WO2020029621A1 - 显示面板、显示屏及显示终端 - Google Patents

显示面板、显示屏及显示终端 Download PDF

Info

Publication number
WO2020029621A1
WO2020029621A1 PCT/CN2019/085577 CN2019085577W WO2020029621A1 WO 2020029621 A1 WO2020029621 A1 WO 2020029621A1 CN 2019085577 W CN2019085577 W CN 2019085577W WO 2020029621 A1 WO2020029621 A1 WO 2020029621A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
type
display
substrate
isolation
Prior art date
Application number
PCT/CN2019/085577
Other languages
English (en)
French (fr)
Inventor
楼均辉
籍亚男
宋艳芹
安乐平
蔡世星
林立
Original Assignee
云谷(固安)科技有限公司
昆山国显光电有限公司
昆山维信诺科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司, 昆山国显光电有限公司, 昆山维信诺科技有限公司 filed Critical 云谷(固安)科技有限公司
Priority to JP2020527800A priority Critical patent/JP6912668B2/ja
Priority to KR1020207014705A priority patent/KR102394880B1/ko
Priority to EP19846394.5A priority patent/EP3706175A4/en
Publication of WO2020029621A1 publication Critical patent/WO2020029621A1/zh
Priority to US16/801,181 priority patent/US10903303B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/128Active-matrix OLED [AMOLED] displays comprising two independent displays, e.g. for emitting information from two major sides of the display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/176Passive-matrix OLED displays comprising two independent displays, e.g. for emitting information from two major sides of the display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes

Definitions

  • the present application relates to display technology, and particularly to a display panel, a display screen, and a display terminal.
  • Exemplary embodiments of the present application provide a display panel, a display screen, and a display terminal.
  • a display panel includes a substrate, a first pixel electrode provided on the substrate, a pixel definition layer provided on a side of the first pixel electrode away from the substrate, and a plurality of first types provided on the pixel definition layer. Isolation column.
  • the pixel definition layer includes a plurality of pixel openings to expose a portion of the surface of the first pixel electrode.
  • the width of the first type of isolation pillars changes continuously or intermittently.
  • the extension direction of the first type of isolation pillars is parallel to the substrate, and the width is the dimension of the projection of the first type of isolation pillars on the substrate perpendicular to the extension direction of the first type isolation pillars.
  • FIG. 1 is a cross-sectional view of a display panel in an exemplary embodiment
  • FIG. 2 is a top view of a first type of isolation pillar in an exemplary embodiment
  • FIG. 3 is a top view of a first type of isolation pillar in another exemplary embodiment
  • FIG. 4 is a top view of a first type isolation pillar in another exemplary embodiment
  • FIG. 5 is a schematic diagram of a pixel definition layer in an exemplary embodiment
  • FIG. 6 is a schematic diagram of the interval setting of the first type isolation column and the second type isolation column in an exemplary embodiment
  • FIG. 7 is a schematic diagram of a display screen in an exemplary embodiment.
  • FIG. 8 is a schematic diagram of a display terminal in an exemplary embodiment.
  • FIG. 9 is a schematic diagram of a device body in an exemplary embodiment.
  • FIG. 1 is a cross-sectional view of a display panel in an exemplary embodiment.
  • the display panel includes a substrate 110, a first pixel electrode 120, a pixel definition layer 130, and an isolation pillar 140.
  • the substrate 110 may be a rigid substrate or a flexible substrate.
  • the rigid substrate may be a transparent substrate such as a glass substrate, a quartz substrate, or a plastic substrate
  • the flexible substrate may be a flexible polyimide (PI) substrate.
  • the first pixel electrode 120 is formed on a substrate 110. There are a plurality of first pixel electrodes 120, which are regularly arranged on the substrate 110. In this embodiment, a side where the first pixel electrode 120 is formed on the substrate 110 is an upper side, and an opposite side is a lower side.
  • the display panel is a passive organic light emitting diode (Passive-Matrix Organic Light-Emitting Diode, PMOLED) display panel.
  • PMOLED passive organic light emitting diode
  • each conductive trace of the display panel, such as the first pixel electrode 120 is made of a transparent conductive metal oxide.
  • the first pixel electrode 120 may be made of ITO (indium tin oxide) or indium zinc oxide (IZ0). Further, in order to reduce the resistance of each conductive trace on the basis of ensuring high light transmittance, the first pixel electrode 120 may also use materials such as aluminum-doped zinc oxide, silver-doped ITO, or silver-doped IZ0. production.
  • the display panel further includes a light emitting structure layer 150 formed on the first pixel electrode 120 and a second pixel electrode 160 formed on the light emitting structure layer 150.
  • the second pixel electrode 160 may be made of a transparent conductive metal oxide.
  • the second pixel electrode 160 may be made of ITO (indium tin oxide) or indium zinc oxide (IZ0).
  • the second pixel electrode 160 may also use materials such as aluminum-doped zinc oxide, silver-doped ITO, or silver-doped IZ0. production.
  • the first pixel electrode 120 is an anode
  • the second pixel electrode 160 is a cathode.
  • the pixel definition layer 130 is formed on the first pixel electrode 120.
  • the pixel definition layer 130 has a plurality of pixel openings 132 to expose a part of the surface of the first pixel electrode 120. Each pixel opening 132 is used to define a sub-pixel area.
  • the isolation pillar 140 is formed on the pixel definition layer 130 and is disposed between two adjacent first pixel electrodes 120. The isolation pillar 140 is used to separate the cathodes of two adjacent sub-pixel regions, as shown in FIG. 1. The surface of the isolation pillar 140 is higher than the surface height of the adjacent sub-pixel region.
  • the isolation cathode 160 b formed above the isolation pillar 140 and the cathode on the adjacent sub-pixel region (second pixel The electrode 160) is disconnected, so as to isolate the cathodes of adjacent sub-pixel regions, and finally ensure that each sub-pixel region can be driven normally. That is, the shape of the cathode is defined by the gap between adjacent isolation pillars 140 and is complementary to the shape of the top surface of the isolation pillars 140 to form a whole-surface structure.
  • FIG. 2 is a top view of a first type of isolation pillar in an exemplary embodiment.
  • the isolation pillar 140 includes a first type of isolation pillar 140 a.
  • the width of the first type of isolation pillars 140a continuously changes.
  • the positions of the diffraction fringes generated at different positions of the maximum width are different, so that the diffraction is not obvious, and the effect of improving the diffraction is achieved.
  • Diffraction occurs when external light passes through the spacer. Diffraction is a physical phenomenon that a light wave propagates away from the original straight line when it encounters an obstacle. Specifically, after passing through an obstacle such as a slit, a small hole, or a disc, the light wave will bend and spread to different degrees. When external light passes through the isolation column, the isolation column acts as an obstacle and causes diffraction when the light passes. The position of the diffraction fringes is determined by the maximum width of each place.
  • the conventional isolation pillars are generally strip-shaped, and their longitudinal sections (that is, the sections perpendicular to the substrate 110) have an inverted trapezoidal structure.
  • the isolation pillar has a bottom surface in contact with the substrate 110 and a top surface opposite to the bottom surface.
  • the isolation column is tapered from the top surface to the bottom surface, so that the maximum width of the isolation column appears on the top surface.
  • the top surface is rectangular, and has a fixed width along the extension direction (that is, the width is the same everywhere, and the extension directions are parallel to the substrate 110).
  • the positions of the diffraction fringes at the positions of the same width on the separation column are the same, so that the diffraction effect is more obvious, and the normal operation of the photosensitive element located below it is eventually affected, for example, the picture captured by the camera is distorted.
  • the display panel in the above embodiment adopts the first type of isolation pillars whose width changes continuously or intermittently in the extension direction, and generates diffraction stripes with different positions at different maximum width positions, which can destroy the traditional isolation pillars.
  • the complex diffraction intensity distribution makes the diffraction relatively less obvious and achieves the effect of improving the diffraction.
  • the number of the first type of isolation pillars 140 a may be multiple.
  • a plurality of first type isolation pillars 140 a are arranged in parallel on the substrate 110.
  • the width of the first type of isolation pillar 140 a is within 5 ⁇ m to 100 ⁇ m.
  • the minimum width of the first type of isolation pillar 140a depends on the manufacturing process. Under the premise that the manufacturing process can be achieved, the width of the first type of isolation pillar 140 a can be 5 ⁇ m or less, or even smaller.
  • the distance between two adjacent first type isolation pillars 140 a depends on the size design requirements of the cathodes of two adjacent sub-pixel regions.
  • the isolation pillar 140 includes a bottom surface 142 in contact with the substrate 110 and a top surface 144 opposite to the bottom surface 142.
  • the width of the top surface 144 is greater than or equal to the width of the bottom surface 142.
  • the maximum width of the isolation pillars 140 are all located on the top surface 144, that is, the isolation pillars 140 are tapered along the top surface 144 to the bottom surface 142 in the height direction. Therefore, the top surface 144 has a continuously changing width or an intermittently changing width in the extending direction.
  • the bottom surface 142 of the isolation column 140 is disposed parallel to the top surface 144, and the width of the bottom surface 142 is equal to or smaller than the width of the top surface 144 on the same cross section, so that the entire isolation column 140 appears larger and smaller Structure.
  • the bottom surface 142 has substantially the same shape as the top surface 144, thereby ensuring that the isolation pillars 140 extend in any plane parallel to the substrate 110 (that is, at different positions of the isolation pillars 140).
  • Each direction has a continuously changing width or an intermittently changing width, so as to ensure that the light does not produce a more obvious diffraction effect after passing through the isolation column 140.
  • the isolation pillar 140a of the first type has a periodically varying width in a direction in which it extends. That is, the change in the width of the first type of isolation pillar 140a is not an irregular change, but a regular periodic change, thereby reducing the difficulty of the entire preparation process.
  • a width change period of the first type of isolation pillar 140 a corresponds to a sub-pixel region.
  • At least one of the two sides along the extending direction on the top surface of the first type of isolation pillar has a non-linear shape.
  • the non-linear shape may be at least one of a polyline, an arc, a semicircle, and a wave shape.
  • the non-linear shape is formed by connecting a plurality of semicircular edges with the same opening direction.
  • a semi-circular opening is provided toward the sub-pixel region 130 a to reduce the influence on the pixels and ensure that the brightness of the pixel can meet the requirements while ensuring the pixel aperture ratio.
  • the diameter of the semicircle depends on the size of the pixels. The larger the pixel, the larger the diameter of the semicircle, and the smaller the pixel, the smaller the diameter of the semicircle.
  • the minimum width of the top surface is determined by the process limit capacity.
  • the use of a semi-circular non-linear shape can make the diffraction fringes not diffuse in one direction like the traditional strip-shaped isolation pillars, but spreads 360 degrees, which makes the diffraction extremely insignificant and has better diffraction. Improve results. And setting the edge area corresponding to the pixel area of the top surface to a semi-circle can have the least impact on the pixel, the pixel aperture ratio is higher, and the brightness is higher.
  • FIG. 3 is a top view of a first type of isolation pillar 140 a in an exemplary embodiment, that is, a schematic diagram of its top surface.
  • the non-linear shape is formed by connecting the edges of multiple broken line segments, thereby ensuring that the first type of isolation pillar has a varying width along the extension direction to improve the diffraction effect.
  • the openings of the fold line segments are disposed toward the sub-pixel region to reduce the impact on the pixels and ensure that the brightness of the pixel can meet the requirements while ensuring the pixel aperture ratio.
  • the polyline segment corresponding to each pixel region may also be composed of more polyline segments, thereby forming a jagged edge.
  • the sides of the non-linear shape may also adopt shapes such as an ellipse, or, as shown in FIG. 4, an irregular shape composed of line segments and arcs is alternately formed, and only the first type of isolation is required
  • the pillar 140a only needs to have a varying width along the length direction, so as to ensure that it can destroy the slit diffraction brought about by the conventional strip-shaped isolation pillar, and achieve the effect of improving diffraction.
  • the isolation pillar 140 further includes two side surfaces 146 connected to the bottom surface 142 and the top surface 144.
  • the projection of each side 146 on the substrate 110 coincides with the projection of the sides of the top surface 144 on the substrate 110. That is, the shape of the side surface 146 depends on the shape of the side of the top surface 144 and the shape of the side of the bottom surface 142. For example, when the side of the top surface 144 is a non-linear shape formed by a broken line segment, the side surface 146 is formed by a plurality of planes connected at a certain angle.
  • the side surface 146 is a non-linear shape formed by a semicircle
  • the side surface 146 is connected by a plurality of arc surfaces, and the radius of curvature of the arc surface is the same as the diameter of the semicircle of the side surface of the top surface 144.
  • each pixel opening 132 in the pixel definition layer 130 is curved and not parallel to each other.
  • the projection of the pixel opening 132 on the substrate 110 is formed by connecting one graphic unit or two or more graphic units.
  • the graphic unit is circular, oval or dumbbell-shaped.
  • FIG. 5 is a schematic diagram of a pixel definition layer 130 in an exemplary embodiment, with dumbbell-shaped pixel openings 132 formed thereon.
  • the isolation pillar 140 further includes a second type of isolation pillar 140b.
  • the second type of isolation column is a bar 140b.
  • the top surface of the second type of isolation pillar 140b is rectangular, and its longitudinal section is an inverted trapezoidal structure.
  • the first type of isolation pillars 140 a and the second type of isolation pillars 140 b are disposed alternately, as shown in FIG. 6. By setting the two kinds of isolation columns alternately, the diffraction effect of the entire display panel can be made consistent everywhere.
  • the isolation pillars in the display panel are all first-type isolation pillars 140a.
  • the slit diffraction fringes produced by each of the first type of isolation pillars 140a in different widths have different positions, so that the diffraction is less obvious, and a better diffraction improvement effect is achieved.
  • the display panel may be a transparent or transflective display panel.
  • the transparency of the display panel can be achieved by using various layers of materials with better light transmittance.
  • each layer of the display panel uses a material having a light transmittance greater than 90%, so that the light transmittance of the entire display panel can be more than 70%.
  • each layer of the display panel is made of a material having a light transmittance greater than 95%, which further improves the light transmittance of the display panel and even makes the light transmittance of the entire display panel above 80%.
  • ITO, IZO, Ag + ITO, or Ag + IZO can be used as conductive traces such as the cathode and anode.
  • the insulating layer material is preferably SiO 2 , SiN x, and Al 2 O 3.
  • the pixel definition layer 130 is used. Highly transparent material.
  • the transparent or transflective display panel can display the picture normally when it is in the working state, and when the display panel is in other functional requirements, external light can pass through the display panel to the photosensitive device placed under the display panel Wait.
  • FIG. 7 is a schematic diagram of a display screen according to an embodiment.
  • the display screen includes a first display area 910 and a second display area 920.
  • the light transmittance of the first display area 910 is greater than the light transmittance of the second display area 920.
  • a photosensitive device 930 may be disposed below the first display area 910.
  • the first display area 910 is provided with a first display panel.
  • the first display panel is a display panel as mentioned in any of the foregoing embodiments.
  • the second display area 920 is provided with a second display panel. Both the first display area 910 and the second display area 920 are used to display a static or dynamic picture.
  • the first display area 910 uses the display panel in the foregoing embodiment, when the light passes through the display area, no obvious diffraction effect is generated, so that the photosensitive device 930 located below the first display area 910 can ensure that normal work. It can be understood that the first display area 910 can normally display dynamic or static images when the photosensitive device 930 is not operating, and can be in a non-display state when the photosensitive device 930 is operating, thereby ensuring that the photosensitive device 930 can pass through the display panel. Light collection is performed normally. In other embodiments, the light transmittances of the first display area 910 and the second display area 920 may also be the same, so that the entire display panel has better light transmission uniformity, which ensures that the display panel has a better display effect.
  • the first display panel provided in the first display area 910 is a PMOLED display panel or an Active-Matrix Organic Light-Emitting Diode (AMOLED) display panel, which is provided on the second display.
  • the second display panel in zone 920 is an AMOLED display panel, thereby forming a full-screen composed of a PMOLED display panel and an AMOLED display panel.
  • FIG. 8 is a schematic diagram of a display terminal according to an embodiment.
  • the display terminal includes a device body 810 and a display screen 820.
  • the display screen 820 is disposed on the device body 810 and is connected to the device body 810.
  • the display screen 820 may use the display screen in any of the foregoing embodiments to display a static or dynamic picture.
  • FIG. 9 is a schematic diagram of a device body 810 in an embodiment.
  • the device body 810 may be provided with a slotted area 812 and a non-slotted area 814.
  • Photosensitive devices such as a camera 930 and a light sensor may be disposed in the slotted area 812.
  • the display panel in the first display area of the display screen 820 is correspondingly attached to the slotted area 814, so that the above-mentioned photosensitive devices such as the camera 930 and the light sensor can collect external light through the first display area, etc. operating.
  • the display panel in the first display area can effectively improve the diffraction phenomenon caused by external light transmitted through the first display area, the quality of the image captured by the camera 930 on the display device can be effectively improved, and the image captured by the diffraction can be avoided. Distortion can also improve the accuracy and sensitivity of the light sensor to sense external light.
  • the electronic device may be a digital device such as a mobile phone, a tablet, a palmtop computer, or an iPod.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请涉及一种显示面板、显示屏及终端设备。显示面板包括:基板、设于基板上的第一像素电极、设于第一像素电极远离基板一侧的像素定义层,包括多个像素开口,以暴露出所述第一像素电极表面;以及设于像素定义层上的第一类型隔离柱。在第一类型隔离柱的延伸方向上,第一类型隔离柱的宽度连续变化或间断变化。第一类型隔离柱的延伸方向平行于基板。宽度为第一类型隔离柱在基板上的投影在垂直于第一类型隔离柱的延伸方向上的尺寸。

Description

显示面板、显示屏及显示终端
相关申请的交叉引用
本申请要求于2018年8月6日提交的中国发明专利申请201810887652.X(名称为显示面板、显示屏及显示终端)的优先权,将其全部内容整体并入本文。
技术领域
本申请涉及显示技术,特别是涉及显示面板、显示屏及显示终端。
背景技术
随着电子设备的快速发展,用户对屏占比的要求越来越高,使得全面屏显示的电子设备受到业界越来越多的关注。传统的电子设备如手机、平板电脑等,由于需要集成诸如前置摄像头、听筒以及红外感应元件等器件,通常通过在显示屏上开槽(Notch),并在开槽区域设置透明显示屏的方式来实现电子设备的全面屏显示。
发明内容
本申请的示例性的实施例,提供显示面板、显示屏以及显示终端。
一种显示面板,包括:基板、设于基板上的第一像素电极、设于第一像素电极远离所述基板的一侧的像素定义层、以及设于像素定义层上的多个第一类型隔离柱。像素定义层包括多个像素开口,以暴露出第一像素电极的部分表面。在第一类型隔离柱的延伸方向上,第一类型隔离柱的宽度连续变化 或间断变化。第一类型隔离柱的延伸方向平行于基板,宽度为第一类型隔离柱在基板上的投影在垂直于第一类型隔离柱的延伸方向上的尺寸。
附图说明
图1为一示例性的实施例中的显示面板的剖视图;
图2为一示例性的实施例中的第一类型隔离柱的俯视图;
图3为另一示例性的实施例中的第一类型隔离柱的俯视图;
图4为另一示例性的实施例中的第一类型隔离柱的俯视图;
图5为一示例性的实施例中的像素定义层的示意图;
图6为一示例性的实施例中的第一类型隔离柱和第二类型隔离柱间隔设置的示意图;
图7为一示例性的实施例中的显示屏的示意图。
图8为一示例性的实施例中的显示终端的示意图。
图9为一示例性的实施例中的设备本体的示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”以及“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请 和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或者暗示相对重要性或者隐含地指明所指示的技术特征的数量。由此,限定的“第一”、“第二”的特征可以明示或者暗示包括一个或者多个该特征。
发明人发现,将摄像头等感光器件设置在透明显示面板下方时,拍照得到的照片模糊。发明人研究发现,出现这个问题的原因在于,由于电子设备的显示屏体内存在导电走线,外部光线经过这些导电走线时会产生衍射现象,并且衍射强度分布较为复杂,从而出现衍射条纹,进而影响摄像头等感光器件的正常工作。例如,位于透明显示区域之下的摄像头工作时,外部光线经过显示屏内的导线材料走线后会发生较为明显的衍射,从而使得摄像头拍摄到的画面出现失真。
为解决上述问题,本申请一示例性的实施例提供了一种显示面板。图1为一示例性的实施例中的显示面板的剖视图。参见图1,该显示面板包括基板110、第一像素电极120、像素定义层130和隔离柱140。
基板110可以为刚性基板或柔性基板,例如,刚性基板可选择玻璃基板、石英基板或者塑料基板等透明基板,柔性基板可选择柔性聚酰亚胺(Polyimide,PI)基板等。
第一像素电极120形成在基板110上。第一像素电极120为多个,规则排列在基板110上。在本实施例中,以基板110上形成有第一像素电极120的一侧为上,相对侧为下。在本实施例中,显示面板为被动式有机电致发光二极管(Passive-Matrix Organic Light-Emitting Diode,PMOLED)显示面 板。在一示例性的实施例中,为了提高显示面板的透光率,显示面板的各导电走线,如第一像素电极120,均采用透明导电金属氧化物制备而成。举例来说,第一像素电极120可以采用ITO(氧化铟锡)或氧化铟锌(IZ0)制成。进一步的,为了在保证高透光率的基础上,减小各导电走线的电阻,第一像素电极120还可以采用铝掺杂氧化锌、掺杂银的ITO或者掺杂银的IZ0等材料制成。
在本实施例中,上述显示面板还包括形成于第一像素电极120上的发光结构层150以及形成于发光结构层150上的第二像素电极160。在一示例性的实施例中,为了提高显示面板的透光率,第二像素电极160可采用透明导电金属氧化物制备而成。举例来说,第二像素电极160可以采用ITO(氧化铟锡)或氧化铟锌(IZ0)制成。进一步的,为了在保证高透光率的基础上,减小各导电走线的电阻,第二像素电极160还可以采用铝掺杂氧化锌、掺杂银的ITO或者掺杂银的IZ0等材料制成。在一示例性的实施例中,第一像素电极120为阳极,第二像素电极160为阴极。
像素定义层130形成在第一像素电极120上。像素定义层130具有多个像素开口132,以暴露出第一像素电极120的部分表面。每个像素开口132用于定义一个子像素区域。隔离柱140形成在像素定义层130上,且设置在相邻两个第一像素电极120之间。隔离柱140用于将相邻两个子像素区域的阴极间隔开来,如图1所示。隔离柱140的表面高于相邻子像素区域的表面高度,因此在显示面板的表面制备阴极时,形成在隔离柱140上方的隔离阴极160b与相邻的子像素区域上的阴极(第二像素电极160)是断开的,从而实现相邻子像素区域的阴极的隔离,最终确保各子像素区域能够正常被驱动。 也即,阴极的形状由相邻隔离柱140之间的间隙定义,且与隔离柱140的顶面形状互补形成一个整面结构。
图2为一示例性的实施例中的第一类型隔离柱的俯视图。如图2所示,隔离柱140包括第一类型隔离柱140a。在第一类型隔离柱140a的延伸方向上,第一类型隔离柱140a的宽度连续变化。当外部光线经过第一类型隔离柱140a时,在不同最大宽度位置处产生的衍射条纹的位置不同,从而使得衍射不太明显,达到改善衍射的效果。
外部光线经过隔离柱时会出现衍射现象。衍射是光波遇到障碍物时偏离原来直线传播的物理现象。具体地,光波在穿过狭缝、小孔或圆盘之类的障碍物后会发生不同程度的弯散传播。当外部光线经过隔离柱时,隔离柱作为障碍物会导致光线经过时产生衍射,其衍射条纹位置由各处的最大宽度决定。传统的隔离柱通常为条状,其纵截面(也即垂直于基板110的截面)为倒梯形结构。具体地,隔离柱具有与基板110相接触的底面以及与该底面相对的顶面。隔离柱从顶面至底面呈渐缩状,从而使得隔离柱的最大宽度出现在顶面。顶面为长方形,其沿延伸方向具有固定不变的宽度(也即在延伸方向上各处的宽度相同,延伸方向均为平行于基板110的方向)。隔离柱上具有相同宽度位置处产生的衍射条纹的位置相同,从而使得衍射效果较为明显,最终影响位于其下方的感光元件的正常工作,例如会使得摄像头拍摄到的画面失真。
上述实施例中的显示面板,通过采用在延伸方向上宽度连续变化或者间断变化的第一类型隔离柱,在不同最大宽度位置处产生位置不同的衍射条纹,可以破坏传统的隔离柱所带来的复杂的衍射强度分布,从而使得衍射相对不那么明显,达到改善衍射的效果。
在一示例性的实施例中,第一类型隔离柱140a的数量可以为多个。多个第一类型隔离柱140a并行排列在基板110上。第一类型隔离柱140a的宽度在5微米~100微米以内。第一类型隔离柱140a的最小宽度取决于制备工艺。在制备工艺能够实现的前提下,第一类型隔离柱140a的宽度可以小于等于5微米,甚至更小。相邻两个第一类型隔离柱140a的间距取决于相邻两个子像素区域的阴极的尺寸设计需求。通过将多个第一类型隔离柱140a并行设置在基板110上,能够均匀地改善显示面板各处的衍射效果,达到整体改善显示面板的衍射效果的目的。
在一示例性的实施例中,如图1所示,隔离柱140包括与基板110接触的底面142,以及与底面142相对的顶面144。在本实施例中,在隔离柱140的纵截面中,顶面144的宽度大于或者等于底面142的宽度。此时,在同一纵截面中,隔离柱140的最大宽度均位于顶面144,也即隔离柱140在高度方向上沿顶面144向底面142呈渐缩状。因此,顶面144沿延伸方向具有连续变化的宽度或者间断变化的宽度。
在一示例性的实施例中隔离柱140的底面142平行于顶面144设置,且在同一截面上,底面142的宽度等于或者小于顶面144的宽度,使得整个隔离柱140呈现上大下小的结构。在一示例性的实施例中,底面142具有与顶面144大致相同的形状,从而确保在任一平行于基板110的平面上(也即在隔离柱140的不同高度位置),隔离柱140在延伸方向上均具有连续变化的宽度或者间断变化的宽度,从而确保光线经过隔离柱140后不会产生较为明显的衍射效应。
在一示例性的实施例中,第一类型隔离柱140a沿自身延伸方向具有周期 变化的宽度。也即,第一类型隔离柱140a的宽度变化并不是毫无规则的变化,而是做规则的周期变化,从而可以降低整个制备工艺的难度。在一示例性的实施例中,第一类型隔离柱140a的一个宽度变化周期与一个子像素区域对应。第一类型隔离柱的顶面上沿着延伸方向的两个侧边中,至少有一个侧边采用非直线形状。该非直线形状可以为折线、弧线、半圆形以及波浪形中的至少一种。
在一示例性的实施例中,非直线形状为多个开口方向相同的半圆形的边缘相连而成。如图2所示,半圆形的开口朝子像素区域130a设置,以降低对像素的影响,在确保像素开口率的同时确保其亮度能够满足需求。在本实施例中,半圆形的直径大小取决于像素的大小。像素越大,则半圆形的直径越大,像素越小,则半圆形的直径越小。顶面的最小宽度由工艺极限能力确定。采用半圆形的非直线形状可以使得衍射条纹并不会像传统的长条状隔离柱一样朝着一个方向扩散,而是朝着360度扩散,进而使得衍射极不明显,具有较佳的衍射改善效果。并且将顶面与像素区域对应的边缘区域设置为半圆形,可以对像素产生最小的影响,像素开口率更高,亮度也更高。
图3为一示例性的实施例中的第一类型隔离柱140a的俯视图,也即其顶面示意图。此时非直线形状为多个折线段的边缘相连而成,从而确保第一类型隔离柱沿延伸方向具有变化的宽度,以改善衍射效果。在本实施例中,各折线段的开口朝向子像素区域设置,以降低对像素的影响,在确保像素开口率的同时确保其亮度能够满足需求。在其他的实施例中,对应于每个像素区域的折线段还可以由更多的折线段构成,从而形成锯齿状边缘。
在一示例性的实施例中,非直线形状的侧边还可以采用椭圆等形状,或 者如图4所示,采用由线段以及弧线交替形成的非规则形状构成,只需要确保第一类型隔离柱140a沿长度方向具有变化的宽度即可,从而确保其能够破坏传统的条状隔离柱所带来的狭缝衍射,达到改善衍射的效果。
在本实施例中,如图1所示,隔离柱140还包括与底面142和顶面144相连的两侧面146。每个侧面146在基板110上的投影与顶面144的侧边在基板110上的投影重合。也即侧面146的形状取决于顶面144的侧边形状以及底面142的侧边形状。例如,当顶面144的侧边为折线段构成的非直线形状时,侧面146为由多个平面成一定的角度相连而成。当顶面144的侧边为半圆形构成的非直线形状时,侧面146由多个弧面相连而成,且弧面的曲率半径与顶面144的侧边的半圆形的直径相同。
在一示例性的实施例中,像素定义层130中的各像素开口132的边缘均为曲线且互不平行。具体地,像素开口132在基板110中的投影由一个图形单元或者两个以上的图形单元相连而成。该图形单元为圆形、椭圆形或者哑铃形。图5为一示例性的实施例中的像素定义层130的示意图,其上形成有哑铃形的像素开口132。
在一示例性的实施例中,隔离柱140还包括第二类型隔离柱140b。第二类型隔离柱为条状140b。第二类型隔离柱140b的顶面为长方形,其纵截面为倒梯形结构。第一类型隔离柱140a和第二类型隔离柱140b相间设置,如图6所示。通过两种隔离柱相间设置,可以使得整个显示面板在各处的衍射效果一致。
在一示例性的实施例中,显示面板中的隔离柱均为第一类型隔离柱140a。每个第一类型隔离柱140a在不同宽度产生的狭缝衍射条纹均具有不同的位 置,从而使得衍射不太明显,达到较好的改善衍射的效果。
在一示例性的实施例中,显示面板可以为透明或者半透半反式的显示面板。显示面板的透明可以通过采用透光率较好的各层材料来实现。例如,显示面板的各层均采用透光率大于90%的材料,从而使得整个显示面板的透光率可以在70%以上。进一步的,显示面板的各层均采用透光率大于95%的材料,进一步提高显示面板的透光率,甚至使得整个显示面板的透光率在80%以上。具体地,可以将导电走线如阴极和阳极等设置为ITO、IZO、Ag+ITO或者Ag+IZO等,绝缘层材料优选SiO 2,SiN x以及Al 2O 3等,像素定义层130则采用高透明材料。
可以理解,显示面板的透明还可以采用其他技术手段实现,上述显示面板的结构均可以适用。透明或者半透半反式的显示面板处于工作状态时能够正常显示画面,而当显示面板处于其他功能需求状态时,外部光线可以透过该显示面板照射到置于该显示面板之下的感光器件等。
本申请的一示例性的实施例还提供一种显示屏。图7为一实施例中的显示屏的示意图,该显示屏包括第一显示区910和第二显示区920。第一显示区910的透光率大于第二显示区920的透光率。第一显示区910的下方可设置感光器件930。第一显示区910设置第一显示面板。该第一显示面板为如前述任一实施例中所提及的显示面板。第二显示区920设置有第二显示面板。第一显示区910和第二显示区920均用于显示静态或者动态画面。由于第一显示区910采用了前述实施例中的显示面板,因此当光线经过该显示区域时,不会产生较为明显的衍射效应,从而能够确保位于该第一显示区910下方的感光器件930能够正常工作。可以理解,第一显示区910在感光器件930不 工作时,可以正常进行动态或者静态画面显示,而在感光器件930工作时,可以处于不显示状态,从而确保感光器件930能够透过该显示面板正常进行光线采集。在其他的实施例中,第一显示区910和第二显示区920的透光率也可以相同,从而使得整个显示面板具有较好的透光均一性,确保显示面板具有较好的显示效果。
在一实施例中,设置在第一显示区910的第一显示面板为PMOLED显示面板或主动矩阵有机发光二极体(Active-Matrix Organic Light-Emitting Diode,AMOLED)显示面板,设置在第二显示区920的第二显示面板为AMOLED显示面板,从而形成由PMOLED显示面板和AMOLED显示面板构成的全面屏。
本申请另一实施例还提供一种显示终端。图8为一实施例中的显示终端的示意图,该显示终端包括设备本体810和显示屏820。显示屏820设置在设备本体810上,且与该设备本体810相互连接。其中,显示屏820可以采用前述任一实施例中的显示屏,用以显示静态或者动态画面。
图9为一实施例中的设备本体810的示意图。在本实施例中,设备本体810上可设有开槽区812和非开槽区814。在开槽区812中可设置有诸如摄像头930以及光传感器等感光器件。此时,显示屏820的第一显示区的显示面板对应贴合于开槽区814,以使得上述的诸如摄像头930及光传感器等感光器件能够透过该第一显示区对外部光线进行采集等操作。由于第一显示区中的显示面板能够有效改善外部光线透射该第一显示区所产生的衍射现象,从而可有效提升显示设备上摄像头930所拍摄图像的质量,避免因衍射而导致所拍摄的图像失真,同时也能提升光传感器感测外部光线的精准度和敏感度。
上述电子设备可以为手机、平板、掌上电脑、ipod等数码设备。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种显示面板,包括:
    基板;
    第一像素电极,设于所述基板上;
    像素定义层,设于所述第一像素电极远离所述基板的一侧,所述像素定义层包括多个像素开口,以暴露出所述第一像素电极的部分表面;以及
    多个第一类型隔离柱,设于所述像素定义层远离所述第一像素电极的一侧,在所述第一类型隔离柱的延伸方向上,所述第一类型隔离柱的宽度连续变化或间断变化,所述第一类型隔离柱的延伸方向平行于所述基板;所述宽度为所述第一类型隔离柱在所述基板上的投影在垂直于所述第一类型隔离柱的延伸方向上的尺寸。
  2. 根据权利要求1所述的显示面板,其中,多个所述第一类型隔离柱在所述基板上并行排列。
  3. 根据权利要求1所述的显示面板,其中,所述显示面板为PMOLED显示面板。
  4. 根据权利要求1所述的显示面板,其中,所述第一像素电极的材料选自氧化铟锡、氧化铟锌、掺杂银的氧化铟锡或者掺杂银的氧化铟锌中的至少一种。
  5. 根据权利要求1所述的显示面板,其中,还包括多个第二类型隔离柱,所述第二类型隔离柱的形状为条状,所述第一类型隔离柱和所述第二类型隔离柱间隔设置。
  6. 根据权利要求1所述的显示面板,其中,所述第一类型隔离柱具有与所述像素定义层相接触的底面,以及与所述底面相对设置的顶面;在垂直于 所述第一类型隔离柱的延伸方向上,所述顶面的宽度大于或等于所述底面的宽度,所述顶面沿所述第一类型隔离柱的延伸方向具有变化的宽度。
  7. 根据权利要求6所述的显示面板,其中,所述第一类型隔离柱的顶面沿所述第一类型隔离柱的延伸方向的两个侧边中,至少一个侧边的形状为折线段、弧形、半圆形及波浪形中的至少一种。
  8. 根据权利要求7所述的显示面板,其中,所述底面与所述顶面平行,所述底面的形状与所述顶面形状大致相同。
  9. 根据权利要求7所述的显示面板,其中,所述第一类型隔离柱还包括与所述顶面和底面相连的两侧面,每个侧面在所述基板上的投影与所述侧边在所述基板上的投影重合。
  10. 根据权利要求7所述的显示面板,其中,所述侧边的形状为多个开口方向相同的半圆形的边缘相连形成,所述边缘的开口朝向所述子像素区域。
  11. 根据权利要求1所述的显示面板,其中,所述像素开口在所述基板上的投影为一个图形单元或者两个以上相连通的图形单元,所述图形单元为圆形、椭圆形或者哑铃形。
  12. 根据权利要求1所述的显示面板,还包括设置于所述第一像素电极远离所述基板的一侧的发光结构层,以及设置于所述发光结构层远离所述第一电极一侧的第二像素电极,
    所述第一像素电极的延伸方向与所述第二像素电极的延伸方向垂直。
  13. 根据权利要求12所述的显示面板,其中,所述第二像素电极的材料选自氧化铟锡、氧化铟锌、掺杂银的氧化铟锡或者掺杂银的氧化铟锌中的至少一种。
  14. 一种显示屏,包括:
    第一显示区,用于显示画面;以及
    如权利要求1~13中任意一项所述的显示面板,设置于所述第一显示区。
  15. 如权利要求14所述的显示屏,还包括与所述第一显示区相邻的第二显示区,以及设于所述第二显示区的第二显示面板,所述显示面板为PMOLED显示面板或AMOLED显示面板,所述第二显示面板为AMOLED显示面板。
  16. 如权利要求15所述的显示屏,其中,所述第一显示区的透光率大于所述第二显示区的透光率。
  17. 如权利要求15所述的显示屏,其中,所述第一显示区的透光率与所述第二显示区的透光率相同。
  18. 一种显示终端,包括:
    设备本体,具有器件区;以及
    如权利要求14所述的显示屏,设置在所述设备本体上;
    其中,所述器件区位于所述第一显示区下方,且所述器件区中设置有感光器件。
  19. 如权利要求18所述的显示终端,其中,所述器件区为开槽区,所述感光器件包括摄像头或光传感器。
PCT/CN2019/085577 2018-08-06 2019-05-05 显示面板、显示屏及显示终端 WO2020029621A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020527800A JP6912668B2 (ja) 2018-08-06 2019-05-05 表示パネル、表示スクリーン及び表示端末
KR1020207014705A KR102394880B1 (ko) 2018-08-06 2019-05-05 디스플레이 패널, 디스플레이 스크린 및 디스플레이 단말기
EP19846394.5A EP3706175A4 (en) 2018-08-06 2019-05-05 DISPLAY PANEL, DISPLAY SCREEN AND DISPLAY TERMINAL
US16/801,181 US10903303B2 (en) 2018-08-06 2020-02-26 Display panel with a separation pillar having slanting side surfaces disposed on a pixel definition layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810887652.X 2018-08-06
CN201810887652.XA CN110767677A (zh) 2018-08-06 2018-08-06 显示面板、显示屏及显示终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/801,181 Continuation US10903303B2 (en) 2018-08-06 2020-02-26 Display panel with a separation pillar having slanting side surfaces disposed on a pixel definition layer

Publications (1)

Publication Number Publication Date
WO2020029621A1 true WO2020029621A1 (zh) 2020-02-13

Family

ID=69328516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085577 WO2020029621A1 (zh) 2018-08-06 2019-05-05 显示面板、显示屏及显示终端

Country Status (6)

Country Link
US (1) US10903303B2 (zh)
EP (1) EP3706175A4 (zh)
JP (1) JP6912668B2 (zh)
KR (1) KR102394880B1 (zh)
CN (1) CN110767677A (zh)
WO (1) WO2020029621A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11043636B2 (en) 2017-05-17 2021-06-22 Oti Lumionics Inc. Method for selectively depositing a conductive coating over a patterning coating and device including a conductive coating
US11088327B2 (en) 2015-10-26 2021-08-10 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11581487B2 (en) 2017-04-26 2023-02-14 Oti Lumionics Inc. Patterned conductive coating for surface of an opto-electronic device
US11700747B2 (en) 2019-06-26 2023-07-11 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
US11730012B2 (en) 2019-03-07 2023-08-15 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
US11744101B2 (en) 2019-08-09 2023-08-29 Oti Lumionics Inc. Opto-electronic device including an auxiliary electrode and a partition
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
US11832473B2 (en) 2019-06-26 2023-11-28 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
US12004383B2 (en) 2020-06-25 2024-06-04 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767674B (zh) * 2018-08-06 2022-05-17 苏州清越光电科技股份有限公司 显示面板、显示屏及显示终端
CN111384284B (zh) * 2018-12-29 2021-06-25 武汉华星光电半导体显示技术有限公司 显示面板、电子设备及显示面板的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221730A (ja) * 2001-01-24 2002-08-09 Sony Corp 液晶表示装置
CN202693831U (zh) * 2012-07-16 2013-01-23 京东方科技集团股份有限公司 一种狭缝光栅及显示装置
CN105807484A (zh) * 2016-06-03 2016-07-27 京东方科技集团股份有限公司 彩膜基板及其制作方法、显示装置
CN106463080A (zh) * 2014-06-13 2017-02-22 株式会社半导体能源研究所 显示装置
CN208608202U (zh) * 2018-08-06 2019-03-15 云谷(固安)科技有限公司 显示面板、显示屏及显示终端
CN209071332U (zh) * 2018-10-31 2019-07-05 云谷(固安)科技有限公司 显示面板、显示屏和显示终端

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096568A3 (en) * 1999-10-28 2007-10-24 Sony Corporation Display apparatus and method for fabricating the same
WO2002041400A1 (en) * 2000-11-17 2002-05-23 Koninklijke Philips Electronics N.V. Organic electroluminescent device and a method of manufacturing thereof
KR101163087B1 (ko) * 2003-11-21 2012-07-06 코닌클리케 필립스 일렉트로닉스 엔.브이. 디스플레이 패널
US7737922B2 (en) * 2005-10-14 2010-06-15 Lg Display Co., Ltd. Light emitting device
GB2450675A (en) * 2007-04-04 2009-01-07 Cambridge Display Tech Ltd Active matrix organic displays
US8350468B2 (en) * 2008-06-30 2013-01-08 Samsung Display Co., Ltd. Organic electroluminescence display including a spacer and method for fabricating the same
US10333066B2 (en) * 2013-06-28 2019-06-25 Boe Technology Group Co., Ltd. Pixel definition layer and manufacturing method thereof, display substrate and display device
JP6275439B2 (ja) * 2013-09-30 2018-02-07 株式会社ジャパンディスプレイ エレクトロルミネセンス装置およびその製造方法
KR102207563B1 (ko) * 2013-10-29 2021-01-27 삼성디스플레이 주식회사 유기 발광 표시장치 및 유기 발광 표시장치의 제조 방법
JP6561281B2 (ja) * 2014-12-12 2019-08-21 株式会社Joled 有機el素子および有機el素子の製造方法
WO2017037560A1 (en) * 2015-08-28 2017-03-09 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2017068030A (ja) * 2015-09-30 2017-04-06 キヤノン株式会社 表示装置、その制御方法、および制御プログラム
CN105428389B (zh) * 2015-11-30 2018-12-18 上海天马有机发光显示技术有限公司 一种有机发光显示装置及制造方法
KR102417986B1 (ko) * 2015-12-28 2022-07-07 삼성디스플레이 주식회사 표시 장치
KR102498258B1 (ko) * 2016-01-20 2023-02-10 삼성디스플레이 주식회사 표시 장치
KR20170113066A (ko) * 2016-03-24 2017-10-12 삼성전자주식회사 디스플레이를 가진 전자 장치 및 그의 이미지 표시 방법
US10540029B2 (en) * 2016-10-21 2020-01-21 Samsung Display Co., Ltd. Display device with overlapping touch sensor improving touch performance by decreasing coupling capacitance generated between power supply line and outer lines
CN107123621A (zh) * 2017-05-10 2017-09-01 京东方科技集团股份有限公司 一种oled触控显示面板及其制作方法、触控显示装置
KR102492735B1 (ko) * 2017-09-12 2023-01-27 삼성디스플레이 주식회사 표시 장치
CN108010943B (zh) 2017-11-28 2019-04-02 深圳市华星光电半导体显示技术有限公司 Oled显示面板及其制造方法
US20190165305A1 (en) 2017-11-28 2019-05-30 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Oled display panel and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221730A (ja) * 2001-01-24 2002-08-09 Sony Corp 液晶表示装置
CN202693831U (zh) * 2012-07-16 2013-01-23 京东方科技集团股份有限公司 一种狭缝光栅及显示装置
CN106463080A (zh) * 2014-06-13 2017-02-22 株式会社半导体能源研究所 显示装置
CN105807484A (zh) * 2016-06-03 2016-07-27 京东方科技集团股份有限公司 彩膜基板及其制作方法、显示装置
CN208608202U (zh) * 2018-08-06 2019-03-15 云谷(固安)科技有限公司 显示面板、显示屏及显示终端
CN209071332U (zh) * 2018-10-31 2019-07-05 云谷(固安)科技有限公司 显示面板、显示屏和显示终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3706175A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11706969B2 (en) 2015-10-26 2023-07-18 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11088327B2 (en) 2015-10-26 2021-08-10 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11158803B2 (en) 2015-10-26 2021-10-26 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11158802B2 (en) 2015-10-26 2021-10-26 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11335855B2 (en) 2015-10-26 2022-05-17 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11785831B2 (en) 2015-10-26 2023-10-10 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11581487B2 (en) 2017-04-26 2023-02-14 Oti Lumionics Inc. Patterned conductive coating for surface of an opto-electronic device
US11730048B2 (en) 2017-05-17 2023-08-15 OTI Lumionic Inc. Method for selectively depositing a conductive coating over a patterning coating and device including a conductive coating
US11043636B2 (en) 2017-05-17 2021-06-22 Oti Lumionics Inc. Method for selectively depositing a conductive coating over a patterning coating and device including a conductive coating
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
US11730012B2 (en) 2019-03-07 2023-08-15 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
US11700747B2 (en) 2019-06-26 2023-07-11 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
US11832473B2 (en) 2019-06-26 2023-11-28 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
US11744101B2 (en) 2019-08-09 2023-08-29 Oti Lumionics Inc. Opto-electronic device including an auxiliary electrode and a partition
US12004383B2 (en) 2020-06-25 2024-06-04 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics

Also Published As

Publication number Publication date
KR102394880B1 (ko) 2022-05-06
JP2021503631A (ja) 2021-02-12
KR20200066728A (ko) 2020-06-10
JP6912668B2 (ja) 2021-08-04
CN110767677A (zh) 2020-02-07
US20200194538A1 (en) 2020-06-18
EP3706175A1 (en) 2020-09-09
EP3706175A4 (en) 2021-04-21
US10903303B2 (en) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2020029621A1 (zh) 显示面板、显示屏及显示终端
TWI698689B (zh) 顯示面板
KR102350495B1 (ko) 디스플레이 패널, 디스플레이 스크린 및 디스플레이 단말기
US11296184B2 (en) Display panels, display screens, and display terminals
WO2020029610A1 (zh) 显示面板、显示屏及显示终端
JP6498765B2 (ja) タッチパネル、及び表示装置
CN110783481A (zh) 显示面板、显示屏及显示装置
CN110767678B (zh) 显示面板、显示屏及显示终端
WO2021189489A1 (zh) 阵列基板及显示装置
WO2021189270A1 (zh) 阵列基板及显示装置
EP3724750A1 (en) Touch panel, touch substrate, and touch control display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527800

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207014705

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019846394

Country of ref document: EP

Effective date: 20200602

NENP Non-entry into the national phase

Ref country code: DE