WO2022024951A1 - 構造物の調査支援装置、構造物の調査支援方法、及びプログラム - Google Patents

構造物の調査支援装置、構造物の調査支援方法、及びプログラム Download PDF

Info

Publication number
WO2022024951A1
WO2022024951A1 PCT/JP2021/027443 JP2021027443W WO2022024951A1 WO 2022024951 A1 WO2022024951 A1 WO 2022024951A1 JP 2021027443 W JP2021027443 W JP 2021027443W WO 2022024951 A1 WO2022024951 A1 WO 2022024951A1
Authority
WO
WIPO (PCT)
Prior art keywords
survey
information
access means
investigation
support device
Prior art date
Application number
PCT/JP2021/027443
Other languages
English (en)
French (fr)
Inventor
修平 堀田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022540264A priority Critical patent/JP7526269B2/ja
Priority to EP21850376.1A priority patent/EP4191507A4/en
Priority to CN202180046240.3A priority patent/CN115867932A/zh
Priority to KR1020227045968A priority patent/KR20230018455A/ko
Publication of WO2022024951A1 publication Critical patent/WO2022024951A1/ja
Priority to US18/147,866 priority patent/US20230133928A1/en
Priority to JP2024115776A priority patent/JP2024144445A/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0283Price estimation or determination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/24Indexing scheme for image data processing or generation, in general involving graphical user interfaces [GUIs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20092Interactive image processing based on input by user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation
    • G06T2207/30184Infrastructure

Definitions

  • the present invention relates to a structure investigation support device, a structure investigation support method, and a program.
  • Patent Document 1 proposes a technique for photographing a structure, detecting a defect from the photographed image, and calculating the cost for repairing the defect easily and accurately.
  • the present invention has been made in view of such circumstances, and an object thereof is a structure investigation support device, a structure investigation support method, and a structure investigation support method for presenting candidates for access means to a structure investigation position in an easy-to-understand manner. To provide a program.
  • the structure investigation support device for achieving the above object is a structure investigation support device including a processor, and the processor is a three-dimensional model of the structure to be investigated. And the accessible range information of multiple types of access means to access the survey position of the structure is acquired, the 3D model is displayed on the display unit, and the designation of the survey position of the displayed 3D model is accepted and accepted. Information on one or more types of access means for accessing the survey position is displayed on the display unit based on the survey position and the accessible range information.
  • the structure investigation support device includes a memory for storing the 3D model and the accessible range information, and the processor acquires the 3D model and the accessible range information from the memory.
  • the memory stores an image of the structure associated with the 3D model
  • the processor detects damage from the image and automatically accepts the designation of the investigation position based on the detected damage.
  • the memory stores the damage information associated with the 3D model
  • the processor displays the damage information in the 3D model.
  • the processor acquires the surrounding environment information indicating the surrounding environment of the structure and displays the information of the access means for accessing the survey position based on the surrounding environment information, the survey position, and the accessible range information. do.
  • the structure investigation support device includes a memory for storing the peripheral environment information, and the processor acquires the peripheral environment information from the memory.
  • the processor acquires the unit survey required time information indicating the time required for the survey for each of the access means, and when displaying the information of the access means, the unit survey required corresponding to the information of the access means to be displayed. Display time information.
  • the structure investigation support device includes a memory for storing the unit investigation required time information, and the processor acquires the unit investigation required time information from the memory.
  • the processor calculates and calculates at least one of the required time for each survey position and the time required for conducting a survey of all survey positions based on the survey position and the unit survey required time information. Display the required time.
  • the processor acquires cost information indicating the cost required for the investigation for each of the access means, and when displaying the information of the access means, displays the cost information corresponding to the information of the displayed access means.
  • the structure investigation support device includes a memory for storing the cost information, and the processor acquires the cost information from the memory.
  • the processor calculates at least one of the survey cost for each survey position and the survey cost for conducting a survey of all survey positions based on the survey position and the cost information, and calculates the survey cost. indicate.
  • the survey position is a position where the structure is visually or percussed.
  • the survey position is a shooting target position indicating the range in which the structure is photographed.
  • the processor acquires the shooting conditions for shooting the structure, acquires the shooting position based on the survey position and the shooting conditions, and displays the information of the access means to the shooting position.
  • the structure investigation support device includes a memory for storing the shooting conditions, and the processor acquires the shooting conditions from the memory.
  • the processor displays the shooting position.
  • the structure investigation support method is a structure investigation support method using a structure investigation support device including a processor, and is a three-dimensional model of the structure to be investigated by the processor.
  • the step of acquiring the accessible range information of multiple types of access means to access the survey position of the structure, the step of displaying the 3D model on the display unit, and the designation of the survey position of the displayed 3D model. Includes a step of accepting, and a step of displaying information on one or more types of access means for accessing the survey position on the display unit based on the received survey position and accessible range information.
  • the program according to another aspect of the present invention is a program for causing a structure investigation support device including a processor to execute a structure investigation support method, and is a three-dimensional model of the structure to be investigated by the processor and a structure.
  • the step of displaying the information of one or more types of access means for accessing the survey position on the display unit is executed.
  • the user can easily design the access means because the information of one or more kinds of access means for accessing the search position is presented based on the designated search position and the accessible range information. It can be carried out.
  • FIG. 1 is a block diagram showing an example of a hardware configuration of a structure investigation support device.
  • FIG. 2 is a block diagram showing a processing function realized by a CPU.
  • FIG. 3 is a diagram showing information and the like stored in the storage unit.
  • FIG. 4 is a flow chart showing a structure survey support method using a structure survey support device.
  • FIG. 5 is a diagram illustrating specific examples of the three-dimensional model display step and the designated reception step.
  • FIG. 6 is a diagram illustrating specific examples of the three-dimensional model display step and the designated reception step.
  • FIG. 7 is a diagram illustrating specific examples of the three-dimensional model display step and the designated reception step.
  • FIG. 8 is a diagram illustrating specific examples of the three-dimensional model display step and the designated reception step.
  • FIG. 1 is a block diagram showing an example of a hardware configuration of a structure investigation support device.
  • FIG. 2 is a block diagram showing a processing function realized by a CPU.
  • FIG. 3 is a diagram
  • FIG. 9 is a diagram showing an aerial work platform which is an example of access means.
  • FIG. 10 is a diagram showing a work range diagram which is an example of accessible range information.
  • FIG. 11 is a diagram showing a bridge inspection vehicle which is an example of access means.
  • FIG. 12 is a diagram showing a work range diagram which is an example of accessible range information.
  • FIG. 13 is a diagram showing a work range diagram which is an example of accessible range information.
  • FIG. 14 is a diagram illustrating rope access, which is an example of access means.
  • FIG. 15 is a diagram showing a ladder which is an example of the access means.
  • FIG. 16 is a diagram showing an example of displaying information of access means.
  • FIG. 17 is a diagram showing information and the like stored in the storage unit.
  • FIG. 18 is a conceptual diagram showing an unmanned aerial vehicle (drone) which is an example of access means.
  • FIG. 19 is a conceptual diagram showing a bridge inspection ship which is an example of access means.
  • FIG. 20 is a diagram showing an example of displaying information of access means.
  • FIG. 21 is a diagram showing information and the like stored in the storage unit.
  • FIG. 22 is a diagram showing an example of the unit survey required time.
  • FIG. 23 is a diagram showing information and the like stored in the storage unit.
  • FIG. 24 is a diagram showing an example of cost information.
  • FIG. 25 is a diagram showing information and the like stored in the storage unit.
  • FIG. 26 is a diagram illustrating the presentation of a shooting position.
  • FIG. 27 is a diagram showing a gondola vehicle which is an example of access means.
  • FIG. 28 is a diagram showing a work range diagram which is an example of accessible range information.
  • FIG. 29 is a diagram showing a suspended robot which is an example of an access
  • FIG. 1 is a block diagram showing an example of a hardware configuration of a structure investigation support device according to the present invention.
  • the structure investigation support device 10 shown in FIG. 1 a computer or a workstation can be used.
  • the structure investigation support device 10 of this example mainly includes an input / output interface 12, a storage unit 16, an operation unit 18, a CPU (Central Processing Unit) 20, a RAM (Random Access Memory) 22, and a ROM (Read Only Memory). It is composed of 24 and a display control unit 26.
  • a display unit 30 is connected to the structure investigation support device 10, and the display unit 30 displays the display under the control of the display control unit 26 under the command of the CPU 20.
  • the display unit 30 is composed of, for example, a monitor.
  • the input / output interface 12 can input various data (information) to the structure investigation support device 10. For example, the data stored in the storage unit 16 described later is input via the input / output interface 12.
  • the CPU (processor) 20 reads various programs stored in the storage unit 16 or the ROM 24 or the like, expands them in the RAM 22, performs calculations, and controls each unit in an integrated manner. Further, the CPU 20 reads out the programs stored in the storage unit 16 and the ROM 24, performs calculations using the RAM 22, and performs various processes of the structure investigation support device 10.
  • FIG. 2 is a block diagram showing a processing function realized by the CPU 20.
  • the CPU 20 has an information acquisition unit 51, a three-dimensional model display unit 53, a designated reception unit 55, and an information display unit 57. The specific processing functions of each part will be described later.
  • the storage unit (memory) 16 is a memory composed of a hard disk device, a flash memory, and the like.
  • the storage unit 16 stores data and programs for operating the structure investigation support device 10, such as an operating system and a program for executing the structure investigation support method. Further, the storage unit 16 stores information and the like used in the present embodiment described below.
  • FIG. 3 is a diagram showing information and the like stored in the storage unit 16.
  • the storage unit 16 mainly stores the three-dimensional model 101, the image 103, the damage information 105, and the accessible range information 107.
  • the three-dimensional model 101 is a model showing the structure to be investigated.
  • the three-dimensional model 101 is not particularly limited as long as it is three-dimensional information indicating the shape of the structure to be investigated.
  • the three-dimensional model 101 is a three-dimensional CAD (computer-aided design) showing a structure, a point cloud model, a texture model, a solid model, and the like.
  • the structure includes a building, for example, a civil engineering structure such as a bridge, a tunnel, and a dam, and also includes a building such as a building, a house, a wall of a building, a pillar, and a beam.
  • Image 103 is an image of a structure associated with the three-dimensional model 101.
  • the image 103 is a photographed image of the structure to be investigated, and is attached as a texture to the surface of the structure represented by the three-dimensional model 101. If the structure is damaged, the damage is shown in the image 103, and the damage can be detected from the image 103.
  • Damage information 105 is information related to damage associated with the three-dimensional model 101.
  • the damage information 105 is information on the damage of the structure to be investigated.
  • the damage information 105 is a damage model showing the type, shape, and magnitude of damage.
  • the crack damage model is a model image showing the crack shape
  • the peel damage model is a model image showing the peel shape.
  • the damage model has position information (three-dimensional coordinates) on the three-dimensional model 101 corresponding to the portion where the structure is actually damaged, and the three-dimensional model display unit 53 is superimposed on the three-dimensional model 101. It can be displayed on the display unit 30.
  • the accessible range information 107 is information indicating the accessible range of the access means for accessing the survey position.
  • Access means are various means of accessing, or approaching, the survey location. Specific examples of access means include ladders, mobile scaffolding, mobile suspension scaffolding, bridge inspection vehicles, floating scaffolding (working platform + scaffolding), gondola vehicles, aerial work platforms, rope access, and bridge inspection vessels.
  • the survey position indicates a location that requires a detailed survey in close proximity to the structure to be surveyed. Specifically, the investigator performs visual inspection or percussion in close proximity to the structure to be investigated at the survey position.
  • the survey position may indicate a position to be photographed, which indicates a range in which the photograph is taken in close proximity to the structure. Specifically, the investigator acquires a photographed image showing the investigation position.
  • the operation unit 18 includes a keyboard, a mouse, and the like that are connected to the computer by wire or wirelessly, and functions as an operation unit 18 that gives normal operation instructions to the computer. Further, the operation unit 18 accepts the designation of the survey position by the user designating a part of the three-dimensional model 101 displayed on the display unit 30.
  • FIG. 4 is a flow chart showing a structure survey support method using the structure survey support device 10.
  • the information acquisition unit 51 acquires the three-dimensional model of the structure to be investigated and the accessible range information 107 (information acquisition step: step S1).
  • the 3D model display unit 53 displays the acquired 3D model on the display unit 30 (3D model display step: step S2).
  • the designated reception unit 55 receives the designation of the survey position in the three-dimensional model (designated reception step: step S3).
  • the information display unit 57 of the access means displays the information of one or more types of access means for accessing the survey position on the display unit 30 based on the received survey position and the accessible range information 107. (Information display step of access means: step S4). A detailed explanation will be given below for each step.
  • the information acquisition step (step S1) is performed by the information acquisition unit 51.
  • the information acquisition unit 51 acquires the three-dimensional model 101 of the structure stored in the storage unit 16 and the accessible range information 107.
  • the information acquisition unit 51 acquires the three-dimensional model 101 and the accessible range information 107 from the outside.
  • the information acquisition unit 51 acquires the three-dimensional model 101 and the accessible range information 107 through the network via the input / output interface 12.
  • the information acquisition unit 51 can acquire the image 103 and / or the damage information 105 together with the three-dimensional model 101.
  • “3D model 101 and image 103" are displayed on the display unit 30
  • "3D model 101 and damage information 105" is displayed on the display unit 30, or "3D model 101, 3D model 101,” is displayed on the display unit 30.
  • “Image 103 and Damage Information 105" are displayed, the information acquisition unit 51 acquires the image 103 and the damage information 105 for display, respectively.
  • the three-dimensional model display step (step S2) is performed by the three-dimensional model display unit 53. Further, the designated reception step (step S3) is performed by the designated reception unit 55.
  • FIGS. 5 to 8 are diagrams illustrating specific examples of the three-dimensional model display step and the designated reception step.
  • a texture model to which a photographed image (image 103) of a bridge corresponding to the three-dimensional model is pasted as a texture is displayed as a three-dimensional model.
  • FIG. 5 is a diagram showing a three-dimensional model displayed on the display unit 30 of Example 1 and a designated survey position.
  • FIG. 5A is a diagram showing the three-dimensional model M1 displayed on the display unit 30.
  • the three-dimensional model M1 is a diagram showing the piers to be investigated. The user looks at the three-dimensional model M1 displayed on the display unit 30, and designates a location that needs to be investigated in close proximity to the three-dimensional model M1.
  • FIG. 5B is a diagram illustrating a case where the survey position F1 is designated.
  • the user manually designates a location (investigation position F1) determined to be in close proximity on the three-dimensional model M1 via the operation unit 18.
  • the designated reception unit 55 receives a position on the three-dimensional model M1 designated by the operation unit 18.
  • FIG. 6 is a diagram showing a three-dimensional model displayed on the display unit 30 of Example 2 and a designated survey position.
  • FIG. 6A is a diagram showing a three-dimensional model M2 displayed on the display unit 30.
  • the three-dimensional model M2 is a diagram showing the upper part of the pier to be investigated. The user looks on the three-dimensional model M2 displayed on the display unit 30 and designates a location that needs to be investigated in close proximity to the three-dimensional model M2.
  • FIG. 6B is a diagram illustrating a case where the survey position F2 is designated.
  • the user manually designates a location (investigation position F2) determined to be in close proximity on the three-dimensional model M2 via the operation unit 18.
  • the designated reception unit 55 receives a position on the three-dimensional model M2 designated by the operation unit 18.
  • FIG. 7 is a diagram showing a three-dimensional model displayed on the display unit 30 of Example 3 and a designated survey position.
  • FIG. 7A is a diagram showing the three-dimensional model M1 displayed on the display unit 30.
  • the three-dimensional model M1 of this example has damage information D1.
  • Damage information D1 is a crack damage model.
  • the user can see the three-dimensional model M1 having the damage information D1 and determine that the investigation is necessary in close proximity and specify the investigation position F3.
  • FIG. 7B is a diagram illustrating a case where the survey position F3 is designated.
  • the user manually designates the location (survey position F3) that is determined to require close proximity to the 3D model M1 via the operation unit 18.
  • the user can see the damage information D1 displayed on the display unit 30 and specify the location where the damage information D1 is dense (the location where the cracks are dense) as the investigation position F3.
  • FIG. 8 is a diagram showing a three-dimensional model displayed on the display unit 30 of Example 4 and a designated survey position.
  • FIG. 8A is a diagram showing a three-dimensional model M2 displayed on the display unit 30.
  • the three-dimensional model M2 of this example has damage information D2.
  • Damage information D2 is a crack damage model.
  • the user can see the three-dimensional model M2 having the damage information D2, determine that the investigation is necessary in close proximity, and specify the investigation position F4.
  • FIG. 8B is a diagram illustrating a case where the survey position F4 is designated.
  • the user manually designates the location (survey position F4) determined to be in close proximity to the 3D model M2 via the operation unit 18. For example, the user can see the damage information D2 and specify a location where the damage information D2 is dense (a location where cracks are dense) as the investigation position F4.
  • the user manually specifies the survey position, but the designation of the survey position is not limited to this.
  • the designated reception unit 55 may automatically accept the survey position.
  • the investigation position is automatically specified, for example, the investigation position is specified based on the damage information D. For example, damage detection results or damage detection results such as places where cracks with a thickness or length exceeding the threshold value occur, places where hexagonal cracks occur, places where peeling occurs where the area exceeds the threshold value, etc.
  • the survey position may be automatically specified based on the quantification result.
  • the information display step (step S4) of the access means is performed by the information display unit 57.
  • the information display unit 57 displays information on one or more types of access means for accessing the survey position on the display unit 30 based on the received survey position and the accessible range information 107.
  • Access means and accessible range information First, the access means and the accessible range information 107 will be described. Various means can be adopted as an access means for conducting a detailed survey in close proximity to the survey position. Specific examples of the access means and the accessible range information 107 will be described below.
  • FIG. 9 is a diagram showing an aerial work platform as an example of access means.
  • the aerial work platform 203 is provided with a basket 203B at the tip of the boom 203A.
  • the investigator can access the survey position at a high place by getting on the basket 203B and expanding and contracting the boom 203A.
  • FIG. 10 is a diagram showing a work range diagram which is an example of the accessible range information 107 of the aerial work platform 203.
  • Working range FIG. 205 shows the working range of the aerial work platform 203. Specifically, the working range FIG. 205 shows the vertical reachable range and the horizontal working radius of the basket 203B of the aerial work platform 203.
  • FIG. 11 is a diagram showing a bridge inspection vehicle as an example of access means.
  • the bridge inspection vehicle 207 is provided with a basket 207B at the tip of the boom 207A.
  • the investigator can access the investigation position by getting on the basket 207B and expanding and contracting the boom 207A.
  • FIG. 12 is a diagram showing a work range diagram which is an example of the accessible range information 107 on the lower side of the bridge inspection vehicle 207.
  • Working range FIG. 209 shows the working range of the bridge inspection vehicle 207.
  • Working range FIG. 209 shows the working radius and reachable ground height of the basket 207B of the bridge inspection vehicle 207.
  • FIG. 13 is a diagram showing a work range diagram which is an example of the accessible range information 107 on the upper side of the bridge inspection vehicle 207.
  • Working range FIG. 211 shows the working range of the bridge inspection vehicle 207.
  • Working range FIG. 211 shows the working radius and reachable ground height of the basket 207B of the bridge inspection vehicle 207.
  • FIG. 14 is a diagram illustrating rope access, which is an example of access means.
  • the surveyor 211A can access the survey position at a high place of the bridge 210 by rope access. Further, as shown in FIG. 14B, the rope access allows the investigator 211B to access the investigation position on the back side of the bridge 210.
  • the accessible range information 107 for rope access can be accessed without restrictions on the reachable ground clearance and working range.
  • FIG. 15 is a diagram showing a ladder which is an example of the access means.
  • the investigator 213A can access the investigation position at a high place. Specifically, the investigator 213A can perform a detailed investigation in close proximity to the investigation position at a high place of the pier 215 by using the ladder 213.
  • the information display unit 57 determines whether or not each access means can be accessed from the survey position and the accessible range information 107 designated on the three-dimensional model. Then, the information display unit 57 displays the information of the access means based on the determined access availability.
  • the 3D model has information on the actual size of the structure to be modeled (the structure to be investigated), and the information display unit 57 has the actual structure at the investigation position designated on the 3D model. You can get information about where you are in the department. Therefore, the information display unit 57 can determine whether or not access is possible for each access means by comparing the actual size of the survey position with the accessible range information 107.
  • FIG. 16 is a diagram showing an example of displaying information of access means displayed on the display unit 30 by the information display unit 57.
  • FIG. 16A is an image display showing information on access means to the survey positions (1) to (4) designated by the three-dimensional model 250 of the bridge.
  • FIG. 16B is a diagram showing a list of information on access means to the survey positions (1) to (4).
  • the survey position (1) (indicated by reference numeral 252) is located on the back side of the bridge. Since the survey position (1) can be accessed by the bridge inspection vehicle 207 and rope access (see Listing 212), the bridge inspection vehicle 207 (image display) and rope access survey near the survey position (1). Person 211A (image display) is displayed.
  • the survey position (2) (indicated by reference numeral 254) is located at the top of the pier. Since the survey position (2) can be accessed by the bridge inspection vehicle 207 and rope access (see Listing 212), the bridge inspection vehicle 207 (image display) is displayed near the survey position (2). ..
  • the survey position (3) (indicated by reference numeral 256) is located in the middle of the pier. Since the survey position (3) can be accessed by rope access, aerial work platform 203, and bridge inspection vehicle 207 (see Listing 212), the 3D model 250 is located near the survey position (3).
  • the aerial work platform 203 image display is displayed.
  • the survey position (4) (indicated by reference numeral 258) is located at the bottom of the pier. Since the survey position (4) can be accessed by the ladder 213, rope access, aerial work platform 203, and bridge inspection vehicle 207 (see Listing 212), the survey position (4) is used for the 3D model 250.
  • the rope access investigator 211A and the aerial work platform 203 are displayed in the vicinity of.
  • the information display unit 57 may display an image of the access means accessible on the three-dimensional model 250 (FIG. 16 (A)) and display the list 212 (FIG. 16 (B)). , Either one (FIG. 16 (A) or FIG. 16 (B)) may be displayed. Further, when the image display of the access means accessible on the three-dimensional model 250 (FIG. 16 (A)) and the display of the list 212 (FIG. 16 (B)) are performed, when the user selects the access means in the list 212.
  • the accessible parts on the 3D model may be displayed in different colors. Further, in the above description, an example in which a plurality of survey positions are specified has been described, but the present embodiment is not limited to this example. For example, the structure survey support device 10 may present one access means for one survey position.
  • information on one or more types of access means for accessing the survey position is displayed based on the received survey position and the accessible range information 107.
  • the user can easily grasp the candidate of the access means to the survey position.
  • FIG. 17 is a diagram showing information and the like stored in the storage unit 16 of the present embodiment.
  • the parts already described in FIG. 3 are designated by the same reference numerals and the description thereof will be omitted.
  • the storage unit 16 of the present embodiment stores the three-dimensional model 101, the image 103, the damage information 105, the accessible range information 107, and the surrounding environment information 109.
  • the surrounding environment information 109 is information indicating the environment around the structure to be surveyed or the environment around the survey location. Examples of the surrounding environment information 109 include information indicating whether the lower surface scaffolding environment is the ground or the water surface. Further, when the lower surface scaffolding environment is the ground, the surrounding environment information 109 may include information on whether the ground is flat or sloped, leveled or rough. Further, when the lower surface scaffolding environment is the water surface, the surrounding environment information 109 may include information on whether it is a river or the sea, the speed of the flow, and the strength of the waves. Further, as another example of the surrounding environment information 109, information on the location environment can be mentioned.
  • information on the location environment includes, for example, the vegetation (trees, etc.) around the structure to be investigated, the road type of the road of the structure to be investigated (highway, national road, prefectural road, city road), Information on restricted area species (residential areas, commercial areas, industrial areas) in the area where the structure to be investigated is located.
  • the surrounding environment information 109 information on the meteorological environment around the structure can be mentioned.
  • the information about the meteorological environment is, for example, the average wind speed.
  • information on the traffic volume around the structure and the existence of electric wires can be mentioned.
  • FIGS. 18 and 19 are diagrams showing an example of access means when the lower surface scaffolding environment is the water surface.
  • FIG. 18 is a conceptual diagram showing an unmanned aerial vehicle (drone) 214 which is an example of access means.
  • the unmanned aircraft 214 accesses the survey position by flying. For example, it is an effective access means in a high survey position or a place where a foothold for access means cannot be secured due to the sea or river.
  • the unmanned aircraft 214 has a camera 214A, and the camera 214A can capture a photographed image of the survey position.
  • FIG. 19 is a conceptual diagram showing a bridge inspection ship 216 which is an example of access means.
  • the bridge inspection vessel 216 can access the survey position even when the scaffolding for accessing the survey position is on the water surface.
  • the bridge inspection vessel 216 moves the water surface and moves the basket 216B by expanding and contracting the boom 216A to access the desired survey position.
  • the storage unit 16 acquires the surrounding environment information 109. Then, the information display unit 57 displays information on the access means for accessing the survey position based on the designated survey position, the accessible range information 107, and the surrounding environment information 109.
  • FIG. 20 is a diagram showing an example of displaying information of access means displayed on the display unit 30 by the information display unit 57.
  • the survey position (1) to the survey position (5) are specified on the 3D model 270 of the bridge.
  • a bridge inspection vehicle 207 is presented as an access means for accessing the survey position (1) (indicated by reference numeral 272).
  • it may be accompanied by a constraint condition due to the surrounding environment based on the surrounding environment information 109, such as difficulty in controlling traffic for a long time.
  • the access means for accessing the survey position (2) (indicated by reference numeral 274), the surveyor 211A by rope access is presented.
  • the surrounding environment information 109 there is a tree 284 on the scaffolding, and vehicles cannot enter. Therefore, as an access means for the survey position (2), access by the surveyor 211A by rope access is presented.
  • the aerial work platform 203 is presented as an access means for accessing the survey position (3) (indicated by reference numeral 276). Since the survey position (3) is on the ground 282, it can be accessed by the aerial work platform 203.
  • An unmanned aircraft 214 is presented as an access means for accessing the survey position (4) (indicated by reference numeral 278). Since the survey position (4) is on the water surface 286, the survey position (4) can be accessed by the unmanned aircraft 214. The unmanned aircraft 214 cannot fly in a place where the wind is strong, but according to the surrounding environment information 109, the wind is weak around the survey position (4), so that the unmanned aircraft 214 can fly. , The unmanned aircraft 214 is presented.
  • the bridge inspection ship 216 is presented as an access means for accessing the survey position (5) (indicated by reference numeral 280). Since the survey position (5) is above the water surface, the bridge inspection vessel 216 is presented.
  • information for accessing the access means for accessing the designated survey position is presented based on the accessible range information 107 and the surrounding environment information 109.
  • the accessible range information 107 information for accessing the access means for accessing the designated survey position
  • the surrounding environment information 109 information for accessing the access means for accessing the designated survey position
  • FIG. 21 is a diagram showing information and the like stored in the storage unit 16 of the present embodiment.
  • the parts already described in FIG. 3 are designated by the same reference numerals and the description thereof will be omitted.
  • the storage unit 16 of the present embodiment mainly stores the three-dimensional model 101, the image 103, the damage information 105, the accessible range information 107, and the unit survey required time information 111.
  • the unit survey required time information 111 is information regarding the time required for the survey.
  • the unit survey required time information 111 has information regarding the preparation time of the access means, the unit survey time, and the withdrawal time.
  • the time required for the unit survey can be changed according to the user's situation.
  • the user's situation is, for example, the degree of proficiency in handling the access means of the investigator.
  • FIG. 22 is a diagram showing an example of the unit survey required time for each access means.
  • FIG. 22 shows information on the preparation time, unit survey time, and withdrawal time of each access means of "person”, “ladder”, “rope access”, “aerial work platform”, and "bridge inspection vehicle”.
  • the information acquisition unit 51 acquires the unit survey required time from the storage unit 16. Then, the information display unit 57 calculates at least one of the required time for each survey position and the required time for conducting a survey of all survey positions based on the survey position and the unit survey required time information 111. Display the calculated required time.
  • the information display unit 57 calculates the required time for the survey positions (1) to the survey positions (4) described in FIG. 16 based on the unit survey required time information 111 shown in FIG. 22.
  • FIG. 22 shows the preparation time, the unit survey time, and the withdrawal time of each access means of the “person”, “ladder”, “rope access”, “aerial work platform”, and “bridge inspection vehicle”.
  • the information display unit 57 calculates the survey time at the survey position (1) as follows.
  • Survey time of survey position (1) installation time of access means A + unit survey time of access means A x floor slab survey area + withdrawal time of access means A
  • the information display unit 57 calculates the survey time at the survey position (2) as follows.
  • Survey time of survey position (2) Installation time of access means B + Unit survey time of access means B x Survey area of pier upper part + Withdrawal time of access means B
  • the information display unit 57 calculates the survey time at the survey position (3) as follows.
  • Survey time of survey position (3) installation time of access means C + unit survey time of access means C x survey area of central pier + withdrawal time of access means C
  • the information display unit 57 calculates the survey time at the survey position (4) as follows.
  • Survey time at survey position (4) installation time of access means D + unit survey time of access means D x survey area under pier + withdrawal time of access means D
  • the candidates for the access means A described above are the rope access and the bridge inspection vehicle 207
  • the candidates for the access means B are the rope access and the bridge inspection vehicle 207
  • the candidates for the access means C are the rope access and the aerial work platform 203.
  • the bridge inspection vehicle 207, and the candidates for the access means D are the ladder 213, the rope access, the aerial work platform 203, and the bridge inspection vehicle 207.
  • the information display unit 57 describes the survey time of the above-mentioned survey position (1), survey position (2), survey position (3), and survey position (4) by the above-mentioned formula and the unit survey required time information shown in FIG. 22. Based on 111, the survey time for each survey position is calculated.
  • the information display unit 57 can also calculate the total survey time for conducting all the surveys at the survey positions (1) to (4). For example, the information display unit 57 calculates the total survey time for each combination of the candidates of the access means A to D, and the combination of the access means (access means A / access means B / access means C /) that minimizes the search time. Access means D) can also be presented. When the same access means is used at a plurality of survey positions, the preparation time and the withdrawal time are shortened, and the total survey time is calculated.
  • the present embodiment in addition to presenting the access means, it is possible to provide the user with information on the survey time according to the access means. As a result, the user can grasp the survey time together with the access means. In addition, the user can select the access means based on the survey time.
  • FIG. 23 is a diagram showing information and the like stored in the storage unit 16 of the present embodiment.
  • the parts already described in FIG. 3 are designated by the same reference numerals and the description thereof will be omitted.
  • the storage unit 16 of the present embodiment mainly stores the three-dimensional model 101, the image 103, the damage information 105, the accessible range information 107, and the cost information 113.
  • the parts already described in FIG. 3 are designated by the same reference numerals and the description thereof will be omitted.
  • Cost information 113 is information related to the cost required for the survey.
  • the cost information 113 is composed of a survey cost (visual survey + consultation, photography, traffic regulation, etc.), a rental cost, and a preparation (arrangement, etc.) cost.
  • the cost information 113 can be changed according to the user's situation. As for the user's situation, for example, when the user has an access means, the rental cost is set to 0.
  • FIG. 24 is a diagram showing an example of cost information.
  • the information display unit 57 calculates the survey cost for the survey positions (1) to the survey positions (4) described in FIG. 16 based on the cost information 113 shown in FIG. 24.
  • the cost information 113 shows the survey cost, rental cost, and preparation cost for each access means of "person”, “ladder”, “rope access”, “aerial work platform”, and "bridge inspection vehicle”.
  • the information display unit 57 calculates the cost based on the survey position and the cost information 113.
  • the survey cost is calculated as follows for the survey positions (1) to (4) described with reference to FIG.
  • the information display unit 57 calculates the survey cost of the survey position (1) as follows.
  • Cost of survey position (1) Survey time of access means A x survey cost of access means A + rental cost of access means A + preparation cost of access means A
  • the information display unit 57 calculates the survey cost of the survey position (2) as follows.
  • Cost of survey position (2) Survey time of access means B x survey cost of access means B + rental cost of access means B + preparation cost of access means B
  • the information display unit 57 calculates the survey cost of the survey position (3) as follows.
  • Cost of survey position (3) Survey time of access means C x survey cost of access means C + rental cost of access means C + preparation cost of access means C
  • the information display unit 57 calculates the survey cost of the survey position (4) as follows.
  • Cost of survey position (4) Survey time of access means D x survey cost of access means D + rental cost of access means D + preparation cost of access means D
  • Candidates for access means A are rope access and bridge inspection vehicles 207
  • candidates for access means B are rope access and bridge inspection vehicles 207
  • candidates for access means C are rope access, aerial work platforms 203 and bridges.
  • the inspection vehicle 207, and the candidates for the access means D are a ladder 213, a rope access, an aerial work platform 203, and a bridge inspection vehicle 207.
  • the information display unit 57 sets the survey time of the above-mentioned survey position (1), survey position (2), survey position (3), and survey position (4) based on the above-mentioned formula and the cost information 113 shown in FIG. 24. Then, the survey cost for each survey position is calculated.
  • the information display unit 57 can also calculate the total cost for conducting all the surveys of the survey positions (1) to (4). For example, the information display unit 57 calculates the total cost for each combination of the candidates of the access means A to D, and the combination of the access means (access means A / access means B / access means C / access means) that minimizes the cost. D) is presented. If the same access means is used at a plurality of survey positions, the rental cost and the preparation cost are shortened, and the total cost is calculated.
  • the access means in addition to presenting the access means, it is possible to provide the user with information on the survey cost according to the access means. As a result, the user can grasp the investigation cost together with the access means. In addition, the user can select the access means based on the survey cost.
  • FIG. 25 is a diagram showing information and the like stored in the storage unit 16 of the present embodiment.
  • the parts already described in FIG. 3 are designated by the same reference numerals and the description thereof will be omitted.
  • the storage unit 16 of the present embodiment mainly stores the three-dimensional model 101, the image 103, the damage information 105, the accessible range information 107, and the shooting condition 115.
  • the shooting condition 115 is a condition for acquiring a shot image used for the survey.
  • the shooting condition 115 includes, for example, at least one of subject resolution, allowable tilt angle, and focal length range information.
  • the information acquisition unit 51 acquires the photographing condition 115 from the storage unit 16. Then, the information display unit 57 calculates the shooting position from the survey position designated by the three-dimensional model, the accessible range information 107, and the shooting condition 115. Specifically, the information display unit 57 calculates and presents a shooting position for shooting the survey position from the shooting condition 115. Further, the information display unit 57 presents an access means for accessing the calculated shooting position.
  • FIG. 26 is a diagram illustrating the presentation of the shooting position.
  • FIG. 26 shows the three-dimensional model 300 of the bridge, and the survey position 302 and the survey position 306 are designated on the three-dimensional model 300.
  • the information display unit 57 presents the candidate group 304 for the photographing position with respect to the investigation position 302, and the candidate group 308 for the imaging position with respect to the investigation position 306.
  • the survey position is not necessarily one with respect to the survey position, and there are candidate groups for shooting positions. Therefore, the information display unit 57 calculates and presents a candidate group for each survey position.
  • the shooting position is schematically shown at the point P, but the shooting position candidate group continuously exists with the angle and / or the distance continuously changed.
  • the shooting position candidate group has a range of shooting angles that satisfy the shooting condition 115 according to the allowable tilt angle. Further, the shooting position candidate group has a shooting distance range that satisfies the shooting condition (desired subject resolution) 115 according to the focal length range.
  • the information display unit 57 presents an access means that can access at least one of the calculated candidate groups, but in the case shown in FIG. 26, the presentation of the access means is omitted.
  • a shooting position for shooting the survey position and an access means for accessing the shooting position are presented.
  • the user can easily grasp the shooting position and the access means for accessing the shooting position.
  • FIG. 27 is a diagram showing a gondola vehicle which is an example of access means.
  • the gondola car 310 moves the boom 310A and moves the gondola 310B under the bridge 311. Then, the gondola vehicle 310 can access the survey position by the investigator by moving the gondola 310B in the vertical direction with a wire.
  • FIG. 28 is a diagram showing a working range diagram which is an example of the accessible range information 107 of the gondola vehicle 310.
  • Working range FIG. 312 shows the working range of the gondola vehicle 310. Specifically, the working range FIG. 312 shows the vertical reachable range and the horizontal working radius of the gondola 310B of the gondola wheel 310.
  • FIG. 29 is a diagram showing a suspended robot which is an example of an access means.
  • the suspended robot 314 is installed in a part of the bridge 315 and is operated manually or automatically.
  • the suspended robot 314 is equipped with a camera 314A and can take a picture close to the survey position.
  • FIG. 30 is a diagram showing a pole camera which is an example of access means.
  • the pole camera 317 shown in FIG. 30 (A) photographs the survey position of the bridge 319 from the ground. In this way, by using the pole camera 317, the investigator can acquire a photographed image of the investigation position at the upper part of the bridge 319 with the camera 317A.
  • the pole camera 317 shown in FIG. 30 (B) photographs the survey position by pointing the survey position of the bridge 319 downward from the bridge 319. In this way, the investigator can acquire the photographed image of the back side of the bridge 319 with the camera 317A by pointing the pole camera 317 downward.
  • the information acquisition unit 51 has described the form of acquiring the information stored in the storage unit 16, but the present invention is not limited to this.
  • the information acquisition unit 51 may acquire information from the outside via the input / output interface 12 when the necessary information is not stored in the storage unit 16.
  • the information acquisition unit 51 acquires information input from the outside of the structure investigation support device 10 via the input / output interface 12.
  • the hardware-like structure of the processing unit that executes various processes is various processors as shown below.
  • the circuit configuration can be changed after manufacturing CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), etc., which are general-purpose processors that execute software (programs) and function as various processing units.
  • Programmable Logic Device PLD
  • Programmable Logic Device PLD
  • ASIC Application Specific Integrated Circuit
  • One processing unit may be composed of one of these various processors, or may be composed of two or more processors of the same type or different types (for example, a plurality of FPGAs or a combination of a CPU and an FPGA). You may. Further, a plurality of processing units may be configured by one processor. As an example of configuring a plurality of processing units with one processor, first, one processor is configured by a combination of one or more CPUs and software, as represented by a computer such as a client or a server. There is a form in which the processor functions as a plurality of processing units.
  • SoC System On Chip
  • the various processing units are configured by using one or more of the above-mentioned various processors as a hardware-like structure.
  • the hardware-like structure of these various processors is, more specifically, an electric circuit (circuitry) in which circuit elements such as semiconductor elements are combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Strategic Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Tourism & Hospitality (AREA)
  • Primary Health Care (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • General Health & Medical Sciences (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Computer Graphics (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

構造物の調査位置へのアクセス手段の候補を分かりやすく提示する構造物の調査支援装置、構造物の調査支援方法、及びプログラムを提供する。構造物の調査支援装置は、プロセッサ(20)を備える。プロセッサ(20)は、調査対象である構造物の3次元モデル、及び前記構造物の調査位置にアクセスする複数の種類のアクセス手段のアクセス可能範囲情報を取得し、前記3次元モデルを表示部に表示させ、表示された前記3次元モデルの前記調査位置の指定を受け付け、受け付けられた前記調査位置と前記アクセス可能範囲情報とに基づいて、前記調査位置にアクセスするための1種類以上の前記アクセス手段の情報を前記表示部に表示する。

Description

構造物の調査支援装置、構造物の調査支援方法、及びプログラム
 本発明は、構造物の調査支援装置、構造物の調査支援方法、及びプログラムに関する。
 従来より、構造物の調査作業を行う際に、調査者の支援を行う調査支援技術が提案されている。
 例えば、特許文献1では、構造物を撮影し、その撮影画像から欠陥を検出し、欠陥を補修するためのコストの計算を簡便かつ正確に行うことを目的とした技術が提案されている。
 ここで、調査者の遠望からの目視調査やドローン(無人飛行体)等による構造物全体の大まかな画像撮影によりスクリーニングを行った際に損傷が発見され、その発見した損傷に近接して詳細な調査が必要となることがある。
特開2002-222281号公報
 構造物の調査位置へのアクセス手段は数多くある。したがって、調査者は、どの手段を使用することにより、所望の調査位置へアクセスが可能であるか、分かり難くアクセス手段の設計が容易に行われないことがある。
 本発明はこのような事情に鑑みてなされたもので、その目的は、構造物の調査位置へのアクセス手段の候補を分かりやすく提示する構造物の調査支援装置、構造物の調査支援方法、及びプログラムを提供することである。
 上記目的を達成するための本発明の一の態様である構造物の調査支援装置は、プロセッサを備える構造物の調査支援装置であって、プロセッサは、調査対象である構造物の3次元モデル、及び構造物の調査位置にアクセスする複数の種類のアクセス手段のアクセス可能範囲情報を取得し、3次元モデルを表示部に表示させ、表示された3次元モデルの調査位置の指定を受け付け、受け付けられた調査位置とアクセス可能範囲情報とに基づいて、調査位置にアクセスするための1種類以上のアクセス手段の情報を表示部に表示する。
 好ましくは、構造物の調査支援装置は、3次元モデル及びアクセス可能範囲情報を記憶するメモリを備え、プロセッサは、メモリから3次元モデル及びアクセス可能範囲情報を取得する。
 好ましくは、メモリは、3次元モデルと対応付けられた構造物の画像を記憶し、プロセッサは、画像から損傷を検出し、検出された損傷に基づいて、調査位置の指定を自動で受け付ける。
 好ましくは、メモリは、3次元モデルと対応付けられた損傷情報を記憶し、プロセッサは、3次元モデルに損傷情報を表示する。
 好ましくは、プロセッサは、構造物の周辺の環境を示す周辺環境情報を取得し、周辺環境情報、調査位置、及びアクセス可能範囲情報に基づいて、調査位置にアクセスするためのアクセス手段の情報を表示する。
 好ましくは、構造物の調査支援装置は、周辺環境情報を記憶するメモリを備え、プロセッサは、メモリから周辺環境情報を取得する。
 好ましくは、プロセッサは、アクセス手段の各々について、調査に要する時間を示す単位調査所要時間情報を取得し、アクセス手段の情報を表示する場合には、表示するアクセス手段の情報に対応する単位調査所要時間情報を表示する。
 好ましくは、構造物の調査支援装置は、単位調査所要時間情報を記憶するメモリを備え、プロセッサは、メモリから単位調査所要時間情報を取得する。
 好ましくは、プロセッサは、調査位置と単位調査所要時間情報とに基づいて、調査位置毎の所要時間及び全ての調査位置の調査を行うための所要時間のうち少なくとも一つを算出し、算出された所要時間を表示する。
 好ましくは、プロセッサは、アクセス手段の各々について、調査に要する費用を示す費用情報を取得し、アクセス手段の情報を表示する場合には、表示するアクセス手段の情報に対応する費用情報を表示する。
 好ましくは、構造物の調査支援装置は、費用情報を記憶するメモリを備え、プロセッサは、メモリから費用情報を取得する。
 好ましくは、プロセッサは、調査位置と費用情報とに基づいて、調査位置毎の調査費用及び全ての調査位置の調査を行うための調査費用のうち少なくとも一つを算出し、算出された調査費用を表示する。
 好ましくは、調査位置は、構造物に目視または打診を行う位置である。
 好ましくは、調査位置は、構造物の撮影される範囲を示す撮影対象位置である。
 好ましくは、プロセッサは、構造物の撮影を行うための撮影条件を取得し、調査位置および撮影条件に基づいて、撮影位置を取得し、撮影位置に対するアクセス手段の情報を表示する。
 好ましくは、構造物の調査支援装置は、撮影条件を記憶するメモリを備え、プロセッサは、メモリから撮影条件を取得する。
 好ましくは、プロセッサは、撮影位置を表示する。
 本発明の他の態様である構造物の調査支援方法は、プロセッサを備える構造物の調査支援装置を使用した構造物の調査支援方法であって、プロセッサにより調査対象である構造物の3次元モデル、及び構造物の調査位置にアクセスする複数の種類のアクセス手段のアクセス可能範囲情報を取得するステップと、3次元モデルを表示部に表示させるステップと、表示された3次元モデルの調査位置の指定を受け付けるステップと、受け付けられた調査位置とアクセス可能範囲情報とに基づいて、調査位置にアクセスするための1種類以上のアクセス手段の情報を表示部に表示するステップと、を含む。
 本発明の他の態様であるプログラムは、プロセッサを備える構造物の調査支援装置に構造物の調査支援方法を実行させるプログラムであって、プロセッサにより調査対象である構造物の3次元モデル、及び構造物の調査位置にアクセスする複数の種類のアクセス手段のアクセス可能範囲情報を取得するステップと、3次元モデルを表示部に表示させるステップと、表示された3次元モデルの調査位置の指定を受け付けるステップと、受け付けられた調査位置とアクセス可能範囲情報とに基づいて、調査位置にアクセスするための1種類以上のアクセス手段の情報を表示部に表示するステップと、を実行させる。
 本発明によれば、指定された調査位置とアクセス可能範囲情報に基づいて、調査位置にアクセスするための1種以上のアクセス手段の情報が提示されるので、ユーザは容易にアクセス手段の設計を行うことができる。
図1は、構造物の調査支援装置のハードウェア構成の一例を示すブロック図である。 図2は、CPUで実現される処理機能を示すブロック図である。 図3は、記憶部に記憶される情報等を示す図である。 図4は、構造物の調査支援装置を使用した構造物の調査支援方法を示すフロー図である。 図5は、3次元モデル表示ステップ及び指定受付ステップの具体例を説明する図である。 図6は、3次元モデル表示ステップ及び指定受付ステップの具体例を説明する図である。 図7は、3次元モデル表示ステップ及び指定受付ステップの具体例を説明する図である。 図8は、3次元モデル表示ステップ及び指定受付ステップの具体例を説明する図である。 図9は、アクセス手段の一例である高所作業車を示す図である。 図10は、アクセス可能範囲情報の一例である作業範囲図を示す図である。 図11は、アクセス手段の一例である橋梁点検車を示す図である。 図12は、アクセス可能範囲情報の一例である作業範囲図を示す図である。 図13は、アクセス可能範囲情報の一例である作業範囲図を示す図である。 図14は、アクセス手段の一例であるロープアクセスを説明する図である。 図15は、アクセス手段の一例である梯子を示す図である。 図16は、アクセス手段の情報の表示の一例を示す図である。 図17は、記憶部に記憶される情報等を示す図である。 図18は、アクセス手段の一例である無人飛行体(ドローン)を示す概念図である。 図19は、アクセス手段の一例である橋梁点検船を示す概念図である。 図20は、アクセス手段の情報の表示の一例を示す図である。 図21は、記憶部に記憶される情報等を示す図である。 図22は、単位調査所要時間の例を示す図である。 図23は、記憶部に記憶される情報等を示す図である。 図24は、費用情報の一例を示す図である。 図25は、記憶部に記憶される情報等を示す図である。 図26は、撮影位置の提示に関して説明する図である。 図27は、アクセス手段の一例であるゴンドラ車を示す図である。 図28は、アクセス可能範囲情報の一例である作業範囲図を示す図である。 図29は、アクセス手段の一例である懸垂型ロボットを示す図である。 図30は、アクセス手段の一例であるポールカメラを示す図である。
 以下、添付図面に従って本発明に係る構造物の調査支援装置、構造物の調査支援方法、及びプログラムの好ましい実施の形態について説明する。
 <第1の実施形態>
[構造物の調査支援装置のハードウェア構成]
 図1は、本発明に係る構造物の調査支援装置のハードウェア構成の一例を示すブロック図である。
 図1に示す構造物の調査支援装置10としては、コンピュータ又はワークステーションを使用することができる。本例の構造物の調査支援装置10は、主として入出力インターフェイス12、記憶部16、操作部18、CPU(Central Processing Unit)20と、RAM(Random Access Memory)22と、ROM(Read Only Memory)24と、表示制御部26とから構成されている。構造物の調査支援装置10には、表示部30が接続され、CPU20の指令の下、表示制御部26の制御により表示部30に表示が行われる。表示部30は、例えばモニタで構成される。
 入出力インターフェイス12は、構造物の調査支援装置10に様々なデータ(情報)を入力することができる。例えば、後で説明を行う記憶部16に記憶されるデータが入出力インターフェイス12を介して入力される。
 CPU(プロセッサ)20は、記憶部16又はROM24等に記憶された各種のプログラムを読み出し、RAM22に展開して計算を行い各部を統括制御する。また、CPU20は、記憶部16及びROM24に記憶されているプログラムを読み出して、RAM22を使用して計算を行い構造物の調査支援装置10の各種処理を行う。
 図2は、CPU20で実現される処理機能を示すブロック図である。
 CPU20は、情報取得部51、3次元モデル表示部53、指定受付部55、及び情報表示部57を有する。なお、各部の具体的な処理機能の説明は後で行う。
 図1に戻って、記憶部(メモリ)16は、ハードディスク装置、フラッシュメモリ等から構成されるメモリである。記憶部16には、オペレーティングシステム、構造物の調査支援方法を実行させるプログラム等、構造物の調査支援装置10を動作させるデータ及びプログラムが記憶されている。また記憶部16は、以下で説明する本実施形態で使用する情報等を記憶する。
 図3は、記憶部16に記憶される情報等を示す図である。
 記憶部16は、主に、3次元モデル101、画像103、損傷情報105、アクセス可能範囲情報107を記憶する。
 3次元モデル101は、調査対象の構造物を示すモデルである。ここで、3次元モデル101とは、調査対象の構造物の形状を示す3次元情報であれば特に限定されない。例えば、3次元モデル101は、構造物を示す3次元CAD(computer-aided design)、点群モデル、テクスチャーモデル及びソリッドモデル等である。なお、構造物は、建造物、例えば、橋梁、トンネル、ダムなどの土木構造物を含み、その他にビル、家屋、建物の壁、柱、梁などの建築物をも包含するものである。
 画像103は、3次元モデル101と対応付けられた構造物の画像である。例えば画像103は、調査対象である構造物を撮影した撮影画像であり、3次元モデル101で表される構造物の表面にテクスチャとして貼り付けられる。なお、構造物に損傷がある場合には、画像103にはその損傷が写されており、画像103からその損傷を検出することができる。
 損傷情報105は、3次元モデル101と対応付けられた損傷に関する情報である。例えば損傷情報105は、調査対象である構造物が有する損傷の情報である。例えば損傷情報105は、損傷の種類、形状、及び大きさを示す損傷モデルである。具体的にひび割れの損傷モデルは、ひび割れ形状を示すモデル画像であり、剥離の損傷モデルは、剥離形状を示すモデル画像である。また、損傷モデルは、構造物が実際に損傷を有する箇所に対応する3次元モデル101上の位置情報(3次元座標)を有し、3次元モデル表示部53は3次元モデル101に重畳させて表示部30に表示することができる。
 アクセス可能範囲情報107は、調査位置にアクセスするためのアクセス手段のアクセス可能範囲を示す情報である。アクセス手段は、調査位置にアクセス、すなわち近づくための様々な手段である。アクセス手段の具体例は、梯子、移動式足場、移動式吊足場、橋梁点検車、浮体式足場(作業用台船+足場)、ゴンドラ車、高所作業車、ロープアクセス、及び橋梁点検船等である。ここで、調査位置は、調査対象である構造物に近接して詳細な調査が必要な箇所を示す。具体的には調査者は、調査位置において、調査対象である構造物に近接して目視または打診を行う。また、調査位置は、構造物に近接して撮影を行い写される範囲を示す撮影対象位置を示す場合もある。具体的には調査者は、調査位置が写った撮影画像を取得する。
 図1に戻って、操作部18は、コンピュータに有線接続又は無線接続されるキーボード及びマウス等を含み、コンピュータの通常の操作指示を行う操作部18として機能する。また操作部18は、ユーザが表示部30に表示された3次元モデル101の一部を指定することにより、調査位置の指定を受け付ける。
 図4は、構造物の調査支援装置10を使用した構造物の調査支援方法を示すフロー図である。
 先ず、情報取得部51は、調査対象である構造物の3次元モデル及びアクセス可能範囲情報107を取得する(情報取得ステップ:ステップS1)。その後、3次元モデル表示部53は、取得した3次元モデルを表示部30に表示する(3次元モデル表示ステップ:ステップS2)。次に、指定受付部55は、3次元モデルにおける調査位置の指定を受け付ける(指定受付ステップ:ステップS3)。次に、アクセス手段の情報表示部57は、受け付けられた調査位置とアクセス可能範囲情報107とに基づいて、調査位置にアクセスするための1種類以上のアクセス手段の情報を表示部30に表示する(アクセス手段の情報表示ステップ:ステップS4)。以下に各ステップに関して、詳細な説明を行う。
 <情報取得ステップ>
 情報取得ステップ(ステップS1)は、情報取得部51により行われる。情報取得部51は、記憶部16に記憶されている構造物の3次元モデル101及びアクセス可能範囲情報107を取得する。なお、記憶部16に3次元モデル101及びアクセス可能範囲情報107が記憶されていない場合には、情報取得部51は外部から3次元モデル101及びアクセス可能範囲情報107を取得する。例えば、入出力インターフェイス12を介してネットワークを通して、情報取得部51は3次元モデル101及びアクセス可能範囲情報107を取得する。
 また、情報取得部51は、画像103及び/又は損傷情報105を3次元モデル101と合わせて取得することができる。表示部30に「3次元モデル101及び画像103」が表示される場合、表示部30に「3次元モデル101及び損傷情報105」が表示される場合、または表示部30に「3次元モデル101、画像103、及び損傷情報105」が表示される場合には、情報取得部51は、表示するための画像103及び損傷情報105をそれぞれ取得する。
 <3次元モデル表示ステップ及び指定受付ステップ>
 3次元モデル表示ステップ(ステップS2)は、3次元モデル表示部53により行われる。また、指定受付ステップ(ステップS3)は、指定受付部55により行われる。
 図5~図8は、3次元モデル表示ステップ及び指定受付ステップの具体例を説明する図である。なお、図5~図8では、3次元モデルに対応する橋梁の撮影画像(画像103)がテクスチャとして貼り付けられたテクスチャーモデルが3次元モデルとして表示されている。
 [例1]
 図5は、例1の表示部30に表示された3次元モデル及び指定された調査位置を示す図である。
 図5(A)は、表示部30に表示された3次元モデルM1を示す図である。3次元モデルM1は調査対象の橋脚を示す図である。ユーザは、表示部30に表示された3次元モデルM1を見て、3次元モデルM1上に近接して調査が必要な箇所を指定する。
 図5(B)は、調査位置F1が指定された場合について説明する図である。
 ユーザは、近接して調査が必要であると判断した箇所(調査位置F1)を、操作部18を介して3次元モデルM1上に手動で指定する。指定受付部55は、操作部18で指定された3次元モデルM1上の位置を受け付ける。
 [例2]
 図6は、例2の表示部30に表示された3次元モデル及び指定された調査位置を示す図である。
 図6(A)は、表示部30に表示された3次元モデルM2を示す図である。3次元モデルM2は調査対象の橋脚上部を示す図である。ユーザは、表示部30に表示された3次元モデルM2上を見て、3次元モデルM2上に近接して調査が必要な箇所を指定する。
 図6(B)は、調査位置F2が指定された場合について説明する図である。
 ユーザは、近接して調査が必要であると判断した箇所(調査位置F2)を、操作部18を介して3次元モデルM2上に手動で指定する。指定受付部55は、操作部18で指定された3次元モデルM2上の位置を受け付ける。
 [例3]
 図7は、例3の表示部30に表示された3次元モデル及び指定された調査位置を示す図である。
 図7(A)は、表示部30に表示された3次元モデルM1を示す図である。本例の3次元モデルM1は、損傷情報D1を有している。損傷情報D1は、ひび割れの損傷モデルである。本例ではユーザは、損傷情報D1を有する3次元モデルM1を見て、近接して調査が必要である判断して調査位置F3を指定することができる。
 図7(B)は、調査位置F3が指定された場合について説明する図である。
 ユーザは、近接して調査が必要であると判断した箇所(調査位置F3)を、操作部18を介して手動で3次元モデルM1に指定する。ユーザは表示部30に表示された損傷情報D1を見て、損傷情報D1が密集している箇所(ひび割れが密集している箇所)を調査位置F3として指定することができる。
 このように、損傷情報D1を3次元モデルM1に重畳して表示することにより、ユーザは近接して調査が必要である箇所を容易に判断し、調査位置を正確に指定することができる。
 [例4]
 図8は、例4の表示部30に表示された3次元モデル及び指定された調査位置を示す図である。
 図8(A)は、表示部30に表示された3次元モデルM2を示す図である。本例の3次元モデルM2は、損傷情報D2を有している。損傷情報D2は、ひび割れの損傷モデルである。本例ではユーザは、損傷情報D2を有する3次元モデルM2を見て、近接して調査が必要であると判断して調査位置F4を指定することができる。
 図8(B)は、調査位置F4が指定された場合について説明する図である。
 ユーザは、近接して調査が必要であると判断した箇所(調査位置F4)を、操作部18を介して手動で3次元モデルM2に指定する。例えば、ユーザは損傷情報D2を見て、損傷情報D2が密集している箇所(ひび割れが密集している箇所)を調査位置F4として指定することができる。
 このように、損傷情報D2を3次元モデルM2に重畳して表示することにより、ユーザは近接して調査が必要である箇所を容易に判断し、調査位置を正確に指定することができる。
 なお、上述した例ではユーザは、手動により、調査位置を指定する場合について説明をしたが、調査位置の指定はこれに限定されるものではない。指定受付部55は、調査位置を自動で受け付けてもよい。調査位置が自動で指定される場合には、例えば、損傷情報Dに基づいて調査位置の指定が行われる。例えば、太さまたは長さ等が閾値以上のひび割れが発生している箇所、亀甲状のひび割れが発生している箇所、面積が閾値以上の剥離が発生している箇所など、損傷の検出結果または定量化結果に基づいて、自動で調査位置が指定されてもよい。
 <アクセス手段の情報表示ステップ>
 アクセス手段の情報表示ステップ(ステップS4)は、情報表示部57で行われる。情報表示部57は、受け付けられた調査位置とアクセス可能範囲情報107とに基づいて、調査位置にアクセスするための1種類以上のアクセス手段の情報を表示部30に表示する。
 [アクセス手段及びアクセス可能範囲情報]
 先ず、アクセス手段及びアクセス可能範囲情報107に関して説明する。調査位置に近接して詳細な調査を行うためのアクセス手段としては、様々なものを採用することができる。以下に、アクセス手段及びアクセス可能範囲情報107の具体例に関して説明する。
 図9は、アクセス手段の一例である高所作業車を示す図である。
 図9に示すように、高所作業車203は、ブーム203Aの先端にバスケット203Bが設けられている。調査者は、バスケット203Bに乗車し、ブーム203Aを伸縮させることにより、高所の調査位置にアクセスすることができる。
 図10は、高所作業車203のアクセス可能範囲情報107の一例である作業範囲図を示す図である。
 作業範囲図205は、高所作業車203での作業範囲を図で示している。具体的には作業範囲図205は、高所作業車203のバスケット203Bの垂直方向の到達範囲及び水平方向の作業半径を示している。
 図11は、アクセス手段の一例である橋梁点検車を示す図である。
 図11に示すように、橋梁点検車207は、ブーム207Aの先端にバスケット207Bが設けられている。調査者は、バスケット207Bに乗車し、ブーム207Aを伸縮させることにより調査位置にアクセスすることができる。
 図12は、橋梁点検車207の下側のアクセス可能範囲情報107の一例である作業範囲図を示す図である。
 作業範囲図209は、橋梁点検車207での作業範囲を図で示している。作業範囲図209は、橋梁点検車207のバスケット207Bの作業半径及び到達することができる地上高を示している。
 図13は、橋梁点検車207の上側のアクセス可能範囲情報107の一例である作業範囲図を示す図である。
 作業範囲図211は、橋梁点検車207での作業範囲を図で示している。作業範囲図211は、橋梁点検車207のバスケット207Bの作業半径及び到達することができる地上高を示している。
 図14は、アクセス手段の一例であるロープアクセスを説明する図である。
 図14(A)に示すように、ロープアクセスにより、調査者211Aは橋梁210の高所の調査位置にアクセスすることができる。また、図14(B)に示すように、ロープアクセスにより、調査者211Bは橋梁210の裏側にある調査位置にアクセスすることができる。なお、ロープアクセスのアクセス可能範囲情報107は、到達できる地上高や作業範囲の制限なくアクセス可能である。
 図15は、アクセス手段の一例である梯子を示す図である。
 図15に示すように、梯子213を使用することにより、調査者213Aは高所の調査位置にアクセスすることができる。具体的には調査者213Aは、橋脚215の高所の調査位置に梯子213を使用して近接して詳細な調査を行うことができる。
 [アクセス手段の情報の表示]
 次に、アクセス手段の情報の表示に関して説明する。情報表示部57は、3次元モデル上で指定された調査位置とアクセス可能範囲情報107から各アクセス手段のアクセスの可否を判定する。そして情報表示部57は、判定したアクセスの可否に基づいて、アクセス手段の情報を表示する。なお、3次元モデルは、モデル対象の構造物(調査対象である構造物)の実寸に関する情報を有しており、情報表示部57は、3次元モデル上で指定された調査位置が実際の構造部でどこに位置するかの情報を得ることができる。したがって、情報表示部57は、実寸での調査位置とアクセス可能範囲情報107とを比較することにより、アクセス手段毎のアクセスの可否を判定することができる。
 図16は、情報表示部57により、表示部30に表示されたアクセス手段の情報の表示の一例を示す図である。
 図16(A)は、橋梁の3次元モデル250で指定された調査位置(1)~(4)に対するアクセス手段の情報をイメージ表示で示す図である。図16(B)は、調査位置(1)~(4)に対するアクセス手段の情報をリストで示す図である。
 調査位置(1)(符号252で示す)は、橋梁の裏側に位置する。調査位置(1)には、橋梁点検車207及びロープアクセスによるアクセスが可能であるので(リスト212を参照)、調査位置(1)の近傍に橋梁点検車207(イメージ表示)及びロープアクセスの調査者211A(イメージ表示)を表示している。
 調査位置(2)(符号254で示す)は橋脚の上部に位置する。調査位置(2)には、橋梁点検車207及びロープアクセスによるアクセスが可能であるので(リスト212を参照)、調査位置(2)の近傍に橋梁点検車207(イメージ表示)を表示している。
 調査位置(3)(符号256で示す)は橋脚の中部に位置する。調査位置(3)には、ロープアクセス、高所作業車203、橋梁点検車207によるアクセスが可能であるので(リスト212を参照)、3次元モデル250には、調査位置(3)の近傍に高所作業車203(イメージ表示)を表示している。
 調査位置(4)(符号258で示す)は橋脚の下部に位置する。調査位置(4)には、梯子213、ロープアクセス、高所作業車203、橋梁点検車207によるアクセスが可能であるので(リスト212を参照)、3次元モデル250には、調査位置(4)の近傍にロープアクセスの調査者211A及び高所作業車203を表示している。
 情報表示部57は、上述したように、3次元モデル250上にアクセス可能なアクセス手段のイメージ表示(図16(A))及びリスト212の表示(図16(B))を行ってもよいし、どちらか一方(図16(A)または図16(B))の表示を行ってもよい。また、3次元モデル250上にアクセス可能なアクセス手段のイメージ表示(図16(A))及びリスト212の表示(図16(B))を行う場合に、リスト212においてアクセス手段をユーザが選択すると、3次元モデル上でアクセス可能な箇所を別の色で表示させてもよい。また、上述の説明では複数の調査位置が指定された例について説明を行ったが、本実施形態はこの例に限定されるものではない。例えば、構造物の調査支援装置10は、一つの調査位置に対して一つのアクセス手段を提示してもよい。
 以上で説明したように、本実施形態では、受け付けられた調査位置とアクセス可能範囲情報107とに基づいて、調査位置にアクセスするための1種以上のアクセス手段の情報が表示される。これにより、ユーザは、調査位置へのアクセス手段の候補を容易に把握することができる。
 <第2の実施形態>
 次に、第2の実施形態に関して説明する。本実施形態では、さらに調査位置の周辺環境に関する情報にも基づいて、アクセス手段の情報が表示される。
 [周辺環境情報]
 図17は、本実施形態の記憶部16に記憶される情報等を示す図である。なお、図3で既に説明を行った箇所は、同じ符号を付し説明は省略する。
 本実施形態の記憶部16は、3次元モデル101、画像103、損傷情報105、アクセス可能範囲情報107、及び周辺環境情報109を記憶する。
 周辺環境情報109は、調査対象の構造物の周辺の環境または調査位置の周辺の環境を示す情報である。周辺環境情報109の例としては、下面足場環境が地面であるか水面であるかを示す情報が挙げられる。また、周辺環境情報109には、下面足場環境が地面の場合には、平面であるか斜面であるか、整地であるか不整地であるかの情報が含まれてもよい。また、周辺環境情報109には、下面足場環境が水面の場合には、川であるか海であるか、流れの速さ、波の強さの情報が含まれてもよい。また、周辺環境情報109の他の例としては、立地環境に関する情報が挙げられる。例えば、立地環境に関する情報とは、例えば、調査対象である構造物の周りの植生(木など)、調査対象である構造物が有する道路の道路種別(高速道路、国道、県道、市道)、調査対象である構造物がある地域の用途地域種(住宅地、商業地、工業地)に関する情報である。また、周辺環境情報109の他の例としては、構造物の周辺の気象環境に関する情報が挙げられる。気象環境に関する情報とは、例えば平均風速である。また、周辺環境情報109の他の例としては、構造物の周辺の交通量、電線の存在に関する情報が挙げられる。
 [下面足場環境が水面である場合のアクセス手段]
 図18及び図19は、下面足場環境が水面である場合のアクセス手段の例を示す図である。
 図18は、アクセス手段の一例である無人飛行体(ドローン)214を示す概念図である。
 無人飛行体214は、飛行することにより調査位置にアクセスする。例えば、高い位置の調査位置や、海や川等でアクセス手段の足場を確保できない場所では、有効なアクセス手段となる。無人飛行体214は、カメラ214Aを有しており、カメラ214Aで調査位置の撮影画像を撮影することができる。
 図19は、アクセス手段の一例である橋梁点検船216を示す概念図である。
 橋梁点検船216は、調査位置にアクセスするための足場が水面の場合でも調査位置にアクセスすることができる。橋梁点検船216は、水面を移動して、ブーム216Aを伸縮させることによりバスケット216Bを移動させて、所望の調査位置にアクセスする。
 [アクセス手段の情報の表示]
 情報取得部51は、周辺環境情報109を記憶部16が取得する。そして、情報表示部57は、指定された調査位置、アクセス可能範囲情報107、及び周辺環境情報109に基づいて、調査位置にアクセスするためのアクセス手段の情報を表示する。
 図20は、情報表示部57により、表示部30に表示されたアクセス手段の情報の表示の一例を示す図である。
 橋梁の3次元モデル270上では、調査位置(1)~調査位置(5)が指定されている。
 調査位置(1)(符号272で示す)にアクセスするアクセス手段は、橋梁点検車207が提示される。なお、交通量の多い重要道路での作業の場合には、長時間の交通規制は困難であるなどの、周辺環境情報109に基づく周辺環境による制約条件を付随して提示してもよい。
 調査位置(2)(符号274で示す)にアクセスするアクセス手段は、ロープアクセスによる調査者211Aが提示されている。周辺環境情報109によれば足場には木284があり、車両が入っていけない。したがって、調査位置(2)のアクセス手段としてロープアクセスによる調査者211Aによるアクセスを提示する。
 調査位置(3)(符号276で示す)にアクセスするアクセス手段は、高所作業車203が提示される。調査位置(3)は地面282上にあるので、高所作業車203によりアクセスすることが可能となる。
 調査位置(4)(符号278で示す)にアクセスするアクセス手段は、無人飛行体214が提示されている。調査位置(4)は水面286上にあるので、無人飛行体214により調査位置(4)にアクセスすることが可能となる。なお、風が強いところでは無人飛行体214は飛行することができないが、周辺環境情報109によれば調査位置(4)の周辺は風が弱いため、無人飛行体214が飛行可能であるために、無人飛行体214が提示されている。
 調査位置(5)(符号280で示す)にアクセスするアクセス手段は、橋梁点検船216が提示されている。調査位置(5)は水面上にあるので、橋梁点検船216が提示されている。
 調査位置(4)及び(5)のように下面が水面286である場合には、無人飛行体214、橋梁点検船216、及び浮体式足場でのアクセスが必要となる。
 以上で説明したように、本実施形態は、指定された調査位置にアクセスするアクセス手段を、アクセス可能範囲情報107、及び周辺環境情報109に基づいて、アクセスする情報が提示される。これにより、ユーザに周辺環境に応じた有効なアクセス手段の提示を行うことができる。
 <第3の実施形態>
 次に、第3の実施形態に関して説明する。本実施形態では、アクセス手段の提示に加えて調査時間の見積もりも合わせて提示する。
 [単位調査所要時間情報]
 図21は、本実施形態の記憶部16に記憶される情報等を示す図である。なお、図3で既に説明を行った箇所は、同じ符号を付し説明は省略する。
 本実施形態の記憶部16は、主に3次元モデル101、画像103、損傷情報105、アクセス可能範囲情報107、及び単位調査所要時間情報111を記憶する。
 単位調査所要時間情報111は、調査に必要な時間に関する情報である。例えば、単位調査所要時間情報111は、アクセス手段の準備時間、単位調査時間、及び撤収時間に関する情報を有する。なお、単位調査所要時間は、ユーザの状況に応じて変更可能である。ユーザの状況とは、例えば調査者のアクセス手段の取り扱いの習熟度などである。
 図22は、各アクセス手段に対する単位調査所要時間の例を示す図である。
 図22には、「人」「梯子」「ロープアクセス」「高所作業車」「橋梁点検車」の各アクセス手段の、準備時間、単位調査時間、及び撤収時間に関する情報が示されている。
 情報取得部51は、記憶部16から単位調査所要時間を取得する。そして、情報表示部57は、調査位置と単位調査所要時間情報111とに基づいて、調査位置毎の所要時間及び全ての調査位置の調査を行うための所要時間のうち少なくとも一つを算出し、算出された所要時間を表示する。
 [調査時間の算出]
 情報表示部57は、以下に示すように、図16で説明した調査位置(1)~調査位置(4)に関して、図22に示される単位調査所要時間情報111に基づいて所要時間を算出する。図22には、「人」「梯子」「ロープアクセス」「高所作業車」「橋梁点検車」の各アクセス手段の、準備時間、単位調査時間、及び撤収時間が示されている。
 情報表示部57は、以下のように調査位置(1)の調査時間を算出する。
 調査位置(1)の調査時間=アクセス手段Aの設置時間+アクセス手段Aの単位調査時間×床版調査面積+アクセス手段Aの撤収時間
 情報表示部57は、以下のように調査位置(2)の調査時間を算出する。
 調査位置(2)の調査時間=アクセス手段Bの設置時間+アクセス手段Bの単位調査時間×橋脚上部調査面積+アクセス手段Bの撤収時間
 情報表示部57は、以下のように調査位置(3)の調査時間を算出する。
 調査位置(3)の調査時間=アクセス手段Cの設置時間+アクセス手段Cの単位調査時間×橋脚中部調査面積+アクセス手段Cの撤収時間
 情報表示部57は、以下のように調査位置(4)の調査時間を算出する。
 調査位置(4)の調査時間=アクセス手段Dの設置時間+アクセス手段Dの単位調査時間×橋脚下部調査面積+アクセス手段Dの撤収時間
 なお、上述したアクセス手段Aの候補はロープアクセス及び橋梁点検車207であり、アクセス手段Bの候補はロープアクセス及び橋梁点検車207であり、アクセス手段Cの候補はロープアクセス、高所作業車203及び橋梁点検車207であり、アクセス手段Dの候補は梯子213、ロープアクセス、高所作業車203、及び橋梁点検車207である。情報表示部57は、上述した調査位置(1)、調査位置(2)、調査位置(3)、及び調査位置(4)の調査時間を上述した式および図22に示される単位調査所要時間情報111に基づいて、各調査位置の調査時間を算出する。
 また、情報表示部57は、調査位置(1)~(4)の全ての調査を行うためのトータル調査時間を算出することもできる。例えば、情報表示部57は、アクセス手段A~Dの各候補の組み合わせでそれぞれトータル調査時間を算出し、調査時間が最小となるアクセス手段の組み合わせ(アクセス手段A/アクセス手段B/アクセス手段C/アクセス手段D)を提示することもできる。なお、複数の調査位置において、同じアクセス手段が使用される場合には、準備時間及び撤収時間は短縮されて、トータル調査時間が算出される。
 以上で説明したように、本実施形態では、アクセス手段の提示に加えてアクセス手段に応じた調査時間の情報をユーザに提供することができる。これにより、ユーザはアクセス手段と共に調査時間を把握することができる。また、ユーザは、調査時間に基づいてアクセス手段を選択することができる。
 <第4の実施形態>
 次に、第4の実施形態に関して説明する。本実施形態では、アクセス手段の提示に加えて調査費用の見積もりも合わせて提示する。
 [費用情報]
 図23は、本実施形態の記憶部16に記憶される情報等を示す図である。なお、図3で既に説明を行った箇所は、同じ符号を付し説明は省略する。
 本実施形態の記憶部16は、主に3次元モデル101、画像103、損傷情報105、アクセス可能範囲情報107、及び費用情報113を記憶する。なお、図3で既に説明を行った箇所は、同じ符号を付し説明は省略する。
 費用情報113は、調査に必要な費用に関する情報である。例えば、費用情報113は、調査費用(目視調査+打診、撮影、交通規制等)、レンタル費用、準備(手配等)費用から構成される。なお、費用情報113は、ユーザの状況に応じて変更可能とする。ユーザの状況とは、例えば、ユーザがアクセス手段を保有している場合には、レンタル費用を0とする。
 [調査費用の算出]
 図24は、費用情報の一例を示す図である。情報表示部57は、以下に示すように、図16で説明した調査位置(1)~調査位置(4)に関して、図24に示される費用情報113に基づいて、調査費用を算出する。費用情報113には、「人」「梯子」「ロープアクセス」「高所作業車」「橋梁点検車」の各アクセス手段の、調査費用、レンタル費用、準備費用が示されている。
 情報表示部57は、調査位置と費用情報113とに基づいて、費用を算出する。例えば図16で説明した調査位置(1)~調査位置(4)は以下のように調査費用が算出される。
 情報表示部57は、以下のように調査位置(1)の調査費用を算出する。
 調査位置(1)の費用=アクセス手段Aの調査時間×アクセス手段Aの調査費用+アクセス手段Aのレンタル費用+アクセス手段Aの準備費用
 情報表示部57は、以下のように調査位置(2)の調査費用を算出する。
 調査位置(2)の費用=アクセス手段Bの調査時間×アクセス手段Bの調査費用+アクセス手段Bのレンタル費用+アクセス手段Bの準備費用
 情報表示部57は、以下のように調査位置(3)の調査費用を算出する。
 調査位置(3)の費用=アクセス手段Cの調査時間×アクセス手段Cの調査費用+アクセス手段Cのレンタル費用+アクセス手段Cの準備費用
 情報表示部57は、以下のように調査位置(4)の調査費用を算出する。
 調査位置(4)の費用=アクセス手段Dの調査時間×アクセス手段Dの調査費用+アクセス手段Dのレンタル費用+アクセス手段Dの準備費用
 なお、アクセス手段Aの候補はロープアクセス及び橋梁点検車207であり、アクセス手段Bの候補はロープアクセス及び橋梁点検車207であり、アクセス手段Cの候補はロープアクセス、高所作業車203及び橋梁点検車207であり、アクセス手段Dの候補は梯子213、ロープアクセス、高所作業車203、橋梁点検車207である。情報表示部57は、上述した調査位置(1)、調査位置(2)、調査位置(3)、及び調査位置(4)の調査時間を上述した式および図24に示される費用情報113に基づいて、各調査位置の調査費用を算出する。
 また、情報表示部57は、調査位置(1)~(4)の全ての調査を行うためのトータル費用を算出することもできる。例えば、情報表示部57は、アクセス手段A~Dの各候補の組み合わせでそれぞれトータル費用を算出し、費用が最小となるアクセス手段の組み合わせ(アクセス手段A/アクセス手段B/アクセス手段C/アクセス手段D)を提示する。なお、複数の調査位置において、同じアクセス手段が使用される場合には、レンタル費用及び準備費用は短縮されて、トータル費用が算出される。
 以上で説明したように、本実施形態では、アクセス手段の提示に加えてアクセス手段に応じた調査費用に関する情報をユーザに提供することができる。これにより、ユーザはアクセス手段と共に調査費用を把握することができる。また、ユーザは、調査費用に基づいてアクセス手段を選択することができる。
 <第5の実施形態>
 次に、第5の実施形態に関して説明する。本実施形態では、調査位置を撮影するための撮影位置を提示する。
 [撮影条件]
 図25は、本実施形態の記憶部16に記憶される情報等を示す図である。なお、図3で既に説明を行った箇所は、同じ符号を付し説明は省略する。
 本実施形態の記憶部16は、主に3次元モデル101、画像103、損傷情報105、アクセス可能範囲情報107、及び撮影条件115を記憶する。
 撮影条件115は、調査に用いる撮影画像を取得するための条件である。撮影条件115は、例えば被写体解像度、許容あおり角度、及び焦点距離の範囲情報の少なくとも一つを含む。
 [撮影位置の算出]
 情報取得部51は、記憶部16から撮影条件115を取得する。そして、情報表示部57は、3次元モデルで指定された調査位置、アクセス可能範囲情報107、及び撮影条件115から撮影位置を算出する。具体的には、情報表示部57は、撮影条件115から調査位置撮影するための撮影位置を算出し提示する。さらに、情報表示部57は、算出された撮影位置にアクセスするためのアクセス手段を提示する。
 図26は、撮影位置の提示に関して説明する図である。
 図26には、橋梁の3次元モデル300が示されており、3次元モデル300上で調査位置302及び調査位置306が指定されている。情報表示部57は、調査位置302に対して撮影位置の候補群304、調査位置306に対して撮影位置の候補群308を提示する。調査位置に対する調査位置は必ずしも1箇所ではなく、撮影位置の候補群が存在する。したがって、情報表示部57は、各調査位置に対して候補群を算出し提示する。なお図26に示す場合では、点Pで撮影位置を模式的に図示したが、撮影位置候補群は角度及び/又は距離が連続的に変えられて連続的に存在する。具体的には、撮影位置候補群は、許容あおり角度に応じて、撮影条件115を満たす撮影角度の範囲が存在する。また、撮影位置候補群は、焦点距離の範囲に応じて、撮影条件(所望の被写体解像度)115を満たす撮影距離の範囲が存在する。なお、情報表示部57は、算出された候補群の中の少なくとも一つにアクセス可能なアクセス手段を提示するが、図26に示す場合では、アクセス手段の提示は省略されている。
 以上で説明したように、本実施形態では、調査位置を撮影するための撮影位置、及び撮影位置にアクセスするアクセス手段が提示される。これにより、ユーザは撮影位置及び撮影位置にアクセスするためのアクセス手段を容易に把握することができる。
 <他のアクセス手段の例>
 上述した調査位置へのアクセス手段の他にも、実施形態では様々なアクセス手段が採用される。以下に、他のアクセス手段の例を説明する。
 図27は、アクセス手段の一例であるゴンドラ車を示す図である。
 ゴンドラ車310は、ブーム310Aを移動させて、橋梁311の下にゴンドラ310Bを移動させる。そして、ゴンドラ車310は、ゴンドラ310Bを上下方向にワイヤで移動させることにより、調査者は調査位置にアクセスすることができる。
 図28は、ゴンドラ車310のアクセス可能範囲情報107の一例である作業範囲図を示す図である。
 作業範囲図312は、ゴンドラ車310の作業範囲を示している。具体的手には作業範囲図312は、ゴンドラ車310のゴンドラ310Bの垂直方向の到達範囲及び水平方向の作業半径を示している。
 図29は、アクセス手段の一例である懸垂型ロボットを示す図である。
 懸垂型ロボット314は、橋梁315の一部に設置され、手動又は自動により操作される。懸垂型ロボット314は、カメラ314A備え、調査位置に近接して撮影を行うことができる。
 図30は、アクセス手段の一例であるポールカメラを示す図である。
 図30(A)に示すポールカメラ317は、橋梁319の調査位置を地上から撮影している。このように、調査者はポールカメラ317を使用することにより、橋梁319の上部にある調査位置の撮影画像を、カメラ317Aで取得することができる。
 図30(B)に示すポールカメラ317は、橋梁319の調査位置を橋梁319から下方に向けることにより、調査位置の撮影を行っている。このように、調査者はポールカメラ317を下方に向けることにより、橋梁319の裏側の撮影画像を、カメラ317Aで取得することができる。
 <その他>
 上述の説明では情報取得部51は、記憶部16に記憶されている情報を取得する形態に関して説明したが、これに限定されるものではない。例えば、情報取得部51は、記憶部16に必要な情報が記憶されていない場合には、入出力インターフェイス12を介して外部から情報を取得してもよい。具体的には、情報取得部51は、構造物の調査支援装置10の外部から入出力インターフェイス12を介して入力された情報を取得する。
 上記実施形態において、各種の処理を実行する処理部(processing unit)のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されていてもよいし、同種または異種の2つ以上のプロセッサ(例えば、複数のFPGA、あるいはCPUとFPGAの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントやサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組合せで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。
 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)である。
 上述の各構成及び機能は、任意のハードウェア、ソフトウェア、或いは両者の組み合わせによって適宜実現可能である。例えば、上述の処理ステップ(処理手順)をコンピュータに実行させるプログラム、そのようなプログラムを記録したコンピュータ読み取り可能な記録媒体(非一時的記録媒体)、或いはそのようなプログラムをインストール可能なコンピュータに対しても本発明を適用することが可能である。
 以上で本発明の例に関して説明してきたが、本発明は上述した実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で種々の変形が可能であることは言うまでもない。
10   :構造物の調査支援装置
12   :入出力インターフェイス
16   :記憶部
18   :操作部
20   :CPU
22   :RAM
24   :ROM
26   :表示制御部
30   :表示部
51   :情報取得部
53   :3次元モデル表示部
55   :指定受付部
57   :情報表示部
101  :3次元モデル
103  :画像
105  :損傷情報
107  :アクセス可能範囲情報
109  :周辺環境情報
111  :単位調査所要時間情報
113  :費用情報
115  :撮影条件
203  :高所作業車
207  :橋梁点検車
213  :梯子
214  :無人飛行体
216  :橋梁点検船
310  :ゴンドラ車
314  :懸垂型ロボット
317  :ポールカメラ

Claims (20)

  1.  プロセッサを備える構造物の調査支援装置であって、
     前記プロセッサは、
     調査対象である構造物の3次元モデル、及び前記構造物の調査位置にアクセスする複数の種類のアクセス手段のアクセス可能範囲情報を取得し、
     前記3次元モデルを表示部に表示させ、
     表示された前記3次元モデルの前記調査位置の指定を受け付け、
     受け付けられた前記調査位置と前記アクセス可能範囲情報とに基づいて、前記調査位置にアクセスするための1種類以上の前記アクセス手段の情報を前記表示部に表示する、
     構造物の調査支援装置。
  2.  前記3次元モデル及び前記アクセス可能範囲情報を記憶するメモリを備え、
     前記プロセッサは、前記メモリから前記3次元モデル及び前記アクセス可能範囲情報を取得する請求項1に記載の構造物の調査支援装置。
  3.  前記メモリは、前記3次元モデルと対応付けられた前記構造物の画像を記憶し、
     前記プロセッサは、
     前記画像から損傷を検出し、
     前記検出された前記損傷に基づいて、前記調査位置の指定を自動で受け付ける請求項2に記載の構造物の調査支援装置。
  4.  前記メモリは、前記3次元モデルと対応付けられた損傷情報を記憶し、
     前記プロセッサは、
     前記3次元モデルに前記損傷情報を表示する請求項2または3に記載の構造物の調査支援装置。
  5.  前記プロセッサは、
     前記構造物の周辺の環境を示す周辺環境情報を取得し、
     前記周辺環境情報、前記調査位置、及び前記アクセス可能範囲情報に基づいて、前記調査位置にアクセスするための前記アクセス手段の情報を表示する請求項1から4のいずれか1項に記載の構造物の調査支援装置。
  6.  前記周辺環境情報を記憶するメモリを備え、
     前記プロセッサは、前記メモリから前記周辺環境情報を取得する請求項5に記載の構造物の調査支援装置。
  7.  前記プロセッサは、
     前記アクセス手段の各々について、調査に要する時間を示す単位調査所要時間情報を取得し、
     前記アクセス手段の情報を表示する場合には、表示する前記アクセス手段の情報に対応する前記単位調査所要時間情報を表示する請求項1から6のいずれか1項に記載の構造物の調査支援装置。
  8.  前記単位調査所要時間情報を記憶するメモリを備え、
     前記プロセッサは、前記メモリから前記単位調査所要時間情報を取得する請求項7に記載の構造物の調査支援装置。
  9.  前記プロセッサは、
     前記調査位置と前記単位調査所要時間情報とに基づいて、前記調査位置毎の所要時間及び全ての前記調査位置の調査を行うための所要時間のうち少なくとも一つを算出し、
     算出された前記所要時間を表示する請求項7または8に記載の構造物の調査支援装置。
  10.  前記プロセッサは、
     前記アクセス手段の各々について、調査に要する費用を示す費用情報を取得し、
     前記アクセス手段の情報を表示する場合には、表示する前記アクセス手段の情報に対応する前記費用情報を表示する請求項1から9のいずれか1項に記載の構造物の調査支援装置。
  11.  前記費用情報を記憶するメモリを備え、
     前記プロセッサは、前記メモリから前記費用情報を取得する請求項10に記載の構造物の調査支援装置。
  12.  前記プロセッサは、
     前記調査位置と前記費用情報とに基づいて、前記調査位置毎の調査費用及び全ての前記調査位置の調査を行うための調査費用のうち少なくとも一つを算出し、
     算出された前記調査費用を表示する請求項10または11に記載の構造物の調査支援装置。
  13.  前記調査位置は、前記構造物に目視または打診を行う位置である請求項1から12のいずれか1項に記載の構造物の調査支援装置。
  14.  前記調査位置は、前記構造物の撮影される範囲を示す撮影対象位置である請求項1から13のいずれか1項に記載の構造物の調査支援装置。
  15.  前記プロセッサは、
     前記構造物の撮影を行うための撮影条件を取得し、
     前記調査位置および前記撮影条件に基づいて、撮影位置を取得し、
     前記撮影位置に対する前記アクセス手段の情報を表示する請求項14に記載の構造物の調査支援装置。
  16.  前記撮影条件を記憶するメモリを備え、
     前記プロセッサは、前記メモリから前記撮影条件を取得する請求項15に記載の構造物の調査支援装置。
  17.  前記プロセッサは、前記撮影位置を表示する請求項15または16に記載の構造物の調査支援装置。
  18.  プロセッサを備える構造物の調査支援装置を使用した構造物の調査支援方法であって、
     前記プロセッサにより
     調査対象である構造物の3次元モデル、及び前記構造物の調査位置にアクセスする複数の種類のアクセス手段のアクセス可能範囲情報を取得するステップと、
     前記3次元モデルを表示部に表示させるステップと、
     表示された前記3次元モデルの前記調査位置の指定を受け付けるステップと、
     受け付けられた前記調査位置と前記アクセス可能範囲情報とに基づいて、前記調査位置にアクセスするための1種類以上の前記アクセス手段の情報を前記表示部に表示するステップと、
     を含む構造物の調査支援方法。
  19.  プロセッサを備える構造物の調査支援装置に構造物の調査支援方法を実行させるプログラムであって、
     前記プロセッサにより
     調査対象である構造物の3次元モデル、及び前記構造物の調査位置にアクセスする複数の種類のアクセス手段のアクセス可能範囲情報を取得するステップと、
     前記3次元モデルを表示部に表示させるステップと、
     表示された前記3次元モデルの前記調査位置の指定を受け付けるステップと、
     受け付けられた前記調査位置と前記アクセス可能範囲情報とに基づいて、前記調査位置にアクセスするための1種類以上の前記アクセス手段の情報を前記表示部に表示するステップと、
     を実行させるプログラム。
  20.  非一時的かつコンピュータ読取可能な記録媒体であって、請求項19に記載のプログラムが記録された記録媒体。
PCT/JP2021/027443 2020-07-30 2021-07-26 構造物の調査支援装置、構造物の調査支援方法、及びプログラム WO2022024951A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022540264A JP7526269B2 (ja) 2020-07-30 2021-07-26 構造物の調査支援装置、構造物の調査支援方法、及びプログラム
EP21850376.1A EP4191507A4 (en) 2020-07-30 2021-07-26 DEVICE FOR SUPPORTING STRUCTURAL INVESTIGATION, METHOD FOR SUPPORTING STRUCTURAL INVESTIGATION, AND PROGRAM
CN202180046240.3A CN115867932A (zh) 2020-07-30 2021-07-26 结构物的调查支援装置、结构物的调查支援方法及程序
KR1020227045968A KR20230018455A (ko) 2020-07-30 2021-07-26 구조물의 조사 지원 장치, 구조물의 조사 지원 방법, 및 프로그램
US18/147,866 US20230133928A1 (en) 2020-07-30 2022-12-29 Inspection support device of structure, inspection support method of structure, and program
JP2024115776A JP2024144445A (ja) 2020-07-30 2024-07-19 構造物の調査支援装置、構造物の調査支援方法、及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-129630 2020-07-30
JP2020129630 2020-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/147,866 Continuation US20230133928A1 (en) 2020-07-30 2022-12-29 Inspection support device of structure, inspection support method of structure, and program

Publications (1)

Publication Number Publication Date
WO2022024951A1 true WO2022024951A1 (ja) 2022-02-03

Family

ID=80035629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027443 WO2022024951A1 (ja) 2020-07-30 2021-07-26 構造物の調査支援装置、構造物の調査支援方法、及びプログラム

Country Status (6)

Country Link
US (1) US20230133928A1 (ja)
EP (1) EP4191507A4 (ja)
JP (2) JP7526269B2 (ja)
KR (1) KR20230018455A (ja)
CN (1) CN115867932A (ja)
WO (1) WO2022024951A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222281A (ja) 2001-01-25 2002-08-09 Ohbayashi Corp 補修コスト計算システム、補修コスト計算システムをコンピュータにより実現するためのプログラム、およびこのプログラムを記録したコンピュータ読取可能な記録媒体
JP2013256815A (ja) * 2012-06-13 2013-12-26 Hitachi-Ge Nuclear Energy Ltd 作業支援装置
JP2019175350A (ja) * 2018-03-29 2019-10-10 公益財団法人鉄道総合技術研究所 構造物検査システム、構造物検査装置及び構造物検査方法
WO2020027334A1 (ja) * 2018-08-02 2020-02-06 株式会社タダノ 性能情報サーバ、クライアント端末、作業機、性能情報の取得方法、及び性能情報の提供方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222281A (ja) 2001-01-25 2002-08-09 Ohbayashi Corp 補修コスト計算システム、補修コスト計算システムをコンピュータにより実現するためのプログラム、およびこのプログラムを記録したコンピュータ読取可能な記録媒体
JP2013256815A (ja) * 2012-06-13 2013-12-26 Hitachi-Ge Nuclear Energy Ltd 作業支援装置
JP2019175350A (ja) * 2018-03-29 2019-10-10 公益財団法人鉄道総合技術研究所 構造物検査システム、構造物検査装置及び構造物検査方法
WO2020027334A1 (ja) * 2018-08-02 2020-02-06 株式会社タダノ 性能情報サーバ、クライアント端末、作業機、性能情報の取得方法、及び性能情報の提供方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4191507A4

Also Published As

Publication number Publication date
JP2024144445A (ja) 2024-10-11
EP4191507A1 (en) 2023-06-07
EP4191507A4 (en) 2024-02-07
KR20230018455A (ko) 2023-02-07
JP7526269B2 (ja) 2024-07-31
JPWO2022024951A1 (ja) 2022-02-03
CN115867932A (zh) 2023-03-28
US20230133928A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
JP6590653B2 (ja) 点群データ利用システム
EP4006818A1 (en) Simulator
JP6507268B2 (ja) 撮影支援装置及び撮影支援方法
US20180300868A1 (en) Structure member specification device and structure member specification method
JP6807459B2 (ja) 損傷図作成方法、損傷図作成装置、損傷図作成システム、及び記録媒体
JP2009068951A (ja) 空中架線の管理システム
Tuttas et al. Evaluation of acquisition strategies for image-based construction site monitoring
JP6671852B2 (ja) 情報設定システム及びシミュレーションシステム
KR101884724B1 (ko) 암거시설물 진단지원 시스템
KR20210081971A (ko) 타워 크레인을 이용한 건축물 감리 시스템 및 그 방법
JP6412658B2 (ja) 点検計画立案支援システム、方法およびプログラム
JP6928499B2 (ja) ガイド情報表示装置および作業機
JP2012137933A (ja) 被写地物の位置特定方法とそのプログラム、及び表示地図、並びに撮影位置取得方法とそのプログラム、及び撮影位置取得装置
WO2022024951A1 (ja) 構造物の調査支援装置、構造物の調査支援方法、及びプログラム
WO2023047859A1 (ja) 情報処理装置、方法及びプログラム、並びに、画像データ構造
JP2005271717A (ja) 鉄道建築限界判別プログラム
WO2021176891A1 (ja) 3次元表示装置、方法及びプログラム
Shults et al. Bim and Uav Photogrammetry for Spatial Structures Sustainability Inventory
Zhu et al. Comparison of civil infrastructure optical-based spatial data acquisition techniques
Sharma et al. A method for extracting deformation features from terrestrial laser scanner 3d point clouds data in rgipt building
JP2021155179A (ja) クレーン用撮影システム及びプログラム
Celikoyan et al. Evaluation of a theatre by using low-altitude aerial and terrestrial photogrammetry
JP2024043326A (ja) 撮影制御装置、および、撮影制御方法
Gura et al. Security of infrastructural linear objects by using three-dimensional laser scanning technology
JP2023162666A (ja) 点検支援システム及び、点検支援方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227045968

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022540264

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021850376

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021850376

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE