WO2020029559A1 - 显示面板、显示屏及显示终端 - Google Patents

显示面板、显示屏及显示终端 Download PDF

Info

Publication number
WO2020029559A1
WO2020029559A1 PCT/CN2019/073267 CN2019073267W WO2020029559A1 WO 2020029559 A1 WO2020029559 A1 WO 2020029559A1 CN 2019073267 W CN2019073267 W CN 2019073267W WO 2020029559 A1 WO2020029559 A1 WO 2020029559A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
substrate
pixel
projection
pixel opening
Prior art date
Application number
PCT/CN2019/073267
Other languages
English (en)
French (fr)
Inventor
楼均辉
籍亚男
宋艳芹
安乐平
Original Assignee
云谷(固安)科技有限公司
昆山国显光电有限公司
昆山维信诺科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司, 昆山国显光电有限公司, 昆山维信诺科技有限公司 filed Critical 云谷(固安)科技有限公司
Priority to EP19846530.4A priority Critical patent/EP3712948A4/en
Priority to JP2020532905A priority patent/JP7125485B2/ja
Priority to KR1020207017734A priority patent/KR102489280B1/ko
Publication of WO2020029559A1 publication Critical patent/WO2020029559A1/zh
Priority to US16/824,702 priority patent/US11244992B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel, a display screen, and a display terminal.
  • Display terminals With the rapid development of display terminals, users have higher and higher requirements for screen ratios, so that display terminals with full screen display have received more and more attention from the industry.
  • Traditional display terminals such as mobile phones and tablet computers, need to be integrated with front-facing cameras, earpieces, and infrared sensing elements. This is achieved by notching on the display and setting a transparent display in the slotted area. Full screen display of the display terminal.
  • the present application provides a display panel, a display screen, and a display terminal.
  • a display panel includes a substrate and a pixel definition layer formed on the substrate.
  • a pixel opening is formed on the pixel definition layer.
  • the pixel opening includes a first type of pixel opening.
  • the projection of the first type of pixel opening on the substrate is a curve of each side, and the sides are not parallel to each other.
  • a display screen includes a first display area for displaying a dynamic or static picture, and further includes a display panel as described above, which is disposed in the first display area.
  • a display terminal includes a device body and a display screen as described above.
  • the device body has a device area, and the display screen covers the device body.
  • the device area is located below the first display area, and a photosensitive device is disposed in the device area.
  • FIG. 1 is a cross-sectional view of a display panel in an embodiment.
  • FIG. 2 is a schematic diagram of a projection of a pixel definition layer on a substrate in an embodiment.
  • FIG. 3 is a schematic diagram of a projection of a pixel definition layer on a substrate in another embodiment.
  • FIG. 4 is a schematic diagram of a projection of a pixel definition layer on a substrate in another embodiment.
  • FIG. 5 is a schematic diagram of a projection of a pixel definition layer on a substrate in another embodiment.
  • FIG. 6 is a schematic diagram of a projection of a pixel definition layer on a substrate in another embodiment.
  • FIG. 7 is a schematic diagram of a projection of a pixel definition layer on a substrate in another embodiment.
  • FIG. 8 is a schematic diagram of a display panel being a first electrode of a PMOLED display panel in an embodiment.
  • FIG. 9 is a schematic diagram of a display panel being a first electrode of a PMOLED display panel in another embodiment.
  • FIG. 10 is a schematic diagram of a display panel being a first electrode of a PMOLED display panel in another embodiment.
  • FIG. 11 is a schematic diagram of a first electrode of a PMOLED display panel in a display panel according to still another embodiment.
  • FIG. 12 is a schematic diagram of a projection of a first electrode and a pixel opening on a substrate in a display panel according to an embodiment.
  • FIG. 13 is a schematic diagram of an anode of an AMOLED display panel in a display panel according to an embodiment.
  • FIG. 14 is a schematic diagram of an anode of an AMOLED display panel in another embodiment.
  • 15 is a schematic diagram of a projection of an anode and a pixel opening on a substrate in a display panel according to an embodiment.
  • FIG. 16 is a schematic diagram of a display screen in an embodiment.
  • FIG. 17 is a schematic diagram of a display terminal in an embodiment.
  • FIG. 18 is a schematic diagram of a device body according to an embodiment.
  • the applicant has found that when a photosensitive device such as a camera is placed under the transparent display panel, the photo obtained by taking a picture is blurred.
  • FIG. 1 is a cross-sectional view of a display panel in an embodiment.
  • the display panel includes a substrate 110 and a pixel definition layer 120 formed on the substrate 110.
  • a pixel opening 130 is formed on the pixel definition layer 120 to define a light emitting area of the pixel.
  • the pixels mentioned in this embodiment are all the smallest pixel units, such as sub-pixels.
  • the pixel opening 130 includes a first type of pixel opening.
  • the sides of the projection of the first type pixel opening on the substrate are not parallel to each other and each side is a curve, that is, the first type pixel opening has a varying width in each direction and has different diffraction diffusion directions at the same position.
  • obstacles such as slits, holes, or disks
  • This phenomenon is called diffraction.
  • the distribution of diffraction fringes is affected by the size of the obstacle, such as the width of the slit and the size of the pinhole.
  • the positions of the diffraction fringes generated at the positions having the same width are consistent, thereby generating a more obvious diffraction effect.
  • diffraction fringes with different positions and diffusion directions can be generated at positions of different widths, so no more obvious diffraction effect will be generated, thereby ensuring the setting.
  • the photosensitive element under the display panel can work normally.
  • the pixel openings on the conventional pixel definition layer are set to be rectangular or square according to the pixel size.
  • a rectangle has two sets of parallel sides. The distance between the two long sides is equal, and the distance between the two short sides is equal. Therefore, when external light passes through the pixel opening, diffraction fringes with the same position and the same diffusion direction are generated at different positions in the long-side direction or the short-side direction, thereby generating a significant diffraction effect, which makes the light under the display panel sensitive. The component is not working properly.
  • the display panel in this embodiment can solve this problem well, and ensure that the photosensitive elements under the display panel can work normally.
  • the substrate 110 may be a transparent substrate such as a glass substrate, a quartz substrate, or a plastic substrate.
  • the curve adopted by each side of the projection of the first type of pixel opening on the substrate 110 may be at least one of a circle, an ellipse, and other curves having a varying curvature.
  • the projection of the first type of pixel opening on the substrate 110 is a graphic unit or a plurality of graphic units that are communicated with each other.
  • the graphic unit may be circular or oval.
  • the graphic unit may also be composed of other curves having different radii of curvature everywhere.
  • the number of graphics units can be determined according to the shape of the corresponding sub-pixel. For example, the number may be determined according to the aspect ratio of the sub-pixels. When determining the number of graphics units, the aperture ratio of the pixels needs to be considered.
  • the graphic unit may also be an axisymmetric structure, so as to ensure that each pixel on the entire display panel has a uniform opening rate, and does not affect the final display effect.
  • the projection further includes a first connection portion. At least two graphic units communicate with each other through the first connection portion to form an overall connected graphic area.
  • Each side of the first connection portion may be composed of at least one of a curve and a straight line.
  • the shape of the first connection portion is a strip.
  • each side of the first connection portion is formed by a curve, so that light can also be diffused in different directions at the position of the connection unit to reduce the diffraction effect.
  • FIG. 2 is a schematic diagram of the projection of the pixel definition layer 120 on the substrate 110 according to an embodiment.
  • the pixel openings 130 on the pixel definition layer 120 are all first pixel type openings.
  • a plurality of first-type pixel openings are regularly arrayed on the substrate 110.
  • Each side of the projection 130a of the first type pixel opening on the substrate 110 is a curve, that is, each side of the first type pixel opening is a curve. Therefore, when light passes through the first pixel-type opening, the generated diffraction fringes will not diffuse in only one direction, thereby making the diffraction inconspicuous and having a better diffraction improvement effect.
  • the projection 130 a (hereinafter referred to as the projection 130 a) of each first type pixel opening on the substrate 110 is a circle or at least two circles which communicate with each other.
  • the number of circles included in the projection 130a may be determined according to the shape of the corresponding sub-pixel.
  • the shape of the subpixel corresponding to the first type pixel opening 130a is a rectangle or a square having an aspect ratio less than 1.5, that is, when the length and width of the subpixel shape corresponding to the first type pixel opening 130a When the ratio is less than 1.5, the projection 130a is a circle.
  • the projection 130a is an axisymmetric figure, and its axis of symmetry corresponds to the axis of symmetry of the corresponding sub-pixel.
  • the diameter of the circle in the projection 130a is smaller than the minimum width of the sub-pixel.
  • the diameter of the circle of the projection 130a may be determined according to the shape of the sub-pixel in combination with the aperture ratio.
  • the method for determining the diameter of the circle of the projection 130a may adopt a conventional method for determining the size of the pixel opening, which is not described herein.
  • FIG. 3 is a schematic diagram of the projection of the pixel definition layer 120 on the substrate 110 in another embodiment.
  • the pixel openings 130 are also first-type pixel openings, and each first-type pixel opening is regularly arranged on the substrate 110.
  • the aspect ratio of the pixel corresponding to the pixel opening of the first type is between 1.5 and 2.5.
  • the projection 130a is a dumbbell shape formed by two circular shapes communicating with each other. The two circles are respectively arranged along the length direction of the corresponding sub-pixel.
  • FIG. 4 is a schematic diagram of the projection of the pixel definition layer 120 on the substrate 110 according to an embodiment.
  • the pixel openings 130 are also first-type pixel openings, and each first-type pixel opening is regularly arranged on the substrate 110.
  • the aspect ratio of the sub-pixel corresponding to the pixel opening of the first type is greater than 2.5.
  • the projection 130a is a wave shape formed by three or more circles communicating with each other. The three or more circles are respectively arranged along the length direction of the corresponding sub-pixel.
  • a first connection portion 1302 is further formed in the projection 130a.
  • the first connection portion 1302 is an arc, that is, the intersection of three or more circles is connected by an arc, so that when the light passes through the first connection portion 1302, it can also diffuse in all directions, thereby improving the diffraction effect.
  • the projection 130a may be a circle or a dumbbell shape in which two circles communicate with each other.
  • the projection 130a may be in the shape of two dumbbells connected to each other by circular shapes, or may be in the shape of a wave connected by three circles.
  • FIG. 5 is a schematic diagram of the projection of the pixel definition layer 120 on the substrate 110 according to an embodiment.
  • the pixel openings 130 are also first-type pixel openings, and each first-type pixel opening is regularly arranged on the substrate 110.
  • the projection 130a is an ellipse.
  • the size of the ellipse matches the size of the sub-pixel. For example, if the size aspect ratio of a sub-pixel is 1.2, the ratio of the major axis to the minor axis of the ellipse is 1.2.
  • the center point of the ellipse corresponds to the center point of the corresponding sub-pixel.
  • the projection 130a may also be a wave shape with two or more ellipses connected.
  • the projection 130a has a varying width in each direction, that is, the first type of pixel opening has a varying width in each direction, so that light will pass through differently when passing through. Diffraction fringes with different positions are generated at the width position, thereby reducing the diffraction effect.
  • a plurality of protrusions 130b are formed on the projection 130a, as shown in FIG.
  • the plurality of protrusions 130b are arranged along the edge of the projection 130a.
  • the sides of the protrusion 130b are all curved. Since the pixel definition layer 120 is used to define the shape of the sub-pixel, the resulting sub-pixel also has multiple protrusions, and the multiple protrusions are arranged along the edge of the sub-pixel.
  • the pixel opening 130 may further include a second type of pixel opening.
  • the projection of the pixel definition layer 120 on the substrate 110 is shown in FIG. 7.
  • the projection of the second type pixel opening on the substrate 110 is 130d, which has the same shape as the sub-pixel.
  • the shape of the sub-pixel is a square, so the projection 130d is also a square, so that the pixel aperture ratio can be improved to a certain extent.
  • the projections 130a and 130d are regularly arranged on the substrate 110, and they are distributed alternately, that is, the first type pixel openings and the second type pixel openings are uniformly and regularly arranged, so that the diffraction effect of the entire display panel everywhere More consistent.
  • each pixel opening 130 in the pixel definition layer 120 includes a first type pixel opening and a second type pixel opening, and each side of the first type pixel opening and the second type pixel opening is a non-smooth edge. Multiple bumps are formed on the non-smooth edges; the raised edges are straight and / or curved. By setting each side of the pixel opening 130 to be a non-smooth side, it is possible to further disturb the uniformity distribution of the widths around the pixel opening, thereby reducing the diffraction effect.
  • the display panel further includes a light emitting structure 140 formed in the light emitting area.
  • a pixel definition layer 120 is formed between two adjacent light emitting structures 140.
  • the light emitting structure 140 includes a wavy first electrode 142 formed on the substrate 110.
  • FIG. 8 is a schematic diagram of a plurality of first electrodes 142.
  • the display panel is a passive matrix organic light emitting diode (Passive-Matrix Organic Light-Emitting Diode, PMOLED) display panel.
  • PMOLED passive matrix organic light emitting diode
  • the width of the first electrode 142 changes continuously or intermittently in the extending direction of the first electrode 142.
  • the continuous change in width means that the widths at any two adjacent positions on the first electrode 142 are different.
  • the extending direction of the first electrode 142 is its length direction.
  • the width of the first electrode 142 changes continuously in the extending direction.
  • the discontinuous change in width means that the widths of two adjacent positions in the partial region on the first electrode 142 are the same, and the widths of two adjacent positions in the partial region are different.
  • the plurality of first electrodes 142 are regularly arranged on the substrate 110. Therefore, the gap between two adjacent first electrodes 142 also changes continuously in a direction parallel to the extension direction of the first electrodes 142. Or intermittent changes.
  • the first electrode 142 can be changed periodically regardless of whether the width of the first electrode 142 is continuous or intermittent, and the length of a change period can correspond to the width of one pixel.
  • both sides of the first electrode 142 in the extending direction are wavy, as shown in FIG. 8.
  • the crests T of the two sides in the extension direction are oppositely disposed and the troughs B are relatively disposed.
  • the two sides are connected by the same arc-shaped side.
  • the two sides may be connected by the same elliptical side, as shown in FIG. 9.
  • a second connection portion 1422 is formed at the wave trough opposite to the first electrode 142, as shown in FIG. 10.
  • the second connection portion 1422 has a strip shape.
  • the width W of the second connection portion 1422 should be larger than 4 micrometers and smaller than the maximum width on the first electrode 142.
  • a region between two adjacent second connection portions 1422 on the first electrode 142 corresponds to one pixel opening, and the second connection portion 1422 corresponds to a gap between two adjacent pixel openings.
  • the width W of the second connection portion 1422 may also adopt other irregular structures, such as a shape with a large middle end and a small shape with a large middle end.
  • a plurality of protrusions 142 a are formed on the first electrode 142, as shown in FIG. 11.
  • the sides of the plurality of protrusions 142a are curved.
  • the light emitting structure 140 further includes a light emitting layer 144 and a second electrode 146 formed on the first electrode 142, as shown in FIG. 1.
  • the first electrode 142 is an anode
  • the second electrode 146 is a cathode.
  • the first electrode 142 is a cathode
  • the second electrode 146 is an anode.
  • the extending directions of the second electrode 146 and the first electrode 142 are perpendicular to each other.
  • the second electrode 146 may have the same shape as the first electrode 142, and both adopt a wave-shaped electrode structure.
  • the sides of the projection of the first electrode 142 on the substrate 110 and the sides of the projection of the pixel opening 130 on the substrate 110 are not parallel to each other.
  • the distance AA of the two in the corresponding area is different at different positions, so that the diffraction fringes generated at the positions with different pitches also have different positions, and finally the diffraction effect can be weakened, thereby ensuring that the camera is installed in the When the display is below the transparent display panel, the graphics obtained by taking pictures have high definition.
  • the display panel is an Active-Matrix Organic Light-Emitting Diode (AMOLED) display panel.
  • the substrate 110 is a thin film transistor (TFT) array substrate.
  • a first electrode is formed on the substrate 110.
  • the first electrode includes various conductive traces formed on the TFT array substrate.
  • the width dimension of the first electrode needs to be designed according to the width of the conductive trace.
  • the conductive trace includes at least one of a scan line, a data line, and a power line.
  • all conductive traces on the TFT array substrate, such as scan lines, data lines, and power lines can be improved to adopt the electrode shape shown in FIG. 8. By changing the conductive traces on the TFT array substrate to any of the wavy electrode shapes in FIGS.
  • the display panel when the display panel is an AMOLED display panel, the display panel further includes an anode layer formed above the substrate.
  • the anode layer includes an anode array.
  • the anode array is composed of a plurality of independent anodes.
  • the shape of the anode may be a circle, an oval, or a dumbbell shape formed by two circles communicating with each other.
  • FIG. 13 is a schematic diagram of an anode array formed by using a circular anode
  • FIG. 14 is a schematic diagram of an anode array formed by a dumbbell-shaped anode.
  • each sub-pixel may also be set in a circle, oval or dumbbell shape as shown in FIG. 13 and FIG. 14 to weaken the diffraction effect.
  • the sides of the projection of the anode on the substrate 110 and the sides of the projection of the pixel opening 130 on the substrate 110 are not parallel to each other.
  • the distance AA between the corresponding areas of the two is different, so that the diffraction fringes generated in the areas with different pitches also have different positions, and the diffractions at different positions cancel each other out, which can finally weaken the diffraction Effect, thereby ensuring that when the camera is disposed below the transparent display panel, the graphics obtained by taking pictures have a higher definition.
  • the display panel may also be an LCD display panel.
  • the display panel may be a transparent or transflective display panel.
  • the transparency of the display panel can be achieved by using various layers of materials with better light transmittance.
  • each layer uses a material having a light transmittance greater than 90%, so that the light transmittance of the entire display panel can be more than 70%.
  • each layer is made of a material having a light transmittance greater than 95%, so that the light transmittance of the entire display panel is more than 80%.
  • the material of the conductive traces such as the cathode and the anode may be ITO, IZO, Ag + ITO, or Ag + IZO, etc.
  • the material of the insulating layer is preferably SiO 2 , SiN x , Al 2 O 3, etc., and the material of the pixel definition layer 120 A highly transparent material is used.
  • the transparency of the display panel can also be achieved by other technical means, and the structure of the above display panel can be applied.
  • the transparent or transflective display panel can display normally when it is in working state, and it is in non-display state when it is not working. When the display panel is in a non-display state, the panel is in a transparent or translucent state. At this time, the photosensitive device and the like placed under the display panel can be seen through the display panel.
  • An embodiment of the present application further provides a display screen.
  • the display screen has a first display area, and the first display area is used to display a dynamic or static picture.
  • the first display area is provided with a display panel as mentioned in any of the foregoing embodiments.
  • a photosensitive device may be disposed below the first display area. Because the first display area uses the display panel in the foregoing embodiment, when the light passes through the display area, no obvious diffraction effect will be generated, so that the photosensitive device located below the first display area can work normally.
  • the first display area changes with the display content of the overall display, such as displaying an external image being captured; or the first display area may also be in a non-display state, thereby further ensuring that the photosensitive device can Light collection is normally performed through the display panel.
  • FIG. 16 is a schematic diagram of a display screen in an embodiment.
  • the display screen includes a first display area 910 and a second display area 920, and the second display area 920 is adjacent to the first display area 910.
  • the light transmittance of the first display area 910 is greater than the light transmittance of the second display area 920.
  • a photosensitive device 930 may be disposed below the first display area 910.
  • the first display area 910 is provided with a display panel as mentioned in any of the foregoing embodiments. Both the first display area 910 and the second display area 920 are used to display a static or dynamic picture.
  • the first display area 910 uses the display panel in the foregoing embodiment, when the light passes through the display area, no obvious diffraction effect is generated, so that the photosensitive device 930 located below the first display area 910 can ensure that normal work.
  • the first display area 910 can display dynamic or static images normally when the photosensitive device 930 is not operating, and can be in a non-display state when the photosensitive device 930 is operating, thereby ensuring that the photosensitive device 930 can normally perform light transmission through the display panel. collection.
  • the light transmittances of the first display area 910 and the second display area 920 may also be the same, so that the entire display panel has better light transmission uniformity, which ensures that the display panel has a better display effect.
  • the display panel provided in the first display area 910 is a PMOLED display panel or an AMOLED display panel
  • the display panel provided in the second display area 920 is an AMOLED display panel, so that a PMOLED display panel and an AMOLED display can be formed.
  • FIG. 17 is a schematic diagram of a display terminal according to an embodiment.
  • the display terminal includes a device body 810 and a display screen 820.
  • the display screen 820 is disposed on the device body 810 and is connected to the device body 810.
  • the display screen 820 may use the display screen in any of the foregoing embodiments to display a static or dynamic picture.
  • FIG. 18 is a schematic diagram of a device body 810 in an embodiment.
  • the device body 810 may be provided with a slotted area 812 and a non-slotted area 814.
  • Photosensitive devices such as a camera 930 and a light sensor may be disposed in the slotted area 812.
  • the display panel in the first display area of the display screen 820 is attached to the slotted area 814 so that the above-mentioned photosensitive devices such as the camera 930 and the light sensor can perform operations such as collecting external light through the first display area. .
  • the display panel in the first display area can effectively improve the diffraction phenomenon caused by external light transmitted through the first display area, thereby effectively improving the quality of the image captured by the camera 930 on the display device, and avoiding the distortion of the captured image due to diffraction. At the same time, it can also improve the accuracy and sensitivity of the light sensor to sense external light.
  • the electronic device may be a digital device such as a mobile phone, a tablet, a palmtop computer, or an iPod.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板、显示屏及显示终端。显示面板包括:基板(110);以及形成于基板(110)上的像素定义层(120);像素定义层(120)上形成有像素开口(130);像素开口(130)包括第一类型像素开口;第一类型像素开口在基板(110)上的投影的各边均为曲线,且各边互不平行。

Description

显示面板、显示屏及显示终端
相关申请的交叉引用
本申请要求于2018年8月6日提交的中国发明专利申请201810886049.X(名称为显示面板、显示屏及显示终端)的优先权,将其全部内容整体并入本文。
技术领域
本申请涉及显示技术领域,特别是涉及一种显示面板、显示屏及显示终端。
背景技术
随着显示终端的快速发展,用户对屏占比的要求越来越高,使得全面屏显示的显示终端受到业界越来越多的关注。传统的显示终端如手机、平板电脑等,由于需要集成诸如前置摄像头、听筒以及红外感应元件等,通过在显示屏上开槽(Notch),并在开槽区域设置透明显示屏的方式来实现显示终端的全面屏显示。
发明内容
本申请提供一种显示面板、显示屏以及显示终端。
一种显示面板,包括基板以及形成于基板上的像素定义层。像素定义层上形成有像素开口,像素开口包括第一类型像素开口,第一类型像素开口在基板上的投影的为各边均为曲线,且各边互不平行。
一种显示屏,包括第一显示区,用于显示动态或静态画面,还包括如前述的显示面板,设置在第一显示区。
一种显示终端,包括:设备本体和如前述的显示屏。设备本体具有器件区,显示屏覆盖在设备本体上。器件区位于第一显示区下方,且器件区中设 置有感光器件。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为一实施例中的显示面板的剖视图。
图2为一实施例中的像素定义层在基板上的投影示意图。
图3为又一实施例中的像素定义层在基板上的投影示意图。
图4为另一实施例中的像素定义层在基板上的投影示意图。
图5为再一实施例中的像素定义层在基板上的投影示意图。
图6为又一实施例中的像素定义层在基板上的投影示意图。
图7为另一实施例中的像素定义层在基板上的投影示意图。
图8为一实施例中的显示面板为PMOLED显示面板的第一电极的示意图。
图9为另一实施例中的显示面板为PMOLED显示面板的第一电极的示意图。
图10为又一实施例中的显示面板为PMOLED显示面板的第一电极的示意图。
图11为再一实施例中的显示面板为PMOLED显示面板的第一电极的示意图。
图12为一实施例中的显示面板中的第一电极和像素开口在基板上的投影示意图。
图13为一实施例中的显示面板为AMOLED显示面板的阳极的示意图。
图14另一实施例中的显示面板为AMOLED显示面板的阳极的示意图。
图15为一实施例中的显示面板中的阳极和像素开口在基板上的投影示意图。
图16为一实施例中的显示屏的示意图。
图17为一实施例中的显示终端的示意图。
图18为一实施例中的设备本体的示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”以及“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,需要说明的是,当元件被称为“形成在另一元件上”时,它可以直接连接到另一元件上或者可能同时存在居中元件。当一个元件被认为是“连接”另一个元件,它可以直接连接到另一元件或者同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。
申请人发现,将摄像头等感光器件设置在透明显示面板下方时,拍照得到的照片模糊。申请人经过研究发现,出现这个问题的原因在于,电子设备的显示屏体内有导电走线,外部光线经过这些导电走线时会使得衍射强度分布较为复杂,从而出现衍射条纹,进而影响摄像头等感光器件的正常工作。例如,位于透明显示区域之下的摄像头工作时,外部光线经过显示屏内的导线材料走线后会发生较为明显的衍射,从而使得摄像头拍摄到的画面失真。
为解决上述问题,本申请一实施例提供了一种显示面板。图1为一实施例中显示面板的剖视图。该显示面板包括基板110以及形成在基板110上的像素定义层120。像素定义层120上形成有像素开口130,以定义出像素的发光区域。在本实施例中所提及的像素均为最小的像素单位,如子像素。
像素开口130包括第一类型像素开口。第一类型像素开口在基板上的投影的各边互不平行且各边均为曲线,也即第一类型像素开口在各个方向上均具有变化的宽度且在同一位置具有不同的衍射扩散方向。光在穿过狭缝、小孔或者圆盘之类的障碍物时,会发生不同程度的弯散传播,从而偏离原来的直线传播,这种现象称之为衍射。衍射过程中,衍射条纹的分布会受到障碍物尺寸的影响,例如狭缝的宽度、小孔的尺寸等。具有相同宽度的位置处产生的衍射条纹的位置一致,从而产生较为明显的衍射效应。在本实施例中,当外部光线经过该第一类型像素开口时,在不同宽度的位置上能够产生具有不同位置和扩散方向的衍射条纹,因此不会产生较为明显的衍射效应,从而可以确保设置于该显示面板下方的感光元件能够正常工作。
传统的像素定义层上的像素开口均根据像素大小设置成长方形或者正方形。长方形存在两组相互平行的边,两条长边之间的距离处处相等,两条短边之间的距离也处处相等。因此,当外部光线经过该像素开口时,在长边方向或者短边方向的不同位置均产生具有位置相同且扩散方向一致的衍射条纹,从而产生明显的衍射效应,使得位于该显示面板下方的感光元件无法正常工作。本实施例中的显示面板可以很好的解决该问题,确保显示面板下方的感光元件能够正常工作。
在一实施例中,基板110可以为玻璃基板、石英基板或者塑料基板等透明基板。
在一实施例中,第一类型像素开口在基板110上的投影的各边采用的曲线可以为圆形、椭圆形和其他具有变化曲率的曲线中的至少一种。
在一实施例中,第一类型像素开口在基板110上的投影为一个图形单元或者多个彼此连通的图形单元。该图形单元可以为圆形或者椭圆形。图形单元还可以由其他各处具有不同曲率半径的曲线构成。图形单元的个数可以根据对应的子像素的形状来确定。例如,可以根据子像素的长宽比来确定个数。在确定图形单元的个数的同时需要考虑像素的开口率。在一实施例中,图形单元还可以为轴对称结构,从而确保整个显示面板上的各像素具有一致的开 口率,不会影响最终的显示效果。
第一类型像素开口在基板110上的投影具有至少两个图形单元时,投影还包括第一连接部。至少两个图形单元通过第一连接部相互连通,形成整体连通的图形区域。第一连接部的各边可以由曲线和直线中的至少一种构成。当第一连接部的各边为直线时,第一连接部的形状为条状。在一实施例中,第一连接部的各边均由曲线构成,从而使得光线在连接单元位置处也能够产生不同方向的扩散,以减弱衍射效应。
图2为一实施例中的像素定义层120在基板110上的投影的示意图。在本实施例中,像素定义层120上的像素开口130均为第一像素类型开口。多个第一类型像素开口规则地阵列排布在基板110上。第一类型像素开口在基板110上的投影130a的各边均为曲线,即第一类型像素开口的各边为曲线。因此,当光线经过第一像素类型开口时,产生的衍射条纹不会只朝着一个方向扩散,从而使得衍射不明显,具有较佳的衍射改善效果。具体地,每个第一类型像素开口在基板110上的投影130a(以下简称投影130a)为一个圆形或者至少两个圆形彼此连通的图形。投影130a中所包含的圆形的数量可以根据对应的子像素的形状来确定。
参见图2,在本实施例中,第一类型像素开口130a对应的子像素形状为长宽比小于1.5的长方形或者正方形,也即,当第一类型像素开口130a对应的子像素形状的长宽比小于1.5时,投影130a为一个圆。在一实施例中,投影130a为轴对称图形,其对称轴与相应子像素的对称轴对应。投影130a中的圆的直径小于子像素的最小宽度。具体地,投影130a的圆的直径可以根据子像素的形状并结合开口率确定。投影130a的圆的直径的确定方法可以采用传统的确定像素开口的尺寸的方法,此处不赘述。
图3为另一实施例中的像素定义层120在基板110上的投影的示意图。在本实施例中,像素开口130同样均为第一类型像素开口,并且各第一类型像素开口规则排布在基板110上。在本实施例中,第一类型像素开口对应的像素的长宽比在1.5到2.5之间。此时,投影130a为由两个圆形彼此连通形 成的哑铃形。两个圆分别沿对应的子像素的长度方向排布。在一实施例中,两个圆之间有第一连接部1301,第一连接部1301的两边均为曲线,而确保光线经过第一连接部1301时,也能够向各个方向扩散,从而改善衍射效果。
图4为一实施例中的像素定义层120在基板110上的投影的示意图。在本实施例中,像素开口130同样均为第一类型像素开口,并且各第一类型像素开口规则排布在基板110上。在本实施例中,第一类型像素开口对应的子像素的长宽比大于2.5。此时,投影130a为由三个以上圆形彼此连通而成的波浪形。三个以上圆形分别沿对应的子像素的长度方向排布。在一实施例中,投影130a中还形成有第一连接部1302。第一连接部1302为弧线,也即三个以上圆形的相交处采用弧线连接,从而确保光线经过第一连接部1302时,也能够向各个方向扩散,从而改善衍射效果。
当第一类型像素开口对应的子像素的长宽比等于1.5时,投影130a可以为一个圆形,也可以为两个圆形彼此连通的哑铃形。当第一类型像素开口对应的子像素的长宽比等于2.5时,投影130a可以为两个圆形彼此连通的哑铃形,也可以为由三个圆形彼此连通的波浪形。
图5为一实施例中的像素定义层120在基板110上的投影的示意图。在本实施例中,像素开口130同样均为第一类型像素开口,并且各第一类型像素开口规则排布在基板110上。参见图5,投影130a为一个椭圆。此时,椭圆的尺寸与子像素的尺寸相匹配。例如,子像素的尺寸长宽比为1.2,则椭圆的长轴与短轴的比为1.2。在一实施例中,椭圆的中心点与对应子像素的中心点对应。在其他的实施例中,当第一类型像素开口对应的子像素的长宽比较大时,投影130a也可以为两个或者两个以上的椭圆连通的波浪形。
从图2至图5中可以清楚地看出,投影130a在各个方向上均具有变化的宽度,也即第一类型像素开口在各个方向上均具有变化的宽度,从而使得光线经过时会在不同宽度位置处产生具有不同位置的衍射条纹,从而减弱衍射效应。
在一实施例中,投影130a上形成有多个凸起130b,如图6所示。多个 凸起130b沿投影130a的边缘排布。凸起130b的边均为曲线。由于像素定义层120用于定义子像素的形状,故最终得到的子像素也具有多个凸起,且多个凸起沿子像素的边缘排布。通过在子像素上设置多个凸起130b,能够进一步打乱子像素各处的宽度的均匀性分布,从而降低衍射效应。
在一实施例中,像素开口130还可以包括第二类型像素开口,此时像素定义层120在基板110上的投影如图7所示。第二类型像素开口在基板110上的投影为130d,其具有与子像素相同的形状。在本实施例中,子像素的形状为正方形,故投影130d也为正方形,从而可以在一定程度提高像素开口率。投影130a和投影130d均规则排布在基板110上,且二者相间分布,也即第一类型像素开口和第二类型像素开口在均匀规则排布,从而使得整个显示面板在各处的衍射效果较为一致。
在一实施例中,像素定义层120中的各像素开口130包括第一类型像素开口和第二类型像素开口,第一类型像素开口和第二类型像素开口的各边均为非平滑边。非平滑边上形成有多个凸起;凸起的边为直线和/或曲线。通过将像素开口130的各边设置为非平滑边,能够进一步打乱像素开口各处的宽度的均匀性分布,从而降低衍射效应。
在一实施例中,显示面板还包括形成于发光区域的发光结构140。相邻两个发光结构140之间形成有像素定义层120。发光结构140包括形成于基板110上的波浪形的第一电极142。图8为多个第一电极142的示意图。此时,显示面板为被动矩阵有机发光二极体(Passive-Matrix Organic Light-Emitting Diode,PMOLED)显示面板。在本实施例中,由于第一电极142为波浪形,因此在第一电极142的延伸方向上,其宽度为连续变化或者间断变化。宽度连续变化是指第一电极142上任意两个相邻位置处的宽度不相同。图8中,第一电极142的延伸方向为其长度方向。第一电极142在延伸方向上宽度连续变化。而宽度间断变化是指在第一电极142上存在部分区域内相邻两个位置的宽度相同,而在部分区域内相邻两个位置的宽度不相同。在本实施例中,多个第一电极142在基板110上规则排布,因此,相邻两个 第一电极142之间的间隙在平行于第一电极142的延伸方向上也呈现为连续变化或者间断变化。第一电极142在延伸方向上,无论其宽度是连续变化还是间断变化都可以为周期性变化,一个变化周期的长度可以对应于一个像素的宽度。
在一实施例中,第一电极142在延伸方向上的两条边均为波浪形,如图8所示。延伸方向上的两条边的波峰T相对设置且波谷B相对设置。本实施例中,两条边均由同一圆弧形边相连而成。在其他的实施例中,两条边也可以均由同一椭圆形边相连而成,如图9所示。通过将第一电极142的两边设置成由圆弧形或者椭圆形形成的波浪形,可以确保第一电极142上产生的衍射条纹能够向不同方向扩散,进而避免产生较为明显的衍射效应。
在一实施例中,在第一电极142的波谷相对处形成有第二连接部1422,如图10所示。第二连接部1422为条状。第二连接部1422的宽度W应该大于4微米,且小于第一电极142上的最大宽度。在一实施例中,第一电极142上相邻两个第二连接部1422之间的区域对应一个像素开口,第二连接部1422则对应于相邻两个像素开口之间的间隙。通过对第二连接部1422的宽度W的调整,可以实现对第一电极142上的电阻大小的调整,以使得其满足使用需求。在其他的实施例中,第二连接部1422也可以采用其他不规则结构,如中间小两端大的形状,或者采用中间大两端小的形状。
在另一实施例中,第一电极142上形成有多个凸起142a,如图11所示。多个凸起142a的边为曲线。通过在第一电极142上设置多个142a,能够进一步打乱第一电极120各处的宽度的均匀性分布,从而降低衍射效应。
在其他的实施例中,发光结构140还包括形成于第一电极142上的发光层144以及第二电极146,如图1所示。其中,第一电极142为阳极,第二电极146为阴极。在其他的实施例中,第一电极142为阴极,第二电极146为阳极。第二电极146与第一电极142的延伸方向相互垂直。第二电极146可以与第一电极142的形状相同,均采用波浪形的电极结构。
在一实施例中,第一电极142在基板110上的投影的边与像素开口130 在基板110上的投影的边互不平行。如图12所示,在不同位置,两者在对应区域的间距AA不相同,从而使得具有不同间距的位置产生的衍射条纹也具有不同的位置,最终可以弱化衍射效应,进而确保摄像头设置在该透明显示面板下方时,拍照得到的图形具有较高的清晰度。
在一实施例中,显示面板为主动矩阵有机发光二极体(Active-Matrix Organic Light-Emitting Diode,AMOLED)显示面板。此时,基板110为薄膜晶体管(Thin Film Transistor,TFT)阵列基板。基板110上形成有第一电极。第一电极包括形成于TFT阵列基板上的各类导电走线。第一电极的宽度尺寸需要根据导电走线的宽度来设计。其中,导电走线包括扫描线、数据线以及功率线中的至少一种。例如,可以将TFT阵列基板上的所有导电走线如扫描线、数据线以及功率线进行改进,采用如图8所示的电极形状。通过将TFT阵列基板上的导电走线改成图8至图11中的任意一种波浪形的电极形状,可以确保在导线走线的延伸方向上,光线经过在不同宽度位置处以及相邻走线的不同间隙处时能够形成具有不同位置的衍射条纹,进而减弱衍射效应,使得放置于其下方的感光器件能够正常工作。
在一实施例中,在显示面板为AMOLED显示面板时,显示面板还包括形成于基板上方的阳极层。阳极层包括阳极阵列。阳极阵列由多个相互独立的阳极构成。阳极的形状可以为圆形、椭圆形或者由彼此连通的两个圆形形成的哑铃形。图13为采用圆形的阳极形成的阳极阵列的示意图,图14为哑铃形的阳极形成的阳极阵列的示意图。通过将阳极形状改为圆形、椭圆形或者哑铃形,可以确保光线经过阳极层时,在阳极的不同宽度位置处同样能够产生具有不同位置以及扩散方向的衍射条纹,从而弱化衍射效应。进一步的,各个子像素也可设置为图13和图14所示的圆形、椭圆形或者哑铃形,以弱化衍射效应。
在一实施例中,阳极在基板110上的投影的边与像素开口130在基板110上的投影的边互不平行。如图15所示,在不同位置,二者对应区域的间距AA不相同,从而使得具有不同间距的位置区域产生的衍射条纹也具有不同的 位置,不同位置处的衍射相互抵消,最终可以弱化衍射效应,进而确保摄像头设置在该透明显示面板下方时,拍照得到的图形具有较高的清晰度。
在一实施例中,上述显示面板还可以为LCD显示面板。
在一实施例中,上述显示面板可以为透明的或者半透半反式的显示面板。显示面板的透明可以通过采用透光率较好的各层材料来实现。例如,各层均采用透光率大于90%的材料,从而使得整个显示面板的透光率可以在70%以上。可选的,各层均采用透光率大于95%的材料,从而使得整个显示面板的透光率在80%以上。具体地,导电走线如阴极和阳极等的材料可以为ITO、IZO、Ag+ITO或者Ag+IZO等,绝缘层材料优选SiO 2,SiN x以及Al 2O 3等,像素定义层120的材料则采用高透明材料。显示面板的透明还可以采用其他技术手段实现,上述显示面板的结构均可以适用。透明或者半透半反式的显示面板处于工作状态时能够正常显示,而在不工作时处于不显示状态。当显示面板处于不显示状态时,其面板呈现透明或者半透明的状态。此时可以透过该显示面板看到放置于该显示面板之下的感光器件等。
本申请一实施例还提供一种显示屏。该显示屏具有第一显示区,第一显示区用于显示动态或静态画面。第一显示区设置有如前述任一实施例中所提及的显示面板。第一显示区下方可以设置感光器件。由于第一显示区采用了前述实施例中的显示面板,因此当光线经过该显示区域时,不会产生较为明显的衍射效应,从而能够确保位于该第一显示区下方的感光器件能够正常工作。在感光器件不工作时,第一显示区随着整体显示屏的显示内容的变化而变化,如显示正在拍摄的外部图像;或者第一显示区也可以处于不显示状态,从而进一步确保感光器件能够透过该显示面板正常进行光线采集。
图16为一实施例中的显示屏的示意图。该显示屏包括第一显示区910和第二显示区920,第二显示区920与第一显示区910相邻。第一显示区910的透光率大于第二显示区920的透光率。第一显示区910的下方可设置感光器件930。第一显示区910设置有如前述任一实施例中所提及的显示面板。第一显示区910和第二显示区920均用于显示静态或者动态画面。由于第一 显示区910采用了前述实施例中的显示面板,因此当光线经过该显示区域时,不会产生较为明显的衍射效应,从而能够确保位于该第一显示区910下方的感光器件930能够正常工作。第一显示区910在感光器件930不工作时,可以正常进行动态或者静态画面显示,而在感光器件930工作时,可以处于不显示状态,从而确保感光器件930能够透过该显示面板正常进行光线采集。在其他的实施例中,第一显示区910和第二显示区920的透光率也可以相同,从而使得整个显示面板具有较好的透光均一性,确保显示面板具有较好的显示效果。
在一实施例中,设置在第一显示区910的显示面板为PMOLED显示面板或AMOLED显示面板,设置在第二显示区920的显示面板为AMOLED显示面板,从而可以形成由PMOLED显示面板和AMOLED显示面板构成的全面屏。
本申请另一实施例还提供一种显示终端。图17为一实施例中的显示终端的示意图,该显示终端包括设备本体810和显示屏820。显示屏820设置在设备本体810上,且与该设备本体810相互连接。其中,显示屏820可以采用前述任一实施例中的显示屏,用以显示静态或者动态画面。
图18为一实施例中的设备本体810的示意图。在本实施例中,设备本体810上可设有开槽区812和非开槽区814。在开槽区812中可设置有诸如摄像头930以及光传感器等感光器件。此时,显示屏820的第一显示区的显示面板贴合在开槽区814,以使得上述的诸如摄像头930及光传感器等感光器件能够透过该第一显示区对外部光线进行采集等操作。第一显示区中的显示面板能够有效改善外部光线透射该第一显示区所产生的衍射现象,从而可有效提升显示设备上摄像头930所拍摄图像的质量,避免因衍射而导致所拍摄的图像失真,同时也能提升光传感器感测外部光线的精准度和敏感度。
上述电子设备可以为手机、平板、掌上电脑、ipod等数码设备。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种显示面板,包括:
    基板;以及
    形成于所述基板上的像素定义层,所述像素定义层上形成有像素开口,所述像素开口包括第一类型像素开口,所述第一类型像素开口在所述基板上的投影的各边均为曲线,且各边互不平行。
  2. 根据权利要求1所述的显示面板,其中,所述第一类型像素开口在所述基板上的投影包括一个图形单元或者至少两个彼此连通的图形单元。
  3. 根据权利要求2所述的显示面板,其中,当所述第一类型像素开口对应的子像素的长宽比小于1.5时,所述第一类型像素开口在所述基板上的投影为圆形;当所述第一类型像素开口对应的子像素的长宽比大于等于1.5并且小于等于2.5时,所述第一类型像素开口在所述基板上的投影为彼此连通的两个圆形;当所述第一类型像素开口对应的子像素的长宽比大于2.5时,所述第一类型像素开口在所述基板上的投影为至少三个彼此连通的圆形。
  4. 根据权利要求2所述的显示面板,其中,所述第一类型像素开口在所述基板上的投影为椭圆形,所述椭圆形的长轴和短轴之比等于所述第一类型像素开口对应的子像素的长宽比。
  5. 根据权利要求2所述的显示面板,其中,所述第一类型像素开口在所述基板上的投影为轴对称图形。
  6. 根据权利要求2~5任一项所述的显示面板,其中,所述第一类型像素开口在所述基板上的投影还包括第一连接部,两个彼此连通的图形单元之间通过所述第一连接部连通,所述第一连接部的两边中的至少一边为直线或曲线。
  7. 根据权利要求1所述的显示面板,其中,所述像素开口定义子像素的形状,所述子像素上形成有多个凸起,多个所述凸起沿所述子像素的边缘分布。
  8. 根据权利要求1所述的显示面板,其中,所述像素开口还包括第二类 型像素开口;所述第二类型像素开口在所述基板上的投影为矩形;所述第一类型像素开口与所述第二类型像素开口在所述基板上间隔排布。
  9. 根据权利要求1所述的显示面板,其中,所述显示面板为PMOLED显示面板;所述显示面板还包括形成于所述基板上的多个第一电极;所述多个第一电极沿相同的方向并行延伸,且相邻的所述第一电极间具有间距;在所述第一电极的延伸方向上,所述第一电极的宽度连续变化或间断变化,且所述间距连续变化或间断变化。
  10. 根据权利要求9所述的显示面板,其中,所述第一电极在所述延伸方向上的两条边均为波浪形,所述两条边的波峰相对设置,且波谷相对设置。
  11. 根据权利要求10所述的显示面板,其中,所述第一电极的波谷相对处形成有第二连接部,所述第二连接部的形状为条状。
  12. 根据权利要求9所述的显示面板,其中,所述第一电极在所述基板上的投影的边与所述像素开口在所述基板上的投影的边互不平行。
  13. 根据权利要求9所述的显示面板,其中,所述第一电极上形成有多个凸起,所述多个凸起沿所述第一电极的边缘分布。
  14. 根据权利要求1所述的显示面板,其中,所述显示面板为AMOLED显示面板;所述显示面板还包括形成于所述基板上的第一电极层,所述第一电极层包括多个相互独立的第一电极,每个第一电极对应一个发光结构层,所述第一电极层在所述基板上的投影的边与所述像素开口在所述基板上的投影的边互不平行。
  15. 根据权利要求14所述的显示面板,其中,所述第一电极在所述基板上的投影为圆形、椭圆形或者彼此连通的两个圆形。
  16. 根据权利要求14所述的显示面板,其中,所述第一电极在所述基板上的投影的边与所述像素开口在所述基板上的投影的边互不平行。
  17. 一种显示屏,包括:
    第一显示区,所述第一显示区用于显示动态或静态画面;以及
    如权利要求1-16中任意一项所述的显示面板,设置在所述第一显示区。
  18. 如权利要求17所述的显示屏,还包括与所述第一显示区相邻的第二显示区,设置在所述第一显示区的显示面板包括PMOLED显示面板或AMOLED显示面板,设置在所述第二显示区的显示面板包括AMOLED显示面板。
  19. 一种显示终端,包括:
    设备本体,具有器件区;以及
    如权利要求17所述的显示屏,设置在所述设备本体上;
    其中,所述器件区位于所述第一显示区下方,且所述器件区中设置有感光器件。
  20. 如权利要求19所述的显示终端,其中,所述器件区为开槽区,所述感光器件包括摄像头或光线感应器。
PCT/CN2019/073267 2018-08-06 2019-01-25 显示面板、显示屏及显示终端 WO2020029559A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19846530.4A EP3712948A4 (en) 2018-08-06 2019-01-25 DISPLAY BOARD, DISPLAY SCREEN AND DISPLAY DEVICE
JP2020532905A JP7125485B2 (ja) 2018-08-06 2019-01-25 表示パネル、ディスプレイ及び表示端末
KR1020207017734A KR102489280B1 (ko) 2018-08-06 2019-01-25 디스플레이 패널, 디스플레이 스크린 및 디스플레이 단말기
US16/824,702 US11244992B2 (en) 2018-08-06 2020-03-20 Display panels, display screens, and display terminals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810886049.X 2018-08-06
CN201810886049.XA CN110767672B (zh) 2018-08-06 2018-08-06 显示面板、显示屏及显示终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/824,702 Continuation US11244992B2 (en) 2018-08-06 2020-03-20 Display panels, display screens, and display terminals

Publications (1)

Publication Number Publication Date
WO2020029559A1 true WO2020029559A1 (zh) 2020-02-13

Family

ID=67702268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073267 WO2020029559A1 (zh) 2018-08-06 2019-01-25 显示面板、显示屏及显示终端

Country Status (7)

Country Link
US (1) US11244992B2 (zh)
EP (1) EP3712948A4 (zh)
JP (1) JP7125485B2 (zh)
KR (1) KR102489280B1 (zh)
CN (1) CN110767672B (zh)
TW (1) TWI698689B (zh)
WO (1) WO2020029559A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11043636B2 (en) 2017-05-17 2021-06-22 Oti Lumionics Inc. Method for selectively depositing a conductive coating over a patterning coating and device including a conductive coating
US11088327B2 (en) 2015-10-26 2021-08-10 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11581487B2 (en) 2017-04-26 2023-02-14 Oti Lumionics Inc. Patterned conductive coating for surface of an opto-electronic device
US11700747B2 (en) 2019-06-26 2023-07-11 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
US11730012B2 (en) 2019-03-07 2023-08-15 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
US11744101B2 (en) 2019-08-09 2023-08-29 Oti Lumionics Inc. Opto-electronic device including an auxiliary electrode and a partition
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
US11832473B2 (en) 2019-06-26 2023-11-28 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767832B (zh) * 2018-12-29 2022-05-17 云谷(固安)科技有限公司 显示面板、显示面板制备方法、显示屏及显示终端
KR20210060186A (ko) 2019-11-18 2021-05-26 삼성전자주식회사 디스플레이 및 카메라 장치를 포함하는 전자 장치
CN111276055B (zh) * 2020-02-28 2021-07-16 武汉天马微电子有限公司 显示面板及显示装置
CN111341936B (zh) * 2020-03-10 2021-11-12 昆山国显光电有限公司 一种显示面板及显示装置
CN111046599B (zh) * 2020-03-17 2020-06-23 昆山国显光电有限公司 像素排布优化方法、装置、透光显示面板和显示面板
CN111462630B (zh) * 2020-04-17 2021-12-14 合肥维信诺科技有限公司 可卷曲显示装置
CN111463256A (zh) * 2020-05-22 2020-07-28 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示面板及显示装置
CN114373784A (zh) * 2020-10-14 2022-04-19 Oppo广东移动通信有限公司 显示装置及电子设备
CN112310325B (zh) * 2020-10-30 2022-08-23 合肥维信诺科技有限公司 透光显示模组、显示面板及透光显示模组的制备方法
CN112103329B (zh) * 2020-11-05 2021-02-02 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN112437180B (zh) * 2020-11-30 2022-07-01 厦门天马微电子有限公司 一种显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105230125A (zh) * 2013-05-28 2016-01-06 索尼公司 显示装置和电子设备
KR20160054720A (ko) * 2014-11-06 2016-05-17 엘지디스플레이 주식회사 유기발광다이오드 표시장치
US20160372709A1 (en) * 2015-06-19 2016-12-22 Samsung Display Co., Ltd. Organic light emitting diode display device
WO2017195560A1 (ja) * 2016-05-11 2017-11-16 株式会社Joled 表示装置および電子機器
CN109216415A (zh) * 2017-07-04 2019-01-15 三星显示有限公司 有机发光显示装置
CN208608202U (zh) * 2018-08-06 2019-03-15 云谷(固安)科技有限公司 显示面板、显示屏及显示终端

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665342A (en) * 1984-07-02 1987-05-12 Cordis Corporation Screen printable polymer electroluminescent display with isolation
JP2003187694A (ja) * 2001-12-21 2003-07-04 Dainippon Screen Mfg Co Ltd 隔壁形成方法、隔壁形成装置およびパネル
JP2005203215A (ja) * 2004-01-15 2005-07-28 Sharp Corp 有機el素子
TWI472037B (zh) 2005-01-28 2015-02-01 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
JP4777078B2 (ja) 2005-01-28 2011-09-21 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2007103032A (ja) * 2005-09-30 2007-04-19 Seiko Epson Corp 発光装置、及び発光装置の製造方法
JP2008226746A (ja) * 2007-03-15 2008-09-25 Sony Corp 表示装置および電子機器
JP2009065498A (ja) 2007-09-07 2009-03-26 Tohoku Pioneer Corp 表示撮像装置
JP5171329B2 (ja) * 2007-09-28 2013-03-27 株式会社ジャパンディスプレイウェスト 表示装置
US8217927B2 (en) 2007-09-28 2012-07-10 Sony Corporation Display unit
JP4973438B2 (ja) 2007-10-17 2012-07-11 セイコーエプソン株式会社 表示装置および当該表示装置を備えた電子機器
KR101065408B1 (ko) * 2010-03-17 2011-09-16 삼성모바일디스플레이주식회사 터치 표시 장치
WO2013038970A1 (ja) * 2011-09-12 2013-03-21 シャープ株式会社 発光デバイス、表示装置、及び照明装置
KR102049974B1 (ko) * 2013-09-23 2019-11-28 엘지디스플레이 주식회사 유기 발광 디스플레이 장치
CN104037201B (zh) 2014-06-11 2017-02-01 上海和辉光电有限公司 像素阵列、显示器以及将图像呈现于显示器上的方法
CN104409659B (zh) 2014-12-18 2017-02-22 上海天马有机发光显示技术有限公司 一种有机发光二极管和有机发光二极管的制造方法
US9312312B1 (en) * 2014-12-30 2016-04-12 Industrial Technology Research Institute Display
TWI549291B (zh) * 2014-12-30 2016-09-11 財團法人工業技術研究院 顯示器
KR102420965B1 (ko) * 2015-02-09 2022-07-14 삼성디스플레이 주식회사 전면 발광 장치 및 유기 발광 표시 장치
KR102515963B1 (ko) * 2016-03-04 2023-03-30 삼성디스플레이 주식회사 유기 발광 표시 장치
CN108075045A (zh) * 2016-11-16 2018-05-25 中国科学院苏州纳米技术与纳米仿生研究所 用于印刷oled像素的限定结构及其制备方法
CN108010947B (zh) * 2017-11-29 2021-01-08 上海天马有机发光显示技术有限公司 一种有机发光显示面板和有机发光显示装置
CN108231856A (zh) * 2018-01-12 2018-06-29 京东方科技集团股份有限公司 像素界定层、显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105230125A (zh) * 2013-05-28 2016-01-06 索尼公司 显示装置和电子设备
KR20160054720A (ko) * 2014-11-06 2016-05-17 엘지디스플레이 주식회사 유기발광다이오드 표시장치
US20160372709A1 (en) * 2015-06-19 2016-12-22 Samsung Display Co., Ltd. Organic light emitting diode display device
WO2017195560A1 (ja) * 2016-05-11 2017-11-16 株式会社Joled 表示装置および電子機器
CN109216415A (zh) * 2017-07-04 2019-01-15 三星显示有限公司 有机发光显示装置
CN208608202U (zh) * 2018-08-06 2019-03-15 云谷(固安)科技有限公司 显示面板、显示屏及显示终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3712948A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11088327B2 (en) 2015-10-26 2021-08-10 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11158802B2 (en) 2015-10-26 2021-10-26 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11158803B2 (en) 2015-10-26 2021-10-26 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11335855B2 (en) 2015-10-26 2022-05-17 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11785831B2 (en) 2015-10-26 2023-10-10 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11706969B2 (en) 2015-10-26 2023-07-18 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11581487B2 (en) 2017-04-26 2023-02-14 Oti Lumionics Inc. Patterned conductive coating for surface of an opto-electronic device
US11730048B2 (en) 2017-05-17 2023-08-15 OTI Lumionic Inc. Method for selectively depositing a conductive coating over a patterning coating and device including a conductive coating
US11043636B2 (en) 2017-05-17 2021-06-22 Oti Lumionics Inc. Method for selectively depositing a conductive coating over a patterning coating and device including a conductive coating
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
US11730012B2 (en) 2019-03-07 2023-08-15 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
US11700747B2 (en) 2019-06-26 2023-07-11 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
US11832473B2 (en) 2019-06-26 2023-11-28 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
US11744101B2 (en) 2019-08-09 2023-08-29 Oti Lumionics Inc. Opto-electronic device including an auxiliary electrode and a partition

Also Published As

Publication number Publication date
US11244992B2 (en) 2022-02-08
TW201921064A (zh) 2019-06-01
JP2021507289A (ja) 2021-02-22
EP3712948A1 (en) 2020-09-23
CN110767672A (zh) 2020-02-07
KR20200083620A (ko) 2020-07-08
CN110767672B (zh) 2020-11-17
JP7125485B2 (ja) 2022-08-24
KR102489280B1 (ko) 2023-01-17
EP3712948A4 (en) 2021-03-03
US20200219967A1 (en) 2020-07-09
TWI698689B (zh) 2020-07-11

Similar Documents

Publication Publication Date Title
WO2020029559A1 (zh) 显示面板、显示屏及显示终端
TWI718493B (zh) 顯示面板、顯示屏及顯示終端
US11271053B2 (en) Display panel having one display region surrounding another display regiion and display device having the same
WO2020029621A1 (zh) 显示面板、显示屏及显示终端
WO2021098137A1 (zh) 显示基板、显示面板及显示装置
US11227910B2 (en) Display panel, display screen, and display terminal
WO2020029612A1 (zh) 显示面板、显示屏及显示终端
WO2021093475A1 (zh) 阵列基板、控光面板和显示装置
WO2020087859A1 (zh) 显示屏以及显示终端
CN110767678B (zh) 显示面板、显示屏及显示终端
CN110767167B (zh) 显示屏及显示终端
WO2021189489A1 (zh) 阵列基板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020532905

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207017734

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019846530

Country of ref document: EP

Effective date: 20200615

NENP Non-entry into the national phase

Ref country code: DE