的实验最短自然发火期,具体结果见表9。
表9新疆某矿区原煤的自然发火期求解结果
Figure PCTCN2018117595-appb-000026
根据表9中实验结果可知,新疆某矿区煤样的实验室最短自然发火期随氧气浓度的减小而增大,在氧气浓度为21%下的实验最短自然发火期为16.65d,在氧气浓度为16%下的实验最短自然发火期为16.56d,在氧气浓度为12%下的实验最短自然发火期为18.71d,在氧气浓度为8%下的实验最短自然发火期为26.94d。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种煤实验最短自然发火期的测量方法,其特征在于,包括以下步骤:
    步骤S1:对煤样进行程序升温实验,包括水分蒸发阶段和吸氧增重阶段,获得所述阶段不同升温速率下的一系列热重变化数据;
    步骤S2:根据所述热重变化数据计算获得所述阶段一系列的转化率;根据所述转化率计算获得不同转化率下的表观活化能,并拟合获得表观活化能与转化率函数;获取最概然机理函数;根据各转化率下的截距和最概然机理函数获得对应转化率下的指前因子,并由动力学补偿效应获得所述阶段的指前因子与转化率函数;
    进行恒温实验,在所述阶段中分别选取多个实验温度作为恒温实验温度,获得所述阶段各恒温温度下煤样反应最终剩余热重,根据所述热重计算转化率,拟合获得所述阶段的温度与转化率函数;
    步骤S3:对Arrhenius速率方程积分变化获得自然发火期求解公式,分别将所述阶段表观活化能与转化率函数、最概然机理函数、指前因子与转化率函数以及温度与转化率函数带入到所述求解公式中,获得水分蒸发阶段和吸氧增重阶段的反应时间,所述反应时间相加获得煤样实验最短自然发火期。
  2. 根据权利要求1所述的煤实验最短自然发火期的测量方法,其特征在于,根据常用固相反应动力学机理函数以及不同转化率对应的温度,获得各转化率下各机理函数对应的概然活化能,与所述表观活化能数值最接近的概然活化能所对应的机理函数,即为最概然机理函数。
  3. 根据权利要求1所述的煤实验最短自然发火期的测量方法,其特征在于,所述程序升温实验包括如下步骤:在所述步骤S1中,在程序升温仪中分别通入设定氧气浓度的气流,流量为100ml/min;设置初始温度为环境温度,升温速率分别为1℃/min、2℃/min、4℃/min和8℃/min,实 验结束温度为400℃,每次实验均取10mg煤样。
  4. 根据权利要求1所述的煤实验最短自然发火期的测量方法,其特征在于,所述程序升温实验中阶段转化率计算公式为:
    Figure PCTCN2018117595-appb-100001
    式中,α为转化率,α>0;m 0为初始热重值,mg;m为反应过程的热重值,mg;M为阶段热重总变化量,mg。
  5. 根据权利要求1所述的煤实验最短自然发火期的测量方法,其特征在于,所述阶段转化率在0.05-0.95,转化率的间隔为0.05;将转化率对应的温度和对应升温速率带入到Starink方程中,拟合获得所述阶段表观活化能与转化率函数E(α)为:
    Figure PCTCN2018117595-appb-100002
    其中,C为常数项,C的计算公式为:
    Figure PCTCN2018117595-appb-100003
    式中,β为程序升温速率,℃/min;T为反应过程温度,K;E为表观活化能,kJ/mol;g(α)为最概然机理函数;A为指前因子;
    所述阶段对应转化率下的最概然机理函数g(α)为:
    Figure PCTCN2018117595-appb-100004
    所述指前因子求解公式为:
    Figure PCTCN2018117595-appb-100005
  6. 根据权利要求5所述的煤实验最短自然发火期的测量方法,其特征在于,所述指前因子与转化率函数关系式为:
    lnA=aE+b
    其中,a、b为动力学补偿系数;
    所述动力学补偿系数a、b由不同转化率下的表观活化能和指前因子拟合获得;
    再根据所述表观活化能与转化率函数E(α)获得指前因子与转化率函数A(α)。
  7. 根据权利要求5所述的煤实验最短自然发火期的测量方法,其特征在于,所述最概然机理函数通过转化率α±0.025范围内的数据进行拟合求解,在计算煤实验最短自然发火期时,在其转化率α±0.025范围内用相同的最概然机理函数。
  8. 根据权利要求1所述的煤实验最短自然发火期的测量方法,其特征在于,所述自然发火期求解公式为:
    Figure PCTCN2018117595-appb-100006
    利用所述自然发火期求解公式求得水分蒸发阶段的自然发火期t 1、吸氧增重阶段的自然发火期t 2,即获得煤样的实验最短自然发火期为t 1+t 2
  9. 根据权利要求1-8任一所述的煤实验最短自然发火期的测量方法,其特征在于,在所述步骤S1之前,选取新鲜原煤进行研磨,筛选粒径为120-160目的煤颗粒作为待测煤样。
  10. 根据权利要求1-9任一所述的煤实验最短自然发火期的测量方法,其特征在于,将所述煤样置于阴凉、干燥的位置密封保存;所述恒温实验中的温度为整数。
PCT/CN2018/117595 2018-08-20 2018-11-27 一种煤实验最短自然发火期的测量方法 WO2020037861A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2018437833A AU2018437833B2 (en) 2018-08-20 2018-11-27 Method employing an experiment to measure shortest spontaneous combustion period of coal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810950345.1A CN109030768B (zh) 2018-08-20 2018-08-20 一种煤实验最短自然发火期的测量方法
CN201810950345.1 2018-08-20

Publications (1)

Publication Number Publication Date
WO2020037861A1 true WO2020037861A1 (zh) 2020-02-27

Family

ID=64632208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117595 WO2020037861A1 (zh) 2018-08-20 2018-11-27 一种煤实验最短自然发火期的测量方法

Country Status (3)

Country Link
CN (1) CN109030768B (zh)
AU (1) AU2018437833B2 (zh)
WO (1) WO2020037861A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111610119A (zh) * 2019-02-25 2020-09-01 中国石油天然气股份有限公司 原油活化能测定方法
CN113030372A (zh) * 2021-03-24 2021-06-25 西安科技大学 干旱地区环境模拟煤自然发火试验装置及方法
CN114200043A (zh) * 2021-12-01 2022-03-18 中煤科工集团沈阳研究院有限公司 一种煤自然发火标志气体检测系统、方法及其储气装置
CN116741293A (zh) * 2023-06-19 2023-09-12 中国中医科学院中药研究所 一种用于炮制火力火候量化的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113447389B (zh) * 2021-06-18 2024-04-05 营口理工学院 一种采用非线性等转化率法确定碳钢凝固过程活化能的方法
CN113670980B (zh) * 2021-07-26 2023-09-01 中煤科工集团沈阳研究院有限公司 确定煤最短自然发火期的方法
CN114397323B (zh) * 2021-12-14 2023-09-12 中煤科工集团沈阳研究院有限公司 一种煤最短自然发火期的测定装置及测定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854362A (ja) * 1994-08-11 1996-02-27 Mitsubishi Heavy Ind Ltd 石炭の自然発火予知方法
CN101271053A (zh) * 2007-12-07 2008-09-24 辽宁工程技术大学 煤的自燃危险性判定方法
CN101726511A (zh) * 2009-12-23 2010-06-09 煤炭科学研究总院沈阳研究院 一种动态调控风温的煤最短自然发火期快速测试方法
CN103499511A (zh) * 2013-10-16 2014-01-08 南京林业大学 基于多阶段热分析动力学模型预测沥青燃烧过程的方法
CN104142282A (zh) * 2014-07-30 2014-11-12 冀中能源集团有限责任公司 一种低煤化程度煤自燃特性的着火活化能分析方法
CN205301221U (zh) * 2016-01-10 2016-06-08 西安科技大学 一种煤最短自然发火期与自然发火特性参数测试装置
CN106644803A (zh) * 2016-10-28 2017-05-10 内蒙古科技大学 一种水化煤疏水过程中最佳防火临界水分的确定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286947A (ja) * 1991-03-15 1992-10-12 Kansai Electric Power Co Inc:The 石炭類の揮発分・灰分連続測定方法
CN106950251A (zh) * 2016-06-21 2017-07-14 华北理工大学 为预防煤矿火灾提供数据的不同阻化剂阻化效果分析方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854362A (ja) * 1994-08-11 1996-02-27 Mitsubishi Heavy Ind Ltd 石炭の自然発火予知方法
CN101271053A (zh) * 2007-12-07 2008-09-24 辽宁工程技术大学 煤的自燃危险性判定方法
CN101726511A (zh) * 2009-12-23 2010-06-09 煤炭科学研究总院沈阳研究院 一种动态调控风温的煤最短自然发火期快速测试方法
CN103499511A (zh) * 2013-10-16 2014-01-08 南京林业大学 基于多阶段热分析动力学模型预测沥青燃烧过程的方法
CN104142282A (zh) * 2014-07-30 2014-11-12 冀中能源集团有限责任公司 一种低煤化程度煤自燃特性的着火活化能分析方法
CN205301221U (zh) * 2016-01-10 2016-06-08 西安科技大学 一种煤最短自然发火期与自然发火特性参数测试装置
CN106644803A (zh) * 2016-10-28 2017-05-10 内蒙古科技大学 一种水化煤疏水过程中最佳防火临界水分的确定方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SONG, JINGHUI ET AL., BIOMASS COMBUSTION POWER GENERATION TECHNOLOGY, 31 July 2013 (2013-07-31), pages 60 - 61 *
WEI, YIMIN ET AL., FOOD EXTRUSION THEORY AND TECHNOLOGY, vol. 1, 31 July 2009 (2009-07-31), pages 250 - 254 *
YANG, FUQIANG ET AL.: "Study on Activation Energy Calculation for Coal Spontaneous Combustion with Different Thermal Gravimetric Analysis Methods", MINING SAFETY & ENVIRONMENTAL PROTECTION, vol. 43, no. 5, 31 October 2016 (2016-10-31), pages 9 - 13, ISSN: 1008-4495 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111610119A (zh) * 2019-02-25 2020-09-01 中国石油天然气股份有限公司 原油活化能测定方法
CN113030372A (zh) * 2021-03-24 2021-06-25 西安科技大学 干旱地区环境模拟煤自然发火试验装置及方法
CN113030372B (zh) * 2021-03-24 2024-04-12 西安科技大学 干旱地区环境模拟煤自然发火试验装置及方法
CN114200043A (zh) * 2021-12-01 2022-03-18 中煤科工集团沈阳研究院有限公司 一种煤自然发火标志气体检测系统、方法及其储气装置
CN114200043B (zh) * 2021-12-01 2023-09-05 中煤科工集团沈阳研究院有限公司 一种煤自然发火标志气体检测系统、方法及其储气装置
CN116741293A (zh) * 2023-06-19 2023-09-12 中国中医科学院中药研究所 一种用于炮制火力火候量化的方法
CN116741293B (zh) * 2023-06-19 2024-01-30 中国中医科学院中药研究所 一种用于炮制火力火候量化的方法

Also Published As

Publication number Publication date
AU2018437833B2 (en) 2022-02-17
CN109030768A (zh) 2018-12-18
AU2018437833A1 (en) 2021-03-11
CN109030768B (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2020037861A1 (zh) 一种煤实验最短自然发火期的测量方法
CN102213708B (zh) 空气预热器漏风率的测试方法
CN107844682B (zh) 基于煤气热值和烟气成分的转炉煤气成分软测量方法
Grasse et al. GEOTRACES inter-calibration of the stable silicon isotope composition of dissolved silicic acid in seawater
CN106289433B (zh) 一种二次电池内部各组分气体体积的测定方法
WO2018121517A1 (zh) 测量锅炉灰渣可燃碳含量的方法
CN101206211A (zh) 一种煤自燃倾向性的测定方法
CN104062674A (zh) 一种生物样品中14c的测量方法
CN103512858A (zh) 一种生物质燃料中碳氢氮元素含量的测定方法
CN102269681A (zh) Eva中va含量的测试方法
CN104615899B (zh) 冶金煤气锅炉空气预热器漏风率测算方法
CN104458149B (zh) 一种空气预热器漏风计算方法
CN103837396B (zh) 一种水晶玻璃的消解方法和水晶玻璃铅含量的测定方法
CN102608044A (zh) 一种火焰原子吸收光谱法测定聚酯切片中锑的样品处理方法
CN201532387U (zh) 一种用于测试烟气中二氧化硫含量的装置
CN112415059A (zh) 一种混合气体中氢气浓度传感装置、检测装置及检测方法
CN103760055B (zh) 一种银浆料中银含量的测试方法
Luo et al. The research of temperature properties of photoacoustic spectroscopy detection for SF 6 decomposition products in gas insulated switchgear
CN108956694A (zh) 一种检测耦合燃烧中生物质与煤燃烧比例的装置及方法
CN104280369A (zh) 一种高效、准确检测工业碳酸钙主含量的方法
CN111855351A (zh) 一种沸石粉中总砷含量的测定方法
CN103940768B (zh) 采用零气前处理测量固态碳激光碳同位素的装置及方法
Cao et al. Analysis of hydrogen isotopes with quadrupole mass spectrometry
CN103257112A (zh) 一种测定纯Hf中痕量元素钾的方法
CN203758975U (zh) 基于可控等值比法模拟卷烟燃吸的分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018437833

Country of ref document: AU

Date of ref document: 20181127

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18930832

Country of ref document: EP

Kind code of ref document: A1