WO2020029363A1 - 一种oled器件及其制备方法 - Google Patents

一种oled器件及其制备方法 Download PDF

Info

Publication number
WO2020029363A1
WO2020029363A1 PCT/CN2018/104970 CN2018104970W WO2020029363A1 WO 2020029363 A1 WO2020029363 A1 WO 2020029363A1 CN 2018104970 W CN2018104970 W CN 2018104970W WO 2020029363 A1 WO2020029363 A1 WO 2020029363A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
type
layer
signal electrode
electrode
Prior art date
Application number
PCT/CN2018/104970
Other languages
English (en)
French (fr)
Inventor
王海
颜伟男
蔡昆岳
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/318,135 priority Critical patent/US10847731B2/en
Publication of WO2020029363A1 publication Critical patent/WO2020029363A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of display technology, and in particular, to an OLED device and a preparation method thereof.
  • full-screen technology has become the current trend.
  • the so-called full screen refers to the screen on the front of the phone that is used to display effective information.
  • the mobile phone is surrounded by a borderless design, pursuing a screen ratio of close to 100%.
  • the display area of such a phone has been greatly improved, and the aesthetics of the technology is deep.
  • Popular with consumers due to existing panel design and manufacturing process issues, such as the location of the handset, front camera, fingerprint recognition, iris recognition, etc., will occupy a part of the display area, so the current full-screen products are only about 90%.
  • the invention provides an OLED device and a preparation method thereof, which can solve the black frame caused by COF / COP, increase the effective display area of a display panel, and enhance the mechanical strength of DIC / TIC.
  • the invention provides a method for preparing an OLED device.
  • the OLED device includes a display panel.
  • the method includes the following steps:
  • Step S1 cleaning a glass substrate, preparing a metal film on the glass substrate, etching the metal film to form spaced-apart signal electrodes, the signal electrodes including a first type signal electrode and a second type signal electrode;
  • Step S2 A flexible substrate and a thin film transistor layer are sequentially prepared on the glass substrate, and the signal traces of the thin film transistor layer are connected to the first type signal electrode through a first type via;
  • Step S3. A pixel unit layer is prepared on the thin film transistor layer, and a signal trace of the pixel unit layer is connected to the second type signal electrode through a second type via;
  • Step S4 The glass substrate is peeled off, a first driving chip is bound to the peeling surface of the flexible substrate, and the first type of signal electrodes and the second type of signal electrodes are electrically connected to the first driving chip. on;
  • Step S5. A flexible circuit board is prepared on a side of the flexible substrate near the signal electrode, and the flexible circuit board is bound to the first driving chip.
  • the first type of via includes a source via, a drain via, and a gate via; and the first type of signal electrode includes:
  • a source signal electrode connected to the source of the thin film transistor layer through the source via and used to receive a source signal
  • a drain signal electrode connected to the drain of the thin film transistor layer through the drain via and used to receive a drain signal
  • a gate signal electrode connected to the gate of the thin film transistor layer through the gate via and used to receive a gate signal
  • the second type of via includes an anode via
  • the second type of signal electrode includes an anode signal electrode.
  • the anode signal electrode is connected to the anode layer of the pixel unit layer through the anode via and is used to receive an anode. signal.
  • the OLED device further includes a touch screen
  • the signal electrode further includes a third type of signal electrode
  • the following steps after step S3 include the following steps:
  • Step S31 A touch layer is prepared on the pixel unit layer, and a signal trace of the touch layer is connected to the third type signal electrode through a third type via;
  • the third type of via includes a driving electrode via and a sensing electrode via
  • the third type of signal electrode includes a driving signal electrode connected to the driving electrode of the touch layer through the driving electrode via. It is used to receive the driving electrode signal; the sensing signal electrode is connected to the sensing electrode of the touch layer through the sensing electrode via and is used to receive the sensing electrode signal.
  • step S4 the following steps are further included:
  • Step S41 A second driving chip is bound to the peeling surface of the flexible substrate, and is spaced apart from the first driving chip and disposed on the same layer.
  • the driving signal electrode and the sensing signal electrode are electrically connected to the first driving chip, respectively.
  • step S5 the following steps are further included:
  • Step S51 Connect the second driving chip to the flexible circuit board, so that the flexible circuit board is located on the back of the display panel of the OLED device.
  • the method further includes the following steps:
  • Step S6 Perform a lighting test on the OLED device
  • Step S7 After the OLED device is normally displayed, a thin film encapsulation layer is prepared on the surface of the touch layer;
  • Step S8 Turn the OLED device over, apply a layer of high-viscosity opaque protective glue on the surface of the flexible substrate, and flatten it.
  • the protective glue covers the first driving chip and the second driving chip and part The flexible circuit board;
  • Step S9 A polarizer and a protective cover are sequentially attached to one side of the thin film encapsulation layer of the OLED device.
  • the invention also provides an OLED device, including:
  • a thin film transistor layer disposed on the flexible substrate
  • a pixel unit layer disposed on the thin film transistor layer
  • the signal electrode is embedded on a surface of the flexible substrate away from the pixel unit layer, and the signal electrode includes a first type signal electrode and a second type signal electrode;
  • a first driving chip disposed on a surface of the flexible substrate away from the pixel unit layer;
  • a flexible circuit board disposed on a side of the flexible substrate away from the pixel unit layer and bound to the first driving chip
  • the signal trace of the thin film transistor layer is connected to the first type signal electrode through a first type via, and the signal trace of the pixel unit layer is connected to the second type signal electrode through a second type via. Connected, and the first type signal electrode and the second type signal electrode are both electrically connected to the first driving chip.
  • the first type of via includes a source via, a drain via, and a gate via; and the first type of signal electrode includes:
  • a source signal electrode connected to the source of the thin film transistor layer through the source via and used to receive a source signal
  • a drain signal electrode connected to the drain of the thin film transistor layer through the drain via and used to receive a drain signal
  • a gate signal electrode connected to the gate of the thin film transistor layer through the gate via and used to receive a gate signal
  • the second type of via includes an anode via
  • the second type of signal electrode includes an anode signal electrode.
  • the anode signal electrode is connected to the anode layer of the pixel unit layer through the anode via and is used to receive an anode. signal.
  • the OLED device further includes:
  • a touch layer is disposed on the pixel unit layer
  • a second driving chip is disposed on a surface of the flexible substrate away from the pixel unit layer, is spaced from the first driving chip and is disposed on the same layer, and shares a flexible circuit board with the first driving chip. ;
  • the signal electrode further includes a third type of signal electrode, and a signal trace of the touch layer is connected to the third type of signal electrode through a third type of via, and the third type of signal electrode is electrically connected to the third type of signal electrode.
  • the third type of via includes a driving electrode via and a sensing electrode via
  • the third type of signal electrode includes a driving signal electrode connected to the driving electrode of the touch layer through the driving electrode via. It is used to receive the driving electrode signal; the sensing signal electrode is connected to the sensing electrode of the touch layer through the sensing electrode via and is used to receive the sensing electrode signal.
  • a layer of high-viscosity opaque protective glue is formed on the surfaces of the first driving chip, the second driving chip, and part of the flexible circuit board.
  • the OLED device further includes:
  • a thin film encapsulation layer disposed on the touch layer
  • a polarizer disposed on the thin film encapsulation layer
  • a protective cover is disposed on the polarizer.
  • the beneficial effect of the present invention is that, compared with the existing OLED device, the OLED device and the preparation method thereof of the present invention lead the signals of the thin film transistor layer, the pixel unit layer, and the touch layer to a separate layer by using a via method.
  • the flexible circuit board (FPC) can be directly under the display panel without bending, which can eliminate the black border caused by COF / COP and effectively increase the display.
  • integrating the FPC of the first driver chip and the second driver chip can increase the integration of the display panel;
  • High-viscosity opaque adhesive protects the first driver chip / second driver chip, which can reduce its fragility and enhance mechanical strength; at the same time, the pins of the first driver chip / second driver chip are highly viscous
  • the opaque glue protects it, and it is difficult to analyze its optical and electrical properties with conventional methods such as light mirrors, oscilloscopes, and multimeters, which enhances its data confidentiality.
  • FIG. 1 is a flowchart of a method for manufacturing an OLED device according to an embodiment of the present invention
  • FIG. 2a is a schematic flowchart of a method for manufacturing an OLED device according to an embodiment of the present invention
  • FIG. 2b is a schematic flowchart of another method for manufacturing an OLED device according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of an OLED device according to an embodiment of the present invention.
  • the OLED device of the prior art is affected by the bending characteristics of the COF / COP material, it will leave black edges in the display panel binding area, thereby affecting the actual display area of the display panel. At the same time, the existence of the binding area also The technical problem of mechanical unreliability is added, and this embodiment can solve this defect.
  • FIG. 1 it is a flowchart of a method for manufacturing an OLED device according to an embodiment of the present invention.
  • the OLED device includes a display panel, and the method includes the following steps:
  • Step S1 cleaning a glass substrate, preparing a metal film on the glass substrate, etching the metal film to form spaced-apart signal electrodes, the signal electrodes including a first type signal electrode and a second type signal electrode;
  • FIG. 2a is a schematic flowchart of a method for manufacturing an OLED device according to an embodiment of the present invention. First, the glass substrate is cleaned, and then the metal film is prepared on the surface of the glass substrate, and then the signal electrodes distributed at intervals are formed by etching.
  • Step S2 A flexible substrate and a thin film transistor layer are sequentially prepared on the glass substrate, and the signal traces of the thin film transistor layer are connected to the first type signal electrode through a first type via;
  • the thin film transistor layer is prepared on the flexible substrate, and the thin film transistor layer includes: an active layer, an interlayer insulation layer, a gate electrode, a gate insulation layer, a source electrode, a drain electrode, a planarization layer, and the like;
  • the first type of via is formed during the preparation of the thin film transistor layer, and the first type of via includes a source via corresponding to the source, a drain via corresponding to the drain, and the corresponding via.
  • a gate via of the gate, and the via is connected to the corresponding signal electrode through the flexible substrate.
  • the first type of signal electrode includes: a source signal electrode connected to the source through the source via for receiving a source signal; and a drain signal electrode connected to the source through the drain via.
  • a drain connection is used to receive a drain signal;
  • a gate signal electrode is connected to the gate through the gate via and is used to receive a gate signal.
  • Step S3. A pixel unit layer is prepared on the thin film transistor layer, and a signal trace of the pixel unit layer is connected to the second type signal electrode through a second type via;
  • a pixel unit layer is prepared on the thin film transistor layer.
  • the pixel unit layer includes an anode layer, an organic light-emitting layer, and a cathode layer.
  • the pixel unit layer includes a plurality of sub-pixels.
  • the second type of via hole is formed, and the second type of via hole includes an anode via hole corresponding to each of the sub-pixels; the second type of signal
  • the electrode includes an anode signal electrode, the anode signal electrode is connected to the anode layer through the anode via, and the anode signal electrode is used to receive an anode signal.
  • the OLED device further includes a touch screen
  • the signal electrode further includes a third type of signal electrode
  • the following steps after step S3 include the following steps:
  • Step S31 A touch layer is prepared on the pixel unit layer, and a signal trace of the touch layer is connected to the third type signal electrode through a third type via;
  • the third type of via includes a driving electrode via and a sensing electrode via
  • the third type of signal electrode includes a driving signal electrode connected to the driving electrode of the touch layer through the driving electrode via. It is used to receive the driving electrode signal; the sensing signal electrode is connected to the sensing electrode of the touch layer through the sensing electrode via and is used to receive the sensing electrode signal.
  • the driving electrode is driven at a specific frequency voltage, and the sensing electrode is scanned at a specific frequency.
  • the third type of via is penetrated by the touch layer through the pixel unit layer, the thin film transistor layer, and the flexible substrate to the third type of signal electrode.
  • Step S4 The glass substrate is peeled off, a first driving chip is bound to the peeling surface of the flexible substrate, and the first type of signal electrodes and the second type of signal electrodes are electrically connected to the first driving chip. on;
  • step S4 the following steps are further included:
  • Step S41 A second driving chip is bound to the peeling surface of the flexible substrate, and is spaced apart from the first driving chip and disposed on the same layer, and the driving signal electrode and the sensing signal electrode are electrically connected to the first Two driver chips;
  • the method includes: peeling off the glass substrate, binding the first driving chip and the second driving chip to the peeling surface of the flexible substrate after the flip, the source signal electrode, the drain signal electrode, and the The gate signal electrode and the anode signal electrode are both electrically connected to the first driving chip.
  • the second driving chip is spaced from the first driving chip and bound in the same layer.
  • Step S5. A flexible circuit board is prepared on a side of the flexible substrate near the signal electrode, and the flexible circuit board is bound to the first driving chip.
  • step S5 the following steps are further included:
  • Step S51 Bind the second driving chip to the flexible circuit board, so that the flexible circuit board is located on the back of the display panel of the OLED device.
  • a flexible circuit board is prepared on a side of the flexible substrate near the signal electrode, and the first driving chip and the second driving chip are commonly connected to the flexible circuit board so that the flexible circuit board is located at The back of the display panel of the OLED device.
  • the method for preparing the OLED device further includes the following steps:
  • Step S6 Perform a lighting test on the OLED device
  • Step S7 After the OLED device is normally displayed, a thin film encapsulation layer is prepared on the surface of the touch layer;
  • Step S8 Turn the OLED device over, apply a layer of high-viscosity opaque protective glue on the surface of the flexible substrate, and flatten it.
  • the protective glue covers the first driving chip and the second driving chip and a part thereof.
  • Step S9 A polarizer and a protective cover are sequentially attached to one side of the thin film encapsulation layer of the OLED device.
  • the lighting test includes testing and adjusting brightness, GAMA, De-Mura, and the like, and details are not described herein. Because the pins of the first driving chip and / or the second driving chip are protected by high-viscosity opaque PRB glue, it is difficult to analyze optical, electrical, and other properties by conventional means such as an optical microscope, oscilloscope, and multimeter to enhance To its data confidentiality.
  • An OCA glue is coated between the polarizer and the protective cover.
  • FIG. 2b is a schematic flowchart of another method for manufacturing an OLED device according to an embodiment of the present invention.
  • the step of peeling off the glass substrate is performed after the pixel unit layer is prepared, and then the first driving chip is bound to the peeling surface of the flexible substrate, and the source, The drain electrode, the first type signal electrode corresponding to the gate electrode, and the second type signal electrode corresponding to the anode layer are all connected to the first driving chip, and then the flexible substrate is near the A flexible circuit board is prepared on one side of the signal electrode, and the first driving chip is connected to the flexible circuit board so that the flexible circuit board is located on the back of the display panel of the OLED device.
  • a lighting test is performed. After the display is normal, a thin film encapsulation layer is prepared on the surface of the pixel unit layer. Then the OLED device is flipped and the protective glue is dropped and flattened, and the pins of the first driving chip are protected. ; Then flip the OLED device and attach the polarizer, apply a layer of OCA glue on the polarizer, and then attach the protective cover.
  • the steps before preparing the pixel unit layer are the same as those in the first embodiment, and details are not described herein again.
  • the present invention also provides an OLED device.
  • FIG. 3 it is a cross-sectional view of an OLED device provided by an embodiment of the present invention.
  • the OLED device includes: a flexible substrate 302; a thin film transistor layer 303 disposed on the flexible substrate 302; the thin film transistor layer 303 includes a source electrode, a drain electrode, and a gate electrode (not labeled); and a pixel unit layer 304 Is disposed on the thin film transistor layer 303, the pixel unit layer 304 includes an anode layer, an organic light emitting layer, and a cathode layer (not shown in the figure); a touch layer 305 is disposed on the pixel unit layer 304, so
  • the touch layer 305 includes a driving electrode and a sensing electrode (not shown in the figure); a thin film encapsulation layer 306 is disposed on the touch layer 305; and a side of the flexible substrate 302 away from the thin film encapsulation layer 306 (ie, the back)
  • the first driving chip 314 is disposed on the back of the flexible substrate 302 and is electrically connected to the signal electrode 307.
  • the second driving chip 315 is placed on the back of the flexible substrate 302 on the same layer and spaced from the first driving chip 314, and is electrically connected to the signal electrode 307.
  • the flexible circuit board 316, The first driving chip 314 and the second driving chip 315 are arranged on the back of the flexible substrate 302 and connected to a flexible circuit board 316.
  • a layer of high-viscosity opaque protective glue 301 is coated on the surface of one side of the flexible substrate 302 to which the first driving chip 314 and the second driving chip 315 are bound, and the protective glue 301 covers the first The driving chip 314, the second driving chip 315, and a part of the flexible circuit board 316.
  • the OLED device further includes: a polarizer disposed on the thin film encapsulation layer 306; and a protective cover plate disposed on the polarizer.
  • the signal electrode 307 includes a first-type signal electrode, a second-type signal electrode, and a third-type signal electrode.
  • the signal traces of the thin film transistor layer 303 pass through the first-type vias and the first-type signal electrode. Connection, the signal trace of the pixel unit layer 304 is connected to the second type signal electrode through a second type via; the signal trace of the touch layer 305 is connected to the third type through a third type via.
  • Signal electrodes; and the first type of signal electrodes and the second type of signal electrodes are electrically connected to the first driving chip 314; the third type of signal electrodes are electrically connected to the second driver On chip 315.
  • the first type of via includes a source via 308, a drain via 310, and a gate via 309; the first type of signal electrode includes: a source signal electrode, and the source via 308 communicates with all sources through the source via 308.
  • the source connection is used to receive a source signal; the drain signal electrode is connected to the drain through the drain via 310 to receive a drain signal; the gate signal electrode is connected through the gate
  • the hole 309 is connected to the gate for receiving a gate signal.
  • the second type of via includes an anode via 311, and the second type of signal electrode includes an anode signal electrode.
  • the anode signal electrode is connected to the anode layer of the pixel unit layer 304 through the anode via 311, and For receiving the anode signal.
  • the third type of via includes a driving electrode via 312 and a sensing electrode via 313.
  • the third type of signal electrode includes: a driving signal electrode, and the driving electrode via the driving electrode via 312 and the driving electrode of the touch layer 305 The connection is used to receive the driving electrode signal; the sensing signal electrode is connected to the sensing electrode of the touch layer 305 through the sensing electrode via 313 and used to receive the sensing electrode signal.
  • the OLED device and the preparation method thereof of the present invention use a via method to guide signals such as a thin film transistor layer, a pixel unit layer, and a touch layer to an independent signal layer, and bind the
  • the flexible circuit board (FPC) can be directly under the display panel without bending, which can eliminate the black border caused by COF / COP and effectively increase the display area.
  • a protective buffer layer is added under the driving chip and the second driving chip (TIC).
  • the integration of the FPC of the first driving chip and the second driving chip can increase the integration degree of the display panel; One driver chip / second driver chip is protected, which can reduce its fragility and enhance mechanical strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

提供一种OLED器件及其制备方法,包括:柔性基板(302),柔性基板(302)一侧表面嵌设有信号电极(307),另一侧表面制备有薄膜晶体管层(303)与像素单元层(304);第一驱动芯片(314)与柔性电路板(3016)均设置于柔性基板(302)的背面;薄膜晶体管层(303)以及像素单元层(304)中的信号走线分别通过过孔(308-311)与相应的信号电极(307)连接,信号电极(307)与第一驱动芯片(314)连接。

Description

一种OLED器件及其制备方法 技术领域
本发明涉及显示技术领域,尤其涉及一种OLED器件及其制备方法。
背景技术
随着三星S8/Note 8及IPhone X等全面屏手机的陆续发布,全面屏技术已经是当下的潮流。所谓全面屏是指手机正面全部是用于显示有效信息的屏幕,手机的四周都是采用无边框的设计,追求接近100%的屏占比,这样的手机显示面积得到很大提升,科技美感深受大众消费者喜爱。但是由于现有面板设计和制造工艺的问题,如听筒、前置摄像头、指纹识别、虹膜识别等的位置将会占用一部分显示区域,所以目前的全面屏产品只有在90%左右。现有全面屏技术实现的方案一般是在Panel下border 使用COF(Chip On Film)/COP(Chip On PI)技术,将DIC bonding在Film或者PI上,然后再弯折到Panel的背部。由于PI或Film材料存在最小弯折半径的问题,将不可避免的在弯折区留下一些边框,影响实际显示面积。而且bending区域的存在不仅增加了机械不可靠性,在走高速信号时也需要一些特殊设计。
因此,有必要提供一种OLED器件及其制备方法,以解决现有技术所存在的问题。
技术问题
本发明提供一种OLED器件及其制备方法,能够解决因COF/COP引起的黑色边框,增加显示面板的有效显示面积,以及增强DIC/TIC的机械强度。
技术解决方案
为解决上述问题,本发明提供的技术方案如下:
本发明提供一种OLED器件的制备方法,所述OLED器件包括显示面板,所述方法包括以下步骤:
步骤S1、清洗一玻璃基板,在所述玻璃基板上制备一层金属膜,刻蚀所述金属膜形成间隔分布的信号电极,所述信号电极包括第一类信号电极与第二类信号电极;
步骤S2、在所述玻璃基板上依次制备柔性基板以及薄膜晶体管层,所述薄膜晶体管层的信号走线通过第一类过孔连接至所述第一类信号电极;
步骤S3、在所述薄膜晶体管层上制备像素单元层,所述像素单元层的信号走线通过第二类过孔连接至所述第二类信号电极;
步骤S4、剥离所述玻璃基板,在所述柔性基板的剥离面绑定第一驱动芯片,所述第一类信号电极与所述第二类信号电极均电性连接至所述第一驱动芯片上;
步骤S5、在所述柔性基板靠近所述信号电极的一面制备柔性电路板,将所述柔性电路板与所述第一驱动芯片绑定。
根据本发明一实施例,所述第一类过孔包括源极过孔、漏极过孔以及栅极过孔;所述第一类信号电极包括:
源极信号电极,通过所述源极过孔与所述薄膜晶体管层的源极连接,用于接收源极信号;
漏极信号电极,通过所述漏极过孔与所述薄膜晶体管层的漏极连接,用于接收漏极信号;
栅极信号电极,通过所述栅极过孔与所述薄膜晶体管层的栅极连接,用于接收栅极信号;
所述第二类过孔包括阳极过孔,所述第二类信号电极包括阳极信号电极,所述阳极信号电极通过所述阳极过孔与所述像素单元层的阳极层连接,用于接收阳极信号。
根据本发明一实施例,所述OLED器件还包括触摸屏,所述信号电极还包括第三类信号电极,所述步骤S3之后还包括以下步骤:
步骤S31、在所述像素单元层上制备触摸层,将所述触摸层的信号走线通过第三类过孔连接至所述第三类信号电极上;
其中,所述第三类过孔包括驱动电极过孔与感应电极过孔,所述第三类信号电极包括:驱动信号电极,通过所述驱动电极过孔与所述触摸层的驱动电极连接,用于接收驱动电极信号;感应信号电极,通过所述感应电极过孔与所述触摸层的感应电极连接,用于接收感应电极信号。
根据本发明一实施例,所述步骤S4之后还包括以下步骤:
步骤S41、在所述柔性基板的剥离面绑定第二驱动芯片,与所述第一驱动芯片间隔并同层设置,所述驱动信号电极与所述感应信号电极分别电性连接至所述第二驱动芯片;
所述步骤S5之后还包括以下步骤:
步骤S51、将所述第二驱动芯片连接于所述柔性电路板上,使得所述柔性电路板位于所述OLED器件的所述显示面板背部。
根据本发明一实施例,所述方法还包括以下步骤:
步骤S6、对所述OLED器件进行点灯测试;
步骤S7、所述OLED器件正常显示后,在所述触摸层表面制备一层薄膜封装层;
步骤S8、将所述OLED器件翻转,在所述柔性基板表面涂布一层高粘度不透明的保护胶并平整化,所述保护胶覆盖所述第一驱动芯片以及所述第二驱动芯片及部分所述柔性电路板;
步骤S9、在所述OLED器件的所述薄膜封装层一侧依次贴附偏光片以及保护盖板。
本发明还提供一种OLED器件,包括:
柔性基板;
薄膜晶体管层,设置于所述柔性基板上;
像素单元层,设置于所述薄膜晶体管层上;以及
信号电极,嵌设于所述柔性基板远离所述像素单元层一侧的表面,所述信号电极包括第一类信号电极与第二类信号电极;
第一驱动芯片,设置于所述柔性基板远离所述像素单元层一侧的表面上;
柔性电路板,设置于所述柔性基板远离所述像素单元层的一侧,且与所述第一驱动芯片绑定;
其中,所述薄膜晶体管层的信号走线通过第一类过孔与所述第一类信号电极连接,所述像素单元层的信号走线通过第二类过孔与所述第二类信号电极连接,且所述第一类信号电极与所述第二类信号电极均电性连接至所述第一驱动芯片。
根据本发明一实施例,所述第一类过孔包括源极过孔、漏极过孔以及栅极过孔;所述第一类信号电极包括:
源极信号电极,通过所述源极过孔与所述薄膜晶体管层的源极连接,用于接收源极信号;
漏极信号电极,通过所述漏极过孔与所述薄膜晶体管层的漏极连接,用于接收漏极信号;
栅极信号电极,通过所述栅极过孔与所述薄膜晶体管层的栅极连接,用于接收栅极信号;
所述第二类过孔包括阳极过孔,所述第二类信号电极包括阳极信号电极,所述阳极信号电极通过所述阳极过孔与所述像素单元层的阳极层连接,用于接收阳极信号。
根据本发明一实施例,所述OLED器件还包括:
触摸层,设置于所述像素单元层上;
第二驱动芯片,设置于所述柔性基板远离所述像素单元层一侧的表面,与所述第一驱动芯片间隔并同层设置,且与所述第一驱动芯片共用一所述柔性电路板;
所述信号电极还包括第三类信号电极,所述触摸层的信号走线通过第三类过孔连接至所述第三类信号电极上,且所述第三类信号电极电性连接至所述第二驱动芯片上;
其中,所述第三类过孔包括驱动电极过孔与感应电极过孔,所述第三类信号电极包括:驱动信号电极,通过所述驱动电极过孔与所述触摸层的驱动电极连接,用于接收驱动电极信号;感应信号电极,通过所述感应电极过孔与所述触摸层的感应电极连接,用于接收感应电极信号。
根据本发明一实施例,所述第一驱动芯片及所述第二驱动芯片以及部分所述柔性电路板的表面形成有一层高粘度不透明的保护胶。
根据本发明一实施例,所述OLED器件还包括:
薄膜封装层,设置于所述触摸层上;
偏光片,设置于所述薄膜封装层上;
保护盖板,设置于所述偏光片上。
有益效果
本发明的有益效果为:相较于现有的OLED器件,本发明的OLED器件及其制备方法通过采用过孔的方法将薄膜晶体管层、 像素单元层、触摸层等信号引到一层独立的信号层上,绑定第一驱动芯片(DIC)之后,柔性电路板(FPC)可以不用弯折,直接做在显示面板的正下面,可以消除因COF/COP引起的黑边,有效增大显示面积,而通过在第一驱动芯片、第二驱动芯片(TIC)下面增加一层保护缓冲层,将第一驱动芯片和第二驱动芯片的FPC集成在一起,可以实现增加显示面板集成度;用高粘度不透明的胶将第一驱动芯片/第二驱动芯片保护起来,可以减小其易碎性,增强机械强度;同时由于第一驱动芯片/第二驱动芯片的引脚(pin)被高粘度不透明的胶保护着,很难用光镜、示波器、万用表等常规手段解析其光学、电学等性能,增强了其数据保密性。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的OLED器件的制备方法流程图;
图2a为本发明实施例提供的一种OLED器件的制备方法流程示意图;
图2b为本发明实施例提供的另一种OLED器件的制备方法流程示意图;
图3为本发明实施例提供的OLED器件的剖面图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
本发明针对现有技术的OLED器件由于受到COF/COP材料的弯折特性的影响,会在显示面板绑定区域留下黑边,从而影响显示面板的实际显示面积,同时绑定区域的存在也增加了机械不可靠性的技术问题,本实施例能够解决该缺陷。
如图1所示,为本发明实施例提供的OLED器件的制备方法流程图。所述OLED器件包括显示面板,所述方法包括以下步骤:
步骤S1、清洗一玻璃基板,在所述玻璃基板上制备一层金属膜,刻蚀所述金属膜形成间隔分布的信号电极,所述信号电极包括第一类信号电极与第二类信号电极;具体地,请参照图2a,为本发明实施例提供的一种OLED器件的制备方法流程示意图。首先要清洗所述玻璃基板,然后在所述玻璃基板表面制备所述金属膜,然后刻蚀形成间隔分布的所述信号电极。
步骤S2、在所述玻璃基板上依次制备柔性基板以及薄膜晶体管层,所述薄膜晶体管层的信号走线通过第一类过孔连接至所述第一类信号电极;
具体地,再进行PI(柔性基板材料)涂布,在所述玻璃基板上涂布一层柔性材料形成所述柔性基板并覆盖所述信号电极。接着在所述柔性基板上制备所述薄膜晶体管层,所述薄膜晶体管层包括:有源层、间绝缘层、栅极、栅绝缘层、源极、漏极及平坦化层等;在所述薄膜晶体管层的制备过程中形成所述第一类过孔,所述第一类过孔包括:对应所述源极的源极过孔、对应所述漏极的漏极过孔以及对应所述栅极的栅极过孔,且上述过孔贯穿所述柔性基板连接至相应的所述信号电极。所述第一类信号电极包括:源极信号电极,通过所述源极过孔与所述源极连接,用于接收源极信号;漏极信号电极,通过所述漏极过孔与所述漏极连接,用于接收漏极信号;栅极信号电极,通过所述栅极过孔与所述栅极连接,用于接收栅极信号。
步骤S3、在所述薄膜晶体管层上制备像素单元层,所述像素单元层的信号走线通过第二类过孔连接至所述第二类信号电极;
具体地,在所述薄膜晶体管层上制备像素单元层,所述像素单元层包括阳极层、有机发光致电层以及阴极层,所述像素单元层包括若干子像素,在所述像素单元层制备过程中,在所述像素单元层与所述薄膜晶体管层上形成所述第二类过孔,所述第二类过孔包括对应每一所述子像素的阳极过孔;所述第二类信号电极包括阳极信号电极,所述阳极信号电极通过所述阳极过孔与所述阳极层连接,所述阳极信号电极用于接收阳极信号。
所述OLED器件还包括触摸屏,所述信号电极还包括第三类信号电极,所述步骤S3之后还包括以下步骤:
步骤S31、在所述像素单元层上制备触摸层,将所述触摸层的信号走线通过第三类过孔连接至所述第三类信号电极上;
其中,所述第三类过孔包括驱动电极过孔与感应电极过孔,所述第三类信号电极包括:驱动信号电极,通过所述驱动电极过孔与所述触摸层的驱动电极连接,用于接收驱动电极信号;感应信号电极,通过所述感应电极过孔与所述触摸层的感应电极连接,用于接收感应电极信号。
其中,所述驱动电极以特定频率电压驱动,所述感应电极以特定的频率扫描。所述第三类过孔由所述触摸层贯穿所述像素单元层、所述薄膜晶体管层以及所述柔性基板至所述第三类信号电极上。
步骤S4、剥离所述玻璃基板,在所述柔性基板的剥离面绑定第一驱动芯片,所述第一类信号电极与所述第二类信号电极均电性连接至所述第一驱动芯片上;
所述步骤S4之后还包括以下步骤:
步骤S41、在所述柔性基板的剥离面绑定第二驱动芯片,与所述第一驱动芯片间隔并同层设置,所述驱动信号电极与所述感应信号电极分别电性连接至所述第二驱动芯片;
具体地,包括:剥离掉所述玻璃基板,翻转后在所述柔性基板的剥离面绑定第一驱动芯片和第二驱动芯片,所述源极信号电极、所述漏极信号电极、所述栅极信号电极以及所述阳极信号电极均电性连接至所述第一驱动芯片上。将所述第二驱动芯片与所述第一驱动芯片间隔并同层绑定。
步骤S5、在所述柔性基板靠近所述信号电极的一面制备柔性电路板,将所述柔性电路板与所述第一驱动芯片绑定。
所述步骤S5之后还包括以下步骤:
步骤S51、将所述第二驱动芯片绑定于所述柔性电路板上,使得所述柔性电路板位于所述OLED器件的所述显示面板背部。
具体地,在所述柔性基板靠近所述信号电极的一面制备柔性电路板,所述第一驱动芯片与所述第二驱动芯片共同连接于所述柔性电路板上,使得所述柔性电路板位于所述OLED器件的所述显示面板背部。
所述OLED器件的制备方法还包括以下步骤:
步骤S6、对所述OLED器件进行点灯测试;
步骤S7、所述OLED器件正常显示后,在所述触摸层表面制备一层薄膜封装层;
步骤S8、将所述OLED器件翻转,在所述柔性基板表面涂布一层高粘度不透明的保护胶并平整化,所述保护胶覆盖所述第一驱动芯片以及所述第二驱动芯片及部分所述柔性电路板;
步骤S9、在所述OLED器件的所述薄膜封装层一侧依次贴附偏光片以及保护盖板。
其中,所述点灯测试包括测试并调节亮度、GAMA、De-Mura等,此处不做赘述。由于所述第一驱动芯片和/或所述第二驱动芯片的引脚被高粘度不透明的PRB胶保护着,很难用光镜、示波器、万用表等常规手段解析其光学、电学等性能,增强了其数据保密性。所述偏光片与所述保护盖板之间涂布有OCA胶。
请参照图2b,为本发明实施例提供的另一种OLED器件的制备方法流程示意图。本实施例相较于实施例一的区别在于:制备完像素单元层后执行剥离玻璃基板的步骤,然后翻转在所述柔性基板的剥离面绑定第一驱动芯片,将所述源极、所述漏极、所述栅极对应的所述第一类信号电极,以及所述阳极层对应的所述第二类信号电极均与所述第一驱动芯片连接,之后在所述柔性基板靠近所述信号电极的一面制备柔性电路板,所述第一驱动芯片与所述柔性电路板连接,使得所述柔性电路板位于所述OLED器件的所述显示面板背部。然后进行点灯测试,显示正常后在所述像素单元层表面制备一层薄膜封装层;之后翻转所述OLED器件滴所述保护胶并平整化,且将所述第一驱动芯片的引脚保护起来;再翻转所述OLED器件贴附所述偏光片,在所述偏光片上涂布一层OCA胶,再贴所述保护盖板。其中,制备所述像素单元层之前的步骤与实施例一相同,此处不再赘述。
本发明还提供一种OLED器件,如图3所示,为本发明实施例提供的OLED器件的剖面图。所述OLED器件包括:柔性基板302;薄膜晶体管层303,设置于所述柔性基板302上;所述薄膜晶体管层303包括源极、漏极以及栅极(图中未标示);像素单元层304,设置于所述薄膜晶体管层303上,所述像素单元层304包括阳极层、有机发光致电层及阴极层(图中未标示);触摸层305,设置于所述像素单元层304上,所述触摸层305包括驱动电极与感应电极(图中未标示);薄膜封装层306,设置于所述触摸层305上;在所述柔性基板302远离所述薄膜封装层306一侧(即背部)的表面嵌设有信号电极307,所述信号电极307均匀的分布于所述柔性基板302背部的表面;第一驱动芯片314,设置于所述柔性基板302背部,且与所述信号电极307电性连接;第二驱动芯片315,与所述设第一驱动芯片314同层且间隔的置于所述柔性基板302背部,且与所述信号电极307电性连接;柔性电路板316,设置于所述柔性基板302背部,所述第一驱动芯片314与所述第二驱动芯片315共同连接于一所述柔性电路板316上。
所述柔性基板302绑定有所述第一驱动芯片314及所述第二驱动芯片315一侧的表面上涂布有一层高粘度不透明的保护胶301,所述保护胶301覆盖所述第一驱动芯片314以及所述第二驱动芯片315及部分所述柔性电路板316。所述OLED器件还包括:偏光片,设置于所述薄膜封装层306上;保护盖板,设置于所述偏光片上。
其中,所述信号电极307包括第一类信号电极、第二类信号电极以及第三类信号电极;所述薄膜晶体管层303的信号走线通过第一类过孔与所述第一类信号电极连接,所述像素单元层304的信号走线通过第二类过孔与所述第二类信号电极连接;所述触摸层305的信号走线通过第三类过孔连接至所述第三类信号电极上;且所述第一类信号电极与所述第二类信号电极均电性连接至所述第一驱动芯片314上;所述第三类信号电极电性连接至所述第二驱动芯片315上。
所述第一类过孔包括源极过孔308、漏极过孔310以及栅极过孔309;所述第一类信号电极包括:源极信号电极,通过所述源极过孔308与所述源极连接,用于接收源极信号;漏极信号电极,通过所述漏极过孔310与所述漏极连接,用于接收漏极信号;栅极信号电极,通过所述栅极过孔309与所述栅极连接,用于接收栅极信号。
所述第二类过孔包括阳极过孔311,所述第二类信号电极包括阳极信号电极,所述阳极信号电极通过所述阳极过孔311与所述像素单元层304的阳极层连接,用于接收阳极信号。
所述第三类过孔包括驱动电极过孔312与感应电极过孔313,所述第三类信号电极包括:驱动信号电极,通过所述驱动电极过孔312与所述触摸层305的驱动电极连接,用于接收驱动电极信号;感应信号电极,通过所述感应电极过孔313与所述触摸层305的感应电极连接,用于接收感应电极信号。
相较于现有的OLED器件,本发明的OLED器件及其制备方法通过采用过孔的方法将薄膜晶体管层、像素单元层、触摸层等信号引到一层独立的信号层上,绑定第一驱动芯片(DIC)之后,柔性电路板(FPC)可以不用弯折,直接做在显示面板的正下面,可以消除因COF/COP引起的黑边,有效增大显示面积,而通过在第一驱动芯片、第二驱动芯片(TIC)下面增加一层保护缓冲层,将第一驱动芯片和第二驱动芯片的FPC集成在一起,可以实现增加显示面板集成度;用高粘度不透明的胶将第一驱动芯片/第二驱动芯片保护起来,可以减小其易碎性,增强机械强度;同时由于第一驱动芯片/第二驱动芯片的引脚(pin)被高粘度不透明的胶保护着,很难用光镜、示波器、万用表等常规手段解析其光学、电学等性能,增强了其数据保密性。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (10)

  1. 一种OLED器件的制备方法,所述OLED器件包括显示面板,其中,所述方法包括以下步骤:
    步骤S1、清洗一玻璃基板,在所述玻璃基板上制备一层金属膜,刻蚀所述金属膜形成间隔分布的信号电极,所述信号电极包括第一类信号电极与第二类信号电极;
    步骤S2、在所述玻璃基板上依次制备柔性基板以及薄膜晶体管层,所述薄膜晶体管层的信号走线通过第一类过孔连接至所述第一类信号电极;
    步骤S3、在所述薄膜晶体管层上制备像素单元层,所述像素单元层的信号走线通过第二类过孔连接至所述第二类信号电极;
    步骤S4、剥离所述玻璃基板,在所述柔性基板的剥离面绑定第一驱动芯片,所述第一类信号电极与所述第二类信号电极均电性连接至所述第一驱动芯片上;
    步骤S5、在所述柔性基板靠近所述信号电极的一面制备柔性电路板,将所述柔性电路板与所述第一驱动芯片绑定。
  2. 根据权利要求1所述的制备方法,其中,
    所述第一类过孔包括源极过孔、漏极过孔以及栅极过孔;所述第一类信号电极包括:
    源极信号电极,通过所述源极过孔与所述薄膜晶体管层的源极连接,用于接收源极信号;
    漏极信号电极,通过所述漏极过孔与所述薄膜晶体管层的漏极连接,用于接收漏极信号;
    栅极信号电极,通过所述栅极过孔与所述薄膜晶体管层的栅极连接,用于接收栅极信号;
    所述第二类过孔包括阳极过孔,所述第二类信号电极包括阳极信号电极,所述阳极信号电极通过所述阳极过孔与所述像素单元层的阳极层连接,用于接收阳极信号。
  3. 根据权利要求1所述的制备方法,其中,所述OLED器件还包括触摸屏,所述信号电极还包括第三类信号电极,所述步骤S3之后还包括以下步骤:
    步骤S31、在所述像素单元层上制备触摸层,将所述触摸层的信号走线通过第三类过孔连接至所述第三类信号电极上;
    其中,所述第三类过孔包括驱动电极过孔与感应电极过孔,所述第三类信号电极包括:驱动信号电极,通过所述驱动电极过孔与所述触摸层的驱动电极连接,用于接收驱动电极信号;感应信号电极,通过所述感应电极过孔与所述触摸层的感应电极连接,用于接收感应电极信号。
  4. 根据权利要求3所述的制备方法,其中,
    所述步骤S4之后还包括以下步骤:
    步骤S41、在所述柔性基板的剥离面绑定第二驱动芯片,与所述第一驱动芯片间隔并同层设置,所述驱动信号电极与所述感应信号电极分别电性连接至所述第二驱动芯片;
    所述步骤S5之后还包括以下步骤:
    步骤S51、将所述第二驱动芯片连接于所述柔性电路板上,使得所述柔性电路板位于所述OLED器件的所述显示面板背部。
  5. 根据权利要求4所述的制备方法,其中,所述方法还包括以下步骤:
    步骤S6、对所述OLED器件进行点灯测试;
    步骤S7、所述OLED器件正常显示后,在所述触摸层表面制备一层薄膜封装层;
    步骤S8、将所述OLED器件翻转,在所述柔性基板表面涂布一层高粘度不透明的保护胶并平整化,所述保护胶覆盖所述第一驱动芯片以及所述第二驱动芯片及部分所述柔性电路板;
    步骤S9、在所述OLED器件的所述薄膜封装层一侧依次贴附偏光片以及保护盖板。
  6. 一种OLED器件,其包括:
    柔性基板;
    薄膜晶体管层,设置于所述柔性基板上;
    像素单元层,设置于所述薄膜晶体管层上;以及
    信号电极,嵌设于所述柔性基板远离所述像素单元层一侧的表面,所述信号电极包括第一类信号电极与第二类信号电极;
    第一驱动芯片,设置于所述柔性基板远离所述像素单元层一侧的表面上;
    柔性电路板,设置于所述柔性基板远离所述像素单元层的一侧,且与所述第一驱动芯片绑定;
    其中,所述薄膜晶体管层的信号走线通过第一类过孔与所述第一类信号电极连接,所述像素单元层的信号走线通过第二类过孔与所述第二类信号电极连接,且所述第一类信号电极与所述第二类信号电极均电性连接至所述第一驱动芯片。
  7. 根据权利要求6所述的OLED器件,其中,
    所述第一类过孔包括源极过孔、漏极过孔以及栅极过孔;所述第一类信号电极包括:
    源极信号电极,通过所述源极过孔与所述薄膜晶体管层的源极连接,用于接收源极信号;
    漏极信号电极,通过所述漏极过孔与所述薄膜晶体管层的漏极连接,用于接收漏极信号;
    栅极信号电极,通过所述栅极过孔与所述薄膜晶体管层的栅极连接,用于接收栅极信号;
    所述第二类过孔包括阳极过孔,所述第二类信号电极包括阳极信号电极,所述阳极信号电极通过所述阳极过孔与所述像素单元层的阳极层连接,用于接收阳极信号。
  8. 根据权利要求6所述的OLED器件,其中,所述OLED器件还包括:
    触摸层,设置于所述像素单元层上;
    第二驱动芯片,设置于所述柔性基板远离所述像素单元层一侧的表面,与所述第一驱动芯片间隔并同层设置,且与所述第一驱动芯片共用一所述柔性电路板;
    所述信号电极还包括第三类信号电极,所述触摸层的信号走线通过第三类过孔连接至所述第三类信号电极上,且所述第三类信号电极电性连接至所述第二驱动芯片上;
    其中,所述第三类过孔包括驱动电极过孔与感应电极过孔,所述第三类信号电极包括:驱动信号电极,通过所述驱动电极过孔与所述触摸层的驱动电极连接,用于接收驱动电极信号;感应信号电极,通过所述感应电极过孔与所述触摸层的感应电极连接,用于接收感应电极信号。
  9. 根据权利要求8所述的OLED器件,其中,所述第一驱动芯片及所述第二驱动芯片以及部分所述柔性电路板的表面形成有一层高粘度不透明的保护胶。
  10. 根据权利要求8所述的OLED器件,其中,所述OLED器件还包括:
    薄膜封装层,设置于所述触摸层上;
    偏光片,设置于所述薄膜封装层上;
    保护盖板,设置于所述偏光片上。
PCT/CN2018/104970 2018-08-10 2018-09-11 一种oled器件及其制备方法 WO2020029363A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/318,135 US10847731B2 (en) 2018-08-10 2018-09-11 Organic light emitting diode device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810907178.2 2018-08-10
CN201810907178.2A CN109148523A (zh) 2018-08-10 2018-08-10 一种oled器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2020029363A1 true WO2020029363A1 (zh) 2020-02-13

Family

ID=64792605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104970 WO2020029363A1 (zh) 2018-08-10 2018-09-11 一种oled器件及其制备方法

Country Status (3)

Country Link
US (1) US10847731B2 (zh)
CN (1) CN109148523A (zh)
WO (1) WO2020029363A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420939A (zh) * 2019-08-22 2021-02-26 群创光电股份有限公司 电子装置及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104134679A (zh) * 2013-04-30 2014-11-05 乐金显示有限公司 有机发光二极管显示装置及其制造方法
CN105789225A (zh) * 2016-05-30 2016-07-20 京东方科技集团股份有限公司 阵列基板母板及其制作方法、显示装置及其制作方法
US20160329386A1 (en) * 2015-05-05 2016-11-10 Apple Inc. Display With Vias to Access Driver Circuitry
CN106384740A (zh) * 2016-09-20 2017-02-08 昆山工研院新型平板显示技术中心有限公司 无边框显示装置及其制备方法
CN106847864A (zh) * 2017-01-09 2017-06-13 张帆 一种窄边框触控显示面板及显示装置及其制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102705336B1 (ko) * 2016-10-06 2024-09-12 삼성디스플레이 주식회사 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104134679A (zh) * 2013-04-30 2014-11-05 乐金显示有限公司 有机发光二极管显示装置及其制造方法
US20160329386A1 (en) * 2015-05-05 2016-11-10 Apple Inc. Display With Vias to Access Driver Circuitry
CN105789225A (zh) * 2016-05-30 2016-07-20 京东方科技集团股份有限公司 阵列基板母板及其制作方法、显示装置及其制作方法
CN106384740A (zh) * 2016-09-20 2017-02-08 昆山工研院新型平板显示技术中心有限公司 无边框显示装置及其制备方法
CN106847864A (zh) * 2017-01-09 2017-06-13 张帆 一种窄边框触控显示面板及显示装置及其制作方法

Also Published As

Publication number Publication date
US20200106029A1 (en) 2020-04-02
US10847731B2 (en) 2020-11-24
CN109148523A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
US10914992B2 (en) Display apparatus and method of manufacturing the same
US11296308B2 (en) Flexible display device manufacturing method and flexible display device
CN103907190B (zh) 一种oled拼接显示屏及其制造方法
WO2021007998A1 (zh) 显示面板、显示模组及显示装置
CN111025793A (zh) 一种显示面板及显示装置
TWI737182B (zh) 顯示面板、顯示裝置及顯示面板的製造方法
JP6742523B2 (ja) 可撓性アレイ基板の製造方法
US20210191201A1 (en) Display panel and manufacture method thereof, and display apparatus
JP7183427B2 (ja) ディスプレイモジュール及びディスプレイ装置
KR20020056621A (ko) 액정표시장치의 테스트 패드
WO2018214206A1 (zh) 柔性阵列基板的制作方法
US10674606B2 (en) Display panel and display device
US20190371707A1 (en) Electronic device
JPWO2008038487A1 (ja) マイクロレンズアレイ付き液晶表示パネル、その製造方法、および液晶表示装置
WO2020211132A1 (zh) Oled显示装置
KR20210036444A (ko) 표시 장치
WO2020168634A1 (zh) 阵列基板、显示面板及显示装置
WO2020113705A1 (zh) 柔性基板及采用该柔性基板的显示面板
US8154704B2 (en) Liquid crystal display and method for repairing the same
JP2018501525A (ja) 表示装置
CN111403454A (zh) 显示面板
WO2020199300A1 (zh) 一种显示面板及其制作方法、显示装置
KR102029072B1 (ko) 플렉시블 표시장치 및 그 제조방법
WO2020029363A1 (zh) 一种oled器件及其制备方法
US20210091027A1 (en) Array substrate and chip bonding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929528

Country of ref document: EP

Kind code of ref document: A1