WO2020026400A1 - 大気圧プラズマ発生装置 - Google Patents

大気圧プラズマ発生装置 Download PDF

Info

Publication number
WO2020026400A1
WO2020026400A1 PCT/JP2018/028989 JP2018028989W WO2020026400A1 WO 2020026400 A1 WO2020026400 A1 WO 2020026400A1 JP 2018028989 W JP2018028989 W JP 2018028989W WO 2020026400 A1 WO2020026400 A1 WO 2020026400A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
plasma
temperature
nox
atmospheric pressure
Prior art date
Application number
PCT/JP2018/028989
Other languages
English (en)
French (fr)
Inventor
神藤 高広
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to CN201880096124.0A priority Critical patent/CN112543990B/zh
Priority to PCT/JP2018/028989 priority patent/WO2020026400A1/ja
Priority to JP2020533986A priority patent/JP6983322B2/ja
Priority to EP18928948.1A priority patent/EP3832697B1/en
Publication of WO2020026400A1 publication Critical patent/WO2020026400A1/ja
Priority to JP2021189240A priority patent/JP7200337B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32825Working under atmospheric pressure or higher

Definitions

  • the present invention relates to an atmospheric pressure plasma gas generator.
  • temperature control has been performed in plasma processing because temperature conditions affect processing quality.
  • a temperature sensor and a heater are arranged inside a sample stage on which a wafer to be etched by plasma processing is placed in a vacuum vessel, and the temperature is controlled so as to be a predetermined temperature. Have been.
  • NOx is generated when a high-temperature plasma gas is generated in an environment where oxygen and nitrogen are present. NOx is harmful to the environment and the like, and is subject to laws and regulations.
  • the present application has been proposed in view of the above problems, and has as its object to provide an atmospheric pressure plasma gas generator capable of suppressing generation of NOx.
  • the present specification incorporates a pair of electrodes for generating plasma by discharge and a pair of electrodes, and a plasma gas in which the processing gas is turned into plasma by the inflow port through which the processing gas flows and the pair of electrodes flows out.
  • An atmospheric pressure plasma generator including a reaction chamber having an outlet and a control device for controlling the temperature of plasma gas flowing out from the outlet so that the amount of generated NOx is equal to or less than a threshold is disclosed.
  • an atmospheric pressure plasma gas generator capable of suppressing generation of NOx.
  • the atmospheric pressure plasma generator 10 includes a plasma head 11, a main body 17, a power cable 40, a gas pipe 80, and the like.
  • the main body 17 includes a processing gas supply device 77 and a cooling gas supply device 102.
  • the atmospheric pressure plasma generator 10 transmits power from the main body 17 to the plasma head 11 via the power cable 40, supplies processing gas via the gas pipe 80, and irradiates the plasma gas from the plasma head 11.
  • the processing gas is a gas in which an active gas such as oxygen and an inert gas such as nitrogen are mixed at an arbitrary ratio, and the plasma gas is an oxygen plasma gas.
  • the plasma head 11 is attached to a tip of a robot arm 141 of the industrial robot 140.
  • the power cable 40 and the gas pipe 80 are attached along the robot arm 141.
  • the robot arm 141 is an articulated robot in which two arm units 145 and 145 are connected in one direction.
  • the industrial robot 140 drives the robot arm 141 to irradiate the work W supported by the work table 5 with plasma gas.
  • the plasma head 11 has a plasma gas ejection device 12 and a heating gas supply device 14.
  • the width direction of the plasma head 11 is referred to as the X direction
  • the depth direction of the atmospheric pressure plasma generator 10 is referred to as the Y direction
  • the direction perpendicular to the X direction and the Y direction, that is, the vertical direction is referred to as the Z direction.
  • the plasma gas ejection device 12 includes an upper housing 19, a lower housing 20, a lower cover 22, a pair of electrodes 24 and 26 (FIG. 3), and a pair of heat sinks 27 and 28.
  • the upper housing 19 and the lower housing 20 are connected via a rubber seal member 29 in a state where the upper housing 19 is disposed on the lower housing 20.
  • the connected upper housing 19 and lower housing 20 are sandwiched between a pair of heat sinks 27 and 28 on both side surfaces in the X direction.
  • a plasma gas is generated by the reaction chamber 38 formed inside the lower housing 20, and the generated plasma gas is injected downward from the lower surface of the lower cover 22.
  • the heat sinks 27 and 28 have a function of cooling the upper housing 19, the lower housing 20, and the like.
  • a flow path from the supply port 96 to the exhaust port 98 is formed inside the heat sinks 27 and 28.
  • a cooling gas which is air at about room temperature, is supplied to the supply port 96 from a cooling gas supply device 102 (see FIG. 7) via a supply pipe 100. The cooling gas is warmed by heat exchange and exhausted from the exhaust port 98.
  • the heating gas supply device 14 has a gas pipe 110, a heater 112, and a connection block 114.
  • the gas pipe 110 is connected to a flow path formed inside the heat sinks 27 and 28 through which the cooling gas flows.
  • the gas pipe 110 is connected at an upper end portion thereof to an exhaust port 98 of the pair of heat sinks 27 and 28 via a discharge pipe 116.
  • the discharge pipe 116 bifurcates at one end, and the bifurcated ends are connected to the exhaust ports 98 of the pair of heat sinks 27 and 28.
  • the other end of the discharge pipe 116 is not branched and is connected to the upper end of the gas pipe 110.
  • a generally cylindrical heater 112 is provided on the outer peripheral surface of the gas pipe 110, and the gas pipe 110 is heated by the heater 112. Thereby, the gas supplied from the heat sinks 27 and 28 to the gas pipe 110 is heated.
  • the lower housing 20 includes a main housing 30, a heat radiating plate 31, a ground plate 32, a connection block 34, and a nozzle block 36.
  • the main housing 30 generally has a block shape, and a reaction chamber 38 is formed inside the main housing 30.
  • the reaction chamber 38 has an inlet (not shown) through which the processing gas flows, and an outlet 39 through which the plasma gas flows.
  • the ground plate 32 functions as a lightning rod, and is fixed to the lower surface of the main housing 30.
  • the connection block 34 is fixed to the lower surface of the ground plate 32, and the nozzle block 36 is fixed to the lower surface of the connection block 34.
  • the heat radiating plate 31 is provided on a side surface of the main housing 30.
  • the heat radiating plate 31 has a plurality of fins (not shown) and radiates heat of the main housing 30.
  • a gas flow path 50 is formed in the main housing 30, the ground plate 32, the connection block 34, and the nozzle block 36. One end of the gas flow path 50 communicates with the outlet 39 of the reaction chamber 38, and the other end opens to the lower surface of the nozzle block 36.
  • the opening in the nozzle block 36 of the gas flow path 50 is the outlet 51.
  • connection block 114 is connected to the lower end of the gas pipe 110 and is fixed to a side surface of the lower cover 22 on the side of the heating gas supply device 14 in the Y direction.
  • a communication path 120 is formed in the connection block 114, and one end of the communication path 120 is opened on the upper surface of the connection block 114, and the other end of the communication path 120 is connected to the plasma gas ejection device in the Y direction. It is open on the side surface on the 12th side.
  • One end of the communication passage 120 communicates with the lower end of the gas pipe 110, and the other end of the communication passage 120 communicates with the through hole 72 of the lower cover 22. Thereby, the gas heated in the gas pipe 110 is supplied to the lower cover 22.
  • the control system of the atmospheric pressure plasma generator 10 includes a control device 16, a processing gas supply device 77, and a cooling gas supply device 102 communicably connected to each other. Is controlled.
  • the control device 16 includes a controller 130 mainly composed of a computer, and drive circuits 132 to 134.
  • the drive circuit 132 is a circuit that controls the power supplied to the electrodes 24 and 26.
  • the drive circuit 133 is a circuit that controls the flow rate of each gas supplied by the processing gas supply device 77 and the cooling gas supply device 102.
  • the drive circuit 134 is a circuit that controls the power supplied to the heater 112.
  • a NOx sensor 151 and a temperature sensor 152 are provided near the outlet 51. A signal indicating the NOx concentration detected by the NOx sensor 151 is output to the controller 130.
  • a signal indicating the temperature detected by temperature sensor 152 is output to controller 130.
  • the processing gas in the atmospheric pressure plasma generator 10, in the plasma gas ejector 12, the processing gas is turned into plasma inside the reaction chamber 38 by the above-described configuration, and the plasma gas is ejected from the lower end of the nozzle block 36. Specifically, the processing gas is supplied into the reaction chamber 38 by the processing gas supply device 77. At this time, in the reaction chamber 38, a voltage is applied to the pair of electrodes 24 and 26 built in the reaction chamber 38, and a current flows between the pair of electrodes 24 and 26. As a result, a discharge occurs between the pair of electrodes 24 and 26, and the discharge transforms the processing gas into plasma, thereby ejecting the plasma gas. In the following description, ejection of a plasma gas may be referred to as plasma irradiation.
  • the temperature of the reaction chamber 38 rises due to the application of a voltage to the electrodes 24 and 26 during plasma conversion.
  • the cooling gas is supplied to the flow paths of the heat sinks 27 and 28 by the cooling gas supply device 102, and the reaction chamber 38 is cooled by heat exchange.
  • the cooling gas flowing through the flow paths of the heat sinks 27 and 28 and heated by heat exchange is supplied to the gas pipe 110 and heated by the heater 112.
  • the heated cooling gas is supplied to the inside of the lower cover 22 and is ejected from the through-hole 70 of the lower cover 22 to the plasma gas.
  • the through hole 70 is located near the nozzle block 36 and is provided in a flow path of the plasma gas ejected from the lower end of the nozzle block 36. Then, the plasma gas is ejected from the through hole 70 of the lower cover 22 together with the heated cooling gas. The plasma gas is heated by the injected heated cooling gas. Since the heater 112 is controlled by the control device 16, the temperature of the plasma gas is also controlled.
  • oxygen plasma is generated by the atmospheric pressure plasma generator 10. It is known that oxygen plasma combines with oxygen to generate ozone. This time, the inventors measured the generation concentration of NOx in the atmospheric pressure plasma generator 10.
  • FIG. 5 is a graph showing the concentration of ozone (solid line) and NOx (dashed line) with respect to the source temperature.
  • the source temperature is, for example, a temperature near the outlet 51.
  • the NOx generation mechanism may be, for example, a reaction between oxygen radicals and nitrogen, or a reaction between oxygen and nitrogen under a high temperature condition. As shown in FIG.
  • the control device 16 controls the temperature of the plasma gas such that the amount of generated NOx is equal to or less than a threshold. Specifically, the control device 16 controls the heater 112 based on the signal output from the NOx sensor 151 so that the NOx concentration becomes equal to or less than the threshold.
  • the threshold value may be a value based on, for example, a regulation value by law.
  • the reaction chamber 38 is cooled by the cooling gas supply device 102, and the temperature of the reaction chamber 38 becomes about 300 to 400 ° C. The higher the temperature of the plasma gas, the more the effect of the plasma irradiation such as imparting hydrophilicity to an object to be irradiated with the plasma is improved.
  • the plasma gas is heated by the cooling gas heated by the heater 112.
  • the threshold is set to a value slightly exceeding, for example, 0 [ppm], and the heater 112 is controlled based on the output signal of the NOx sensor 151 so that the NOx concentration does not become larger than the threshold.
  • the threshold value is stored in the controller 130 in advance. Then, at the time of plasma irradiation, when the NOx concentration indicated by the output signal of the NOx sensor 151 becomes equal to or higher than the threshold, the control device 16 performs control to stop heating by the heater 112. Further, control device 16 controls heater 112 based on the signal output from temperature sensor 152 such that the temperature reaches the target temperature. For example, when an object to be subjected to plasma irradiation is a resin, irradiation with a plasma gas having a temperature higher than the melting point of the resin may damage the object. Therefore, the control unit 16 controls ON / OFF of the heating by the heater 112 so that the target temperature is stored in the controller 130 in advance. Thus, the temperature of the plasma gas can be set to the target temperature while the amount of generated NOx is equal to or less than the threshold.
  • the electrodes 24 and 26 are an example of a pair of electrodes.
  • the heater 112 is an example of a heater
  • the heat sinks 27 and 28 are examples of a cooler.
  • the vicinity of the outlet 51 is an example of a plasma gas flow path.
  • the cooling gas is an example of a cooling and heating gas
  • the connection block 114 and the lower cover 22 are an example of a connection portion
  • the through hole 70 is an example of an ejection port.
  • the heating gas supply device 14 and the lower cover 22 are examples of a heating device.
  • the control device 16 controls the heater 112 based on the signal output from the NOx sensor 151 so that the NOx concentration becomes equal to or less than the threshold. As a result, the amount of generated NOx can be limited to the threshold value or less. Further, the control device 16 controls the temperature to be the target temperature based on the signal output from the temperature sensor 152. Thereby, the temperature of the plasma gas can be set to a temperature corresponding to the object to be irradiated with the plasma. Further, the heating gas supply device 14 heats the cooling gas flowing through the gas pipe 110 by the heater 112. The plasma gas is heated by ejecting the heated cooling gas. Thus, by controlling the heater 112, the temperature of the plasma gas can be controlled.
  • the control device 16 controls the heater 112 based on the signal output from the ozone sensor so that the ozone concentration becomes equal to or higher than a predetermined value.
  • the ozone concentration is in a temperature range of about 800 ° C.
  • the amount of generated ozone decreases as the temperature increases.
  • the NOx concentration increases as the temperature increases, and becomes higher than zero when the temperature exceeds about 600 ° C.
  • the concentration of ozone and the concentration of NOx depend on the temperature, it is possible to estimate the concentration of NOx based on the concentration of ozone. Specifically, the correlation data between the ozone concentration and the NOx concentration is measured, and the lower limit of the ozone concentration at which the NOx concentration becomes equal to or less than the threshold value is determined. Then, the controller 130 stores the determined lower limit of the ozone concentration. Then, at the time of plasma irradiation, when the ozone concentration indicated by the output signal of the ozone sensor becomes smaller than the lower limit, the control device 16 performs control to stop heating by the heater 112. Further, control device 16 controls heater 112 based on the signal output from temperature sensor 152 such that the temperature reaches the target temperature. Thus, the temperature of the plasma gas can be set to a temperature corresponding to the object to be irradiated with plasma while keeping the concentration of NOx at or below the threshold value.
  • the control device 16 stops heating by the heater 112 and the ozone concentration indicated by the output signal of the ozone sensor becomes lower than the lower limit. When it becomes smaller, control to stop heating by the heater 112 is performed. As a result, the amount of generated NOx can be reliably reduced to the threshold value or less.
  • the atmospheric pressure plasma generator 10 includes the NOx sensor 151, the temperature sensor 152, and the ozone sensor (not shown) will be described.
  • the control device 16 stops heating by the heater 112 when the NOx concentration indicated by the output signal of the NOx sensor 151 becomes equal to or higher than the threshold value. Then, when the ozone concentration indicated by the output signal of the ozone sensor becomes smaller than the lower limit value, control for stopping the heating by the heater 112 is performed.
  • the control unit 16 controls ON / OFF of the heating by the heater 112 so that the target temperature is stored in the controller 130 in advance. This makes it possible to set the temperature of the plasma gas to the target temperature while ensuring that the amount of generated NOx is equal to or less than the threshold.
  • the atmospheric pressure plasma generator 10 does not include the heater 112 but includes a cooling device (not shown) will be described.
  • the reaction chamber 38 is cooled by the cooling gas supply device 102, and the plasma gas is heated by the cooling gas heated by the heater 112. Since the temperature of the reaction chamber 38 rises by applying a voltage to the electrodes 24 and 26, the temperature of the plasma gas becomes, for example, about 1000 ° C. when the reaction chamber 38 is not cooled.
  • the reaction chamber 38 is cooled by the cooling device without the heater 112 so that the temperature of the plasma gas becomes the set temperature in consideration of the temperature rise in the reaction chamber 38. I do.
  • the cooling device for example, a configuration in which a feedback control circuit that adjusts the flow rate of the cooling gas supplied by the cooling gas supply device 102 based on the output signal of the temperature sensor 152 is added to the drive circuit 133 can be considered. That is, when the temperature indicated by the temperature sensor 152 is higher than the set temperature, the flow rate of the cooling gas is increased, and when the temperature is lower than the set temperature, the flow rate of the cooling gas is reduced to control the temperature to the set temperature. .
  • control device 16 controls the cooling device based on the signal output from the NOx sensor 151 so that the NOx concentration becomes equal to or less than the threshold. As a result, the amount of generated NOx can be limited to the threshold value or less. Further, control device 16 controls the cooling device based on the signal output from temperature sensor 152 so that the temperature becomes the target temperature. Thereby, the temperature of the plasma gas can be set to a temperature corresponding to the object to be irradiated with the plasma.
  • the configuration of (Alternative Example 1) to (Alternative Example 6) and the configuration of (Alternative Example 7) may be arbitrarily combined. That is, in the configurations of (Alternative Example 1) to (Alternative Example 6), the cooling device may be controlled based on the output signal of each sensor.
  • the present invention is not limited to the above embodiment, and it is needless to say that various improvements and modifications can be made without departing from the spirit of the present invention.
  • the heat sinks 27 and 28 each having a cooling gas passage formed therein are shown as the coolers, but the present invention is not limited to this.
  • a heat sink having a plurality of fins having no cooling gas flow path therein may be used.
  • the heat sinks 27 and 28 for cooling the reaction chamber 38 have been described.
  • a configuration for cooling the processing gas by a vortex tube or the like, or a configuration for cooling both the processing gas and the reaction chamber 38 may be used.
  • a configuration in which the cooling device cools the reaction chamber 38 in addition to the configuration in which the cooling device cools the reaction chamber 38, a configuration in which the processing gas is cooled or a configuration in which both the processing gas and the reaction chamber 38 are cooled may be employed.
  • the NOx sensor 151 and the temperature sensor 152 are described as being disposed near the outlet 51, but the present invention is not limited to this.
  • a configuration in which the reaction chamber 38 and the gas flow path 50 are provided may be employed.
  • the atmospheric pressure plasma generator 10 is described as including the NOx sensor 151 and the temperature sensor 152.
  • the configuration may be such that these sensors are not provided and open loop control is performed.
  • the control condition of the heater 112 at which the NOx generation amount is equal to or less than the threshold value is obtained in advance by an experiment or the like. In plasma irradiation, control is performed according to the control conditions.
  • the heating device a configuration is described in which the cooling gas heated by the heater 112 is ejected to the plasma gas to heat the plasma gas.
  • the configuration is not limited thereto.
  • the plasma gas may be directly heated by a heater or the like.
  • the lower housing 20 has been described as having the ground plate 32, but is not limited thereto, and may be configured without the ground plate 32.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

NOxの発生を抑制することができる大気圧プラズマガス発生装置を提供することを目的とする。大気圧プラズマ発生装置は、プラズマを発生させる反応室から噴出されるプラズマガスを加熱するためのヒータを備える。制御装置は、NOxセンサにより出力される信号に基づいて、NOx濃度が閾値以下となるように、ヒータを制御する。これにより、NOxの生成量を閾値以下に制限することができる。

Description

大気圧プラズマ発生装置
 本発明は、大気圧プラズマガス発生装置に関するものである。
 従来、プラズマ処理において、温度条件は処理品質に影響するため、温度制御が行われている。例えば、特許文献1に記載のプラズマ処理装置では、真空容器内でプラズマ処理によりエッチングされるウエハが載置される試料台の内部に温度センサおよびヒータが配置され、所定の温度となるように制御されている。
特開2016-213359号公報
 ところで、大気圧プラズマ装置においては、酸素および窒素がある環境下で高温のプラズマガスが発生された場合に、NOxが発生することが判明した。NOxは環境等に有害であり、法規制の対象となっているため、発生を抑制することが必要である。
 本願は、上記の課題に鑑み提案されたものであって、NOxの発生を抑制することができる大気圧プラズマガス発生装置を提供することを目的とする。
 本明細書は、放電によりプラズマを発生させる1対の電極と、1対の電極を内蔵し、処理ガスが流入する流入口および1対の電極により処理ガスがプラズマ化されたプラズマガスが流出する流出口を有する反応室と、NOxの発生量が閾値以下となるように流出口から流出されるプラズマガスの温度を制御する制御装置と、を備える大気圧プラズマ発生装置を開示する。
 本開示によれば、NOxの発生を抑制することができる大気圧プラズマガス発生装置を提供することができる。
産業用ロボットに取り付けられた大気圧プラズマ発生装置の概略構成を示す図である。 大気圧プラズマ発生装置を示す斜視図である。 プラズマガス噴出装置および加熱ガス供給装置を示す断面図である。 大気圧プラズマ発生装置の制御系統を示すブロック図である。 発生源温度対NOx濃度およびオゾン濃度を示すグラフである。
 図1に示す様に、大気圧プラズマ発生装置10は、プラズマヘッド11、本体部17、電力ケーブル40、およびガス配管80などを備える。本体部17は、処理ガス供給装置77および冷却ガス供給装置102を備える。大気圧プラズマ発生装置10は、本体部17から電力ケーブル40を介してプラズマヘッド11に電力を伝送し、ガス配管80を介して処理ガスを供給し、プラズマヘッド11からプラズマガスを照射させる。尚、処理ガスは、酸素等の活性ガスと窒素等の不活性ガスとを任意の割合で混合させたガスであり、プラズマガスは酸素プラズマガスである。プラズマヘッド11は、産業用ロボット140のロボットアーム141の先端に取り付けられている。電力ケーブル40およびガス配管80はロボットアーム141に沿って取り付けられている。ロボットアーム141は、2つのアーム部145,145を1方向に連結させた多関節ロボットである。産業用ロボット140は、ロボットアーム141を駆動して、ワーク台5が支持するワークWにプラズマガスを照射する作業を行う。
 図2に示す様に、プラズマヘッド11は、プラズマガス噴出装置12および加熱ガス供給装置14を有する。以下の説明において、プラズマヘッド11の幅方向をX方向と、大気圧プラズマ発生装置10の奥行方向をY方向と、X方向とY方向とに直行する方向、つまり、上下方向をZ方向と称する。
 プラズマガス噴出装置12は、上部ハウジング19、下部ハウジング20、下部カバー22、1対の電極24,26(図3)、1対のヒートシンク27,28によって構成されている。上部ハウジング19と下部ハウジング20とは、上部ハウジング19を下部ハウジング20の上に配設させた状態で、ゴム製のシール部材29を介して連結されている。そして、連結された状態の上部ハウジング19と下部ハウジング20とが、X方向における両側面において、1対のヒートシンク27,28によって挟まれている。
 後述するように、下部ハウジング20内部に形成された反応室38によりプラズマガスが生成され、生成されたプラズマガスは下部カバー22の下面から下方に噴射される。ヒートシンク27,28は、上部ハウジング19および下部ハウジング20などを冷却する機能を有する。ヒートシンク27,28の内部には、供給口96から排気口98へ至る流路が形成されている。供給口96には、供給パイプ100を介して、冷却ガス供給装置102(図7参照)から、室温程度の空気である冷却ガスが供給される。冷却ガスは、熱交換により暖められ、排気口98から排気される。
 加熱ガス供給装置14は、ガス管110と、ヒータ112と、連結ブロック114とを有している。ガス管110は、ヒートシンク27,28の内部に形成された冷却ガスが流れる流路と連結されている。詳しくは、ガス管110は、上端部において、排出パイプ116を介して、1対のヒートシンク27,28の排気口98に接続されている。排出パイプ116は、一端部において二股に分岐しており、それら二股に分岐した端部が1対のヒートシンク27,28の排気口98に連結されている。一方、排出パイプ116の他端部は分岐しておらず、ガス管110の上端に接続されている。これにより、1対のヒートシンク27,28から排出されたガスが、ガス管110に供給される。なお、ガス管110の外周面には、概して円筒状のヒータ112が配設されており、ガス管110がヒータ112によって加熱される。これにより、ヒートシンク27,28からガス管110に供給されたガスが加熱される。
 次に、図3を用いて、プラズマガス噴出装置12の内部構造について説明する。下部ハウジング20は、メインハウジング30、放熱板31、アース板32、連結ブロック34、ノズルブロック36を含む。メインハウジング30は、概してブロック状をなし、メインハウジング30の内部には、反応室38が形成されている。反応室38は、処理ガスが流入する流入口(不図示)およびプラズマガスが流出する流出口39を有する。
 アース板32は、避雷針として機能するものであり、メインハウジング30の下面に固定されている。アース板32の下面に連結ブロック34が固定されており、連結ブロック34の下面にノズルブロック36が固定されている。放熱板31は、メインハウジング30の側面に配設されている。放熱板31は、複数のフィン(不図示)を有しており、メインハウジング30の熱を放熱する。
 メインハウジング30、アース板32、連結ブロック34、およびノズルブロック36において、ガス流路50が形成されている。ガス流路50は、一端は反応室38の流出口39と連通しており、他端はノズルブロック36の下面に開口している。ガス流路50のノズルブロック36における開口が流出口51である。
 連結ブロック114は、ガス管110の下端に連結されるとともに、下部カバー22のY方向での加熱ガス供給装置14側の側面に固定されている。連結ブロック114には、連通路120が形成されており、連通路120の一端部は、連結ブロック114の上面に開口するとともに、連通路120の他端部は、Y方向でのプラズマガス噴出装置12側の側面に開口している。そして、連通路120の一端部がガス管110の下端に連通し、連通路120の他端部が、下部カバー22の貫通穴72に連通している。これにより、ガス管110において加熱されたガスが、下部カバー22に供給される。
 大気圧プラズマ発生装置10の制御系統は、図4に示すように、制御装置16と、処理ガス供給装置77、および冷却ガス供給装置102が通信可能に接続されており、制御装置16により、各部が制御されている。制御装置16は、コンピュータを主体とするコントローラ130、駆動回路132~134を有する。尚、駆動回路132は、電極24,26へ供給する電力を制御する回路である。駆動回路133は、処理ガス供給装置77および冷却ガス供給装置102が供給する各ガスの流量を制御する回路である。駆動回路134は、ヒータ112へ供給する電力を制御する回路である。また、NOxセンサ151および温度センサ152が流出口51付近に配設されている。NOxセンサ151により検出されるNOx濃度を示す信号がコントローラ130へ出力される。温度センサ152により検出される温度を示す信号がコントローラ130へ出力される。
 大気圧プラズマ発生装置10において、プラズマガス噴出装置12では、上述した構成により、反応室38の内部で処理ガスがプラズマ化され、ノズルブロック36の下端からプラズマガスが噴出される。詳しくは、反応室38の内部に、処理ガス供給装置77によって処理ガスが供給される。この際、反応室38では、反応室38に内蔵される1対の電極24,26に電圧が印加されており、1対の電極24,26間に電流が流れる。これにより、1対の電極24,26間に放電が生じ、その放電により、処理ガスがプラズマ化され、プラズマガスが噴出される。以下の説明において、プラズマガスが噴出されることを、プラズマ照射と記載する場合がある。ヒートシンク27,28を備えない場合には、プラズマ化の際、電極24,26への電圧の印加により反応室38の温度は上昇する。しかし、大気圧プラズマ発生装置10においては、冷却ガス供給装置102により冷却ガスがヒートシンク27,28の流路に供給され、熱交換により反応室38が冷却される。尚、ヒートシンク27,28の流路を流れ、熱交換により暖められた冷却ガスは、ガス管110に供給され、ヒータ112により加熱される。加熱された冷却ガスは、下部カバー22の内部に供給され、下部カバー22の貫通穴70から、プラズマガスに対して噴出される。また、貫通穴70はノズルブロック36の近傍にあり、ノズルブロック36の下端から噴出されるプラズマガスの流路に配設されている。そして、下部カバー22の貫通穴70から、プラズマガスが、加熱された冷却ガスとともに噴出される。プラズマガスは、噴射される加熱された冷却ガスにより加熱される。ヒータ112は制御装置16により制御されているため、プラズマガスの温度も制御されている。
 さて、本実施形態では、大気圧プラズマ発生装置10にて酸素プラズマが発生される。酸素プラズマは、酸素と結合しオゾンを発生させることが知られている。今回、発明者らは、大気圧プラズマ発生装置10において、NOxの発生濃度について測定した。図5は、発生源温度に対するオゾン(実線)およびNOx(破線)の濃度を示すグラフである。ここで、発生源温度とは、例えば流出口51付近の温度である。尚、NOxの発生機構は、例えば酸素ラジカルと窒素との反応、あるいは、高温の状況下における酸素と窒素との反応などが考えられる。図5に示されるように、温度100~700℃において、オゾンの発生量は低温であるほど多くなり、温度100~1300℃において、NOxの発生量は高温であるほど多くなることがわかった。尚、700℃以上において、オゾン濃度が一点鎖線に示される濃度、つまりほぼゼロとはならず、実線に示される濃度となるのは、NOxが酸素と反応してオゾンが生成されるためだと考えられる。そのため、NOx濃度の増加に伴って、オゾン濃度も増加していると考えられる。オゾンは自然に酸素に戻るものの、NOxは自然分解されないため、NOxが発生する場合には、除去装置を取り付けるなどする必要がある。今回、発明者らは、NOx濃度の温度依存性に注目し、大気圧プラズマ発生装置10における制御に次の工夫を行った。
 プラズマ照射の際、制御装置16は、NOxの発生量が閾値以下となるようにプラズマガスの温度を制御する。詳しくは、制御装置16は、NOxセンサ151により出力される信号に基づいて、NOx濃度が閾値以下となるように、ヒータ112を制御する。尚、閾値は、例えば法による規制値などに基づく値とすると良い。
 ところで、本実施形態では、冷却ガス供給装置102により反応室38は冷却され、反応室38の温度は300~400℃程度となる。プラズマガスは、温度が高い程、例えばプラズマ照射される対象物に親水性を付与するなどのプラズマ照射の効果は向上する。そのため、本実施形態では、ヒータ112により加熱された冷却ガスによってプラズマガスを加熱する構成となっている。図5に示されるように、温度が約600℃以上となると、NOx濃度がゼロよりも大きくなる。そこで、閾値を例えば0[ppm]より僅かに超える値に設定し、NOxセンサ151の出力信号に基づき、NOx濃度が閾値よりも大きくならないように、ヒータ112を制御する構成とする。
 より具体的には、コントローラ130に、予め閾値を記憶させておく。そして、プラズマ照射の際には、制御装置16は、NOxセンサ151の出力信号が示すNOx濃度が閾値以上となると、ヒータ112による加熱を停止させる制御を行う。さらに、制御装置16は、温度センサ152により出力される信号に基づいて、温度が目標温度となるように、ヒータ112を制御する。例えば、プラズマ照射される対象物が樹脂の場合、樹脂の融点温度よりも高温のプラズマガスが照射されると、対象物を損傷させてしまう。そこで、コントローラ130に予め記憶された目標温度なるように、制御装置16にヒータ112による加熱のON・OFFを制御させる。これにより、NOxの生成量を閾値以下としつつ、プラズマガスの温度を目標温度とすることができる。
 上記実施形態にて、電極24,26は1対の電極の一例である。ヒータ112は加熱器の一例であり、ヒートシンク27,28は、冷却器の一例である。流出口51付近は、プラズマガスの流路の一例である。冷却ガスは冷却加熱ガスの一例であり、連結ブロック114および下部カバー22は連結部の一例であり、貫通穴70は噴出口の一例である。加熱ガス供給装置14および下部カバー22は、加熱装置の一例である。
 以上、説明した実施形態によれば、以下の効果を奏する。
 制御装置16は、NOxセンサ151により出力される信号に基づいて、NOx濃度が閾値以下となるように、ヒータ112を制御する。これにより、NOxの生成量を閾値以下に制限することができる。また、制御装置16は、温度センサ152により出力される信号に基づいて、温度が目標温度となるように制御する。これにより、プラズマガスの温度をプラズマ照射する対象物に応じた温度をすることができる。また、加熱ガス供給装置14は、ガス管110を流れる冷却ガスをヒータ112により加熱する。加熱された冷却ガスが噴出されることでプラズマガスが加熱される。これにより、ヒータ112を制御することにより、プラズマガスの温度を制御することができる。
(別例1)
 次に、大気圧プラズマ発生装置10が温度センサ152を備えず、NOxセンサ151を備える別例1について説明する。
 この構成の場合には、制御装置16は、NOxセンサ151により出力される信号に基づいて、NOx濃度が閾値以下となるように、ヒータ112を制御する。これにより、NOxの生成量を閾値以下に制限することができる。
(別例2)
 次に、大気圧プラズマ発生装置10がNOxセンサ151を備えず、温度センサ152およびオゾンセンサ(不図示)を備える別例2について説明する。
 この構成の場合には、制御装置16は、オゾンセンサにより出力される信号に基づいて、オゾン濃度が所定値以上となるように、ヒータ112を制御する。図5に示されるように、オゾンの濃度は~800℃程度の温度範囲では、温度が上昇するほどオゾンの発生量が減少する。一方、NOxの濃度は温度が高いほど高くなり、約600℃を超えると、ゼロよりも大きくなる。従って、オゾンの濃度およびNOxの濃度は何れも温度に依存することから、オゾンの濃度に基づき、NOxの濃度を推定することが可能である。
 具体的には、オゾン濃度とNOx濃度との相関データを測定し、NOx濃度が閾値値以下となるオゾン濃度の下限値を決定する。そして、コントローラ130に決定されたオゾン濃度の下限値を記憶させる。そして、プラズマ照射の際には、制御装置16は、オゾンセンサの出力信号が示すオゾン濃度が下限値より小さくとなると、ヒータ112による加熱を停止させる制御を行う。さらに、制御装置16は、温度センサ152により出力される信号に基づいて、温度が目標温度となるように、ヒータ112を制御する。これにより、NOxの濃度を閾値以下としつつ、プラズマガスの温度をプラズマ照射する対象物に応じた温度とすることができる。
(別例3)
 次に、大気圧プラズマ発生装置10がNOxセンサ151および温度センサ152を備えず、オゾンセンサ(不図示)を備える別例3について説明する。
 この構成の場合には、(別例2)と同様に、オゾン濃度とNOx濃度との相関データを測定し、NOx濃度が規制値以下となるオゾン濃度の下限値を決定する。そして、コントローラ130に決定されたオゾン濃度の下限値を記憶させる。そして、プラズマ照射の際には、制御装置16は、オゾンセンサの出力信号が示すオゾン濃度が下限値より小さくとなると、ヒータ112による加熱を停止させる制御を行う。これにより、NOxの濃度を閾値以下とすることができる。
(別例4)
 次に、大気圧プラズマ発生装置10が温度センサ152を備えず、NOxセンサ151およびオゾンセンサ(不図示)を備える別例4について説明する。
 この構成の場合には、(別例2)と同様に、オゾン濃度とNOx濃度との相関データを測定し、NOx濃度が閾値以下となるオゾン濃度の下限値を決定する。そして、コントローラ130に決定されたオゾン濃度の下限値を記憶させる。プラズマ照射の際には、制御装置16は、NOxセンサ151の出力信号が示すNOx濃度が閾値以上となると、ヒータ112による加熱を停止させ、かつオゾンセンサの出力信号が示すオゾン濃度が下限値より小さくとなると、ヒータ112による加熱を停止させる制御を行う。これにより、NOxの発生量を確実に閾値以下とすることができる。
(別例5)
 次に、大気圧プラズマ発生装置10がNOxセンサ151、温度センサ152、およびオゾンセンサ(不図示)を備える別例5について説明する。
 この構成の場合には、(別例4)と同様に、プラズマ照射の際には、制御装置16は、NOxセンサ151の出力信号が示すNOx濃度が閾値以上となると、ヒータ112による加熱を停止させ、かつオゾンセンサの出力信号が示すオゾン濃度が下限値より小さくとなると、ヒータ112による加熱を停止させる制御を行う。また、コントローラ130に予め記憶された目標温度なるように、制御装置16にヒータ112による加熱のON・OFFを制御させる。これにより、NOxの発生量を確実に閾値以下としつつ、プラズマガスの温度を目標温度とすることができる。
(別例6)
 次に、大気圧プラズマ発生装置10がNOxセンサ151を備えず、温度センサ152を備える別例6について説明する。
 この構成の場合には、NOx濃度と温度との相関データを測定し、NOx濃度が閾値以下となる温度の上限値を決定する。そして、コントローラ130に決定された温度の上限値を記憶させる。プラズマ照射においては、制御装置16は、温度センサ152の出力信号が示す温度が上限値より大きくなると、ヒータ112による加熱を停止させる。これにより、NOxの発生量を閾値以下とすることができる。
(別例7)
 次に、大気圧プラズマ発生装置10がヒータ112を備えず、冷却装置(不図示)を備える別例7について説明する。
 上記実施形態では、冷却ガス供給装置102により反応室38は冷却され、ヒータ112により加熱された冷却ガスによってプラズマガスを加熱する構成となっていた。電極24,26への電圧の印加により反応室38の温度は上昇するため、反応室38が冷却されない場合には、プラズマガスの温度は、例えば1000℃程度になる。(別例7)では、ヒータ112を備えずに、冷却装置によって、反応室38における温度上昇分を加味して、プラズマガスの温度が設定温度となるように、反応室38を冷却する構成とする。
 冷却装置としては、例えば、駆動回路133に、温度センサ152の出力信号に基づいて、冷却ガス供給装置102が供給する冷却ガスの流量を調整するフィードバック制御回路を追加した構成が考えられる。つまり、温度センサ152が示す温度が設定温度よりも高ければ、冷却ガスの流量を増やし、設定温度よりも低ければ、冷却ガスの流量を減らすことで、設定温度となるように制御する構成である。
 この構成の場合には、制御装置16は、NOxセンサ151により出力される信号に基づいて、NOx濃度が閾値以下となるように、冷却装置を制御する。これにより、NOxの生成量を閾値以下に制限することができる。また、制御装置16は、温度センサ152により出力される信号に基づいて、温度が目標温度となるように冷却装置を制御する。これにより、プラズマガスの温度をプラズマ照射する対象物に応じた温度をすることができる。
 尚、(別例1)~(別例6)の構成と(別例7)の構成とを任意に組み合わせる構成としても良い。つまり、(別例1)~(別例6)の構成において、各センサの出力信号に基づき、冷却装置を制御する構成としても良い。
 尚、本発明は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内での種々の改良、変更が可能であることは言うまでもない。
 例えば、上記では、冷却器として内部に冷却ガスの流路が形成されたヒートシンク27,28を示したが、これに限定されない。例えば、内部に冷却ガスの流路を有さない複数のフィンを有するヒートシンクとしても良い。また、上記では、反応室38を冷却するヒートシンク27,28を説明したが、例えばボルテックスチューブなどにより、処理ガスを冷却する構成、あるいは、処理ガスおよび反応室38の両者を冷却する構成としても良い。また、(別例7)についても同様に、冷却装置が反応室38を冷却する構成の他に、処理ガスを冷却する構成、処理ガスと反応室38の両者を冷却する構成としても良い。
 また、上記では、NOxセンサ151および温度センサ152は、流出口51付近に配設されていると説明したが、これに限定されない。例えば、反応室38、ガス流路50に配設される構成としても良い。
 また、(別例7)では、ヒータ112を備えない構成を説明したが、ヒータ112および冷却装置の両者を備え、ヒータ112および冷却装置を設定温度となるように制御装置16が制御する構成としても良い。
 また、上記では、大気圧プラズマ発生装置10が、NOxセンサ151および温度センサ152を備えると説明したが、これらセンサを備えず、オープンループ制御する構成としても良い。具体的には、予め、NOxの生成量が閾値以下となるヒータ112の制御条件を実験などにより求める。そして、プラズマ照射においては、この制御条件に従って、制御を行う。
 また、上記では、加熱装置の一例として、ヒータ112により加熱された冷却ガスをプラズマガスに対して噴出することで、プラズマガスを加熱する構成と示したが、これに限定されない。例えば、プラズマガスをヒータなどで直接加熱する構成としても良い。
 また、上記では、下部ハウジング20は、アース板32を有すると説明したが、これに限定されず、アース板32を有しない構成としても良い。
 10 大気圧プラズマ発生装置
 14 加熱ガス供給装置
 16 制御装置
 22 下部カバー
 24,26 電極
 27,28 ヒートシンク
 38 反応室
 110 ガス管
 112 ヒータ
 114 連結ブロック
 

Claims (7)

  1.  放電によりプラズマを発生させる1対の電極と、
     前記1対の電極を内蔵し、処理ガスが流入する流入口および前記1対の電極により前記処理ガスがプラズマ化されたプラズマガスが流出する流出口を有する反応室と、
     NOxの発生量が閾値以下となるように前記流出口から流出される前記プラズマガスの温度を制御する制御装置と、を備える大気圧プラズマ発生装置。
  2.  前記プラズマガスの流路に配設されたNOxセンサを備え、
     前記制御装置は前記NOxセンサの出力に基づいて制御する請求項1記載の大気圧プラズマ発生装置。
  3.  前記プラズマガスは酸素プラズマガスであり、
     前記プラズマガスの流路に配設されたオゾンセンサを備え、
     前記制御装置は前記オゾンセンサの出力に基づいて、オゾンの発生量が所定値以上の範囲となるように前記プラズマガスの温度を制御する請求項1または2に記載の大気圧プラズマ発生装置。
  4.  前記プラズマガスの流路に配設された温度センサを備え、
     前記制御装置は前記温度センサの出力に基づく温度が目標温度となるように制御する請求項1から3の何れかに記載の大気圧プラズマ発生装置。
  5.  前記処理ガスおよび前記反応室の少なくとも何れか一方を冷却する冷却装置を備え、
     前記制御装置は、
     前記冷却装置を制御することにより、前記プラズマガスの温度を制御する請求項1から4の何れかに記載の大気圧プラズマ発生装置。
  6.  前記処理ガスおよび前記反応室の少なくとも何れか一方を冷却する冷却器と、
     前記プラズマガスを加熱する加熱装置と、を備え、
     前記制御装置は、
     前記加熱装置を制御することにより、前記プラズマガスの温度を制御する請求項1から5の何れかに記載の大気圧プラズマ発生装置。
  7.  前記冷却器は、冷却加熱ガスが流れるガス流路を有し、
     前記加熱装置は、
     前記ガス流路と連結され、前記冷却加熱ガスが流れるガス管と、
     前記ガス管に配設される加熱器と、
     前記ガス管と連結され、前記プラズマガスの流路に噴出口を有する連結部と、を有し、
     前記加熱器により加熱された前記冷却加熱ガスが前記噴出口から前記プラズマガスに対して噴出されることにより、前記プラズマガスが加熱される請求項6に記載の大気圧プラズマ発生装置。
PCT/JP2018/028989 2018-08-02 2018-08-02 大気圧プラズマ発生装置 WO2020026400A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880096124.0A CN112543990B (zh) 2018-08-02 2018-08-02 大气压等离子体发生装置
PCT/JP2018/028989 WO2020026400A1 (ja) 2018-08-02 2018-08-02 大気圧プラズマ発生装置
JP2020533986A JP6983322B2 (ja) 2018-08-02 2018-08-02 大気圧プラズマ発生装置
EP18928948.1A EP3832697B1 (en) 2018-08-02 2018-08-02 Atmospheric-pressure plasma generator
JP2021189240A JP7200337B2 (ja) 2018-08-02 2021-11-22 大気圧プラズマ発生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/028989 WO2020026400A1 (ja) 2018-08-02 2018-08-02 大気圧プラズマ発生装置

Publications (1)

Publication Number Publication Date
WO2020026400A1 true WO2020026400A1 (ja) 2020-02-06

Family

ID=69231652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028989 WO2020026400A1 (ja) 2018-08-02 2018-08-02 大気圧プラズマ発生装置

Country Status (4)

Country Link
EP (1) EP3832697B1 (ja)
JP (1) JP6983322B2 (ja)
CN (1) CN112543990B (ja)
WO (1) WO2020026400A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315257A (ja) * 2003-04-14 2004-11-11 Mitsubishi Electric Corp オゾン発生器
JP2007265838A (ja) * 2006-03-29 2007-10-11 Noritsu Koki Co Ltd プラズマ発生装置およびそれを用いるワーク処理装置
JP2008194674A (ja) * 2007-01-15 2008-08-28 Kanken Techno Co Ltd ガス処理装置およびガス処理方法
JP2009062276A (ja) * 2004-04-08 2009-03-26 Mitsubishi Electric Corp オゾン発生装置およびオゾン発生方法
JP2016213359A (ja) 2015-05-12 2016-12-15 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法
JP2018035023A (ja) * 2016-08-30 2018-03-08 株式会社デンソー ガス改質装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185137A (ja) * 1998-02-04 1998-07-14 Satoru Yoshinaka 半乾留ガス化焼却方法及び装置
JP4090827B2 (ja) * 2002-09-09 2008-05-28 独立行政法人科学技術振興機構 d10s2およびd0電子状態の金属イオンを含む複合酸化物を用いた光触媒
JP2004165377A (ja) * 2002-11-12 2004-06-10 Canon Inc 表面改質方法
JP5121142B2 (ja) * 2003-04-30 2013-01-16 富士通セミコンダクター株式会社 半導体装置の製造方法
JP5568209B2 (ja) * 2007-03-01 2014-08-06 ピーエスフォー ルクスコ エスエイアールエル 半導体デバイスの製造方法および製造装置
JP5420862B2 (ja) * 2008-07-23 2014-02-19 三井造船株式会社 高電圧プラズマ発生装置
JP2012079785A (ja) * 2010-09-30 2012-04-19 Tokyo Electron Ltd 絶縁膜の改質方法
JP5892904B2 (ja) * 2012-09-25 2016-03-23 三菱電機株式会社 オゾン供給システムおよび排水処理システム
EP3282819A4 (en) * 2015-03-20 2018-10-31 NGK Insulators, Ltd. Plasma generation method and sterile water production method
CN109565921B (zh) * 2016-08-11 2021-05-18 株式会社富士 等离子体产生装置及等离子体照射方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315257A (ja) * 2003-04-14 2004-11-11 Mitsubishi Electric Corp オゾン発生器
JP2009062276A (ja) * 2004-04-08 2009-03-26 Mitsubishi Electric Corp オゾン発生装置およびオゾン発生方法
JP2007265838A (ja) * 2006-03-29 2007-10-11 Noritsu Koki Co Ltd プラズマ発生装置およびそれを用いるワーク処理装置
JP2008194674A (ja) * 2007-01-15 2008-08-28 Kanken Techno Co Ltd ガス処理装置およびガス処理方法
JP2016213359A (ja) 2015-05-12 2016-12-15 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法
JP2018035023A (ja) * 2016-08-30 2018-03-08 株式会社デンソー ガス改質装置

Also Published As

Publication number Publication date
EP3832697A1 (en) 2021-06-09
EP3832697A4 (en) 2021-08-04
CN112543990A (zh) 2021-03-23
JP6983322B2 (ja) 2021-12-17
EP3832697B1 (en) 2023-06-07
CN112543990B (zh) 2023-10-24
JPWO2020026400A1 (ja) 2021-02-25

Similar Documents

Publication Publication Date Title
CN109565921B (zh) 等离子体产生装置及等离子体照射方法
JP3363828B2 (ja) レーザー
JP2005197600A5 (ja)
JP2007285685A (ja) ボルテックスチューブにおける温度、風量制御装置。
US8388758B2 (en) Apparatus and method for the rapid thermal control of a work piece in liquid or supercritical fluid
WO2020026400A1 (ja) 大気圧プラズマ発生装置
JP7200337B2 (ja) 大気圧プラズマ発生装置
KR102036236B1 (ko) 광처리 장치 및 광처리 방법
JP2015144078A (ja) 大気圧プラズマ発生装置
WO2009081911A1 (ja) イオン吐出装置
EP3116289B1 (en) Atmospheric pressure plasma generator and work machine for workpiece
JP6182878B2 (ja) 冷熱槽及び冷熱装置
EP3606293B1 (en) Plasma generation device
WO2017037775A1 (ja) プラズマ照射装置
JP6534745B2 (ja) プラズマ発生装置
JP2001326410A (ja) 半導体レーザ冷却装置
JP7085946B2 (ja) プラズマ発生装置とヒータ暖機方法
WO2020026399A1 (ja) 油除去方法、接着方法、組立装置、および大気圧プラズマ装置
JP6695192B2 (ja) プラズマ発生装置
CN112655280A (zh) 等离子体发生装置和等离子体头冷却方法
JPH08187427A (ja) 処理液供給装置
JP2018061931A (ja) エキシマ光照射装置
JP2008100164A (ja) 携帯用超音波霧化装置
KR20120132696A (ko) 플라즈마 처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533986

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018928948

Country of ref document: EP

Effective date: 20210302