WO2020034958A1 - 一种基于生物基质的可降解包装材料的制备工艺 - Google Patents

一种基于生物基质的可降解包装材料的制备工艺 Download PDF

Info

Publication number
WO2020034958A1
WO2020034958A1 PCT/CN2019/100423 CN2019100423W WO2020034958A1 WO 2020034958 A1 WO2020034958 A1 WO 2020034958A1 CN 2019100423 W CN2019100423 W CN 2019100423W WO 2020034958 A1 WO2020034958 A1 WO 2020034958A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
packaging material
added
solution
preparing
Prior art date
Application number
PCT/CN2019/100423
Other languages
English (en)
French (fr)
Inventor
周璐
Original Assignee
周璐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 周璐 filed Critical 周璐
Publication of WO2020034958A1 publication Critical patent/WO2020034958A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • C08B31/08Ethers
    • C08B31/12Ethers having alkyl or cycloalkyl radicals substituted by heteroatoms, e.g. hydroxyalkyl or carboxyalkyl starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/04Starch derivatives
    • C08J2303/08Ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Definitions

  • the invention belongs to the field of packaging materials, and relates to a process for preparing a degradable packaging material based on a biological matrix.
  • Packaging bags are widely used due to their convenience.
  • Traditional packaging bags are made of polyethylene materials to prevent leakage and stretch, but polyethylene materials are difficult to degrade and cause environmental pollution.
  • starch-modified packaging materials which can not only achieve degradability, but also be edible and pollution-free.
  • starch-based packaging materials have weak resistance to stretching and are susceptible to water penetration. , Can only be used to package edible products for confectionery, but cannot meet the demand for large packaging bags.
  • starch is modified by adding a reinforcing agent, and the hydroxyl groups in the reinforcing agent and the hydroxyl groups in the starch pass through the molecule. The combination of interaction forces can achieve the stability of starch molecules, which can improve the resistance of starch to stretching, but the resistance to stretching is still low, and the resistance to penetration is reduced when used for a long time.
  • the purpose of the present invention is to provide a bio-matrix-based degradable packaging material preparation process.
  • the prepared packaging material has a tensile strength of 39.57 MPa and a breaking elongation of the packaging material of 156.7%, which can be used for various packaging. And it can reach a degradation rate of 92.3% after 30 days of degradation in the culture medium, to achieve rapid degradation of the packaging bag, and the packaging bag still has no leakage when it is filled with water and oil for 10 days, which solves the problem of the traditional modified starch packaging materials
  • the problem is that the drawing ability is still low, and the anti-penetration ability is reduced when using for a long time.
  • the terminal amino group at the branched end of the modified starch chain of the present invention is crosslinked by formaldehyde and the amino group of chitosan, so that the entire starch chain is crosslinked into a network structure, so that the starch molecular chains are fixed, thereby reducing the fluidity of the starch molecules, so that The tensile strength of the packaging material prepared by the cross-linked starch is improved.
  • the entire molecule is arranged in a network structure, which further enhances the flexibility of the prepared film.
  • the hydroxyl groups in the starch are complexed with the aluminate.
  • Triisopropyl ester is inserted between the cross-linked starch molecular chains through complexation, and the internal structure of the cross-linked starch molecules is stabilized through chemical bonding, which further improves the tensile strength of the prepared packaging material, which solves the problem.
  • the triisopropyl aluminate added in the starch modification process of the present invention is complexed with the hydroxyl group in the cross-linked starch molecule. Since the triisopropyl aluminate forms a three-sided double-pyramid structure after complexation, it has hydrophobicity, which makes the entire network
  • the modified starch molecules are hydrophobic inside, and because the chitosan itself has a certain degree of hydrophobicity, the network structure of the modified starch molecules and the inside of the network structure have a certain degree of hydrophobicity.
  • the prepared packaging material has high hydrophobicity and can effectively prevent water seepage of the packaging material.
  • a preparation process of a bio-matrix-based degradable packaging material is as follows:
  • the first step take a certain amount of corn starch and add it to an aqueous solution at a temperature of 50-60 ° C. After stirring for 30-40 minutes, the starch liquid is obtained; the amylose in corn starch is dissolved in hot water, and the amylopectin is Partially dissolved in hot water; add 17-18mL of water per gram of corn starch;
  • the prepared modified starch liquid is put into a reaction container, and the reaction is stirred at 90-95 ° C for 20-30 minutes to obtain a modified gelatinized starch liquid; at this time, the undissolved amylopectin is gelatinized. , So that the adhesive property of the entire modified starch solution is improved, so that water molecules can maintain a large activity, so that the tensile strength and elongation at break of the prepared starch film are improved;
  • a certain amount of chitosan is dissolved in acetic acid, and triisopropyl aluminate is added thereto. After stirring and dissolving, it is added to the modified gelatinized starch solution, and the temperature is raised to 60-70 ° C, and then slowly dripped into it. Add formaldehyde and stir vigorously while adding dropwise. After the dropwise addition is complete, stir the reaction at a constant temperature for 3-4 hours to obtain a paste-like starch glue.
  • the specific reaction structure is as follows. Each gram of chitosan is dissolved in 10-12 mL of acetic acid.
  • the molecules are arranged in a network structure, so that the flexibility of the prepared membrane is enhanced; at the same time, hydroxyl groups are generated when the epoxy group is opened, and the starch chain itself contains a large number of hydroxyl groups, and a complexation occurs between the hydroxyl groups and triisopropyl aluminate ,
  • Aluminum hybrid sp 3 d orbital Form a three-sided double-pyramid structure make it change from hydrophilicity to hydrophobicity, and at the same time after being complexed by the hydroxyl groups in starch, triisopropyl aluminate is inserted into the cross-linked starch molecular chain through complexation.
  • the internal structure of the cross-linked starch molecules is made more stable through chemical bonds, thereby further improving the mechanical strength of the membranes made from the cross-linked starch, while the traditional starch modification is only through the introduction of hydroxyl functional groups, through the hydroxyl and The hydroxyl groups in the modified starch are connected by intermolecular forces, thereby reducing the fluidity of the starch, but the intermolecular forces are weaker than the cross-linking forces, and the starch after cross-linking still contains hydrophilic
  • the hydroxyl group of the group makes the film prepared from starch still have a certain hydrophilicity, which in turn causes the packaging material prepared by the film to leak water.
  • the triisopropyl aluminate and crosslinked starch molecules added in the starch modification process of the present invention Hydroxyl complex, because triisopropyl aluminate forms a three-sided double-pyramid structure after complexation, and has hydrophobicity, making the whole network modified starch molecule hydrophobic inside, and due to chitosan itself It has a certain degree of hydrophobicity, so that the network structure of the modified starch molecule and the inside of the network structure have a certain degree of hydrophobicity, so that the packaging material prepared from the modified starch has a high hydrophobic capacity, which can effectively prevent the packaging material Water seepage
  • the pasty starch glue prepared in the fourth step is degassed under vacuum, poured into a container, and then dried by a casting method to form a film;
  • the prepared film is removed, cut and sealed to make a packaging bag.
  • the tensile strength of the packaging material of the present invention reaches 39.57 MPa, and at the same time, the elongation at break of the packaging material reaches 156.7%, which can be used for various packaging, and can reach a degradation rate of 92.3% after 30 days of degradation in the culture medium to achieve packaging
  • the rapid degradation of the bag, and the packaging bag still does not leak when it is filled with water and oil for 10 days, which solves the problem that the traditional modified starch packaging material still has a low resistance to stretching and stretching, and at the same time, the resistance to penetration decreases. .
  • the terminal amino group at the branched end of the modified starch chain of the present invention is crosslinked by formaldehyde and the amino group of chitosan, so that the entire starch chain is crosslinked into a network structure, so that the starch molecular chains are fixed, thereby reducing the fluidity of the starch molecules, so that The tensile strength of the packaging material prepared by the cross-linked starch is improved.
  • the entire molecule is arranged in a network structure, which further enhances the flexibility of the prepared film.
  • the hydroxyl groups in the starch are complexed with the aluminate.
  • Triisopropyl ester is inserted between the cross-linked starch molecular chains through complexation, and the internal structure of the cross-linked starch molecules is stabilized through chemical bonding, which further improves the tensile strength of the prepared packaging material, which solves the problem.
  • the triisopropyl aluminate added in the starch modification process of the present invention is complexed with the hydroxyl group in the cross-linked starch molecule. Since the triisopropyl aluminate forms a three-sided double-pyramid structure after complexation, it has hydrophobicity, which makes the entire network
  • the modified starch molecules are hydrophobic inside, and because the chitosan itself has a certain degree of hydrophobicity, the network structure of the modified starch molecules and the inside of the network structure have a certain degree of hydrophobicity.
  • the prepared packaging material has high hydrophobicity and can effectively prevent water seepage of the packaging material.
  • FIG. 1 is a schematic structural diagram of a synthetic process of degradable packaging materials according to the present invention
  • FIG. 2 is a schematic diagram of a partial molecular structure in FIG. 1.
  • a preparation process of a bio-matrix-based degradable packaging material is as follows:
  • the prepared modified starch liquid is put into a reaction container, and the reaction is stirred at 90-95 ° C for 20-30 minutes to obtain a modified gelatinized starch liquid;
  • the pasty starch glue prepared in the fourth step is degassed under vacuum, poured into a container, and then dried by a casting method to form a film;
  • the prepared film is removed, cut and sealed to make a packaging bag.
  • a preparation process of a bio-matrix-based degradable packaging material is as follows:
  • the prepared modified starch liquid is put into a reaction container, and the reaction is stirred at 90-95 ° C for 20-30 minutes to obtain a modified gelatinized starch liquid;
  • the fourth step take 85g of chitosan and dissolve it in 960mL of acetic acid, add 68g of triisopropyl aluminate, stir and dissolve, add 1L of modified starch solution, warm to 60-70 °C, and then slowly add dropwise 150mL of formaldehyde, stirring vigorously while adding dropwise, after the dropwise addition is complete, the reaction is stirred at a constant temperature for 3-4 hours to obtain a paste-like starch gum;
  • the pasty starch glue prepared in the fourth step is defoamed under vacuum, poured into a container, and then dried by a casting method to form a film;
  • the prepared film is removed, cut and sealed to make a packaging bag.
  • a preparation process of a bio-matrix-based degradable packaging material is as follows:
  • the prepared starch solution is put into a reaction container, and the reaction is stirred at 90-95 ° C for 20-30 minutes to obtain a gelatinized starch solution;
  • the gelatinized starch liquid prepared in the second step is defoamed under vacuum, poured into a container, and then dried by a casting method to form a film;
  • the prepared film is removed and cut and sealed to make a packaging bag.
  • a preparation process of a bio-matrix-based degradable packaging material is as follows:
  • the prepared modified starch liquid is put into a reaction container, and the reaction is stirred at 90-95 ° C for 20-30 minutes to obtain a modified gelatinized starch liquid;
  • the modified gelatinized starch liquid prepared in the third step is defoamed under vacuum, poured into a container, and then dried by a casting method to form a film;
  • the prepared film is removed, cut and sealed to make a packaging bag.
  • a preparation process of a bio-matrix-based degradable packaging material is as follows:
  • the starch solution is put into a reaction container, and the reaction is stirred at 90-95 ° C for 20-30 minutes to obtain a gelatinized starch solution;
  • chitosan is dissolved in 800 mL of acetic acid, and 62.4 g of triisopropyl aluminate is added thereto.
  • 1 L of modified gelatinized starch solution is added, the temperature is raised to 60-70 ° C, and then 140 mL of formaldehyde was slowly added dropwise and vigorously stirred while being dropped. After the dropwise addition was completed, the reaction was stirred at a constant temperature for 3-4 hours to obtain a paste-like starch gum;
  • the pasty starch glue prepared in the fourth step is degassed under vacuum, poured into a container, and then dried by a casting method to form a film;
  • the prepared film is removed, cut and sealed to make a packaging bag.
  • a preparation process of a bio-matrix-based degradable packaging material is as follows:
  • the starch solution is put into a reaction container, and the reaction is stirred at 90-95 ° C for 20-30 minutes to obtain a gelatinized starch solution;
  • glycerin is added to the gelatinized starch solution prepared in the second step, and the mixture is stirred and mixed uniformly, degassed under vacuum, poured into a container, and then dried by a casting method to form a film;
  • the prepared film is taken off, cut and sealed to make a packaging bag.
  • Example 1-2 A tensile tester was used to test the packaging bags prepared in Example 1-2 and Comparative Examples 1-4 and the existing polyethylene plastic packaging bags respectively. Each group of samples was repeatedly tested 5 times, and the average value of the experimental results was taken. The results are shown in Table 1.
  • the modified colloid prepared by amino modification and then gelatinization, and then cross-linked with chitosan has a network skeleton, and the hydroxyl group in the network skeleton and triisopropyl aluminate The complexation occurs, so that triisopropyl aluminate is inserted between the cross-linked starch molecular chains, and the internal structure of the cross-linked starch molecules is more stable through chemical bonding, so the modified colloid is cross-linked into a whole.
  • the strong skeleton structure and internal complex connection make the colloidal packaging material's tensile strength as high as 39.57MPa, and the strength almost reaches the strength of the packaging material made of pure polyethylene; and the breaking elongation of the packaging bag is as high as 156.7 %; As shown in Comparative Example 3, when starch is first gelatinized and then modified, the tensile strength and elongation at break are reduced compared to starch modified and gelatinized first.
  • the primary alcohol groups are combined by intermolecular forces, which makes the gelatinized starch low in chlorination reaction with epichlorohydrin, thereby reducing the content of amino groups at the ends of the modified starch chain, which makes the late stage Crosslinked chitosan intensity decreases, thereby affecting the tensile strength of the packaging material and the elongation at break.
  • triisopropyl aluminate added in the starch modification process is complexed with the hydroxyl group in the cross-linked starch molecule. Since triisopropyl aluminate forms a three-sided double-pyramid structure after complexation, it has hydrophobicity and The oleophobicity makes the entire network of modified starch molecules hydrophobic and oleophobic, and because chitosan itself has a certain degree of hydrophobicity and oleophobicity, the network structure of the modified starch molecules and the interior of the network structure Both have a certain degree of hydrophobicity and oleophobicity, so that the packaging material prepared from modified starch has a higher hydrophobic and oleophobic capacity, and can effectively prevent water and oil leakage of the packaging material.
  • the concentration of 4% sugar water in the culture is raised to 35-40 ° C.
  • Distiller koji is added to it, cultured for 72 hours, and then filtered to obtain a culture solution;
  • the culture solution contains microorganisms such as mold, lactic acid bacteria, Bacillus subtilis; mold and spore Bacillus can secrete amylase, which can simultaneously degrade starch and chitosan chains in packaging materials;
  • the packaging material prepared by cross-linking with chitosan has a good degradation ability, which can reach a degradation rate of 92.3% in 30 days, and a faster degradation rate, which can degrade 76.1% in 20 days.
  • the starch packaging materials are almost the same, because the culture medium contains microorganisms such as mold, lactic acid bacteria, and Bacillus subtilis; mold and Bacillus can secrete amylase, and amylase can simultaneously achieve the simultaneous degradation of starch chains and chitosan chains in packaging materials; Furthermore, the starch chain and the chitosan chain of the chitosan crosslinked starch are simultaneously broken, so that the network skeleton structure is broken, and the degradation efficiency is accelerated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wrappers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

一种基于生物基质的可降解包装材料的制备工艺,具体制备过程如下:第一步,配置淀粉液;第二步制备改性淀粉液;第三步,制备改性糊化淀粉液;第四步,制备糊状的淀粉胶液;第五步,将第四步中制备的糊状淀粉胶液在真空下脱泡,倒入容器中,然后通过流延法烘干成膜;第六步,将制备的膜取下后裁剪封口,制成包装袋。所得的包装材料抗拉伸强度达到39.57MPa,同时包装材料的断裂伸长率达到156.7%,可以用于各种包装,并且在培养基中降解30天后可达到92.3%的降解率,实现包装袋的快速降解,并且包装袋在装入水和油10天时仍没有渗漏,解决了传统改性淀粉包装材料抗伸拉能力仍然较低,同时在使用较长时间时抗渗透能力降低的问题。

Description

一种基于生物基质的可降解包装材料的制备工艺 技术领域
本发明属于包装材料领域,涉及一种基于生物基质的可降解包装材料的制备工艺。
背景技术
包装袋由于其便利性得到大家的广泛使用,传统的包装袋为了实现防渗漏、抗伸拉采用聚乙烯材料,但是聚乙烯材料很难降解,造成环境的污染。
近年来可降解材料被广泛关注,其中应用最广泛的属于淀粉改性的包装材料,不仅能够实现可降解性,同时可食无污染,但是淀粉制备的包装材料抗伸拉能力弱,并且容易渗水,只能用来包装糖果类的可食物品,对于大的包装袋则不能满足需求,现有的技术中通过添加增强剂对淀粉进行改性,增强剂中的羟基与淀粉中的羟基通过分子间作用力结合,能够实现淀粉分子的稳定,进而能够提高淀粉的抗伸拉行,但是抗伸拉能力仍然较低,同时在使用较长时间时抗渗透能力降低。
发明内容
本发明的目的在于提供一种基于生物基质的可降解包装材料的制备工艺,制备的包装材料抗拉伸强度达到39.57MPa,同时包装材料的断裂伸长率达到156.7%,可以用于各种包装,并且在培养基中降解30天后可达到92.3%的降解率,实现包装袋的快速降解,并且包装袋在装入水和油10天时仍没有渗漏,解决了传统改性淀粉包装材料抗伸拉能力仍然较低,同时在使用较长时间时抗渗透能力降低的问题。
本发明改性淀粉链支链端的端氨基通过甲醛与壳聚糖的氨基交联,使得整 个淀粉链交联成网状结构,使得淀粉分子链之间固定,进而降低淀粉分子的流动性,使得交联后的淀粉所制得的包装材料抗伸拉强度提高,由于整个分子成网状结构排布,进而使得制备的膜柔韧性增强,同时通过淀粉中的羟基被络合作用后,铝酸三异丙酯通过络合作用插接于交联后的淀粉分子链之间,通过化学键使得交联后的淀粉分子内部结构更稳定,进而使得制备的包装材料抗伸拉强度进一步提高,解决了传统的淀粉改性只是通过引入羟基功能基团,通过羟基与改性淀粉中的羟基之间通过分子间作用力连接,进而降低淀粉的流动性,但是分子间作用力与交联作用相比,作用力较弱,并且交联后的淀粉中仍含有亲水基团羟基,使得淀粉制备的膜仍有一定的亲水性,进而造成膜制备的包装材料渗水的问题。
本发明在淀粉改性过程中加入的铝酸三异丙酯与交联淀粉分子中的羟基络合,由于络合后铝酸三异丙酯形成三方双锥结构,具有疏水性,使得整个网状改性淀粉分子内部具有疏水性,并且由于壳聚糖本身就具有一定的疏水性,使得改性淀粉分子的网状骨架结构和网状结构内部均具有一定的疏水性,使得由改性淀粉制备的包装材料具有较高的疏水能力,能够有效的防止包装材料的渗水。
本发明的目的可以通过以下技术方案实现:
一种基于生物基质的可降解包装材料的制备工艺,具体制备过程如下:
第一步,取一定量的玉米淀粉加入温度为50-60℃的水溶液中,搅拌30-40min混合均匀后,得到淀粉液;玉米淀粉中的直链淀粉溶于热水中,而支链淀粉则部分溶于热水中;每克玉米淀粉加入17-18mL水中;
第二步,向淀粉液中加入环氧氯丙烷,调节温度至60℃,同时通过氢氧化钠溶液调节溶液的酸碱度为pH=9,搅拌反应4h后升温至70℃反应2h,然后向其 中加入尿素,恒温反应2-3h,得到改性淀粉液,反应式如下所示,淀粉的环状结构上本身含有大量的羟基,通过与环氧氯丙烷反应氯代反应,使得淀粉链上引入环氧基团,然后再加入尿素,通过尿素的两端的氨基与环氧基团进行开环反应是,使得改性淀粉链的支链端引入端氨基,同时环氧基团开环时生成羟基;每升淀粉溶液中加入环氧氯丙烷60-65mL,加入尿素23-27g;
第三步,将制备的改性淀粉液放入反应容器中,在90-95℃下搅拌反应20-30min,得到改性糊化淀粉液;此时将未溶解反应的支链淀粉进行糊化,使得整个改性淀粉液的粘结性能提高,进而使得水分子能够保持较大的活性,使得制备的淀粉膜的抗拉强度和断裂伸长率提高;
Figure PCTCN2019100423-appb-000001
第四步,取一定量的壳聚糖溶于醋酸中,向其中加入铝酸三异丙酯,搅拌溶解后加入改性糊化淀粉液中,升温至60-70℃,然后向其中缓慢滴加甲醛,边滴加边剧烈搅拌,滴加完全后恒温搅拌反应3-4h,得到糊状的淀粉胶液,具体反应结构式如下,其中每克壳聚糖溶于10-12mL醋酸中,每克壳聚糖中加入铝酸三异丙酯780-800mg;每升改性淀粉液中加入壳聚糖80-85g,加入甲醛140-150mL;改性淀粉链支链端的端氨基通过甲醛与壳聚糖的氨基交联,使得整 个淀粉链交联成网状结构,使得淀粉分子链之间固定,进而降低淀粉分子的流动性,使得交联后的淀粉所制得的膜机械强度提高;由于整个分子成网状结构排布,进而使得制备的膜柔韧性增强;同时环氧基团开环时生成羟基,并且淀粉链本身含有大量羟基,羟基与铝酸三异丙酯之间发生络合作用,铝以sp 3d轨道杂化形成三方双锥结构,使其由亲水性变为疏水性,同时通过淀粉中的羟基被络合作用后,铝酸三异丙酯通过络合作用插接于交联后的淀粉分子链之间,通过化学键使得交联后的淀粉分子内部结构更稳定,进而使得交联后的淀粉所制得的膜机械强度进一步提高,而传统的淀粉改性只是通过引入羟基功能基团,通过羟基与改性淀粉中的羟基之间通过分子间作用力连接,进而降低淀粉的流动性,但是分子间作用力与交联作用相比,作用力较弱,并且交联后的淀粉中仍含有亲水基团羟基,使得淀粉制备的膜仍有一定的亲水性,进而造成膜制备的包装材料渗水,而本发明在淀粉改性过程中加入的铝酸三异丙酯与交联淀粉分子中的羟基络合,由于络合后铝酸三异丙酯形成三方双锥结构,具有疏水性,使得整个网状改性淀粉分子内部具有疏水性,并且由于壳聚糖本身就具有一定的疏水性,使得改性淀粉分子的网状骨架结构和网状结构内部均具有一定的疏水性,使得由改性淀粉制备的包装材料具有较高的疏水能力,能够有效的防止包装材料的渗水;
Figure PCTCN2019100423-appb-000002
其中
Figure PCTCN2019100423-appb-000003
第五步,将第四步中制备的糊状淀粉胶液在真空下脱泡,倒入容器中,然后通过流延法烘干成膜;
第六步,将制备的膜取下后裁剪封口,制成包装袋。
本发明的有益效果:
本发明的包装材料抗拉伸强度达到39.57MPa,同时包装材料的断裂伸长率达到156.7%,可以用于各种包装,并且在培养基中降解30天后可达到92.3%的降解率,实现包装袋的快速降解,并且包装袋在装入水和油10天时仍没有渗漏,解决了传统改性淀粉包装材料抗伸拉能力仍然较低,同时在使用较长时间时抗渗透能力降低的问题。
本发明改性淀粉链支链端的端氨基通过甲醛与壳聚糖的氨基交联,使得整个淀粉链交联成网状结构,使得淀粉分子链之间固定,进而降低淀粉分子的流动性,使得交联后的淀粉所制得的包装材料抗伸拉强度提高,由于整个分子成网状结构排布,进而使得制备的膜柔韧性增强,同时通过淀粉中的羟基被络合作用后,铝酸三异丙酯通过络合作用插接于交联后的淀粉分子链之间,通过化学键使得交联后的淀粉分子内部结构更稳定,进而使得制备的包装材料抗伸拉强度进一步提高,解决了传统的淀粉改性只是通过引入羟基功能基团,通过羟 基与改性淀粉中的羟基之间通过分子间作用力连接,进而降低淀粉的流动性,但是分子间作用力与交联作用相比,作用力较弱,并且交联后的淀粉中仍含有亲水基团羟基,使得淀粉制备的膜仍有一定的亲水性,进而造成膜制备的包装材料渗水的问题。
本发明在淀粉改性过程中加入的铝酸三异丙酯与交联淀粉分子中的羟基络合,由于络合后铝酸三异丙酯形成三方双锥结构,具有疏水性,使得整个网状改性淀粉分子内部具有疏水性,并且由于壳聚糖本身就具有一定的疏水性,使得改性淀粉分子的网状骨架结构和网状结构内部均具有一定的疏水性,使得由改性淀粉制备的包装材料具有较高的疏水能力,能够有效的防止包装材料的渗水。
附图说明
为了便于本领域技术人员理解,下面结合附图对本发明作进一步的说明。
图1为本发明可降解包装材料合成过程结构示意图;
图2为图1中的局部分子结构示意图。
具体实施方式
结合图1和图2通过实施例和对比例进行详细说明;
实施例1:
一种基于生物基质的可降解包装材料的制备工艺,具体制备过程如下:
第一步,取1kg玉米淀粉加入17L温度为50-60℃的水溶液中,搅拌30-40min混合均匀后,得到淀粉液;
第二步,向1L淀粉液中加入60mL环氧氯丙烷,调节温度至60℃,同时通过氢氧化钠溶液调节溶液的酸碱度为pH=9,搅拌反应4h后升温至70℃反应2h,然后向其中加入23g尿素,恒温反应2-3h,得到改性淀粉液;
第三步,将制备的改性淀粉液放入反应容器中,在90-95℃下搅拌反应20-30min,得到改性糊化淀粉液;
第四步,取80g壳聚糖溶于800mL醋酸中,向其中加入62.4g铝酸三异丙酯,搅拌溶解后加入1L改性淀粉液中,升温至60-70℃,然后向其中缓慢滴加140mL甲醛,边滴加边剧烈搅拌,滴加完全后恒温搅拌反应3-4h,得到糊状的淀粉胶液;
第五步,将第四步中制备的糊状淀粉胶液在真空下脱泡,倒入容器中,然后通过流延法烘干成膜;
第六步,将制备的膜取下后裁剪封口,制成包装袋。
实施例2:
一种基于生物基质的可降解包装材料的制备工艺,具体制备过程如下:
第一步,取1kg玉米淀粉加入18L温度为50-60℃的水溶液中,搅拌30-40min混合均匀后,得到淀粉液;
第二步,向1L淀粉液中加入65mL环氧氯丙烷,调节温度至60℃,同时通过氢氧化钠溶液调节溶液的酸碱度为pH=9,搅拌反应4h后升温至70℃反应2h,然后向其中加入27g尿素,恒温反应2-3h,得到改性淀粉液;
第三步,将制备的改性淀粉液放入反应容器中,在90-95℃下搅拌反应20-30min,得到改性糊化淀粉液;
第四步,取85g壳聚糖溶于960mL醋酸中,向其中加入68g铝酸三异丙酯,搅拌溶解后加入1L改性淀粉液中,升温至60-70℃,然后向其中缓慢滴加150mL甲醛,边滴加边剧烈搅拌,滴加完全后恒温搅拌反应3-4h,得到糊状的淀粉胶液;
第五步,将第四步中制备的糊状淀粉胶液在真空下脱泡,倒入容器中,然 后通过流延法烘干成膜;
第六步,将制备的膜取下后裁剪封口,制成包装袋。
对比例1:
一种基于生物基质的可降解包装材料的制备工艺,具体制备过程如下:
第一步,取1kg玉米淀粉加入17L温度为50-60℃的水溶液中,搅拌30-40min混合均匀后,得到淀粉液;
第二步,将制备的淀粉液放入反应容器中,在90-95℃下搅拌反应20-30min,得到糊化淀粉液;
第三步,将第二步中制备的糊化淀粉液在真空下脱泡,倒入容器中,然后通过流延法烘干成膜;
第四步,将制备的制备的膜取下后裁剪封口,制成包装袋。
对比例2:
一种基于生物基质的可降解包装材料的制备工艺,具体制备过程如下:
第一步,取1kg玉米淀粉加入17L温度为50-60℃的水溶液中,搅拌30-40min混合均匀后,得到淀粉液;
第二步,向1L淀粉液中加入60mL环氧氯丙烷,调节温度至60℃,同时通过氢氧化钠溶液调节溶液的酸碱度为pH=9,搅拌反应4h后升温至70℃反应2h,然后向其中加入23g尿素,恒温反应2-3h,得到改性淀粉液;
第三步,将制备的改性淀粉液放入反应容器中,在90-95℃下搅拌反应20-30min,得到改性糊化淀粉液;
第四步,将第三步中制备的改性糊化淀粉液在真空下脱泡,倒入容器中,然后通过流延法烘干成膜;
第五步,将制备的膜取下后裁剪封口,制成包装袋。
对比例3:
一种基于生物基质的可降解包装材料的制备工艺,具体制备过程如下:
第一步,取1kg玉米淀粉加入17L温度为50-60℃的水溶液中,搅拌30-40min混合均匀后,得到淀粉液;
第二步,将淀粉液放入反应容器中,在90-95℃下搅拌反应20-30min,得到糊化淀粉液;
第四步,向1L糊化淀粉液中加入60mL环氧氯丙烷,调节温度至60℃,同时通过氢氧化钠溶液调节溶液的酸碱度为pH=9,搅拌反应4h后升温至70℃反应2h,然后向其中加入23g尿素,恒温反应2-3h,得到改性糊化淀粉液;
第四步,取80g壳聚糖溶于800mL醋酸中,向其中加入62.4g铝酸三异丙酯,搅拌溶解后加入1L改性糊化淀粉液中,升温至60-70℃,然后向其中缓慢滴加140mL甲醛,边滴加边剧烈搅拌,滴加完全后恒温搅拌反应3-4h,得到糊状的淀粉胶液;
第五步,将第四步中制备的糊状淀粉胶液在真空下脱泡,倒入容器中,然后通过流延法烘干成膜;
第六步,将制备的膜取下后裁剪封口,制成包装袋。
对比例4:
一种基于生物基质的可降解包装材料的制备工艺,具体制备过程如下:
第一步,取1kg玉米淀粉加入17L温度为50-60℃的水溶液中,搅拌30-40min混合均匀后,得到淀粉液;
第二步,将淀粉液放入反应容器中,在90-95℃下搅拌反应20-30min,得到糊化淀粉液;
第三步,向第二步中制备的糊化淀粉液中加入甘油,搅拌混合均匀后在真 空下脱泡,倒入容器中,然后通过流延法烘干成膜;
第四步,将制备的膜取下后裁剪封口,制成包装袋。
实施例3
将实施例1-2和对比例1-4制备的包装袋和现有的聚乙烯塑料包装袋进行力学性能测试:
用拉力试验机对实施例1-2和对比例1-4制备的包装袋和现有的聚乙烯塑料包装袋分别进行拉力测试,每组试样重复测试5次,取实验结果的平均值,结果如表1所示;
表1实施例1-2和对比例1-4制备的包装袋和现有的聚乙烯塑料包装袋力学性能测试结果
Figure PCTCN2019100423-appb-000004
由表1可知,先经过氨基改性后然后进行糊化,接着与壳聚糖进行交联络合制备的改性胶体具有网状骨架,并且网状骨架中羟基与铝酸三异丙酯之间发生络合作用,使得铝酸三异丙酯插接于交联后的淀粉分子链之间,通过化学键使得交联后的淀粉分子内部结构更稳定,因此改性后的胶体整体交联成成牢固的骨架结构,内部络合连接,使得该胶体制备的包装材料的抗拉伸强度高达39.57MPa,强度几乎快达到纯聚乙烯制备的包装材料的强度;并且包装袋的断裂伸长率高达156.7%;如对比例3所示,当淀粉先糊化后改性时拉伸强度和断裂伸长率与先改性后糊化的淀粉相比有所降低,由于淀粉糊化过程中淀粉链上的伯醇基通过分子间作用力结合,使得糊化后的淀粉在与环氧氯丙烷进行氯代反应式效率低,进而使得改性后的淀粉链端部的端氨基含量降低,使得后期与 壳聚糖的交联强度降低,进而影响包装材料的拉伸强度和断裂伸长率。
实施例4:
将实施例1-2和对比例1-4制备的包装袋进行渗水和渗油性能测试:
将制备的各组包装袋中均分别装入水和植物油,分别放置1天、5天和10天然后观察包装袋外部水和油的渗透情况,结构如表2所示;
表2实施例1-2和对比例1-4制备的包装袋进行渗水和渗油性能测试结果
Figure PCTCN2019100423-appb-000005
由表2可知,在淀粉改性过程中加入的铝酸三异丙酯与交联淀粉分子中的羟基络合,由于络合后铝酸三异丙酯形成三方双锥结构,具有疏水性和疏油性,使得整个网状改性淀粉分子内部具有疏水性和疏油性,并且由于壳聚糖本身就具有一定的疏水性和疏油性,使得改性淀粉分子的网状骨架结构和网状结构内部均具有一定的疏水性和疏油性,使得由改性淀粉制备的包装材料具有较高的疏水疏油能力,能够有效的防止包装材料的渗水和渗油。
实施例5:
将实施例1-2和对比例1-4制备的包装袋进行降解性能的测试
①培养配置浓度为4%的糖水,升温至35-40℃,向其中加入酒曲,培养72h,然后进行过滤得到培养液;其中培养液中含有霉菌、乳酸菌、枯草芽孢杆菌等微生物;霉菌和芽孢杆菌能够分泌淀粉酶,淀粉酶能够同时实现对包装材料中淀粉链和壳聚糖链的同时降解;
②将实施例1-2和对比例1-4制备的包装袋均剪裁成5cm×3cm的小块分别放入培养液中,同时称取放入前各个试样的质量计为m 1
③将各个试样在培养液中分别放置5天、10天、15天、20天和30天,分别称取放置不同天数后待实验样品的质量计为m 2
④计算降解不同天数后个试样的失重率=(m 1-m 2)/m 1
实施例1-2和对比例1-4制备的包装袋试样降解不同天数后的失重率如表3所示:
表3:不同试样降解不同天数后的失重率(%)
Figure PCTCN2019100423-appb-000006
由表3可知,通过壳聚糖交联后制备的包装材料降解能力较好,在30天就能达到92.3%的降解率,同时降解速率较快,在20天时就能降解76.1%,与全淀粉包装材料几乎相同,由于培养液中含有霉菌、乳酸菌、枯草芽孢杆菌等微生物;霉菌和芽孢杆菌能够分泌淀粉酶,淀粉酶能够同时实现对包装材料中淀粉链和壳聚糖链的同时降解;进而实现壳聚糖交联淀粉的淀粉链和壳聚糖链同时断开,使得网状骨架结构断开,加快降解效率。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没 有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (5)

  1. 一种基于生物基质的可降解包装材料的制备工艺,其特征在于,具体制备过程如下:
    第一步,取一定量的玉米淀粉加入温度为50-60℃的水溶液中,搅拌30-40min混合均匀后,得到淀粉液;
    第二步,向淀粉液中加入环氧氯丙烷,调节温度至60℃,同时通过氢氧化钠溶液调节溶液的酸碱度为pH=9,搅拌反应4h后升温至70℃反应2h,然后向其中加入尿素,恒温反应2-3h,得到改性淀粉液;
    第三步,将制备的改性淀粉液放入反应容器中,在90-95℃下搅拌反应20-30min,得到改性糊化淀粉液;
    第四步,取一定量的壳聚糖溶于醋酸中,向其中加入铝酸三异丙酯,搅拌溶解后加入改性糊化淀粉液中,升温至60-70℃,然后向其中缓慢滴加甲醛,边滴加边剧烈搅拌,滴加完全后恒温搅拌反应3-4h,得到糊状的淀粉胶液;
    第五步,将第四步中制备的糊状淀粉胶液在真空下脱泡,倒入容器中,然后通过流延法烘干成膜;
    第六步,将制备的膜取下后裁剪封口,制成包装袋。
  2. 根据权利要求1所述的一种基于生物基质的可降解包装材料的制备工艺,其特征在于,第一步中每克玉米淀粉加入17-18mL水中。
  3. 根据权利要求1所述的一种基于生物基质的可降解包装材料的制备工艺,其特征在于,第二步中每升淀粉溶液中加入环氧氯丙烷60-65mL,加入尿素23-27g。
  4. 根据权利要求1所述的一种基于生物基质的可降解包装材料的制备工艺,其特征在于,第四步中每克壳聚糖溶于10-12mL醋酸中,每克壳聚糖中加 入铝酸三异丙酯780-800mg;每升改性淀粉液中加入壳聚糖80-85g,加入甲醛140-150mL。
  5. 根据权利要求1所述的一种基于生物基质的可降解包装材料的制备工艺,其特征在于,该包装材料的抗拉伸强度达到39.57MPa,同时包装材料的断裂伸长率达到156.7%。
PCT/CN2019/100423 2018-08-14 2019-08-13 一种基于生物基质的可降解包装材料的制备工艺 WO2020034958A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810920450 2018-08-14
CN201810920450.0 2018-08-14

Publications (1)

Publication Number Publication Date
WO2020034958A1 true WO2020034958A1 (zh) 2020-02-20

Family

ID=65059094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100423 WO2020034958A1 (zh) 2018-08-14 2019-08-13 一种基于生物基质的可降解包装材料的制备工艺

Country Status (2)

Country Link
CN (1) CN109232999A (zh)
WO (1) WO2020034958A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109232999A (zh) * 2018-08-14 2019-01-18 深圳市心版图科技有限公司 一种基于生物基质的可降解包装材料的制备工艺
CN110304960A (zh) * 2019-06-20 2019-10-08 杨秀丽 一种玉米苗后复合除草剂及其应用
CN110256586B (zh) * 2019-07-11 2021-08-27 江南大学 一种可降解的环氧改性淀粉及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1640928A (zh) * 2004-01-02 2005-07-20 王光明 全降解环保薄膜材料
WO2012010401A2 (en) * 2010-07-21 2012-01-26 Billerud Ab Plastic compounding
CN103242561A (zh) * 2013-05-27 2013-08-14 新疆师范大学 一种以马铃薯淀粉为原料制备可降解地膜的方法
CN105968423A (zh) * 2016-06-28 2016-09-28 陈建峰 一种改性淀粉可生物降解膜的制备方法
CN106496649A (zh) * 2016-10-29 2017-03-15 袁春华 一种药田可降解功能地膜的制备方法
CN109232999A (zh) * 2018-08-14 2019-01-18 深圳市心版图科技有限公司 一种基于生物基质的可降解包装材料的制备工艺

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101671449B (zh) * 2009-09-09 2012-01-25 天津科技大学 一种可食性复合膜及其制备方法
CN104558647B (zh) * 2014-12-30 2017-05-17 宁波浩瑞印务有限公司 一种油炸食品包装膜的制造方法
CN106674613A (zh) * 2015-11-09 2017-05-17 贺州学院 一种马蹄淀粉-壳聚糖复合膜的制备方法
CN105254931A (zh) * 2015-11-20 2016-01-20 保龄宝生物股份有限公司 壳聚糖引入交联-乙酰化淀粉颗粒改善其性质的新产品的开发

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1640928A (zh) * 2004-01-02 2005-07-20 王光明 全降解环保薄膜材料
WO2012010401A2 (en) * 2010-07-21 2012-01-26 Billerud Ab Plastic compounding
CN103242561A (zh) * 2013-05-27 2013-08-14 新疆师范大学 一种以马铃薯淀粉为原料制备可降解地膜的方法
CN105968423A (zh) * 2016-06-28 2016-09-28 陈建峰 一种改性淀粉可生物降解膜的制备方法
CN106496649A (zh) * 2016-10-29 2017-03-15 袁春华 一种药田可降解功能地膜的制备方法
CN109232999A (zh) * 2018-08-14 2019-01-18 深圳市心版图科技有限公司 一种基于生物基质的可降解包装材料的制备工艺

Also Published As

Publication number Publication date
CN109232999A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2020034958A1 (zh) 一种基于生物基质的可降解包装材料的制备工艺
CN104800188B (zh) 一种药用羟丙基淀粉胶囊的制备方法
CN110917388A (zh) 可注射型组织黏附性止血改性壳聚糖材料、其水凝胶及其制备方法
CN113817194B (zh) 一种疏水热塑性可降解微晶纤维素/淀粉膜及制备方法
CN103834066A (zh) 一种用于制备淀粉胶囊的低粘淀粉胶及其制备方法和应用
CN109776883A (zh) 一种ncc/改性魔芋葡甘聚糖可降解薄膜的制备方法
CN107915848A (zh) 一种甲壳素晶须/羟丁基壳聚糖温敏水凝胶的制备方法
CN107540994A (zh) 一种可生物降解塑料薄膜的制备方法及应用
CN103087336A (zh) 氧化石墨烯/魔芋葡甘聚糖可降解复合薄膜材料的制备方法
CN110343292A (zh) 一种纤维素纳米纤维/埃洛石纳米管增强淀粉膜及其制备方法
CN105733087A (zh) 橡胶组合物及其制备方法
CN109369934A (zh) 一种阻水型淀粉膜的制备方法
CN102585265B (zh) 一种戊二醛溶液交联的明胶/pva复合膜的制备方法
CN107973881A (zh) 一种高拉伸性羟乙基纤维素/聚丙烯酰胺水凝胶的制备
AU2021105314A4 (en) An amino nanocellulose and preparation method thereof
CN106750565A (zh) 一种耐高湿改性淀粉基生物可降解薄膜及其制备方法
CN113788966A (zh) 一种纤维素基阻氧透湿抗菌保鲜膜及制备方法
CN108948436A (zh) 一种海藻酸钠-果胶改性复合膜的制备方法
CN110294853B (zh) 一种hec/pva互穿网络薄膜及其制备方法
CN102558589A (zh) 一种甲醛交联明胶/pva复合膜的制备方法
CN108928559B (zh) 一种高拉伸弹性纤维素膜的制备方法
CN105906827A (zh) 一种食品包装用海藻酸钠-聚乙烯醇-纳米二氧化硅复合膜的制备方法
CN116515172A (zh) 高阻隔双面热封再生纤维素膜及其制备方法及复合包装物
CN110408226B (zh) 一种高强度耐热食品包装膜的制备方法
CN105733109A (zh) 氨基化淀粉基纳米复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19850251

Country of ref document: EP

Kind code of ref document: A1