WO2020027334A1 - 性能情報サーバ、クライアント端末、作業機、性能情報の取得方法、及び性能情報の提供方法 - Google Patents

性能情報サーバ、クライアント端末、作業機、性能情報の取得方法、及び性能情報の提供方法 Download PDF

Info

Publication number
WO2020027334A1
WO2020027334A1 PCT/JP2019/030589 JP2019030589W WO2020027334A1 WO 2020027334 A1 WO2020027334 A1 WO 2020027334A1 JP 2019030589 W JP2019030589 W JP 2019030589W WO 2020027334 A1 WO2020027334 A1 WO 2020027334A1
Authority
WO
WIPO (PCT)
Prior art keywords
performance information
request
information
unit
image
Prior art date
Application number
PCT/JP2019/030589
Other languages
English (en)
French (fr)
Inventor
秀樹 世俵
俊久 青木
昌三 平田
俊介 上野
Original Assignee
株式会社タダノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タダノ filed Critical 株式会社タダノ
Priority to EP19845465.4A priority Critical patent/EP3832585A4/en
Priority to JP2020534784A priority patent/JP7396281B2/ja
Priority to US17/263,821 priority patent/US20210233230A1/en
Priority to CN201980049884.0A priority patent/CN112513918A/zh
Publication of WO2020027334A1 publication Critical patent/WO2020027334A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/90Devices for indicating or limiting lifting moment
    • B66C23/905Devices for indicating or limiting lifting moment electrical
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Definitions

  • the present invention relates to a performance information server, a client terminal, a work machine, a method for acquiring performance information, and a method for providing performance information.
  • the BIM operator When creating a work plan, the BIM operator, for example, obtains performance information (for example, a rated total load) of a work machine (for example, a crane) in a desired work posture, and receives a rated total load provided by a work machine manufacturer. Refer to the load table. However, it is troublesome for an operator to refer to the rated total load table at the time of creating a work plan, and there is a disadvantage that work efficiency is poor.
  • performance information for example, a rated total load
  • a work machine for example, a crane
  • Patent Document 2 discloses a mobile crane having a function of calculating performance information.
  • Such a mobile crane uses an arithmetic expression stored in a storage unit when calculating performance information.
  • the arithmetic expression may be updated to an arithmetic expression corresponding to the latest performance information.
  • Such an update of the arithmetic expression is performed, for example, for each work machine by the maintenance worker, but there is a possibility that a situation may occur in which all the work machines are not updated to the latest arithmetic formula.
  • the operation formula is different for each work machine, there is a possibility that the performance information obtained by the calculation of the work machine is different even between work machines of the same model arranged at the same work site. Therefore, there is a need for a technique that enables the same performance information to be efficiently obtained between work machines of the same model arranged at the same work site.
  • the present invention has been made in view of the above situation, and has as its object to provide a technique capable of efficiently obtaining performance information of a working machine.
  • One aspect of the performance information server is a request acquisition unit that acquires a request including model information of a work implement and a performance information request that specifies performance information of the work implement, and specification data of the work implement, A storage unit for storing in association with the model of the work machine, a control unit for acquiring performance information of the work machine based on the model information included in the request and the specification data corresponding to the model information, and a performance acquired by the control unit And a response presentation unit that presents a response including information.
  • One aspect of the client terminal according to the present invention is a client terminal connectable to the performance information server described above, wherein an input unit that receives a selection of a working machine to be displayed on a display unit from a plurality of working machines;
  • a storage unit for storing an address table in which model information of a work machine and a performance information server corresponding to the model information are stored, and a performance information server corresponding to the selected work machine by referring to the address table;
  • a request including a performance information request that specifies the model information of the work machine and the performance information of the work machine is sent to the selected performance information server, and a response including the performance information specified in the performance information request is received from the performance information server.
  • One aspect of the working machine according to the present invention is a working machine connectable to the performance information server described above, and stores a model information of the working machine and an address table in which the performance information server corresponding to the model information is associated. Section and the address table, select a performance information server corresponding to the selected work equipment, and select a request including a performance information request for designating model information of the selected work equipment and performance information of the work equipment.
  • a control unit that sends to the performance information server and receives from the performance information server a response including the performance information specified by the performance information request.
  • One aspect of the performance information acquisition method is a performance information acquisition method executed in a terminal connectable to the above-described performance information server, wherein the terminal includes model information and model information of a plurality of work machines.
  • the terminal includes model information and model information of a plurality of work machines.
  • Having an address table for associating the performance information server with the corresponding work equipment, and receiving a selection of a work machine to be displayed on the display unit, and selecting a performance information server corresponding to the selected work machine with reference to the address table Transmitting the request including the model information of the selected work equipment and the performance information request designating the performance information of the work equipment to the selected performance information server; and the performance information included in the request from the performance information server.
  • One aspect of the method for providing performance information according to the present invention is a method for providing performance information executed in the performance information server described above, wherein the performance information server stores specification data associated with a model of a work machine. And obtaining a request including a performance information request that specifies the performance information of the work implement from the work implement or the terminal on which the image generation application operates, and the model information acquired from the request and Based on the performance information request and the specification data corresponding to the model information, performing the operation of the performance information specified in the performance information request, and presenting a response including the performance information to the work machine or the terminal And
  • FIG. 1 is a diagram illustrating a configuration of the BIM support system according to the first embodiment.
  • FIG. 2 is a functional block diagram of the BIM support system according to the first embodiment.
  • FIG. 3 is a block diagram illustrating an example of a hardware configuration of the client terminal according to the first embodiment.
  • FIG. 4 is a block diagram illustrating an example of a hardware configuration of the server according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of the performance data table.
  • FIG. 6 is a diagram showing a data flow between the client terminal and the server.
  • FIG. 7A is a flowchart illustrating an example of the operation of the BIM support system.
  • FIG. 7B is a diagram illustrating a part of the toolbar of the BIM application.
  • FIG. 7C is a diagram illustrating an example of the crane selection screen.
  • FIG. 7D is a diagram illustrating an example of the crane selection screen.
  • FIG. 7E is a diagram illustrating an example of the crane selection screen.
  • FIG. 7F is a diagram illustrating an example of the crane adjustment screen.
  • FIG. 8A is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 8B is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 8C is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 9 is a flowchart illustrating an example of the operation of the BIM support system.
  • FIG. 10A is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 10A is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 10B is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 10C is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 11 is a flowchart illustrating an example of the operation of the BIM support system.
  • FIG. 12A is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 12B is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 13A is a diagram illustrating an example of an image of a boom that is not bent.
  • FIG. 13B is a diagram illustrating an example of an image of a bent boom.
  • FIG. 13C is a diagram illustrating an example of an image of a bent boom.
  • FIG. 13A is a diagram illustrating an example of an image of a boom that is not bent.
  • FIG. 13B is a diagram illustrating an example of an image of a bent boom.
  • FIG. 13C is a diagram illustrating an example of an image of
  • FIG. 14 is a flowchart illustrating an example of the operation of the BIM support system.
  • FIG. 15A is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 15B is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 16A is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 16B is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 16C is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 16D is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 16E is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 17A is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 17B is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 17C is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 17D is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 17E is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 18A is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 18B is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 18C is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 18D is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 18E is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 18A is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 18B is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 19 is a flowchart illustrating an example of the operation of the BIM support system.
  • FIG. 20A is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 20B is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 20C is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 21 is a flowchart illustrating an example of the operation of the BIM support system.
  • FIG. 22A is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 22B is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 22C is a diagram illustrating an example of an image displayed on the display unit.
  • FIG. 23 is a diagram illustrating an example of a work plan document.
  • FIG. 24 is a diagram illustrating a configuration of the crane support system according to the second embodiment.
  • FIG. 25 is a functional block diagram of the crane support system according to the second embodiment.
  • FIG. 1 is a diagram illustrating a configuration of the BIM support system BS according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the BIM support system BS according to the first embodiment.
  • the BIM support system BS corresponds to an example of a performance information calculation system.
  • the BIM support system BS has a client terminal T and a plurality of servers S1 to S4 (also referred to as performance information calculation servers) as a hardware configuration.
  • the BIM support system BS of the present embodiment is a client-server type BIM support system in which a client terminal T and servers S1 to S4 are connected via a network N.
  • the numbers of client terminals and servers in the BIM support system BS are not limited to those illustrated.
  • the BBIM application A is installed in the client terminal T.
  • the BIM application A corresponds to an example of an image generation application and an image generation module.
  • An image generation application support module M (hereinafter simply referred to as a “support module M”) is added to the BIM application A.
  • the client terminal T in which the support module M is incorporated corresponds to an example of a display support device.
  • a combination of the BIM application A and the support module M may be referred to as an image generation application.
  • the BIM application A is software specialized for BIM.
  • the BIM application A may be various software for BIM that can perform planning, design, construction, and / or management of a building (such as a building or infrastructure).
  • the image generation application according to the present invention is not limited to software specialized for BIM, and includes, for example, construction information modeling (CIM), 2D-CAD for building design, and 3D-CAD. You may.
  • the image generation application may be a VR simulator (Virtual Reality Simulator) that simulates a working machine such as a crane in a virtual space.
  • the CIM may be considered to be included in the BIM.
  • the support module M corresponds to an example of the operation support module, and operates in cooperation with the BIM application A that generates an image of the work implement displayed on the display unit 12.
  • the support module M acquires the performance information of the work implement displayed on the display unit 12 from the servers S1 to S4 using a request-response communication protocol (for example, the HTTPS protocol).
  • a request-response communication protocol for example, the HTTPS protocol.
  • Each of the servers S1 to S4 is an example of a performance information server, and has a function of acquiring performance information of a work implement based on a request acquired from the support module M.
  • the servers S1 to S4 present a response including the acquired performance information to the support module M that has received the request.
  • the above-mentioned performance information includes, for example, information about a rated total load, information about a moment load ratio, information about a maximum boom angle of inclination, information about a working radius, deformed image information of a boom, deformed image information of a jib, a work area of a working machine. It includes image information, information on the reaction force of the outrigger jack, posture information of the work implement, information on the availability of work in consideration of the ground strength, information on the moving path of the suspended load, and the like (see column C in Table 2 described later). Further, the performance information includes a determination result as to whether or not the work machine can execute a desired work. Further, when the work implement is a crane, the performance information includes information on a moving path of the suspended load.
  • the support module M acquires a posture condition that defines the posture of the work implement in the work implement image displayed on the display unit 12.
  • the work machine image is simply referred to as a “work machine image”.
  • the posture of the work machine is simply referred to as “work machine image posture”.
  • the posture condition that defines the posture of the work machine image is simply referred to as “work machine image posture condition”.
  • the support module M transmits a posture condition, a performance information request for designating performance information of the work implement, and a request including model information of the work implement to the server specified from the servers S1 to S4.
  • the support module M may specify the server transmitting the request by including the server specifying information for specifying the server corresponding to the work implement image in the request.
  • the server identification information is, for example, a URI (Uniform ⁇ Resource ⁇ Identifier) of the server.
  • the support module M receives a response including the performance information specified by the performance information request from the server. Then, the support module M reflects the received performance information on the image displayed on the display unit 12 or the work implement image displayed on the display unit 12.
  • the servers S1 to S4 acquire, from the client terminal T having the support module M described above, a posture condition of a work implement image, a performance information request for designating performance information of the work implement, and a request including model information.
  • the servers S1 to S4 store in advance the arithmetic expressions used for calculating the performance information and the specification data of the work implement.
  • the servers S1 to S4 After acquiring the request, the servers S1 to S4 specify the performance information request based on the attitude condition, the performance information request, and the model information included in the request, and the stored arithmetic expression and specification data. The calculated performance information is calculated. Then, the servers S1 to S4 present a response including the result of the calculation to the client terminal T.
  • the calculations performed by the servers S1 to S4 are the same as those performed by the calculators provided in the actual working machine (for example, the crane).
  • the operator of the BIM application A (hereinafter, simply referred to as “operator”) can obtain the same performance information as the actual working machine in the BIM application A, so that a detailed construction plan considering the working machine can be efficiently performed. It can be carried out.
  • FIG. 2 is a functional block diagram illustrating an example of a configuration of the BIM support system BS according to the first embodiment.
  • FIG. 3 is a block diagram illustrating an example of a hardware configuration of the client terminal T according to the first embodiment.
  • the client terminal T corresponds to an example of a terminal in which a BIM application is incorporated.
  • the client terminal T includes an input unit 11, a display unit 12, a communication unit 13, a storage unit 14, a control unit 15, and the like.
  • the input unit 11 receives an input of information or the like input from an operator. Information input by the operator is received by the input unit 11 and sent to the control unit 15. An example of the information received by the input unit 11 will be described below.
  • the input unit 11 receives an input of a performance information request.
  • the performance information request includes information that specifies the performance information of the work equipment that the client terminal T acquires from the servers S1 to S4.
  • the performance information request includes information that the servers S1 to S4 calculate and present to the client terminal T, which specifies the performance information of the work implement.
  • the performance information of the work implement specified by the performance information request means the performance information of the work implement in the image displayed on the display unit 12.
  • the working machine in the image displayed on the display unit 12 is also referred to as “displayed working machine”.
  • the input unit 11 receives an instruction for displaying an image of a building on the display unit 12.
  • an image of a building is simply referred to as a “building image”.
  • the instruction for displaying on the display unit 12 is simply referred to as “display instruction of a building image”.
  • the display instruction of the building image includes, for example, information designating the type of the building image.
  • the display instruction of the building image includes information on the size of the building image and / or information on the arrangement of the building image.
  • the input unit 11 receives an instruction to display the work implement image on the display unit 12.
  • the instruction to display the work implement image on the display unit 12 is simply referred to as “work implement image display instruction”.
  • the work machine image display instruction includes, for example, information for specifying the model of the work machine displayed on the display unit 12.
  • information for specifying the model of the work machine is simply referred to as “model information”.
  • the work machine image display instruction may include information on the arrangement of the work machine images.
  • the information on the arrangement of the work machine images includes, for example, coordinates and / or directions (azimuths).
  • the model information includes at least one of a work machine ID (model, specification number, and / or serial number), a manufacturer name, and the like.
  • the input unit 11 receives an operation on an image displayed on the display unit 12.
  • image operation the operation of the image displayed on the display unit 12 is simply referred to as “image operation”.
  • the image operation includes an operation related to the building image and / or the work machine image displayed on the display unit 12.
  • the building image and / or the work implement image displayed on the display unit 12 may be simply referred to as a “display image”.
  • the building image in the display image is also simply referred to as a “display building image”.
  • the work machine image in the display image is also simply referred to as a “display work machine image”.
  • the image operation includes at least one of an operation of changing the orientation of the displayed building image, an operation of changing the size (enlargement operation or reduction operation), an operation of changing the arrangement, and the like.
  • the image operation includes at least one of an operation of changing the attitude of the display work machine image, an operation of changing the size (enlargement operation or reduction operation), an operation of changing the arrangement, and the like.
  • the operator performs image operations by inputting numerical values on the setting screen displayed on the display unit 12. Further, the operator may perform the image operation by dragging the displayed building image or the display work machine image.
  • the operator changes the posture of the display work machine image by changing the posture conditions (specific examples will be described later) in the attribute information of the display work machine image on the setting screen.
  • the operator may change the attitude of the display work machine image by dragging the display work machine image.
  • the operator changes the work state of the display work machine by selecting whether to use an attachment (for example, a crane jib or a man basket) on the display work machine (use state or non-use state) on the setting screen.
  • an attachment for example, a crane jib or a man basket
  • Such an operation corresponds to an example of the change of the work state information in the attribute information of the display work machine image.
  • the display unit 12 displays information and the like.
  • the information displayed on the display unit 12 may be information stored in the storage unit 14 or information generated by the control unit 15.
  • the input unit 11 and the display unit 12 may be configured by individual devices, or may be integrated with a device that can perform input and output (display) of information in parallel, such as a touch panel display. Good.
  • the communication unit 13 communicates with the servers S1 to S4 via the network N.
  • the communication unit 13 includes an information transmission unit and an information reception unit (not shown). Communication with the servers S1 to S4 is controlled by, for example, the control unit 15.
  • the communication unit 13 transmits a request to be described later to the servers S1 to S4, and receives a response to the request from the servers S1 to S4.
  • the communication unit 13 sends the obtained response to the control unit 15 (specifically, the support control unit 172 of the second control unit 17).
  • the storage unit 14 includes a first storage unit 141, a second storage unit 142, a third storage unit 143, and the like.
  • the storage units 141 to 143 are configured by one piece of hardware (main storage device). However, the storage units 141 to 143 may be configured by a plurality of hardware.
  • the first storage unit 141 is a building image database and stores information on building images. Information related to the three-dimensional image of the members constituting the building is stored in the first storage unit 141.
  • a three-dimensional image of a member constituting a building is simply referred to as a “building image”.
  • a member constituting a building at least one of a pillar, a window, a pipe, a door, a floor, a ceiling, a wall, and the like can be given.
  • the attribute information associated with each image is stored in the first storage unit 141 together with the building image.
  • the attribute information of the building image may include at least one of a member ID (a model number or a manufacturing number), a type, a member name, a maker name, a standard, a dimension, a material, and the like.
  • the first storage unit 141 may store, in addition to the building image, information on an image of a component on a work site such as a building site or a construction site.
  • a work site configuration image may include, for example, at least one image of a road (a sidewalk, a roadway), a tree, an electric wire, a telephone pole, a car, and a person.
  • the second storage unit 142 is a work implement image database and stores information on work implement images. For example, information relating to a three-dimensional image of the working machine and / or members constituting the working machine is stored in the second storage unit 142.
  • the two-dimensional image or the three-dimensional image of the members constituting the working machine is simply referred to as “working machine image”.
  • Work machine image includes, for example, at least one of a crane, a bulldozer, a hydraulic excavator, a concrete pump truck, an aerial work truck, a dump truck, a trailer, and a lifter.
  • the work machine image may include a three-dimensional image of a component of each of these work machines.
  • the crane may be a mobile crane (rough terrain crane, all terrain crane) and / or a tower crane.
  • a component of the crane for example, at least one of a boom, a jib, an outrigger, a vehicle, and a hook is included.
  • the attribute information associated with each work machine image may be stored in the second storage unit 142.
  • the attribute information of the work implement image includes model information of the work implement in the work implement image and / or posture conditions of the work implement image.
  • the attribute information of the work implement image may include information on the work state of the work implement.
  • information relating to the work state of the work machine is simply referred to as “work state information”.
  • the attribute information of the work machine image may include information on members constituting the work machine.
  • information on members constituting the working machine is simply referred to as “component member information”.
  • the posture condition includes, for example, at least one of a boom undulation angle, a boom length, a boom turning angle, a jib undulation angle, a jib length, and an outrigger overhang width.
  • the work state information includes, for example, information for specifying at least one of a boom work state, a jib work state, a single top work state, an outrigger work state, an on-tire work state, and a hook work state.
  • the component member information includes information on the types of members constituting the working machine.
  • the members constituting the working machine are, for example, a boom, a jib, a hook, and a wire.
  • information on the types of members constituting the working machine will be simply referred to as “component type information”.
  • the third storage unit 143 stores information for specifying a server that sends a request.
  • Information for specifying a server is also referred to as server specifying information.
  • the server identification information is stored in the third storage unit 143 in association with the work implement image.
  • the third storage unit 143 stores server identification information in a format that can identify a server corresponding to the work equipment image from the model information in the attribute information of the work equipment image.
  • the third storage unit 143 stores an address table that associates model information included in the attribute information of the plurality of working machine images with a server (server specifying information) corresponding to each of the model information. I have.
  • the control unit 15 controls the overall operation of the client terminal T by controlling the operation of each of the elements 11 to 14 described above.
  • the control unit 15 includes a first control unit 16, a second control unit 17, and the like.
  • the first control unit 16 includes a BIM control unit 161 and a display control unit 162.
  • the first control unit 16 implements the function of the BIM application A.
  • the first control unit 16 corresponds to an example of the operation control unit of the image application A that controls the behavior of the work implement image displayed on the display unit 12 (described later).
  • the BIM control unit 161 acquires, from the input unit 11, information related to the display instruction of the building image described above. Then, the BIM control unit 161 acquires from the storage unit 14 information related to the building image specified by the information related to the display instruction of the building image. The BIM control unit 161 sends the information on the acquired building image to the display control unit 162 described below.
  • the BIM control unit 161 acquires, from the input unit 11, information on the display instruction of the work machine image described above. Then, the BIM control unit 161 acquires from the storage unit 14 information on the work implement image specified by the model information included in the acquired work implement image display instruction. The BIM control unit 161 sends the information on the acquired work machine image to the display control unit 162 described below.
  • the BIM control unit 161 acquires information related to the above-described image operation from the input unit 11.
  • the BIM control unit 161 reflects the information on the acquired image operation on the display image.
  • the BIM control unit 161 reflects the acquired information on the image operation (for example, coordinates, dimensions, and / or posture conditions) in the attribute information of the display image (for example, the display work machine image).
  • the information on the acquired image operation is reflected on the display of the display unit 12.
  • the display control unit 162 converts the information about the building image acquired from the BIM control unit 161 into a display signal corresponding to the display unit 12 and outputs the signal, and causes the display unit 12 to display the building image.
  • the display control unit 162 converts the information on the work implement image received from the BIM control unit 161 into a display signal corresponding to the display unit 12 and outputs the display signal, and causes the display unit 12 to display the work implement image.
  • the second control unit 17 includes a communication control unit 171, a support control unit 172, an area image processing unit 176, a deformed image processing unit 177, and the like.
  • the second control unit 17 implements the function of the support module M.
  • the support control unit 172 implements functions of a posture condition acquisition unit, a performance information acquisition unit, and a drawing support unit.
  • the communication control unit 171 controls communication between the client terminal T and the servers S1 to S4 via the communication unit 13.
  • the support control unit 172 When focusing on the function of the support module M, the support control unit 172 includes an information acquisition unit 173, a request issuing unit 174, a display support control unit 175, and the like. Some functions of the support control unit 172 realize the function of a performance information acquisition unit. Part of the support control unit 172 corresponds to an example of a performance information acquisition unit. The support control unit 172 corresponds to an example of an operation support unit. Further, the support control unit 172 has a function as a response acquisition unit that receives a response including performance information from the server. Therefore, the support control unit 172 also corresponds to an example of the response acquisition unit.
  • the parameters acquired by the information acquiring unit 173 constitute parameters in a request generated by the request issuing unit 174 described later.
  • the parameters included in the request are shown in Table 1 below.
  • the information acquisition unit 173 corresponds to an example of a posture condition acquisition unit.
  • the serial number, model number, and specification number correspond to an example of model information.
  • the outrigger state and the boom / jib selection correspond to an example of work implement state information.
  • one work state is selected from a boom work state, a jib work state, and a single top work state.
  • the outrigger width, the boom hoisting angle, the boom length, the turning angle, the jib hoisting angle, and the jib length correspond to an example of the posture condition.
  • the outrigger width may be set for each outrigger.
  • information about the boom for example, the type of boom
  • information about the jib for example, the type of jib
  • information about the hook for example, the type of hook
  • information about the wire for example, the number of hooks
  • the route information includes, for example, a travel route of the suspended load, a travel route of the work implement, and / or a travel route of the tip of the boom.
  • the information acquisition unit 173 acquires the performance information request from the input unit 11, the information acquisition unit 173 acquires the model information in the attribute information of the display work machine image from the BIM control unit 161.
  • the information acquisition unit 173 acquires, from the BIM control unit 161, the work state information for identifying the work state of the work machine among the attribute information of the display work machine image. I do.
  • the information acquisition unit 173 acquires the performance information request from the input unit 11
  • the information acquisition unit 173 acquires, from the BIM control unit 161, the posture condition corresponding to the acquired performance information request among the attribute information of the display work machine image.
  • the information acquisition unit 173 acquires, from the BIM control unit 161, component member information, which is information on the component members of the work equipment, in the attribute information of the display work equipment image. .
  • the information acquisition unit 173 acquires information on the suspended load that is lifted by the working machine in the displayed working machine image from the BIM control unit 161.
  • the information on the lifting load is simply referred to as “lifting load information”.
  • the lifting load information corresponds to an example of the lifting load information.
  • the information acquisition unit 173 acquires from the BIM control unit 161 the route information of the suspended load that is being lifted by the working machine in the displayed working machine image.
  • route information the route information of the suspended load.
  • the information acquired by the information acquiring unit 173 as described above may be stored in advance in the storage unit 14 as the attribute information of the work machine image, or may be information acquired from the servers S1 to S4. Note that specific examples of the information acquired by the information acquisition unit 173 are shown in Table 2 described later and in the operation description of the BIM support system BS described later.
  • the information acquisition unit 173 acquires, from the BIM control unit 161, only the parameters necessary for calculating the performance information specified in the acquired performance information request among the parameters shown in Table 1. .
  • the information acquisition unit 173 sends, from the BIM control unit 161, parameter information of a predetermined type among the parameters shown in Table 1 regardless of the performance information specified in the performance information request. get.
  • the predetermined type of parameter information is, for example, all information related to the model information, the posture condition, the work state information, and the component member information in the attribute information.
  • the information acquisition unit 173 sends the acquired information to the request issuing unit 174.
  • the request issuing unit 174 acquires, from the third storage unit 143, server identification information for identifying a server corresponding to the model information based on the model information acquired from the information acquisition unit 173.
  • the request issuing unit 174 refers to the address table stored in the third storage unit 143, and acquires the server identification information corresponding to the model information acquired from the information acquisition unit 173.
  • the request issuing unit 174 generates a request including the obtained server specifying information, performance information request, and parameters.
  • the request is, for example, in the form of a request message of the HTTPS protocol.
  • the HTTP method used in the request is, for example, a GET method.
  • the request issuing unit 174 sends the generated request to the communication control unit 171.
  • Equation 1 shows an example of the request.
  • the request includes a URI, a performance information request, and a parameter in order from the top.
  • the parameters include at least one of the model information, work state information, posture condition, component member information, hanging load information, route information, and other information shown in Table 1 above.
  • the parameters only need to include at least the parameters required for calculating the performance information specified by the performance information request.
  • Expression 1 “https: //.../bimapi/v1.0/Simulation/” corresponds to an example of a URI.
  • Expression 1 “RatedWeight” corresponds to an example of a performance information request.
  • the “model”, “boom jib type”, and “boom length” in Expression 1 may be replaced with a symbol, a character string, or a numerical value as in Expression 2.
  • the display support control unit 175 analyzes the response acquired from the communication control unit 171 and reflects the calculation results of the servers S1 to S4 included in the response on the display of the display unit 12.
  • the display support control unit 175 sends the calculation results of the servers S1 to S4 included in the response to the BIM control unit 161 and reflects the calculation results on the image displayed on the display unit 12 or the image displayed on the display unit 12.
  • the display support control unit 175 corresponds to an example of a response acquisition unit and a drawing support unit.
  • the display support control unit 175 updates the attribute information of the display work machine image based on the calculation results of the servers S1 to S4 included in the response, so that the calculation result is reflected on the display of the display unit 12. Good.
  • the display support control unit 175 sends the information about the area image to the area image processing unit 176.
  • the display support control unit 175 sends the area image acquired from the area image processing unit 176 to the BIM control unit 161 and reflects it on the display of the display unit 12.
  • the region image is an image in which the results of the operations of the servers S1 to S4 included in the response (that is, information on the region image) are reflected.
  • the display support control unit 175 sends the information on the deformed image to the deformed image processing unit 177.
  • the display support control unit 175 sends the deformed image obtained from the deformed image processing unit 177 to the BIM control unit 161 and reflects it on the display of the display unit 12.
  • the deformed image may be regarded as an image on which the calculation results of the servers S1 to S4 included in the response (that is, information on the deformed image) are reflected.
  • the processing of the display support control unit 175 may be referred to as display support processing.
  • a specific example of the display support processing will be described in the description of the operation of the BIM support system BS.
  • the area image processing unit 176 generates an area image based on information about the area image acquired from the display support control unit 175. Such an area image processing unit 176 corresponds to an example of an area image generation unit. Then, the region image processing unit 176 sends the generated region image to the display support control unit 175.
  • the area image processing unit 176 may be regarded as an example of a deformed image generation unit.
  • the range in which the hook of the work machine can be moved in the posture of the work machine displayed on the display unit 12 (hereinafter, referred to as a “movable area of the hook”) is two-dimensional and / or. Or an image shown in three dimensions. That is, it may be considered that the work machine includes the hook.
  • the region image includes a range in which the hanging device can be moved (hereinafter, referred to as a “movable region of the hanging device”) and / or a range in which the suspended load can be moved (hereinafter, “the suspended load”). Is a two-dimensional and / or three-dimensional image. A specific example of the region image is shown in the operation description of the BIM support system BS. Note that the area image generated by the area image processing unit 176 may be regarded as an example of a deformed image related to the work implement image.
  • the deformed image processing unit 177 generates a deformed image based on the information on the deformed image acquired from the display support control unit 175.
  • the deformed image processing unit 177 corresponds to an example of a deformed image generating unit. Then, the deformed image processing unit 177 sends the generated deformed image to the display support control unit 175.
  • a specific example of the deformed image is shown in the operation description of the BIM support system BS. Note that the deformed image generated by the deformed image processing unit 177 may be regarded as an example of a deformed image related to the work machine image.
  • the BIM application A and the support module M incorporated in the client terminal T as described above may be incorporated in a cloud server (not shown) and executed.
  • the cloud server is connected to the servers S1 to S4 via the network N.
  • the cloud server is connected via a network N to a client terminal (not shown) in which a viewer is incorporated.
  • the viewer is an application that displays an image generated by the BIM application A executed on the cloud server.
  • a cloud-type BIM support system corresponds to an example of a terminal in which an image generation application is incorporated.
  • the client terminal T is a desktop computer (a personal computer, a workstation, or the like), a laptop computer (a personal computer, a workstation, or the like), a tablet terminal, or a mobile device such as a smartphone.
  • the client terminal T includes a processor 1001, an input device 1002, an output device 1003, a memory 1004, a storage 1005, and the like included in a general desktop computer or laptop computer.
  • the client terminal T includes a communication interface (IF) 1006 and a power supply circuit 1007. These elements 1001 to 1007 may be connected by, for example, a bus 1008.
  • the processor 1001 controls the operation of the client terminal T.
  • the processor 1001 is an example of a circuit or a device having a computing capability.
  • the processor 1001 for example, at least one of a CPU (central processing unit), an MPU (micro processing unit), and a GPU (graphics processing unit) may be used.
  • the input device 1002 may include the input unit 11 shown in FIG.
  • the input device 1002 may include a device used for inputting information to the client terminal T, for example, at least one of a keyboard, a touch panel, and a mouse. Information may be input to the processor 1001 through the input device 1002.
  • the output device 1003 may include the display unit 12 shown in FIG. Specifically, the output device 1003 may include a display (or a monitor) corresponding to the display unit 12.
  • the display may be a touch panel display.
  • a touch-panel display may be regarded as both the input device 1002 and the output device 1003.
  • the memory 1004 stores, for example, a program executed by the processor 1001 and data or information processed in accordance with the execution of the program.
  • the memory 1004 includes a RAM (random access memory) and a ROM (read only memory).
  • the RAM may be used as a work memory of the processor 1001.
  • “Program” is referred to as “software” or “application”.
  • the storage 1005 stores a program executed by the processor 1001 and data or information processed according to the execution of the program.
  • the storage 1005 stores information related to the BIM support system BS, such as the information related to the building image, the information related to the work machine image, and the server identification information.
  • the storage 1005 includes a semiconductor drive device such as a hard disk drive (HDD) or a solid state drive (SSD).
  • a non-volatile memory such as a flash memory may be included in the storage 1005.
  • the memory 1004 and the storage 1005 correspond to the storage unit 14 in FIG.
  • the program includes a program that implements the BIM application A and the support module M as described above (hereinafter, referred to as a “BIM program”). All or a part of the program code forming the BIM program may be stored in the memory 1004 and / or the storage 1005, or may be incorporated in a part of an operating system (OS).
  • OS operating system
  • the program and / or data may be provided in a form recorded on a recording medium readable by the processor 1001.
  • the recording medium include a flexible disk, CD-ROM, CD-R, CD-RW, MO, DVD, Blu-ray disk, and portable hard disk.
  • a semiconductor memory such as a USB (universal serial bus) memory is also an example of the recording medium.
  • the program and / or information may be provided (downloaded) from an application server (not shown) to the client terminal T via the network N.
  • the program and / or information may be provided to the client terminal T via the communication IF 1006 and stored in the memory 1004 and / or the storage 1005. Further, the program and / or data may be provided to the client terminal T through the input device 1002 and stored in the memory 1004 and / or the storage 1005.
  • the communication IF 1006 corresponds to the communication unit 13 in FIG. 2 and is an interface for communicating with the network N.
  • the communication IF 1006 may include a wireless interface for wireless communication. Further, the communication IF 1006 may include a wired interface for wired communication.
  • the client terminal T functions as an example of a display processing device that realizes the functions of the BIM application A and the support module M as described above. I do.
  • the power supply circuit 1007 supplies power for operating the elements 1001 to 1006 shown in FIG. 3 to each of the elements 1001 to 1006.
  • the BIM support system BS illustrated in FIG. 1 includes, for example, a plurality of servers S1 to S4.
  • FIG. 1 illustrates four servers S1 to S4 as a non-limiting example.
  • the number of servers may be one or more and three or less, or five or more.
  • the servers S1 to S4 are provided, for example, for each work machine maker.
  • the server S1 among the servers S1 to S4 will be described.
  • the configuration of the servers S2 to S4 is the same as that of the server S1, and a description thereof will be omitted.
  • the server S1 is, for example, a server corresponding to the work machine maker M1.
  • the servers S2 to S4 are servers corresponding to the work machine manufacturers M2 to M4, respectively.
  • the server S1 has a communication unit 21, a storage unit 23, a control unit 22, and the like.
  • the communication unit 21 communicates with the client terminal T via the network N. Therefore, the communication unit 21 includes a transmission unit and a reception unit (not shown) for transmitting information. Communication with the client terminal T is controlled by a control unit (not shown).
  • the communication unit 21 communicates the server S1 with the servers S2 to S4 via the network N.
  • the server S1 is connected to the client terminal T via the Internet.
  • the server S1 and the client terminal T communicate using a TCP / IP protocol such as the HTTPS protocol.
  • the communication protocol between the server S1 and the client terminal T is not limited to the HTTPS protocol, but may be various request-response communication protocols.
  • the communication unit 21 sends the request received from the client terminal T to the control unit 22. In addition, the communication unit 21 transmits the response obtained from the control unit 22 to the client terminal T.
  • the storage unit 23 stores an operation expression (not shown) used in the operation performed by the operation unit 222.
  • the arithmetic expression is used for calculating the performance information specified by the performance information request included in the request.
  • the storage unit 23 stores an interpolation operation expression used for an interpolation operation described later.
  • the storage unit 23 stores performance data (for example, rated total load) used in the calculation performed by the calculation unit 222.
  • the storage unit 23 stores, for example, performance data as a performance table in a table format.
  • the performance table shows the posture conditions of the work machine image (boom up / down angle, boom length, boom turning angle, jib up / down angle, jib length, and outrigger overhang width), crane work state, and 4 is a table (hereinafter, referred to as a “performance data table”) in which parameters such as a working radius of the crane are associated with performance data.
  • the performance data table is an example of a performance table, and is a table for obtaining performance data (for example, rated total load) from posture conditions, work state information, a work radius, and the like. Such a performance data table is stored in the storage unit 23 for each type of work machine.
  • FIG. 5 An example of the performance data table is shown in FIG. FIG. 5 exemplifies a performance data table 24 relating to the boom length and the working radius and the rated total load as performance data when the outrigger is in the boom work state and the outrigger work state, and the overhang width of each outrigger is maximum. Have been.
  • the performance data table 24 shown in FIG. 5 indicates that the rated total load (25 t) corresponding to each of these parameters. ) Is obtained.
  • the performance data table is provided for each work state information such as the jib work state, the on-tire state, and / or the outrigger state. Further, a plurality of performance data tables are provided according to the overhang width of the outrigger.
  • the performance data table 24 shown in FIG. 5 is composed of boom lengths and working radii arranged at predetermined intervals, and rated total loads.
  • the rated total load can be obtained from the performance data table.
  • the rated total load at a working radius of 2.5 m cannot be obtained from the performance data table 24.
  • the calculation unit 222 obtains the rated total load that cannot be directly obtained from the performance data table 24 by interpolation.
  • the calculation unit 222 performs this interpolation calculation using the interpolation calculation expression acquired from the storage unit 23.
  • the performance data table 24 may be, for example, a performance data table relating to the reaction force of the outrigger jack or a performance data table relating to the bending of the boom.
  • the performance data table relating to the bending of the boom stores, for example, the type of the boom or the jib, the posture condition of the crane, and the bending amount of the tip of the boom or the jib according to the lifting load in association with each other.
  • the posture conditions of the crane are, for example, a boom length, a boom hoist angle, a jib length, and a jib offset angle (jib hoist angle).
  • the storage unit 23 stores specification data for each work machine.
  • the storage unit 23 stores the specification data in association with the model information.
  • the specification data is used in the calculation performed by the calculation unit 222.
  • Specification data when the work machine is a mobile crane includes the position of the center of gravity and the weight of the carrier portion (also referred to as the undercarriage) of the mobile crane.
  • the specification data includes the position of the center of gravity and the weight of each outrigger with respect to the overhang length of each outrigger.
  • the specification data also includes the coordinates of the center of rotation of the upper turntable, the position of the center of gravity, and / or the weight.
  • the specification data includes the rotation center coordinates of the base boom with respect to the reference coordinates of the upper swivel, the position of the center of gravity, and / or the weight.
  • the specification data also includes the coordinates of the origin of attachment of the second boom to the base boom, the position of the center of gravity, and / or the weight. Further, the specification data includes the weight per unit length of the wire rope. The specification data is not limited to the above example.
  • the control unit 22 includes a request acquisition unit 221, an operation unit 222, a response issue unit 223, and the like.
  • the request acquisition unit 221 analyzes the request acquired from the communication unit 21.
  • the request is in the form of an HTTP message of the HTTPS protocol.
  • the HTTP method used in the request is a GET method.
  • the request acquisition unit 221 extracts a performance information request and a parameter from the request.
  • the parameter is a parameter corresponding to the performance information request, and is at least one of the model information, the posture condition, the work state information, the component member information, the load information, the route information, and other information shown in Table 1 above. This is one piece of information.
  • the request acquisition unit 221 extracts all the parameters included in the request.
  • the request acquisition unit 221 performs the calculation of the performance information specified by the performance information request included in the request among the parameters included in the request. Select and extract the required parameters.
  • the performance information request corresponds to each item in column A of Table 2 below.
  • Column B in Table 2 shows parameters included in the request (for example, model information, posture condition, work state information, component information, suspended load information, route information, and other information shown in Table 1 above). .
  • the length of the jib may or may not be included in the parameter.
  • the length of the jib included in the specification data may be used for a calculation described later.
  • the request acquisition unit 221 sends the information extracted from the request to the calculation unit 222. Note that the processing of the request acquisition unit 221 may be performed by the calculation unit 222 described later.
  • the calculation unit 222 calculates the performance information specified by the performance information request included in the request based on the information obtained from the request obtaining unit 221 and the information obtained from the storage unit 23.
  • the operation unit 222 selects an operation expression to be used for the operation based on the information included in the request. Then, the arithmetic unit 222 acquires the selected arithmetic expression from the storage unit 23.
  • the arithmetic unit 222 selects an arithmetic expression to be used for the arithmetic based on the performance information request included in the request.
  • the arithmetic unit 222 selects an arithmetic expression to be used for the arithmetic based on the performance information request included in the request and the information other than the performance information request included in the request.
  • Information other than the performance information request includes, for example, model information, posture conditions, work state information, and / or component information (type information of component).
  • the operation unit 222 selects the specification data of the working machine to be used for the operation based on the information included in the request. Then, the arithmetic unit 222 acquires the selected specification data from the storage unit 23.
  • the calculation unit 222 selects the specification data of the working machine to be used for the calculation based on the model information included in the request.
  • the calculation unit 222 performs calculation based on model information included in the request and information other than the model information included in the request (for example, performance information request and / or attitude condition). Select the specification data of the working machine to be used.
  • the calculation unit 222 calculates the performance information request and parameters (model information and posture conditions, etc.) obtained from the request obtaining unit 221 and the calculation formula and specification data obtained from the storage unit 23. , The performance information specified by the performance information request is calculated.
  • Such an operation is called a first operation.
  • the first operation means an operation that does not use the performance data (performance data table) stored in the storage unit 23.
  • the calculation unit 222 includes the performance information request and parameters (model information and posture conditions, etc.) obtained from the request obtaining unit 221 and the calculation formula and performance data obtained from the storage unit 23.
  • the performance information specified by the performance information request is calculated based on the table and the specification data.
  • Such an operation is called a second operation or an interpolation operation.
  • the second operation and the interpolation operation mean an operation using the performance data (performance data table) stored in the storage unit 23.
  • the interpolation calculation may mean a calculation for interpolating performance data (for example, rated total load) between data in the performance data table. Such an interpolation calculation is performed by an interpolation method such as linear interpolation. Such an interpolation calculation is performed by an interpolation method based on unique know-how of each work machine maker.
  • the operation unit 222 sends the operation result to the response issuing unit 223.
  • the response issuing unit 223 generates a response including the calculation result obtained from the calculation unit 222.
  • the response issuing unit 223 sends the generated response to the communication unit 21.
  • the response is, for example, a format of a response message of the HTTPS protocol.
  • the operation result is described in the message body of the response.
  • FIG. 6 is a diagram schematically showing a data flow between the client terminal T and the server S1.
  • the client terminal T transmits a request 31 to the server S1.
  • the request 31 includes server specifying information 32 for specifying the server S1, a performance information request 33, and a parameter.
  • the parameter 34 includes, for example, at least one of model information, posture condition, work state information, component member information, hanging load information, route information, and other information.
  • the parameter 34 may include at least information necessary for calculating the performance information specified by the performance information request 33.
  • the server S1 calculates the parameters 34 included in the request 31 obtained from the client terminal T, the arithmetic expression 35 obtained from the storage unit 23 of the server S1, the performance data table 24 (see FIG. 5), and the specification data 36.
  • the performance information specified by the performance information request 33 included in the request 31 is calculated.
  • the arithmetic unit 222 acquires from the storage unit 23 the performance information request 33 acquired from the request acquisition unit 221 and the arithmetic expression 35 corresponding to the model information included in the parameter 34.
  • the calculation unit 222 also acquires from the storage unit 23 the performance data table 24 (see FIG. 5) corresponding to the parameters 34 (model information, posture condition, and / or work state) acquired from the request acquisition unit 221. At this time, the computing unit 222 acquires from the storage unit 23 a plurality of performance data tables corresponding to the acquired parameters 34 (model information, posture conditions, and / or work states).
  • the performance data table 24 corresponds to an example of a performance information table.
  • the computing unit 222 further acquires from the storage unit 23 the specification data 36 corresponding to the work machine specified by the model information of the acquired parameter 34.
  • the computing unit 222 acquires the performance information acquired from the client terminal T based on the parameter 34 acquired from the client terminal T, the computing equation 35 acquired from the storage unit 23, the performance data table 24, and the specification data 36.
  • the performance information 37 specified by the request 33 is calculated.
  • the server S1 transmits a response 38 including the calculation result (performance information 37) to the client terminal T.
  • the response 38 includes the terminal information specifying the client terminal T together with the performance information 37.
  • the operation unit 222 can perform an operation with almost the same accuracy as the operation unit mounted on the actual work machine.
  • the calculation formula, performance data table, and specification data used by the calculation unit 222 for calculation are the calculation formula, performance data table, and specification data used by the calculation unit mounted on the actual machine of the work machine. Same as data.
  • the jack reaction force of the outrigger is a value detected by the jack reaction force detecting means.
  • the jack reaction force of the outrigger is obtained by a simulation calculation.
  • each of the servers S1 includes a processor 2001, a memory 2002, a storage 2003, and the like when focusing on a hardware configuration.
  • the server S1 includes a communication IF 2004, a power supply circuit 2005, and the like. Further, the server S1 may include an input device (not shown) and an output device (not shown). These elements 2001 to 2005 are connected, for example, by a bus 2006.
  • the processor 2001 controls the operation of the server S1.
  • the processor 2001 is an example of a circuit or a device having a calculation capability.
  • the processor 2001 for example, at least one of a CPU, an MPU, and a GPU is used.
  • the memory 2002 stores a program executed by the processor 2001, and data or information processed in accordance with the execution of the program.
  • the memory 2002 includes a RAM and a ROM.
  • the RAM is used as a work memory of the processor 2001.
  • the storage 2003 stores a program executed by the processor 2001. Further, the storage 2003 stores data or information processed in accordance with the execution of the program. The storage 2003 stores the above-described arithmetic expressions, performance data tables, and specification data.
  • the storage 2003 includes a semiconductor drive device such as a hard disk drive (HDD) or a solid state drive (SSD).
  • a semiconductor drive device such as a hard disk drive (HDD) or a solid state drive (SSD).
  • a non-volatile memory such as a flash memory may be included in the storage 2003.
  • the memory 2002 and the storage 2003 may be considered to correspond to the storage unit 23 in FIG.
  • All or a part of the program code constituting a program for realizing the function of the server S1 may be stored in the memory 2002 and / or the storage 2003, or the operating system ( OS).
  • the program and / or data may be provided in a form recorded on a recording medium readable by the processor 2001.
  • the recording medium include a flexible disk, CD-ROM, CD-R, CD-RW, MO, DVD, Blu-ray disk, and portable hard disk.
  • a semiconductor memory such as a USB memory is also an example of the recording medium.
  • the communication IF 2004 corresponds to the communication unit 21 in FIG. 2 and is an interface for communicating with the network N.
  • the communication IF 2004 includes a wired interface for wired communication with the network N.
  • the server S1 functions as an example of a performance information calculation server device by the processor 2001 reading and executing the performance information calculation program stored in the storage unit 23.
  • the power supply circuit 2005 supplies power for operating the elements 2001 to 2004 illustrated in FIG. 4 to the elements 2001 to 2004, for example.
  • the functional configuration and the hardware configuration of the servers S2 to S4 may be the same as the functional configuration and the hardware configuration of the server S1.
  • the calculation unit 222 determines that the performance information request is a display request of the rated total load (see A-1 in Table 2), a display request of the moment load factor (see A-2 in Table 2), and a rated total load at the maximum moment load factor. (See A-3 in Table 2) and a request to display the boom maximum tilt angle and working radius (see A-4 in Table 2), the value of each piece of performance information is calculated.
  • the calculation formula for calculating the rated total load, the calculation formula for calculating the moment load ratio, the calculation formula for calculating the boom maximum tilt angle, and the calculation formula for calculating the working radius are stored in a storage unit. 23.
  • the calculating unit 222 determines whether the boom deformed image information and the jib deformed image Information is obtained by calculation. These pieces of deformed image information are used by the deformed image processing unit 177 to generate a deformed image.
  • the boom deformation image information and the jib deformation image information are, for example, numerical data for drawing a boom or jib deformation image.
  • the calculation unit 222 calculates the numerical data using an image calculation expression.
  • the calculation unit 222 calculates the region image information by calculation.
  • the area image information is used by the area image processing unit 176 to generate an area image.
  • the calculation unit 222 may perform, for example, the boom hoisting angle and the boom length. And the like, the posture condition of the working machine, the moment load factor, and the determination result of workability are obtained by calculation.
  • FIG. 7A is a flowchart showing the operation of the BIM support system BS when displaying the total rated load of the working machine (crane) displayed on the display unit 12 (see A-1 in Table 2). is there.
  • the operator determines the posture of the work machine image displayed on the display unit 12, and then applies a rated total load corresponding to the posture of the work machine image to one of the servers S1 to S4. Request. As described above, when the posture of the work machine image is changed, the operator requests the server for the rated total load.
  • the operator compares the rated total load obtained from the server with the weight of the suspended load to be transported, and determines whether or not the crane can transport the suspended load to the transport destination position in the posture determined by the operator. it can.
  • the operation of the BIM support system BS in this operation example will be described.
  • step S100 of FIG. 7A only the building image G1 shown in FIG. 8A is displayed on the display unit 12. That is, in step S100, the work implement image G2 illustrated in FIG. 8A is not displayed on the display unit 12.
  • the building image G1 may be an image created by an operator using the BIM application A, or may be an image in which information stored in the storage unit 14 is read and displayed.
  • step S ⁇ b> 100 the operator inputs a work machine image display instruction from the input unit 11 in order to display the work machine image G ⁇ b> 2 on the display unit 12.
  • step S100 when the input unit 11 receives a work machine image display instruction, the BIM control unit 161 causes the display unit 12 to display the work machine image G2 specified by the model information included in the work machine image display instruction. .
  • step S100 the BIM control unit 161 acquires the work implement image G2 from the second storage unit 142. Specifically, the BIM control unit 161 acquires a work machine image corresponding to the model information included in the work machine image display instruction from the second storage unit 142.
  • the posture of the working machine image acquired from the second storage unit 142 is the basic posture of the working machine image.
  • step S100 the operator operates the BIM application A in order to display the work machine image G2 relating to a desired work machine on the display unit 12.
  • step S100 In a state before the operator executes the operation in step S100, the building image G1 is displayed on the display unit 12, and the work implement image G2 is not displayed on the display unit 12.
  • a window of the BIM application A is displayed on the display unit 12, and a toolbar 4 of the BIM application A (see FIG. 7B) is displayed at an upper portion of the window.
  • the toolbar 4 includes icons and the like for operating the BIM application A.
  • FIG. 7B is a diagram showing a part of the toolbar 4 of the BIM application A.
  • the toolbar 4 may include various tabs, icons, buttons, and the like in addition to the tabs and icons shown in FIG. 7B.
  • the operator selects the model of the work machine to be displayed on the display unit 12. Specifically, the operator selects the icon 41a related to the crane arrangement in the toolbar 4 shown in FIG. 7B.
  • the icon 41a is an icon operated by the operator to select a desired crane.
  • the BIM application A displays a crane selection screen 42 as shown in FIG.
  • the crane selection screen 42 has a mode selection unit 42a for selecting between “simple mode” and “detailed mode”.
  • FIG. 7C shows a crane selection screen in the simple mode. Although a description of the crane selection screen in the detailed mode (not shown) is omitted, the crane selection screen in the detailed mode can receive an input of a crane setting more detailed than the crane selection screen in the simple mode from the operator.
  • the crane selection screen 42 has a condition input unit 43.
  • the condition input unit 43 receives an input related to crane conditions from an operator.
  • the condition selecting section 43 has a first selecting section 43a for selecting a crane type, a second selecting section 43b for selecting a crane maker, and a third selecting section 43c for selecting a jib type.
  • the condition selection unit 43 includes a fourth selection unit 43d for selecting the maximum lift, a fifth selection unit 43e for selecting the maximum ground lift, and a sixth selection unit for selecting the maximum work radius. 43f.
  • the condition selection unit 43 includes a seventh selection unit 43g for selecting the maximum boom length, an eighth selection unit 43h for selecting the weight of the counterweight, and a ninth selection unit for selecting the weight of the hook. It has a part 43i.
  • FIG. 7D is a diagram showing a display mode of the first selection unit 43a when the operator selects the crane type condition.
  • the first selector 43a is a pull-down type selector. The operator selects a desired crane type from a plurality of crane types displayed on the first selection section 43a.
  • the crane type is, for example, a rough terrain crane, an all terrain crane, a cargo crane, a tower crane, or the like.
  • FIG. 7E is a diagram showing a display mode of the second selection unit 43b when the operator selects the crane maker condition.
  • the second selector 43b is a pull-down type selector. The operator selects a desired crane maker from a plurality of crane manufacturers displayed on the second selection section 43b.
  • the crane satisfying the crane condition selected by the condition selection unit 43 is displayed in the list display unit 44 of the crane selection screen 42.
  • the operator selects a desired crane from the cranes displayed on the list display section 44.
  • the display unit 12 displays a work machine image G2 of the selected crane.
  • step S101 the operator inputs posture conditions from the input unit 11 to determine the posture of the work implement in the work implement image G2 displayed on the display unit 12.
  • the operator inputs, for example, the posture condition of the work machine image G2 from a crane adjustment screen 45 (described later) displayed on the display unit 12 of the work machine image G2. Further, the operator may determine the posture of the work implement in the work implement image G2 by dragging the work implement image G2.
  • the operation performed by the operator in step S101 is called a posture determination operation.
  • step S101 if there is an undetermined posture condition among the posture conditions of the working machine in the working machine image G2, the operator determines the posture condition corresponding to the undecided posture condition (for example, the boom undulation angle). ) May be omitted.
  • the posture condition that has not been determined is simply referred to as “undetermined posture condition”. In this operation example, a case where there is no undetermined posture condition will be described.
  • step S101 when the input unit 11 receives an input of a posture determination operation, the BIM control unit 161 reflects the posture determination operation on the work machine image G2 of the display unit 12. Then, as shown in FIG. 8B, a work machine image G21 whose posture has been changed from the work machine image G2 shown in FIG. 8A is displayed on the display unit 12.
  • step S101 the input unit 11 receives an input of at least one posture condition among, for example, a boom angle, a boom length, a boom turning angle, a jib angle, a jib length, and an outrigger overhang width.
  • the work implement image G21 illustrated in FIG. 8B is an image in which the posture condition received by the input unit 11 in step S101 is reflected on the work implement image G2 illustrated in FIG. 8A.
  • the posture of the work implement image G2 displayed on the display unit 12 is the basic posture (see FIG. 8A).
  • the work machine image G2 is an image of a crane
  • the boom is in a fully lowered state and a fully contracted state in the basic posture of the crane.
  • the turning angle of the boom is zero, and the overhang width of the outrigger is zero.
  • step S101 the operator operates the BIM application A to determine the posture of the work implement image G2 displayed on the display unit 12.
  • the operator determines, for example, a boom turning angle, a boom up / down angle, a boom expansion / contraction length, an outrigger overhang width, and the like.
  • the icon 41b is an icon operated to determine the attitude of the work implement image displayed on the display unit 12.
  • the BIM application A displays a crane adjustment screen 45 as shown in FIG.
  • the crane adjustment screen 45 has a posture adjustment unit 46.
  • the posture adjusting unit 46 receives an input regarding the posture of the crane from the operator.
  • the attitude adjusting unit 46 includes a first adjusting unit 46a, a second adjusting unit 46b, a third adjusting unit 46c, and a fourth adjusting unit 46d.
  • the first adjusting unit 46a is a slide bar, and is an adjusting unit for the operator to adjust the angle of the crane (that is, the work machine image G2).
  • the angle of the crane is defined as the inclination angle of the center axis of the boom with respect to a reference direction (for example, above the display unit 12).
  • the second adjustment unit 46b is a slide bar, and is an adjustment unit for the operator to adjust the angle of the swivel table (that is, the swivel angle of the crane).
  • the third adjusting unit 46c is a slide bar, and is an adjusting unit for an operator to adjust the boom length.
  • the fourth adjustment unit 46d is a slide bar, and is an adjustment unit for an operator to adjust the boom undulation angle.
  • the posture adjustment unit 46 has a first input unit 46e, a second input unit 46f, a third input unit 46g, and a fourth input unit 46h.
  • the first input unit 46e displays the angle of the crane selected by the first adjusting unit 46a. Further, the first input unit 46e receives a direct input relating to the angle of the crane from the operator.
  • the second input unit 46f displays the crane turning angle selected by the second adjusting unit 46b.
  • the second input unit 46f receives a direct input from the operator regarding the crane turning angle.
  • the third input unit 46g displays the crane turning angle selected by the third adjusting unit 46c. Further, the third input unit 46g receives a direct input regarding the boom length from the operator.
  • the fourth input unit 46h displays the boom undulation angle selected by the fourth adjustment unit 46d. Further, the fourth input unit 46h receives a direct input from the operator regarding the boom undulation angle.
  • step S101 the operator operates the first adjustment unit 46a, the second adjustment unit 46b, the third adjustment unit 46c, and the fourth adjustment unit 46d to input the crane's posture condition.
  • the operator may directly input the crane's posture condition to the first input unit 46e, the second input unit 46f, the third input unit 46g, and the fourth input unit 46h.
  • step S102 the operator performs an operation for obtaining the rated total load of the work implement image G21 whose posture has been determined in step S101.
  • the operator inputs a display request (performance information request) of the rated total load from an input screen pop-up displayed on the display unit 12.
  • step S102 Subsequent processing is automatically performed between the client terminal T and the servers S1 to S4. That is, in this operation example, when the operator inputs a request for displaying the rated total load via the BIM application A, the rated total load is automatically displayed on the display unit 12.
  • the operator manually inputs a request for displaying the rated total load via the input unit 11.
  • the input operation of the display request of the rated total load by the operator may be omitted.
  • the BIM control unit 161 reflects the posture determination operation on the work equipment image G2 of the display unit 12 and displays the rated total load.
  • the request (performance information request) is automatically sent to the information acquisition unit 173.
  • the BIM control unit 161 sends, to the information acquisition unit 173, a parameter corresponding to the operation of the performance information specified by the performance information request, together with the performance information request.
  • step S102 when the input unit 11 receives the performance information request, the information obtaining unit 173 sets the parameters (model information, posture condition, work state information, component information, and other information) corresponding to the obtained performance information request. From the BIM control unit 161.
  • step S102 the information acquisition unit 173 acquires from the BIM control unit 161 at least the parameters required for calculating the performance information specified in the performance information request.
  • step S102 even when the information acquisition unit 173 receives a performance information request from the BIM control unit 161, the information acquisition unit 173 may acquire a parameter corresponding to the acquired performance information request from the BIM control unit 161. .
  • the parameters automatically acquired by the information acquiring unit 173 in step S102 are the parameters shown in column B of Table 3 below (the parameters shown in 1-B of Table 2).
  • the posture conditions are a boom angle, a boom length, a boom turning angle, a jib angle, and a jib length.
  • Work state information of the acquired parameters includes information on the outrigger state (on-tire work state or outrigger state).
  • the work state information of the acquired parameters includes information on boom / jib selection (see Table 1).
  • the component information of the acquired parameters includes information on the boom (eg, boom type), information on the jib (eg, jib type), information on the hook (eg, hook type), and information on the wire. (Eg, the number of wires), and at least one of information on counterweight (eg, weight of counterweight).
  • the information automatically acquired by the information acquiring unit 173 in step S102 is information relating to the items described in 1-B of Table 2. Then, the information acquiring unit 173 sends the acquired information to the request issuing unit 174.
  • step S103 the request issuing unit 174 determines the server identification information (for example, the server URI) that identifies the server corresponding to the work implement image specified by the acquired model information (ie, the work implement image G21 in FIG. 8B). ) Is obtained from the third storage unit 143.
  • server identification information for example, the server URI
  • the server URI the server URI
  • the request issuing unit 174 generates a request including the acquired server specifying information, performance information request, and parameter, and sends the request to the communication control unit 171.
  • the request is transmitted to a server (for example, server S1) specified by the server specifying information via the communication unit 13.
  • the request generated in step S103 is in the form of a request message of the HTTPS protocol.
  • a request includes a URI, a performance information request, and a parameter in order from the top (see Expression 1 above).
  • the URI is the server identification information acquired from the third storage unit 143 in step S103.
  • the performance information request is a request for displaying the rated total load, which is input by the operator in step S102.
  • the parameter in the request is a parameter automatically acquired by the information acquisition unit 173 in step S102.
  • step S104 the communication unit 21 receives the request. Then, the communication unit 21 sends the request to the request acquisition unit 221.
  • step S105 the request acquisition unit 221 extracts a performance information request and parameters from the acquired request. Then, the request acquisition unit 221 sends the extracted information to the calculation unit 222.
  • step S ⁇ b> 106 the arithmetic unit 222 acquires from the storage unit 23 an arithmetic expression corresponding to the performance information request and the model information acquired from the request acquiring unit 221.
  • the arithmetic expression acquired by the arithmetic unit 222 in step S106 is an interpolation arithmetic expression for performing the above-described interpolation operation.
  • step S107 the arithmetic unit 222 acquires from the storage unit 23 the specification data corresponding to the work machine specified by the acquired model information.
  • step S ⁇ b> 108 the calculation unit 222 acquires from the storage unit 23 a performance data table corresponding to the posture condition and / or work state information acquired from the request acquisition unit 221.
  • the computing unit 222 may acquire a plurality of performance data tables corresponding to the acquired posture conditions and / or work state information from the storage unit 23.
  • step S108 the calculation unit 222 may obtain a performance data table from the storage unit 23 based on the specification data obtained in step S107 together with the posture condition and / or work state information.
  • step S109 the calculation unit 222 calculates the rated total load based on the parameters obtained from the client terminal T, the calculation formula (interpolation calculation formula), the performance data table, and the specification data obtained from the storage unit 23. I do. Then, the calculation unit 222 sends the calculation result to the response issuing unit 223.
  • step S109 if the calculation unit 222 can directly obtain the rated total load corresponding to the parameter included in the request from the performance data table, the calculation unit (interpolation calculation expression) need not be used in step S109. However, when the rated total load corresponding to the parameter included in the request cannot be obtained directly from the performance data table, the arithmetic unit 222 performs the above-described interpolation calculation using an arithmetic expression (interpolation arithmetic expression). To obtain the rated total load.
  • step S110 the response issuing unit 223 generates a response based on the operation result obtained from the operation unit 222. Then, the response issuing unit 223 transmits the generated response to the client terminal T via the communication unit 21.
  • step S111 the communication unit 13 receives a response from the server S1. Then, the communication unit 13 sends the received response to the second control unit 17. The response is sent to the display support control unit 175 of the support control unit 172 via the communication control unit 171.
  • step S112 the display support control unit 175 analyzes the response obtained from the communication control unit 171 and displays the calculation result of the server S1 included in the response (in the present operation example, the rated total load) on the display unit 12. To reflect.
  • the display support control unit 175 causes the display unit 12 to display a notification image G3 for notifying the rated total load illustrated in FIG. 8C.
  • the notification image G3 may be generated by the support module M (for example, the display support control unit 175) or may be generated by the BIM application A (for example, the BIM control unit 161).
  • the display support control unit 175 transmits the calculation result of the server S1 (in the present operation example, the rated total load) to the BIM application A (specifically, Is sent to the BIM control unit 161).
  • the order of the operations of the BIM support system BS in the present operation example as described above may be appropriately changed within a technically consistent range.
  • the operator may judge whether or not the crane work is possible by comparing the rated total load acquired from the server with the suspended load.
  • the operator can efficiently determine whether or not the crane operation is possible. If it is determined that the crane operation cannot be performed, the operator changes the crane attitude, changes the crane operation state, changes the crane installation location, and / or changes the crane model, and reconsiders. By doing so, the optimum work state can be determined efficiently.
  • the basic operation of the BIM support system is the same as that of the first operation example.
  • the parameters automatically acquired by the information acquisition unit 173 in step S102 of FIG. 7A are the parameters shown in column B of Table 4 below (the parameters shown in 2-B of Table 2). ).
  • the basic operation of the BIM support system is the same as the operation example 1 described above. The same is true.
  • the parameters automatically acquired by the information acquisition unit 173 are the parameters shown in the B column of Table 5 below (3 in Table 2). -B).
  • the basic operation of the BIM support system is the same as that of the first operation example.
  • the parameters automatically acquired by the information acquisition unit 173 are the parameters shown in the B column of Table 6 below (see 8-B of Table 2). Parameter).
  • the display support control unit 175 may determine whether or not the crane operation can be performed based on the acquired rated total load and the suspended load. As a result of the determination, when it is determined that the crane operation cannot be performed, information notifying that the crane operation cannot be performed may be displayed on the display unit 12.
  • the operator sends to the server S1 the result of determination as to whether or not the work implement displayed on the display unit 12 can perform the lifting work (hereinafter, referred to as “workability determination”). You can also request.
  • the parameter included in the request includes the work information.
  • the work information is information indicating a work scheduled to be executed by the work machine displayed on the display unit 12.
  • step S102 the operator inputs a display request (performance information request) for determining whether or not work is possible from the input unit 11. Then, in step S102, the information acquisition unit 173 acquires a parameter corresponding to the acquired performance information request from the BIM control unit 161. Note that the parameters acquired in step S102 include the suspended load information.
  • the server S1 that has received the request determines whether or not the lifting work is possible based on the rated total load calculated in step S109 and the lifting load information included in the request. Then, a response including the determination result (performance information) is transmitted to the client terminal T.
  • the display support control unit 175 that has obtained the response displays the determination result included in the response on the display unit 12.
  • the display unit 12 displays information indicating that the lifting operation is possible or information indicating that the lifting operation is not possible, according to the determination result.
  • FIG. 9 illustrates a case where an area image (hereinafter, referred to as an “area image”) indicating the moving range of the suspended load lifted by the work implement in the image displayed on the display unit 12 is displayed on the display unit 12 (table).
  • area image an area image
  • 2A-6 is a flowchart showing the operation of the BIM support system BS.
  • the operator determines the work state of the work implement displayed on the display unit 12, and then moves the one of the servers S1 to S4 to a movable range corresponding to the work state of the work implement. (Region image indicating the moving range) is requested.
  • the work state of the work machine means a state in which the posture of the work machine is determined and a state in which the suspended load to be transported by the work machine is determined.
  • the operator compares the acquired area image indicating the moving range with the transport target position of the suspended load, so that the crane can transport the suspended load to the transport target position in the operation state of the work machine determined by the operator. Can be determined.
  • the operation of the BIM support system BS in this operation example will be described.
  • step S200 only the building image G1A shown in FIG. 10A is displayed on the display unit 12.
  • a building image G1A may be an image created by an operator using the BIM application A, or may be an image in which information stored in the storage unit 14 is read and displayed.
  • step S200 the operator inputs a work machine image display instruction from the input unit 11 to display the work machine image on the display unit 12.
  • step S200 when input unit 11 receives an input of a work machine image display instruction, BIM control unit 161 controls display control unit 162 to display work machine image G2A shown in FIG. 10A on display unit 12. .
  • the operation of the operator and the processing of the BIM support system BS in step S200 are the same as those in step S100 in FIG. 7A described above.
  • step S201 the operator inputs the above-described posture determination operation.
  • step S201 when the input unit 11 receives the input of the posture determination operation, the BIM control unit 161 reflects the posture determination operation on the work machine image G2A of the display unit 12. Then, as shown in FIG. 10B, a work machine image G21A whose posture has been changed from the work machine image G2A shown in FIG. 10A is displayed on the display unit 12.
  • the operation of the operator and the processing of the BIM support system BS in step S201 are the same as those in step S101 in FIG. 7A described above.
  • step S ⁇ b> 202 the operator inputs a request for displaying an area image (performance information request) to the display unit 12 from the input unit 11. For example, the operator inputs a display request for an area image from an input screen displayed as a pop-up on the display unit 12.
  • step S202 when the input unit 11 receives the performance information request, the information obtaining unit 173 obtains parameters corresponding to the obtained performance information request from the BIM control unit 161. In step S202, the information acquisition unit 173 only needs to acquire, from the BIM control unit 161, at least the parameters required for calculating the performance information specified in the performance information request.
  • step S202 the parameters automatically acquired by the information acquiring unit 173 are the parameters shown in column B of Table 7 below (see 6-B of Table 2).
  • the information acquisition unit 173 sends the acquired information to the request issuing unit 174.
  • the operation of the operator for displaying the area image on the display unit 12 ends in step S202. Subsequent processing is automatically performed between the client terminal T and the servers S1 to S4. That is, in this operation example, when the operator inputs a display request for the area image via the BIM application A, the area image is automatically displayed on the display unit 12.
  • step S203 the request issuing unit 174 determines the server identification information (for example, the server URI) for identifying the server corresponding to the work implement image specified by the acquired model information (ie, the work implement image G21 in FIG. 8B). ) Is obtained from the third storage unit 143.
  • server identification information for example, the server URI
  • the server URI for example, the server URI
  • the request issuing unit 174 generates a request including the acquired server specifying information, performance information request, and parameter, and sends the request to the communication control unit 171.
  • the request is transmitted to a server (for example, server S1) specified by the server specifying information via the communication unit 13.
  • step S204 the communication unit 21 receives the request. Then, the communication unit 21 sends the request to the request acquisition unit 221.
  • step S205 the request acquisition unit 221 extracts a performance information request and parameters from the acquired request. Then, the request acquisition unit 221 sends the extracted information to the calculation unit 222.
  • step S ⁇ b> 206 the arithmetic unit 222 acquires from the storage unit 23 an arithmetic expression corresponding to the performance information request and the model information acquired from the request acquiring unit 221.
  • step S207 the calculation unit 222 acquires from the storage unit 23 the specification data corresponding to the work machine specified by the acquired model information.
  • step S ⁇ b> 208 the calculation unit 222 acquires from the storage unit 23 a performance data table corresponding to the posture condition and / or work state information acquired from the request acquisition unit 221.
  • the computing unit 222 may acquire a plurality of performance data tables corresponding to the acquired posture conditions and / or work state information from the storage unit 23.
  • the calculation unit 222 may acquire the performance data table from the storage unit 23 based on the specification data acquired in step S207 together with the posture condition and / or work state information.
  • step S209 the calculation unit 222 determines information (hereinafter, referred to as “region image”) based on the posture conditions and parameters obtained from the client terminal T and the calculation formula, performance data table, and specification data obtained from the storage unit 23. This is referred to as “region image information”). Then, the calculation unit 222 sends the calculation result to the response issuing unit 223.
  • region image information
  • the calculation unit 222 sends the calculation result to the response issuing unit 223.
  • the area image information calculated in step S209 is used for generation of an area image by the area image processing unit 176 of the support module M.
  • step S210 the response issuing unit 223 generates a response based on the operation result obtained from the operation unit 222. Then, the response issuing unit 223 transmits the generated response to the client terminal T via the communication unit 21.
  • step S211 the communication unit 13 receives a response from the server S1. Then, the communication unit 13 sends the received response to the second control unit 17. The response is sent to the area image processing unit 176 via the communication control unit 171 and the display support control unit 175.
  • step S212 the area image processing unit 176 generates an area image based on the area image information acquired from the display support control unit 175. Then, the region image processing unit 176 sends the generated region image to the display support control unit 175.
  • the region image generated in this operation example is a region image relating to the movable region of the hook.
  • the generated area image may be the above-described area image relating to the movable area of the hanging tool and / or the area image relating to the movable area of the suspended load.
  • step S213 the display support control unit 175 reflects the area image acquired from the area image processing unit 176 on the display of the display unit 12.
  • the display support control unit 175 causes the display unit 12 to display the area image G4 illustrated in FIG. 10C.
  • the region image G4 may be generated by the support module M (region image processing unit 176) as described above, or may be generated by the BIM application A (for example, the BIM control unit 161).
  • the display support control unit 175 converts the calculation result (in the present operation example, the area image information) acquired from the server S1 into the BIM application A ( Specifically, it is sent to the BIM control unit 161).
  • the region image may be generated by the server S1 (specifically, the calculation unit 222).
  • a response including the area image (performance information) generated by the arithmetic unit 222 is transmitted from the server 1 to the client terminal T.
  • the display support control unit 175 that has acquired the response reflects the area image included in the response on the display of the display unit 12.
  • the order of the operations of the BIM support system BS in the present operation example as described above may be appropriately changed within a technically consistent range.
  • FIG. 11 causes the display unit 12 to display an image of a bent boom (hereinafter, referred to as a “deformed boom image”) and an image of a bent jib (hereinafter, referred to as a “deformed image of a jib”).
  • 10 is a flowchart showing the operation of the BIM support system BS in the case (see A-5 in Table 2).
  • the crane's boom and / or jib flexes based on its own weight, the weight of the hook, the weight of the wire rope, and the weight of the suspended load. Therefore, taking into account this deflection in the construction plan in advance prevents interference between the crane and the building, and significantly contributes to the improvement of actual work safety and work efficiency.
  • Operation example 3 is performed when performing a construction plan in consideration of bending of the boom and / or jib.
  • the operator determines the work state of the work implement displayed on the display unit 12 in the operation example 3, and then, for one of the servers selected from the servers S1 to S4, deforms the boom corresponding to the work state of the work implement. Request an image and / or deformed image of the jib.
  • the work state of the work machine means a state in which the posture of the work machine is determined and a state in which the suspended load to be transported by the work machine is determined.
  • the operator looks at the positional relationship between the acquired deformation image of the boom and / or the deformation image of the jib and the building image displayed on the display unit 12, and operates the crane in the work state of the work machine determined by the operator. It can be determined whether or not the transfer operation can be performed.
  • the operation of the BIM support system BS in this operation example will be described.
  • step S300 only the building image G1B shown in FIG. 12A is displayed on the display unit 12.
  • a building image G1B may be an image created by an operator using the BIM application A, or may be an image in which information stored in the storage unit 14 is read and displayed.
  • step S300 the operator inputs a work machine image display instruction from the input unit 11 to display the work machine image on the display unit 12.
  • step S300 when the input unit 11 receives an input of a work machine image display instruction, the BIM control unit 161 controls the display control unit 162 to display a work machine image (not shown) in the basic posture on the display unit 12. Display.
  • step S301 the operator inputs the above-described posture determination operation.
  • step S301 when the input unit 11 receives an input of a posture determination operation, the BIM control unit 161 reflects the posture determination operation on a work machine image (not shown) on the display unit 12. Then, the work unit image G2B shown in FIG. 12A is displayed on the display unit 12.
  • the operation of the operator and the processing of the BIM support system BS in step S301 are the same as those in step S101 in FIG. 7A described above.
  • Work machine image G2B shown in FIG. 12A is an image in a state where the work posture of the work machine has been determined.
  • the work machine image G2B shown in FIG. 12A is an image in which the deformation of the boom and the jib due to the influence of the load (for example, the suspended load) acting on the boom and the jib is not reflected.
  • the suspended load may be the sum of the suspended load and the weight of the hook.
  • the boom and jib of the work machine image G2B do not interfere with the building image G1B. However, in the operation using the actual machine, the boom and the jib may bend under the influence of a suspended load or the like and interfere with a building.
  • the BIM application A can make a construction plan in consideration of the bending of the boom and the jib.
  • the jib is not used, only the deformed image of the boom may be displayed on the display unit 12.
  • step S ⁇ b> 302 the operator inputs a request for displaying a boom and / or jib deformed image (hereinafter, referred to as a “reformed image display request”) from the input unit 11.
  • a request for displaying a deformed image (a request for performance information) from the input screen displayed as a pop-up on the display unit 12.
  • the operator may input a request for displaying a deformed image by turning on a check box for bending display displayed on the display unit 12.
  • step S302 when the input unit 11 receives the performance information request, the information obtaining unit 173 obtains a parameter corresponding to the obtained performance information request from the BIM control unit 161. In step S302, the information acquisition unit 173 only needs to acquire from the BIM control unit 161 at least the parameters required for calculating the performance information specified in the performance information request.
  • the parameters automatically acquired by the information acquisition unit 173 are the parameters shown in column B of Table 8 below (see 5-B of Table 2).
  • the information acquisition unit 173 sends the acquired information to the request issuing unit 174.
  • the operation of the operator for displaying the boom deformed image and the jib deformed image on the display unit 12 ends in step S302. Subsequent processing is automatically performed between the client terminal T and the servers S1 to S4.
  • step S303 the request issuing unit 174 determines the server identification information (for example, the server identification information) for identifying the server corresponding to the work implement image specified by the acquired model information (ie, the work implement image G2B illustrated in FIG. 12A). (URI) from the third storage unit 143.
  • server identification information for example, the server identification information
  • the request issuing unit 174 generates a request including the acquired server specifying information, performance information request, and parameter, and sends the request to the communication control unit 171.
  • the request is transmitted to a server (for example, server S1) specified by the server specifying information via the communication unit 13.
  • server S1 a server specified by the server specifying information
  • the parameters included in the request may include at least information necessary for calculating the performance information specified in the performance information request.
  • step S304 the communication unit 21 receives the request. Then, the communication unit 21 sends the request to the request acquisition unit 221.
  • step S305 the request acquiring unit 221 extracts a performance information request and parameters from the acquired request. Then, the request acquisition unit 221 sends the extracted information to the calculation unit 222.
  • step S306 the calculation unit 222 obtains, from the storage unit 23, a calculation expression corresponding to the performance information request and the model information obtained from the request acquisition unit 221.
  • step S ⁇ b> 307 the calculation unit 222 acquires from the storage unit 23 the specification data corresponding to the work implement image specified by the acquired model information.
  • step S308 the arithmetic unit 222 determines the information on the boom deformed image and the jib deformed image based on the posture conditions and parameters acquired from the client terminal T, and the arithmetic expression and the specification data acquired from the storage unit 23. Hereinafter, this is referred to as “deformed image information”). Then, the calculation unit 222 sends the calculation result to the response issuing unit 223.
  • the deformed image information is, for example, information on a boom deformation curve and / or information on a jib deformation curve.
  • the deformation curve is, for example, a curve in which the deformation of the boom and / or the jib is represented by a sine wave or an n-th order function.
  • the deformed image information may be a straight line (deformed straight line) that is inclined corresponding to the bending angle of each of the base end boom, the intermediate boom, and the distal end boom.
  • FIG. 13A is a diagram showing an image G79 of a boom that is not bent.
  • 13B and 13C are diagrams showing images G79A and G79B of the bent boom.
  • the deformation of the base boom image G79a, the middle boom images G79b and G79c, and the distal boom image G79d is represented by a curve represented by a sine wave or an n-th order function ( (Deformation curve).
  • the deformation of the image G79a of the proximal boom, the images G79b and G79c of the intermediate boom, and the image G79d of the distal boom are straight lines ( (Deformed line).
  • the deformed image information calculated in step S308 is used by the deformed image processing unit 177 of the support module M to generate a boom deformed image and / or a jib deformed image.
  • step S309 the response issuing unit 223 generates a response based on the calculation result obtained from the calculation unit 222. Then, the response issuing unit 223 sends the generated response to the communication unit 21. The communication unit 21 transmits the obtained response to the client terminal T.
  • step S310 the communication unit 13 receives a response from the server S1. Then, the communication unit 13 sends the received response to the second control unit 17. The response is sent to the deformed image processing unit 177 via the communication control unit 171 and the display support control unit 175.
  • step S311 the deformed image processing unit 177 generates a boom deformed image and a jib deformed image based on the deformed image information acquired from the display support control unit 175. Then, the deformed image processing unit 177 sends the generated boom deformed image and jib deformed image to the display support control unit 175.
  • step S312 the display support control unit 175 reflects the boom deformed image and the jib deformed image acquired from the deformed image processing unit 177 on the display of the display unit 12.
  • the display support control unit 175 causes the display unit 12 to display a deformed image G5 indicated by a solid line in FIG. 12B.
  • the deformed image G5 may be generated by the support module M (the deformed image processing unit 177) as described above, or may be generated by the BIM application A (for example, the BIM control unit 161).
  • the display support control unit 175 transmits the calculation result of the server S1 (in this operation example, the deformed image information) to the BIM application A (specifically, Is sent to the BIM control unit 161).
  • the deformed image may be generated by the server S1 (specifically, the calculation unit 222).
  • a response including the deformed image (performance information) generated by the arithmetic unit 222 is transmitted from the server 1 to the client terminal T.
  • the display support control unit 175 that has obtained the response reflects the deformed image included in the response on the display of the display unit 12.
  • the working unit image G2B (hereinafter, referred to as “pre-deformation image”) having an image of the boom and the jib in which the bending is not reflected is indicated by a broken line on the display unit 12.
  • the working machine image (that is, the deformed image G5) having the boom deformed image and the jib deformed image reflecting the deflection is displayed by a solid line.
  • the pre-deformation image need not be displayed on the display unit 12.
  • the display mode of the pre-deformation image and the deformed image G5 is not limited to the example illustrated in FIG. 12B as long as the display mode can be distinguished.
  • one of the BIM application A controls the display unit 12 to display the deformed image on the display unit 12.
  • the display unit 12 controls the display unit 12 to display the deformed image on the display unit 12.
  • the one control unit realizes the function of the notification unit.
  • a part of the one control unit corresponds to an example of a notification unit.
  • FIG. 14 is a flowchart showing the operation of the BIM support system BS when displaying the information indicating the maximum boom inclination angle and the maximum work radius on the display unit 12 (see A-4 in Table 2).
  • the crane may be inclined down to increase a work radius in order to transfer a suspended load to a transfer destination position.
  • the smaller the boom angle the smaller the total rated load.
  • the weight of the suspended load is smaller than the rated total load in the first state where the undulation angle is large, the weight of the suspended load is less than the rated total load in the second state where the undulation angle of the boom is smaller than the first state. May be larger than In this case, the selected crane cannot transfer the suspended load to the transfer destination position. In an actual operation, if such a situation occurs, the crane needs to be replaced, and the progress of the operation may be significantly delayed.
  • Operation example 4 is carried out when performing a construction plan in consideration of the maximum crane angle and the maximum working radius of the crane.
  • the operator After determining the work state of the work implement displayed on the display unit 12 in the operation example 4, the operator sets the maximum of the boom corresponding to the work state of the work implement to one of the servers selected from the servers S1 to S4. Require lodging angle and maximum working radius.
  • the work state of the work machine means a state in which the posture of the work machine is determined and a state in which the suspended load to be transported by the work machine is determined.
  • the operator looks at the positional relationship between the acquired maximum tilt angle and maximum working radius of the boom and the transfer target position, and determines whether or not the crane can execute the transfer work in the work state of the work machine determined by the operator. Can be determined.
  • the operation of the BIM support system BS in this operation example will be described.
  • step S402 after step S400 and step S401, the display unit 12 displays the building image G1C and the work implement image G21C shown in FIG. 15A.
  • Steps S401 and S401 are the same as steps S101 and S102 in FIG. 7A described above.
  • the building image G1C and the work implement image G21C shown in FIG. 15A may be images created by an operator using the BIM application A, or images stored in the storage unit 14.
  • step S ⁇ b> 402 the operator inputs a request for displaying the maximum lodging angle and the maximum working radius of the boom (hereinafter, referred to as a “display request for the maximum lodging angle and the maximum working radius”) via the input unit 11.
  • a display request for the maximum lodging angle and the maximum working radius For example, the operator inputs a display request (performance information request) of the maximum lodging angle and the maximum working radius from the input screen pop-up displayed on the display unit 12.
  • step S402 when the input unit 11 receives the performance information request, the information obtaining unit 173 obtains a parameter corresponding to the obtained performance information request from the BIM control unit 161. In step S402, the information acquisition unit 173 only needs to acquire from the BIM control unit 161 at least the parameters required for calculating the performance information specified in the performance information request.
  • the parameters automatically acquired by the information acquisition unit 173 are the parameters shown in column B of Table 9 below (see 4-B of Table 2).
  • the information acquisition unit 173 sends the acquired information to the request issuing unit 174.
  • the operation of the operator for displaying the maximum lodging angle and the maximum working radius on the display unit 12 ends in step S402. Subsequent processing is automatically performed between the client terminal T and the servers S1 to S4. That is, in this operation example, when the operator inputs a display request for the maximum lodging angle and the maximum working radius via the BIM application A, the area image is automatically displayed on the display unit 12.
  • step S403 the request issuing unit 174 determines the server identification information (for example, the server URI) for identifying the server corresponding to the work equipment image specified by the acquired model information (ie, the work equipment image G21C in FIG. 15A). ) Is obtained from the third storage unit 143.
  • server identification information for example, the server URI
  • the server URI for example, the server URI
  • the request issuing unit 174 generates a request including the acquired server specifying information, performance information request, and parameter, and sends the request to the communication control unit 171.
  • the request is transmitted to a server (for example, server S1) specified by the server specifying information via the communication unit 13.
  • step S404 the communication unit 21 receives the request. Then, the communication unit 21 sends the request to the request acquisition unit 221.
  • step S405 the request acquisition unit 221 extracts a performance information request and parameters from the acquired request. Then, the request acquisition unit 221 sends the extracted information to the calculation unit 222.
  • step S ⁇ b> 406 the arithmetic unit 222 acquires from the storage unit 23 an arithmetic expression corresponding to the performance information request and the model information acquired from the request acquiring unit 221.
  • step S ⁇ b> 407 the calculation unit 222 acquires from the storage unit 23 the specification data corresponding to the work implement image specified by the acquired model information.
  • step S ⁇ b> 408 the calculation unit 222 acquires from the storage unit 23 a performance data table corresponding to the posture condition and / or work state information acquired from the request acquisition unit 221.
  • the computing unit 222 may acquire a plurality of performance data tables corresponding to the acquired posture conditions and / or work state information from the storage unit 23.
  • step S408 the calculation unit 222 may acquire the performance data table from the storage unit 23 based on the specification data acquired in step S407 together with the posture condition and / or work state information.
  • step S ⁇ b> 409 the calculation unit 222 calculates the posture condition and parameters (posture condition, work state information, suspended load information, and component member information) acquired from the client terminal T, the computation expression acquired from the storage unit 23, and a performance data table. , And the specification data, the information about the maximum boom inclination angle and the maximum working radius is calculated and obtained. Then, the arithmetic unit 222 sends the operation result to the response issuing unit 223.
  • step S410 the response issuing unit 223 generates a response based on the operation result obtained from the operation unit 222. Then, the response issuing unit 223 sends the generated response to the communication unit 21. Then, the communication unit 21 transmits the obtained response to the client terminal T.
  • step S411 the communication unit 13 receives a response from the server S1. Then, the communication unit 13 sends the received response to the second control unit 17. The response is sent to the display support control unit 175 via the communication control unit 171.
  • step S412 the display support control unit 175 reflects the calculation result of the server S1 included in the response (in this operation example, information on the maximum boom angle and the maximum work radius) on the display of the display unit 12.
  • the display support control unit 175 causes the display unit 12 to display a work machine image G22C having a boom in a state of falling down to the maximum falling angle (hereinafter, referred to as a “falling image”).
  • a work machine image G22C having a boom in a state of falling down to the maximum falling angle
  • a falling image An example of a method for displaying the lodging image on the display unit 12 will be described.
  • the display support control unit 175 reflects the information regarding the maximum boom angle of the boom included in the response to the boom angle of the boom in the attribute information of the work machine image G21C displayed on the display unit 12.
  • This process may be performed by the BIM control unit 161.
  • the display support control unit 175 sends information on the maximum boom angle of boom included in the response to the BIM control unit 161.
  • the BIM control unit 161 reflects the acquired information on the maximum boom angle of the boom in the boom angle of the boom in the attribute information of the work implement image displayed on the display unit 12.
  • the calculation result of the server S1 included in the response is reflected on the display of the display unit 12 based on the processing performed by the display support control unit 175.
  • the display support control unit 175 may cause the display unit 12 to display the numerical values of the maximum lodging angle and the maximum work radius in step S412 as shown in FIG. 15B. Note that this processing may also be performed by the BIM control unit 161.
  • the display support control unit 175 may cause the display unit 12 to display a notification image for notifying the maximum lodging angle and the maximum work radius in step S412.
  • the operator can intuitively recognize the maximum inclination angle and the working radius of the working machine in the working machine image displayed on the display unit 12.
  • the operator can intuitively determine whether the selected work machine is a work machine suitable for transporting a suspended load by recognizing the maximum inclination angle and the work radius of the work machine. For example, if the transported destination position of the suspended load is not included in the acquired work radius, the operator can determine that the transported load cannot be transported to the transport destination using only the selected work machine. Based on such a determination result, the operator can change the working machine to be used to a working machine having a larger working radius.
  • the operator can use the selected work machine to transport the load to an arbitrary position within the working radius of the work machine, and then use another work machine to transfer the suspended load from the relay position to the transfer object.
  • a procedure for transporting the suspended load to the ground can also be selected.
  • FIGS. 16A to 16E show an example of the display unit 12 on which a work site image (hereinafter, referred to as a “work site image G6”) including a building image, a work site configuration image, and a work machine image is displayed.
  • FIG. 16A shows the display unit 12 on which a perspective view of the work site image G6 is displayed.
  • Figure 16B is a A 1 arrow view of FIG. 16A.
  • Figure 16C is a A 2 arrow view of FIG. 16A.
  • Figure 16D is a A 3 arrow view of FIG. 16A.
  • FIG. 16E shows the display unit 12 on which the region image G4A is displayed on the work site image G6 shown in FIG. 16B.
  • the operator can verify the operation of lifting and moving the outdoor unit G74 of the air conditioner disposed between the building G72 and the fence G73 in the work site images G6 shown in FIGS. 16A to 16D. it can.
  • Such a work site image G6 may be an image created by an operator using the BIM application A, or may be an image stored in the storage unit 14.
  • the method of creating the work site image G6 is as described above.
  • the overhang width of the left outrigger of the work machine image G21D shown in FIGS. 16A to 16D is the minimum. By minimizing the overhang width of the left outrigger, the left outrigger is prevented from protruding into the oncoming lane G77.
  • the overhang width of the right outrigger of the work machine image G21D is the maximum.
  • the left outrigger and the right outrigger of the work machine image G2 have different overhang widths.
  • the operator determines the boom posture (for example, the boom length, the turning angle, and the undulation angle) of the work machine image G21D so as not to interfere with the fence G73, the utility pole G75, and the tree G76 in the work site image G6.
  • the operation of determining the posture is performed by inputting posture conditions defining the posture of the work machine image G21D from the input unit 11. Note that the operator may determine the attitude of the display work machine by dragging the work machine image G21D.
  • the operator performs an operation for a region display request (performance information request).
  • the operator inputs an area display request from, for example, an input screen that is displayed in a pop-up on the display unit 12.
  • the overhang width of the left outrigger and the overhang width of the right outrigger under the posture conditions included in the request are different.
  • the BIM support system BS executes the processing of steps S202 to S213 in FIG. 9 and displays the area image G4A indicated by a thick line in FIG. Although not shown, the region image G4A is also displayed in the work site image G6 shown in FIGS. 16A and 16C to 16E.
  • the operator can perform a more accurate simulation.
  • FIG. 17A to 17E show an example of the display unit 12 on which a work site image G6A including a building image and a work machine image is displayed.
  • FIG. 17A shows the display unit 12 on which a perspective view of the work site image G6A is displayed.
  • Figure 17B is a A 10 arrow view of FIG. 17A.
  • Figure 17C is a A 11 arrow view of FIG. 17A.
  • Figure 17D is a A 12 arrow view of FIG. 17A.
  • FIG. 17E is a sectional view taken along line X 1 -X 1 in FIG. 17B.
  • FIGS. 18A to 18E show an example of the display unit 12 in which the boom deformation image is displayed on the work site image G6A shown in FIGS. 17A to 17E.
  • the operator can verify the interference between the steel structure G78 and the boom in the work site images G6A shown in FIGS. 17A to 17E.
  • the operator causes the display unit 12 to display the work site image G6A shown in FIGS. 17A to 17E.
  • a work site image G6A may be an image created by an operator using the BIM application A, or may be an image stored in the storage unit 14.
  • the method of generating the work site image G6A is as described above.
  • the operator determines the posture of the boom (for example, the boom length, the turning angle, and the undulation angle) of the work machine image G21E so as not to interfere with the steel structure G78.
  • the operation for determining the posture is performed by inputting the posture condition of the work machine image G21E from the input unit 11. Note that the operator may determine the attitude of the display work machine by dragging the work machine image G21E.
  • the operator After determining the attitude of the work machine image G21E in the work site image G6A, the operator performs a display request (performance information request) of a deformed image.
  • the operator inputs, for example, a request for displaying a deformed image from an input screen displayed as a pop-up on the display unit 12.
  • 18A to 18E are images generated by the deformed image processing unit 177 based on the deformed image information included in the response acquired from the server S1.
  • the deformed image may be generated by the server S1 (specifically, the calculation unit 222).
  • a response including the deformed image (performance information) generated by the arithmetic unit 222 is transmitted from the server S1 to the client terminal T.
  • the display support control unit 175 that has obtained the response reflects the deformed image included in the response on the display of the display unit 12.
  • the deformed image is automatically displayed on the display unit 12.
  • pre-deformation image the image of the boom before deformation
  • FIGS. 18A to 18E the image of the boom before deformation
  • the image before deformation may be deleted from the display unit 12, and the deformed image G5A may be automatically displayed on the display unit.
  • the boom of the work implement image G2 does not interfere with the steel structure G78.
  • the tip G57 of the boom is displaced below the tip G57 of the boom of the pre-deformation image, and the middle part G58 of the boom is displaced from the pre-deformation image.
  • the boom of the work machine image G21E is displaced upward from the middle part of the boom, and interferes with the steel structure G78.
  • the operator when the boom interferes with the steel structure G78, the operator changes the displayed posture of the boom so that the boom does not interfere with the steel structure G78. You can search for your posture.
  • the operator can change the posture of the boom by dragging the displayed boom.
  • the operator can also change the displayed posture of the boom by inputting the boom undulation angle.
  • a modified image of the boom corresponding to the changed posture of the boom may be displayed.
  • FIG. 19 is a flowchart showing the operation of the BIM support system BS when displaying the determination result of workability in consideration of the ground strength on the display unit 12 (see A-9 in Table 2).
  • the installation pressure acts on the ground from the outrigger of the crane. If the installation pressure is greater than the ground strength, the ground may sink and the crane may tip over. For this reason, taking into account the ground strength in the construction plan in advance prevents the subsidence of the ground and the fall of the crane, and significantly contributes to the improvement of the safety of the actual work and the improvement of the work efficiency.
  • the operation of the BIM support system BS in this operation example will be described. Specifically, the operation of the BIM support system BS when the operator verifies whether or not it is possible to transport the suspended load from the start point SP to the end point FP using the crane C illustrated in FIG. 20A will be described. I do.
  • step S500 in FIG. 19 only the building image G1D shown in FIG. 20A is displayed on the display unit 12. That is, the work implement image is not displayed on the display unit 12 in step S500.
  • the building image G1D may be an image created by an operator using the BIM application A, or may be an image in which information stored in the storage unit 14 is read and displayed.
  • step S500 the operator inputs a work machine image display instruction from the input unit 11 to display the work machine image in the basic posture on the display unit 12.
  • the operation performed by the operator when displaying the work implement image in the basic posture on the display unit 12 is the same as that in the above-described operation example 1.
  • step S501 the operator inputs posture conditions from the input unit 11 in order to determine the posture of the work implement in the work implement image of the basic posture displayed on the display unit 12.
  • the operation performed by the operator to determine the attitude of the work machine image is the same as in the above-described operation example 1.
  • step S ⁇ b> 501 when the input unit 11 receives the input of the posture determination operation, the BIM control unit 161 reflects the posture determination operation on the work machine image on the display unit 12. Then, as shown in FIG. 20A, a work machine image G22D in which the posture has been changed from the work machine image in the basic posture is displayed on the display unit 12.
  • step S502 the operator performs an operation for determining whether or not the work of the work machine image G22D whose posture has been determined in step S501 in consideration of the ground strength (hereinafter, simply referred to as “workability”). Do. For example, the operator inputs a display request (performance information request) indicating whether or not work is possible from an input screen displayed as a pop-up on the display unit 12.
  • step S502 The operation of the operator for displaying the workability on the display unit 12 ends in step S502. Subsequent processing is automatically performed between the client terminal T and the servers S1 to S4. That is, in the present operation example, when the operator inputs a display request for the workability via the BIM application A, information on the workability is automatically displayed on the display unit 12.
  • step S502 when the input unit 11 receives the performance information request, the information acquisition unit 173 sets the parameters (model information, posture condition, suspended load information, work state information, component member information, and the like) corresponding to the acquired performance information request. Other information) from the BIM control unit 161.
  • step S502 the information acquisition unit 173 acquires from the BIM control unit 161 at least the parameters required for calculating the performance information specified in the performance information request.
  • the parameters automatically acquired by the information acquiring unit 173 in step S502 are the parameters shown in column B of Table 10 below (the parameters shown in 9-B of Table 2).
  • the parameters in this operation example include parameters for performing an outrigger jack reaction force display request (see A-8 in Table 2) and information on the ground strength.
  • the BIM application A stores information on the ground strength.
  • the BIM application A stores the ground strength of the entire work site.
  • the information on the ground strength may be the ground strength in consideration of a buried member buried underground at the work site.
  • the BIM application A may store information on the ground strength as a ground strength table.
  • the ground strength table may include position information (for example, coordinates or sections) of the work site and ground strength associated with the position information.
  • step S502 the information acquisition unit 173 acquires information on the ground strength of the ground corresponding to the position where the work equipment image G22D is arranged on the display unit 12 from the BIM application A. Then, in step S502, the information acquiring unit 173 sends the acquired information to the request issuing unit 174.
  • the information on the ground strength acquired by the information acquisition unit 173 in step S502 is not limited to the information stored in the BIM application A.
  • the information on the ground strength acquired by the information acquisition unit 173 may be information input from the information input unit 77 by the operator.
  • step S503 the request issuing unit 174 specifies server identification information (for example, the server URI) for identifying the server corresponding to the work implement image specified by the acquired model information (ie, the work implement image G22D in FIG. 20A). ) Is obtained from the third storage unit 143.
  • server identification information for example, the server URI
  • the server URI for example, the server URI
  • the request issuing unit 174 generates a request including the acquired server specifying information, performance information request, and parameter, and sends the request to the communication control unit 171.
  • the request is transmitted to a server (for example, server S1) specified by the server specifying information via the communication unit 13.
  • step S504 the communication unit 21 receives the request. Then, the communication unit 21 sends the request to the request acquisition unit 221.
  • step S505 the request acquisition unit 221 extracts a performance information request and a parameter from the acquired request. Then, the request acquisition unit 221 sends the extracted information to the calculation unit 222.
  • step S ⁇ b> 506 the arithmetic unit 222 acquires from the storage unit 23 an arithmetic expression corresponding to the performance information request and the model information acquired from the request acquiring unit 221.
  • the arithmetic expression obtained by the arithmetic unit 222 is an arithmetic expression for calculating the reaction force of the outrigger jack, and an arithmetic expression for comparing the reaction force of the outrigger jack with the ground strength included in the parameter. It is an expression.
  • step S ⁇ b> 507 the arithmetic unit 222 acquires from the storage unit 23 the specification data corresponding to the work machine specified by the acquired model information.
  • step S508 the calculation unit 222 calculates the reaction force of the outrigger jack based on the parameters obtained from the client terminal T, the calculation formula and the specification data obtained from the storage unit 23. Then, the workability is determined by comparing the calculated reaction force of the outrigger jack with the ground strength included in the parameter.
  • step S508 when the calculated reaction force of the outrigger jack is smaller than the ground strength included in the parameter, the calculation unit 222 determines that work is possible. On the other hand, in step S508, when the calculated reaction force of the outrigger jack is equal to or higher than the ground strength included in the parameter, the calculation unit 222 determines that the work cannot be performed.
  • the calculation unit 222 sends the calculated reaction force of the outrigger jack and / or the determination result to the response issuing unit 223.
  • step S509 the response issuing unit 223 generates a response based on the reaction force of the outrigger jack and / or the determination result obtained from the calculation unit 222. Then, the response issuing unit 223 sends the generated response to the communication unit 21. Then, the communication unit 21 transmits the obtained response to the client terminal T.
  • the response may include the determination result as to whether or not the work implement having the posture defined by the posture condition included in the request can perform the predetermined work.
  • step S510 the communication unit 13 receives a response from the server S1. Then, the communication unit 13 sends the received response to the second control unit 17. The response is sent to the display support control unit 175 via the communication control unit 171.
  • step S ⁇ b> 511 the display support control unit 175 reflects the calculation result of the server S ⁇ b> 1 included in the response (in the case of this operation example, information on work availability) on the display of the display unit 12.
  • Modification 1 of Operation Example 7 Modification 1 of Operation Example 7 will be described. This modified example is carried out in a situation where it is verified whether or not a suspended load can be transported from a start point SP (see FIGS. 20A and 20B) to an end point FP.
  • the operator specifies the range of postures that the crane can take when transporting the suspended load from the start point SP to the end point FP.
  • the turning angle corresponds to the first posture when lifting the suspended load disposed at the start point SP. It changes in the range from the first turning angle (for example, 0 degrees) to the second turning angle (for example, 90 degrees) corresponding to the second posture when unloading the suspended load to the end point FP.
  • the operator specifies the range of the turning angle.
  • the information obtaining unit 173 obtains the turning angle in the range specified by the operator as a parameter in step S502 described above.
  • the calculation unit 222 calculates the outrigger jack reaction force for the entire range of the turning angle included in the parameter, and calculates the calculated outrigger jack reaction force and the ground strength included in the parameter. The workability is determined by comparison.
  • the calculation unit 222 determines that the above-described transport operation cannot be performed. I do. Note that the calculation unit 222 may determine whether or not the above-described operation is possible by changing the parameters discretely.
  • Modification 2 of Operation Example 7 Modification 2 of Operation Example 7 will be described. This modification is implemented in a situation where an operator requests presentation of a crane capable of performing a transport operation.
  • the server S1 when the server S1 determines that the transport operation cannot be performed under the posture condition included in the parameter, the server S1 (specifically, the response issuing unit 223) can perform the transport operation. Include information about the crane in the response. Upon receiving such a response, the display support control unit 175 of the client terminal T displays on the display unit 12 information for notifying the operator of the crane included in the response.
  • Modification 3 of Operation Example 7 Modification 3 of Operation Example 7 will be described.
  • the present modification is implemented at least in a situation where the crane installation position and the suspended load are determined.
  • the operator specifies, as the performance information request, a range in which the suspended load can be moved by the crane arranged at the designated position (hereinafter, referred to as a “movable range of the suspended load”).
  • the posture of the working machine does not have to be determined. That is, the parameters included in the request need not include the posture condition of the work implement. However, when some posture conditions are determined, the parameters may include the determined posture conditions.
  • the calculation unit 222 of the server S1 calculates the reaction force of the outrigger jack by changing the undetermined posture condition at predetermined intervals. Further, the arithmetic unit 222 compares the calculated reaction force of the outrigger jack with the ground strength included in the parameter to determine whether or not work is possible.
  • the calculation unit 222 calculates the reaction force of the outrigger jack and determines whether or not work is possible for all possible postures of the specified crane. Then, the calculation unit 222 generates information indicating the movable range of the suspended load based on the determination result.
  • the server S1 (specifically, the response issuing unit 223) includes information indicating the movable range of the suspended load in the response. Then, the display support control unit 175 of the client terminal T receiving the response displays information indicating the movable range of the suspended load included in the response on the display unit 12.
  • FIG. 20C is a diagram illustrating the display unit 12 on which the image G80 of the movable range of the suspended load is shown.
  • the image of the movable range of the suspended load may be a two-dimensional image or a three-dimensional image.
  • Modification 4 of Operation Example 7 Modification 4 of Operation Example 7 will be described. This modification is implemented in a situation where at least the installation position of the crane and the posture condition of the crane are determined. In this situation, the operator specifies the maximum load of the suspended load that can be lifted as the performance information request.
  • the calculation unit 222 of the server S1 changes the load of the suspended load at predetermined intervals to calculate the reaction force of the outrigger jack.
  • the arithmetic unit 222 compares the calculated reaction force of the outrigger jack with the ground strength included in the parameter to determine whether or not work is possible. Then, the calculation unit 222 generates information on the maximum load of the suspended load that can be lifted based on the determination result.
  • the server S1 (specifically, the response issuing unit 223) includes information on the maximum suspended load in the response. Then, the display support control unit 175 of the client terminal T that has received the response displays information on the maximum load of the suspended load included in the response on the display unit 12.
  • Modification 5 of Operation Example 7 Modification 5 of Operation Example 7 will be described. This modification is implemented at least in a situation where the model of the work machine (the crane in this modification) and the suspended load are determined. In this situation, the operator specifies, as the performance information request, information on the installation position of the work implement (hereinafter, simply referred to as “information on the installation position”).
  • the parameters included in the request include at least the performance information request, the work machine type information, the suspended load information, and the information on the ground strength of the entire work site.
  • the calculation unit 222 of the server S1 calculates information on the installation position of the work machine specified by the model information based on the parameters included in the request, the acquired specification data, and the like. In addition, the calculation unit 222 may calculate the posture condition of the work implement when the work implement is installed at the calculated installation position.
  • the server S1 (specifically, the response issuing unit 223) includes information on the installation position of the work implement in the response.
  • the server S1 includes information on the posture condition of the work implement in the response.
  • the display support control unit 175 of the client terminal T that has received the response displays information on the installation position included in the response on the display unit 12. If the response includes the posture condition of the work implement, the display support control unit 175 reflects the acquired posture condition on the display of the work implement image displayed on the display unit 12.
  • FIG. 21 is a flowchart showing the operation of the BIM support system BS when the moving path of the suspended load is displayed on the display unit 12 (see A-10 in Table 2).
  • the operation of the BIM support system BS in this operation example will be described.
  • step S600 of FIG. 21 only the building image G1E shown in FIG. 22A is displayed on the display unit 12. That is, the work implement image is not displayed on the display unit 12 in step S600.
  • the building image G1E may be an image created by an operator using the BIM application A, or may be an image in which information stored in the storage unit 14 is read and displayed.
  • step S600 the operator inputs a work machine image display instruction from the input unit 11 to display the work machine image G22E in the basic posture on the display unit 12.
  • the operation performed by the operator when displaying the work machine image G22E in the basic posture on the display unit 12 is the same as that in the operation example 1 described above.
  • step S600 the starting point SP of the suspended load, the end point FP of the suspended load, the suspended load, and the type of the working machine have been determined.
  • step S601 the operator performs an operation for displaying the moving route of the suspended load on the display unit 12. For example, the operator inputs a display request (performance information request) of the moving route of the suspended load from the input screen pop-up displayed on the display unit 12.
  • a display request performance information request
  • the operator operates the BIM application A and inputs the start point SP of the suspended load and the end point FP of the suspended load.
  • the operator may input a waypoint (not shown) of the suspended load.
  • the operator may input a condition (hereinafter, referred to as a “priority condition”) that is prioritized in generating a moving path of the suspended load performed by the calculation unit 222 in step S607 described below.
  • the priority conditions include, for example, a “moving route with the shortest moving distance”, a “moving route with the shortest moving time”, and a “moving route with the lowest fuel efficiency”.
  • the operator can designate a “moving route that does not pass through a prohibited area” as a priority condition.
  • the forbidden area is, for example, an area with oblique lattices in FIGS. 22B and 22C. Information on the prohibited area is stored in the BIM application A.
  • Subsequent processing is automatically performed between the client terminal T and the servers S1 to S4. That is, in this operation example, when the operator inputs a display request for the moving path of the suspended load via the BIM application A, an image relating to the moving path of the suspended load is automatically displayed on the display unit 12.
  • step S601 when the input unit 11 receives the performance information request, the information obtaining unit 173 sets the parameters (model information, posture condition, suspended load information, work state information, component information, and the like) corresponding to the obtained performance information request. Other information) from the BIM control unit 161.
  • the parameter includes information on the building image G1E as other information.
  • the parameters include, as the suspended load information, the suspended load information, information on the starting point of the suspended load, and information on the end point of the suspended load.
  • the parameter may include information on the shape of the suspended load as the suspended load information.
  • the parameters include the outrigger extension width as the posture condition. However, the parameter need not include the posture condition. Further, the parameters include hook information and information on the number of wire hooks as component member information. However, the parameter need not include the component member information.
  • the parameters automatically acquired by the information acquisition unit 173 in step S601 are the parameters shown in column B of Table 11 below (the parameters shown in 10-B of Table 2).
  • the parameter includes information on the prohibited area.
  • the information regarding the prohibited area is obtained from the BIM application A by the information obtaining unit 173 in step S601.
  • step S601 Information on the building image is stored in the BIM application A. Therefore, in step S601, the information acquisition unit 173 acquires information on a building image from the BIM application A.
  • the information on the building image acquired by the information acquisition unit 173 in step S601 may be information input by the operator from the information input unit 77.
  • step S601 the information acquiring unit 173 sends the acquired information to the request issuing unit 174.
  • step S602 the request issuing unit 174 generates server specifying information (for example, a server corresponding to the working machine image G22E in FIGS. 22A to 22C) specified by the acquired model information (for example, The server URI is acquired from the third storage unit 143.
  • server specifying information for example, a server corresponding to the working machine image G22E in FIGS. 22A to 22C
  • the server URI is acquired from the third storage unit 143.
  • the request issuing unit 174 generates a request including the acquired server specifying information, performance information request, and parameter, and sends the request to the communication control unit 171.
  • the request is transmitted to a server (for example, server S1) specified by the server specifying information via the communication unit 13.
  • step S603 the communication unit 21 receives the request. Then, the communication unit 21 sends the request to the request acquisition unit 221.
  • step S604 the request acquisition unit 221 extracts a performance information request and a parameter from the acquired request. Then, the request acquisition unit 221 sends the extracted information to the calculation unit 222.
  • step S605 the arithmetic unit 222 acquires from the storage unit 23 an arithmetic expression corresponding to the performance information request and the model information acquired from the request acquiring unit 221.
  • the arithmetic expression acquired by the arithmetic unit 222 is an arithmetic expression necessary for generating the moving path of the suspended load.
  • step S606 the arithmetic unit 222 acquires from the storage unit 23 the specification data corresponding to the work machine specified by the acquired model information.
  • step S607 the calculation unit 222 calculates the moving path of the suspended load based on the parameters obtained from the client terminal T, the calculation formula and the specification data obtained from the storage unit 23.
  • step S607 the calculation unit changes the posture condition of the work machine within the range of the posture condition that the work machine specified by the model information can take, and calculates the moving path of the suspended load.
  • the arithmetic unit 222 calculates a moving path of the suspended load such that the building image does not interfere with the crane C and the suspended load based on the information on the building image included in the parameter. If a priority condition has been input from the operator in step S601, the calculation unit 222 generates a movement route based on the condition specified by the priority condition.
  • the calculation unit 222 sends information on the calculated moving route of the suspended load to the response issuing unit 223.
  • step S ⁇ b> 608 the response issuing unit 223 generates a response including the information on the moving path of the suspended load acquired from the calculation unit 222. Then, the response issuing unit 223 sends the generated response to the communication unit 21. The communication unit 21 transmits the obtained response to the client terminal T.
  • step S609 the communication unit 13 receives a response from the server S1. Then, the communication unit 13 sends the received response to the second control unit 17. The response is sent to the display support control unit 175 via the communication control unit 171.
  • step S610 the display support control unit 175 reflects the calculation result of the server S1 included in the response (in the case of this operation example, information regarding work availability) on the display of the display unit 12.
  • FIGS. 22B and 22C show an example of a display mode of the display unit 12 on which an image of the moving path of the suspended load is shown.
  • the image R1 of the moving path of the suspended load is a moving path of the suspended load displayed on the display unit 12 when the “moving path having the shortest moving distance” is specified as the priority condition by the operator.
  • the moving path R2 of the suspended load is a moving path of the suspended load displayed on the display unit 12 when the “moving path that does not pass through the prohibited area” is specified as the priority condition by the operator.
  • the server S1 may transmit to the client terminal T a response including the posture condition of the work implement corresponding to the calculated moving path of the suspended load, together with the moving path of the suspended load.
  • the server S1 may generate a work plan based on the calculated information on the moving path of the suspended load. In this case, the server S1 transmits a response including information on the generated work plan to the client terminal T.
  • the work plan for example, a turning angle, an undulating angle, a type of work (for example, a slinging operation and a ball removing operation), a hoisting amount, a load factor, a working radius, and the like are described.
  • FIG. 23 shows an example of the work plan.
  • the work plan may be generated by the BIM application A.
  • the server S1 transmits a response including information for generating a work plan to the BIM application A.
  • the BIM application A generates a work plan as shown in FIG. 23 based on the information for generating the obtained work plan.
  • the BIM support system BS can present detailed information on the working machine to the operator.
  • the operator who has received such detailed information can make a detailed construction plan in consideration of the working machine.
  • FIG. 24 is a diagram illustrating a configuration of the crane support system CS.
  • FIG. 25 is a block diagram illustrating a configuration of the crane support system CS.
  • a crane C is used as an example of a working machine.
  • the working machine is not limited to the crane, and may be various working machines. Specifically, working machines include cranes, bulldozers, hydraulic excavators, concrete pump trucks, aerial platforms, dump trucks, trailers, lifters, and the like.
  • the crane support system CS corresponds to an example of a performance information calculation system.
  • the crane support system CS includes a crane C and a plurality of servers S1 to S4 (also referred to as performance information calculation servers) as hardware configurations. Note that the crane support system CS of the present embodiment is a system in which the crane C and servers S1 to S4 are connected via a network N. The numbers of cranes and servers in the crane support system CS are not limited to those illustrated.
  • the crane C is a mobile crane (for example, a rough terrain crane).
  • the crane C is not limited to a mobile crane, and may be various cranes.
  • the crane C has a basic configuration of a general rough terrain crane. As a large concept, the crane C has a traveling unit 6 and a revolving unit 7.
  • the traveling body 6 has a pair of left and right front tires 61 and rear tires 62.
  • the traveling body 2 has an outrigger 63 that is grounded to stabilize when carrying the luggage.
  • the revolving unit 7 includes a revolving base 71, a boom 72, and a jib 72a.
  • the swivel base 71 is supported by the traveling body 6 in a rotatable state.
  • the boom 72 is a telescopic boom that can expand and contract.
  • the boom 72 is supported by the swivel 71 in an up-and-down state. Such a boom 72 turns when the turntable 71 rotates around a turning axis.
  • the jib 72a is supported by the tip of the boom 72 in the use state.
  • the jib 72a is stored on the side of the boom 72 in the non-use state (the state of the crane C in FIG. 24).
  • a wire rope (not shown) is hung over the boom 72.
  • the swivel 71 is provided with a winch (not shown) around which a wire rope is wound.
  • the wire rope is hung from the tip of the boom 72 or the jib 72a via a sheave (not shown).
  • a hook (not shown) is fixed to the tip of the wire rope.
  • the swivel 71, the boom 72, the jib 72a, the wire rope, and the hook correspond to an example of the operated function unit, and are driven by the actuator.
  • the crane C has a turning actuator 731, a raising / lowering actuator 732, a telescopic actuator 733, and a winch actuator 734 as actuators for driving the operated function part (see FIG. 25).
  • the turning actuator 731, the undulating actuator 732, the telescopic actuator 733, and the winch actuator 734 are collectively referred to as the actuator 73.
  • the turning actuator 731 is, for example, a hydraulic motor, and rotates the turning table 71 about a turning axis.
  • the turning actuator 731 may be regarded as an actuator for turning the boom 72.
  • the raising / lowering actuator 732 is, for example, a hydraulic telescopic cylinder, and raises or lowers the boom 72 as it expands and contracts. Therefore, the actuator 732 for raising and lowering may be regarded as an actuator for raising or lowering the boom 72.
  • the telescopic actuator 733 is, for example, a hydraulic telescopic cylinder, and extends or contracts the boom 72 as it expands or contracts. Therefore, the telescopic actuator 733 may be regarded as an actuator for extending or reducing the boom 72.
  • the winch actuator 734 is, for example, a hydraulic motor, and rotates the winch in a first direction (also called a feeding direction) or a second direction (also called a winding direction).
  • a first direction also called a feeding direction
  • a second direction also called a winding direction
  • the winch actuator 734 may be regarded as an actuator for raising or lowering the hook.
  • the crane C has an operation input unit 74, a posture detection unit 75, a load detection unit 76, an information input unit 77, a display unit 78, a communication unit 79, a storage unit 80, a control unit 81, and the like.
  • the operation input unit 74 is, for example, an operation lever provided in an operator's cab, and receives an operation input from an operator of the crane C (hereinafter, simply referred to as “operator” in the description of the present embodiment).
  • the operation input unit 74 When receiving the operation input from the operator, the operation input unit 74 outputs an operation signal corresponding to the received operation input to the control unit 81 (specifically, the operation control unit 821 of the first control unit 82).
  • the operation input unit 74 may be provided in an operation terminal wirelessly or wiredly connected to the crane C.
  • the posture detecting unit 75 detects information on the posture of the crane C.
  • the posture detection unit 75 sends information on the detected posture to the control unit 81 (first control unit 82).
  • the information on the posture is, for example, a boom undulation angle, a boom length, a boom turning angle, a jib undulation angle, a jib length, an outrigger extension width, and a hook position.
  • the posture detection unit 75 detects information on the posture at predetermined time intervals.
  • the posture detection unit 75 sends information on the detected posture to the control unit 81 (first control unit 82) at predetermined time intervals.
  • the load detecting unit 76 detects information on the suspended load.
  • the load detector 76 detects information on the suspended load at predetermined time intervals.
  • the load detector 76 sends information on the detected suspended load to the controller 81 (first controller 82) at predetermined time intervals.
  • the information input unit 77 receives input of information from an operator.
  • the information input unit 77 sends information on the received input to the control unit 81 (the first control unit 82 or the second control unit 83).
  • An example of the information received by the information input unit 77 will be described below.
  • the information input unit 77 receives an input of a performance information request from an operator.
  • the performance information request includes information that specifies the performance information of the work implement that the crane C acquires from the servers S1 to S4.
  • the performance information of the work implement designated by the performance information request means the performance information of the crane C.
  • the display unit 78 displays information.
  • the display unit 78 is, for example, a monitor provided in the cab.
  • the communication unit 79 communicates with the servers S1 to S4 via the network N.
  • the communication unit 79 includes an information transmission unit and an information reception unit (not shown). Communication with the servers S1 to S4 is controlled by, for example, the communication control unit 171.
  • the communication unit 79 transmits a request described below to the servers S1 to S4, and receives a response to the request from the servers S1 to S4.
  • the storage unit 80 includes a first storage unit 801 and a second storage unit 802.
  • the first storage unit 801 stores model information of a work machine (crane C).
  • the second storage unit 802 stores information for specifying a server that sends a request. Information for specifying a server is also referred to as server specifying information.
  • the second storage unit 802 stores the server identification information in association with the model of the work machine (for example, a crane).
  • the second storage unit 802 stores an address table that associates model information of a plurality of working machines with a server (server specifying information) corresponding to each of the model information.
  • server server specifying information
  • the first storage unit 801 and the second storage unit 802 are configured by one piece of hardware (main storage device).
  • the first storage unit 801 and the second storage unit 802 may be configured by a plurality of hardware.
  • the control unit 81 controls the operation of each of the above-described elements 74 to 80 to control the operation of the entire crane C.
  • the control unit 81 includes a first control unit 82, a second control unit 83, and the like.
  • the basic configuration of the second control unit 83 is the same as that of the second control unit 17 of the first embodiment described.
  • the first control unit 82 corresponds to an example of an operation control unit, and includes an operation control unit 821, a display control unit 822, and the like.
  • the first control unit 82 also corresponds to an example of a control unit of the overload prevention device. That is, the first control unit 82 has a function of realizing the function of the overload prevention device.
  • the operation control unit 821 controls the operation of the actuator 73 based on the operation signal output from the operation input unit 74.
  • the operation control unit 821 controls the operation of the actuator 73 based on the performance information of the work implement acquired from the support operation module M. For example, when acquiring the rated total load corresponding to the posture condition of the work implement as performance information of the work implement from the support operation module M, the operation control unit 821 controls the operation of the actuator 73 based on the acquired rated total load. I do.
  • the display control unit 822 controls the operation of the display unit 78.
  • the display control unit 822 controls the operation of the display unit 78 based on the performance information of the work implement acquired from the support module M. For example, when the display control unit 822 acquires the region image (see the region image G4 in FIG. 10C and the region image G4A in FIG. 16E) as the performance information of the working machine from the support operation module M, the display unit 78 displays the image of the working machine. Alternatively, an image around the work implement and an area image may be displayed.
  • the second control unit 83 includes a communication control unit 171, a support control unit 172, an area image processing unit 176, a deformed image processing unit 177, and the like.
  • the second control unit 83 implements the function of the support module M.
  • the basic configuration of the second control unit 83 is substantially the same as that of the second control unit 17 of the first embodiment described above, and a duplicate description will be omitted.
  • the description of the support module M in the first embodiment may be appropriately used.
  • FIG. 25 among the elements configuring the support module M of the present embodiment, the elements common to the support module M of the first embodiment are denoted by the same reference numerals as the elements of the support module M of the first embodiment. .
  • Note that, of the configuration of the second control unit 83 a configuration different from the second control unit 17 of the first embodiment will be described in an operation example described later.
  • the support module M operates in cooperation with the first control unit 82 of the crane C.
  • the support module M is incorporated in (added in to) the first control unit 82.
  • the support module M is hardware that operates in cooperation with the first control unit 82, the support module M is incorporated in hardware (for example, a controller, a tablet, or a personal computer) different from the first control unit 82. Is also good.
  • Such a support module M acquires performance information of the working machine from the servers S1 to S4 using a request-response communication protocol (for example, an HTTPS protocol, an MQTTS protocol).
  • a request-response communication protocol for example, an HTTPS protocol, an MQTTS protocol.
  • the performance information of the work machine is the same as that of the first embodiment described above, and includes, for example, a rated total load, a moment load ratio, a maximum boom inclination angle, a work radius, boom deformation image information, jib deformation image information, and work Includes work area image information of the machine, outrigger jack reaction force value, posture information of the work machine, information on availability of work taking ground strength into consideration, information on the moving route of the suspended load, and the like (see column C in Table 2 described later). . Further, the performance information includes a determination result as to whether or not the work machine can execute a desired work. Further, when the work implement is a crane, the performance information includes information on a moving path of the suspended load.
  • the support module M acquires the posture condition of the crane C from the first control unit 82.
  • the support module M transmits a posture information, a performance information request for designating performance information of the work implement, and a request including model information of the work implement to the servers identified from the servers S1 to S4.
  • the support module M may specify the server that transmits the request by including the server specifying information that specifies the server corresponding to the work implement in the request.
  • the server identification information is, for example, the URI of the server.
  • the support module M receives a response including the performance information specified by the performance information request from the server. Then, the support module M sends the received performance information to the first control unit 82.
  • This operation example corresponds to Operation Example 1 of the BIM support system BS according to the first embodiment.
  • the processing of this operation example is performed between the crane C and the servers S1 to S4.
  • the operation example 1 is different from the operation example 1 of the first embodiment relating to the processing performed between the BIM application A (see FIG. 2) and the servers S1 to S4. That is, in the case of the first operation example of the first embodiment, the support module M operates in cooperation with the operation control unit of the BIM application A. On the other hand, in the case of this operation example, the support module M operates in cooperation with the operation control unit of the crane C.
  • This operation example is different from the operation example 1 of the first embodiment from such a viewpoint.
  • the basic operation of the support module M of this operation example is substantially the same as the operation of the support module M of the operation example 1 of the first embodiment.
  • the description of the operation examples 2 to 8 of the first embodiment may be appropriately used as the description of the operation example of the crane support system CS of the present embodiment.
  • This operation example is performed, for example, when the rated total load to be used for the calculation performed by the overload prevention device of the crane C is acquired from the server.
  • the overload prevention device of the crane C acquires the rated total load according to the posture of the crane C, and determines the safety of the operation based on the acquired total rated load and the suspended load. Perform processing.
  • the crane C has acquired the rated total load corresponding to the posture of the crane C based on the rated total load table stored in the storage unit.
  • the crane C calculates the total rated load by performing an interpolation calculation. Since the calculation for calculating the rated total load is always performed, a high-performance calculator is mounted on the crane C.
  • a high-performance computing unit is expensive and causes a rise in the manufacturing cost of the crane C.
  • the rated total load table and the interpolation formula for the interpolation calculation may be updated, and the maintenance worker needs to update the rated total load table and the interpolation formula for each work machine. Further, in the work of transporting a suspended load, a so-called co-hanging operation in which a plurality of cranes cooperate to transport one suspended load may be performed. When working machines with different rated total load tables and interpolation calculation formulas perform hanging together, the calculation result by the overload prevention device differs for each working machine, and there is a possibility that work efficiency may be reduced.
  • the crane C since the total rated load is obtained from the server, the crane C does not need to have the total rated load table and the interpolation formula. Therefore, it is not necessary to update the rated total load table and the interpolation formula. Further, each of the plurality of cranes C acquires from the server the total rated load calculated based on the common total rated load table and the interpolation calculation formula. For this reason, the calculation result by the overload prevention device does not differ for each work machine.
  • FIG. 26 is a flowchart showing the operation of the crane support system CS when displaying the rated total load on the display unit 78 and / or when controlling the operation of the crane C based on the rated total load obtained from the server. .
  • step S701 in FIG. 26 the operator inputs a performance information request for designating the rated total load (performance information) from the information input unit 77.
  • the information input unit 77 receives an input of a performance information request specifying the rated total load (performance information) from the operator.
  • the information input unit 77 sends information related to the performance information request input from the operator to the control unit 81.
  • the crane C is in a state of transmitting a request for requesting the rated total load to the server S1 at predetermined time intervals.
  • step S702 when the information acquisition unit 173 acquires a performance information request from the information input unit 77, the information acquisition unit 173 acquires a parameter corresponding to the acquired performance information request from the first control unit 82. In step S702, the information acquisition unit 173 only needs to acquire from the first control unit 82 at least the parameters required for calculating the performance information specified in the performance information request.
  • the information acquisition unit 173 When the information acquisition unit 173 acquires a performance information request from the information input unit 77, the information acquisition unit 173 continues to acquire parameters from the first control unit 82 (specifically, the operation control unit 821) at predetermined time intervals. In this case, the acquisition of the parameters is continued until a signal indicating that the request for the performance information is terminated (hereinafter, simply referred to as an “end signal”) is acquired from the information input unit 77.
  • the information acquisition unit 173 when the information acquisition unit 173 acquires a signal indicating that a request for performance information is started from the information input unit 77 (hereinafter, simply referred to as a “start signal”), the information acquisition unit 173 sends an end signal from the information input unit 77. The acquisition of parameters is continued intermittently until. Therefore, the control processing of steps S702 to S713 in this operation example is repeated until an end signal is obtained from the information input unit 77.
  • the time interval at which the attitude detection unit 75 detects information on the attitude of the crane C is 10 msec
  • the time interval at which the information acquisition unit 173 detects the parameter may be 10 msec or more, and preferably 50 msec to 100 msec.
  • the parameters automatically acquired by the information acquiring unit 173 are the parameters shown in column B of Table 12 below.
  • the parameters acquired by the information acquisition unit 173 in step S702 are the data stored in the first storage unit 80 and the data detected by the posture detection unit 75. In any case, the parameters acquired by the information acquisition unit 173 in step S702 are the data stored in the crane C and the data acquired by the crane C.
  • step S ⁇ b> 703 the request issuing unit 174 acquires, from the second storage unit 802, server specifying information (for example, a URI of the server) for specifying a server corresponding to the model information of the crane C.
  • server specifying information for example, a URI of the server
  • the request issuing unit 174 generates a request including the acquired server specifying information, performance information request, and parameter, and sends the request to the communication control unit 171.
  • the request is transmitted to a server (for example, server S1) specified by the server specifying information via the communication unit 13.
  • the request generated in step S703 is in the form of a request message of the HTTPS protocol.
  • a request includes a URI, a performance information request, and a parameter.
  • the operation of the server S1 is the same as the operation of the server S1 in Operation Example 1 of Embodiment 1 described above.
  • step S704 the communication unit 21 receives the request. Then, the communication unit 21 sends the request to the request acquisition unit 221.
  • step S705 the request acquisition unit 221 extracts a performance information request and parameters from the acquired request. Then, the request acquisition unit 221 sends the extracted information to the calculation unit 222.
  • step S ⁇ b> 706 the arithmetic unit 222 acquires from the storage unit 23 an arithmetic expression corresponding to the performance information request and the model information acquired from the request acquiring unit 221.
  • the arithmetic expression acquired by the arithmetic unit 222 in step S706 is the interpolation arithmetic expression for performing the above-described interpolation operation.
  • step S707 the arithmetic unit 222 acquires from the storage unit 23 the specification data corresponding to the work machine specified by the acquired model information.
  • step S ⁇ b> 708 the calculation unit 222 acquires from the storage unit 23 a performance data table corresponding to the posture condition and / or work state information acquired from the request acquisition unit 221.
  • the computing unit 222 may acquire a plurality of performance data tables corresponding to the acquired posture conditions and / or work state information from the storage unit 23.
  • step S708 the calculation unit 222 may acquire the performance data table from the storage unit 23 based on the specification data acquired in step S707 together with the posture condition and / or the work state information.
  • step S709 the calculation unit 222 calculates the total rated load based on the parameters obtained from the crane C, the calculation formula (interpolation calculation formula), the performance data table, and the specification data obtained from the storage unit 23. .
  • step S709 when the rated total load corresponding to the parameter included in the request can be directly obtained from the performance data table, the calculation unit 222 does not need to use the calculation formula (interpolation calculation formula) in step S709. However, when the rated total load corresponding to the parameter included in the request cannot be obtained directly from the performance data table, the arithmetic unit 222 performs the above-described interpolation calculation using an arithmetic expression (interpolation arithmetic expression). To obtain the rated total load. Then, the calculation unit 222 sends the calculation result to the response issuing unit 223.
  • the interpolation calculation is a calculation for interpolating values between adjacent data in the performance data table.
  • step S710 the response issuing unit 223 generates a response based on the calculation result obtained from the calculation unit 222. Then, the response issuing unit 223 transmits the generated response to the crane C via the communication unit 21.
  • step S711 the communication unit 13 receives a response from the server S1. Then, the communication unit 13 sends the received response to the second control unit 83. The response is sent to the support control unit 172 via the communication control unit 171.
  • step S712 the support control unit 172 analyzes the response acquired from the communication control unit 171 and sends the calculation result of the server S1 included in the response (in the case of this operation example, the rated total load) to the first control unit 82. send.
  • the first control unit 82 (specifically, the operation control unit 821) reflects the acquired rated total load on the control of the actuator 73.
  • the first control unit 82 calculates a load factor corresponding to the posture of the crane C based on the rated total load acquired from the server S1, and when the load factor approaches a predetermined value (for example, 100%). , Restrict the operation of the crane C to the dangerous side.
  • the dangerous side means that the posture of the crane C changes so that the load factor increases.
  • the safe side means that the posture of the crane C changes so that the load factor decreases.
  • the first control unit 82 (specifically, the display support control unit 175) may reflect the acquired rated total load on the display of the display unit 78.
  • the information acquisition unit 173 may acquire information on the posture condition included in the parameter from a posture detection device (not shown) provided outside the crane C.
  • the posture detection device includes, for example, an imaging unit (for example, a camera) that photographs the crane C, and an image analysis unit that analyzes an image generated by the imaging device and acquires the posture condition of the crane C.
  • the posture detecting unit 75 of the crane C may be omitted.
  • the crane C does not need to include a high-performance calculator for calculating performance information. Therefore, the manufacturing cost of the crane C can be reduced. Further, the crane C does not need to have the rated total load table and the interpolation calculation formula for calculating the performance information. Therefore, there is no need to update the total rated load table and the interpolation formula for each crane C. Therefore, maintenance costs for updating can be reduced. In addition, since the cranes C of the same model obtain the rated total load from the common server, the calculation results by the overload prevention device do not differ between the cranes C. Therefore, work efficiency and safety can be improved.
  • the server may be configured to operate the work machine such as a calculation related to an interference check between the building and the work machine composed of 3D-CAD data and point cloud data, and a calculation of information used for emphasis control with another work machine. It can perform advanced calculations that cannot be performed by the arithmetic unit mounted on the computer.
  • a posture condition that defines the posture of the image of the work implement, a performance information request that specifies the performance information of the work implement, and a request including model information, a request acquisition unit that acquires from a terminal on which the image generation application operates;
  • An arithmetic expression used for the operation of the performance information and a storage unit for storing the specification data of the work machine, The performance information specified in the performance information request based on the attitude condition, the performance information request, and the model information obtained from the request, and the arithmetic expression and the specification data obtained from the storage unit.
  • An operation unit that executes the operation of A performance information calculation server, comprising: a response presentation unit that presents a response including a result of the calculation to the terminal.
  • the calculation unit is Based on the performance information request included in the obtained request, select the operation formula used for the calculation, Based on the model information included in the acquired request, select the specification data to be used for the calculation,
  • the above-described aspect A. executes the above-described calculation based on the obtained posture condition, the above-mentioned calculation expression, and the above specification data. 2.
  • the performance information calculation server according to 1.
  • the storage unit stores performance data associated with the posture condition of the work machine
  • the calculation unit is Based on the performance information request included in the obtained request, select the operation formula used for the calculation, Based on the model information and the posture condition included in the obtained request, select the specification data and the performance data to be used for the calculation, Based on the acquired attitude condition and the selected arithmetic expression, the specification data, and the performance data, an interpolation calculation for calculating the performance information is executed.
  • the performance information calculation server according to 1.
  • the storage unit stores a performance table in which the posture condition and the performance data are associated with each other,
  • the calculation unit is Based on the performance information request included in the obtained request, select the operation formula used for the calculation, Based on the model information and the posture condition included in the acquired request, select the specification data and the performance table to be used for the calculation,
  • the performance information is calculated by executing an interpolation operation for interpolating data between the data of the performance table based on the acquired attitude condition, the selected arithmetic expression, the specification data, and the performance table.
  • Aspect A. 2. The performance information calculation server according to 1.
  • the computing unit is configured to determine whether the work implement in the image can perform a predetermined operation in the posture of the work implement defined by the acquired posture condition based on the performance information obtained by the computation. Is determined, and a response including the determination result is presented to the terminal. 2.
  • the performance information calculation server according to 1.
  • a client terminal selectively connectable to a plurality of performance information calculation servers according to 1.
  • An input unit for receiving a selection of a working machine to be displayed on the display unit from a plurality of working machines;
  • a storage unit that stores an address table in which the plurality of work machine model information and the performance information calculation server corresponding to the model information are associated; Refer to the address table, select the performance information calculation server corresponding to the selected work machine, and send a request including a posture condition defining the posture of the selected work machine to the selected performance information calculation server.
  • a control unit for sending and receiving a response including performance information of the selected work implement from the performance information calculation server.
  • the terminal has an address table for associating the model information of a plurality of working machines with the performance information calculation server corresponding to the model information, A step of receiving a selection of a work machine to be displayed on the display unit; A step of referring to the address table and selecting the performance information calculation server corresponding to the selected work machine; Transmitting a request including a posture condition that defines a posture of the selected work implement to the selected performance information calculation server; Receiving a response including the performance information from the performance information calculation server.
  • a method for providing performance information executed in a performance information calculation server stores in advance a calculation formula for calculating performance information of the work implement, and specification data of the work implement, A posture condition that defines the posture of the display image of the work implement, a performance information request that specifies required performance information, and a request that includes model information, from a terminal on which the image generation application operates, Based on the posture condition, the performance information request, and the model information acquired from the request, and execute the calculation of the performance information specified by the performance information request based on the stored calculation formula and the specification data. The process of Presenting a response including the result of the calculation to the terminal. How to provide performance information.
  • the step of performing the above operation includes: Based on the performance information request included in the obtained request, select the operation formula used for the calculation, Based on the model information included in the obtained request, select the specification data to be used for the calculation, Performing the calculation based on the acquired posture condition and the selected calculation formula and the specification data; Aspect A. 10. The method for providing performance information according to 10.
  • the performance information calculation server stores performance data associated with the posture condition of the work implement,
  • the step of performing the above operation includes: Based on the performance information request included in the obtained request, select the operation formula used for the calculation, Based on the model information and the posture condition included in the obtained request, select the specification data and the performance data to be used for the calculation, Based on the acquired posture condition and the selected calculation formula, the specification data, and the performance data, execute an interpolation calculation for calculating the performance information.
  • the performance information calculation server stores a performance table in which the posture condition of the work implement is associated with performance data
  • the step of performing the above operation includes: Based on the performance information request included in the obtained request, select the operation formula used for the calculation, Based on the model information and the posture condition included in the acquired request, select the specification data and the performance table to be used for the calculation,
  • the performance information is calculated by executing an interpolation operation for interpolating data between the data of the performance table based on the acquired attitude condition, the selected arithmetic expression, the specification data, and the performance table.
  • Do Aspect A. 10 The method for providing performance information according to 10.
  • the present invention can further take the following aspects.
  • An image generation application support module that operates in cooperation with an image generation application that generates an image of a work machine,
  • a posture condition acquisition unit that acquires a posture condition that defines a posture of the work machine in the image,
  • the acquired posture condition, the performance information request for designating the performance information of the work implement, and the request including the model information of the work implement are transmitted to a performance information calculation server, and the performance specified in the performance information request is transmitted.
  • a performance information acquisition unit that receives a response including information from the performance information calculation server,
  • An image generation application support module comprising: a drawing support unit that reflects the received performance information on an image to be displayed.
  • the posture condition acquisition unit acquires only the posture condition necessary for the calculation of the performance information specified by the performance information request, The aspect B. wherein the performance information acquisition unit transmits a request including a posture condition necessary for the computation to the performance information computation server. 2.
  • the image generation application support module according to 1.
  • the posture condition acquisition unit acquires the posture condition of a predetermined type regardless of the performance information specified by the performance information request, The aspect B. wherein the performance information acquisition unit transmits a request including the acquired attitude condition to the performance information calculation server. 2.
  • the image generation application support module according to 1.
  • the performance information acquisition unit receives a response including a determination result as to whether or not the work implement having the posture defined by the posture condition included in the request can perform a predetermined work from the performance information calculation server. And The above-described mode B., wherein the drawing support unit displays information regarding the determination result on a display unit. 2.
  • the image generation application support module according to 1.
  • An address table for associating the model information of the plurality of working machines with the performance information calculation server corresponding to the model information further comprising:
  • the performance information acquisition unit refers to the address table, selects the performance information calculation server corresponding to the model information included in the request, and sets the response including the performance information specified in the performance information request. Is obtained from the selected performance information calculation server.
  • the image generation application support module according to 1.
  • An image generation module that generates an image of the work machine;
  • a posture condition acquisition unit that acquires a posture condition that defines a posture of the work machine in the image, The acquired attitude condition, the performance information request for designating the performance information of the work machine, and the request including the model information are transmitted to the performance information calculation server, and the response including the performance information specified in the performance information request is transmitted.
  • a performance information acquisition unit for receiving from the performance information calculation server,
  • An image generation application comprising: a drawing support unit that reflects the received performance information on an image to be displayed or displays the image on a display unit.
  • the posture condition acquisition unit acquires only the posture condition necessary for the calculation of the performance information specified by the performance information request, The aspect B. wherein the performance information acquisition unit transmits a request including a posture condition necessary for the computation to the performance information computation server.
  • the posture condition acquisition unit acquires the posture condition of a predetermined type regardless of the performance information specified by the performance information request, The aspect B. wherein the performance information acquisition unit transmits a request including the acquired attitude condition to the performance information calculation server.
  • the performance information acquisition unit receives a response including a determination result as to whether or not the work implement having the posture defined by the posture condition included in the request can perform a predetermined work from the performance information calculation server. And The drawing support unit displays on a display unit whether or not the above-described execution is possible. 8. The image generation application according to 7.
  • An address table for associating the model information of the plurality of working machines with the performance information calculation server corresponding to the model information further comprising:
  • the performance information acquisition unit refers to the address table, selects the performance information calculation server corresponding to the model information included in the request, and sets the response including the performance information specified in the performance information request. Is obtained from the selected performance information calculation server. 13.
  • the image generation application according to 12.
  • the above terminal An attitude condition that defines the attitude of the work implement in the image generated by the image generation application, a performance information request for specifying the performance information, and a request including model information transmitted to the performance information calculation server;
  • the performance information calculation server is: An arithmetic expression for calculating the performance information, and storing the specification data of the work machine, Calculate the performance information specified by the performance information request using the posture condition, the performance information request, and the model information included in the acquired request, and the stored arithmetic expression and the specification data. Transmitting a response including the calculation result to the terminal, Performance information calculation system.
  • the performance information calculation server stores performance data associated with the posture condition of the work implement, Based on the performance information request included in the obtained request, select an arithmetic expression to be used for the arithmetic, Selecting the specification data and the performance data to be used in the calculation based on the model information and the posture condition included in the acquired request, and performing an interpolation calculation to calculate the performance information; C. 2.
  • the performance information calculation system according to 1.
  • a terminal on which an image generation application that generates an image of a work machine operates, and a performance information calculation server that calculates performance information of the work machine, and a method for providing performance information executed by a performance information calculation system including: The above terminal, A process of displaying an image of the work machine on a display unit; A process of acquiring the posture condition of the image of the work machine, A process of transmitting a performance information request specifying the performance information, the acquired posture condition, and a request including model information of the work implement to a performance information calculation server; Receiving a response including the performance information specified in the performance information request from the performance information calculation server, The performance information calculation server is: The performance specified in the performance information request based on the performance information request, the attitude condition, and the model information included in the received request, and the arithmetic expression and the specification data of the work machine stored in advance. A process of calculating information; Transmitting a response including the calculation result to the terminal; and How to provide performance information.
  • the performance information calculation server stores performance data associated with the posture condition of the work implement,
  • the performance information calculation server is: In the process of calculating the performance information, based on the performance information request included in the obtained request, select an arithmetic expression to be used in the calculation, and select the model information and the posture condition included in the obtained request. Based on the above-described aspect C., the specification data and the performance data to be used in the calculation are selected, and the interpolation calculation for calculating the performance information is executed. 2.
  • the performance information calculation system according to 1.
  • An image generation application support module that operates in cooperation with an image generation application that generates an image of a work machine, A posture condition acquisition unit that acquires a posture condition that defines a posture of the work implement in the image, A request including the obtained posture condition, performance information request for specifying the performance information of the work implement, and a request including model information of the work implement is transmitted to a performance calculation server, and the performance information specified in the performance information request is transmitted.
  • a performance information acquisition unit that receives a response including the following from the performance information calculation server;
  • An image generation application support module comprising: a deformed image generation unit that generates a deformed image related to the image of the work implement based on the received performance information.
  • the present invention can be suitably used for building design and work planning in consideration of work of a working machine such as a crane, for example.
  • BS BIM support system A BIM application M Support module M1 to M4 Manufacturer SP Start point FP End point C Crane R1, R2 Image of moving route of suspended load T Client terminal 11 Input unit 12 Display unit 13 Communication unit 14 Storage unit 141 First storage unit 142 second storage unit 143 third storage unit 15 control unit 16 first control unit 161 BIM control unit 162 display control unit 17 second control unit 171 communication control unit 172 support control unit 173 information acquisition unit 174 request issuing unit 175 display support Control unit 176
  • Area image processing unit 177 Deformed image processing unit G1, G1A, G1B, G1C, G1D, G1E Building image G2, G21, G2A, G21A, G2B, G21C, G22C, G22D Work machine image G21D, G21E Work machine image G3 Notification image G4, G 4A area image G5, G5A deformed image G6, G6A work site image G72 building G73 fence G74 outdoor unit G75 telephone pole G76 tree G77 oncoming lane G78 steel frame

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Architecture (AREA)
  • Quality & Reliability (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • Game Theory and Decision Science (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Civil Engineering (AREA)
  • Operations Research (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

性能情報サーバは、作業機の機種情報と、作業機の性能情報を指定する性能情報要求とを含むリクエストを取得するリクエスト取得部と、作業機の諸元データを、作業機の機種と対応付けて記憶する記憶部と、リクエストに含まれる機種情報及び機種情報に対応する諸元データに基づいて作業機の性能情報を取得する制御部と、制御部が取得した性能情報を含むレスポンスを提示するレスポンス提示部と、を備える。

Description

性能情報サーバ、クライアント端末、作業機、性能情報の取得方法、及び性能情報の提供方法
 本発明は、性能情報サーバ、クライアント端末、作業機、性能情報の取得方法、及び性能情報の提供方法に関する。
 近時、建設業界において、建物の設計や作業計画に、3D-CAD(Computer Aided Design)やBIM(Building Information Modeling)等のアプリケーションが利用されている(特許文献1参照)。このようなアプリケーションは、建物や作業機の3D画像を生成し表示部に表示する。特にBIMは、例えば、クレーン、ブルドーザ、及びトラックを用いる作業計画の作成時にも活用されている。
 作業計画を作成する際、BIMのオペレータは、例えば、所望の作業姿勢における作業機(例えば、クレーン)の性能情報(例えば、定格総荷重)を求めるために、作業機メーカーから提供された定格総荷重表を参照する。しかし、作業計画の作成時に、作業者が定格総荷重表を参照することは煩雑であり、作業効率が悪いといった不都合があった。
 又、特許文献2には、性能情報を演算する機能を有する移動式クレーンが開示されている。このような移動式クレーンは、性能情報を演算する際、記憶部に記憶した演算式を使用する。演算式は、最新の性能情報に対応する演算式に更新されることがある。このような演算式の更新は、例えば、メンテナンス作業者によって、作業機毎に行われるが、総ての作業機が最新の演算式に更新されていない状況が発生する可能性がある。作業機毎に演算式が異なる場合、同じ作業現場に配置された同機種の作業機同士であっても、作業機の演算により求められる性能情報が異なる可能性がある。よって、同じ作業現場に配置された同機種の作業機同士で、同じ性能情報を効率よく求められる技術が求められている。
特開2006-318112号公報 特開2016-117543号公報
 本発明は、上述のような状況に鑑みなされたものであり、作業機の性能情報を効率よく得ることができる技術を提供することを課題とする。
 本発明に係る性能情報サーバの一態様は、作業機の機種情報と、作業機の性能情報を指定する性能情報要求とを含むリクエストを取得するリクエスト取得部と、作業機の諸元データを、作業機の機種と対応付けて記憶する記憶部と、リクエストに含まれる機種情報及び機種情報に対応する諸元データに基づいて作業機の性能情報を取得する制御部と、制御部が取得した性能情報を含むレスポンスを提示するレスポンス提示部と、を備える。
 本発明に係るクライアント端末の一態様は、上述の性能情報サーバに接続可能なクライアント端末であって、複数の作業機の中から、表示部に表示する作業機の選択を受け付ける入力部と、複数の作業機の機種情報及び機種情報に対応する性能情報サーバを対応付けたアドレステーブルを記憶する記憶部と、アドレステーブルを参照し、選択された作業機に対応する性能情報サーバを選定し、選択した作業機の機種情報及び作業機の性能情報を指定する性能情報要求を含むリクエストを、選定した性能情報サーバに送り、性能情報サーバから、性能情報要求で指定した性能情報を含むレスポンスを受信する制御部と、を有する。
 本発明に係る作業機の一態様は、上述の性能情報サーバに接続可能な作業機であって、作業機の機種情報及び機種情報に対応する性能情報サーバを対応付けたアドレステーブルを記憶する記憶部と、アドレステーブルを参照し、選択された作業機に対応する性能情報サーバを選定し、選択した作業機の機種情報及び作業機の性能情報を指定する性能情報要求を含むリクエストを、選定した性能情報サーバに送り、性能情報サーバから、性能情報要求で指定した性能情報を含むレスポンスを受信する制御部と、を有する。
 本発明に係る性能情報の取得方法の一態様は、上述の性能情報サーバに接続可能な端末において実行される性能情報の取得方法であって、端末は、複数の作業機の機種情報と機種情報に対応する性能情報サーバとを、それぞれ対応付けるアドレステーブルを有し、表示部に表示する作業機の選択を受け付ける工程と、アドレステーブルを参照し、選択された作業機に対応する性能情報サーバを選定する工程と、選定した性能情報サーバに、選択された作業機の機種情報及び作業機の性能情報を指定する性能情報要求を含むリクエストを送信する工程と、性能情報サーバから、リクエストに含まれる性能情報要求で指定された性能情報を含むレスポンスを受信する工程と、を含む。
 本発明に係る性能情報の提供方法の一態様は、上述の性能情報サーバにおいて実行される性能情報の提供方法であって、性能情報サーバは、作業機の機種と対応付けた諸元データを記憶し、作業機の機種情報、及び、作業機の性能情報を指定する性能情報要求を含むリクエストを、作業機、又は画像生成アプリケーションが動作する端末から取得する工程と、リクエストから取得した機種情報及び性能情報要求と、機種情報に対応する諸元データとに基づいて、性能情報要求で指定された性能情報の演算を実行する工程と、性能情報を含むレスポンスを、作業機又は端末に提示する工程と、を含む。
 本発明によれば、作業機の性能情報を効率よく得ることができる。
図1は、実施形態1に係るBIM支援システムの構成を示す図である。 図2は、実施形態1に係るBIM支援システムの機能ブロック図である。 図3は、実施形態1に係るクライアント端末のハードウェア構成の一例を示すブロック図である。 図4は、実施形態1に係るサーバのハードウェア構成の一例を示すブロック図である。 図5は、性能データ表の一例を示す図である。 図6は、クライアント端末とサーバとの間におけるデータの流れを示す図である。 図7Aは、BIM支援システムの動作の一例を示すフローチャートである。 図7Bは、BIMアプリケーションのツールバーの一部を示す図である。 図7Cは、クレーン選択画面の一例を示す図である。 図7Dは、クレーン選択画面の一例を示す図である。 図7Eは、クレーン選択画面の一例を示す図である。 図7Fは、クレーン調整画面の一例を示す図である。 図8Aは、表示部に表示される画像の一例を示す図である。 図8Bは、表示部に表示される画像の一例を示す図である。 図8Cは、表示部に表示される画像の一例を示す図である。 図9は、BIM支援システムの動作の一例を示すフローチャートである。 図10Aは、表示部に表示される画像の一例を示す図である。 図10Bは、表示部に表示される画像の一例を示す図である。 図10Cは、表示部に表示される画像の一例を示す図である。 図11は、BIM支援システムの動作の一例を示すフローチャートである。 図12Aは、表示部に表示される画像の一例を示す図である。 図12Bは、表示部に表示される画像の一例を示す図である。 図13Aは、撓んでいないブームの画像の一例を示す図である。 図13Bは、撓んだブームの画像の一例を示す図である。 図13Cは、撓んだブームの画像の一例を示す図である。 図14は、BIM支援システムの動作の一例を示すフローチャートである。 図15Aは、表示部に表示される画像の一例を示す図である。 図15Bは、表示部に表示される画像の一例を示す図である。 図16Aは、表示部に表示される画像の一例を示す図である。 図16Bは、表示部に表示される画像の一例を示す図である。 図16Cは、表示部に表示される画像の一例を示す図である。 図16Dは、表示部に表示される画像の一例を示す図である。 図16Eは、表示部に表示される画像の一例を示す図である。 図17Aは、表示部に表示される画像の一例を示す図である。 図17Bは、表示部に表示される画像の一例を示す図である。 図17Cは、表示部に表示される画像の一例を示す図である。 図17Dは、表示部に表示される画像の一例を示す図である。 図17Eは、表示部に表示される画像の一例を示す図である。 図18Aは、表示部に表示される画像の一例を示す図である。 図18Bは、表示部に表示される画像の一例を示す図である。 図18Cは、表示部に表示される画像の一例を示す図である。 図18Dは、表示部に表示される画像の一例を示す図である。 図18Eは、表示部に表示される画像の一例を示す図である。 図19は、BIM支援システムの動作の一例を示すフローチャートである。 図20Aは、表示部に表示される画像の一例を示す図である。 図20Bは、表示部に表示される画像の一例を示す図である。 図20Cは、表示部に表示される画像の一例を示す図である。 図21は、BIM支援システムの動作の一例を示すフローチャートである。 図22Aは、表示部に表示される画像の一例を示す図である。 図22Bは、表示部に表示される画像の一例を示す図である。 図22Cは、表示部に表示される画像の一例を示す図である。 図23は、作業計画書の一例を示す図である。 図24は、実施形態2に係るクレーン支援システムの構成を示す図である。 図25は、実施形態2に係るクレーン支援システムの機能ブロック図である。 図26は、クレーン支援システムの動作の一例を示すフローチャートである。
 以下、本発明の実施形態について、図面を用いて詳細に説明する。以下、図面を適宜参照して、本実施形態について説明する。本明細書の全体を通じて同一要素には、特に断らない限り、同一符号を付す。添付の図面と共に以下に記載される事項は、例示的な実施形態を説明するためのものであり、唯一の実施形態を示すためのものではない。例えば、実施形態において動作の順序が示された場合、動作の順序は、全体的な動作として矛盾が生じない範囲で、適宜変更されてもよい。
 [実施形態1]
 図1は、実施形態1に係るBIM支援システムBSの構成を示す図である。図2は、実施形態1に係るBIM支援システムBSの構成を示すブロック図である。
 <BIM支援システムの概要>
 以下、図1及び図2を参照して本実施形態に係るBIM支援システムBSのシステム構成について説明する。BIM支援システムBSは、性能情報演算システムの一例に該当する。
 BIM支援システムBSは、ハードウェア構成として、クライアント端末T及び複数のサーバS1~S4(性能情報演算サーバとも称される)を有する。尚、本実施形態のBIM支援システムBSは、クライアント端末TとサーバS1~S4とがネットワークNを介して接続された、クライアント・サーバ型のBIM支援システムである。BIM支援システムBSにおけるクライアント端末及びサーバの数は、図示の場合に限定されない。
 クライアント端末Tには、BIMアプリケーションAがインストールされている。BIMアプリケーションAは、画像生成アプリケーション及び画像生成モジュールの一例に該当する。BIMアプリケーションAには、画像生成アプリケーション支援モジュールM(以下、単に「支援モジュールM」とがアドインされている。支援モジュールMが組み込まれたクライアント端末Tは、表示支援装置の一例に該当する。尚、BIMアプリケーションAと支援モジュールMとを合わせたアプリケーションが、画像生成アプリケーションと称されることもある。
 BIMアプリケーションAは、BIMに特化したソフトウェアである。BIMアプリケーションAは、建設物(建物又はインフラ等)の計画、設計、構築、及び/又は管理等を行うことができる、BIMのための種々のソフトウェアであってよい。尚、本発明に係る画像生成アプリケーションは、BIMに特化したソフトウェアに限定されず、例えば、コンストラクション・インフォメーション・モデリング(CIM)、建築物の設計のための2D-CAD、及び3D-CADであってもよい。又、画像生成アプリケーションは、クレーン等の作業機のシミュレーションを、仮想的な空間において行うVRシミュレータ(Virtual Reality Simulator)であってもよい。尚、CIMは、BIMに含まれると捉えてもよい。
 支援モジュールMは、操作支援モジュールの一例に該当し、表示部12に表示する作業機の画像を生成するBIMアプリケーションAと連携して動作する。このような支援モジュールMは、リクエスト-レスポンス型の通信プロトコル(例えば、HTTPSプロトコル)を利用して、サーバS1~S4から、表示部12に表示された作業機の性能情報を取得する。
 サーバS1~S4はそれぞれ、性能情報サーバの一例に該当し、支援モジュールMから取得したリクエストに基づいて、作業機の性能情報を取得する機能を有する。サーバS1~S4は、リクエストを受けた支援モジュールMに対して、取得した性能情報を含むレスポンスを提示する。
 上述の性能情報は、例えば、定格総荷重に関する情報、モーメント負荷率に関する情報、ブームの最大倒伏角に関する情報、作業半径に関する情報、ブームの変形画像情報、ジブの変形画像情報、作業機の作業領域画像情報、アウトリガジャッキの反力に関する情報、作業機の姿勢情報、地盤強度を考慮した作業可否に関する情報、及び吊荷の移動経路に関する情報等を含む(後述の表2のC列参照)。又、性能情報は、作業機が所望の作業を実行できるか否かの判定結果を含む。又、作業機がクレーンの場合、性能情報は、吊荷の移動経路に関する情報を含む。
 支援モジュールMは、表示部12に表示された作業機の画像における作業機の姿勢を定義する姿勢条件を取得する。以下、作業機の画像を、単に「作業機画像」と称する。又、作業機の姿勢を、単に「作業機画像の姿勢」と称する。更に、作業機画像の姿勢を定義する姿勢条件を、単に「作業機画像の姿勢条件」と称する。
 又、支援モジュールMは、姿勢条件、作業機の性能情報を指定するための性能情報要求、及び作業機の機種情報を含むリクエストを、サーバS1~S4から特定したサーバに送信する。
 この際、支援モジュールMは、作業機画像に対応するサーバを特定するサーバ特定情報をリクエストに含めることにより、リクエストを送信するサーバを特定してもよい。サーバ特定情報は、例えば、サーバのURI(Uniform Resource Identifier)である。又、支援モジュールMは、性能情報要求で指定した性能情報を含むレスポンスをサーバから受信する。そして、支援モジュールMは、受信した性能情報を、表示部12に表示する画像又は表示部12に表示された作業機画像に反映させる。
 一方、サーバS1~S4は、上述の支援モジュールMを有するクライアント端末Tから、作業機画像の姿勢条件、作業機の性能情報を指定する性能情報要求、及び機種情報を含むリクエストを取得する。このようなサーバS1~S4は、性能情報の演算に用いられる演算式及び作業機の諸元データを予め記憶している。
 又、サーバS1~S4は、リクエストを取得した後、リクエストに含まれる姿勢条件、性能情報要求、及び機種情報と、記憶している演算式及び諸元データとに基づいて、性能情報要求で指定された性能情報の演算を実行する。そして、サーバS1~S4は、演算の結果を含むレスポンスを、クライアント端末Tに提示する。
 このようなサーバS1~S4で実行される演算は、実際の作業機(例えば、クレーン)が備える演算器で行われる演算と同じ精度の演算である。BIMアプリケーションAのオペレータ(以下、単に「オペレータ」と称する。)は、BIMアプリケーションAにおいて、実際の作業機と同じ性能情報を得ることができるため、作業機を考慮した詳細な施工計画を効率よく行うことができる。
 <クライアント端末の構成例>
 次に、クライアント端末Tの構成例について説明する。図2は、実施形態1に係るBIM支援システムBSの構成の一例を示す機能ブロック図である。図3は、実施形態1に係るクライアント端末Tのハードウェア構成の一例を示すブロック図である。クライアント端末Tは、BIMアプリケーションが組み込まれた端末の一例に該当する。
 (クライアント端末の機能構成例)
 クライアント端末Tは、入力部11、表示部12、通信部13、記憶部14、及び制御部15等を備える。
 (入力部)
 入力部11は、オペレータから入力された情報等の入力を受け付ける。オペレータによる入力情報は、入力部11によって受け付けられて制御部15に送られる。入力部11が受け付ける情報の一例を以下に説明する。
 入力部11は、性能情報要求の入力を受け付ける。性能情報要求は、クライアント端末TがサーバS1~S4から取得する作業機の性能情報を指定する情報を含む。換言すれば、性能情報要求は、サーバS1~S4が演算し、クライアント端末Tに提示する、作業機の性能情報を指定する情報を含む。尚、性能情報要求で指定される作業機の性能情報は、表示部12に表示された画像における作業機の性能情報を意味する。以下、表示部12に表示された画像における作業機は、「表示された作業機」とも称される。
 入力部11は、建築物の画像を表示部12に表示するための指示を受け付ける。以下、建築物の画像を、単に「建築物画像」と称する。又、表示部12に表示するための指示を、単に「建築物画像の表示指示」と称する。
 建築物画像の表示指示には、例えば、建築物画像の種類を指定する情報が含まれる。又、建築物画像の表示指示には、建築物画像の大きさに関する情報及び/又は建築物画像の配置に関する情報が含まれる。
 入力部11は、作業機画像を表示部12に表示する指示を受け付ける。以下、作業機画像を表示部12に表示する指示を、単に「作業機画像の表示指示」と称する。
 作業機画像の表示指示には、例えば、表示部12に表示する作業機の機種を特定するための情報が含まれる。以下、作業機の機種を特定するための情報を、単に「機種情報」と称する。
 又、作業機画像の表示指示には、作業機画像の配置に関する情報が含まれてもよい。作業機画像の配置に関する情報は、例えば、座標及び/又は方向(方位)を含む。
 機種情報は、作業機ID(型式、スペック番号、及び/又は製造番号)、及びメーカー名等のうちの少なくとも一つを含む。
 入力部11は、表示部12に表示された画像の操作を受け付ける。以下、表示部12に表示された画像の操作を、単に「画像操作」と称する。
 画像操作には、表示部12に表示された建築物画像及び/又は作業機画像に関する操作が含まれる。以下、表示部12に表示された建築物画像及び/又は作業機画像を、単に「表示画像」と称することもある。又、表示画像における建築物画像は、単に「表示建築物画像」とも称される。又、表示画像における作業機画像は、単に「表示作業機画像」とも称される。
 画像操作として、表示建築物画像の姿勢を変更する操作、サイズを変更する操作(拡大操作又は縮小操作)、及び、配置を変更する操作等のうち少なくとも一つが挙げられる。又、画像操作として、表示作業機画像の姿勢を変更する操作、サイズを変更する操作(拡大操作又は縮小操作)、及び配置を変更する操作等のうち少なくとも一つが挙げられる。
 オペレータは、表示部12に表示された設定画面に数値を入力することによって、画像操作を行う。又、オペレータは、表示建築物画像や表示作業機画像をドラッグ操作することによって、画像操作を行ってもよい。
 オペレータは、上記設定画面において、表示作業機画像の属性情報における姿勢条件(具体例は、後述する)を変更することによって、表示作業機画像の姿勢を変更する。或いは、オペレータは、表示作業機画像をドラッグ操作することによって、表示作業機画像の姿勢を変更してもよい。
 オペレータは、上記設定画面において、表示作業機におけるアタッチメント(例えば、クレーンのジブやマンバスケット)の使用の有無(使用状態又は非使用状態)を選択することにより、表示作業機の作業状態を変更する。このような操作は、表示作業機画像の属性情報における作業状態情報の変更の一例に該当する。
 (表示部)
 表示部12は、情報等を表示する。表示部12に表示される情報は、記憶部14に記憶された情報でもよいし、制御部15によって生成された情報でもよい。
 尚、入力部11と表示部12とは、個別のデバイスによって構成されてもよいし、タッチパネルディスプレイのように、情報の入力と出力(表示)とを並行して行えるデバイスに一体化されてもよい。
 (通信部)
 通信部13は、ネットワークNを介してサーバS1~S4と通信する。そのために、通信部13は、情報の送信部及び受信部(図示省略)を備える。サーバS1~S4との通信は、例えば、制御部15によって制御される。
 又、通信部13は、サーバS1~S4に向けて後述のリクエストを送信し、このリクエストに対するレスポンスをサーバS1~S4から受信する。通信部13は、取得したレスポンスを制御部15(具体的には、第二制御部17の支援制御部172)に送る。
 (記憶部)
 記憶部14は、第一記憶部141、第二記憶部142、及び第三記憶部143等を有する。尚、記憶部141~143は、一つのハードウェア(主記憶装置)により構成されている。但し、記憶部141~143は、複数のハードウェアにより構成されてもよい。
 第一記憶部141は、建築物画像データベースであって、建築物画像に関する情報を記憶する。建築物を構成する部材の三次元画像に関する情報が、第一記憶部141に記憶されている。以下、建築物を構成する部材の三次元画像を、単に「建築物画像」と称する。建築物を構成する部材として、柱、窓、配管、ドア、床、天井、及び壁等のうちの少なくとも一つが挙げられる。
 建築物画像とともに、各画像と対応付けられた属性情報が、第一記憶部141に記憶されている。建築物画像の属性情報は、部材ID(型番又は製造番号等)、種類、部材名、メーカー名、規格、寸法、及び材質等のうちの少なくとも一つを含んでよい。
 又、第一記憶部141は建築物画像以外に、例えば、建築現場や工事現場等の作業現場の構成要素の画像に関する情報を記憶してもよい。以下、作業現場の構成要素の画像を、単に「作業現場構成画像」と称する。作業現場構成画像は、例えば、道路(歩道、車道)、木、電線、電柱、車、及び人のうちの少なくとも一つの画像を含んでよい。
 第二記憶部142は、作業機画像データベースであって、作業機画像に関する情報を記憶する。例えば、作業機及び/又は作業機を構成する部材の三次元画像に関する情報が、第二記憶部142に記憶されている。以下、作業機を構成する部材の二次元画像又は三次元画像を、単に「作業機画像」と称する。
 作業機画像として、例えば、クレーン、ブルドーザ、油圧ショベルカー、コンクリートポンプ車、高所作業車、ダンプトラック、トレーラ、及びリフターのうちの少なくとも一つの作業機画像が挙げられる。作業機画像は、これら各作業機の構成部材の三次元画像を含んでもよい。
 作業機がクレーンの場合、クレーンとして、移動式クレーン(ラフテレーンクレーン、オールテレーンクレーン)及び/又はタワークレーン等が挙げられる。クレーンの構成部材として、例えば、ブーム、ジブ、アウトリガ、車両、及びフックのうちの少なくとも一つが挙げられる。
 作業機画像とともに、各作業機画像と対応付けられた属性情報が、第二記憶部142に記憶されてもよい。
 作業機画像の属性情報は、作業機画像における作業機の機種情報及び/又は作業機画像の姿勢条件を含む。作業機画像の属性情報は、作業機の作業状態に関する情報を含んでもよい。以下、作業機の作業状態に関する情報を、単に「作業状態情報」と称する。作業機画像の属性情報は、作業機を構成する部材に関する情報を含んでもよい。以下、作業機を構成する部材に関する情報を、単に「構成部材情報」と称する。
 姿勢条件は、例えば、ブームの起伏角、ブームの長さ、ブームの旋回角、ジブの起伏角、ジブの長さ、及びアウトリガの張出幅のうちの少なくとも一つを含む。
 作業状態情報は、例えば、ブーム作業状態、ジブ作業状態、シングルトップ作業状態、アウトリガ作業状態、オンタイヤ作業状態、及びフックの作業状態のうちの少なくとも一つの作業状態を特定する情報を含む。
 構成部材情報は、作業機を構成する部材の種類に関する情報を含む。作業機を構成する部材は、例えば、ブーム、ジブ、フック、及びワイヤである。以下、作業機を構成する部材の種類に関する情報を、単に「構成部材の種類情報」と称する。
 第三記憶部143は、リクエストを送るサーバを特定する情報を記憶する。サーバを特定する情報は、サーバ特定情報とも称される。サーバ特定情報は、作業機画像に対応付けて、第三記憶部143に記憶されている。
 第三記憶部143は、作業機画像の属性情報のうちの機種情報から、作業機画像に対応するサーバを特定できる形式で、サーバ特定情報を記憶している。
 具体的には、第三記憶部143は、複数の作業機画像の属性情報に含まれる機種情報と、これら各機種情報に対応するサーバ(サーバ特定情報)と、を対応付けるアドレステーブルを記憶している。
 制御部15は、上述したエレメント11~14それぞれの動作を制御してクライアント端末Tの全体的な動作を制御する。BIM支援システムBSの機能に着目した場合、制御部15は、第一制御部16及び第二制御部17等を備える。
 (第一制御部)
 第一制御部16は、BIM制御部161及び表示制御部162等を有する。第一制御部16は、BIMアプリケーションAの機能を実現する。第一制御部16は、表示部12(後述)に表示された作業機画像の挙動を制御する画像アプリケーションAの操作制御部の一例に該当する。
 (BIM制御部)
 BIM制御部161は、入力部11から、上述の建築物画像の表示指示に関する情報を取得する。そして、BIM制御部161は、建築物画像の表示指示に関する情報によって特定される建築物画像に関する情報を、記憶部14から取得する。BIM制御部161は、取得した建築物画像に関する情報を、後述の表示制御部162に送る。
 BIM制御部161は、入力部11から、上述の作業機画像の表示指示に関する情報を取得する。そして、BIM制御部161は、取得した作業機画像の表示指示に含まれる機種情報によって特定される作業機画像に関する情報を、記憶部14から取得する。BIM制御部161は、取得した作業機画像に関する情報を、後述の表示制御部162に送る。
 BIM制御部161は、入力部11から、上述の画像操作に関する情報を取得する。BIM制御部161は、取得した画像操作に関する情報を、表示画像に反映させる。
 具体的には、BIM制御部161は、取得した画像操作に関する情報(例えば、座標、寸法、及び/又は姿勢条件)を、表示画像(例えば、表示作業機画像)の属性情報に反映することにより、取得した画像操作に関する情報を表示部12の表示に反映する。
 (表示制御部)
 表示制御部162は、BIM制御部161から取得した建築物画像に関する情報を表示部12に対応する表示信号に変換して出力し、表示部12に、建築物画像を表示させる。
 表示制御部162は、BIM制御部161から受け取った作業機画像に関する情報を表示部12に対応する表示信号に変換して出力し、表示部12に、作業機画像を表示させる。
 (第二制御部)
 第二制御部17は、通信制御部171、支援制御部172、領域画像処理部176、及び変形画像処理部177等を有する。第二制御部17は、支援モジュールMの機能を実現する。又、支援制御部172は、姿勢条件取得部、性能情報取得部、及び描画支援部の機能を実現する。
 (通信制御部)
 通信制御部171は、通信部13を介した、クライアント端末TとサーバS1~S4との通信を制御する。
 (支援制御部)
 支援制御部172は、支援モジュールMの機能に着目した場合、情報取得部173、リクエスト発行部174、及び表示支援制御部175等を有する。支援制御部172の一部の機能は、性能情報取得部の機能を実現する。支援制御部172の一部は、性能情報取得部の一例に該当する。支援制御部172は、操作支援部の一例に該当する。又、支援制御部172は、性能情報を含むレスポンスをサーバから受信するレスポンス取得部としての機能を有する。よって、支援制御部172は、レスポンス取得部の一例にも該当する。
 (情報取得部)
 情報取得部173は、入力部11から性能情報要求を取得した場合に、性能情報要求で指定される性能情報をサーバS1~S4から取得するために必要な情報(以下、「パラメータ」という。)を、BIM制御部161から取得する。
 情報取得部173が取得するパラメータは、後述のリクエスト発行部174が生成するリクエストにおけるパラメータを構成する。尚、リクエストに含まれるパラメータを以下の表1に示す。情報取得部173は、姿勢条件取得部の一例に該当する。
Figure JPOXMLDOC01-appb-T000001
 表1のうち、製造番号、型式番号、及びスペック番号は、機種情報の一例に該当する。表1のうち、アウトリガ状態及びブーム・ジブ選択は、作業機状態情報の一例に該当する。ブーム・ジブ選択は、例えば、ブーム作業状態、ジブ作業状態、及びシングルトップ作業状態の中から一つの作業状態を選択する。
 表1のうち、アウトリガ幅、ブーム起伏角度、ブーム長さ、旋回角度、ジブ起伏角度、及びジブ長さは、姿勢条件の一例に該当する。アウトリガ幅は、アウトリガ毎に設定してもよい。
 又、表1のうち、ブームに関する情報(例えば、ブームの種類)、ジブに関する情報(例えば、ジブの種類)、フックに関する情報(例えば、フックの種類)、及びワイヤに関する情報(例えば、ワイヤ掛け数)は、構成部材情報の一例に該当する。
 表1のうち、単位は、その他の情報の一例に該当する。経路情報には、例えば、吊荷の移動経路、作業機の走行移動経路、及び/又はブームの先端部の移動経路が含まれる。
 具体的には、情報取得部173は、入力部11から性能情報要求を取得した場合に、表示作業機画像の属性情報における機種情報を、BIM制御部161から取得する。
 情報取得部173は、入力部11から性能情報要求を取得した場合に、表示作業機画像の属性情報のうち、作業機の作業状態を特定するための作業状態情報を、BIM制御部161から取得する。
 情報取得部173は、入力部11から性能情報要求を取得した場合に、表示作業機画像の属性情報のうち、取得した性能情報要求に対応する姿勢条件を、BIM制御部161から取得する。
 情報取得部173は、入力部11から性能情報要求を取得した場合に、表示作業機画像の属性情報のうち、作業機の構成部材に関する情報である構成部材情報を、BIM制御部161から取得する。
 情報取得部173は、表示作業機画像における作業機が吊り上げている吊荷荷重の情報を、BIM制御部161から取得する。以下、上記吊荷荷重の情報を、単に「吊上荷重情報」と称する。吊上荷重情報は、吊荷情報の一例に該当する。
 情報取得部173は、表示作業機画像における作業機が吊り上げている吊荷の経路情報を、BIM制御部161から取得する。以下、上記吊荷の経路情報を、単に「経路情報」と称する。
 以上のような情報取得部173が取得する情報は、作業機画像の属性情報として予め記憶部14に記憶されていてもよいし、サーバS1~S4から取得した情報であってもよい。尚、情報取得部173が取得する情報の具体例は、後述の表2や後述のBIM支援システムBSの動作説明において示される。
 尚、パラメータの取得方法の一例として、情報取得部173は、表1に示すパラメータのうち、取得した性能情報要求で指定された性能情報の演算に必要なパラメータのみ、BIM制御部161から取得する。
 パラメータの取得方法の一例として、情報取得部173は、性能情報要求で指定される性能情報に拘わらず、表1に示すパラメータのうち、予め決められた種類のパラメータ情報を、BIM制御部161から取得する。予め決められた種類のパラメータ情報は、例えば、属性情報における機種情報、姿勢条件、作業状態情報、及び構成部材情報に関する総ての情報である。
 情報取得部173は、取得した情報を、リクエスト発行部174に送る。
 (リクエスト発行部)
 リクエスト発行部174は、情報取得部173から取得した機種情報に基づいて、この機種情報に対応するサーバを特定するためのサーバ特定情報を、第三記憶部143から取得する。
 具体的には、リクエスト発行部174は、第三記憶部143に記憶されたアドレステーブルを参照して、情報取得部173から取得した機種情報に対応するサーバ特定情報を取得する。
 そして、リクエスト発行部174は、取得したサーバ特定情報、性能情報要求、及びパラメータを含む、リクエストを生成する。
 リクエストは、例えば、HTTPSプロトコルのリクエストメッセージの形式である。リクエストで使用されるHTTPメソッドは、例えば、GETメソッドである。リクエスト発行部174は、生成したリクエストを、通信制御部171に送る。
 式1は、リクエストの一例を示す。リクエストは、先頭から順に、URI、性能情報要求、及びパラメータを含む。パラメータは、上記表1に示す機種情報、作業状態情報、姿勢条件、構成部材情報、吊荷荷重情報、経路情報、及びその他の情報のうちの少なくとも一つを含む。パラメータは、少なくとも、性能情報要求で指定される性能情報の演算に必要なパラメータを含んでいればよい。
 具体的には、式1において、「https://.../bimapi/v1.0/Simulation/」は、URIの一例に該当する。又、式1において、「RatedWeight」は、性能情報要求の一例に該当する。又、式1において、「Model={モデル}& BoomState={ブームジブ種類}&BoomLength={ブーム長さ}&...」は、パラメータの一例に該当する。尚、式1における、「モデル」、「ブームジブ種類」、及び「ブーム長さ」は、式2のように記号、文字列、又は数値に置き換えられてもよい。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 (表示支援制御部)
 表示支援制御部175は、通信制御部171から取得したレスポンスを解析し、レスポンスに含まれるサーバS1~S4の演算結果を、表示部12の表示に反映させる。表示支援制御部175は、レスポンスに含まれるサーバS1~S4の演算結果を、BIM制御部161に送り、表示部12に表示する画像又は表示部12の表示された画像に反映させる。表示支援制御部175は、レスポンス取得部及び描画支援部の一例に該当する。
 表示支援制御部175は、表示作業機画像の属性情報を、レスポンスに含まれるサーバS1~S4の演算結果に基づいて更新することにより、この演算結果を、表示部12の表示に反映させてもよい。
 表示支援制御部175は、レスポンスに領域画像に関する情報が含まれている場合には、領域画像に関する情報を、領域画像処理部176に送る。
 表示支援制御部175は、領域画像処理部176から取得した領域画像を、BIM制御部161に送り、表示部12の表示に反映させる。尚、領域画像は、レスポンスに含まれるサーバS1~S4の演算結果(つまり、領域画像に関する情報)が反映された画像である。
 表示支援制御部175は、レスポンスに変形画像に関する情報が含まれている場合には、変形画像に関する情報を、変形画像処理部177に送る。
 表示支援制御部175は、変形画像処理部177から取得した変形画像を、BIM制御部161に送り、表示部12の表示に反映させる。尚、変形画像は、レスポンスに含まれるサーバS1~S4の演算結果(つまり、変形画像に関する情報)が反映された画像と捉えてよい。
 このような表示支援制御部175の処理は、表示支援処理と称されることもある。表示支援処理の具体例は、BIM支援システムBSの動作説明において示される。
 (領域画像処理部)
 領域画像処理部176は、表示支援制御部175から取得した領域画像に関する情報に基づいて、領域画像を生成する。このような領域画像処理部176は、領域画像生成部の一例に該当する。そして、領域画像処理部176は、生成した領域画像を表示支援制御部175に送る。領域画像処理部176は、変形画像生成部の一例と捉えてよい。
 尚、領域画像は、表示部12に表示された作業機の姿勢において、この作業機のフックを移動させることができる範囲(以下、「フックの可動領域」と称する。)を、二次元及び/又は三次元で示す画像である。つまり、作業機にはフックが含まれると捉えてよい。
 又、表示部12に表示された作業機が吊荷を吊っている場合には、吊り具及び吊荷が作業機に含まれると捉えてよい。この場合には、領域画像は、吊り具を移動させることができる範囲(以下、「吊り具の可動領域」と称する。)及び/又は吊荷を移動させることができる範囲(以下、「吊荷の可動領域」と称する。)を、二次元及び/又は三次元で示す画像である。領域画像の具体例は、BIM支援システムBSの動作説明において示される。尚、領域画像処理部176が生成する領域画像は、作業機画像に関連する変形画像の一例と捉えてもよい。
 (変形画像処理部)
 変形画像処理部177は、表示支援制御部175から取得した変形画像に関する情報に基づいて、変形画像を生成する。変形画像処理部177は、変形画像生成部の一例に該当する。そして、変形画像処理部177は、生成した変形画像を表示支援制御部175に送る。変形画像の具体例は、BIM支援システムBSの動作説明において示される。尚、変形画像処理部177が生成する変形画像は、作業機画像に関連する変形画像の一例と捉えてよい。
 尚、以上のようなクライアント端末Tに組み込まれたBIMアプリケーションA及び支援モジュールMは、クラウドサーバ(不図示)に組み込まれて、実行されてもよい。クラウドサーバは、ネットワークNを介して、サーバS1~S4に接続される。
 又、クラウドサーバは、ビューアが組み込まれたクライアント端末(不図示)にネットワークNを介して接続されている。ビューアは、クラウドサーバで実行されるBIMアプリケーションAが生成する画像を表示するアプリケーションである。
 オペレータは、クライアント端末のビューアを介して、BIMアプリケーションAが生成する画像を操作する。このようなシステムは、クラウド型のBIM支援システムの一例に該当する。クラウド型のBIM支援システムにおいて、クラウドサーバは、画像生成アプリケーションが組み込まれた端末の一例に該当する。
 (クライアント端末のハードウェア構成例)
 図3に示すように、クライアント端末Tは、デスクトップ型コンピュータ(パーソナルコンピュータ、ワークステーション等)、ラップトップ型コンピュータ(パーソナルコンピュータ、ワークステーション等)、タブレット端末、又はスマートフォン等のモバイル装置等である。
 クライアント端末Tは、ハードウェア構成に着目した場合、一般的なデスクトップ型コンピュータ又はラップトップ型コンピュータが備えるプロセッサ1001、入力装置1002、出力装置1003、メモリ1004、及びストレージ1005等を備える。
 又、クライアント端末Tは、通信インタフェース(IF)1006、及び電源回路1007を備える。これらのエレメント1001~1007は、例えば、バス1008によって接続されてよい。
 プロセッサ1001は、クライアント端末Tの動作を制御する。プロセッサ1001は、演算能力を備えた回路又はデバイスの一例である。プロセッサ1001には、例えば、CPU(central processing unit)、MPU(micro processing unit)、及びGPU(graphics processing unit)の少なくとも1つが用いられてよい。
 入力装置1002は、図2に示した入力部11を含んでよい。入力装置1002は、クライアント端末Tに対する情報の入力に用いられるデバイス、例えば、キーボード、タッチパネル、及びマウスの少なくとも1つを含んでよい。入力装置1002を通じて、プロセッサ1001に情報が入力されてよい。
 出力装置1003は、図2に示した表示部12を含んでよい。具体的には、出力装置1003は、表示部12に相当するディスプレイ(又は、モニタ)を含んでよい。ディスプレイは、タッチパネル式のディスプレイであってよい。タッチパネル式のディスプレイは、入力装置1002及び出力装置1003の双方に該当すると捉えてよい。
 メモリ1004は、例えば、プロセッサ1001によって実行されるプログラム、及び、プログラムの実行に応じて処理されるデータ又は情報を記憶する。メモリ1004には、RAM(random access memory)及びROM(read only memory)が含まれる。RAMは、プロセッサ1001のワークメモリに用いられてよい。「プログラム」は、「ソフトウェア」或いは「アプリケーション」と称される。
 ストレージ1005は、プロセッサ1001によって実行されるプログラム、及び、プログラムの実行に応じて処理されるデータ又は情報を記憶する。ストレージ1005に、既述の建築物画像に関する情報、作業機画像に関する情報、及びサーバ特定情報等のBIM支援システムBSに関連した情報が記憶される。
 ストレージ1005は、ハードディスクドライブ(HDD)又はソリッドステートドライブ(SSD)といった半導体ドライブ装置を含む。半導体ドライブ装置の追加で又は代替で、フラッシュメモリのような不揮発性メモリが、ストレージ1005に含まれてもよい。メモリ1004及びストレージ1005が、図2の記憶部14に該当する。
 プログラムには、既述のようなBIMアプリケーションA及び支援モジュールMを具現するプログラム(以下「BIMプログラム」と称する。)が含まれる。BIMプログラムを成すプログラムコードの全部又は一部は、メモリ1004及び/又はストレージ1005に記憶されてもよいし、オペレーティングシステム(OS)の一部に組み込まれてよい。
 プログラム及び/又はデータは、プロセッサ1001による読み取りが可能な記録媒体に記録された形態で提供されてもよい。記録媒体の一例としては、フレキシブルディスク、CD-ROM、CD-R、CD-RW、MO、DVD、ブルーレイディスク、及びポータブルハードディスクが挙げられる。又、USB(universal serial bus)メモリ等の半導体メモリも記録媒体の一例である。
 又、プログラム及び/又は情報は、アプリケーションサーバ(不図示)からネットワークNを介してクライアント端末Tに提供(ダウンロード)されてもよい。通信IF1006を通じてプログラム及び/又は情報がクライアント端末Tに提供されて、メモリ1004及び/又はストレージ1005に記憶されてよい。又、プログラム及び/又はデータは、入力装置1002を通じてクライアント端末Tに提供されて、メモリ1004及び/又はストレージ1005に記憶されてもよい。
 通信IF1006は、図2の通信部13に該当し、ネットワークNと通信するためのインタフェースである。通信IF1006は、無線通信のための無線インタフェースを備えてよい。又、通信IF1006は、有線通信のための有線インタフェースを備えてもよい。
 プロセッサ1001が、記憶部14に記憶されたBIMプログラムを読み出して実行することにより、クライアント端末Tは、既述のようなBIMアプリケーションA及び支援モジュールMの機能を実現する表示処理装置の一例として機能する。
 プロセッサ1001がBIMプログラムを実行することによって、図2に例示した制御部15の各エレメント161~172が具現される。
 電源回路1007は、図3に示した各エレメント1001~1006が動作するための電力を各エレメント1001~1006のそれぞれに供給する。
 <サーバ>
 図1に示すBIM支援システムBSは、例示的に、複数のサーバS1~S4を備える。図1には、非限定的な一例として、4台のサーバS1~S4が例示されている。サーバの数は、1以上かつ3以下でもよいし5以上でもよい。
 サーバS1~S4は、例えば、作業機メーカー毎に設けられる。以下、サーバS1~S4のうちサーバS1について説明する。尚、サーバS2~S4の構成は、サーバS1と同様であるため省略する。サーバS1は、例えば、作業機メーカーM1に対応するサーバである。又、サーバS2~S4はそれぞれ、作業機メーカーM2~M4に対応するサーバである。
 (サーバの機能構成例)
 サーバS1は、通信部21、記憶部23、及び制御部22等を有する。
 (通信部)
 通信部21は、クライアント端末Tと、ネットワークNを介して通信する。そのため、通信部21は、情報の送信部及び受信部(図示省略)等を備える。クライアント端末Tとの通信は、制御部(不図示)によって制御される。
 尚、通信部21は、サーバS1とサーバS2~S4とを、ネットワークNを介して通信する。
 本実施形態の場合、サーバS1は、インターネットを介してクライアント端末Tと接続されている。サーバS1とクライアント端末Tとは、HTTPSプロトコル等のTCP/IPプロトコルを用いて通信する。尚、サーバS1とクライアント端末Tとの通信プロトコルは、HTTPSプロトコルに限定されず、いわゆるリクエスト-レスポンス型の種々の通信プロトコルであってもよい。
 通信部21は、クライアント端末Tから受信したリクエストを、制御部22に送る。又、通信部21は、制御部22から取得したレスポンスを、クライアント端末Tに送信する。
 (記憶部)
 記憶部23は、演算部222が行う演算で使用される演算式(不図示)を記憶する。演算式は、リクエストに含まれる性能情報要求で指定される性能情報の演算に使用される。記憶部23は、後述の補間演算に用いられる補間演算式を記憶する。
 記憶部23は、演算部222が行う演算で使用される性能データ(例えば、定格総荷重)を記憶する。記憶部23は、例えば、性能データを表形式の性能テーブルとして記憶する。性能テーブルは、作業機画像の姿勢条件(ブームの起伏角、ブームの長さ、ブームの旋回角、ジブの起伏角、ジブの長さ、及びアウトリガの張出幅)、クレーンの作業状態、及びクレーンの作業半径等のパラメータと、性能データとを対応付けた表(以下、「性能データ表」と称する。)である。
 (性能データ表の一例)
 性能データ表は、性能テーブルの一例に該当し、姿勢条件、作業状態情報、及び作業半径等から、性能データ(例えば、定格総荷重)を求めるための表である。このような性能データ表は、作業機の機種毎に記憶部23に記憶されている。
 性能データ表の一例を、図5に示す。図5には、ブーム作業状態かつアウトリガ作業状態であって、各アウトリガの張出幅が最大の場合の、ブーム長さ及び作業半径と性能データである定格総荷重とに関する性能データ表24が例示されている。
 例えば、図5に示す性能データ表24は、ブーム長さ(例えば、9.35m)及び作業半径(例えば、2.5m)がパラメータとして与えられると、これら各パラメータに対応する定格総荷重(25t)が得られる。尚、性能データ表は、ジブ作業状態、オンタイヤ状態、及び/又はアウトリガ状態等の作業状態情報毎に設けられている。又、アウトリガの張出幅に応じて、複数の性能データ表が設けられている。
 図5に示す性能データ表24は、所定間隔で並べられたブーム長さ及び作業半径と、定格総荷重とにより構成されている。所定間隔を小さくするほど、精度のよい性能データ表となる。例えば、図5に示す性能データ表24に値が示されているブーム長さ(例えば、9.35m、16.4m等)及び作業半径(例えば、2.5m、3.0m)であれば、性能データ表から定格総荷重を求めることができる。
 しかしながら、図5に示す性能データ表24に示されていないブーム長さ(例えば、12m)の場合には、作業半径2.5mにおける定格総荷重を、性能データ表24から求めることができない。性能データ表24から直接求めることができない定格総荷重は、演算部222が、補間演算により求める。演算部222は、記憶部23から取得した補間演算式を用いて、この補間演算を実行する。
 性能データ表24は、例えば、アウトリガジャッキの反力に関する性能データ表、又は、ブームの撓みに関する性能データ表であってもよい。ブームの撓みに関する性能データ表は、例えば、ブーム又はジブの種類と、クレーンの姿勢条件と、吊り上げ荷重に応じたブーム又はジブの先端の撓み量と、を対応付けて記憶している。クレーンの姿勢条件は、例えば、ブーム長さ、ブーム起伏角度、ジブ長さ、及びジブオフセット角度(ジブ起伏角度)である。
 又、記憶部23は、作業機毎の諸元データを記憶する。記憶部23は、機種情報に対応付けて諸元データを記憶する。諸元データは、演算部222が行う演算で使用される。
 作業機が移動式クレーンの場合の諸元データは、移動式クレーンのキャリア部(下部走行体ともいう)の重量重心位置及び重量を含む。又、諸元データは、各アウトリガの張出長さに対する各アウトリガの重量重心位置及び重量を含む。
 又、諸元データは、上部旋回台の旋回中心座標、重量重心位置、及び/又は重量を含む。又、諸元データは、上部旋回台の基準座標に対するベースブームの回転中心座標、重量重心位置、及び/又は重量を含む。
 又、諸元データは、ベースブームに対する2ndブームの取り付け原点座標、重量重心位置、及び/又は重量を含む。更に、諸元データは、ワイヤロープの単位長さあたりの重量を含む。尚、諸元データは、上述の例に限定されない。
 (制御部)
 制御部22は、リクエスト取得部221、演算部222、及びレスポンス発行部223等を有する。
 (リクエスト取得部)
 リクエスト取得部221は、通信部21から取得したリクエストの解析を行う。本実施形態の場合、リクエストは、HTTPSプロトコルのHTTPメッセージの形式である。リクエストで使用されているHTTPメソッドは、GETメソッドである。
 具体的には、リクエスト取得部221は、リクエストから性能情報要求及びパラメータを抽出する。パラメータは、性能情報要求に対応するパラメータであって、上記表1に示す機種情報、姿勢条件、作業状態情報、構成部材情報、吊荷荷重情報、経路情報、及びその他の情報等のうちの少なくとも一つの情報である。
 リクエストからパラメータを抽出する方法の一例について説明する。リクエストに含まれるパラメータが、リクエストに含まれる性能情報要求で指定された性能情報の演算に必要なパラメータのみの場合には、リクエスト取得部221は、リクエストに含まれるパラメータを総て抽出する。
 リクエストから姿勢条件を抽出する方法の別例について説明する。リクエストに含まれるパラメータが、予め決められた種類のパラメータである場合には、リクエスト取得部221は、リクエストに含まれるパラメータのうち、リクエストに含まれる性能情報要求で指定された性能情報の演算に必要なパラメータを選択して抽出する。
 尚、性能情報要求は、下記表2のA列の各項目に対応する。表2のB列は、リクエストに含まれるパラメータ(例えば、上記表1に示す機種情報、姿勢条件、作業状態情報、構成部材情報、吊荷情報、経路情報、及びその他の情報)を示している。
 表2の説明において、表2中の項目を参照する場合に、列番号A~Cと行番号1~10とを用いる。例えば、表2のA列1行の項目は、表2のA-1と記載される。ジブを使用しない作業状態の場合には、ジブに関する情報は、省略されてよい。
 又、例えば、固定長のジブを使用する場合には、ジブの長さをパラメータに含めてもよいし、含めなくてもよい。ジブの長さをパラメータに含めない場合には、諸元データに含まれるジブの長さを、後述の演算に使用してよい。
Figure JPOXMLDOC01-appb-T000004
 リクエスト取得部221は、リクエストから抽出した情報を演算部222に送る。尚、リクエスト取得部221の処理は、後述の演算部222により実施されてもよい。
 (演算部)
 演算部222は、リクエスト取得部221から取得した情報と、記憶部23から取得した情報とに基づいて、リクエストに含まれる性能情報要求で指定される性能情報を演算する。
 演算部222は、リクエストに含まれる情報に基づいて、演算に使用する演算式を選定する。そして、演算部222は、選定した演算式を記憶部23から取得する。
 演算式の選定方法の一例として、演算部222は、リクエストに含まれる性能情報要求に基づいて、演算に使用する演算式を選定する。
 演算式の選定方法の一例として、演算部222は、リクエストに含まれる性能情報要求、及び、リクエストに含まれる性能情報要求以外の情報に基づいて、演算に使用する演算式を選定する。性能情報要求以外の情報は、例えば、機種情報、姿勢条件、作業状態情報、及び/又は構成部材情報(構成部材の種類情報)を含む。
 演算部222は、リクエストに含まれる情報に基づいて、演算に使用する作業機の諸元データを選定する。そして、演算部222は、選定した諸元データを記憶部23から取得する。
 諸元データの選定方法の一例として、演算部222は、リクエストに含まれる機種情報に基づいて、演算に使用する作業機の諸元データを選定する。
 諸元データの選定方法の一例として、演算部222は、リクエストに含まれる機種情報、及びリクエストに含まれる機種情報以外の情報(例えば、性能情報要求及び/又は姿勢条件)に基づいて、演算に使用する作業機の諸元データを選定する。
 (第一の演算について)
 演算部222が行う演算の一例として、演算部222は、リクエスト取得部221から取得した性能情報要求及びパラメータ(機種情報及び姿勢条件等)と、記憶部23から取得した演算式及び諸元データとに基づいて、性能情報要求で指定される性能情報を演算する。
 このような演算は、第一の演算と称される。本明細書全体において、第一の演算は、記憶部23に記憶された性能データ(性能データ表)を使用しない演算を意味する。
 (第二の演算について)
 又、演算部222が行う演算の一例として、演算部222は、リクエスト取得部221から取得した性能情報要求及びパラメータ(機種情報及び姿勢条件等)と、記憶部23から取得した演算式、性能データ表、及び諸元データとに基づいて、性能情報要求で指定される性能情報を演算する。
 このような演算は、第二の演算や補間演算と称される。本明細書全体において、第二の演算及び補間演算は、記憶部23に記憶された性能データ(性能データ表)を使用する演算を意味する。
 尚、本明細書全体において、補間演算は、性能データ表のデータ間の性能データ(例えば、定格総荷重)を補間する演算を意味することもある。このような補間演算は、例えば、線形補間等の補間方法により行われる。このような補間演算は、作業機メーカー各社の独自のノウハウに基づく補間方法により行われる。演算部222は、演算結果を、レスポンス発行部223に送る。
 (レスポンス発行部)
 レスポンス発行部223は、演算部222から取得した演算結果を含む、レスポンスを生成する。レスポンス発行部223は、生成したレスポンスを、通信部21に送る。
 レスポンスは、例えば、HTTPSプロトコルのレスポンスメッセージの形式である。レスポンスのメッセージボディーには、演算結果が記載される。
 ここで、図6を参照しつつ、演算部222が行う演算の一例について、クライアント端末TとサーバS1との間のデータの流れに着目して説明する。図6は、クライアント端末TとサーバS1との間におけるデータの流れを簡易的に示す図である。
 図6に示すように、先ず、クライアント端末Tは、リクエスト31をサーバS1に送信する。リクエスト31は、サーバS1を特定するためのサーバ特定情報32、性能情報要求33、及びパラメータ34を含む。パラメータ34は、例えば、機種情報、姿勢条件、作業状態情報、構成部材情報、吊荷荷重情報、経路情報、及びその他の情報のうちの少なくとも一つを含む。尚、パラメータ34は、少なくとも、性能情報要求33で指定される性能情報の演算に必要な情報を含めばよい。
 サーバS1は、クライアント端末Tから取得したリクエスト31に含まれるパラメータ34、サーバS1の記憶部23から取得した演算式35、性能データ表24(図5参照)、及び諸元データ36に基づいて、リクエスト31に含まれる性能情報要求33で指定される性能情報を演算する。
 具体的には、演算部222は、リクエスト取得部221から取得した性能情報要求33、及びパラメータ34に含まれる機種情報に対応する演算式35を記憶部23から取得する。
 又、演算部222は、リクエスト取得部221から取得したパラメータ34(機種情報、姿勢条件、及び/又は作業状態)に対応する性能データ表24(図5参照)を記憶部23から取得する。この際、演算部222は、取得したパラメータ34(機種情報、姿勢条件、及び/又は作業状態)に対応する複数の性能データ表を記憶部23から取得する。性能データ表24は、性能情報テーブルの一例に該当する。
 更に、演算部222は、取得したパラメータ34の機種情報によって特定される作業機に対応する諸元データ36を、記憶部23から取得する。
 そして、演算部222は、クライアント端末Tから取得したパラメータ34と、記憶部23から取得した演算式35、性能データ表24、及び諸元データ36とに基づいて、クライアント端末Tから取得した性能情報要求33で指定される性能情報37を演算する。
 そして、サーバS1は、演算結果(性能情報37)を含むレスポンス38をクライアント端末Tに送信する。レスポンス38には、性能情報37とともに、クライアント端末Tを特定する端末特定情報が含まれる。
 演算部222は、作業機の実機に搭載された演算部とほぼ同精度の演算を行うことができる。換言すれば、演算部222が演算に使用する演算式、性能データ表、及び諸元データは、作業機の実機に搭載された演算部が演算に使用する演算式、性能データ表、及び諸元データと同様である。
 尚、作業機の実機では、アウトリガのジャッキ反力は、ジャッキ反力検出手段の検出値である。一方、本実施形態においては、アウトリガのジャッキ反力は、シミュレーション演算により求める。
 (サーバのハードウェア構成例)
 図4に示すように、サーバS1はそれぞれ、ハードウェア構成に着目した場合、プロセッサ2001、メモリ2002、及びストレージ2003等を備える。又、サーバS1は、通信IF2004、及び電源回路2005等を備える。更に、サーバS1は、入力装置(不図示)及び出力装置(不図示)等を備えてもよい。これらのエレメント2001~2005は、例えば、バス2006によって接続されている。
 プロセッサ2001は、サーバS1の動作を制御する。プロセッサ2001は、演算能力を備えた回路又はデバイスの一例である。プロセッサ2001には、例えば、CPU、MPU、及びGPUの少なくとも1つが用いられる。
 メモリ2002は、プロセッサ2001によって実行されるプログラム、及び、プログラムの実行に応じて処理されるデータ又は情報等を記憶している。メモリ2002には、RAM及びROMが含まれる。RAMは、プロセッサ2001のワークメモリに用いられる。
 ストレージ2003は、プロセッサ2001によって実行されるプログラムを記憶する。又、ストレージ2003は、プログラムの実行に応じて処理されるデータ又は情報等を記憶する。ストレージ2003は、既述の演算式、性能データ表、及び諸元データを記憶する。
 ストレージ2003は、ハードディスクドライブ(HDD)又はソリッドステートドライブ(SSD)といった半導体ドライブ装置を含む。半導体ドライブ装置の追加で又は代替で、フラッシュメモリのような不揮発性メモリが、ストレージ2003に含まれてもよい。
 メモリ2002及びストレージ2003が、図2の記憶部23に該当すると捉えてよい。
 サーバS1の機能を実現するプログラム(以下、「性能情報演算プログラム」と称する。)を成すプログラムコードの全部又は一部は、メモリ2002及び/又はストレージ2003に記憶されてもよいし、オペレーティングシステム(OS)の一部に組み込まれてもよい。
 プログラム及び/又はデータは、プロセッサ2001による読み取りが可能な記録媒体に記録された形態で提供されてよい。記録媒体の一例としては、フレキシブルディスク、CD-ROM,CD-R,CD-RW,MO,DVD、ブルーレイディスク、及びポータブルハードディスク等が上げられる。又、USBメモリ等の半導体メモリも記録媒体の一例である。
 通信IF2004は、図2の通信部21に該当し、ネットワークNと通信するためのインタフェースである。通信IF2004は、ネットワークNとの有線通信のための有線インタフェースを備える。
 プロセッサ2001が、記憶部23に記憶された性能情報演算プログラムを読み出して実行することにより、サーバS1は、性能情報演算サーバ装置の一例として機能する。
 例えば、プロセッサ2001が性能情報演算プログラムを実行することによって、図2に例示した制御部22及び制御部22の各エレメント221~223が具現される。
 電源回路2005は、例えば図4に示した各エレメント2001~2004が動作するための電力を各エレメント2001~2004に供給する。
 尚、サーバS2~S4の機能構成及びハードウェア構成は、サーバS1の機能構成及びハードウェア構成と同等でよい。
 (サーバで行われる演算例)
 ここで、サーバS1の演算部222で行われる演算の一例について、上記表2を参照しつつ簡単に説明する。
 演算部222は、性能情報要求が、定格総荷重の表示要求(表2のA-1参照)、モーメント負荷率の表示要求(表2のA-2参照)、最大モーメント負荷率における定格総荷重の表示要求(表2のA-3参照)、及びブーム最大倒伏角及び作業半径の表示要求(表2のA-4参照)の場合には、各性能情報の値を演算により求める。
 尚、定格総荷重を演算するための演算式、モーメント負荷率を演算するための演算式、ブーム最大倒伏角を演算するための演算式、及び作業半径を演算するための演算式は、記憶部23に記憶されている。
 又、演算部222は、例えば、性能情報要求が、ブームの変形画像及びジブの変形画像の表示要求(表2のA-5参照)の場合には、ブームの変形画像情報及びジブの変形画像情報を演算により求める。これらの変形画像情報は、変形画像処理部177による、変形画像の生成に用いられる。ブームの変形画像情報及びジブの変形画像情報は、例えば、ブーム又はジブの変形画像を描画するための数値データである。演算部222は、画像用演算式を用いて、上記数値データを算出する。
 又、演算部222は、性能情報要求が、領域画像の表示要求(表2のA-6参照)の場合には、領域画像情報を演算により求める。領域画像情報は、領域画像処理部176による、領域画像の生成に用いられる。
 更に、性能情報要求が作業機の姿勢条件、モーメント負荷率、及び作業可否の表示要求(表2のA-7参照)の場合には、演算部222は、例えば、ブーム起伏角やブーム長さ等の作業機の姿勢条件、モーメント負荷率、及び作業可否の判定結果を演算で求める。
 <BIM支援システムの動作例>
 以下、BIM支援システムBSの動作例について、説明する。
 (動作例1)
 図7A及び図8A~図8Bを参照して、BIM支援システムBSの動作の一例について説明する。図7Aは、表示部12に表示された作業機(クレーン)の定格総荷重を、表示部12に表示させる場合(表2のA-1参照)の、BIM支援システムBSの動作を示すフローチャートである。
 動作例1において、オペレータは、表示部12に表示された作業機画像の姿勢を決定した後、サーバS1~S4から選定した一つのサーバに対して、作業機画像の姿勢に対応する定格総荷重を要求する。このように、オペレータは、作業機画像の姿勢を変更した場合に、サーバに対して定格総荷重を要求する。
 オペレータは、サーバから取得した定格総荷重と搬送予定の吊荷の重量とを比較することにより、オペレータにより決定された姿勢において、クレーンが上記吊荷を搬送目的位置まで搬送できるか否かを判定できる。以下、本動作例におけるBIM支援システムBSの動作について説明する。
 図7AのステップS100において、表示部12には、図8Aに示す建築物画像G1のみが表示されている。つまり、ステップS100において、図8Aに示す作業機画像G2は、表示部12に表示されていない。建築物画像G1は、BIMアプリケーションAを用いてオペレータが作成した画像であってもよいし、記憶部14に記憶された情報を読み出して表示した画像であってもよい。
 ステップS100において、オペレータは、表示部12に作業機画像G2を表示させるために、作業機画像の表示指示を入力部11から入力する。
 ステップS100において、入力部11が作業機画像の表示指示を受け付けると、BIM制御部161は、作業機画像の表示指示に含まれる機種情報で特定される作業機画像G2を表示部12に表示させる。
 ステップS100において、BIM制御部161は、作業機画像G2を、第二記憶部142から取得する。具体的には、BIM制御部161は、作業機画像の表示指示に含まれる機種情報に対応する作業機画像を、第二記憶部142から取得する。第二記憶部142から取得した作業機画像の姿勢は、作業機画像の基本姿勢である。
 ここで、ステップS100におけるオペレータの操作の一例について説明する。ステップS100において、オペレータは、所望の作業機に関する作業機画像G2を表示部12に表示するために、BIMアプリケーションAを操作する。
 オペレータがステップS100における操作を実行する前に状態において、表示部12には、建築物画像G1が表示されており、作業機画像G2は、表示されていない。表示部12にはBIMアプリケーションAのウインドウが表示されており、このウインドウの上部には、BIMアプリケーションAのツールバー4(図7B参照)が表示されている。ツールバー4は、BIMアプリケーションAを操作するためのアイコン等を含む。
 図7Bは、BIMアプリケーションAのツールバー4の一部を示す図である。ツールバー4は、図7Bに示すタブ及びアイコン以外に、種々のタブ、アイコン、及びボタン等を備えてよい。
 先ず、オペレータは、表示部12に表示させる作業機の機種を選定する。具体的には、オペレータは、図7Bに示すツールバー4のうちのクレーン配置に関するアイコン41aを選択する。アイコン41aは、オペレータが所望のクレーンを選択するために操作するアイコンである。
 すると、BIMアプリケーションAは、図7Cに示すようなクレーン選択画面42を、表示部12に表示する。クレーン選択画面42は、「簡易モード」と「詳細モード」とを選択するモード選択部42aを有する。図7Cには、簡易モードのクレーン選択画面が示されている。詳細モードのクレーン選択画面(不図示)についての説明は省略するが、詳細モードのクレーン選択画面は、簡易モードのクレーン選択画面よりも詳細なクレーンの設定の入力を、オペレータから受け付けることができる。
 クレーン選択画面42は、条件入力部43を有する。条件入力部43は、クレーンの条件に関する入力を、オペレータから受け付ける。
 条件選択部43は、クレーンタイプを選択するための第一選択部43a、クレーンメーカーを選択するための第二選択部43b、及びジブタイプを選択するための第三選択部43cを有する。
 又、条件選択部43は、最大揚重量を選択するための第四選択部43d、最大地上揚程を選択するための第五選択部43e、及び、最大作業半径を選択するための第六選択部43fを有する。
 又、条件選択部43は、最大ブーム長さを選択するための第七選択部43g、カウンタウエイトの重量を選択するための第八選択部43h、及びフックの重量を選択するための第九選択部43iを有する。
 オペレータは、条件選択部43のうちの任意の選択部に所望のクレーンに関する条件を入力する。図7Dは、オペレータがクレーンタイプの条件を選択する際の、第一選択部43aの表示態様を示す図である。第一選択部43aは、プルダウンタイプの選択部である。オペレータは、第一選択部43aに表示された複数のクレーンのタイプから、所望のクレーンタイプを選択する。
 クレーンタイプは、例えば、ラフテレーンクレーン、オールテレーンクレーン、カーゴクレーン、及びタワークレーン等である。
 又、図7Eは、オペレータがクレーンメーカーの条件を選択する際の、第二選択部43bの表示態様を示す図である。第二選択部43bは、プルダウンタイプの選択部である。オペレータは、第二選択部43bに表示された複数のクレーンメーカーから、所望のクレーンメーカーを選択する。
 オペレータによるクレーンの条件の選択が終わると、クレーン選択画面42の一覧表示部44に、条件選択部43で選択されたクレーンの条件を満たすクレーンが表示される。オペレータは、一覧表示部44に表示されたクレーンの中から、所望のクレーンを選択する。オペレータがクレーンを選択すると、表示部12に、選択されたクレーンの作業機画像G2が表示される。
 ステップS101において、オペレータは、表示部12に表示された作業機画像G2における作業機の姿勢を決定するために、入力部11から姿勢条件を入力する。オペレータは、例えば、作業機画像G2の表示部12に表示されたクレーン調整画面45(後述)から、作業機画像G2の姿勢条件を入力する。又、オペレータは、作業機画像G2をドラッグ操作することにより、作業機画像G2における作業機の姿勢を決定してもよい。ステップS101においてオペレータが行う操作は、姿勢決定操作と称される。
 ステップS101において、オペレータは、作業機画像G2における作業機の姿勢条件のうち、決定していない姿勢条件がある場合には、この決定していない姿勢条件に対応する姿勢条件(例えば、ブーム起伏角)の入力を省略してよい。以下、上記決定していない姿勢条件を、単に「未決定姿勢条件」と称する。本動作例では、未決定姿勢条件がない場合について説明する。
 ステップS101において、入力部11が姿勢決定操作の入力を受け付けると、BIM制御部161は、姿勢決定操作を表示部12の作業機画像G2に反映する。すると、表示部12には、図8Bに示されるように、図8Aに示す作業機画像G2から姿勢が変更された作業機画像G21が表示される。
 ステップS101において、入力部11は、例えば、ブーム起伏角、ブーム長さ、ブーム旋回角、ジブ起伏角、ジブ長さ、及びアウトリガ張出幅等のうち少なくとも一つの姿勢条件の入力を受け付ける。図8Bに示す作業機画像G21は、図8Aに示す作業機画像G2に、ステップS101において入力部11が受け付けた姿勢条件を反映させた画像である。
 ここで、ステップS101におけるオペレータの操作の一例について説明する。上述のステップS100の処理の後、表示部12に表示された作業機画像G2の姿勢は、基本姿勢である(図8A参照)。作業機画像G2がクレーンの画像の場合、クレーンの基本姿勢において、ブームは全倒伏状態且つ全縮状態である。又、クレーンの基本姿勢において、ブームの旋回角度はゼロであり、アウトリガの張出幅はゼロである。
 ステップS101において、オペレータは、表示部12に表示された作業機画像G2の姿勢を決定するために、BIMアプリケーションAを操作する。ステップS101においてオペレータは、例えば、ブームの旋回角度、ブームの起伏角度、ブームの伸縮長さ、及びアウトリガの張出幅等を決定する。
 具体的には、オペレータは、図7Bに示すツールバー4のうちの配置済みクレーン調整に関するアイコン41bを選択する。アイコン41bは、表示部12に表示された作業機画像の姿勢を決定するために操作するアイコンである。
 すると、BIMアプリケーションAは、図7Fに示すようなクレーン調整画面45を、表示部12に表示する。クレーン調整画面45は、姿勢調整部46を有する。姿勢調整部46は、クレーンの姿勢に関する入力を、オペレータから受け付ける。
 姿勢調整部46は、第一調整部46a、第二調整部46b、第三調整部46c、及び第四調整部46dを有する。
 第一調整部46aは、スライドバーであって、オペレータがクレーン(つまり、作業機画像G2)の角度を調整するための調整部である。クレーンの角度は、基準方向(例えば、表示部12における上方)に対するブームの中心軸の傾斜角度と定義される。
 第二調整部46bは、スライドバーであって、オペレータが旋回台の角度(つまり、クレーンの旋回角度)を調整するための調整部である。
 第三調整部46cは、スライドバーであって、オペレータがブーム長さを調整するための調整部である。第四調整部46dは、スライドバーであって、オペレータがブームの起伏角度を調整するための調整部である。
 又、姿勢調整部46は、第一入力部46e、第二入力部46f、第三入力部46g、及び第四入力部46hを有する。
 第一入力部46eは、第一調整部46aにより選択されたクレーンの角度を表示する。又、第一入力部46eは、オペレータから、クレーンの角度に関する直接入力を受け付ける。
 第二入力部46fは、第二調整部46bにより選択されたクレーンの旋回角度を表示する。又、第二入力部46fは、オペレータから、クレーンの旋回角度に関する直接入力を受け付ける。
 第三入力部46gは、第三調整部46cにより選択されたクレーンの旋回角度を表示する。又、第三入力部46gは、オペレータから、ブーム長さに関する直接入力を受け付ける。
 第四入力部46hは、第四調整部46dにより選択されたブームの起伏角度を表示する。又、第四入力部46hは、オペレータから、ブームの起伏角度に関する直接入力を受け付ける。
 ステップS101において、オペレータは、第一調整部46a、第二調整部46b、第三調整部46c、及び第四調整部46dを操作して、クレーンの姿勢条件を入力する。又、ステップS101において、オペレータは、第一入力部46e、第二入力部46f、第三入力部46g、及び第四入力部46hに、クレーンの姿勢条件を直接入力してもよい。
 オペレータが、姿勢調整部46からクレーンの姿勢条件を入力すると、入力された姿勢条件は直ちに表示部12に表示された作業機画像G2に反映される。この結果、作業機画像G2は、作業機画像G21へと移行する(図8B参照)。
 次に、ステップS102において、オペレータは、ステップS101において姿勢が決定された作業機画像G21の定格総荷重を求めるための操作を行う。例えば、オペレータは、表示部12にポップアップ表示された入力画面から、定格総荷重の表示要求(性能情報要求)を入力する。
 尚、表示部12に定格総荷重を表示するためのオペレータの操作は、ステップS102で終了する。以後の処理は、クライアント端末TとサーバS1~S4との間で自動的に行われる。つまり、本動作例において、オペレータが、BIMアプリケーションAを介して定格総荷重の表示要求を入力すると、定格総荷重が自動的に表示部12に表示される。
 尚、上述の例では、オペレータが、定格総荷重の表示要求を、入力部11を介して手動で入力している。但し、オペレータによる定格総荷重の表示要求の入力操作は、省略されてもよい。この場合には、ステップS101において、入力部11が姿勢決定操作の入力を受け付けると、BIM制御部161は、姿勢決定操作を表示部12の作業機画像G2に反映するとともに、定格総荷重の表示要求(性能情報要求)を情報取得部173に自動的に送る。BIM制御部161は、性能情報要求とともに、性能情報要求で指定される性能情報の演算に対応するパラメータを、情報取得部173に送る。
 ステップS102において、性能情報要求を入力部11が受け付けると、情報取得部173は、取得した性能情報要求に対応するパラメータ(機種情報、姿勢条件、作業状態情報、構成部材情報、及びその他の情報)を、BIM制御部161から取得する。
 ステップS102において、情報取得部173は、少なくとも、性能情報要求で指定される性能情報の演算に必要なパラメータを、BIM制御部161から取得する。
 ステップS102において、情報取得部173が、BIM制御部161から性能情報要求を受け取った場合も、情報取得部173は、取得した性能情報要求に対応するパラメータを、BIM制御部161から取得してよい。
 ステップS102において情報取得部173が自動取得するパラメータは、以下の表3のB列に示すパラメータ(表2の1-Bに示すパラメータ)である。
Figure JPOXMLDOC01-appb-T000005
 具体的には、取得されたパラメータのうちの姿勢条件は、ブーム起伏角、ブーム長さ、ブーム旋回角、ジブ起伏角、及びジブ長さである。
 取得されたパラメータのうちの作業状態情報は、アウトリガ状態(オンタイヤ作業状態又はアウトリガ状態)に関する情報を含む。又、取得されたパラメータのうちの作業状態情報は、ブーム・ジブ選択に関する情報(表1参照)を含む。
 又、取得されたパラメータのうちの構成部材情報は、ブームに関する情報(例えば、ブームの種類)、ジブに関する情報(例えば、ジブの種類)、フックに関する情報(例えば、フックの種類)、ワイヤに関する情報(例えば、ワイヤ掛け数)、及びカウンタウエイトに関する情報(例えば、カウンタウエイトの重量)等のうち少なくとも一つの情報が含まれる。
 尚、ステップS102において、情報取得部173が自動取得する情報は、表2の1-Bに記載された項目に関する情報である。そして、情報取得部173は、取得した情報を、リクエスト発行部174に送る。
 ステップS103において、リクエスト発行部174は、取得した機種情報で特定される作業機画像(つまり、図8Bの作業機画像G21)に対応するサーバを特定するためのサーバ特定情報(例えば、サーバのURI)を、第三記憶部143から取得する。
 そして、リクエスト発行部174は、取得したサーバ特定情報、性能情報要求、及びパラメータを含むリクエストを生成し、通信制御部171に送る。リクエストは、通信部13を介して、サーバ特定情報で特定されるサーバ(例えば、サーバS1)に送信される。
 尚、ステップS103において生成されるリクエストは、HTTPSプロトコルのリクエストメッセージの形式である。このようなリクエストは、先頭から順に、URI、性能情報要求、及びパラメータを含む(上記式1参照)。
 リクエストのうち、URIは、ステップS103において、第三記憶部143から取得したサーバ特定情報である。又、リクエストのうち、性能情報要求は、ステップS102においてオペレータから入力された、定格総荷重の表示要求である。更に、リクエストのうち、パラメータは、ステップS102において、情報取得部173が自動取得したパラメータである。
 以下、クライアント端末Tからのリクエストを受信したサーバS1の処理について説明する。
 ステップS104において、通信部21は、リクエストを受信する。そして、通信部21は、リクエストをリクエスト取得部221に送る。
 ステップS105において、リクエスト取得部221は、取得したリクエストから性能情報要求、及びパラメータを抽出する。そして、リクエスト取得部221は、抽出した情報を演算部222に送る。
 ステップS106において、演算部222は、リクエスト取得部221から取得した性能情報要求及び機種情報に対応する演算式を、記憶部23から取得する。ステップS106において演算部222が取得する演算式は、既述の補間演算を行うための補間演算式である。
 ステップS107において、演算部222は、取得した機種情報によって特定される作業機に対応する諸元データを、記憶部23から取得する。
 ステップS108において、演算部222は、リクエスト取得部221から取得した姿勢条件及び/又は作業状態情報に対応する性能データ表を記憶部23から取得する。この際、演算部222は、取得した姿勢条件及び/又は作業状態情報に対応する複数の性能データ表を、記憶部23から取得してもよい。
 尚、ステップS108において、演算部222は、姿勢条件及び/又は作業状態情報とともに、ステップS107において取得した諸元データに基づいて、性能データ表を記憶部23から取得してもよい。
 ステップS109において、演算部222は、クライアント端末Tから取得したパラメータと、記憶部23から取得した演算式(補間演算式)、性能データ表、及び諸元データとに基づいて、定格総荷重を演算する。そして、演算部222は、演算結果をレスポンス発行部223に送る。
 ステップS109において、演算部222は、リクエストに含まれるパラメータに対応する定格総荷重を、性能データ表から直接取得できる場合、ステップS109において、演算式(補間演算式)を使用しなくてよい。ただし、リクエストに含まれるパラメータに対応する定格総荷重を性能データ表から直接取得できない場合には、演算部222は、演算式(補間演算式)を使用して、既述の補間演算を行うことにより、定格総荷重を取得する。
 ステップS110において、レスポンス発行部223は、演算部222から取得した演算結果に基づいて、レスポンスを生成する。そして、レスポンス発行部223は、生成したレスポンスを、通信部21を介して、クライアント端末Tに送信する。
 以上が、クライアント端末Tからのリクエストを受信したサーバS1の処理である。次に、サーバS1からレスポンスを受信したクライアント端末T(支援モジュールM)の処理について説明する。
 ステップS111において、通信部13は、サーバS1からのレスポンスを受信する。そして、通信部13は、受信したレスポンスを第二制御部17に送る。レスポンスは、通信制御部171を介して支援制御部172の表示支援制御部175に送られる。
 ステップS112において、表示支援制御部175は、通信制御部171から取得したレスポンスを解析し、レスポンスに含まれるサーバS1の演算結果(本動作例の場合、定格総荷重)を、表示部12の表示に反映させる。
 例えば、表示支援制御部175は、図8Cに示す定格総荷重を通知する通知画像G3を、表示部12に表示させる。尚、通知画像G3は、支援モジュールM(例えば、表示支援制御部175)で生成されてもよいし、BIMアプリケーションA(例えば、BIM制御部161)で生成されてもよい。
 通知画像G3がBIMアプリケーションAで生成される場合には、ステップS112において、表示支援制御部175は、サーバS1の演算結果(本動作例の場合、定格総荷重)を、BIMアプリケーションA(具体的には、BIM制御部161)に送る。以上のような本動作例におけるBIM支援システムBSの動作は、技術的に矛盾しない範囲で、動作の順番を適宜入れ替えてもよい。
 (動作例1の作用・効果)
 以上のような本動作例によれば、オペレータは、BIMアプリケーションAから性能情報要求(定格総荷重の表示要求)を入力するのみで、表示部12において姿勢が決定された作業機画像G21(図8B参照)の定格総荷重を知ることができる。このように、オペレータは、作業機メーカーから提供された定格総荷重表を参照するような煩雑な作業をすることなく、表示部12に表示されたクレーンの定格総荷重を知ることができる。従って、オペレータは、クレーンの定格総荷重を考慮した、より詳細な施工計画作業を、効率よく行うことができる。
 又、作業計画作業において、オペレータは、サーバから取得した定格総荷重と、吊荷荷重とを比較して、クレーン作業の可否を判断することがある。オペレータは、BIMアプリケーションAにおいて上記動作例1で説明した操作を行うことにより、クレーン作業の可否の判断を効率よく行うことができる。クレーン作業を行うことができないと判断した場合には、オペレータは、クレーンの姿勢の変更、クレーンの作業状態の変更、クレーンの設置場所の変更、及び/又はクレーンの機種変更等を行い、再検討することにより、最適な作業状態を効率よく決定できる。
 尚、オペレータが、BIM支援システムBSにより、モーメント負荷率の表示要求(表2のA-2参照)を行う場合、BIM支援システムの基本的な動作は、上記動作例1と同様である。オペレータがモーメント負荷率の表示要求を行う場合、図7AのステップS102において、情報取得部173が自動取得するパラメータは、以下の表4のB列に示すパラメータ(表2の2-Bに示すパラメータ)である。
Figure JPOXMLDOC01-appb-T000006
 又、オペレータが、BIM支援システムBSにより、最大モーメント負荷率における定格総荷重の表示要求(表2のA-3参照)を行う場合、BIM支援システムの基本的な動作は、上記動作例1と同様である。オペレータが最大モーメント負荷率における定格総荷重の表示要求を行う場合、図7AのステップS102において、情報取得部173が自動取得するパラメータは、以下の表5のB列に示すパラメータ(表2の3-Bに示すパラメータ)である。
Figure JPOXMLDOC01-appb-T000007
 更に、オペレータが、BIM支援システムBSにより、アウトリガジャッキ反力表示要求(表2のA-8参照)を行う場合、BIM支援システムの基本的な動作は、上記動作例1と同様である。オペレータがアウトリガジャッキ反力の表示要求を行う場合、図7AのステップS102において、情報取得部173が自動取得するパラメータは、以下の表6のB列に示すパラメータ(表2の8-Bに示すパラメータ)である。
Figure JPOXMLDOC01-appb-T000008
 (動作例1の付記)
 尚、表示支援制御部175は、取得した定格総荷重と吊荷荷重とに基づいて、クレーン作業を行えるか否か判定してもよい。判定の結果、クレーン作業を行えないと判定した場合には、クレーン作業を行えないことを通知する情報を、表示部12に表示してもよい。
 又、上述の動作例1において、オペレータは、表示部12に表示された作業機が吊上げ作業を行えるか否かの判定結果(以下、「作業の可否判定」と称呼する)を、サーバS1に要求することもできる。作業の可否判定の結果を要求する場合には、リクエストに含まれるパラメータは、作業情報を含む。作業情報は、表示部12に表示された作業機が実行する予定の作業を示す情報である。
 具体的には、ステップS102において、オペレータは、作業の可否判定の表示要求(性能情報要求)を、入力部11から入力する。すると、ステップS102において、情報取得部173は、取得した性能情報要求に対応するパラメータを、BIM制御部161から取得する。尚、ステップS102において取得されるパラメータには、吊荷荷重情報が含まれる。
 次に、リクエストを受信したサーバS1は、ステップS109において演算した定格総荷重とリクエストに含まれる吊荷荷重情報とに基づいて、吊上げ作業の可否を判定する。そして、判定結果(性能情報)を含むレスポンスを、クライアント端末Tに送信する。
 レスポンスを取得した表示支援制御部175は、レスポンスに含まれる判定結果を、表示部12に表示する。表示部12は、判定結果に応じて、吊上げ作業が可能であることを示す情報、又は、吊上げ作業が不可能であることを示す情報が表示される。
 (動作例2)
 次に、図9及び図10A~図10Cを参照して、BIM支援システムBSの動作の一例について説明する。図9は、表示部12に表示された画像における作業機が吊上げている吊り荷の移動範囲を示す領域画像(以下、「領域画像」と称する。)を、表示部12に表示させる場合(表2のA-6参照)の、BIM支援システムBSの動作を示すフローチャートである。
 動作例2において、オペレータは、表示部12に表示された作業機の作業状態を決定した後、サーバS1~S4から選定した一つのサーバに対して、作業機の作業状態に対応する移動可能範囲を示す画像(移動範囲を示す領域画像)を要求する。本動作例の説明において、作業機の作業状態とは、作業機の姿勢が決定した状態、かつ、作業機が搬送予定の吊荷が決定している状態を意味する。
 オペレータは、取得した移動範囲を示す領域画像と、吊荷の搬送目的位置とを比較することにより、オペレータにより決定された作業機の作業状態において、クレーンが上記吊荷を搬送目的位置まで搬送できるか否かを判定できる。以下、本動作例におけるBIM支援システムBSの動作について説明する。
 先ず、ステップS200において、表示部12には、図10Aに示す建築物画像G1Aのみが表示されている。このような建築物画像G1Aは、BIMアプリケーションAを用いてオペレータが作成した画像であってもよいし、記憶部14に記憶された情報を読み出して表示した画像であってもよい。
 ステップS200において、オペレータは、表示部12に作業機画像を表示させるために、作業機画像の表示指示を入力部11から入力する。
 ステップS200において、作業機画像の表示指示の入力を入力部11が受け付けると、BIM制御部161は、表示制御部162を制御して、図10Aに示す作業機画像G2Aを表示部12に表示させる。尚、ステップS200におけるオペレータの操作及びBIM支援システムBSの処理は、既述の図7AのステップS100と同様である。
 ステップS201において、オペレータは、既述の姿勢決定操作を入力する。
 ステップS201において、入力部11が姿勢決定操作の入力を受け付けると、BIM制御部161は、姿勢決定操作を表示部12の作業機画像G2Aに反映する。すると、表示部12には、図10Bに示されるように、図10Aに示す作業機画像G2Aから姿勢が変更された作業機画像G21Aが表示される。尚、ステップS201におけるオペレータの操作及びBIM支援システムBSの処理は、既述の図7AのステップS101と同様である。
 ステップS202において、オペレータは、表示部12に領域画像の表示要求(性能情報要求)を、入力部11から入力する。例えば、オペレータは、表示部12にポップアップ表示された入力画面から、領域画像の表示要求を入力する。
 ステップS202において、性能情報要求を入力部11が受け付けると、情報取得部173は、取得した性能情報要求に対応するパラメータを、BIM制御部161から取得する。ステップS202において、情報取得部173は、少なくとも、性能情報要求で指定される性能情報の演算に必要なパラメータを、BIM制御部161から取得すればよい。
 ステップS202において、情報取得部173が自動取得するパラメータは、以下の表7のB列に示すパラメータ(表2の6-B参照)である。
Figure JPOXMLDOC01-appb-T000009
 そして、情報取得部173は、取得した情報を、リクエスト発行部174に送る。尚、表示部12に領域画像を表示するためのオペレータの操作は、ステップS202で終了する。以後の処理は、クライアント端末TとサーバS1~S4との間で自動的に行われる。つまり、本動作例において、オペレータが、BIMアプリケーションAを介して領域画像の表示要求を入力すると、領域画像が自動的に表示部12に表示される。
 ステップS203において、リクエスト発行部174は、取得した機種情報で特定される作業機画像(つまり、図8Bの作業機画像G21)に対応するサーバを特定するためのサーバ特定情報(例えば、サーバのURI)を、第三記憶部143から取得する。
 そして、リクエスト発行部174は、取得したサーバ特定情報、性能情報要求、及びパラメータを含むリクエストを生成し、通信制御部171に送る。リクエストは、通信部13を介して、サーバ特定情報で特定されるサーバ(例えば、サーバS1)に送信される。
 以下、クライアント端末Tからのリクエストを受信したサーバS1の処理について説明する。
 ステップS204において、通信部21は、リクエストを受信する。そして、通信部21は、リクエストをリクエスト取得部221に送る。
 ステップS205において、リクエスト取得部221は、取得したリクエストから性能情報要求及びパラメータを抽出する。そして、リクエスト取得部221は、抽出した情報を演算部222に送る。
 ステップS206において、演算部222は、リクエスト取得部221から取得した性能情報要求及び機種情報に対応する演算式を、記憶部23から取得する。
 ステップS207において、演算部222は、取得した機種情報によって特定される作業機に対応する諸元データを、記憶部23から取得する。
 ステップS208において、演算部222は、リクエスト取得部221から取得した姿勢条件及び/又は作業状態情報に対応する性能データ表を記憶部23から取得する。この際、演算部222は、取得した姿勢条件及び/又は作業状態情報に対応する複数の性能データ表を、記憶部23から取得してもよい。尚、ステップS208において、演算部222は、姿勢条件及び/又は作業状態情報とともに、ステップS207において取得した諸元データに基づいて、性能データ表を記憶部23から取得してもよい。
 ステップS209において、演算部222は、クライアント端末Tから取得した姿勢条件及びパラメータと、記憶部23から取得した演算式、性能データ表、及び諸元データとに基づいて、領域画像に関する情報(以下、「領域画像情報」と称する。)を演算して求める。そして、演算部222は、演算結果をレスポンス発行部223に送る。
 なお、ステップS209において演算される領域画像情報は、支援モジュールMの領域画像処理部176による領域画像の生成に用いられる。
 ステップS210において、レスポンス発行部223は、演算部222から取得した演算結果に基づいて、レスポンスを生成する。そして、レスポンス発行部223は、生成したレスポンスを、通信部21を介して、クライアント端末Tに送信する。
 次に、サーバS1からレスポンスを受信したクライアント端末Tの処理について説明する。
 ステップS211において、通信部13は、サーバS1からのレスポンスを受信する。そして、通信部13は、受信したレスポンスを第二制御部17に送る。レスポンスは、通信制御部171及び表示支援制御部175を介して領域画像処理部176に送られる。
 ステップS212において、領域画像処理部176は、表示支援制御部175から取得した領域画像情報に基づいて、領域画像を生成する。そして、領域画像処理部176は、生成した領域画像を表示支援制御部175に送る。尚、本動作例で生成される領域画像は、フックの可動領域に関する領域画像である。但し、生成される領域画像は、既述の吊り具の可動領域に関する領域画像及び/又は吊荷の可動領域に関する領域画像であってもよい。
 ステップS213において、表示支援制御部175は、領域画像処理部176から取得した領域画像を、表示部12の表示に反映させる。
 例えば、表示支援制御部175は、図10Cに示す領域画像G4を、表示部12に表示させる。なお、領域画像G4は、既述のように支援モジュールM(領域画像処理部176)で生成されてもよいし、BIMアプリケーションA(例えば、BIM制御部161)で生成されてもよい。
 領域画像G4がBIMアプリケーションAで生成される場合には、ステップS211において、表示支援制御部175は、サーバS1から取得した演算結果(本動作例の場合、領域画像情報)を、BIMアプリケーションA(具体的には、BIM制御部161)に送る。
 又、領域画像は、サーバS1(具体的には演算部222)により生成されてもよい。この場合には、演算部222が生成した領域画像(性能情報)を含むレスポンスが、サーバ1からクライアント端末Tに送信される。
 レスポンスを取得した表示支援制御部175は、レスポンスに含まれる領域画像を表示部12の表示に反映させる。以上のような本動作例におけるBIM支援システムBSの動作は、技術的に矛盾しない範囲で、動作の順番を適宜入れ替えてもよい。
 (動作例2の作用・効果)
 以上のような本動作例の場合、オペレータが、BIMアプリケーションAを介して領域画像の表示要求を入力すると、領域画像が自動的に表示部12に表示される。オペレータは、領域画像G4を視認することにより、表示部12に表示された作業機画像G21Aにおける作業機により吊荷を移動できる範囲を、直感的に認識できる。吊荷の搬送目標位置が領域画像G4よりも外に位置している場合には、オペレータは、作業機画像の姿勢を変更するか、或いは、作業機の機種を変更してもよい。このように、本動作例によれば、オペレータは、吊荷の移動範囲を考慮した、より詳細な施工計画を、容易に行うことができる。
 (動作例3)
 次に、図11、図12A、及び図12Bを参照して、BIM支援システムBSの動作の一例について説明する。図11は、撓んだブームの画像(以下、「ブームの変形画像」と称する。)及び撓んだジブの画像(以下、「ジブの変形画像」と称する。)を表示部12に表示させる場合(表2のA-5参照)の、BIM支援システムBSの動作を示すフローチャートである。
 クレーンによる搬送作業において、クレーンのブーム及び/又はジブは、自重、フックの重量、ワイヤロープの重量、及び吊荷の重量に基づいて、撓む。従って、施工計画において予めこの撓みを考慮しておくことは、クレーンと建築物との干渉を防止して、実際の作業の安全性の向上、及び、作業効率の向上に著しく寄与する。
 動作例3は、ブーム及び/ジブの撓みを考慮した施工計画を行う場合に実施される。オペレータは、動作例3において、表示部12に表示された作業機の作業状態を決定した後、サーバS1~S4から選定した一つのサーバに対して、作業機の作業状態に対応するブームの変形画像及び/又はジブの変形画像を要求する。本動作例の説明において、作業機の作業状態とは、作業機の姿勢が決定した状態、かつ、作業機が搬送予定の吊荷が決定している状態を意味する。
 オペレータは、取得したブームの変形画像及び/又はジブの変形画像と、表示部12に表示された建築物画像との位置関係を見て、オペレータにより決定された作業機の作業状態において、クレーンが搬送作業を実行できるか否かを判定できる。以下、本動作例におけるBIM支援システムBSの動作について説明する。
 先ず、ステップS300において、表示部12には、図12Aに示す建築物画像G1Bのみが表示されている。このような建築物画像G1Bは、BIMアプリケーションAを用いてオペレータが作成した画像であってもよいし、記憶部14に記憶された情報を読み出して表示した画像であってもよい。
 ステップS300において、オペレータは、表示部12に作業機画像を表示させるために、作業機画像の表示指示を入力部11から入力する。
 ステップS300において、作業機画像の表示指示の入力を入力部11が受け付けると、BIM制御部161は、表示制御部162を制御して、表示部12に基本姿勢の作業機画像(不図示)を表示させる。
 ステップS301において、オペレータは、既述の姿勢決定操作を入力する。
 ステップS301において、入力部11が姿勢決定操作の入力を受け付けると、BIM制御部161は、姿勢決定操作を表示部12の作業機画像(不図示)に反映する。すると、表示部12には、図12Aに示す作業機画像G2Bが表示される。尚、ステップS301におけるオペレータの操作及びBIM支援システムBSの処理は、既述の図7AのステップS101と同様である。
 図12Aに示す作業機画像G2Bは、作業機の作業姿勢が決定された状態の画像である。但し、図12Aに示す作業機画像G2Bは、ブーム及びジブに作用する荷重(例えば、吊荷荷重)の影響によるブーム及びジブの変形が反映されていない画像である。尚、吊荷荷重は、吊荷の荷重とフックの重量との和であってもよい。
 図12Aに示す画像において、作業機画像G2Bのブーム及びジブは、建築物画像G1Bと干渉していない。但し、実機による作業において、ブーム及びジブは、吊荷荷重等の影響で撓み、建築物と干渉する場合がある。
 ブーム及び/又はジブの変形画像を表示部12に表示させることにより、BIMアプリケーションAにおいて、ブーム及びジブの撓みを考慮した施工計画を立てることが可能となる。尚、ジブを使用していない状態では、表示部12には、ブームの変形画像のみが、表示されてもよい。
 ステップS302において、オペレータは、ブーム及び/又はジブの変形画像の表示要求(以下、「変形画像の表示要求」と称する。)を、入力部11から入力する。例えば、オペレータは、表示部12にポップアップ表示された入力画面から、変形画像の表示要求(性能情報要求)を入力する。オペレータは、表示部12に表示された撓み表示用のチェックボックスをON状態にすることにより、変形画像の表示要求を入力してもよい。
 ステップS302において、性能情報要求を入力部11が受け付けると、情報取得部173は、取得した性能情報要求に対応するパラメータを、BIM制御部161から取得する。ステップS302において、情報取得部173は、少なくとも、性能情報要求で指定される性能情報の演算に必要なパラメータを、BIM制御部161から取得すればよい。
 ステップS302において、情報取得部173が自動取得するパラメータは、以下の表8のB列に示すパラメータ(表2の5-B参照)である。
Figure JPOXMLDOC01-appb-T000010
 そして、情報取得部173は、取得した情報を、リクエスト発行部174に送る。尚、ブームの変形画像及びジブの変形画像を表示部12に表示するためのオペレータの操作は、ステップS302で終了する。以後の処理は、クライアント端末TとサーバS1~S4との間で自動的に行われる。
 ステップS303において、リクエスト発行部174は、取得した機種情報で特定される作業機画像(つまり、図12Aに示す作業機画像G2B)に対応するサーバを特定するためのサーバ特定情報(例えば、サーバのURI)を、第三記憶部143から取得する。
 そして、リクエスト発行部174は、取得したサーバ特定情報、性能情報要求、及びパラメータを含むリクエストを生成し、通信制御部171に送る。リクエストは、通信部13を介して、サーバ特定情報で特定されるサーバ(例えば、サーバS1)に送信される。尚、リクエストに含まれるパラメータは、少なくとも、性能情報要求で指定される性能情報の演算に必要な情報を含めばよい。
 次に、クライアント端末Tからのリクエストを受信したサーバS1の処理について説明する。
 ステップS304において、通信部21は、リクエストを受信する。そして、通信部21は、リクエストをリクエスト取得部221に送る。
 ステップS305において、リクエスト取得部221は、取得したリクエストから性能能情報要求及びパラメータを抽出する。そして、リクエスト取得部221は、抽出した情報を演算部222に送る。
 ステップS306において、演算部222は、リクエスト取得部221から取得した性能情報要求及び機種情報に対応する演算式を、記憶部23から取得する。
 ステップS307において、演算部222は、取得した機種情報によって特定される作業機画像に対応する諸元データを、記憶部23から取得する。
 ステップS308において、演算部222は、クライアント端末Tから取得した姿勢条件及びパラメータと、記憶部23から取得した演算式及び諸元データとに基づいて、ブームの変形画像及びジブの変形画像に関する情報(以下、「変形画像情報」と称する。)を演算して求める。そして、演算部222は、演算結果をレスポンス発行部223に送る。
 尚、変形画像情報は、例えば、ブームの変形曲線に関する情報及び/又はジブの変形曲線に関する情報である。変形曲線は、例えば、正弦波又はn次関数によりブーム及び/又はジブの変形が表された曲線である。又、変形画像情報は、基端側ブーム、中間ブーム、及び先端側ブームそれぞれの撓み角に対応する傾斜した直線(変形直線)であってもよい。
 図13Aは、撓んでいないブームの画像G79を示す図である。図13B及び図13Cは、撓んだブームの画像G79A、G79Bを示す図である。
 図13Bに示すブームの画像G79Aの場合、基端側ブームの画像G79a、中間ブームの画像G79b、G79c、及び先端側ブームの画像G79dの変形は、正弦波又はn次関数により表された曲線(変形曲線)に基づいて求められている。
 一方、図13Cに示すブームの画像G79Bの場合、基端側ブームの画像G79a、中間ブームの画像G79b、G79c、及び先端側ブームの画像G79dの変形は、撓み角に対応して傾斜した直線(変形直線)に基づいて求められている。
 尚、ステップS308において演算される変形画像情報は、支援モジュールMの変形画像処理部177による、ブームの変形画像及び/又はジブの変形画像の生成に用いられる。
 ステップS309において、レスポンス発行部223は、演算部222から取得した演算結果に基づいて、レスポンスを生成する。そして、レスポンス発行部223は、生成したレスポンスを、通信部21に送る。通信部21は、取得したレスポンスをクライアント端末Tに送信する。
 次に、サーバS1からレスポンスを受信したクライアント端末Tの処理について説明する。
 ステップS310において、通信部13は、サーバS1からのレスポンスを受信する。そして、通信部13は、受信したレスポンスを第二制御部17に送る。レスポンスは、通信制御部171及び表示支援制御部175を介して変形画像処理部177に送られる。
 ステップS311において、変形画像処理部177は、表示支援制御部175から取得した変形画像情報に基づいて、ブームの変形画像及びジブの変形画像を生成する。そして、変形画像処理部177は、生成したブームの変形画像及びジブの変形画像を表示支援制御部175に送る。
 ステップS312において、表示支援制御部175は、変形画像処理部177から取得したブームの変形画像及びジブの変形画像を、表示部12の表示に反映させる。
 例えば、表示支援制御部175は、図12Bに実線で示す変形画像G5を、表示部12に表示させる。尚、変形画像G5は、既述のように支援モジュールM(変形画像処理部177)で生成されてもよいし、BIMアプリケーションA(例えば、BIM制御部161)で生成されてもよい。
 変形画像G5がBIMアプリケーションAで生成される場合には、ステップS310において、表示支援制御部175は、サーバS1の演算結果(本動作例の場合、変形画像情報)を、BIMアプリケーションA(具体的には、BIM制御部161)に送る。
 又、変形画像は、サーバS1(具体的には演算部222)により生成されてもよい。この場合には、演算部222が生成した変形画像(性能情報)を含むレスポンスが、サーバ1からクライアント端末Tに送信される。レスポンスを取得した表示支援制御部175は、レスポンスに含まれる変形画像を表示部12の表示に反映させる。
 尚、図12Bに示すように、表示部12には、撓みが反映されていないブーム及びジブの画像を有する作業機画像G2B(以下、「変形前画像」と称する。)が破線で示されるとともに、撓みが反映されたブームの変形画像及びジブの変形画像を有する作業機画像(つまり、変形画像G5)が実線で表示されている。
 変形前画像は、表示部12に表示されなくてもよい。又、変形前画像と変形画像G5との表示態様は、区別できる表示態様であれば、図12Bに示す例に限定されない。
 又、BIMアプリケーションA(具体的には、BIM制御部161)及び支援モジュールM(具体的には、支援制御部172)のうちの何れか一方の制御部は、変形画像が、表示部12に表示された他の画像(例えば、建築物画像G1B)と干渉する場合に、干渉していることを示す情報を、表示部12に表示してもよい。この場合に、上記一方の制御部は、通知部の機能を実現する。上記一方の制御部の一部は、通知部の一例に該当する。
 又、上述の動作例3では、作業機がクレーンである場合の、ブーム及びジブの変形画像について説明した。上述の動作例3は、作業機が高所作業車である場合の、ブームについても適用できる。又、上述の動作例3は、作業者がコンクリートポンプ車である場合の、ブームにも適用できる。クレーンのブーム及びジブ、高所作業車のブーム、並びに、コンクリートポンプ車のブームは、アームの一例に該当する。
 (動作例3の作用・効果)
 以上のような本動作例によれば、オペレータは、表示部12に表示された変形画像を視認することにより、ブームの撓み及びジブの撓みを考慮した作業機画像と、建築物画像との干渉を確認できる。
 (動作例4)
 次に、図14~図15Bを参照して、BIM支援システムBSの動作の一例について説明する。図14は、ブームの最大倒伏角及び最大作業半径を示す情報を表示部12に表示させる場合(表2のA-4参照)の、BIM支援システムBSの動作を示すフローチャートである。
 クレーンによる搬送作業において、クレーンは、搬送目的位置に吊荷を搬送するために、ブームを倒伏させて作業半径を拡大することがある。クレーンにおいて、ブームの起伏角度が小さくなるほど、定格総荷重は小さくなる。
 このため、起伏角度が大きい第一状態において吊荷の重量が定格総荷重よりも小さい場合でも、ブームの起伏角度がこの第一状態よりも小さい第二状態において、吊荷の重量が定格総荷重よりも大きくなってしまう場合がある。この場合、選定したクレーンでは、吊荷を搬送目的位置に搬送することができない。実際の作業において、このような状況が発生すると、クレーンの交換が必要となり、作業の進捗が著しく遅れてしまう可能性が有る。
 又、複数のクレーンを使用する作業計画を立てる際、最小台数で施工現場の全領域をカバーするためには、各クレーンの指定吊上げ荷重における作業半径を考慮する必要がある。よって、施工計画において、最大倒伏角及び最大作業半径を考慮しておくことは、実際の作業の安全性の向上、及び、作業効率の向上に著しく寄与する。
 動作例4は、クレーンの最大倒伏角及び最大作業半径を考慮した施工計画を行う場合に実施される。オペレータは、動作例4において、表示部12に表示された作業機の作業状態を決定した後、サーバS1~S4から選定した一つのサーバに対して、作業機の作業状態に対応するブームの最大倒伏角及び最大作業半径を要求する。本動作例の説明において、作業機の作業状態とは、作業機の姿勢が決定した状態、かつ、作業機が搬送予定の吊荷が決定している状態を意味する。
 オペレータは、取得したブームの最大倒伏角及び最大作業半径と、搬送目的位置との位置関係を見て、オペレータにより決定された作業機の作業状態において、クレーンが搬送作業を実行できるか否かを判定できる。以下、本動作例におけるBIM支援システムBSの動作について説明する。
 先ず、ステップS400及びステップS401を経たステップS402において、表示部12には、図15Aに示す建築物画像G1C及び作業機画像G21Cが表示されている。ステップS401及びステップS401は、既述の図7AのステップS101及びステップS102と同様である。
 図15Aに示す建築物画像G1C及び作業機画像G21Cは、BIMアプリケーションAを用いてオペレータが作成した画像であってもよいし、記憶部14に記憶された画像であってもよい。
 ステップS402において、オペレータは、ブームの最大倒伏角及び最大作業半径の表示要求(以下、「最大倒伏角及び最大作業半径の表示要求」と称する。)を、入力部11を介して入力する。例えば、オペレータは、表示部12にポップアップ表示された入力画面から、最大倒伏角及び最大作業半径の表示要求(性能情報要求)を入力する。
 ステップS402において、性能情報要求を入力部11が受け付けると、情報取得部173は、取得した性能情報要求に対応するパラメータを、BIM制御部161から取得する。ステップS402において、情報取得部173は、少なくとも、性能情報要求で指定される性能情報の演算に必要なパラメータを、BIM制御部161から取得すればよい。
 ステップS402において、情報取得部173が自動取得するパラメータは、以下の表9のB列に示すパラメータである(表2の4-B参照)。
Figure JPOXMLDOC01-appb-T000011
 そして、情報取得部173は、取得した情報を、リクエスト発行部174に送る。尚、表示部12に最大倒伏角及び最大作業半径を表示するためのオペレータの操作は、ステップS402で終了する。以後の処理は、クライアント端末TとサーバS1~S4との間で自動的に行われる。つまり、本動作例において、オペレータが、BIMアプリケーションAを介して最大倒伏角及び最大作業半径の表示要求を入力すると、領域画像が自動的に表示部12に表示される。
 ステップS403において、リクエスト発行部174は、取得した機種情報で特定される作業機画像(つまり、図15Aの作業機画像G21C)に対応するサーバを特定するためのサーバ特定情報(例えば、サーバのURI)を、第三記憶部143から取得する。
 そして、リクエスト発行部174は、取得したサーバ特定情報、性能情報要求、及びパラメータを含むリクエストを生成し、通信制御部171に送る。リクエストは、通信部13を介して、サーバ特定情報で特定されるサーバ(例えば、サーバS1)に送信される。
 次に、クライアント端末Tからのリクエストを受信したサーバS1の処理について説明する。
 ステップS404において、通信部21は、リクエストを受信する。そして、通信部21は、リクエストをリクエスト取得部221に送る。
 ステップS405において、リクエスト取得部221は、取得したリクエストから性能情報要求及びパラメータを抽出する。そして、リクエスト取得部221は、抽出した情報を演算部222に送る。
 ステップS406において、演算部222は、リクエスト取得部221から取得した性能情報要求及び機種情報に対応する演算式を、記憶部23から取得する。
 ステップS407において、演算部222は、取得した機種情報によって特定される作業機画像に対応する諸元データを、記憶部23から取得する。
 ステップS408において、演算部222は、リクエスト取得部221から取得した姿勢条件及び/又は作業状態情報に対応する性能データ表を記憶部23から取得する。この際、演算部222は、取得した姿勢条件及び/又は作業状態情報に対応する複数の性能データ表を、記憶部23から取得してもよい。
 尚、ステップS408において、演算部222は、姿勢条件及び/又は作業状態情報とともに、ステップS407において取得した諸元データに基づいて、性能データ表を記憶部23から取得してもよい。
 ステップS409において、演算部222は、クライアント端末Tから取得した姿勢条件及びパラメータ(姿勢条件、作業状態情報、吊荷情報、及び構成部材情報)と、記憶部23から取得した演算式、性能データ表、及び諸元データとに基づいて、ブームの最大倒伏角及び最大作業半径に関する情報を演算して求める。そして、演算部222は、演算結果をレスポンス発行部レスポンス発行部223に送る。
 ステップS410において、レスポンス発行部223は、演算部222から取得した演算結果に基づいて、レスポンスを生成する。そして、レスポンス発行部223は、生成したレスポンスを、通信部21に送る。そして、通信部21は、取得したレスポンスをクライアント端末Tに送信する。
 次に、サーバS1からレスポンスを受信したクライアント端末Tの処理について説明する。
 ステップS411において、通信部13は、サーバS1からのレスポンスを受信する。そして、通信部13は、受信したレスポンスを第二制御部17に送る。レスポンスは、通信制御部171を介して表示支援制御部175に送られる。
 ステップS412において、表示支援制御部175は、レスポンスに含まれるサーバS1の演算結果(本動作例の場合、ブームの最大倒伏角及び最大作業半径に関する情報)を、表示部12の表示に反映させる。
 例えば、表示支援制御部175は、図15Bに示すように、最大倒伏角まで倒伏した状態のブームを有する作業機画像G22C(以下、「倒伏画像」と称する。)を、表示部12に表示させる。倒伏画像を表示部12に表示させる方法の一例について説明する。
 表示支援制御部175は、レスポンスに含まれるブームの最大倒伏角に関する情報を、表示部12に表示された作業機画像G21Cの属性情報におけるブームの起伏角に反映する。
 尚、この処理は、BIM制御部161により行われてもよい。この場合には、表示支援制御部175は、レスポンスに含まれるブームの最大倒伏角に関する情報を、BIM制御部161に送る。そして、BIM制御部161は、取得したブームの最大倒伏角に関する情報を、表示部12に表示されている作業機画像の属性情報におけるブームの起伏角に反映する。何れにしても、表示支援制御部175が実施する処理に基づいて、レスポンスに含まれるサーバS1の演算結果が、表示部12の表示に反映される。
 又、表示支援制御部175は、ステップS412において、図15Bに示すように、最大倒伏角及び最大作業半径の数値を、表示部12に表示させてもよい。尚、この処理についても、BIM制御部161により行われてもよい。
 又、図示は省略するが、表示支援制御部175は、ステップS412において、最大倒伏角及び最大作業半径を通知するための通知画像を、表示部12に表示させてもよい。
 (動作例4の作用・効果)
 以上のような本動作例によれば、オペレータは、表示部12に表示された作業機画像における作業機の最大倒伏角及び作業半径を、直感的に認識することができる。オペレータは、作業機の最大倒伏角及び作業半径を認識することにより、選択した作業機が、吊荷の搬送に適した作業機であるか否かを直感的に判断できる。例えば、取得した作業半径内に、吊荷の搬送目的位置が含まれなければ、オペレータは、選択した作業機のみでは、吊荷を搬送目的地まで搬送できないと判断できる。このような判定結果に基づいて、オペレータは、使用する作業機を、より作業半径が大きい作業機に変更することができる。或いは、上述の判定結果に基づいて、オペレータは、選択した作業機により、この作業機の作業半径内の任意の位置まで吊荷を搬送した後、他の作業機により、この中継位置から搬送目的地まで吊荷を搬送する手順を選択することもできる。
 又、複数のクレーンを使用する作業計画を立てる際、クレーン毎の指定吊上げ荷重に対する作業半径を取得することにより、最小台数で施工現場の全領域をカバーできるクレーンの配置を知ることができる。例えば、施工現場の平面図に対して、クレーン毎の作業半径を描画することにより、オペレータは、最小台数で施工現場の全領域をカバーできるクレーンの配置を直感的に認識することができる。このように、本動作例によれば、オペレータは、作業機の最大倒伏角及び作業半径を考慮した精度の高い施工計画作業を行うことができる。
 (動作例5)
 次に、図16A~図16Dを参照して、BIM支援システムBSの動作の一例について説明する。本動作例は、既述の動作例2と同様に、表示部12に領域画像を表示させる例である。尚、BIM支援システムBSのオペレータの操作及びBIM支援システムBSの動作は、既述の動作例2の動作フロー(図9)とほぼ同様である。本動作例が実施される状況は、既述の動作例2の場合と同様である。
 図16A~図16Eは、建築物画像、作業現場構成画像、及び作業機画像を含む作業現場の画像(以下、「作業現場画像G6」と称する。)が表示された表示部12の一例を示す。図16Aは、作業現場画像G6の斜視図が表示された表示部12を示す。図16Bは、図16AのA矢視図である。図16Cは、図16AのA矢視図である。図16Dは、図16AのA矢視図である。図16Eは、図16Bに示す作業現場画像G6に領域画像G4Aが表示された表示部12を示す。
 本動作例において、オペレータは、図16A~図16Dに示す作業現場画像G6において、ビルG72とフェンスG73との間に配置されたエアコンの室外機G74を吊上げ、移動させる操作の検証を行うことができる。
 先ず、オペレータは、表示部12に、図16A~図16Dに示す作業現場画像G6を表示させる。このような作業現場画像G6は、BIMアプリケーションAを用いてオペレータが作成した画像であってもよいし、記憶部14に記憶された画像であってもよい。作業現場画像G6を作成する方法は、既述の通りである。
 図16A~図16Dに示す作業機画像G21Dの左側アウトリガの張出幅は、最小である。左側アウトリガの張出幅を最小にすることにより、左側アウトリガが、対向車線G77にはみ出さないようにしている。
 一方、作業機画像G21Dの右側アウトリガの張出幅は、最大である。このように、作業機画像G2の左側アウトリガと右側アウトリガとは、張出幅が異なる。
 又、オペレータは、作業現場画像G6におけるフェンスG73、電柱G75、及び木G76と干渉しないように、作業機画像G21Dのブームの姿勢(例えば、ブーム長さ、旋回角、及び起伏角)を決める。姿勢を決める操作は、作業機画像G21Dの姿勢を定義する姿勢条件を、入力部11から入力することにより行われる。尚、オペレータは、作業機画像G21Dをドラッグ操作することにより、表示作業機の姿勢を決定してもよい。
 作業現場画像G6において、作業機画像G21Dの姿勢が決定した後、オペレータは、領域表示要求(性能情報要求)の操作を行う。オペレータは、例えば、表示部12にポップアップ表示された入力画面から、領域表示要求を入力する。
 本動作例の場合、リクエストに含まれる姿勢条件における左側アウトリガの張出幅と右側アウトリガの張出幅とが異なる。
 オペレータが領域表示要求を入力すると、BIM支援システムBSにおいて、図9のステップS202~ステップS213の処理が実行されて、表示部12に、図16Eに太線で示す領域画像G4Aが表示される。尚、図示は省略するが、図16A及び図16C~図16Eに示す作業現場画像G6にも領域画像G4Aが表示される。
 (動作例5の作用・効果)
 以上のような本動作例においても、オペレータが、BIMアプリケーションAを介して領域画像の表示要求を入力すると、領域画像が自動的に表示部12に表示される。
 図16Eに示す領域画像G4Aの場合、作業機画像G21Dにおける左側アウトリガの張出幅が最小であるため、領域画像G4Aにおける車両左側の領域が欠けている。オペレータは、アウトリガの張出状態に対応する領域画像を、表示部12で視認できるため、高精度なシミュレーションを直感的に行うことができる。
 又、領域画像G4Aを図16A~図16Eのような異なる視点の作業現場画像G6に表示することにより、オペレータは、より高精度なシミュレーションを行うことができる。
 (動作例6)
 次に、図17A~図18Eを参照して、BIM支援システムBSの動作の一例について説明する。本動作例は、既述の動作例3と同様に、表示部12にブームの変形画像を表示させる例である。尚、オペレータの操作及びBIM支援システムBSの動作は、既述の動作例3の動作フロー(図11参照)とほぼ同様である。動作例6が実施される状況は、既述の動作例3の場合と同様である。
 図17A~図17Eは、建築物画像及び作業機画像を含む作業現場画像G6Aが表示された表示部12の一例を示す。図17Aは、作業現場画像G6Aの斜視図が表示された表示部12を示す。図17Bは、図17AのA10矢視図である。図17Cは、図17AのA11矢視図である。図17Dは、図17AのA12矢視図である。図17Eは、図17BのX-X線断面図である。
 図18A~図18Eは、図17A~図17Eに示す作業現場画像G6Aに、ブームの変形画像が表示された表示部12の一例を示す。
 本動作例において、オペレータは、図17A~図17Eに示す作業現場画像G6Aにおいて、鉄骨構造体G78とブームとの干渉を検証できる。
 先ず、オペレータは、表示部12に、図17A~図17Eに示す作業現場画像G6Aを表示させる。このような作業現場画像G6Aは、BIMアプリケーションAを用いてオペレータが作成した画像であってもよいし、記憶部14に記憶された画像であってもよい。作業現場画像G6Aを生成する方法は、既述の通りである。
 オペレータは、鉄骨構造体G78と干渉しないように、作業機画像G21Eのブームの姿勢(例えば、ブーム長さ、旋回角、及び起伏角)を決める。姿勢を決める操作は、作業機画像G21Eの姿勢条件を、入力部11から入力することにより行われる。尚、オペレータは、作業機画像G21Eをドラッグ操作することにより、表示作業機の姿勢を決定してもよい。
 作業現場画像G6Aにおいて、作業機画像G21Eの姿勢を決定した後、オペレータは、変形画像の表示要求(性能情報要求)の操作を行う。オペレータは、例えば、表示部12にポップアップ表示された入力画面から、変形画像の表示要求を入力する。
 オペレータが撓み表示要求を入力すると、BIM支援システムBSにおいて、図11のステップS301~ステップS312の処理が実行されて、表示部12に、図18A~図18Eに示すブームの変形画像を有する作業機画像(変形画像G5A)が表示される。
 図18A~図18Eに示す変形画像G5は、サーバS1から取得したレスポンスに含まれる変形画像情報に基づいて、変形画像処理部177が生成した画像である。但し、変形画像は、サーバS1(具体的には演算部222)により生成されてもよい。
 この場合には、演算部222が生成した変形画像(性能情報)を含むレスポンスが、サーバS1からクライアント端末Tに送信される。レスポンスを取得した表示支援制御部175は、レスポンスに含まれる変形画像を表示部12の表示に反映させる。
 以上のような本動作例においても、オペレータが、BIMアプリケーションAを介して変形画像の表示要求を入力すると、変形画像が自動的に表示部12に表示される。
 尚、図示は省略するが、図18A~図18Eにおいて、変形前のブームの画像(以下、「変形前画像」と称する。)は省略されてもよい。つまり、オペレータが変形画像の表示要求を入力した場合に、変形前画像が表示部12から削除され、変形画像G5Aが表示部に自動的に表示されてもよい。
 図17A~図17Eに示す画像において、作業機画像G2のブームは、鉄骨構造体G78に干渉していない。一方、図18A~図18Eに示す変形画像G5Aの場合、ブームの先端部G57が、変形前画像のブームの先端部G57よりも下方に変位するとともに、ブームの中間部G58が、変形前画像のブームの中間部よりも上方に変位して、作業機画像G21Eのブームと、鉄骨構造体G78とが干渉している。
 図18A~図18Eに示すように、ブームと鉄骨構造体G78とが干渉している場合、オペレータは、表示されたブームの姿勢を変えることにより、ブームと鉄骨構造体G78とが干渉しないブームの姿勢を探すことができる。オペレータは、表示されたブームをドラッグすることによりブームの姿勢を変えることができる。又、オペレータは、ブームの起伏角度を入力することにより、表示されたブームの姿勢を変えることもできる。ブームの姿勢が変更されると、変更されたブームの姿勢に対応するブームの変形画像が表示されるように構成されてもよい。
 (動作例6の作用・効果)
 以上のように、本動作例によれば、オペレータは、図18A~図18Eに示す画像を視認することにより、作業機と鉄骨構造体との干渉を考慮した高精度なシミュレーションを行うことができる。
 (動作例7)
 次に、図2及び図19~図20Bを参照して、BIM支援システムBSの動作の一例について説明する。図19は、地盤強度を考慮した作業可否の判定結果を表示部12に表示させる場合(表2のA-9参照)の、BIM支援システムBSの動作を示すフローチャートである。
 クレーンによる搬送作業において、クレーンのアウトリガから地盤に対して設置圧(アウトリガ反力)が作用する。設置圧が、地盤強度よりも大きいと、地盤が沈下して、クレーンが転倒する可能性がある。このため、施工計画において予め地盤強度を考慮しておくことは、地盤の沈下及びクレーンの転倒を防止して、実際の作業の安全性の向上、及び、作業効率の向上に著しく寄与する。
 以下、本動作例におけるBIM支援システムBSの動作について説明する。具体的には、図20Aに示されるクレーンCを使用して始点SPから終点FPまで吊荷を搬送することが可能か否かの検証を、オペレータが行う場合のBIM支援システムBSの動作について説明する。
 尚、以下、終点FPに吊荷を降ろす際のクレーンの姿勢(図20A及び図20Bに示すクレーンCの姿勢)に対して検証する場合について説明する。その他のクレーンの姿勢に対して検証を行う場合も、BIM支援システムBSの基本的な動作は同じである。
 図19のステップS500において、表示部12には、図20Aに示す建築物画像G1Dのみが表示されている。つまり、ステップS500において、作業機画像は、表示部12に表示されていない。建築物画像G1Dは、BIMアプリケーションAを用いてオペレータが作成した画像であってもよいし、記憶部14に記憶された情報を読み出して表示した画像であってもよい。
 ステップS500において、オペレータは、表示部12に基本姿勢の作業機画像を表示させるために、作業機画像の表示指示を入力部11から入力する。尚、基本姿勢の作業機画像を表示部12に表示させる際にオペレータが行う操作は、既述の動作例1の場合と同様である。
 ステップS501において、オペレータは、表示部12に表示された基本姿勢の作業機画像における作業機の姿勢を決定するために、入力部11から姿勢条件を入力する。オペレータが作業機画像の姿勢を決定する際の操作は、既述の動作例1と同様である。
 ステップS501において、入力部11が姿勢決定操作の入力を受け付けると、BIM制御部161は、姿勢決定操作を表示部12の作業機画像に反映する。すると、表示部12には、図20Aに示されるように、基本姿勢の作業機画像から姿勢が変更された作業機画像G22Dが表示される。
 次に、ステップS502において、オペレータは、ステップS501において姿勢が決定された作業機画像G22Dの、地盤強度を考慮した作業の可否(以下、単に「作業可否」と称する。)を求めるための操作を行う。例えば、オペレータは、表示部12にポップアップ表示された入力画面から、作業可否の表示要求(性能情報要求)を入力する。
 尚、表示部12に作業可否を表示するためのオペレータの操作は、ステップS502で終了する。以後の処理は、クライアント端末TとサーバS1~S4との間で自動的に行われる。つまり、本動作例において、オペレータが、BIMアプリケーションAを介して作業可否の表示要求を入力すると、作業可否に関する情報が自動的に表示部12に表示される。
 ステップS502において、性能情報要求を入力部11が受け付けると、情報取得部173は、取得した性能情報要求に対応するパラメータ(機種情報、姿勢条件、吊荷情報、作業状態情報、構成部材情報、及びその他の情報)を、BIM制御部161から取得する。
 ステップS502において、情報取得部173は、少なくとも、性能情報要求で指定される性能情報の演算に必要なパラメータを、BIM制御部161から取得する。
 ステップS502において情報取得部173が自動取得するパラメータは、以下の表10のB列に示すパラメータ(表2の9-Bに示すパラメータ)である。
Figure JPOXMLDOC01-appb-T000012
 本動作例におけるパラメータは、アウトリガジャッキ反力表示要求(表2のA-8参照)を行う場合のパラメータと、地盤強度に関する情報と、を含む。
 BIMアプリケーションAは、地盤強度に関する情報を記憶している。又、BIMアプリケーションAは、作業現場全体の地盤強度を記憶している。地盤強度に関する情報は、作業現場の地下に埋められた埋設部材を考慮した地盤強度であってよい。
 尚、BIMアプリケーションAは、地盤強度に関する情報を、地盤強度テーブルとして記憶してよい。地盤強度テーブルは、作業現場の位置情報(例えば、座標又は区画)、及び、この位置情報に対応付けられた地盤強度を含んでよい。
 ステップS502において、情報取得部173は、表示部12において作業機画像G22Dが配置された位置に対応する地盤の地盤強度に関する情報を、BIMアプリケーションAから取得する。そして、ステップS502において、情報取得部173は、取得した情報を、リクエスト発行部174に送る。尚、ステップS502において、情報取得部173が取得する地盤強度に関する情報は、BIMアプリケーションAに記憶された情報に限定されない。情報取得部173が取得する地盤強度に関する情報は、オペレータにより情報入力部77から入力された情報であってもよい。
 ステップS503において、リクエスト発行部174は、取得した機種情報で特定される作業機画像(つまり、図20Aの作業機画像G22D)に対応するサーバを特定するためのサーバ特定情報(例えば、サーバのURI)を、第三記憶部143から取得する。
 そして、リクエスト発行部174は、取得したサーバ特定情報、性能情報要求、及びパラメータを含むリクエストを生成し、通信制御部171に送る。リクエストは、通信部13を介して、サーバ特定情報で特定されるサーバ(例えば、サーバS1)に送信される。
 以下、クライアント端末Tからのリクエストを受信したサーバS1の処理について説明する。
 ステップS504において、通信部21は、リクエストを受信する。そして、通信部21は、リクエストをリクエスト取得部221に送る。
 ステップS505において、リクエスト取得部221は、取得したリクエストから性能情報要求及びパラメータを抽出する。そして、リクエスト取得部221は、抽出した情報を演算部222に送る。
 ステップS506において、演算部222は、リクエスト取得部221から取得した性能情報要求及び機種情報に対応する演算式を、記憶部23から取得する。本動作例において、演算部222が取得する演算式は、アウトリガジャッキの反力を演算するための演算式、及び、アウトリガジャッキの反力とパラメータに含まれた地盤強度とを比較するための演算式である。
 ステップS507において、演算部222は、取得した機種情報によって特定される作業機に対応する諸元データを、記憶部23から取得する。
 ステップS508において、演算部222は、クライアント端末Tから取得したパラメータと、記憶部23から取得した演算式及び諸元データとに基づいて、アウトリガジャッキの反力を算出する。そして、算出したアウトリガジャッキの反力とパラメータに含まれる地盤強度とを比較して、作業可否を判定する。
 ステップS508において、演算部222は、算出したアウトリガジャッキの反力が、パラメータに含まれる地盤強度よりも小さい場合、作業可能と判定する。一方、ステップS508において、演算部222は、算出したアウトリガジャッキの反力が、パラメータに含まれる地盤強度以上の場合、作業不可能と判定する。
 演算部222は、算出したアウトリガジャッキの反力及び/又は判定結果をレスポンス発行部223に送る。
 ステップS509において、レスポンス発行部223は、演算部222から取得したアウトリガジャッキの反力及び/又は判定結果に基づいて、レスポンスを生成する。そして、レスポンス発行部223は、生成したレスポンスを、通信部21に送る。そして、通信部21は、取得したレスポンスをクライアント端末Tに送信する。レスポンスが判定結果を含む場合、このレスポンスは、リクエストに含まれる姿勢条件により定義される姿勢を有する作業機が、所定作業を実施できるか否かの判定結果を含むと捉えてよい。
 次に、サーバS1からレスポンスを受信したクライアント端末Tの処理について説明する。
 ステップS510において、通信部13は、サーバS1からのレスポンスを受信する。そして、通信部13は、受信したレスポンスを第二制御部17に送る。レスポンスは、通信制御部171を介して表示支援制御部175に送られる。
 ステップS511において、表示支援制御部175は、レスポンスに含まれるサーバS1の演算結果(本動作例の場合、作業可否に関する情報)を、表示部12の表示に反映させる。
 (動作例7の作用・効果)
 以上のような本動作例によれば、地盤強度を考慮した施工計画を立てることができるため、実際の作業における地盤の沈下及びクレーンの転倒を防止できる。このような本動作例は、作業の安全性の向上、及び、作業効率の向上に著しく寄与する。
 (動作例7の変形例1)
 動作例7の変形例1について説明する。本変形例は、吊荷を始点SP(図20A及び図20B参照)から終点FPまで搬送できるか否かの検証を行う状況で実施される。
 本変形例において、オペレータは、吊荷を始点SPから終点FPまで搬送する際に、クレーンが取り得る姿勢の範囲を指定する。具体的には、クレーンが吊荷を始点SPから終点FPまで搬送する際、クレーンの姿勢条件のうち、旋回角度が、始点SPに配置された吊荷を吊り揚げる際の第一姿勢に対応する第一旋回角度(例えば、0度)から終点FPに吊荷を降ろす際の第二姿勢に対応する第二旋回角度(例えば、90度)の範囲で変化する。オペレータは、この旋回角度の範囲を指定する。
 BIM支援システムBSが旋回角度の範囲の入力を受け付けた場合、上述のステップS502において情報取得部173は、オペレータにより指定された範囲の旋回角度を、パラメータとして取得する。そして、上述のステップS508において、演算部222は、パラメータに含まれる旋回角度の全範囲に対して、アウトリガジャッキ反力を算出し、算出したアウトリガジャッキの反力とパラメータに含まれる地盤強度とを比較して、作業可否を判定する。指定された旋回角度の範囲のうちの何れかの旋回角度において、アウトリガジャッキの反力が、地盤強度よりも大きくなった場合、演算部222は、上述の搬送作業を行うことはできなと判定する。尚、演算部222は、パラメータを離散的に変化させて、上述の作業可否を判定してもよい。
 (動作例7の変形例2)
 動作例7の変形例2について説明する。本変形例は、搬送作業を行うことができるクレーンの提示をオペレータが求める状況において実施される。
 本変形例において、パラメータに含まれる姿勢条件において搬送作業を行うことができないとサーバS1が判定した場合、サーバS1(具体的には、レスポンス発行部223)は、搬送作業を行うことが可能なクレーンに関する情報を、レスポンスに含める。このようなレスポンスを受け取ったクライアント端末Tの表示支援制御部175は、レスポンスに含まれたクレーンをオペレータに通知するための情報を、表示部12に表示する。
 (動作例7の変形例3)
 動作例7の変形例3について説明する。本変形例は、少なくともクレーンの設置位置及び吊荷が決定している状況において実施される。この状況において、オペレータは、性能情報要求として、指定された位置に配置されたクレーンにより吊荷を移動可能な範囲(以下、「吊荷の移動可能範囲」と称する。)を指定する。
 本変形例において、作業機の姿勢は決定されていなくてもよい。つまり、リクエストに含まれるパラメータは、作業機の姿勢条件を含まなくてもよい。ただし、一部の姿勢条件が決定されている場合には、パラメータは、決定された姿勢条件を含んでもよい。
 本変形例において、サーバS1の演算部222は、未決定の姿勢条件を所定の間隔で変化させて、アウトリガジャッキの反力を算出する。又、演算部222は、算出したアウトリガジャッキの反力と、パラメータに含まれる地盤強度と、を比較して作業の可否を判定する。
 演算部222は、指定されたクレーンが取り得る全ての姿勢を対象として、アウトリガジャッキの反力の算出、及び、作業可否の判定を行う。そして、演算部222は、判定結果に基づいて、吊荷の移動可能範囲を示す情報を生成する。
 本変形例において、サーバS1(具体的には、レスポンス発行部223)は、吊荷の移動可能範囲を示す情報をレスポンスに含める。そして、このレスポンスを受け取ったクライアント端末Tの表示支援制御部175は、レスポンスに含まれた吊荷の移動可能範囲を示す情報を、表示部12に表示する。図20Cは、吊荷の移動可能範囲の画像G80が示された表示部12を示す図である。吊荷の移動可能範囲の画像は、二次元画像であってもよいし、三次元画像であってもよい。
 (動作例7の変形例4)
 動作例7の変形例4について説明する。本変形例は、少なくともクレーンの設置位置及びクレーンの姿勢条件が決定している状況において実施される。この状況において、オペレータは、性能情報要求として、吊上げ可能な吊荷の最大荷重を指定する。
 本変形例において、サーバS1の演算部222は、吊荷の荷重を所定の間隔で変化させて、アウトリガジャッキの反力を算出する。又、演算部222は、算出したアウトリガジャッキの反力と、パラメータに含まれる地盤強度と、を比較して作業可否を判定する。そして、演算部222は、判定結果に基づいて、吊上げ可能な吊荷の最大荷重に関する情報を生成する。
 本変形例において、サーバS1(具体的には、レスポンス発行部223)は、吊荷の最大荷重に関する情報をレスポンスに含める。そして、このレスポンスを受け取ったクライアント端末Tの表示支援制御部175は、レスポンスに含まれた吊荷の最大荷重に関する情報を、表示部12に表示する。
 (動作例7の変形例5)
 動作例7の変形例5について説明する。本変形例は、少なくとも、作業機(本変形例の場合、クレーン)の機種及び吊荷荷重が決定している状況において実施される。この状況において、オペレータは、性能情報要求として、作業機の設置位置に関する情報(以下、単に「設置位置に関する情報」と称する。)を指定する。
 本変形例において、リクエストに含まれるパラメータは、少なくとも、性能情報要求、作業機の機種情報、吊荷荷重情報、及び作業現場全体の地盤強度に関する情報を含む。
 サーバS1の演算部222は、リクエストに含まれるパラメータ及び取得した諸元データ等に基づいて、機種情報で指定された作業機の設置位置に関する情報を算出する。又、演算部222は、算出した設置位置に作業機を設置した場合の作業機の姿勢条件を算出してもよい。
 サーバS1(具体的には、レスポンス発行部223)は、作業機の設置位置に関する情報をレスポンスに含める。演算部222が作業機の姿勢条件を算出している場合には、サーバS1は、作業機の姿勢条件に関する情報をレスポンスに含める。そして、このレスポンスを受け取ったクライアント端末Tの表示支援制御部175は、レスポンスに含まれた設置位置に関する情報を、表示部12に表示する。又、レスポンスに作業機の姿勢条件が含まれる場合には、表示支援制御部175は、取得した姿勢条件を、表示部12に表示された作業機画像の表示に反映する。
 (動作例8)
 次に、図2及び図21~図23を参照して、BIM支援システムBSの動作の一例について説明する。本動作例は、表示部12に吊荷の移動経路に関する画像を表示させる例である。
 クレーンの作業計画において、吊荷の始点SP、終点FP、吊荷、及び作業機の機種を決定した後、吊荷の移動経路を決定する。従来、オペレータは、吊荷の位置、クレーンの姿勢、クレーンの負荷状態、及び周囲の建築物を考慮して、吊荷の移動経路を決定していたが、最適な経路を決定するためには、様々な状況に応じた移動経路を検討する必要があった。このため、従来から行われている移動経路の決定方法では、作業効率が低かった。よって、クレーンの作業計画において、効率よく最適な吊荷の移動経路を求められる方法が望まれていた。
 本動作例は、吊荷の始点SP、吊荷の終点FP、吊荷、及び作業機の機種が決定した状態で実施される。図21は、吊荷の移動経路を表示部12に表示させる場合(表2のA-10参照)の、BIM支援システムBSの動作を示すフローチャートである。以下、本動作例におけるBIM支援システムBSの動作について説明する。
 図21のステップS600において、表示部12には、図22Aに示す建築物画像G1Eのみが表示されている。つまり、ステップS600において、作業機画像は、表示部12に表示されていない。建築物画像G1Eは、BIMアプリケーションAを用いてオペレータが作成した画像であってもよいし、記憶部14に記憶された情報を読み出して表示した画像であってもよい。
 ステップS600において、オペレータは、表示部12に基本姿勢の作業機画像G22Eを表示させるために、作業機画像の表示指示を入力部11から入力する。尚、基本姿勢の作業機画像G22Eを表示部12に表示させる際にオペレータが行う操作は、既述の動作例1の場合と同様である。ステップS600までに、吊荷の始点SP、吊荷の終点FP、吊荷、及び作業機の機種が決まっている。
 次に、ステップS601において、オペレータは、吊荷の移動経路を表示部12に表示させるための操作を行う。例えば、オペレータは、表示部12にポップアップ表示された入力画面から、吊荷の移動経路の表示要求(性能情報要求)を入力する。
 本動作例の場合、オペレータは、BIMアプリケーションAを操作して、吊荷の始点SP及び吊荷の終点FPを入力する。オペレータは、吊荷の経由点(不図示)を入力してもよい。
 尚、ステップS601において、オペレータは、後述のステップS607において演算部222が実行する吊荷の移動経路の生成において優先される条件(以下、「優先条件」と称する。)を入力してもよい。優先条件として、例えば、「移動距離が最も短い移動経路」、「移動時間が最も少ない移動経路」、及び「燃費が最も低い移動経路」が挙げられる。
 又、オペレータは、優先条件として、「禁止区域を通らない移動経路」を指定することもできる。禁止区域は、例えば、図22B及び図22Cに斜格子が付された区域である。禁止区域に関する情報は、BIMアプリケーションAに記憶されている。
 尚、表示部12に吊荷の移動経路を表示するためのオペレータの操作は、ステップS601で終了する。以後の処理は、クライアント端末TとサーバS1~S4との間で自動的に行われる。つまり、本動作例において、オペレータが、BIMアプリケーションAを介して吊荷の移動経路の表示要求を入力すると、吊荷の移動経路に関する画像が自動的に表示部12に表示される。
 ステップS601において、性能情報要求を入力部11が受け付けると、情報取得部173は、取得した性能情報要求に対応するパラメータ(機種情報、姿勢条件、吊荷情報、作業状態情報、構成部材情報、及びその他の情報)を、BIM制御部161から取得する。本動作例の場合、パラメータは、その他の情報として、建築物画像G1Eに関する情報を含んでいる。又、パラメータは、吊荷情報として、吊上荷重情報及び吊荷の始点に関する情報、及び吊荷の終点に関する情報を含んでいる。ただし、パラメータは、吊荷情報として、吊荷の形状に関する情報を含んでもよい。
 尚、本動作例において、パラメータは、姿勢条件としてアウトリガ張り出し幅を含んでいる。ただし、パラメータは、姿勢条件を含まなくてもよい。又、パラメータは、構成部材情報として、フック情報及びワイヤ掛け数に関する情報を含んでいる。ただし、パラメータは、構成部材情報を含まなくてもよい。
 ステップS601において情報取得部173が自動取得するパラメータは、以下の表11のB列に示すパラメータ(表2の10-Bに示すパラメータ)である。尚、ステップS601において、オペレータが優先条件として禁止区域を通らない移動経路を指定した場合には、パラメータは、禁止区域に関する情報を含む。禁止区域に関する情報は、ステップS601において、情報取得部173がBIMアプリケーションAから取得する。
Figure JPOXMLDOC01-appb-T000013
 建築物画像に関する情報は、BIMアプリケーションAに記憶されている。よって、ステップS601において、情報取得部173は、BIMアプリケーションAから建築物画像に関する情報を取得する。尚、ステップS601において情報取得部173が取得する建築物画像に関する情報は、オペレータにより情報入力部77から入力された情報であってもよい。
 ステップS601において、情報取得部173は、取得した情報を、リクエスト発行部174に送る。
 ステップS602において、リクエスト発行部174は、取得した機種情報で特定される作業機画像(つまり、図22A~図22Cの作業機画像G22E)に対応するサーバを特定するためのサーバ特定情報(例えば、サーバのURI)を、第三記憶部143から取得する。
 そして、リクエスト発行部174は、取得したサーバ特定情報、性能情報要求、及びパラメータを含むリクエストを生成し、通信制御部171に送る。リクエストは、通信部13を介して、サーバ特定情報で特定されるサーバ(例えば、サーバS1)に送信される。
 以下、クライアント端末Tからのリクエストを受信したサーバS1の処理について説明する。
 ステップS603において、通信部21は、リクエストを受信する。そして、通信部21は、リクエストをリクエスト取得部221に送る。
 ステップS604において、リクエスト取得部221は、取得したリクエストから性能情報要求及びパラメータを抽出する。そして、リクエスト取得部221は、抽出した情報を演算部222に送る。
 ステップS605において、演算部222は、リクエスト取得部221から取得した性能情報要求及び機種情報に対応する演算式を、記憶部23から取得する。本動作例において、演算部222が取得する演算式は、吊荷の移動経路を生成するための必要な演算式である。
 ステップS606において、演算部222は、取得した機種情報によって特定される作業機に対応する諸元データを、記憶部23から取得する。
 ステップS607において、演算部222は、クライアント端末Tから取得したパラメータと、記憶部23から取得した演算式及び諸元データとに基づいて、吊荷の移動経路を算出する。
 本動作例の場合、作業機の姿勢条件が決定されていない。このため、ステップS607において、演算部は、機種情報で特定された作業機が取り得る姿勢条件の範囲で、作業機の姿勢条件を変更して、吊荷の移動経路を算出する。演算部222は、パラメータに含まれる建築物画像に関する情報に基づいて、建築物画像と、クレーンC及び吊荷とが干渉しないような吊荷の移動経路を算出する。尚、ステップS601においてオペレータから優先条件が入力されている場合には、演算部222は、優先条件で指定された条件に基づいて、移動経路を生成する。
 演算部222は、算出した吊荷の移動経路に関する情報をレスポンス発行部223に送る。
 ステップS608において、レスポンス発行部223は、演算部222から取得した吊荷の移動経路に関する情報を含むレスポンスを生成する。そして、レスポンス発行部223は、生成したレスポンスを、通信部21に送る。通信部21は、取得したレスポンスをクライアント端末Tに送信する。
 次に、サーバS1からレスポンスを受信したクライアント端末Tの処理について説明する。
 ステップS609において、通信部13は、サーバS1からのレスポンスを受信する。そして、通信部13は、受信したレスポンスを第二制御部17に送る。レスポンスは、通信制御部171を介して表示支援制御部175に送られる。
 ステップS610において、表示支援制御部175は、レスポンスに含まれるサーバS1の演算結果(本動作例の場合、作業可否に関する情報)を、表示部12の表示に反映させる。
 図22B及び図22Cは、吊荷の移動経路の画像が示された表示部12の表示態様の一例を示している。吊荷の移動経路の画像R1は、オペレータにより、優先条件として「移動距離が最も短い移動経路」が指定された場合に、表示部12に表示される吊荷の移動経路である。又、吊荷の移動経路R2は、オペレータにより、優先条件として「禁止区域を通らない移動経路」が指定された場合に、表示部12に表示される吊荷の移動経路である。
 尚、上述の動作例8において、サーバS1は、吊荷の移動経路と共に、算出した吊荷の移動経路に対応する作業機の姿勢条件を含むレスポンスを、クライアント端末Tに送信してもよい。
 又、サーバS1は、算出した吊荷の移動経路に関する情報に基づいて、作業計画書を生成してもよい。この場合、サーバS1は、生成した作業計画書に関する情報を含むレスポンスを、クライアント端末Tに送信する。作業計画書には、例えば、旋回角度、起伏角度、作業の種類(例えば、玉掛け作業、玉外し作業)、巻き上げ量、負荷率、作業半径等が記載される。図23は、作業計画書の一例を示す。
 尚、作業計画書は、BIMアプリケーションAにより生成されてもよい。この場合、サーバS1は、作業計画書を生成するための情報を含むレスポンスを、BIMアプリケーションAに送信する。BIMアプリケーションAは、取得した作業計画書を生成するための情報に基づいて、図23に示すような作業計画書を生成する。
 (動作例8の作用・効果)
 以上のような本動作例によれば、オペレータは、少なくとも、吊荷の始点SP、吊荷の終点FP、吊荷、及び作業機の機種を決定すれば、優先条件を満たす吊荷の移動経路を取得できる。このように本動作例によれば、オペレータは、効率よく吊荷の移動経路を得ることができる。よって、本動作例は、作業計画の作業効率を著しく向上することができる。
 [本実施形態の作用・効果]
 上述した通り、本実施形態に係るBIM支援システムBSは、作業機に関する詳細な情報をオペレータに提示できる。このような詳細情報の提示を受けたオペレータは、作業機を考慮した詳細な施工計画を立てることができる。
 [実施形態2]
 図24~図26を参照して、実施形態2のクレーン支援システムCSについて説明する。図24は、クレーン支援システムCSの構成を示す図である。図25は、クレーン支援システムCSの構成を示すブロック図である。尚、本実施形態は、作業機の一例としてクレーンCを採用している。ただし、作業機は、クレーンに限定されず、種々の作業機であってもよい。具体的には、作業機として、クレーン、ブルドーザ、油圧ショベルカー、コンクリートポンプ車、高所作業車、ダンプトラック、トレーラ、及びリフター等が挙げられる。
 <クレーン支援システムの概要>
 以下、図24及び図25を参照して本実施形態に係るクレーン支援システムCSのシステム構成について説明する。クレーン支援システムCSは、性能情報演算システムの一例に該当する。
 クレーン支援システムCSは、ハードウェア構成として、クレーンC及び複数のサーバS1~S4(性能情報演算サーバとも称される)を有する。尚、本実施形態のクレーン支援システムCSは、クレーンCとサーバS1~S4とがネットワークNを介して接続されたシステムである。クレーン支援システムCSにおけるクレーン及びサーバの数は、図示の場合に限定されない。
 <クレーン>
 以下、クレーンCの構成について説明する。クレーンCは、移動式クレーン(例えば、ラフテレーンクレーン)である。ただし、クレーンCは、移動式クレーンに限らず、種々のクレーンであってよい。
 クレーンCは、基本構成として、一般的なラフテレーンクレーンが有する構成を有する。大きな概念として、クレーンCは、走行体6と、旋回体7と、を有する。
 具体的には、走行体6は、左右一対のフロントタイヤ61と、リヤタイヤ62と、を有する。又、走行体2は、荷物の運搬作業を行う際に接地させて安定を図るアウトリガ63を有する。
 具体的には、旋回体7は、旋回台71と、ブーム72と、ジブ72aと、を有する。旋回台71は、旋回可能な状態で、走行体6に支持されている。ブーム72は、伸縮可能な伸縮式ブームである。ブーム72は、起伏可能な状態で旋回台71に支持されている。このようなブーム72は、旋回台71が旋回軸を中心に回転すると、旋回する。ジブ72aは、使用状態において、ブーム72の先端に支持される。ジブ72aは、非使用状態(図24のクレーンCの状態)において、ブーム72の側方に格納されている。
 又、ブーム72には、ワイヤロープ(不図示)が架け渡されている。旋回台71には、ワイヤロープを巻き付けたウインチ(不図示)が設けられている。ワイヤロープは、ブーム72又はジブ72aの先端から、シーブ(不図示)を介して垂下されている。ワイヤロープの先端には、フック(不図示)が固定されている。
 旋回台71、ブーム72、ジブ72a、ワイヤロープ、及びフックは、被操作機能部の一例に該当し、アクチュエータにより駆動される。
 クレーンCは、被操作機能部を駆動するアクチュエータとして、旋回用アクチュエータ731と、起伏用アクチュエータ732と、伸縮用アクチュエータ733と、ウインチ用アクチュエータ734と、を有する(図25参照)。以下、旋回用アクチュエータ731、起伏用アクチュエータ732、伸縮用アクチュエータ733、及びウインチ用アクチュエータ734を、まとめてアクチュエータ73と称する。
 旋回用アクチュエータ731は、例えば、油圧式のモータであって、旋回台71を旋回軸を中心に回転させる。旋回台71が回転すると、旋回台71とともにブーム72が旋回する。よって、旋回用アクチュエータ731は、ブーム72を旋回させるためのアクチュエータと捉えてよい。
 起伏用アクチュエータ732は、例えば、油圧式の伸縮シリンダであって、自身の伸縮にともない、ブーム72を起立又は倒伏させる。よって、起伏用アクチュエータ732は、ブーム72を起立させる又は倒伏させるためのアクチュエータと捉えてよい。
 伸縮用アクチュエータ733は、例えば、油圧式の伸縮シリンダであって、自身の伸縮にともない、ブーム72を伸長又は縮小させる。よって、伸縮用アクチュエータ733は、ブーム72を伸長させる又は縮小させるためのアクチュエータと捉えてよい。
 ウインチ用アクチュエータ734は、例えば、油圧式のモータであって、ウインチを第一方向(繰り出し方向とも称する。)又は第二方向(巻き取り方向とも称する。)に回転させる。ウインチが回転すると、ウインチの回転にともない、ワイヤロープは繰り出される又は巻き取られる。ワイヤロープの繰り出し又は巻き取りに応じて、フックは上昇又は降下する。よって、ウインチ用アクチュエータ734は、フックを上昇させる又は降下させるためのアクチュエータと捉えてよい。
 又、クレーンCは、操作入力部74、姿勢検出部75、荷重検出部76、情報入力部77、表示部78、通信部79、記憶部80、及び制御部81等を有する。
 操作入力部74は、例えば、運転室に設けられた操作レバーであって、クレーンCのオペレータ(以下、本実施形態の説明において、単に「オペレータ」と称する。)からの操作入力を受け付ける。操作入力部74は、オペレータから操作入力を受け付けると、受け付けた操作入力に対応する操作信号を制御部81(具体的には、第一制御部82の動作制御部821)に出力する。尚、操作入力部74は、クレーンCと無線接続又は有線接続された操作端末に設けられていてもよい。
 姿勢検出部75は、クレーンCの姿勢に関する情報を検出する。姿勢検出部75は、検出した姿勢に関する情報を、制御部81(第一制御部82)に送る。姿勢に関する情報は、例えば、ブームの起伏角、ブームの長さ、ブームの旋回角、ジブの起伏角、ジブの長さ、アウトリガの張出幅、及びフックの位置である。
 姿勢検出部75は、所定の時間間隔で、姿勢に関する情報を検出する。姿勢検出部75は、検出した姿勢に関する情報を、所定の時間間隔で制御部81(第一制御部82)に送る。
 荷重検出部76は、吊荷荷重に関する情報を検出する。荷重検出部76は、所定の時間間隔で、吊荷荷重に関する情報を検出する。荷重検出部76は、検出した吊荷荷重に関する情報を、所定の時間間隔で制御部81(第一制御部82)に送る。
 情報入力部77は、オペレータから情報の入力を受け付ける。情報入力部77は、受け付けた入力に関する情報を制御部81(第一制御部82又は第二制御部83)に送る。情報入力部77が受け付ける情報の一例を以下に説明する。
 情報入力部77は、オペレータから性能情報要求の入力を受け付ける。性能情報要求は、クレーンCがサーバS1~S4から取得する作業機の性能情報を指定する情報を含む。尚、本実施形態において、性能情報要求により指定される作業機の性能情報は、クレーンCの性能情報を意味する。
 表示部78は、情報を表示する。表示部78は、例えば、運転室内に設けられたモニタである。
 通信部79は、ネットワークNを介してサーバS1~S4と通信する。そのために、通信部79は、情報の送信部及び受信部(図示省略)を備える。サーバS1~S4との通信は、例えば、通信制御部171によって制御される。
 又、通信部79は、サーバS1~S4に向けて後述のリクエストを送信し、このリクエストに対するレスポンスをサーバS1~S4から受信する。
 記憶部80は、第一記憶部801及び第二記憶部802を有する。第一記憶部801は、作業機(クレーンC)の機種情報を記憶する。第二記憶部802は、リクエストを送るサーバを特定する情報を記憶する。サーバを特定する情報は、サーバ特定情報とも称される。第二記憶部802は、サーバ特定情報を、作業機(例えば、クレーン)の機種と対応付けて記憶している。
 具体的には、第二記憶部802は、複数の作業機の機種情報と、これら各機種情報に対応するサーバ(サーバ特定情報)と、を対応付けるアドレステーブルを記憶している。尚、第一記憶部801及び第二記憶部802は、一つのハードウェア(主記憶装置)により構成されている。但し、第一記憶部801及び第二記憶部802は、複数のハードウェアにより構成されてもよい。
 制御部81は、上述した各エレメント74~80それぞれの動作を制御してクレーンC全体の動作を制御する。クレーン支援システムCSの機能に着目した場合、制御部81は、第一制御部82及び第二制御部83等を備える。第二制御部83の基本的な構成は、記述の実施形態1の第二制御部17と同様である。
 第一制御部82は、操作制御部の一例に該当し、動作制御部821及び表示制御部822等を有する。第一制御部82は、過負荷防止装置の制御部の一例にも該当する。即ち、第一制御部82は、過負荷防止装置の機能を実現する機能を有する。
 動作制御部821は、操作入力部74から出力された操作信号に基づいて、アクチュエータ73の動作を制御する。
 又、動作制御部821は、支援操作モジュールMから取得した作業機の性能情報に基づいて、アクチュエータ73の動作を制御する。例えば、動作制御部821は、支援操作モジュールMから作業機の性能情報として作業機の姿勢条件に対応する定格総荷重を取得した場合、取得した定格総荷重に基づいて、アクチュエータ73の動作を制御する。
 表示制御部822は、表示部78の動作を制御する。表示制御部822は、支援モジュールMから取得した作業機の性能情報に基づいて、表示部78の動作を制御する。例えば、表示制御部822は、支援操作モジュールMから作業機の性能情報として領域画像(図10Cの領域画像G4及び図16Eの領域画像G4A参照)を取得した場合、表示部78に作業機の画像、作業機の周囲の画像、及び領域画像を表示してもよい。
 第二制御部83は、通信制御部171、支援制御部172、領域画像処理部176、及び変形画像処理部177等を有する。第二制御部83は、支援モジュールMの機能を実現する。第二制御部83の基本的な構成は、記述の実施形態1の第二制御部17とほぼ同様であるため、重複する説明は省略する。支援モジュールMの構成については、実施形態1における支援モジュールMの説明を適宜援用してよい。図25において、本実施形態の支援モジュールMを構成するエレメントのうち、実施形態1の支援モジュールMと共通のエレメントは、実施形態1の支援モジュールMのエレメントと同一の参照符号を付されている。尚、第二制御部83の構成のうち、実施形態1の第二制御部17と異なる構成については、後述の動作例において説明する。
 本実施形態の場合、支援モジュールMは、クレーンCの第一制御部82と連携して動作する。支援モジュールMは、第一制御部82に組み込まれている(アドインされている)。尚、支援モジュールMは、第一制御部82と連携して動作するハードウェアであれば、第一制御部82とは異なるハードウェア(例えば、制御器、タブレット、又はパーソナルコンピュータ)に組み込まれてもよい。このような支援モジュールMは、リクエスト-レスポンス型の通信プロトコル(例えば、HTTPSプロトコル、MQTTSプロトコル)を利用して、サーバS1~S4から、作業機の性能情報を取得する。
 作業機の性能情報は、既述の実施形態1と同様であり、例えば、定格総荷重、モーメント負荷率、ブームの最大倒伏角、作業半径、ブームの変形画像情報、ジブの変形画像情報、作業機の作業領域画像情報、アウトリガジャッキ反力値、作業機の姿勢情報、地盤強度を考慮した作業可否に関する情報、及び吊荷の移動経路に関する情報等を含む(後述の表2のC列参照)。又、性能情報は、作業機が所望の作業を実行できるか否かの判定結果を含む。又、作業機がクレーンの場合、性能情報は、吊荷の移動経路に関する情報を含む。
 支援モジュールMは、クレーンCの姿勢条件を、第一制御部82から取得する。支援モジュールMは、姿勢条件、作業機の性能情報を指定するための性能情報要求、及び作業機の機種情報を含むリクエストを、サーバS1~S4から特定したサーバに送信する。
 この際、支援モジュールMは、作業機に対応するサーバを特定するサーバ特定情報をリクエストに含めることにより、リクエストを送信するサーバを特定してもよい。サーバ特定情報は、例えば、サーバのURIである。
 又、支援モジュールMは、性能情報要求で指定した性能情報を含むレスポンスをサーバから受信する。そして、支援モジュールMは、受信した性能情報を、第一制御部82に送る。
 <クレーン支援システムの動作例>
 以下、クレーン支援システムCSの動作例について説明する。尚、クレーン支援システムCSの基本的な動作については、実施形態1のBIM支援システムBSの動作例1~8とほぼ同様である。以下、クレーン支援システムCSの代表的な動作の一例について説明する。
 (動作例1)
 本動作例は、実施形態1にかかるBIM支援システムBSの動作例1に対応する。本動作例の処理は、クレーンCとサーバS1~S4との間で実施される。この観点で、BIMアプリケーションA(図2参照)とサーバS1~S4との間で実施される処理に関する実施形態1の動作例1とは異なる。つまり、実施形態1の動作例1の場合、支援モジュールMは、BIMアプリケーションAの操作制御部と連携して動作する。一方、本動作例の場合、支援モジュールMは、クレーンCの操作制御部と連携して動作する。本動作例は、このような観点で、実施形態1の動作例1とは異なる。ただし、本動作例の支援モジュールMの基本的な動作については、実施形態1の動作例1の支援モジュールMの動作とほぼ同じである。又、詳述は省略するが、実施形態1の動作例2~8の説明は、本実施形態のクレーン支援システムCSの動作例の説明として適宜援用されてよい。
 本動作例は、例えば、クレーンCの過負荷防止装置が実施する演算に使用するための定格総荷重を、サーバから取得する場合に実施される。クレーンCの作業時、クレーンCの過負荷防止装置は、クレーンCの姿勢に応じた定格総荷重を取得し、取得した定格総荷重と吊荷荷重とに基づいて、作業の安全性を判定する処理を行う。
 従来、クレーンCは、記憶部に記憶した定格総荷重表に基づいて、クレーンCの姿勢に対応する定格総荷重を取得していた。又、クレーンCの姿勢に対応する定格総荷重が定格総荷重表に含まれていない場合には、クレーンCは、補間演算することにより定格総荷重を算出していた。このような定格総荷重を算出するための演算は常時行われるため、高性能な演算器が、クレーンCに搭載されている。高性能な演算器は、高価であり、クレーンCの製造コストが嵩む要因であった。
 又、定格総荷重表及び補間演算のための補間演算式は、更新されることがあり、メンテナンス作業者は、定格総荷重表及び補間演算式を作業機毎に更新する必要があった。又、吊荷の搬送作業において、複数台のクレーンが協働して一つの吊荷を搬送する、所謂共吊りと呼ばれる作業が行われることがある。定格総荷重表及び補間演算式が異なる作業機が共吊りを行う場合、作業機毎に過負荷防止装置による演算結果が異なってしまい、作業効率が低下してしまう可能性がある。
 本動作例によれば、定格総荷重をサーバから取得するため、クレーンCは、定格総荷重表及び補間演算式を備える必要がない。よって、定格総荷重表及び補間演算式の更新は不要である。又、複数のクレーンCはそれぞれ、共通の定格総荷重表及び補間演算式に基づいて算出された定格総荷重をサーバから取得する。このため、作業機毎に過負荷防止装置による演算結果が異なることもない。
 図26は、表示部78に定格総荷重を表示させる場合、及び/又は、サーバから取得した定格総荷重に基づいてクレーンCの動作を制御する場合のクレーン支援システムCSの動作を示すフローチャートである。
 図26のステップS701において、オペレータは、情報入力部77から、定格総荷重(性能情報)を指定する性能情報要求を入力する。換言すれば、情報入力部77は、オペレータから、定格総荷重(性能情報)を指定する性能情報要求の入力を受け付ける。情報入力部77は、オペレータから入力された性能情報要求に関する情報を、制御部81に送る。すると、クレーンCは、所定の時間間隔で、定格総荷重を要求するためのリクエストを、サーバS1に送信する状態となる。
 ステップS702において、情報取得部173は、情報入力部77から性能情報要求を取得した場合、取得した性能情報要求に対応するパラメータを、第一制御部82から取得する。ステップS702において、情報取得部173は、少なくとも、性能情報要求で指定される性能情報の演算に必要なパラメータを、第一制御部82から取得すればよい。
 情報取得部173は、情報入力部77から性能情報要求を取得した場合、第一制御部82(具体的には、動作制御部821)から所定の時間間隔でパラメータを取得し続ける。この場合、性能情報の要求を終了することを示す信号(以下、単に「終了信号」と称する。)を、情報入力部77から取得するまで、パラメータの取得を続ける。
 換言すれば、情報取得部173は、情報入力部77から性能情報の要求を開始することを示す信号(以下、単に「開始信号」と称する。)を取得した場合、情報入力部77から終了信号を取得するまで、パラメータの取得を間欠的に続ける。よって、本動作例におけるステップS702~S713の制御処理は、情報入力部77から終了信号を取得するまで繰り返される。
 例えば、姿勢検出部75がクレーンCの姿勢に関する情報を検出する時間間隔が10msecの場合、情報取得部173がパラメータを検出する時間間隔は、10msec以上、好ましくは、50msec~100msecであってよい。
 ステップS702において、情報取得部173が自動取得するパラメータは、以下の表12のB列に示すパラメータである。
Figure JPOXMLDOC01-appb-T000014
 ステップS702において情報取得部173が取得するパラメータは、第一記憶部80に記憶されているデータ、及び、姿勢検出部75により検出されたデータである。何れにしても、ステップS702において情報取得部173が取得するパラメータは、クレーンCに記憶されたデータ及びクレーンCにより取得されたデータである。
 ステップS703において、リクエスト発行部174は、クレーンCの機種情報に対応するサーバを特定するためのサーバ特定情報(例えば、サーバのURI)を、第二記憶部802から取得する。
 そして、リクエスト発行部174は、取得したサーバ特定情報、性能情報要求、及びパラメータを含むリクエストを生成し、通信制御部171に送る。リクエストは、通信部13を介して、サーバ特定情報で特定されるサーバ(例えば、サーバS1)に送信される。
 尚、ステップS703において生成されるリクエストは、HTTPSプロトコルのリクエストメッセージの形式である。このようなリクエストは、URI、性能情報要求、及びパラメータを含む。
 以下、クレーンCからのリクエストを受信したサーバS1の処理について説明する。サーバS1の動作は既述の実施形態1の動作例1におけるサーバS1の動作と同様である。
 ステップS704において、通信部21は、リクエストを受信する。そして、通信部21は、リクエストをリクエスト取得部221に送る。
 ステップS705において、リクエスト取得部221は、取得したリクエストから性能情報要求及びパラメータを抽出する。そして、リクエスト取得部221は、抽出した情報を演算部222に送る。
 ステップS706において、演算部222は、リクエスト取得部221から取得した性能情報要求及び機種情報に対応する演算式を、記憶部23から取得する。ステップS706において演算部222が取得する演算式は、既述の補間演算を行うための補間演算式である。
 ステップS707において、演算部222は、取得した機種情報によって特定される作業機に対応する諸元データを、記憶部23から取得する。
 ステップS708において、演算部222は、リクエスト取得部221から取得した姿勢条件及び/又は作業状態情報に対応する性能データ表を記憶部23から取得する。この際、演算部222は、取得した姿勢条件及び/又は作業状態情報に対応する複数の性能データ表を、記憶部23から取得してもよい。
 尚、ステップS708において、演算部222は、姿勢条件及び/又は作業状態情報とともに、ステップS707において取得した諸元データに基づいて、性能データ表を記憶部23から取得してもよい。
 ステップS709において、演算部222は、クレーンCから取得したパラメータと、記憶部23から取得した演算式(補間演算式)、性能データ表、及び諸元データとに基づいて、定格総荷重を演算する。
 ステップS709において、演算部222は、リクエストに含まれるパラメータに対応する定格総荷重を、性能データ表から直接取得できる場合、ステップS709において、演算式(補間演算式)を使用しなくてよい。ただし、リクエストに含まれるパラメータに対応する定格総荷重を性能データ表から直接取得できない場合には、演算部222は、演算式(補間演算式)を使用して、既述の補間演算を行うことにより、定格総荷重を取得する。そして、演算部222は、演算結果をレスポンス発行部223に送る。尚、補間演算とは、性能データ表において隣り合うデータ間の値を補間するための演算である。
 ステップS710において、レスポンス発行部223は、演算部222から取得した演算結果に基づいて、レスポンスを生成する。そして、レスポンス発行部223は、生成したレスポンスを、通信部21を介して、クレーンCに送信する。
 以上が、クレーンCからのリクエストを受信したサーバS1の処理である。次に、サーバS1からレスポンスを受信したクレーンC(支援モジュールM)の処理について説明する。
 ステップS711において、通信部13は、サーバS1からのレスポンスを受信する。そして、通信部13は、受信したレスポンスを第二制御部83に送る。レスポンスは、通信制御部171を介して支援制御部172に送られる。
 ステップS712において、支援制御部172は、通信制御部171から取得したレスポンスを解析し、レスポンスに含まれるサーバS1の演算結果(本動作例の場合、定格総荷重)を、第一制御部82に送る。
 ステップS713において、第一制御部82(具体的には、動作制御部821)は、取得した定格総荷重を、アクチュエータ73の制御に反映させる。例えば、第一制御部82は、サーバS1から取得した定格総荷重に基づいて、クレーンCの姿勢に対応する負荷率を算出し、負荷率が所定値(例えば、100%)に近づいた場合に、クレーンCの危険側への作動を制限する。尚、危険側とは、負荷率が上がるようにクレーンCの姿勢が変化することを意味する。逆に、安全側とは、負荷率が下がるようにクレーンCの姿勢が変化することを意味する。
 <実施形態2の付記>
 ステップS713において、第一制御部82(具体的には、表示支援制御部175)は、取得した定格総荷重を、表示部78の表示に反映してもよい。
 又、ステップS702において、情報取得部173は、パラメータに含まれる姿勢条件に関する情報を、クレーンCの外部に設けられた姿勢検出装置(不図示)から取得してもよい。姿勢検出装置は、例えば、クレーンCを撮影する撮像部(例えば、カメラ)と、撮像装置が生成した画像を解析してクレーンCの姿勢条件を取得する画像解析部と、を備える。この場合、クレーンCの姿勢検出部75は、省略されてもよい。
 <本実施形態の作用・効果>
 以上のような構成を有する本実施形態によれば、クレーンCは、性能情報を演算するための高性能な演算器を備える必要がない。よって、クレーンCの製造コストを低減できる。又、クレーンCは、性能情報を演算するための定格総荷重表及び補間演算式を備える必要がない。このため、クレーンC毎に定格総荷重表及び補間演算式を更新する作業が不要となる。よって、更新のためのメンテナンスコストを低減できる。又、同機種のクレーンCは、共通のサーバから定格総荷重を取得するため、クレーンC同士の間で、過負荷防止装置による演算結果が異なることもない。よって、作業効率及び安全性を向上できる。更に、サーバは、例えば、3D-CADデータや点群データで構成される建物と作業機との干渉チェックに関する演算、及び、他の作業機との強調制御に用いられる情報の演算等、作業機に搭載された演算器では不可能な高度な演算を行うことができる。
 [付記]
 本発明は、以下の態様を取り得る。
 <態様A.1>
 作業機の画像の姿勢を定義する姿勢条件、この作業機の性能情報を指定する性能情報要求、及び、機種情報を含むリクエストを、画像生成アプリケーションが動作する端末から取得するリクエスト取得部と、
 上記性能情報の演算に用いられる演算式、及び、上記作業機の諸元データを記憶する記憶部と、
 上記リクエストから取得した上記姿勢条件、上記性能情報要求、及び上記機種情報と、上記記憶部から取得した上記演算式及び上記諸元データとに基づいて、上記性能情報要求で指定された上記性能情報の演算を実行する演算部と、
 上記演算の結果を含むレスポンスを、上記端末に提示するレスポンス提示部と、を有する
 性能情報演算サーバ。
 <態様A.2>
 上記演算部は、
 取得した上記リクエストに含まれる上記性能情報要求に基づいて、上記演算に使用する上記演算式を選定し、
 取得した上記リクエストに含まれる上記機種情報に基づいて、上記演算に使用する上記諸元データを選定し、
 取得した上記姿勢条件と、選定した上記演算式及び上記諸元データに基づいて、上記演算を実行する、上記態様A.1に記載の性能情報演算サーバ。
 <態様A.3>
 上記記憶部は、上記作業機の姿勢条件に対応付けられた性能データを記憶し、
 上記演算部は、
 取得した上記リクエストに含まれる上記性能情報要求に基づいて、上記演算に使用する上記演算式を選定し、
 取得した上記リクエストに含まれる上記機種情報及び上記姿勢条件に基づいて、上記演算に使用する上記諸元データ及び上記性能データを選定し、
 取得した上記姿勢条件と、選定した上記演算式、上記諸元データ、及び上記性能データに基づいて、上記性能情報を算出する補間演算を実行する、上記態様A.1に記載の性能情報演算サーバ。
 <態様A.4>
 上記記憶部は、上記姿勢条件と性能データとを対応付けた性能テーブルを記憶し、
 上記演算部は、
 取得した上記リクエストに含まれる上記性能情報要求に基づいて、上記演算に使用する上記演算式を選定し、
 取得した上記リクエストに含まれる上記機種情報及び上記姿勢条件に基づいて、上記演算に使用する上記諸元データ及び上記性能テーブルを選定し、
 取得した上記姿勢条件と、選定した上記演算式、上記諸元データ、及び上記性能テーブルとに基づいて、上記性能テーブルのデータ間のデータを補間する補間演算を実行して、上記性能情報を算出する、上記態様A.1に記載の性能情報演算サーバ。
 <態様A.5>
 上記演算部は、上記演算に不要な姿勢条件が上記リクエストに含まれている場合に、上記演算に必要な姿勢条件のみを上記リクエストから取得する、上記態様A.1に記載の性能情報演算サーバ。
 <態様A.6>
 上記リクエスト取得部及び上記レスポンス提示部は、HTTPSプロトコルにより、上記端末と通信する、上記態様A.1に記載の性能情報演算サーバ。
 <態様A.7>
 上記演算部は、演算して得た上記性能情報に基づいて、上記画像における上記作業機が、取得した上記姿勢条件により定義される上記作業機の姿勢において、所定の作業を実施できるか否かを判定し、判定結果を含むレスポンスを上記端末に提示する、上記態様A.1に記載の性能情報演算サーバ。
 <態様A.8>
 上記態様A.1に記載の複数の性能情報演算サーバに選択的に接続可能なクライアント端末であって、
 複数の作業機の中から、表示部に表示する作業機の選択を受け付ける入力部と、
 複数の上記作業機の機種情報及び上記機種情報に対応する上記性能情報演算サーバを対応付けたアドレステーブルを記憶する記憶部と、
 上記アドレステーブルを参照し、選択された上記作業機に対応する上記性能情報演算サーバを選定し、選択した上記作業機の姿勢を定義する姿勢条件を含むリクエストを、選定した上記性能情報演算サーバに送り、上記性能情報演算サーバから、選択された上記作業機の性能情報を含むレスポンスを受信する制御部と、を有する
 クライアント端末。
 <態様A.9>
 上記態様A.1に記載の複数の性能情報演算サーバに選択的に接続可能な端末において実行される性能情報の取得方法であって、
 上記端末は、複数の作業機の機種情報と上記機種情報に対応する上記性能情報演算サーバとを、それぞれ対応付けるアドレステーブルを有し、
 表示部に表示する作業機の選択を受け付ける工程と、
 上記アドレステーブルを参照し、選択された上記作業機に対応する上記性能情報演算サーバを選定する工程と、
 選定した上記性能情報演算サーバに、選択された上記作業機の姿勢を定義する姿勢条件を含むリクエストを送信する工程と、
 上記性能情報演算サーバから、上記性能情報を含むレスポンスを受信する工程と、を含む
 性能情報の取得方法。
 <態様A.10>
 性能情報演算サーバにおいて実行される性能情報の提供方法であって、
 上記性能情報演算サーバは、作業機の性能情報を演算するための演算式、及び、上記作業機の諸元データを予め記憶し、
 上記作業機の表示画像の姿勢を定義する姿勢条件、要求される性能情報を指定する性能情報要求、及び、機種情報を含むリクエストを、画像生成アプリケーションが動作する端末から取得する工程と、
 上記リクエストから取得した上記姿勢条件、上記性能情報要求、及び上記機種情報と、記憶した上記演算式及び上記諸元データとに基づいて、上記性能情報要求で指定された上記性能情報の演算を実行する工程と、
 上記演算の結果を含むレスポンスを、上記端末に提示する工程と、を含む、
 性能情報の提供方法。
 <態様A.11>
 上記演算を実行する工程は、
 取得した上記リクエストに含まれる上記性能情報要求に基づいて、上記演算に使用する上記演算式を選定し、
 取得した上記リクエストに含まれる上記機種情報に基づいて、上記演算に使用する諸元データを選定し、
 取得した上記姿勢条件と、選定した上記演算式及び上記諸元データに基づいて、上記演算を実行する、
 上記態様A.10に記載の性能情報の提供方法。
 <態様A.12>
 上記性能情報演算サーバは、上記作業機の姿勢条件に対応付けられた性能データを記憶し、
 上記演算を実行する工程は、
 取得した上記リクエストに含まれる上記性能情報要求に基づいて、上記演算に使用する上記演算式を選定し、
 取得した上記リクエストに含まれる上記機種情報及び上記姿勢条件に基づいて、上記演算に使用する上記諸元データ及び上記性能データを選定し、
 取得した上記姿勢条件と、選定した上記演算式、上記諸元データ、及び上記性能データに基づいて、上記性能情報を算出する補間演算を実行する、
 上記態様A.10に記載の性能情報の提供方法。
 <態様A.13>
 上記性能情報演算サーバは、上記作業機の姿勢条件と性能データとを対応付けた性能テーブルを記憶し、
 上記演算を実行する工程は、
 取得した上記リクエストに含まれる上記性能情報要求に基づいて、上記演算に使用する上記演算式を選定し、
 取得した上記リクエストに含まれる上記機種情報及び上記姿勢条件に基づいて、上記演算に使用する上記諸元データ及び上記性能テーブルを選定し、
 取得した上記姿勢条件と、選定した上記演算式、上記諸元データ、及び上記性能テーブルとに基づいて、上記性能テーブルのデータ間のデータを補間する補間演算を実行して、上記性能情報を算出する、
 上記態様A.10に記載の性能情報の提供方法。
 <態様A.14>
 上記リクエストを上記端末から取得する工程、及び、上記レスポンスを、上記端末に提示する工程において使用される通信プロトコルは、HTTPSプロトコルである、上記態様A.10に記載の性能情報の提供方法。
 又、本発明は、更に以下の態様を取り得る。
 <態様B.1>
 作業機の画像を生成する画像生成アプリケーションと連携して動作する画像生成アプリケーション支援モジュールであって、
 上記画像における上記作業機の姿勢を定義する姿勢条件を取得する姿勢条件取得部と、
 取得した上記姿勢条件、上記作業機の性能情報を指定するための性能情報要求、及び、上記作業機の機種情報を含むリクエストを性能情報演算サーバに送信し、上記性能情報要求で指定した上記性能情報を含むレスポンスを上記性能情報演算サーバから受信する性能情報取得部と、
 受信した上記性能情報を、表示する画像に反映させる描画支援部と、を有する
 画像生成アプリケーション支援モジュール。
 <態様B.2>
 上記姿勢条件取得部は、上記性能情報要求で指定される上記性能情報の演算に必要な上記姿勢条件のみを取得し、
 上記性能情報取得部は、上記演算に必要な姿勢条件を含むリクエストを、上記性能情報演算サーバに送信する、上記態様B.1に記載の画像生成アプリケーション支援モジュール。
 <態様B.3>
 上記姿勢条件取得部は、上記性能情報要求で指定される上記性能情報に拘わらず、予め決められた種類の上記姿勢条件を取得し、
 上記性能情報取得部は、取得した上記姿勢条件を含むリクエストを、上記性能情報演算サーバに送信する、上記態様B.1に記載の画像生成アプリケーション支援モジュール。
 <態様B.4>
 上記性能情報取得部は、オペレータの操作入力に基づいて、上記姿勢条件、上記性能情報要求、及び、上記機種情報を、上記画像生成アプリケーションから取得して、上記リクエストを生成する、上記態様B.1に記載の画像生成アプリケーション支援モジュール。
 <態様B.5>
 上記性能情報取得部は、上記リクエストに含まれる上記姿勢条件により定義される姿勢を有する上記作業機が、所定作業を実施できるか否かの判定結果を含むレスポンスを、上記性能情報演算サーバから受信し、
 上記描画支援部は、上記判定結果に関する情報を、表示部に表示する、上記態様B.1に記載の画像生成アプリケーション支援モジュール。
 <態様B.6>
 複数の上記作業機の機種情報と、上記機種情報に対応する上記性能情報演算サーバと、を対応付けるアドレステーブルを、更に備え、
 上記性能情報取得部は、上記アドレステーブルを参照して、上記リクエストに含まれる上記機種情報に対応する上記性能情報演算サーバを選定し、上記性能情報要求で指定された上記性能情報を含む上記レスポンスを、選定した上記性能情報演算サーバから取得する、上記態様B.1に記載の画像生成アプリケーション支援モジュール。
 <態様B.7>
 作業機の画像を生成する画像生成モジュールと、
 上記画像における上記作業機の姿勢を定義する姿勢条件を取得する姿勢条件取得部と、
 取得した上記姿勢条件、上記作業機の性能情報を指定するための性能情報要求、及び、機種情報を含むリクエストを性能情報演算サーバに送信し、上記性能情報要求で指定した上記性能情報を含むレスポンスを上記性能情報演算サーバから受信する性能情報取得部と、
 受信した上記性能情報を、表示する画像に反映させる又は表示部に表示する描画支援部と、を有する
 画像生成アプリケーション。
 <態様B.8>
 上記姿勢条件取得部は、上記性能情報要求で指定される上記性能情報の演算に必要な上記姿勢条件のみを取得し、
 上記性能情報取得部は、上記演算に必要な姿勢条件を含むリクエストを、上記性能情報演算サーバに送信する、上記態様B.7に記載の画像生成アプリケーション。
 <態様B.9>
 上記姿勢条件取得部は、上記性能情報要求で指定される上記性能情報に拘わらず、予め決められた種類の上記姿勢条件を取得し、
 上記性能情報取得部は、取得した上記姿勢条件を含むリクエストを、上記性能情報演算サーバに送信する、上記態様B.7に記載の画像生成アプリケーション。
 <態様B.10>
 上記性能情報取得部は、オペレータの操作入力に基づいて、上記姿勢条件、上記性能情報要求、及び、上記機種情報を、上記画像生成アプリケーションから取得して、上記リクエストを生成する、上記態様B.7に記載の画像生成アプリケーション。
 <態様B.11>
 上記性能情報取得部は、上記リクエストに含まれる上記姿勢条件により定義される姿勢を有する上記作業機が、所定作業を実施できるか否かの判定結果を含むレスポンスを、上記性能情報演算サーバから受信し、
 上記描画支援部は、上記実施の可否を、表示部に表示する、上記B.7に記載の画像生成アプリケーション。
 <態様B.12>
 複数の上記作業機の機種情報と、上記機種情報に対応する上記性能情報演算サーバと、を対応付けるアドレステーブルを、更に備え、
 上記性能情報取得部は、上記アドレステーブルを参照して、上記リクエストに含まれる上記機種情報に対応する上記性能情報演算サーバを選定し、上記性能情報要求で指定された上記性能情報を含む上記レスポンスを、選定した上記性能情報演算サーバから取得する、上記態様B.12に記載の画像生成アプリケーション。
 <態様C.1>
 作業機の画像を生成する画像生成アプリケーションが動作する端末と、上記画像生成アプリケーションに上記作業機の性能情報を提供する性能情報演算サーバと、を備え、
 上記端末は、
 上記画像生成アプリケーションが生成する上記画像における作業機の姿勢を定義する姿勢条件、上記性能情報を指定するための性能情報要求、及び、機種情報を含むリクエストを上記性能情報演算サーバに送信し、
 上記性能情報演算サーバは、
 上記性能情報を演算する演算式、及び、上記作業機の諸元データを記憶し、
 取得した上記リクエストに含まれる上記姿勢条件、上記性能情報要求、及び上記機種情報と、記憶した上記演算式及び上記諸元データと、を用いて上記性能情報要求で指定された上記性能情報を演算し、演算結果を含むレスポンスを、上記端末に送信する、
 性能情報演算システム。
 <態様C.2>
 上記性能情報演算サーバは、上記作業機の姿勢条件に対応付けられた性能データを記憶し、
 取得した上記リクエストに含まれる上記性能情報要求に基づいて、上記演算に使用する演算式を選定し、
 取得した上記リクエストに含まれる上記機種情報及び上記姿勢条件に基づいて、上記演算に使用する上記諸元データ及び上記性能データを選定して、上記性能情報を算出する補間演算を実行する、上記態様C.1に記載の性能情報演算システム。
 <態様C.3>
 作業機の画像を生成する画像生成アプリケーションが動作する端末と、上記作業機の性能情報を演算する性能情報演算サーバと、を含む性能情報演算システムで実行される性能情報の提供方法であって、
 上記端末は、
 表示部に上記作業機の画像を表示させる処理と、
 上記作業機の画像の姿勢条件を取得する処理と、
 上記性能情報を指定する性能情報要求、取得した上記姿勢条件、及び、上記作業機の機種情報を含むリクエストを性能情報演算サーバに送信する処理と、
 上記性能情報要求で指定した上記性能情報を含むレスポンスを上記性能情報演算サーバから受信する処理と、を実行し、
 上記性能情報演算サーバは、
 受信した上記リクエストに含まれる上記性能情報要求、上記姿勢条件、及び上記機種情報と、予め記憶した演算式及び上記作業機の諸元データとに基づいて、上記性能情報要求で指定された上記性能情報を演算する処理と、
 演算結果を含むレスポンスを上記端末に送信する処理と、を実行する、
 性能情報の提供方法。
 <態様C.4>
 上記性能情報演算サーバは、上記作業機の姿勢条件に対応付けられた性能データを記憶し、
 上記性能情報演算サーバは、
 上記性能情報を演算する処理において、取得した上記リクエストに含まれる上記性能情報要求に基づいて、上記演算に使用する演算式を選定し、取得した上記リクエストに含まれる上記機種情報及び上記姿勢条件に基づいて、上記演算に使用する上記諸元データ及び上記性能データを選定して、上記性能情報を算出する補間演算を実行する、上記態様C.1に記載の性能情報演算システム。
 <態様D.1>
 作業機の画像を生成する画像生成アプリケーションと連携して動作する画像生成アプリケーション支援モジュールであって、
 上記画像における作業機の姿勢を定義する姿勢条件を取得する姿勢条件取得部と、
 取得した上記姿勢条件、上記作業機の性能情報を指定するための性能情報要求、及び、上記作業機の機種情報を含むリクエストを性能演算サーバに送信し、上記性能情報要求で指定した上記性能情報を含むレスポンスを上記性能情報演算サーバから受信する性能情報取得部と、
 受信した上記性能情報に基づいて、上記作業機の画像に関連する変形画像を生成する変形画像生成部と、を有する
 画像生成アプリ支援モジュール。
 <態様D.2>
 上記変形画像生成部は、上記変形画像として、上記画像における作業機のアームを変形させた画像を生成する、上記態様D.1に記載の画像生成アプリ支援モジュール。
 <態様D.3>
 上記変形画像が他の物体の画像と干渉する場合に、警告を通知する通知部を、更に備える、上記態様D.2に記載の画像生成アプリ支援モジュール。
 <態様D.4>
 上記変形画像生成部は、上記変形画像として、上記作業機又は吊荷を含む上記作業機の可動領域を示す画像を生成する、上記態様D.1に記載の画像生成アプリ支援モジュール。
 <態様D.5>
 上記変形画像が他の物体の画像と干渉する場合に、警告を通知する通知部を、更に備える、上記態様D.4に記載の画像生成アプリ支援モジュール。
 2018年8月2日出願の特願2018-146183の日本出願に含まれる明細書、図面、及び要約書の開示内容は、すべて本願に援用される。
 本発明は、例えば、クレーン等の作業機の作業を考慮した、建築物の設計及び作業計画に好適に利用できる。
 BS BIM支援システム
 A BIMアプリケーション
 M 支援モジュール
 M1~M4 メーカー
 SP 始点
 FP 終点
 C クレーン
 R1、R2 吊荷の移動経路の画像
 T クライアント端末
 11 入力部
 12 表示部
 13 通信部
 14 記憶部
 141 第一記憶部
 142 第二記憶部
 143 第三記憶部
 15 制御部
 16 第一制御部
 161 BIM制御部
 162 表示制御部
 17 第二制御部
 171 通信制御部
 172 支援制御部
 173 情報取得部
 174 リクエスト発行部
 175 表示支援制御部
 176 領域画像処理部
 177 変形画像処理部
 G1、G1A、G1B、G1C、G1D、G1E 建築物画像
 G2、G21、G2A、G21A、G2B、G21C、G22C、G22D 作業機画像
 G21D、G21E 作業機画像
 G3 通知画像
 G4、G4A 領域画像
 G5、G5A 変形画像
 G6、G6A 作業現場画像
 G72 ビル
 G73 フェンス
 G74 室外機
 G75 電柱
 G76 木
 G77 対向車線
 G78 鉄骨構造体
 G79、G79A、G79B ブームの画像
 G79a 基端側ブームの画像
 G79b、G79c 中間ブームの画像
 G79d 先端側ブームの画像
 G80 吊荷の移動可能範囲
 S1、S2、S3、S4 サーバ
 21 通信部
 22 制御部
 221 リクエスト取得部
 222 演算部
 223 レスポンス発行部
 23 記憶部
 24 性能データ表
 31 リクエスト
 32 サーバ特定情報
 33 性能情報要求
 34 パラメータ
 35 演算式
 36 諸元データ
 37 性能情報
 38 レスポンス
 4 ツールバー
 41a、41b アイコン
 42 クレーン選択画面
 42a モード選択部
 43 条件選択部
 43a 第一選択部
 43b 第二選択部
 43c 第三選択部
 43d 第四選択部
 43e 第五選択部
 43f 第六選択部
 43g 第七選択部
 43h 第八選択部
 43i 第九選択部
 44 一覧表示部
 45 クレーン調整画面
 46 姿勢調整部
 46a 第一調整部
 46b 第二調整部
 46c 第三調整部
 46d 第四調整部
 46e 第一入力部
 46f 第二入力部
 46g 第三入力部
 46h 第四入力部
 6 走行体
 61 フロントタイヤ
 62 リヤタイヤ
 63 アウトリガ
 7 旋回体
 71 旋回台
 72 ブーム
 72a ジブ
 73 アクチュエータ
 731 旋回用アクチュエータ
 732 起伏用アクチュエータ
 733 伸縮用アクチュエータ
 734 ウインチ用アクチュエータ
 74 操作入力部
 75 姿勢検出部
 76 荷重検出部
 77 情報入力部
 78 表示部
 79 通信部
 80 記憶部
 801 第一記憶部
 802 第二記憶部
 81 制御部
 82 第一制御部
 821 動作制御部
 822 表示制御部
 83 第二制御部
 N ネットワーク
 1001、2001 プロセッサ
 1002 入力装置
 1003 出力装置
 1004、2002 メモリ
 1005、2003 ストレージ
 1006、2004 通信インタフェース
 1007、2005 電源回路
 1008、2006 バス

Claims (17)

  1.  作業機の機種情報と、前記作業機の性能情報を指定する性能情報要求とを含むリクエストを取得するリクエスト取得部と、
     前記作業機の諸元データを、作業機の機種と対応付けて記憶する記憶部と、
     前記リクエストに含まれる前記機種情報及び前記機種情報に対応する前記諸元データに基づいて前記作業機の性能情報を取得する制御部と、
     前記制御部が取得した前記性能情報を含むレスポンスを提示するレスポンス提示部と、を備える
     性能情報サーバ。
  2.  前記記憶部は、前記作業機の性能情報を更に含む前記諸元データを、前記作業機の機種と対応付けて記憶し、
     前記制御部は、前記リクエストに含まれる前記機種情報により特定される前記作業機の性能情報を前記記憶部から取得する、請求項1に記載の性能情報サーバ。
  3.  前記リクエスト取得部は、前記作業機の姿勢を定義する姿勢条件を更に含む前記リクエストを取得し、
     前記記憶部は、前記作業機の姿勢条件に対応する性能情報を更に含む前記諸元データを記憶し、
     前記制御部は、前記リクエストに含まれる前記機種情報及び前記姿勢条件により特定される前記作業機の性能情報を前記記憶部から取得する、請求項2に記載の性能情報サーバ。
  4.  前記記憶部は、前記作業機の機種情報、前記姿勢条件、及び前記性能情報を対応付けた性能テーブルを記憶し、
     前記制御部は、前記性能テーブルにおいて隣り合うデータ間の補間演算を実行する、請求項3に記載の性能情報サーバ。
  5.  前記リクエスト取得部は、前記作業機の姿勢を定義する姿勢条件を更に含む前記リクエストを取得し、
     前記記憶部は、前記作業機の姿勢条件に応じた性能情報を演算するための演算式を、前記作業機の機種と対応付けて記憶し、
     前記制御部は、前記機種情報に対応する前記演算式と、前記機種情報に対応する前記諸元データ及び前記姿勢条件と、に基づいて、前記性能情報を演算する、請求項1に記載の性能情報サーバ。
  6.  前記記憶部は、要求される性能情報に対応付けて前記演算式を記憶する、請求項5に記載の性能情報サーバ。
  7.  前記記憶部は、定格総荷重を演算するための演算式、モーメント負荷率を演算するための演算式、ブーム最大倒伏角を演算するための演算式、及び作業半径を演算するための演算式のうちの少なくとも一つの演算式を記憶する、請求項6に記載の性能情報サーバ。
  8.  前記制御部は、前記リクエストに含まれる前記性能情報要求に基づいて前記演算式を選定し、前記リクエストに含まれる前記機種情報に基づいて前記諸元データを選定する、請求項5~7の何れか一項に記載の性能情報サーバ。
  9.  前記リクエスト取得部は、前記作業機が実行する予定の作業を示す作業情報を更に含む前記リクエストを取得し、
     前記制御部は、前記作業情報及び取得した前記性能情報に基づいて、前記作業機による前記作業の実行が可能か否かの判定を行い、
     前記レスポンス提示部は、前記判定の結果を含むレスポンスを提示する、請求項1~8の何れか一項に記載の性能情報サーバ。
  10.  前記リクエスト取得部は、前記性能情報要求として、作業機の変形画像の要求又は領域画像の要求を含む前記リクエストを取得し、
     前記記憶部は、前記作業機の変形画像又は前記領域画像の表示に用いられる数値データを演算するための画像用演算式を更に記憶し、
     前記制御部は、前記画像用演算式により前記数値データを演算し、
     前記レスポンス提示部は、前記数値データを含む前記レスポンスを提示する、請求項5~8の何れか一項に記載の性能情報サーバ。
  11.  請求項1~10の何れか一項に記載の性能情報サーバに接続可能なクライアント端末であって、
     複数の作業機の中から、表示部に表示する作業機の選択を受け付ける入力部と、
     複数の前記作業機の機種情報及び前記機種情報に対応する前記性能情報サーバを対応付けたアドレステーブルを記憶する記憶部と、
     前記アドレステーブルを参照し、選択された前記作業機に対応する前記性能情報サーバを選定し、選択した前記作業機の機種情報及び前記作業機の性能情報を指定する性能情報要求を含むリクエストを、選定した前記性能情報サーバに送り、前記性能情報サーバから、前記性能情報要求で指定した前記性能情報を含むレスポンスを受信する制御部と、を有する
     クライアント端末。
  12.  請求項1~10の何れか一項に記載の性能情報サーバに接続可能な作業機であって、
     前記作業機の機種情報及び前記機種情報に対応する前記性能情報サーバを対応付けたアドレステーブルを記憶する記憶部と、
     前記アドレステーブルを参照し、選択された前記作業機に対応する前記性能情報サーバを選定し、選択した前記作業機の機種情報及び前記作業機の性能情報を指定する性能情報要求を含むリクエストを、選定した前記性能情報サーバに送り、前記性能情報サーバから、前記性能情報要求で指定した前記性能情報を含むレスポンスを受信する制御部と、を有する
     作業機。
  13.  請求項1~10の何れか一項に記載の性能情報サーバに接続可能な端末において実行される性能情報の取得方法であって、
     前記端末は、複数の作業機の機種情報と前記機種情報に対応する前記性能情報サーバとを、それぞれ対応付けるアドレステーブルを有し、
     表示部に表示する作業機の選択を受け付ける工程と、
     前記アドレステーブルを参照し、選択された前記作業機に対応する前記性能情報サーバを選定する工程と、
     選定した前記性能情報サーバに、選択された前記作業機の機種情報及び前記作業機の性能情報を指定する性能情報要求を含むリクエストを送信する工程と、
     前記性能情報サーバから、前記リクエストに含まれる前記性能情報要求で指定された前記性能情報を含むレスポンスを受信する工程と、を含む
     性能情報の取得方法。
  14.  請求項1~10の何れか一項に記載の性能情報サーバにおいて実行される性能情報の提供方法であって、
     前記性能情報サーバは、作業機の機種と対応付けた諸元データを記憶し、
     前記作業機の機種情報、及び、前記作業機の性能情報を指定する性能情報要求を含むリクエストを、作業機、又は画像生成アプリケーションが動作する端末から取得する工程と、
     前記リクエストから取得した前記機種情報及び前記性能情報要求と、前記機種情報に対応する前記諸元データとに基づいて、前記性能情報要求で指定された前記性能情報の演算を実行する工程と、
     前記性能情報を含むレスポンスを、前記作業機又は前記端末に提示する工程と、を含む、
     性能情報の提供方法。
  15.  前記性能情報サーバは、前記性能情報要求で指定された前記性能情報を演算するための演算式を記憶し、
     前記演算を実行する工程において、
     取得した前記リクエストに含まれる前記性能情報要求に基づいて、前記演算式を選定し、
     取得した前記リクエストに含まれる前記機種情報に基づいて、前記諸元データを選定し、
     選定した前記演算式及び前記諸元データに基づいて、前記性能情報要求で指定された前記性能情報を演算する、
     請求項14に記載の性能情報の提供方法。
  16.  前記性能情報サーバは、前記作業機の機種情報、姿勢条件、及び性能情報を対応付けた性能テーブル、並びに、前記性能情報に対応する補間演算式を記憶し、
     前記リクエストを取得する工程において、前記作業機の姿勢条件を更に含む前記リクエストを取得し、
     前記演算を実行する工程において、
     取得した前記リクエストに含まれる前記性能情報要求に基づいて、前記補間演算式及び前記性能テーブルを選定し、
     取得した前記リクエストに含まれる前記機種情報に基づいて、前記諸元データを選定し、
     取得した前記リクエストに含まれる前記姿勢条件、選定した前記補間演算式、選定した前記諸元データ、及び選定した前記性能テーブルに基づいて、前記性能テーブルのデータ間のデータを補間する補間演算を実行することにより、前記性能情報を算出する、
     請求項15に記載の性能情報の提供方法。
  17.  前記リクエストを前記端末から取得する工程、及び、前記レスポンスを、前記端末に提示する工程において使用される通信プロトコルは、HTTPSプロトコルである、請求項16に記載の性能情報の提供方法。
PCT/JP2019/030589 2018-08-02 2019-08-02 性能情報サーバ、クライアント端末、作業機、性能情報の取得方法、及び性能情報の提供方法 WO2020027334A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19845465.4A EP3832585A4 (en) 2018-08-02 2019-08-02 PERFORMANCE INFORMATION SERVER, CLIENT TERMINAL, WORK MACHINE, METHOD FOR ACQUIRING PERFORMANCE INFORMATION, AND METHOD FOR PROVIDING PERFORMANCE INFORMATION
JP2020534784A JP7396281B2 (ja) 2018-08-02 2019-08-02 性能情報サーバ、クライアント端末、作業機、性能情報の取得方法、及び性能情報の提供方法
US17/263,821 US20210233230A1 (en) 2018-08-02 2019-08-02 Performance information server, client terminal, work machine, method for acquiring performance information, and method for providing performance information
CN201980049884.0A CN112513918A (zh) 2018-08-02 2019-08-02 性能信息服务器、客户终端、作业机、性能信息的取得方法、以及性能信息的提供方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018146183 2018-08-02
JP2018-146183 2018-08-02

Publications (1)

Publication Number Publication Date
WO2020027334A1 true WO2020027334A1 (ja) 2020-02-06

Family

ID=69232179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030589 WO2020027334A1 (ja) 2018-08-02 2019-08-02 性能情報サーバ、クライアント端末、作業機、性能情報の取得方法、及び性能情報の提供方法

Country Status (5)

Country Link
US (1) US20210233230A1 (ja)
EP (1) EP3832585A4 (ja)
JP (1) JP7396281B2 (ja)
CN (1) CN112513918A (ja)
WO (1) WO2020027334A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112411385A (zh) * 2020-11-20 2021-02-26 上海浦兴路桥建设工程有限公司 一种高架桥预制立柱安装自动调整方法及系统
CN112818519A (zh) * 2021-01-15 2021-05-18 广州穗能通能源科技有限责任公司 变电设施吊装施工的三维仿真方法、装置和计算机设备
WO2022024951A1 (ja) * 2020-07-30 2022-02-03 富士フイルム株式会社 構造物の調査支援装置、構造物の調査支援方法、及びプログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3988493A4 (en) * 2019-06-20 2023-08-09 Tadano Ltd. MOVING BEACH DISPLAY SYSTEM AND CRANE EQUIPPED WITH MOVING BEACH DISPLAY SYSTEM
JP7184001B2 (ja) * 2019-09-11 2022-12-06 コベルコ建機株式会社 シミュレーション装置
CN114423906A (zh) * 2019-09-19 2022-04-29 住友重机械工业株式会社 挖土机、挖土机的管理装置
US20230100471A1 (en) * 2021-09-29 2023-03-30 Cisco Technology, Inc. End-to-end network and application visibility correlation leveraging integrated inter-system messaging

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351029A (ja) * 2000-06-07 2001-12-21 Kobelco Contstruction Machinery Ltd 建設機械のレンタル方法およびレンタルシステム
JP2002074210A (ja) * 2000-09-04 2002-03-15 Kato Works Co Ltd 建設作業機械のリース仲介システム
JP2004164183A (ja) * 2002-11-12 2004-06-10 Hitachi Constr Mach Co Ltd レンタル見積もり方法、レンタル見積もりシステム、レンタル情報取得用端末、レンタル情報取得用プログラム、およびレンタル情報取得用サーバ
JP2006318112A (ja) 2005-05-11 2006-11-24 Takenaka Komuten Co Ltd 建物設計支援装置、建物設計支援方法及び建物設計支援プログラム
JP2016117543A (ja) 2014-12-19 2016-06-30 株式会社タダノ ラフテレーンクレーン
JP2018146183A (ja) 2017-03-07 2018-09-20 富士ゼロックス株式会社 環境測定システムおよびプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188183A (ja) * 2000-10-12 2002-07-05 Komatsu Ltd 作機機械の管理装置
JP5663393B2 (ja) * 2011-04-28 2015-02-04 日立建機株式会社 稼働機械及び保守点検情報生成装置
JP6236432B2 (ja) * 2013-03-08 2017-11-22 日立建機株式会社 作業機械の管理サーバ及び作業機械の管理方法
CN108121849A (zh) * 2017-11-14 2018-06-05 徐州重型机械有限公司 一种起重机组合臂架三维高精度虚拟显示方法
JP7396282B2 (ja) * 2018-08-02 2023-12-12 株式会社タダノ 操作支援モジュール、画像生成アプリケーション、及び作業機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351029A (ja) * 2000-06-07 2001-12-21 Kobelco Contstruction Machinery Ltd 建設機械のレンタル方法およびレンタルシステム
JP2002074210A (ja) * 2000-09-04 2002-03-15 Kato Works Co Ltd 建設作業機械のリース仲介システム
JP2004164183A (ja) * 2002-11-12 2004-06-10 Hitachi Constr Mach Co Ltd レンタル見積もり方法、レンタル見積もりシステム、レンタル情報取得用端末、レンタル情報取得用プログラム、およびレンタル情報取得用サーバ
JP2006318112A (ja) 2005-05-11 2006-11-24 Takenaka Komuten Co Ltd 建物設計支援装置、建物設計支援方法及び建物設計支援プログラム
JP2016117543A (ja) 2014-12-19 2016-06-30 株式会社タダノ ラフテレーンクレーン
JP2018146183A (ja) 2017-03-07 2018-09-20 富士ゼロックス株式会社 環境測定システムおよびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3832585A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024951A1 (ja) * 2020-07-30 2022-02-03 富士フイルム株式会社 構造物の調査支援装置、構造物の調査支援方法、及びプログラム
CN112411385A (zh) * 2020-11-20 2021-02-26 上海浦兴路桥建设工程有限公司 一种高架桥预制立柱安装自动调整方法及系统
CN112818519A (zh) * 2021-01-15 2021-05-18 广州穗能通能源科技有限责任公司 变电设施吊装施工的三维仿真方法、装置和计算机设备

Also Published As

Publication number Publication date
JP7396281B2 (ja) 2023-12-12
EP3832585A4 (en) 2022-03-23
EP3832585A1 (en) 2021-06-09
JPWO2020027334A1 (ja) 2021-09-24
CN112513918A (zh) 2021-03-16
US20210233230A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
WO2020027335A1 (ja) 操作支援モジュール、画像生成アプリケーション、及び作業機
WO2020027334A1 (ja) 性能情報サーバ、クライアント端末、作業機、性能情報の取得方法、及び性能情報の提供方法
CN109074536B (zh) 计划和/或控制和/或模拟施工机械的运行的方法及设备
US9944499B2 (en) Crane maneuvering assistance
US9227821B1 (en) Crane operation simulation
JP2018095370A (ja) クレーン
EP3450384A2 (en) Crane control system configured to generate a working range diagram, working range diagram for a crane, and method for generating a working range diagram for a crane.
WO2021157645A1 (ja) 性能情報サーバ、作業機表示操作アプリケーション、機種情報の提供方法、機種情報の取得方法、及び機種情報取得システム
WO2021157646A1 (ja) 性能情報サーバ、作業機表示操作アプリケーション、移動経路情報の提供方法、移動経路情報の取得方法、及び移動経路情報取得システム
CN109457745B (zh) 一种施工场地安全控制方法
JP7487483B2 (ja) 性能情報サーバ、作業機表示操作アプリケーション、環境負荷情報の提供方法、環境負荷情報の取得方法、及び環境負荷情報取得システム
AU2020347849A1 (en) Positioning of mobile device in underground worksite
JP7327052B2 (ja) アウトリガを有する車体の水平姿勢判定装置
EP4197956A1 (en) Information acquisition system
JP7434967B2 (ja) 動作支援サーバ、作業機、及び性能情報の提供方法
JP6816784B2 (ja) クレーン
WO2022091820A1 (ja) 建設作業計画支援装置
JP7208815B2 (ja) クレーン共用制御システム
JP2021004123A (ja) クレーン及び出来高管理装置
JP2021098587A (ja) クレーンの性能線表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534784

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019845465

Country of ref document: EP

Effective date: 20210302