WO2020032235A1 - Ni基合金からなる窒化物分散型成形体 - Google Patents

Ni基合金からなる窒化物分散型成形体 Download PDF

Info

Publication number
WO2020032235A1
WO2020032235A1 PCT/JP2019/031568 JP2019031568W WO2020032235A1 WO 2020032235 A1 WO2020032235 A1 WO 2020032235A1 JP 2019031568 W JP2019031568 W JP 2019031568W WO 2020032235 A1 WO2020032235 A1 WO 2020032235A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
based alloy
less
nitride
preferably equal
Prior art date
Application number
PCT/JP2019/031568
Other languages
English (en)
French (fr)
Inventor
裕樹 池田
由夏 西面
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Publication of WO2020032235A1 publication Critical patent/WO2020032235A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • the present invention relates to a nitride-dispersed compact formed of a Ni-based alloy. More specifically, the present invention relates to a compact obtained by solidifying a powder of a Ni-based alloy.
  • Heat resistance and oxidation resistance are required for members used in high-temperature environments, such as blades and vanes of gas turbines and members for high-temperature combustion furnaces.
  • a Ni-based alloy to which elements such as Mo, W, Al, and Ti are added in a large amount is used.
  • Patent Document 1 JP-A-9-279287 discloses a powder made of a heat-resistant alloy. This alloy contains Zr and rare earth elements such as Y, Ce and La. In this alloy, Zr and the rare earth elements produce fine oxides in the powder grains. This oxide contributes to the strength of the molded article.
  • Patent Document 2 International Publication WO2009 / 1422278 discloses a Ni-based alloy for nuclear power generation containing a carbonitride of Ti or Nb. In this alloy, the crystal grains are refined by the carbonitride.
  • Patent Document 1 JP-A-9-279287
  • JP-A-9-279287 The method of strengthening by oxide dispersion disclosed in Patent Document 1 (JP-A-9-279287) is inferior in versatility.
  • the alloy systems to which this strengthening method can be applied are limited.
  • NiIn the Ni-based alloy disclosed in Patent Document 2 International Publication WO2009 / 1422278, the amounts of Nb and Ti added are small. This Ni-based alloy has room for improvement in strength.
  • An object of the present invention is to provide a molded body made of a Ni-based alloy and having excellent strength in a high-temperature environment, and a powder of a Ni-based alloy that is a raw material of the molded body.
  • the present invention relates to a powder of a Ni-based alloy,
  • the Ni-based alloy 40.0% by mass or more and 80.0% by mass or less of Ni; 13.0% by mass or more and 30.0% by mass or less of Cr; 0.001% by mass or more and 0.30% by mass or less of C; 0.10% to 5.0% by mass of Al, 0.10% to 12.0% by mass of Mo, 0.10% to 20.0% by mass of Co, and 0.10% by mass.
  • At least one element selected from the group consisting of W and 6.0 wt% W At least one element selected from the group consisting of W and 6.0 wt% W; One or more elements selected from the group consisting of Nb, Ti and Zr in a total of 0.1% by mass to 8.0% by mass; 0.010 mass% to 0.20 mass% N; and 0 mass% to 0.50 mass% Si Including A powder, wherein the balance of the Ni-based alloy is Fe and inevitable impurities.
  • the present invention provides a powder compact of the Ni-based alloy according to the present invention.
  • the compact according to the present invention is obtained by solidifying the powder of the Ni-based alloy according to the present invention.
  • a nitride is dispersed in the molded article according to the present invention.
  • the nitride is a nitride of one or more elements selected from the group consisting of Nb, Ti, and Zr.
  • the nitride is dispersed in the crystal grain boundaries and in the crystal grains of the compact.
  • the average Aa of the major axis A of the nitride is 3.0 ⁇ m or less.
  • the density Dn of the nitride having a major axis A of 3.0 ⁇ m or more is 0.75 / 100 ⁇ m 2 or less.
  • the molded article according to the present invention has excellent strength in a high-temperature environment.
  • the compact according to the present invention is a compact of the Ni-based alloy powder according to the present invention, and is obtained by solidifying the Ni-base alloy powder according to the present invention.
  • a nitride is dispersed in the molded article according to the present invention.
  • a nitride is a compound of N and another element.
  • the concept of nitride includes carbonitride.
  • Carbonitrides are compounds of N, C and other elements.
  • Nitride is dispersed in the compact according to the present invention. Nitride suppresses Ostwald growth more than carbide.
  • the molded body in which the nitride is dispersed has excellent strength in a high-temperature environment. This molded article also has excellent creep strength.
  • Ni-based alloy according to the present invention comprises 40.0% by mass to 80.0% by mass of Ni, 13.0% by mass to 30.0% by mass of Cr, and 0.001% by mass to 0.30% by mass. It contains C by mass% or less.
  • Ni contributes to the corrosion resistance of the molded body.
  • Ni contributes to corrosion resistance at high temperatures in an acidic environment and an environment containing chlorine ions.
  • the Ni content in the Ni-based alloy is preferably 40.0% by mass or more, more preferably 45.0% by mass or more, and particularly preferably 50.0% by mass or more.
  • the Ni content is preferably equal to or less than 80.0% by mass, more preferably equal to or less than 75.0% by mass, and is preferably 70.0% by mass. % Is particularly preferred.
  • [Chromium (Cr)] Cr contributes to oxidation resistance when the molded body is used at a high temperature.
  • the content of Cr in the Ni-based alloy is preferably 13.0% by mass or more, more preferably 15.0% by mass or more, and particularly preferably 16.0% by mass or more.
  • Excess Cr causes the formation of the ⁇ phase.
  • the ⁇ phase impairs the high-temperature strength and toughness of the compact.
  • the content of Cr is preferably equal to or less than 30.0% by mass, more preferably equal to or less than 25.0% by mass, still more preferably equal to or less than 23.0% by mass, and particularly preferably equal to or less than 22.0% by mass. preferable.
  • C Carbon (C)
  • C combines with Nb, Ti and the like to form MC type carbide.
  • C further combines with Cr, Mo, W, etc. to form carbides such as M6C, M7C3 and M23C6.
  • carbides contribute to the high-temperature strength of the compact.
  • the content of C in the Ni-based alloy is preferably equal to or greater than 0.001 mass%, more preferably equal to or greater than 0.010 mass%, and particularly preferably equal to or greater than 0.020 mass%.
  • Excess C precipitates continuous carbide at the grain boundaries. This carbide impairs the corrosion resistance and toughness of the compact.
  • the C content is preferably equal to or less than 0.30 mass%, more preferably equal to or less than 0.20 mass%, and particularly preferably equal to or less than 0.15 mass%.
  • the Ni-based alloy according to the present invention contains one or more elements selected from the group consisting of Al, Mo, Co, and W.
  • Al, Mo, Co and W contribute to heat resistance, oxidation resistance and strength (high-temperature strength) of the molded body.
  • the Ni-based alloy may contain solely one selected from the group consisting of Al, Mo, Co and W.
  • the Ni-based alloy may contain two or more elements selected from the group consisting of Al, Mo, Co, and W.
  • Al produces a ⁇ 'phase.
  • the ⁇ 'phase contributes to the creep rupture strength and oxidation resistance of the molded body.
  • the content of Al in the Ni-based alloy is preferably 0.10% by mass or more, more preferably 0.20% by mass or more, and particularly preferably 0.25% by mass or more. Excess Al inhibits the toughness of the compact. In light of toughness, the Al content is preferably equal to or less than 5.0% by mass, more preferably equal to or less than 4.0% by mass, and particularly preferably equal to or less than 3.5% by mass.
  • Mo Mo contributes to solid solution strengthening.
  • the content of Mo in the Ni-based alloy is preferably equal to or greater than 0.10% by mass, more preferably equal to or greater than 1.0% by mass, and particularly preferably equal to or greater than 2.0% by mass.
  • Excess Mo promotes the formation of the ⁇ or ⁇ phase.
  • the ⁇ phase and the ⁇ phase impair the toughness of the compact.
  • the Mo content is preferably 12.0% by mass or less, more preferably 10.0% by mass or less, and particularly preferably 8.0% by mass or less.
  • the content of Co in the Ni-based alloy is preferably 0.10% by mass or more, more preferably 3.0% by mass or more, and particularly preferably 5.0% by mass or more. Excessive Co impairs the toughness and strength of the compact. In light of toughness and strength, the Co content is preferably equal to or less than 20.0% by mass, more preferably equal to or less than 18.0% by mass, and particularly preferably equal to or less than 17.0% by mass.
  • [Tungsten (W)] W contributes to solid solution strengthening.
  • the W content in the Ni-based alloy is preferably equal to or greater than 0.10% by mass, more preferably equal to or greater than 0.50% by mass, and particularly preferably equal to or greater than 1.0% by mass.
  • Excessive W impairs the toughness and strength of the compact.
  • the content of W is preferably equal to or less than 6.0% by mass, more preferably equal to or less than 5.0% by mass, and particularly preferably equal to or less than 4.5% by mass.
  • Ni-based alloy contains one or more elements selected from the group consisting of Nb, Ti, and Zr.
  • the Ni-based alloy may contain solely one selected from the group consisting of Nb, Ti and Zr.
  • the Ni-based alloy may contain two or more elements selected from the group consisting of Nb, Ti, and Zr.
  • Nb, Ti and Zr combines with C and N (detailed below) to form carbonitrides. This carbonitride contributes to the strength of the compact.
  • the total content of Nb, Ti, and Zr in the Ni-based alloy is preferably equal to or greater than 0.1% by mass, more preferably equal to or greater than 1.0% by mass, and particularly preferably equal to or greater than 1.5% by mass.
  • Excessive Nb, Ti and Zr impair the toughness and strength of the compact.
  • the total content of Nb, Ti, and Zr is preferably equal to or less than 8.0% by mass, more preferably equal to or less than 7.5% by mass, and particularly preferably equal to or less than 7.0% by mass.
  • the Ni-based alloy according to the present invention contains N.
  • N combines with one or more elements selected from the group consisting of Nb, Ti and Zr to form nitrides (including carbonitrides).
  • This nitride contributes to the strength of the compact.
  • the N content in the Ni-based alloy is preferably equal to or greater than 0.010 mass%, more preferably equal to or greater than 0.030 mass%, and particularly preferably equal to or greater than 0.040 mass%.
  • Excess N produces excess nitride.
  • Excess nitride impairs the toughness of the compact.
  • the N content is preferably equal to or less than 0.20 mass%, more preferably equal to or less than 0.15 mass%, and particularly preferably equal to or less than 0.10 mass%.
  • the Ni-based alloy according to the present invention may include Si.
  • Si may be added for deoxidation of the molten metal, but if it exceeds 0.50%, the weldability decreases.
  • the content of Si in the Ni-based alloy is preferably equal to or less than 0.50% by mass, more preferably equal to or less than 0.35% by mass, and particularly preferably equal to or less than 0.20% by mass.
  • the lower limit of the Si content is not particularly limited as long as it is 0% by mass or more.
  • the lower limit of the Si content is not particularly limited as long as it is more than 0%, but the Si content is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, 0.10% by mass or more is particularly preferred. Si may not be added (0.00% by mass).
  • the balance of the Ni-based alloy is Fe and inevitable impurities.
  • the nitride is dispersed in the molded article according to the present invention.
  • the concept of nitride also includes carbonitride.
  • the nitride can contribute to the high-temperature strength of the compact.
  • Nitride can also contribute to the creep resistance of the compact.
  • carbonitrides Nb-CN compounds, Ti-CN compounds, Zr-CN compounds, Nb-Ti-CN compounds, Ti-Zr-CN compounds, Zr-Nb-C- Examples include N compounds and Nb-Ti-Zr-CN compounds.
  • Nb-N compounds Ti-N compounds, Zr-N compounds, Nb-Ti-N compounds, Ti-Zr-N compounds, Zr-Nb-N compounds and Nb-Ti-Zr —N compounds are exemplified.
  • Nitride can be dispersed at the grain boundaries of the compact.
  • the nitride may also be dispersed within the grains.
  • a compact in which nitrides are dispersed both in the crystal grain boundaries and in the crystal grains is excellent in high-temperature strength and creep resistance.
  • the average Aa of the major axis A of the nitride is preferably 3.0 ⁇ m or less. In other words, it is preferable that fine nitrides are dispersed in the compact.
  • a compact in which fine nitrides are dispersed has excellent high-temperature strength and creep resistance.
  • the average Aa of the major axis A is more preferably equal to or less than 2.5 ⁇ m, and particularly preferably equal to or less than 2.0 ⁇ m.
  • the lower limit of the average Aa of the major axis A is not particularly limited, but the average Aa of the major axis A is preferably 0.01 ⁇ m or more, more preferably 0.10 ⁇ m or more, and particularly preferably 0.50 ⁇ m or more.
  • the major axis A can be measured by observing a cross section of the molded body by EMPA mapping. The longest line segment that can be drawn within the outline of each nitride is the major axis A.
  • the major axes of 10 or more randomly selected nitrides are measured and averaged.
  • the density Dn of the nitride having a major axis A of 3.0 ⁇ m or more is preferably 0.75 / 100 ⁇ m 2 or less.
  • a molded article having a density Dn within this range is excellent in high-temperature strength and creep resistance.
  • the density Dn is more preferably equal to or less than 0.50 / 100 ⁇ m 2 and particularly preferably equal to or less than 0.40 / 100 ⁇ m 2 .
  • the density Dn is preferably 0.001 pieces / 100 [mu] m 2 or more, more preferably 0.005 pieces / 100 [mu] m 2 or more, particularly preferably 0.01 pieces / 100 [mu] m 2 or more.
  • the measurement of the density Dn is performed by observing the cross section of the molded body by EMPA mapping. In a randomly extracted zone of 20 ⁇ m ⁇ 20 ⁇ m, the number of nitrides having a major axis A of 3.0 ⁇ m or more is counted. This number is the density Dn.
  • the powder can be obtained by atomization.
  • Preferred atomizing is gas atomizing.
  • a raw material is charged into a container (quartz crucible) having a pore at the bottom. This raw material is heated and melted in a high-frequency induction furnace in an atmosphere of argon gas or nitrogen gas. Argon gas or nitrogen gas is injected into the raw material flowing out of the pores. The raw material is quenched and solidified to obtain a powder.
  • the powder is classified (for example, particles having a particle size of 500 ⁇ m or less are extracted).
  • the powder after classification is filled in a carbon steel capsule.
  • the inside of the capsule is evacuated to a vacuum, and the capsule is sealed to obtain a billet.
  • the billet is subjected to HIP molding (hot isostatic pressing).
  • the preferable pressure of the HIP molding is 50 MPa or more and 300 MPa or less
  • the preferable sintering temperature is 1000 ° C. or more and 1350 ° C. or less
  • the preferable sintering time is 5 hours or more and 10 hours or less.
  • a molded article is obtained by HIP molding.
  • N contained in the Ni-based alloy may combine with other elements to form nitrides.
  • HIP HIP
  • a compact in which fine nitrides are dispersed can be obtained.
  • heat treatment for example, aging
  • Example 1 A raw material having a predetermined composition was prepared. This raw material was heated in an alumina crucible in an argon gas atmosphere by a high-frequency induction heating method. The raw material was melted by this heating to obtain a molten metal. The molten metal was dropped from a nozzle having a diameter of 5 mm below the crucible. Nitrogen gas was sprayed on the molten metal to obtain a powder. The composition of this powder is shown in Table 1 below. This powder was placed in a carbon steel capsule and vacuum degassed. The capsule was sealed to obtain a billet. This billet was subjected to HIP molding. The temperature, pressure and time of the HIP were 1200 ° C., 147 MPa and 5 hours, respectively.
  • Example 2-8 and Comparative Example 13-20 Except for changing the composition of the raw materials, the molded articles of Example 2-8 and Comparative Examples 13-20 were obtained in the same manner as in Example 1. The composition of the powder is shown in Tables 1 and 3 below.
  • Test piece was produced from the molded body by cutting. This test piece was subjected to a tensile test in an environment of 649 ° C. (1200 F), and the tensile strength and the elongation at break were measured. The results are shown in Tables 1-3 below.
  • the molded articles according to the examples are superior in the high-temperature strength to the molded articles of the comparative examples having substantially the same composition except that the N content is different. From the evaluation results, the superiority of the present invention is clear.
  • the molded body described above is suitable for various members used in a high-temperature environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本発明は、Ni基合金からなり、かつ高温環境下での強度に優れた成形体を提供することを課題とし、かかる課題を解決するために、本発明は、40.0質量%以上80.0質量%以下のNi;13.0質量%以上30.0質量%以下のCr;0.001質量%以上0.30質量%以下のC;0.10質量%以上5.0質量%以下のAl、0.10質量%以上12.0質量%以下のMo、0.10質量%以上20.0質量%以下のCo、及び、0.10質量%以上6.0質量%以下のWからなる群から選択された1種又は2種以上の元素;合計で0.1質量%以上8.0質量%以下のNb、Ti及びZrからなる群から選択された1種又は2種以上の元素;0.010質量%以上0.20質量%以下のN;並びに0質量%以上0.50質量%以下のSiを含み、残部がFe及び不可避的不純物である、Ni基合金の粉末の成形体であって、窒化物が分散している成形体を提供する。

Description

Ni基合金からなる窒化物分散型成形体
 本発明は、Ni基合金からなる窒化物分散型成形体に関する。詳細には、本発明は、Ni基合金の粉末が固化されて得られる成形体に関する。
 ガスタービンの動翼及び静翼、並びに高温燃焼炉用部材のような、高温環境下で使用される部材には、耐熱性及び耐酸化性が要求される。かかる部材に、Mo、W、Al、Ti等の元素が多量に添加されたNi基合金が用いられている。
 このNi基合金からなる部材が溶製(鋳造による製造)されると、添加元素が大幅に偏析する。この偏析は、部材のその後の熱間加工性を損なう。
 高温環境下で使用される部材の、粉末冶金による製造が提案されている。粉末冶金によって得られた部材では、偏析が抑制される。
 特許文献1(特開平9-279287号公報)には、耐熱合金からなる粉末が開示されている。この合金は、Zrを含有し、かつ、Y、Ce及びLaのような希土類元素を含有する。この合金では、Zr及び希土類元素が、粉末粒内に微細な酸化物を生成させる。この酸化物は、成形品の強度に寄与する。
 特許文献2(国際公開第WO2009/142228号公報)には、Ti又はNbの炭窒化物を含有する原子力発電用Ni基合金が開示されている。この合金では、炭窒化物によって結晶粒が微細化される。
特開平9-279287号公報 国際公開第WO2009/142228号公報
 特許文献1(特開平9-279287号公報)に開示された、酸化物分散による強化方法は、汎用性に劣る。この強化方法が適用されうる合金系は、限定的である。
 特許文献2(国際公開第WO2009/142228号公報)に開示されたNi基合金では、Nb及びTiの添加量が少ない。このNi基合金には、強度改善の余地がある。
 本発明の目的は、Ni基合金からなり、かつ高温環境下での強度に優れた成形体、及び、該成形体の原料であるNi基合金の粉末の提供にある。
 本発明は、Ni基合金の粉末であって、
 前記Ni基合金が、
 40.0質量%以上80.0質量%以下のNi;
 13.0質量%以上30.0質量%以下のCr;
 0.001質量%以上0.30質量%以下のC;
 0.10質量%以上5.0質量%以下のAl、0.10質量%以上12.0質量%以下のMo、0.10質量%以上20.0質量%以下のCo、及び、0.10質量%以上6.0質量%以下のWからなる群から選択された1種又は2種以上の元素;
 合計で0.1質量%以上8.0質量%以下のNb、Ti及びZrからなる群から選択された1種又は2種以上の元素;
 0.010質量%以上0.20質量%以下のN;並びに
 0質量%以上0.50質量%以下のSi
を含み、
 前記Ni基合金の残部が、Fe及び不可避的不純物である、粉末を提供する。
 本発明は、本発明に係るNi基合金の粉末の成形体を提供する。本発明に係る成形体は、本発明に係るNi基合金の粉末が固化されて得られる。本発明に係る成形体には、窒化物が分散している。
 好ましくは、窒化物は、Nb、Ti及びZrからなる群から選択された1種又は2種以上の元素の窒化物である。
 好ましくは、窒化物は、成形体の結晶粒界及び結晶粒内に分散している。
 好ましくは、窒化物の長径Aの平均Aaは、3.0μm以下である。
 好ましくは、長径Aが3.0μm以上である窒化物の密度Dnは、0.75個/100μm以下である。
 本発明に係る成形体は、高温環境下での強度に優れる。
 以下、好ましい実施形態に基づいて、本発明が詳細に説明される。
 本発明に係る成形体は、本発明に係るNi基合金の粉末の成形体であり、本発明に係るNi基合金の粉末が固化されて得られる。本発明に係る成形体には、窒化物が分散している。窒化物は、Nと他の元素との化合物である。本発明において、窒化物の概念には、炭窒化物も含まれる。炭窒化物は、N、C及び他の元素の化合物である。
 本発明に係る成形体には、窒化物が分散している。窒化物は、炭化物に比べ、よりオストワルド成長を抑制する。窒化物が分散した成形体は、高温環境下での強度に優れている。この成形体はさらに、クリープ強度にも優れている。
[ニッケル(Ni)、クロム(Cr)、炭素(C)]
 本発明に係るNi基合金は、40.0質量%以上80.0質量%以下のNi、13.0質量%以上30.0質量%以下のCr、及び、0.001質量%以上0.30質量%以下のCを含む。
[ニッケル(Ni)]
 Niは、成形体の耐食性に寄与する。特にNiは、酸性環境下及び塩素イオン含有環境下における高温での耐食性に寄与する。この観点から、Ni基合金におけるNiの含有率は40.0質量%以上が好ましく、45.0質量%以上がより好ましく、50.0質量%以上が特に好ましい。オーステナイト相の安定性の観点、及びCr等の他元素との相互作用の観点から、Niの含有率は80.0質量%以下が好ましく、75.0質量%以下がより好ましく、70.0質量%以下が特に好ましい。
[クロム(Cr)]
 Crは、成形体が高温で使用されるときの耐酸化性に寄与する。この観点から、Ni基合金におけるCrの含有率は13.0質量%以上が好ましく、15.0質量%以上がより好ましく、16.0質量%以上が特に好ましい。過剰のCrは、δ相を生成させる。δ相は、成形体の高温強度と靭性とを阻害する。δ相抑制の観点から、Crの含有率は30.0質量%以下が好ましく、25.0質量%以下がより好ましく、23.0質量%以下がより一層好ましく、22.0質量%以下が特に好ましい。
[炭素(C)]
 Cは、Nb、Ti等と結合し、MC型炭化物を形成する。Cはさらに、Cr、Mo、W等と結合し、M6C、M7C3及びM23C6のような炭化物を形成する。これらの炭化物は、成形体の高温強さに寄与する。この観点から、Ni基合金におけるCの含有率は0.001質量%以上が好ましく、0.010質量%以上がより好ましく、0.020質量%以上が特に好ましい。過剰のCは、結晶粒界に連続的な炭化物を析出させる。この炭化物は、成形体の耐食性及び靭性を阻害する。耐食性及び靱性の観点から、Cの含有率は0.30質量%以下が好ましく、0.20質量%以下がより好ましく、0.15質量%以下が特に好ましい。
[アルミニウム(Al)、モリブデン(Mo)、コバルト(Co)、タングステン(W)]
 本発明に係るNi基合金は、Al、Mo、Co及びWからなる群から選択された1種又は2種以上の元素を含む。Al、Mo、Co及びWは、成形体の耐熱性、耐酸化性及び強度(高温強度)に寄与する。Ni基合金は、Al、Mo、Co及びWからなる群から選択されたいずれか1種を単独で含有してもよい。Ni基合金は、Al、Mo、Co及びWからなる群から選択された2種以上の元素を含有してもよい。
[アルミニウム(Al)]
 Alは、γ’相を生成させる。γ’相は、成形体のクリープ破断強さ及び耐酸化性に寄与する。これらの観点から、Ni基合金におけるAlの含有率は0.10質量%以上が好ましく、0.20質量%以上がより好ましく、0.25質量%以上が特に好ましい。過剰のAlは、成形体の靱性を阻害する。靱性の観点から、Alの含有率は5.0質量%以下が好ましく、4.0質量%以下がより好ましく、3.5質量%以下が特に好ましい。
[モリブデン(Mo)]
 Moは、固溶強化に寄与する。この観点から、Ni基合金におけるMoの含有率は0.10質量%以上が好ましく、1.0質量%以上がより好ましく、2.0質量%以上が特に好ましい。過剰のMoは、μ相又はσ相の生成を助長する。μ相及びσ相は、成形体の靱性を損なう。靱性の観点から、Moの含有率は12.0質量%以下が好ましく、10.0質量%以下がより好ましく、8.0質量%以下が特に好ましい。
[コバルト(Co)]
 Coは、γ’相のNi固溶体に対する溶解度を高める。従ってCoは、成形体の高温延性及び高温強度を高める。これらの観点から、Ni基合金におけるCoの含有率は0.10質量%以上が好ましく、3.0質量%以上がより好ましく、5.0質量%以上が特に好ましい。過剰のCoは、成形体の靱性及び強度を損なう。靱性及び強度の観点から、Coの含有率は20.0質量%以下が好ましく、18.0質量%以下がより好ましく、17.0質量%以下が特に好ましい。
[タングステン(W)]
 Wは、固溶強化に寄与する。この観点から、Ni基合金におけるWの含有率は0.10質量%以上が好ましく、0.50質量%以上がより好ましく、1.0質量%以上が特に好ましい。過剰のWは、成形体の靱性及び強度を損なう。靱性及び強度の観点から、Wの含有率は6.0質量%以下が好ましく、5.0質量%以下がより好ましく、4.5質量%以下が特に好ましい。
[ニオブ(Nb)、チタン(Ti)、ジルコニウム(Zr)]
 本発明に係るNi基合金は、Nb、Ti及びZrからなる群から選択された1種又は2種以上の元素を含む。Ni基合金は、Nb、Ti及びZrからなる群から選択されたいずれか1種を単独で含有してもよい。Ni基合金は、Nb、Ti及びZrからなる群から選択された2種以上の元素を含有してもよい。Nb、Ti及びZrのそれぞれは、C及びN(後に詳説)と結合して炭窒化物を生成する。この炭窒化物は、成形体の強度に寄与する。この観点から、Ni基合金におけるNb、Ti及びZrの合計含有率は0.1質量%以上が好ましく、1.0質量%以上がより好ましく、1.5質量%以上が特に好ましい。過剰のNb、Ti及びZrは、成形体の靱性及び強度を損なう。靱性及び強度の観点から、Nb、Ti及びZrの合計含有率は8.0質量%以下が好ましく、7.5質量%以下がより好ましく、7.0質量%以下が特に好ましい。
[窒素(N)]
 本発明に係るNi基合金は、Nを含む。NはNb、Ti及びZrからなる群から選択された1種又は2種以上の元素と結合し、窒化物(炭窒化物を含む)を形成する。この窒化物は、成形体の強度に寄与する。この観点から、Ni基合金におけるNの含有率は0.010質量%以上が好ましく、0.030質量%以上がより好ましく、0.040質量%以上が特に好ましい。過剰のNは、過剰の窒化物を生成する。過剰な窒化物は、成形体の靱性を阻害する。靱性の観点から、Nの含有率は0.20質量%以下が好ましく、0.15質量%以下がより好ましく、0.10質量%以下が特に好ましい。
[ケイ素(Si)]
 本発明に係るNi基合金は、Siを含んでもよい。Siは溶湯の脱酸のために添加してもよいが、0.50%を超えると溶接性が低下する。この観点から、Ni基合金におけるSiの含有率は0.50質量%以下が好ましく、0.35質量%以下がより好ましく、0.20質量%以下が特に好ましい。Siの含有率の下限値は0質量%以上である限り特に限定されない。Siが添加される場合、Siの含有率の下限値は0%超である限り特に限定されないが、Siの含有率は0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.10質量%以上が特に好ましい。Siは、無添加(0.00質量%)であってもよい。
[残部]
 Ni基合金の残部は、Fe及び不可避的不純物である。
[窒化物]
 前述の通り、本発明に係る成形体には、窒化物が分散している。窒化物の概念には、炭窒化物も含まれる。窒化物は、成形体の高温強度に寄与しうる。窒化物はさらに、成形体の耐クリープ性にも寄与しうる。炭窒化物として、Nb-C-N化合物、Ti-C-N化合物、Zr-C-N化合物、Nb-Ti-C-N化合物、Ti-Zr-C-N化合物、Zr-Nb-C-N化合物及びNb-Ti-Zr-C-N化合物が例示される。炭窒化物以外の窒化物として、Nb-N化合物、Ti-N化合物、Zr-N化合物、Nb-Ti-N化合物、Ti-Zr-N化合物、Zr-Nb-N化合物及びNb-Ti-Zr-N化合物が例示される。
 窒化物は、成形体の結晶粒界に分散しうる。窒化物はさらに、結晶粒内にも分散しうる。結晶粒界及び結晶粒内の両方に窒化物が分散した成形体は、高温強度及び耐クリープ性に優れる。
 窒化物の長径Aの平均Aaは、3.0μm以下が好ましい。換言すれば、成形体に微細な窒化物が分散することが好ましい。微細な窒化物が分散した成形体は、高温強度及び耐クリープ性に優れる。高温強度及び耐クリープ性の観点から、長径Aの平均Aaは2.5μm以下がより好ましく、2.0μm以下が特に好ましい。長径Aの平均Aaの下限値は特に限定されないが、長径Aの平均Aaは0.01μm以上が好ましく、0.10μm以上がより好ましく、0.50μm以上が特に好ましい。長径Aは、成形体の断面がEMPAマッピングで観察されることで測定されうる。それぞれの窒化物の輪郭内に画かれうる最長の線分が、長径Aである。無作為に抽出された10個以上の窒化物の長径が測定され、平均される。
 長径Aが3.0μm以上である窒化物の密度Dnは、0.75個/100μm以下が好ましい。密度Dnがこの範囲内である成形体は、高温強度及び耐クリープ性に優れる。高温強度及び耐クリープ性の観点から、密度Dnは0.50個/100μm以下がより好ましく、0.40個/100μm以下が特に好ましい。密度Dnの下限値は特に限定されないが、密度Dnは0.001個/100μm以上が好ましく、0.005個/100μm以上がより好ましく、0.01個/100μm以上が特に好ましい。密度Dnの測定は、成形体の断面がEMPAマッピングで観察されることでなされる。無作為に抽出された20μm×20μmのゾーンにおいて、長径Aが3.0μm以上である窒化物の個数が、カウントされる。この個数が、密度Dnである。
[粉末の製造]
 粉末の製造方法には、種々の方法が採用されうる。好ましくは、粉末は、アトマイズによって得られうる。好ましいアトマイズは、ガスアトマイズである。ガスアトマイズでは、底部に細孔を有する容器(石英坩堝)の中に、原料が投入される。この原料が、アルゴンガス又は窒素ガスの雰囲気中で、高周波誘導炉によって加熱され、溶融する。細孔から流出する原料に、アルゴンガス又は窒素ガスが噴射される。原料は急冷されて凝固し、粉末が得られる。
 噴射されるガスとして窒素ガスが採用されることで、適量のNを含有するNi基合金からなる粉末が得られうる。原料が加熱され溶融されるときの雰囲気がアルゴンガスとされることで、過剰なNを含有しないNi基合金が得られうる。このNi基合金から、微細な窒化物が分散する成形体が得られうる。
[HIP]
 この粉末に、必要に応じ、分級(例えば粒子径が500μm以下の粒子を抽出)がなされる。分級後の粉末が、炭素鋼製のカプセルに充填される。このカプセルの内部が真空脱気され、さらにこのカプセルが封止されてビレットが得られる。このビレットに、HIP成形(熱間等方圧プレス)が施される。HIP成形の、好ましい圧力は50MPa以上300MPa以下であり、好ましい焼結温度は1000℃以上1350℃以下であり、好ましい焼結時間は5時間以上10時間以下である。HIP成形により、成形体が得られる。
 HIPにおいて、Ni基合金に含有されたNが他の元素と結合し、窒化物が生成しうる。このHIPにより、微細は窒化物が分散した成形体が得られうる。成形体に熱処理(例えば時効)が施されることで、窒化物が生成してもよい。
 以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。
[実施例1]
 所定の組成を有する原料を、準備した。この原料を、アルゴンガス雰囲気中にてアルミナ製坩堝で、高周波誘導加熱法にて加熱した。この加熱によって原料を溶融させ、溶湯を得た。坩堝下にある直径が5mmのノズルから、溶湯を落下させた。この溶湯に、窒素ガスを噴霧し、粉末を得た。この粉末の組成が、下記の表1に示されている。この粉末を炭素鋼製のカプセルに入れ、真空脱気した。このカプセルを封止し、ビレットを得た。このビレットに、HIP成形を施した。HIPの温度、圧力及び時間は、それぞれ、1200℃、147MPa及び5時間であった。HIPにより、φ50の棒状成形体が得られた。この成形体に、熱処理を施した。熱処理において、溶体化(1150℃で1時間の処理)、水冷、時効処理(720℃で8時間の処理の後、620℃で10時間の処理)及び空冷を順に行った。
[実施例2-8及び比較例13-20]
 原料の組成を変更した他は、実施例1と同様にして、実施例2-8及び比較例13-20の成形体を得た。粉末の組成が、下記の表1及び3に示されている。
[比較例9-12]
 溶製により、下記の表2に示される組成の成形体を得た。この成形体に、実施例1と同様にして熱処理を施した。
[引張り試験]
 成形体から、切削にて試験片を製作した。この試験片を、649℃(1200F)の環境下で引張り試験に供し、引っ張り強度と破断伸びとを測定した。この結果が、下記の表1-3に示されている。
[引張り試験]
 EMPAのマッピングを実施し、画像解析により長径の平均Aa及び密度Dnを算出した。この結果が、下記の表1-3に示されている。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1-3に示されるように、各実施例に係る成形体は、Nの含有率が異なる以外はほぼ同等の組成を有する比較例の成形体に比べ、高温強度に優れている。この評価結果から、本発明の優位性は明らかである。
 以上説明された成形体は、高温環境下で使用される種々の部材に適している。

Claims (6)

  1.  Ni基合金の粉末であって、
     前記Ni基合金が、
     40.0質量%以上80.0質量%以下のNi;
     13.0質量%以上30.0質量%以下のCr;
     0.001質量%以上0.30質量%以下のC;
     0.10質量%以上5.0質量%以下のAl、0.10質量%以上12.0質量%以下のMo、0.10質量%以上20.0質量%以下のCo、及び、0.10質量%以上6.0質量%以下のWからなる群から選択された1種又は2種以上の元素;
     合計で0.1質量%以上8.0質量%以下のNb、Ti及びZrからなる群から選択された1種又は2種以上の元素;
     0.010質量%以上0.20質量%以下のN;並びに
     0質量%以上0.50質量%以下のSi
    を含み、
     前記Ni基合金の残部が、Fe及び不可避的不純物である、粉末。
  2.  請求項1に記載の粉末の成形体であって、窒化物が分散している、成形体。
  3.  前記窒化物が、Nb、Ti及びZrからなる群から選択された1種又は2種以上の元素の窒化物である、請求項2に記載の成形体。
  4.  前記窒化物が、前記成形体の結晶粒界及び結晶粒内に分散している、請求項2又は3に記載の成形体。
  5.  前記窒化物の長径Aの平均Aaが3.0μm以下である、請求項2~4のいずれか一項に記載の成形体。
  6.  前記長径Aが3.0μm以上である窒化物の密度Dnが、0.75個/100μm以下である、請求項2~5のいずれか一項に記載の成形体。
PCT/JP2019/031568 2018-08-09 2019-08-09 Ni基合金からなる窒化物分散型成形体 WO2020032235A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-150162 2018-08-09
JP2018150162A JP7153502B2 (ja) 2018-08-09 2018-08-09 窒化物分散型Ni基合金からなる成形体

Publications (1)

Publication Number Publication Date
WO2020032235A1 true WO2020032235A1 (ja) 2020-02-13

Family

ID=69414328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031568 WO2020032235A1 (ja) 2018-08-09 2019-08-09 Ni基合金からなる窒化物分散型成形体

Country Status (2)

Country Link
JP (1) JP7153502B2 (ja)
WO (1) WO2020032235A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111254316A (zh) * 2020-04-01 2020-06-09 山东理工大学 (MoNbZrTi)高熵合金增强Ni基合金及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330226A (ja) * 1993-05-19 1994-11-29 Nippon Steel Corp 耐高温腐食特性に優れた複層鋼材およびその製造方法
JPH10237573A (ja) * 1997-02-27 1998-09-08 Daido Steel Co Ltd めっき用通電ロール
JP2002302726A (ja) * 2001-04-05 2002-10-18 Daido Steel Co Ltd 高硬度高耐食性Ni基合金
JP2009185352A (ja) * 2008-02-07 2009-08-20 Nippon Yakin Kogyo Co Ltd 常温での強度と加工性およびクリープ特性に優れるNi基合金材料とその製造方法
JP2015030908A (ja) * 2013-08-06 2015-02-16 日立金属Mmcスーパーアロイ株式会社 Ni基合金、ガスタービン燃焼器用Ni基合金、ガスタービン燃焼器用部材、ライナー用部材、トランジッションピース用部材、ライナー、トランジッションピース

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4755432B2 (ja) 2005-03-15 2011-08-24 日本精線株式会社 耐熱ばね用合金線、及びそれを用いる高温環境用の耐熱コイルばね

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330226A (ja) * 1993-05-19 1994-11-29 Nippon Steel Corp 耐高温腐食特性に優れた複層鋼材およびその製造方法
JPH10237573A (ja) * 1997-02-27 1998-09-08 Daido Steel Co Ltd めっき用通電ロール
JP2002302726A (ja) * 2001-04-05 2002-10-18 Daido Steel Co Ltd 高硬度高耐食性Ni基合金
JP2009185352A (ja) * 2008-02-07 2009-08-20 Nippon Yakin Kogyo Co Ltd 常温での強度と加工性およびクリープ特性に優れるNi基合金材料とその製造方法
JP2015030908A (ja) * 2013-08-06 2015-02-16 日立金属Mmcスーパーアロイ株式会社 Ni基合金、ガスタービン燃焼器用Ni基合金、ガスタービン燃焼器用部材、ライナー用部材、トランジッションピース用部材、ライナー、トランジッションピース

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111254316A (zh) * 2020-04-01 2020-06-09 山东理工大学 (MoNbZrTi)高熵合金增强Ni基合金及其制备方法

Also Published As

Publication number Publication date
JP7153502B2 (ja) 2022-10-14
JP2020026537A (ja) 2020-02-20

Similar Documents

Publication Publication Date Title
US11325189B2 (en) Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same
US5595616A (en) Method for enhancing the oxidation resistance of a molybdenum alloy, and a method of making a molybdenum alloy
US9039960B2 (en) Methods for processing nanostructured ferritic alloys, and articles produced thereby
CA3061851C (en) Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same
KR20180040513A (ko) 적층조형용 Ni계 초합금분말
JP6698280B2 (ja) 合金粉末
JP5596697B2 (ja) 酸化アルミニウム形成性ニッケルベース合金
JP6850223B2 (ja) 積層造形用Ni基超合金粉末
US11306372B2 (en) Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body
WO2020032235A1 (ja) Ni基合金からなる窒化物分散型成形体
JP2020063495A (ja) Co基合金及びその粉末
JP6698910B2 (ja) 合金粉末
JPH0617527B2 (ja) ニッケル合金焼結物体
JP7213022B2 (ja) Co基合金及びその粉末
JP7406329B2 (ja) Ni-Cr-Mo系析出硬化型合金
JP7128916B2 (ja) 積層造形体
JP7339412B2 (ja) 積層造形用Ni系合金粉末および積層造形体
KR102490974B1 (ko) Co기 합금 구조체 및 그 제조 방법
RU2771192C9 (ru) Порошок сплава на основе кобальта, спечённое тело из сплава на основе кобальта и способ изготовления спечённого тела из сплава на основе кобальта
JP2022180747A (ja) 多元系合金からなる粉末及び成形体
JP2022118514A (ja) Ni-Cr-Mo系析出硬化型合金
JP2021172851A (ja) Ni基合金部材の製造方法
JPH06240391A (ja) 高温強度に優れたニッケル−タングステン合金、その製造方法およびそれを用いた熱間加工用治具
JPS5831060A (ja) 熱間加工装置部材用炭化タングステン基超硬合金
JPH02232343A (ja) 焼結合金およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19848353

Country of ref document: EP

Kind code of ref document: A1