WO2020022190A1 - ガス製造装置及びガス製造方法 - Google Patents

ガス製造装置及びガス製造方法 Download PDF

Info

Publication number
WO2020022190A1
WO2020022190A1 PCT/JP2019/028326 JP2019028326W WO2020022190A1 WO 2020022190 A1 WO2020022190 A1 WO 2020022190A1 JP 2019028326 W JP2019028326 W JP 2019028326W WO 2020022190 A1 WO2020022190 A1 WO 2020022190A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
electrolyte
electrolytic solution
pressure
circulation
Prior art date
Application number
PCT/JP2019/028326
Other languages
English (en)
French (fr)
Inventor
康行 田中
芳一 兒玉
松永 大輔
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to EP19839842.2A priority Critical patent/EP3831986A4/en
Priority to CA3107396A priority patent/CA3107396A1/en
Priority to JP2020532344A priority patent/JP6826699B2/ja
Priority to US17/261,838 priority patent/US11505872B2/en
Priority to KR1020207037748A priority patent/KR102664170B1/ko
Priority to CN201980050273.8A priority patent/CN112534087B/zh
Publication of WO2020022190A1 publication Critical patent/WO2020022190A1/ja
Priority to PH12021550131A priority patent/PH12021550131A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/085Removing impurities
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • C25B1/044Hydrogen or oxygen by electrolysis of water producing mixed hydrogen and oxygen gas, e.g. Brown's gas [HHO]
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/087Recycling of electrolyte to electrochemical cell
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/05Pressure cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/13Single electrolytic cells with circulation of an electrolyte
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/13Single electrolytic cells with circulation of an electrolyte
    • C25B9/15Flow-through cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/67Heating or cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a gas production method and a gas production apparatus by an alkaline water electrolysis method, and more particularly to a gas production method and a gas production apparatus suitable for performing electrolysis of alkaline water under pressurized conditions.
  • Alkaline water electrolysis is known as a method for producing hydrogen gas and oxygen gas.
  • hydrogen gas is generated from a cathode by electrolyzing water using a basic aqueous solution (alkali water) in which an alkali metal hydroxide (eg, NaOH, KOH, etc.) is dissolved as an electrolytic solution.
  • an electrolysis cell for alkaline water electrolysis includes an anode chamber and a cathode chamber separated by an ion-permeable diaphragm, and electrolysis is performed while circulating an electrolytic solution through the anode chamber and the cathode chamber, respectively.
  • the electrolyte recovered from each of the pole chambers is once collected and stored in a circulation tank, and the electrolyte stored in the circulation tank is supplied to each pole chamber again.
  • JP-A-2017-039982 Japanese Patent No. 6008482 JP-A-2017-119895 JP-A-2017-203218 JP 2017-179557 A
  • the production process of hydrogen gas and oxygen gas by electrolysis of alkaline water has a problem of dissolved gas. That is, part of the oxygen gas generated by the anodic reaction is dissolved in the electrolytic solution recovered from the anode chamber, and part of the hydrogen gas generated by the cathodic reaction is dissolved in the electrolytic solution recovered from the cathode chamber. Is dissolved. Since the electrolyte recovered from the anode chamber and the electrolyte recovered from the cathode chamber are mixed in the circulation tank, both the oxygen gas and the hydrogen gas are dissolved in the electrolyte in the circulation tank. .
  • the concentrations of the oxygen gas and the hydrogen gas in the gas phase above the circulation tank gradually increase. Therefore, while the operation of the electrolysis apparatus is continued, the gas composition in the gas phase above the circulation tank may reach the explosion limit.
  • the pressure inside the electrode chamber of the electrolytic cell, and the pressure of the gas and the electrolytic solution recovered from the electrolytic cell are maintained higher than normal pressure. Therefore, the amount of dissolved gas in the electrolytic solution is increased as compared with that at normal pressure, so that the problem of dissolved gas becomes significant.
  • Patent Literature 1 discloses an anode chamber containing an anode and generating an anode gas, a cathode chamber containing a cathode and generating a hydrogen gas, and the anode chamber and the cathode chamber. And an anode-side circulation line for discharging electrolyte from the anode chamber and returning the electrolyte to the anode chamber, wherein the anode-side circulation line removes the anode gas from the electrolyte.
  • the anode-side gas-liquid separation means to be separated, the anode chamber and the anode-side gas-liquid separation means are connected, and the electrolytic solution and the anode gas are discharged from the anode chamber to the anode-side gas-liquid separation means.
  • An anode-side discharge line for connecting the anode-side discharge line for feeding, the anode chamber and the anode-side gas-liquid separation unit, and discharging the electrolytic solution from the anode-side gas-liquid separation unit and sending it to the anode chamber Before and after the line is dissolved Hydrogen gas exists as a gaseous phase, and has an anode gas supply line connecting the gaseous phase region where the hydrogen gas and the anode gas are mixed and the anode-side gas-liquid separation means, wherein the anode gas supply line Supplies at least a part of the anode gas to the gas phase region, and the hydrogen gas concentration in the gas phase region is lower than an explosion limit lower limit.
  • Patent Document 1 it is claimed that in an electrolysis process for generating hydrogen, it is possible to reliably eliminate the possibility that a trace amount of gas gradually accumulates in the circulation line of the electrolyte and reaches the explosion limit of hydrogen. I have.
  • Patent Document 1 describes that gas discharged from the gas phase region of the circulation tank is discharged out of the system as exhaust gas.
  • the gas in the gas phase region of the circulation tank is extruded (purged) using the anode gas.
  • a cathode gas released from the electrolytic solution in the circulation tank into the gas phase region is mixed. Therefore, even if the gas discharged from the gas phase region of the circulation tank is recovered in the form described in Patent Document 1, it is difficult to obtain a highly pure anode gas.
  • the anodic reaction is 2OH ⁇ ⁇ (1/2) O 2 ⁇ + H 2 O + 2e ⁇ (1)
  • the cathodic reaction is 2H 2 O + 2e ⁇ ⁇ H 2 ⁇ + 2OH ⁇ (2) It is represented by Therefore, in the alkaline water electrolysis process, although water is consumed as a whole, water is consumed in the cathodic reaction whereas water is generated in the anodic reaction, so that the anode-side circulation proceeds as the electrolytic reaction proceeds. A liquid level difference occurs between the tank and the cathode-side circulation tank.
  • the present invention prevents the gas composition in the gas phase region of the circulation tank from reaching the explosion limit even when the electrolysis of the alkaline water is performed under pressurized conditions, and the dissolved gas in the electrolytic solution is gaseous. It is an object of the present invention to provide a gas production apparatus capable of stably producing both hydrogen gas and oxygen gas while reducing adverse effects on purity. Even when alkaline water electrolysis is performed under pressurized conditions, the gas composition in the gas phase region of the circulation tank is prevented from reaching the explosion limit, and the dissolved gas in the electrolyte is reduced in gas purity.
  • a gas production method capable of stably producing both a hydrogen gas and an oxygen gas while reducing an adverse effect on the gas.
  • An electrolytic cell including an anode chamber that houses an anode and generates oxygen gas, a cathode chamber that houses a cathode and generates hydrogen gas, and an ion-permeable diaphragm that divides the anode chamber and the cathode chamber.
  • a first electrolyte circulation system; A second electrolyte circulation system; An electrolyte exchange device comprising: a gas production device
  • the first electrolyte circulation system includes: A first circulation tank for receiving and storing the first electrolyte flowing out of the anode chamber; A first circulation pump for supplying the first electrolyte stored in the first circulation tank to the anode chamber
  • the second electrolyte circulation system includes: A second circulation tank for receiving and storing the second electrolyte discharged from the cathode chamber; A second circulation pump that supplies the second electrolytic solution stored in the second circulation tank to the cathode chamber,
  • the electrolytic solution exchange device transfers a part of the first electrolytic solution present in the first electrolytic solution circulating system to the second electrolytic solution circulating system, and performs the second electrolytic solution circulating system. A part of the second electrolyte present in the first electrolyte is transferred to the first electrolyte circulation system.
  • the electrolyte exchange device includes: A first electrolytic solution transfer unit that transfers a part of the first electrolytic solution stored in the first circulation tank to the second circulation tank; A part of the second electrolyte flowing through a pipe connecting the outlet side of the second circulation pump and the inlet side of the cathode chamber is supplied to the outlet side of the first circulation pump and the inlet side of the anode chamber.
  • the electrolyte exchange device includes: First electrolyte transfer means for transferring a part of the second electrolyte stored in the second circulation tank to the first circulation tank, A part of the first electrolytic solution flowing through a pipe connecting the outlet side of the first circulation pump and the inlet side of the anode chamber is changed to the outlet side of the second circulation pump and the inlet side of the cathode chamber.
  • a first cooling device for receiving and cooling the first gas flow; A second cooling device for receiving and cooling the second gas flow; A first filter device connected to the first cooling device for receiving a first gas flow cooled by the first cooling device and removing liquefied moisture in the first gas flow; When, A second filter device connected to the second cooling device for receiving a second gas flow cooled by the second cooling device and removing liquefied moisture in the second gas flow; When, Further comprising The first cooling device and the first filter device are disposed upstream of the first pressure control valve; The gas production device according to [4], wherein the second cooling device and the second filter device are arranged upstream of the second pressure control valve.
  • the differential pressure between the pressure of the first gas flow upstream of the first pressure control valve and the pressure of the second gas flow upstream of the second pressure control valve is a predetermined pressure.
  • the differential pressure control means Measuring the pressure difference between the pressure of the first gas flow upstream of the first pressure control valve and the pressure of the second gas flow upstream of the second pressure control valve; A detector, The gas production apparatus according to [6], further comprising: a valve control device that controls the first pressure control valve and / or the second pressure control valve based on a measurement result of the differential pressure detector.
  • An electrolytic cell including an anode chamber that houses an anode and generates oxygen gas, a cathode chamber that houses a cathode and generates hydrogen gas, and an ion-permeable diaphragm that divides the anode chamber and the cathode chamber.
  • a method for producing oxygen gas and hydrogen gas by electrolyzing an electrolytic solution that is an aqueous alkaline solution (A) An oxygen gas is generated from the anode by supplying a first electrolytic solution to the anode chamber and supplying a second electrolytic solution to the cathode chamber while supplying a current between the anode and the cathode.
  • the step (h) includes transferring a part of the first electrolytic solution stored in the first circulation tank to the second circulation tank,
  • the step (i) includes joining a part of the second electrolytic solution sent from the second circulation pump to the first electrolyte solution sent from the first circulation pump. , [8].
  • step (h) a part of the first electrolyte solution sent from the first circulation pump is combined with the second electrolyte solution sent from the second circulation pump.
  • step (i) includes transferring a part of the second electrolyte stored in the second circulation tank to the first circulation tank.
  • the step (p) includes: (P1) measuring a differential pressure between the pressure of the first gas flow upstream of the first pressure control valve and the pressure of the second gas flow upstream of the second pressure control valve; Process and (P2) controlling the first pressure control valve and / or the second pressure control valve in the steps (j) and (k) based on the measurement result of the step (p1).
  • the gas production method according to [13].
  • the gas producing apparatus includes a first electrolyte circulating system that circulates and supplies the first electrolyte to the anode chamber, and a second electrolyte circulating system that circulates and supplies the second electrolyte to the cathode chamber. Prepare separately. Therefore, according to the gas production apparatus of the present invention, even when performing alkaline water electrolysis under pressurized conditions, while preventing the gas composition in the gas phase region of the circulation tank from reaching the explosion limit, It is possible to produce both hydrogen gas and oxygen gas while reducing the adverse effect of dissolved gas in the liquid on gas purity.
  • the gas producing apparatus of the present invention transfers a part of the first electrolyte present in the first electrolyte circulation system to the second electrolyte circulation system, and transfers the part of the first electrolyte existing in the second electrolyte circulation system. Since an electrolytic solution exchange device for transferring a part of the second electrolytic solution to the first electrolytic solution circulating system is provided, the pressure difference between the first electrolytic solution circulating system and the second electrolytic solution circulating system is reduced. Regardless, it is possible to eliminate or reduce the liquid level difference and the concentration difference between the first circulation tank and the second circulation tank. Therefore, according to the gas production apparatus of the present invention, it is possible to stably produce each gas even when electrolyzing alkaline water under pressurized conditions.
  • the gas production apparatus of the present invention even when performing alkaline water electrolysis under pressurized conditions, while preventing the gas composition in the gas phase region of the circulation tank from reaching the explosion limit, It is possible to stably produce both hydrogen gas and oxygen gas while reducing the adverse effect of dissolved gas in the liquid on gas purity.
  • the gas production method of the present invention includes the steps (b) to (g), the first electrolytic solution recovered from the anode chamber is stored in the first circulation tank and stored in the first circulation tank.
  • the first electrolyte was supplied to the anode chamber by the first circulation pump, and the second electrolyte recovered from the cathode chamber was stored in the second circulation tank, and was stored in the second circulation tank.
  • a second electrolyte is supplied to the cathode compartment by a second circulation pump.
  • the gas production method of the present invention even when performing electrolysis of alkaline water under pressurized conditions, while preventing the gas composition in the gas phase region of the circulation tank from reaching the explosion limit, It is possible to produce both hydrogen gas and oxygen gas while reducing the adverse effect of dissolved gas in the liquid on gas purity. Further, since the gas production method of the present invention includes steps (h) and (i), regardless of the magnitude of the pressure difference between the electrolyte circulation system on the anode side and the electrolyte circulation system on the cathode side, the first circulation tank It is possible to eliminate or reduce the difference in liquid level and the difference in concentration between the first and second circulation tanks.
  • the gas production method of the present invention it is possible to stably produce each gas even when electrolyzing alkaline water under pressurized conditions. Therefore, according to the gas production method of the present invention, even when performing electrolysis of alkaline water under pressurized conditions, while preventing the gas composition in the gas phase region of the circulation tank from reaching the explosion limit, It is possible to stably produce both hydrogen gas and oxygen gas while reducing the adverse effect of dissolved gas in the liquid on gas purity.
  • FIG. 1 is a diagram schematically illustrating a gas production apparatus 100 according to one embodiment of the present invention.
  • FIG. 6 is a diagram schematically illustrating a gas production apparatus 200 according to another embodiment of the present invention. It is a figure which illustrates typically the gas production apparatus 300 concerning other one Embodiment of this invention.
  • FIG. 9 is a diagram schematically illustrating a gas production apparatus 400 according to another embodiment of the present invention.
  • FIG. 7 is a diagram schematically illustrating a gas production apparatus 500 according to another embodiment of the present invention. It is a figure which illustrates typically the gas production apparatus 600 concerning other one Embodiment of this invention. It is a figure which illustrates typically the gas manufacturing apparatus 600 'which concerns on another embodiment of this invention. It is a figure which illustrates typically the gas production apparatus 700 concerning other one Embodiment of this invention.
  • FIG. 9 is a diagram schematically illustrating a gas production apparatus 800 according to another embodiment of the present invention.
  • the notation “E 1 and / or E 2 ” for the elements E 1 and E 2 means “E 1 or E 2 or a combination thereof”, and the elements E 1 ,.
  • the notation “E 1 ,..., E N ⁇ 1 , and / or E N ” for (N is an integer of 3 or more) means “E 1 ,..., E N ⁇ 1 , or E N , or a combination thereof”. Shall mean.
  • FIG. 1 is a diagram schematically illustrating a gas production apparatus 100 according to one embodiment of the present invention.
  • the gas producing apparatus 100 is an apparatus that produces alkaline gas and hydrogen gas by electrolysis of alkaline water using alkaline water as an electrolytic solution.
  • the gas producing device 100 includes an electrolytic cell 10, a first electrolytic solution circulating system 20, a second electrolytic solution circulating system 30, a pure water supply system 40, an electrolytic solution exchanging device 50, and a first gas recovery device.
  • a line 60 and a second gas recovery line 70 are provided.
  • arrows indicate the direction in which the substance flows.
  • the electrolytic cell 10 includes an anode chamber 11 that contains an anode and generates oxygen gas, a cathode chamber 12 that contains a cathode and generates hydrogen gas, and an ion-permeable diaphragm 13 that partitions the anode chamber 11 and the cathode chamber 12. It has.
  • an electrolytic cell in a form conventionally used in an alkaline water electrolysis apparatus can be employed without particular limitation.
  • the first electrolytic solution circulation system 20 receives and stores the first electrolytic solution flowing out of the anode chamber 11, and the first electrolytic solution stored in the first circulation tank 21. And a first circulating pump 22 that supplies the gas to the anode chamber 11. Inside the first circulation tank 21, there are a liquid phase region 21a occupied by the stored first electrolytic solution and a gas phase region 21b which is a space above the liquid phase region 21a.
  • the first electrolyte circulation system 20 further includes a pipe 23 for leading the first electrolyte and anode gas flowing out of the anode chamber 11 to the first circulation tank 21, and a liquid phase region 21 a of the first circulation tank 21.
  • the fuel cell system includes a pipe that guides the first electrolyte to the first circulation pump, and a first pipe that guides the first electrolyte that is sent from the first circulation pump to the anode chamber. From the anode chamber 11, a first gas-liquid mixture containing the first electrolyte and the gas generated in the anode chamber 11 flows out. The first gas-liquid mixture flowing out of the anode chamber 11 is guided to a first circulation tank 21 through a pipe 23, and inside the first circulation tank 21, the first electrolytic solution flows into a liquid phase region 21a and a gas ( The first gas flow) is separated (gas-liquid separation) into the gas phase region 21b.
  • the second electrolyte circulation system 30 receives and stores the second electrolyte flowing out of the cathode chamber 12, and the first electrolyte stored in the second circulation tank 31. And a second circulating pump 32 that supplies the gas to the cathode chamber 12. Inside the second circulation tank 31, there are a liquid phase region 31a occupied by the stored second electrolyte and a gas phase region 31b that is a space above the liquid phase region 31a.
  • the second electrolyte circulation system 30 further includes a pipe 33 for guiding the second electrolyte and the cathode gas flowing out of the cathode chamber 12 to the second circulation tank 31, and a liquid phase region 31 a of the second circulation tank 31.
  • a second gas-liquid mixture containing the second electrolyte and the gas generated in the cathode chamber 12 flows out.
  • the second gas-liquid mixture flowing out of the cathode chamber 12 is led to a second circulation tank 31 through a pipe 33, and inside the second circulation tank 31, the second electrolyte is supplied to the liquid phase region 31a by gas ( The second gas flow) separates (gas-liquid separation) into the gas phase region 31b.
  • the pure water supply system 40 has a pure water tank 41 that stores pure water, and a water supply pump 42 that sends the pure water stored in the pure water tank 41 to the second circulation tank 31.
  • the water supplied by the water supply pump 42 from the pure water tank 41 to the second circulation tank 31 supplies the water consumed by the electrolytic reaction of the water in the electrolytic cell 10.
  • the electrolyte exchange device 50 includes a first electrolyte transfer unit 51 and a second electrolyte transfer unit 52.
  • the first electrolyte transfer means 51 sends a part of the first electrolyte stored in the first circulation tank 21 to the second circulation tank 31.
  • the second electrolyte transfer means 52 transfers a part of the second electrolyte flowing through the second pipe 35 connecting the outlet side of the second circulation pump 32 and the inlet side of the cathode chamber 12 to the first circulation section.
  • the liquid is sent to a first pipe 25 connecting the outlet side of the pump 22 and the inlet side of the anode chamber 11.
  • known pumps such as a positive displacement pump and a non-positive pump can be used as the first electrolytic solution transferring means 51 and the second electrolytic solution transferring means 52, for example.
  • the positive displacement pump include a plunger pump, a piston pump, a diaphragm pump, a gear pump, and the like.
  • the non-positive displacement pump include a centrifugal pump, a turbine pump, and the like. Even when a non-displacement pump is used, it is possible to send the electrolyte at a predetermined flow rate in a predetermined direction by combining the non-displacement pump with a control device for controlling the flow rate. .
  • the amount of liquid supplied by the first electrolytic solution transferring means 51 and the amount of liquid supplied by the second electrolytic solution transferring means 52 in the electrolytic solution exchange device 50, and the amount of pure water supplied by the pure water supply system 40 are the first.
  • the liquid amount (liquid level) and concentration of the first electrolytic solution stored in the circulation tank 21, and the liquid amount (liquid level) and concentration of the second electrolytic solution stored in the second circulation tank 31 Is adjusted to maintain a predetermined level.
  • Equation (14) to Equation (12) (16) (13) (7) is substituted into and (8)
  • v 12 ⁇ ( 1- ⁇ ) n e + 0.009n e ⁇ C 2 ⁇ / (C 2 - C 1 )... (12 ′)
  • v 21 ⁇ (1- ⁇ ) n e + 0.009n e ⁇ C 1 ⁇ / (C 2 -C 1) ...
  • w s2 0.009n e ... (7 ')
  • v 12 v 21 + 0.009n e ... (8 ') Is obtained.
  • the left side (v 12 and v 21 ) is positive and the numerator on the right side is always positive, so that C 2 > C 1 holds in the denominator on the right side. That is, in the steady state, the electrolyte concentration C 2 in the second electrolyte circulation system 30 (that is, the concentration of the second electrolyte) is equal to the overall electrolyte concentration C 1 in the first electrolyte circulation system 20. (That is, the concentration of the first electrolytic solution).
  • n e 1mol / s
  • 0.5
  • C 2 10mol / L
  • C 1 9.9mol / L
  • v 12 5.9 L / s
  • v 21 5.891 L / s
  • w s2 9 mL / s
  • OH - transmission values ⁇ is not determined only by the diaphragm, in addition to the structure of the electrolytic cell, the concentration and the supply amount or the electrolytic current value of the electrolytic solution supplied to each electrode chamber, an electrolyte temperature, pole It also depends on operating conditions such as differential pressure between rooms.
  • the value of the OH 2 ⁇ transmittance ⁇ required for the calculation of the liquid sending amounts v 12 and v 21 is determined, for example, in the same manner as the planned operating conditions except that the electrolytic solution exchange device 50 is not operated in the actual electrolytic cell. It can be estimated by circulating the solution and measuring the difference in electrolyte concentration between the outlet side of the anode chamber 11 and the outlet side of the cathode chamber 12.
  • the value of ws2 calculated by the equation (7 ′) takes into account only the water consumed by the electrolytic reaction. Actually, water also leaves the system as mist or water vapor in the gas recovered from the first and second gas recovery lines 60 and 70.
  • the amount of liquid supplied from the water supply pump 42 of the pure supply means 40 may be, for example, a value obtained by adding ws2 to the amount of water leaving the system together with such a gas flow.
  • the supply amount v 1 [L / s] of the electrolytic solution to the anode chamber 11 and the supply amount v 2 [L / s] of the electrolytic solution to the cathode room 12 are determined by the supply amount v p1 [L of the first circulation pump 22.
  • the supply amounts of electrolyte solution v 1 and v 2 to the anode chamber 11 and the cathode chamber 12 are substantially equal.
  • the first circulating pump 22, the second circulating pump 32, and the second circulating pump 32 are arranged such that the ratio v 2 / v 1 is 0.80 to 1.20, more preferably 0.90 to 1.10.
  • the liquid supply amounts v p1 , v p2 , and v 21 of the second electrolytic solution transfer means 52 are controlled.
  • the ratio v 2 / v 1 is within the above range, the difference in electrolyte concentration between the anode chamber 11 and the cathode chamber 12 after electrolysis is stabilized, so that the electrolysis voltage of the electrolytic cell 10 is stabilized. Becomes easier.
  • 21 / vp2 is preferably 0.001 or more, more preferably 0.003 or more, and in one embodiment, 0.03 or less, preferably 0.01 or less.
  • the ratio of the amount of liquid supplied by the second electrolytic solution transfer means 52 to the amount of liquid supplied by the first circulating pump 22 and the amount of liquid supplied by the second circulating pump 32 is each equal to or greater than the lower limit, the first Since the difference between the electrolyte concentration in the electrolyte circulation system 20 and the electrolyte concentration in the second electrolyte circulation system 30 can be further reduced, the electrolyte supplied to the anode chamber 11 and the electrolyte supplied to the cathode chamber 12 Is easily maintained in a range where the power efficiency is high.
  • the ratio of the amount of liquid sent by the second electrolytic solution transfer means 52 to the amount of liquid sent by the first circulating pump 22 and the amount of liquid sent by the second circulating pump 32 is each equal to or less than the above upper limit, the first Dissolved oxygen gas brought into the second electrolyte circulation system 30 together with the electrolyte from the electrolyte circulation system 20, and into the first electrolyte circulation system 20 together with the electrolyte from the second electrolyte circulation system 30 Since the dissolved hydrogen gas can be reduced, the hydrogen gas released from the liquid phase region 21a of the first circulation tank 21 to the gas phase region 21b is reduced, and the purity of the oxygen gas recovered from the first gas recovery line 60 is reduced. Further, the oxygen gas released from the liquid phase region 31a of the second circulation tank 31 to the gas phase region 31b can be reduced, and the purity of the hydrogen gas recovered from the second gas recovery line 70 can be reduced. To It is possible to increase the al.
  • the amount of the first electrolytic solution stored in the first circulation tank 21 is preferably maintained in a range of 1 to 99% by volume based on the total volume of the first circulation tank 21, and 30 to More preferably, it is maintained within the range of 70% by volume.
  • the amount of the second electrolyte stored in the second circulation tank 31 is preferably maintained within a range of 1 to 99% by volume based on the total volume of the second circulation tank 31. , 30 to 70% by volume.
  • the first gas recovery line 60 is connected to the first pressure control valve 61 and the first gas flow flowing out of the anode chamber 11 from the gas phase region 21 b of the first circulation tank 21 to the first pressure control valve 61.
  • the apparatus includes a pipe 62 leading to the primary side (entrance side), and a pressure gauge 63 provided in the middle of the pipe 62 and monitoring the pressure of the first gas flow flowing through the pipe 62.
  • the first pressure control valve 61 controls the pressure of the first gas flow to a predetermined value.
  • the first pressure control valve 61 controls the gas pressure in a region from the outlet side of the anode chamber 11 to the primary side of the first pressure control valve 61 through the first circulation tank 21 to a predetermined value.
  • a known control valve capable of controlling the primary pressure to a predetermined value can be used without particular limitation, and an electromagnetic valve or an air valve for maintaining the primary pressure at a predetermined value can be used.
  • a drive valve can be preferably used.
  • the first pressure control valve 61 which is an electromagnetic valve or an air-driven valve, does not allow gas to flow to the secondary side (outside) until the pressure on the primary side reaches a set value, and the gas accumulates in the gas phase region 21b.
  • the gas recovery line 60 includes the first pressure control valve 61, the pressure of the first electrolyte circulation system 20 including the anode chamber 11, the first circulation tank 21, and the first circulation pump 22 is increased. It is maintained at a predetermined value.
  • the second gas recovery line 70 connects the second pressure control valve 71 and the second gas flow flowing out of the cathode chamber 12 from the gas phase region 31 b of the second circulation tank 31 to the second pressure control valve 71.
  • the apparatus includes a pipe 72 leading to the primary side (entrance side), and a pressure gauge 73 provided in the middle of the pipe 72 and monitoring the pressure of the second gas flow flowing through the pipe 72.
  • the second pressure control valve 71 controls the pressure of the second gas flow to a predetermined value.
  • the second pressure control valve 71 controls the gas pressure in a region from the outlet side of the cathode chamber 12 to the primary side of the second pressure control valve 71 through the second circulation tank 31 to a predetermined value.
  • a known control valve capable of controlling the pressure on the primary side to a predetermined value can be used without particular limitation, and an electromagnetic valve or an air valve for maintaining the pressure on the primary side at a predetermined value can be used.
  • a drive valve can be preferably used.
  • the second pressure control valve 71 which is an electromagnetic valve or an air-driven valve, does not allow the gas to flow out to the secondary side (outside) until the pressure on the primary side reaches a set value, and the gas is accumulated in the gas phase region 31b.
  • the gas recovery line 70 includes the second pressure control valve 71, the pressure of the second electrolyte circulation system 30 including the cathode chamber 12, the second circulation tank 31, and the second circulation pump 32 is increased. It is maintained at a predetermined value.
  • the pressure inside one or both of the anode chamber 11 and the cathode chamber 12 is at a pressure higher than the atmospheric pressure by 20 kPa or more.
  • the pressure of the first gas flow on the upstream side (primary side) of the first pressure control valve 61 and the pressure of the second gas flow on the upstream side (primary side) of the second pressure control valve 71 are: , For example, 950 to 200 kPa, preferably 900 to 400 kPa.
  • the effect of the present invention becomes remarkable. That is, according to the gas production apparatus and the gas production method of the present invention, even when performing the electrolysis of the alkaline water under such pressurized conditions, the gas composition in the gas phase region of the circulation tank reaches the explosion limit. Thus, it is possible to produce both hydrogen gas and oxygen gas while preventing the dissolved gas from reaching the concentration and reducing the adverse effect of the dissolved gas in the electrolytic solution on the gas purity.
  • the first electrolytic solution is supplied to the anode chamber 11 of the electrolytic cell 10 and the second electrolytic solution is supplied to the cathode chamber 12, while the anode accommodated in the anode chamber 11 and the cathode accommodated in the cathode chamber 12 are connected.
  • oxygen gas is generated from the anode in the anode chamber 11 and hydrogen gas is generated from the cathode in the cathode chamber 12 (step (a)).
  • a first gas flow containing oxygen gas generated in the anode chamber 11 and a first electrolytic solution are recovered (step (b)).
  • the first gas stream and the first electrolytic solution are recovered from the anode chamber 11 through a pipe 23 as a gas-liquid mixture, guided to a first circulation tank 21, and separated in the first circulation tank 21.
  • the first electrolytic solution collected from the anode chamber 11 into the first circulation tank 21 and separated into gas and liquid is stored in the first circulation tank 21 (step (d)).
  • the first electrolyte stored in the first circulation tank 21 is sent to the anode chamber 11 by the first circulation pump 22 (step (f)).
  • the second gas flow containing the hydrogen gas generated in the cathode chamber 12 and the second electrolyte are recovered (step (c)).
  • the second gas flow and the second electrolytic solution are collected from the cathode chamber 12 through the pipe 33 as a gas-liquid mixture, guided to the second circulation tank 31, and gas-liquid separated in the second circulation tank 31.
  • the second electrolytic solution collected from the cathode chamber 12 into the second circulation tank 31 and separated into gas and liquid is stored in the second circulation tank 31 (step (e)).
  • the second electrolyte stored in the second circulation tank 31 is sent to the cathode chamber 12 by the second circulation pump 32 (step (g)).
  • a part of the first electrolytic solution stored in the first circulation tank 21 is transferred to the second circulation tank 31 by the first electrolyte transfer means 51. Thereby, a part of the first electrolytic solution is introduced into the second electrolytic solution (step (h)).
  • a part of the second electrolytic solution sent from the second circulating pump 32 is branched by the second electrolytic solution transferring means 52 and merges with the first electrolytic solution sent from the first circulating pump 22. I do. Thereby, a part of the second electrolyte is introduced into the first electrolyte (step (i)).
  • the first gas flow recovered from the anode chamber 11 is extracted from the gas phase region 21 b of the first circulation tank 21 through the first gas recovery line 60.
  • the pressure of the first gas flow is controlled to a predetermined value by a first pressure control valve 61 provided in a flow path of the first gas flow (first gas recovery line 60) (step (j)).
  • the second gas flow recovered from the cathode chamber 12 is extracted from the gas phase region 31b of the second circulation tank 31 through the second gas recovery line 70.
  • the pressure of the second gas flow is controlled to a predetermined value by a second pressure control valve 71 provided in the flow path of the second gas flow (second gas recovery line 70) (step (k)).
  • the first electrolytic solution circulated and supplied to the anode chamber 11 and the second electrolytic solution circulated and supplied to the cathode chamber 12 are divided into a first circulation tank 21 and a second circulation tank. 31 are stored separately. Then, the electrolyte exchange device 50 exchanges a part of the first electrolyte and a part of the second second electrolyte, whereby the amount of the electrolyte generated between the anode side and the anode side by electrolysis and The imbalance in electrolyte concentration is eliminated.
  • the main component of the dissolved gas in the first electrolytic solution is oxygen gas
  • the main component of the dissolved gas in the second electrolytic solution is hydrogen gas.
  • a part of the dissolved oxygen gas of the first electrolytic solution is brought into the second electrolytic solution and a part of the dissolved hydrogen gas of the second electrolytic solution is converted to the first electrolytic solution by the operation of the electrolytic solution exchange device 50. Brought into the liquid.
  • the electrolyte exchange device 50 since the electrolyte exchange device 50 only exchanges a part of the first electrolyte and the second electrolyte, even if the operation of the gas production device 100 is continued, the main component of the dissolved gas in the first electrolyte is maintained. The component continues to be oxygen gas and the major component of the dissolved gas in the second electrolyte continues to be hydrogen gas. Therefore, the effect of the operation of the electrolyte exchange device 50 on the purity of the oxygen gas extracted from the first gas recovery line 60 and the purity of the hydrogen gas extracted from the second gas recovery line 70 is insignificant.
  • the first electrolyte transfer means 51 for transferring a part of the first electrolyte stored in the first circulation tank 21 to the second circulation tank 31, and the second circulation Part of the second electrolyte flowing through the second pipe 35 connecting the outlet of the pump 32 and the inlet of the cathode chamber 12 is connected between the outlet of the first circulation pump 22 and the inlet of the anode chamber 11.
  • a gas producing apparatus 100 having an electrolytic solution exchange device 50 including a second electrolytic solution transferring means 52 for transporting the gas to the first pipe 25 and a gas producing method using the gas producing device 100 will be described.
  • the present invention is not limited to this mode.
  • the first electrolytic solution transfer means transfers a part of the second electrolytic solution stored in the second circulation tank 31 to the first circulation tank 21, and the second electrolyte solution transfer means A part of the first electrolyte flowing through the first pipe 25 connecting the outlet of the first circulation pump 22 and the inlet of the anode chamber 11 is transferred to the outlet of the second circulation pump 32 and the inlet of the cathode chamber 12.
  • a gas producing apparatus provided with an electrolytic solution exchange device that transfers the liquid to the second pipe 35 that connects the gas supply device, and a gas producing method that uses the gas producing device.
  • FIG. 2 is a diagram schematically illustrating a gas production apparatus 200 according to such another embodiment.
  • the gas producing apparatus 200 is different from the gas producing apparatus 100 in that an electrolytic solution exchanging apparatus 250 is provided instead of the electrolytic solution exchanging apparatus 50.
  • the electrolytic solution exchange device 250 includes a first electrolytic solution transferring unit 251 instead of the first electrolytic solution transferring unit 51, and includes a second electrolytic solution transferring unit 252 instead of the second electrolytic solution transferring unit 52.
  • the present embodiment is different from the electrolytic solution exchange device 50.
  • the first electrolyte transfer means 251 is different from the first electrolyte transfer means 51 in that a part of the second electrolyte stored in the second circulation tank 31 is transferred to the first circulation tank 21. Is different.
  • the second electrolyte transfer means 252 transfers a part of the first electrolyte flowing through the first pipe 25 connecting the outlet side of the first circulation pump 22 and the inlet side of the anode chamber 11 to the second circulation section. It is different from the second electrolytic solution transfer means 52 in that it is transferred to a second pipe 35 connecting the outlet side of the pump 32 and the inlet side of the cathode chamber 12.
  • the first electrolytic solution transferring means 251 and the second electrolytic solution transferring means 252 for example, known pumps such as a positive displacement pump and a non-positive pump can be used.
  • known pumps such as a positive displacement pump and a non-positive pump can be used.
  • the positive displacement pump include a plunger pump, a piston pump, a diaphragm pump, a gear pump, and the like.
  • the non-positive displacement pump include a centrifugal pump, a turbine pump, and the like. Even when a non-displacement pump is used, it is possible to send the electrolyte at a predetermined flow rate in a predetermined direction by combining the non-displacement pump with a control device for controlling the flow rate. .
  • the conditions for achieving a steady state with respect to the amount and concentration of the electrolytic solution in the gas producing apparatus 200 can be considered in the same manner as in the gas producing apparatus 100, and are expressed by the equations (3) to (6).
  • v 12 has the same meaning as feed volume of the second electrolyte transferring means 252
  • v 21 has the same meaning as feed volume of the first electrolyte transfer means 251.
  • the electrolyte concentration C 2 that is, the concentration of the second electrolyte
  • the electrolyte concentration C 1 ie, the concentration of the first electrolyte
  • the supply amount of electrolyte solution v 1 [L / s] to the anode chamber 11 and the supply amount v 2 [L / s] of electrolyte solution to the cathode chamber 12 are controlled by the first circulation pump 22.
  • the liquid amount v p1 [L / s] the liquid supply amount v p2 [L / s] of the second circulation pump 32, and the liquid supply amount v 12 [L / s] of the second electrolytic solution transfer means 252.
  • v 1 v p1 ⁇ v 12 (14 ′)
  • v 2 v p2 + v 12 (15 ′)
  • the supply amounts of electrolyte solution v 1 and v 2 to the anode chamber 11 and the cathode chamber 12 are substantially equal.
  • the first circulating pump 22, the second circulating pump 32, and the second circulating pump 32 are arranged such that the ratio v 2 / v 1 is 0.80 to 1.20, more preferably 0.90 to 1.10.
  • the liquid supply amounts v p1 , v p2 , and v 12 of the second electrolyte transfer means 252 are controlled.
  • Each of 12 / v p1 and v 12 / v p2 is preferably 0.001 or more, more preferably 0.003 or more, and in one embodiment, 0.03 or less, preferably 0.01 or less.
  • the ratio of the amount of liquid sent by the second electrolytic solution transfer means 252 to the amount of liquid sent by the first circulation pump 22 and the amount of liquid sent by the second circulation pump 32 is each equal to or greater than the lower limit, the first Since the difference between the electrolyte concentration in the electrolyte circulation system 20 and the electrolyte concentration in the second electrolyte circulation system 30 can be further reduced, the electrolyte supplied to the anode chamber 11 and the electrolyte supplied to the cathode chamber 12 Is easily maintained in a range where the power efficiency is high.
  • the ratio of the amount of liquid sent by the second electrolytic solution transfer means 252 to the amount of liquid sent by the first circulation pump 22 and the amount of liquid sent by the second circulation pump 32 is each equal to or less than the above upper limit, the first Dissolved oxygen gas brought into the second electrolyte circulation system 30 together with the electrolyte from the electrolyte circulation system 20, and into the first electrolyte circulation system 20 together with the electrolyte from the second electrolyte circulation system 30 Since the dissolved hydrogen gas can be reduced, the hydrogen gas released from the liquid phase region 21a of the first circulation tank 21 to the gas phase region 21b is reduced, and the purity of the oxygen gas recovered from the first gas recovery line 60 is reduced. Further, the oxygen gas released from the liquid phase region 31a of the second circulation tank 31 to the gas phase region 31b can be reduced, and the purity of the hydrogen gas recovered from the second gas recovery line 70 can be reduced. It is possible to increase further.
  • the amount of the first electrolytic solution stored in the first circulation tank 21 is preferably maintained in a range of 1 to 99% by volume based on the total volume of the first circulation tank 21, and 30 to More preferably, it is maintained within the range of 70% by volume.
  • the amount of the second electrolyte stored in the second circulation tank 31 is preferably maintained within a range of 1 to 99% by volume based on the total volume of the second circulation tank 31. , 30 to 70% by volume.
  • the first electrolytic solution is supplied to the anode chamber 11 of the electrolytic cell 10 and the second electrolytic solution is supplied to the cathode chamber 12, while the anode accommodated in the anode chamber 11 and the cathode accommodated in the cathode chamber 12 are connected.
  • oxygen gas is generated from the anode in the anode chamber 11 and hydrogen gas is generated from the cathode in the cathode chamber 12 (step (a)).
  • a first gas flow containing oxygen gas generated in the anode chamber 11 and a first electrolytic solution are recovered (step (b)).
  • the first gas stream and the first electrolytic solution are recovered from the anode chamber 11 through a pipe 23 as a gas-liquid mixture, guided to a first circulation tank 21, and separated in the first circulation tank 21.
  • the first electrolytic solution collected from the anode chamber 11 into the first circulation tank 21 and separated into gas and liquid is stored in the first circulation tank 21 (step (d)).
  • the first electrolyte stored in the first circulation tank 21 is sent to the anode chamber 11 by the first circulation pump 22 (step (f)).
  • the second gas flow containing the hydrogen gas generated in the cathode chamber 12 and the second electrolyte are recovered (step (c)).
  • the second gas flow and the second electrolytic solution are collected from the cathode chamber 12 through the pipe 33 as a gas-liquid mixture, guided to the second circulation tank 31, and gas-liquid separated in the second circulation tank 31.
  • the second electrolytic solution collected from the cathode chamber 12 into the second circulation tank 31 and separated into gas and liquid is stored in the second circulation tank 31 (step (e)).
  • the second electrolyte stored in the second circulation tank 31 is sent to the cathode chamber 12 by the second circulation pump 32 (step (g)).
  • a part of the second electrolyte stored in the second circulation tank 31 is transferred to the first circulation tank 21 by the first electrolyte transfer means 251. Thereby, a part of the second electrolyte is introduced into the first electrolyte (step (h)).
  • a part of the first electrolytic solution sent from the first circulating pump 22 is branched by the second electrolytic solution transferring means 252 and merges with the second electrolytic solution sent from the second circulating pump 32. I do. Thereby, a part of the first electrolytic solution is introduced into the second electrolytic solution (step (i)).
  • the first gas flow recovered from the anode chamber 11 is extracted from the gas phase region 21 b of the first circulation tank 21 through the first gas recovery line 60.
  • the pressure of the first gas flow is controlled to a predetermined value by a first pressure control valve 61 provided in a flow path of the first gas flow (first gas recovery line 60) (step (j)).
  • the second gas flow recovered from the cathode chamber 12 is extracted from the gas phase region 31b of the second circulation tank 31 through the second gas recovery line 70.
  • the pressure of the second gas flow is controlled to a predetermined value by a second pressure control valve 71 provided in the flow path of the second gas flow (second gas recovery line 70) (step (k)).
  • gas production equipment (3) the gas production apparatuses 100 and 200 having the pure water supply system 40 for supplying water to the second circulation tank 31 and the gas production method using the gas production apparatuses 100 and 200
  • the present invention is not limited to this mode.
  • a gas production apparatus having a pure water supply system for supplying water to the first circulation tank 21 and a gas production method using the gas production apparatus can be provided.
  • FIG. 3 is a diagram schematically illustrating a gas production apparatus 300 according to such another embodiment.
  • the gas production apparatus 300 is different from the gas production apparatus 100 in that a pure water supply system 340 is provided instead of the pure water supply system 40.
  • the pure water supply system 340 includes a pure water tank 41 and a water supply pump 42 in the same manner as the pure water supply system 40, but the water supply pump 42 transfers the water stored in the pure water tank 41 to the first circulation tank 21. It differs from the pure water supply system 40 in the point of supply.
  • the supply amount v 1 [L / s] of the electrolytic solution to the anode chamber 11 and the supply amount v 2 [L / s] of the electrolytic solution to the cathode room 12 are controlled by the first circulation pump 22.
  • the liquid amount v p1 [L / s], the liquid supply amount v p2 [L / s] of the second circulation pump 32, and the liquid supply amount v 21 [L / s] of the second electrolytic solution transfer unit 52 are used.
  • v 1 v p1 + v 21 (14)
  • v 2 v p2 ⁇ v 21 (15) It is expressed as It is preferable that the supply amounts of electrolyte solution v 1 and v 2 to the anode chamber 11 and the cathode chamber 12 are substantially equal.
  • the first circulating pump 22, the second circulating pump 32, and the second circulating pump 32 are arranged such that the ratio v 2 / v 1 is 0.80 to 1.20, more preferably 0.90 to 1.10.
  • the liquid supply amounts v p1 , v p2 , and v 21 of the second electrolytic solution transfer means 52 are controlled.
  • a gas producing apparatus 300, the feed rate v 21 of the second electrolyte transferring means 52, the ratio of feed volume v p2 of feed volume v p1 and a second circulation pump 32 of the first circulating pump 22 v 21 / v p1 and v 21 / v p2 are each preferably 0.001 or more, more preferably 0.003 or more, and in one embodiment 0.03 or less, preferably 0.01 or less.
  • the ratio of the amount of liquid supplied by the second electrolytic solution transfer means 52 to the amount of liquid supplied by the first circulating pump 22 and the amount of liquid supplied by the second circulating pump 32 is each equal to or greater than the lower limit, the first Since the difference between the electrolyte concentration in the electrolyte circulation system 20 and the electrolyte concentration in the second electrolyte circulation system 30 can be further reduced, the electrolyte supplied to the anode chamber 11 and the electrolyte supplied to the cathode chamber 12 Is easily maintained in a range where the power efficiency is high.
  • the ratio of the amount of liquid sent by the second electrolytic solution transfer means 52 to the amount of liquid sent by the first circulating pump 22 and the amount of liquid sent by the second circulating pump 32 is each equal to or less than the above upper limit, the first Dissolved oxygen gas brought into the second electrolyte circulation system 30 together with the electrolyte from the electrolyte circulation system 20, and into the first electrolyte circulation system 20 together with the electrolyte from the second electrolyte circulation system 30 Since the dissolved hydrogen gas can be reduced, the hydrogen gas released from the liquid phase region 21a of the first circulation tank 21 to the gas phase region 21b is reduced, and the purity of the oxygen gas recovered from the first gas recovery line 60 is reduced. Further, the oxygen gas released from the liquid phase region 31a of the second circulation tank 31 to the gas phase region 31b can be reduced, and the purity of the hydrogen gas recovered from the second gas recovery line 70 can be reduced. To It is possible to increase the al.
  • the amount of the first electrolytic solution stored in the first circulation tank 21 is preferably maintained in a range of 1 to 99% by volume based on the total volume of the first circulation tank 21, and 30 to More preferably, it is maintained within the range of 70% by volume.
  • the amount of the second electrolyte stored in the second circulation tank 31 is preferably maintained within a range of 1 to 99% by volume based on the total volume of the second circulation tank 31. , 30 to 70% by volume.
  • FIG. 4 is a diagram schematically illustrating a gas production apparatus 400 according to another embodiment.
  • elements already shown in FIGS. 1 to 3 are denoted by the same reference numerals as those in FIGS. 1 to 3, and description thereof may be omitted.
  • the gas producing device 400 differs from the gas producing device 300 in that an electrolytic solution exchanging device 250 (see FIG. 2) is provided instead of the electrolytic solution exchanging device 50.
  • the electrolyte concentration C 2 that is, the concentration of the second electrolyte
  • the electrolyte concentration C 1 ie, the concentration of the first electrolyte
  • the supply amount of electrolyte solution v 1 [L / s] to the anode chamber 11 and the supply amount v 2 [L / s] of electrolyte solution to the cathode chamber 12 are controlled by the first circulation pump 22.
  • the liquid amount v p1 [L / s] the liquid supply amount v p2 [L / s] of the second circulation pump 32, and the liquid supply amount v 12 [L / s] of the second electrolytic solution transfer means 252.
  • v 1 v p1 ⁇ v 12 (14 ′)
  • v 2 v p2 + v 12 (15 ′)
  • the supply amounts of electrolyte solution v 1 and v 2 to the anode chamber 11 and the cathode chamber 12 are substantially equal.
  • the first circulating pump 22, the second circulating pump 32, and the second circulating pump 32 are arranged such that the ratio v 2 / v 1 is 0.80 to 1.20, more preferably 0.90 to 1.10.
  • the liquid supply amounts v p1 , v p2 , and v 12 of the second electrolyte transfer means 252 are controlled.
  • Each of 12 / v p1 and v 12 / v p2 is preferably 0.001 or more, more preferably 0.003 or more, and in one embodiment, 0.03 or less, preferably 0.01 or less.
  • the ratio of the amount of liquid sent by the second electrolytic solution transfer means 252 to the amount of liquid sent by the first circulation pump 22 and the amount of liquid sent by the second circulation pump 32 is each equal to or greater than the lower limit, the first Since the difference between the electrolyte concentration in the electrolyte circulation system 20 and the electrolyte concentration in the second electrolyte circulation system 30 can be further reduced, the electrolyte supplied to the anode chamber 11 and the electrolyte supplied to the cathode chamber 12 Is easily maintained in a range where the power efficiency is high.
  • the ratio of the amount of liquid sent by the second electrolytic solution transfer means 252 to the amount of liquid sent by the first circulation pump 22 and the amount of liquid sent by the second circulation pump 32 is each equal to or less than the above upper limit, the first Dissolved oxygen gas brought into the second electrolyte circulation system 30 together with the electrolyte from the electrolyte circulation system 20, and into the first electrolyte circulation system 20 together with the electrolyte from the second electrolyte circulation system 30 Since the dissolved hydrogen gas can be reduced, the hydrogen gas released from the liquid phase region 21a of the first circulation tank 21 to the gas phase region 21b is reduced, and the purity of the oxygen gas recovered from the first gas recovery line 60 is reduced. Further, the oxygen gas released from the liquid phase region 31a of the second circulation tank 31 to the gas phase region 31b can be reduced, and the purity of the hydrogen gas recovered from the second gas recovery line 70 can be reduced. It is possible to increase further.
  • the amount of the first electrolytic solution stored in the first circulation tank 21 is preferably maintained in a range of 1 to 99% by volume based on the total volume of the first circulation tank 21, and 30 to More preferably, it is maintained within the range of 70% by volume.
  • the amount of the second electrolyte stored in the second circulation tank 31 is preferably maintained within a range of 1 to 99% by volume based on the total volume of the second circulation tank 31. , 30 to 70% by volume.
  • Gas production method (4)> The operation of the gas producing apparatus 400 and the gas producing method using the gas producing apparatus 400 are similar to those of the first embodiment except that the pure water supply system 40 supplies water to the first circulation tank 21 instead of the second circulation tank 31. And the gas production apparatus 200 are the same as those described above. The same effects as described above can be obtained by the gas producing apparatus 400 and the gas producing method using the gas producing apparatus 400.
  • FIG. 5 is a diagram schematically illustrating a gas production apparatus 500 according to another embodiment.
  • the gas producing apparatus 500 controls the differential pressure between the pressure of the first gas flow upstream of the first pressure control valve 61 and the pressure of the second gas flow upstream of the second pressure control valve 71.
  • the difference from the gas production apparatus 100 in that the apparatus further includes a differential pressure control means 80.
  • the dashed arrows indicate the direction in which information flows.
  • the differential pressure control means 80 includes a differential pressure detector 81 and a valve control device 82.
  • the differential pressure detector 81 detects the differential pressure between the pressure of the first gas flow upstream of the first pressure control valve 61 and the pressure of the second gas flow upstream of the second pressure control valve 71. Measure.
  • a known differential pressure sensor can be used as the differential pressure detector 81.
  • the measurement result of the differential pressure detector 81 is input to the valve control device 82.
  • the valve control device 82 receives at least the detection signal of the differential pressure detector 81 and transmits a signal for controlling the opening degree of the valve to the first pressure control valve 61 and / or the second pressure control valve 71.
  • the valve control device 82 controls the first pressure control valve 61 and / or the first pressure control valve 61 so that the differential pressure is maintained at or below a predetermined upper limit value.
  • the opening of the second pressure control valve 71 is controlled.
  • the differential pressure control means 80 may perform the differential pressure control by fixing the opening of the first pressure control valve 61 and adjusting the opening of the second pressure control valve 71.
  • the differential pressure control may be performed by fixing the opening of the valve 71 and adjusting the opening of the first pressure control valve 61.
  • the opening of the first pressure control valve 61 and the second pressure control valve may be controlled.
  • the differential pressure control may be performed by adjusting both the opening degree of 71 and the opening degree.
  • valve control device 82 may further receive a detection signal of the pressure gauge 63 and / or the pressure gauge 73 in addition to the detection signal of the differential pressure detector 81.
  • the valve control device 82 controls the first pressure control valve 61 and / or the second pressure control valve 71 in addition to the measurement result of the differential pressure detector 81 in addition to the pressure gauge 63 and / or The measurement is performed based on the measurement result of the pressure gauge 73, and the pressure of the first gas flow upstream of the first pressure control valve 61 and the pressure of the second gas flow upstream of the second pressure control valve 71 are determined by a predetermined value. And the opening degree of the first pressure control valve 61 and / or the second pressure control valve 71 may be controlled such that the differential pressure is maintained at or below a predetermined upper limit value.
  • the control of the first pressure control valve 61 and / or the second pressure control valve 71 by the valve control device 82 can employ, for example, conventional feedback control without any particular limitation.
  • a conventional control device for example, an electronic computer having a microprocessor and a storage device, a programmable logic controller (PLC), etc.
  • PLC programmable logic controller
  • the gas producing apparatus 500 including the differential pressure control means 80 it is possible to further reduce the difference in liquid level between the first circulation tank 21 and the second circulation tank 31, In this case, it is possible to suppress a decrease in gas purity due to the gas in one of the pole chambers permeating the diaphragm and being pushed into the other pole chamber due to the differential pressure.
  • the differential pressure control device 80 controls the pressure of the first gas flow on the upstream side of the first pressure control valve 61 and the second pressure control.
  • the pressure difference between the pressure of the second gas flow upstream of the valve 71 and the pressure of the second gas flow is preferably controlled to 10 kPa or less, more preferably 1 kPa or less.
  • Gas production method (5)> The operation of the gas production apparatus 500 and the gas production method using the gas production apparatus 500 are the same as those described above for the gas production apparatus 100, except for the matters relating to the differential pressure control means 80.
  • the pressure of the first gas flow on the upstream side of the first pressure control valve 61 and the second gas on the upstream side of the second pressure control valve 71 are further controlled by the differential pressure control means 80.
  • the pressure difference from the pressure of the stream is controlled to a predetermined value (step (p)). Specifically, the pressure of the first gas flow upstream of the first pressure control valve 61 and the pressure of the second gas flow upstream of the second pressure control valve 71 are detected by the differential pressure detector 81.
  • step (p1) Is measured (step (p1)), and based on the measurement result of step (p1), the first pressure control valve 61 and / or the second pressure control are performed in steps (j) and (k).
  • the valve 71 is controlled (step (p2)).
  • Step (p) is continuously performed simultaneously with steps (a) to (k) described above.
  • the difference between the liquid level in the first circulation tank 21 and the second circulation tank 31 is determined.
  • FIG. 6 is a diagram schematically illustrating a gas production apparatus 600 according to another embodiment. 6, elements already shown in FIGS. 1 to 5 are denoted by the same reference numerals as those in FIGS. 1 to 5, and description thereof may be omitted.
  • the gas producing apparatus 600 is different from the gas producing apparatus in that a first gas collecting line 660 is provided instead of the first gas collecting line 60, and a second gas collecting line 670 is provided instead of the second gas collecting line 70. It is different from the device 500 (see FIG. 5).
  • the first gas recovery line 660 is different from the first gas recovery line 60 in that the first gas recovery line 660 further includes a first cooling device 664 and a first filter device 665.
  • the first cooling device 664 and the first filter device 665 are arranged on the upstream side of the first pressure control valve 61.
  • the first cooling device 664 receives and cools the first gas flow flowing out of the gas phase region 21b of the first circulation tank 21.
  • the first filter device 665 is disposed downstream of the first cooling device 664, receives the first gas flow cooled by the first cooling device 664, and receives the first gas flow in the first gas flow. The liquefied water is removed.
  • Electrolyte mist and water vapor are removed from the first gas stream by passing the first gas stream through the first cooling device 664 and the first filter device 665.
  • a gas cooling device and a filter device conventionally used for gas purification can be used as the first cooling device 664 and the first filter device 665. Drain water generated in the first cooling device 664 and the first filter device 665 may be discarded or returned to the electrolyte. Since the first cooling device 664 and the first filter device 665 are disposed on the upstream side of the first pressure control valve 61, the first pressure control valve 61 is included in the first gas flow. It is less affected by liquid mist and water vapor.
  • the second gas recovery line 670 is different from the second gas recovery line 70 in further including a second cooling device 674 and a second filter device 675.
  • the second cooling device 674 and the second filter device 675 are arranged on the upstream side of the second pressure control valve 71.
  • the second cooling device 674 receives and cools the second gas flow flowing out of the gas phase region 31b of the second circulation tank 31.
  • the second filter device 675 is disposed downstream of the second cooling device 674, receives the second gas flow cooled by the second cooling device 674, and receives the second gas flow in the second gas flow.
  • the liquefied water is removed. Electrolyte mist and water vapor are removed from the second gas stream by passing the second gas stream through the second cooling device 674 and the second filter device 675.
  • the second cooling device 674 and the second filter device 675 a gas cooling device and a filter device conventionally used for gas purification can be used. Drain water generated in the second cooling device 674 and the second filter device 675 may be discarded or returned to the electrolyte. Since the second cooling device 674 and the first filter device 675 are arranged on the upstream side of the second pressure control valve 71, the second pressure control valve 71 is included in the second gas flow. It is less affected by liquid mist and water vapor.
  • the oxygen gas with further higher purity and It becomes possible to produce hydrogen gas According to the gas producing apparatus 600 further including the first cooling device 664 and the first filter device 665, and the second cooling device 674 and the second filter device 675, the oxygen gas with further higher purity and It becomes possible to produce hydrogen gas.
  • a hydrogen gas removing device for removing hydrogen gas from the first gas stream is further provided downstream of the first cooling device 664 and the first filter device 665 or downstream of the first pressure control valve 61.
  • An oxygen gas removing device for removing oxygen gas from the second gas stream may be further provided downstream of the second cooling device 674 and the second filter device 675 or downstream of the second pressure control valve 71. It may be provided.
  • the first gas flow recovered from the anode chamber 11 and flowing out of the gas phase region 21b of the first circulation tank 21 is cooled in the first cooling device 664 (step (l)).
  • the first filter device 665 the water condensed in step (l) is removed from the first gas stream having passed through step (l) (step (n)).
  • the pressure of the first gas flow after steps (l) and (n) is controlled by the first pressure control valve 61 (step (j)).
  • the second gas flow collected from the cathode chamber 12 and flowing out of the gas phase region 31b of the second circulation tank 31 is cooled in the second cooling device 674 (step (m)).
  • step (m) the water condensed in step (m) is removed from the second gas stream having passed through step (m) (step (o)).
  • the pressure of the second gas flow after steps (m) and (o) is controlled by the second pressure control valve 71 (step (k)). Steps (l) to (o) are continuously performed simultaneously with steps (a) to (k) and (p) described above.
  • the gas production device 500 It is possible to produce oxygen gas and hydrogen gas with even higher purity as compared with the gas production method of the embodiment using.
  • FIG. 7 is a diagram schematically illustrating a gas production apparatus 600 'according to another embodiment. 7, elements already shown in FIGS. 1 to 6 are denoted by the same reference numerals as those in FIGS. 1 to 6, and description thereof may be omitted.
  • the first cooling device 664 and the first filter device 665 are arranged downstream of the first pressure control valve 61, and the second cooling device 674 and the second filter device 675 are The second embodiment is different from the above-described gas producing apparatus 600 (FIG. 6) in that it is disposed downstream of the second pressure control valve 71.
  • the first cooling device 664 receives and cools the first gas flow flowing out from the secondary side of the first pressure control valve 61.
  • the first filter device 665 receives the first gas flow cooled by the first cooling device 664 and removes liquefied moisture in the first gas flow.
  • Electrolyte mist and water vapor are removed from the first gas stream by passing the first gas stream through the first cooling device 664 and the first filter device 665.
  • the second cooling device 674 receives and cools the second gas flow flowing out from the secondary side of the second pressure control valve 71.
  • the second filter device 675 receives the second gas flow cooled by the second cooling device 674 and removes liquefied moisture in the second gas flow.
  • Electrolyte mist and water vapor are removed from the second gas stream by passing the second gas stream through the second cooling device 674 and the second filter device 675.
  • a hydrogen gas removing apparatus for removing hydrogen gas from the first gas stream may be further provided downstream of the first cooling apparatus 664 and the first filter apparatus 665.
  • An oxygen gas removing device for removing oxygen gas from the second gas stream may be further provided downstream of the cooling device 674 and the second filter device 675.
  • the first cooling device 664 and the first cooling device 664 after the first gas flow passes through the first pressure control valve 61.
  • the gas producing device 600 is used except that it passes through the filter device 665 and that the second gas flow passes through the second pressure control valve 71 and then passes through the second cooling device 674 and the second filter device 675. It is the same as the above description regarding the gas production method of the embodiment.
  • the first gas flow passing through the first pressure control valve 61 is cooled in the first cooling device 664 (step (l)).
  • the water condensed in step (l) is removed from the first gas stream having passed through step (l) (step (n)).
  • the second gas flow passing through the second pressure control valve 71 is cooled in the second cooling device 674 (step (m)).
  • the water condensed in step (m) is removed from the second gas stream having passed through step (m) (step (o)). Steps (l) to (o) are continuously performed simultaneously with steps (a) to (k) and (p) described above.
  • 300, 400, 500, and 600, and a gas production method using a gas production apparatus of such a form are mainly described as examples, but the present invention is not limited to this form.
  • FIG. 8 is a diagram schematically illustrating a gas production apparatus 700 according to another embodiment. 8, elements already shown in FIGS. 1 to 7 are denoted by the same reference numerals as those in FIGS. 1 to 7, and description thereof may be omitted.
  • the gas producing apparatus 700 is different from the gas producing apparatus 100 (FIG. 1) described above in that the gas producing apparatus 700 includes an electrolytic solution exchanging apparatus 750 instead of the electrolytic solution exchanging apparatus 50.
  • the electrolyte exchange device 750 includes a first electrolyte transfer unit 751 instead of the first electrolyte transfer unit 51, and a second electrolyte transfer unit 752 instead of the second electrolyte transfer unit 52. This is different from the electrolytic solution exchange device 50 in that it has the same.
  • a non-positive displacement pump can be preferably used as the first circulation pump 22 and the second circulation pump 32.
  • the second electrolytic solution transfer means 752 includes a first flow meter F1 and a first flow control valve FCV1, which are provided in series on the outlet side of the first circulation pump 22 in the first pipe 25; A second flow meter F2 provided on the outlet side of the second circulation pump 32 in the pipe 35; and a second flow control valve FCV2 provided on the second pipe 35 downstream of the second flow meter F2. From the downstream side of the second flow meter F2 in the second pipe 35 and the upstream side of the second flow control valve FCV2 to the first flow meter and the first flow control valve FCV1 in the first pipe 25.
  • the third pipe 7525 that guides the electrolytic solution downstream, and a third flow meter F3 and a third flow control valve FCV3 that are provided in series in the middle of the third pipe 7525.
  • known flow meters that can measure the flow rate of an electrolytic solution, such as an area flow meter, a volume flow meter, a Coriolis flow meter, and an electromagnetic flow meter Can be used without any particular limitation.
  • known controls capable of continuously controlling the valve opening, such as ball valves, butterfly valves, globe valves, and needle valves. The valve can be used without particular limitation.
  • the opening degrees of the first, second, and third flow control valves FCV1, FCV2, and FCV3 are determined by measuring the measured values of the first, second, and third flow meters F1, F2, and F3 to predetermined values, respectively. It is controlled so that
  • v p1 F 1
  • v p2 f 2
  • v 21 f 3
  • v 1 f 1 + f 3
  • v 2 f 2 ⁇ f 3
  • the electrolyte supply amounts v 1 and v 2 to the anode chamber 11 and the cathode chamber 12 are substantially equal.
  • the first circulating pump 22, the second circulating pump 32, and the second circulating pump 32 are arranged such that the ratio v 2 / v 1 is 0.80 to 1.20, more preferably 0.90 to 1.10. It is preferable that the liquid supply amounts v p1 , v p2 , and v 21 of the second electrolytic solution transfer means 752 are controlled.
  • the ratio of the amount of liquid supplied by the second electrolyte transfer means 752 to the amount of liquid supplied by the first circulating pump 22 and the amount of liquid supplied by the second circulating pump 32 is equal to or greater than the above lower limit, the first Since the difference between the electrolyte concentration in the electrolyte circulation system 20 and the electrolyte concentration in the second electrolyte circulation system 30 can be further reduced, the electrolyte supplied to the anode chamber 11 and the electrolyte supplied to the cathode chamber 12 Is easily maintained in a range where the power efficiency is high.
  • the ratio of the amount of liquid sent by the second electrolytic solution transfer means 752 to the amount of liquid sent by the first circulating pump 22 and the amount of liquid sent by the second circulating pump 32 is respectively equal to or less than the upper limit, the first Dissolved oxygen gas brought into the second electrolyte circulation system 30 together with the electrolyte from the electrolyte circulation system 20, and into the first electrolyte circulation system 20 together with the electrolyte from the second electrolyte circulation system 30 Since the dissolved hydrogen gas can be reduced, the hydrogen gas released from the liquid phase region 21a of the first circulation tank 21 to the gas phase region 21b is reduced, and the purity of the oxygen gas recovered from the first gas recovery line 60 is reduced. Further, the oxygen gas released from the liquid phase region 31a of the second circulation tank 31 to the gas phase region 31b can be reduced, and the purity of the hydrogen gas recovered from the second gas recovery line 70 can be reduced. It is possible to increase further.
  • the target values of f 1 and f 2 are also calculated from Expressions (27) and (28).
  • the opening degrees of the first to third flow control valves FCV1, FCV2, and FCV3 can be controlled so that the target values of f 1 , f 2 , and f 3 are realized.
  • known control means such as feedback control can be used.
  • pressure loss P d FCV3 of FCV3 is smaller than the pressure loss P d FCV1 of the first flow control valve FCV1 (P d FCV3 ⁇ P d FCV1) is preferably controlled to be.
  • a check valve (check valve) for preventing the electrolyte from flowing in the opposite direction (from the first pipe 25 to the second pipe 35) is further provided in the middle of the third pipe 7525. Is also good.
  • the first electrolyte transfer means 751 is a communication pipe connecting the liquid phase area 21a of the first circulation tank 21 and the liquid phase area 31a of the second circulation tank 31 (hereinafter, the first electrolyte transfer means).
  • the means 751 may be referred to as a “communication pipe 751”.)
  • the first circulation tank 21 and the second circulation tank 31 are arranged at substantially the same height.
  • the second electrolytic solution transferring means 752 is a part of the second electrolytic solution flowing through the second pipe 35 connecting the outlet of the second circulating pump 32 and the inlet of the cathode chamber 12.
  • the amount of the first electrolytic solution stored in the first circulation tank 21 is preferably maintained in a range of 1 to 99% by volume based on the total volume of the first circulation tank 21, and 30 to More preferably, it is maintained within the range of 70% by volume.
  • the amount of the second electrolyte stored in the second circulation tank 31 is preferably maintained within a range of 1 to 99% by volume based on the total volume of the second circulation tank 31. , 30 to 70% by volume.
  • the same effect as described above can be obtained by the gas producing apparatus 700 in which the combination of the flow control valves (FCV1, FCV2, FCV3) and the communication pipe (751) is used instead of the pump as the electrolyte exchange apparatus. Is possible. Further, according to the gas producing apparatus 700 of this embodiment, it is possible to further reduce the energy consumption in the electrolytic solution exchanging apparatus and to reduce the liquid level difference between the first circulation tank 21 and the second circulation tank 31. Since it is automatically reduced or eliminated by the communication pipe 751, the first electrolytic solution transfer means (51, 251) maintains the liquid level of the first and second circulation tanks 21, 31 at a predetermined level. In addition, there is no need to perform a process of controlling the amount of liquid sent by the second electrolytic solution transfer means (52, 252). Therefore, according to the gas production apparatus 700 of this embodiment, it is possible to reduce the equipment cost and the operation cost and to simplify the control.
  • Gas production method (7) The operation of the gas production apparatus 700 and the gas production method using the gas production apparatus 700 will be further described with reference to FIG.
  • Steps (a) to (g), (j) and (k) are the same as those described above for the gas production method using the gas production apparatus 100 (FIG. 1).
  • Part of the second electrolytic solution sent from the second circulating pump 32 is branched by the second electrolytic solution transferring means 752, and joins the first electrolytic solution sent from the first circulating pump 22. . Thereby, a part of the second electrolyte is introduced into the first electrolyte (step (i)).
  • Part of the first electrolyte stored in the first circulation tank 21 is transferred to the second circulation tank 31 by the first electrolyte transfer means (communication pipe) 751.
  • a part of the first electrolytic solution is introduced into the second electrolytic solution (step (h)).
  • the first electrolyte transfer means 751 for transferring a part of the first electrolyte stored in the first circulation tank 21 to the second circulation tank 31, and the second circulation Part of the second electrolyte flowing through the second pipe 35 connecting the outlet of the pump 32 and the inlet of the cathode chamber 12 is connected between the outlet of the first circulation pump 22 and the inlet of the anode chamber 11.
  • a gas producing apparatus 700 having an electrolytic solution exchange device 750 including a second electrolytic solution transferring means 752 for transferring to the first pipe 25, and a gas producing method using the gas producing device 700 will be described.
  • the present invention is not limited to this mode.
  • an electrolytic solution exchange device without a pump is provided, and the first electrolytic solution transfer means transfers a part of the second electrolytic solution stored in the second circulation tank 31 to the first circulation tank 21.
  • the second electrolyte transfer means transfers a part of the first electrolyte flowing through the first pipe 25 connecting the outlet of the first circulation pump 22 and the inlet of the anode chamber 11 to the second circulation pump.
  • a gas production apparatus including an electrolyte exchange device that transfers the liquid to a second pipe 35 that connects the outlet side of the fuel cell 32 to the inlet side of the cathode chamber 12, and a gas production method that uses the gas production device. Is also possible.
  • FIG. 9 is a diagram schematically illustrating a gas producing apparatus 800 according to such another embodiment.
  • the gas producing device 800 differs from the gas producing device 200 (FIG. 2) in that an electrolytic solution exchanging device 850 is provided instead of the electrolytic solution exchanging device 250.
  • the electrolytic solution exchange device 850 includes a first electrolytic solution transferring unit 851 instead of the first electrolytic solution transferring unit 251, and includes a second electrolytic solution transferring unit 852 instead of the second electrolytic solution transferring unit 252.
  • the present embodiment differs from the electrolytic solution exchange device 250.
  • a non-positive displacement pump can be preferably used as the first circulation pump 22 and the second circulation pump 32.
  • the second electrolytic solution transfer means 852 includes a first flow meter F1 provided on the outlet side of the first circulation pump 22 in the first pipe 25; and a first flow meter F1 provided in the first pipe 25.
  • the second flow meter F2 and the second flow control valve FCV2 in the second pipe 35 from the downstream side of the first flow meter F1 in the first pipe 25 and the upstream side of the first flow control valve FCV1.
  • a third flow meter F3 and a third flow control valve FCV3 which are provided in series in the middle of the third pipe 8525.
  • known flow meters that can measure the flow rate of an electrolytic solution, such as an area flow meter, a volume flow meter, a Coriolis flow meter, and an electromagnetic flow meter Can be used without any particular limitation.
  • known controls capable of continuously controlling the valve opening, such as ball valves, butterfly valves, globe valves, and needle valves. The valve can be used without particular limitation.
  • the opening degrees of the first, second, and third flow control valves FCV1, FCV2, and FCV3 are determined by measuring the measured values of the first, second, and third flow meters F1, F2, and F3 to predetermined values, respectively. It is controlled so that
  • [L / s] the supply amount of electrolyte solution v 1 [L / s] to the anode chamber 11, and the supply amount v 2 [L / s] of electrolyte solution to the cathode chamber 12 are measured by the first flow meter F1.
  • v p1 F 1 (24)
  • v p2 f 2 (25)
  • v 12 f 3 (29)
  • v 1 f 1 ⁇ f 3 (30)
  • v 2 f 2 + f 3 (31) It is expressed as target value of f 3 can be obtained as v 12 by, for example, the formula (12 ').
  • the electrolyte supply amounts v 1 and v 2 to the anode chamber 11 and the cathode chamber 12 are substantially equal.
  • the first circulating pump 22, the second circulating pump 32, and the second circulating pump 32 are arranged such that the ratio v 2 / v 1 is 0.80 to 1.20, more preferably 0.90 to 1.10. It is preferable that the liquid supply amounts v p1 , v p2 , and v 12 of the second electrolyte transfer means 852 are controlled.
  • the ratio of the amount of liquid supplied by the second electrolyte transfer means 852 to the amount of liquid supplied by the first circulating pump 22 and the amount of liquid supplied by the second circulating pump 32 is equal to or greater than the lower limit, the first Since the difference between the electrolyte concentration in the electrolyte circulation system 20 and the electrolyte concentration in the second electrolyte circulation system 30 can be further reduced, the electrolyte supplied to the anode chamber 11 and the electrolyte supplied to the cathode chamber 12 Is easily maintained in a range where the power efficiency is high.
  • the ratio of the amount of liquid sent by the second electrolytic solution transfer means 852 to the amount of liquid sent by the first circulation pump 22 and the amount of liquid sent by the second circulation pump 32 is respectively equal to or less than the upper limit, the first Dissolved oxygen gas brought into the second electrolyte circulation system 30 together with the electrolyte from the electrolyte circulation system 20, and into the first electrolyte circulation system 20 together with the electrolyte from the second electrolyte circulation system 30 Since the dissolved hydrogen gas can be reduced, the hydrogen gas released from the liquid phase region 21a of the first circulation tank 21 to the gas phase region 21b is reduced, and the purity of the oxygen gas recovered from the first gas recovery line 60 is reduced. Further, the oxygen gas released from the liquid phase region 31a of the second circulation tank 31 to the gas phase region 31b can be reduced, and the purity of the hydrogen gas recovered from the second gas recovery line 70 can be reduced. It is possible to increase further.
  • the target values of f 1 and f 2 are also calculated from Expressions (30) and (31).
  • the opening degrees of the first to third flow control valves FCV1, FCV2, and FCV3 can be controlled so that the target values of f 1 , f 2 , and f 3 are realized.
  • known control means such as feedback control can be used.
  • pressure loss P d FCV3 of FCV3 is smaller than the pressure loss P d FCV2 of the second flow control valve FCV2 (P d FCV3 ⁇ P d FCV2) is preferably controlled to be.
  • a check valve check valve for preventing the electrolyte from flowing in the opposite direction (from the second pipe 35 to the first pipe 25) is further provided. Is also good.
  • the first electrolyte transfer means 851 is a communication pipe that connects the liquid phase area 21a of the first circulation tank 21 and the liquid phase area 31a of the second circulation tank 31 (hereinafter, the first electrolyte transfer means 851). Means 851 may be referred to as “communication pipe 851”.) In the gas production apparatus 800, it is preferable that the first circulation tank 21 and the second circulation tank 31 are arranged at substantially the same height. As described above, the second electrolytic solution transfer means 852 is a part of the first electrolytic solution flowing through the first pipe 25 connecting the outlet side of the first circulation pump 22 and the inlet side of the anode chamber 11.
  • the amount of the first electrolytic solution stored in the first circulation tank 21 is preferably maintained in a range of 1 to 99% by volume based on the total volume of the first circulation tank 21, and 30 to More preferably, it is maintained within the range of 70% by volume.
  • the amount of the second electrolyte stored in the second circulation tank 31 is preferably maintained within a range of 1 to 99% by volume based on the total volume of the second circulation tank 31. , 30 to 70% by volume.
  • the same effect as described above can be obtained by the gas producing apparatus 800 in which the combination of the control valves (FCV1 to FCV3) and the communication pipe (851) is used instead of the pump as the electrolyte exchange device. is there. Further, according to the gas producing apparatus 800 of this embodiment, it is possible to further reduce the energy consumption in the electrolytic solution exchange apparatus, and to reduce the liquid level difference between the first circulation tank 21 and the second circulation tank 31. Since the pressure is automatically reduced or eliminated by the communication pipe 851, the first electrolytic solution transfer means (51, 251) maintains the liquid level of the first and second circulation tanks 21, 31 at a predetermined level. In addition, there is no need to perform a process of controlling the amount of liquid sent by the second electrolytic solution transfer means (52, 252). Therefore, according to the gas producing apparatus 800 of this embodiment, it is possible to reduce equipment costs and operating costs and to simplify control.
  • Steps (a) to (g), (j) and (k) are the same as those described above for the gas production method using the gas production apparatus 200 (FIG. 2).
  • a part of the first electrolytic solution sent from the first circulating pump 22 is branched by the second electrolytic solution transferring means 852, and joins the second electrolytic solution sent from the second circulating pump 32. . Thereby, a part of the first electrolytic solution is introduced into the second electrolytic solution (step (i)).
  • a part of the second electrolyte stored in the second circulation tank 31 is transferred to the first circulation tank 21 by the first electrolyte transfer means (communication pipe) 851. Thereby, a part of the second electrolyte is introduced into the first electrolyte (step (h)).
  • the gas production apparatuses 100, 200, 300, and 400 each include the pure water supply system 40 or 340 that supplies water to one of the first circulation tank 21 and the second circulation tank 31. , 500, 600, 700, and 800, and a gas production method using the gas production apparatus as an example, but the present invention is not limited to this form.
  • a gas production apparatus in which a pure water supply system supplies water to both the first circulation tank and the second circulation tank, and a gas production method in which the gas production apparatus is used can be adopted. .
  • the gas-liquid separator is not provided, the gas-liquid separation of the first gas stream and the first electrolyte is performed inside the first circulation tank 21, and the second circulation tank 31 Gas production apparatus 100, 200, 300, 400, 500, 600, 700, and 800 in which gas-liquid separation of a second gas flow and a second electrolyte is performed inside the apparatus, and the gas production apparatus
  • gas production method of the embodiment using is described as an example, the present invention is not limited to this embodiment.
  • a first gas-liquid separator that receives a gas-liquid mixture of a first gas flow and a first electrolyte that flows out of an anode chamber and performs gas-liquid separation, and a second gas flow that flows out of a cathode chamber.
  • a second gas-liquid separator for receiving the gas-liquid mixture with the second electrolyte and performing gas-liquid separation, wherein the first electrolyte after the gas-liquid separation by the first gas-liquid separator is the first electrolyte;
  • the first gas flow which is stored in the circulation tank and after gas-liquid separation by the first gas-liquid separator, is recovered from the first gas recovery line, and the second gas flow after gas-liquid separation by the second gas-liquid separator.
  • a gas production apparatus in which an electrolyte of the gas circulation device is stored in a second circulation tank, and a second gas flow after gas-liquid separation by a second gas-liquid separator is recovered from a second gas recovery line; and It is also possible to adopt a gas production method using the gas production apparatus.
  • the above-described effect of the present invention can be obtained by such a gas producing apparatus and a gas producing method.
  • Electrolyzer 11 Anode chamber 12
  • First electrolyte circulation system 21 First Circulation tank 21a Liquid phase region 21b Gas phase region 22
  • Second electrolyte circulation system 31 Second circulation tank 31a Liquid phase area 31b Gas phase area 32
  • Second Circulating pumps 33, 34 Piping 35 Second piping 40
  • Pure water supply system 41 Pure water tank 42

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

電解槽と、第1及び第2の電解液循環系と、電解液交換装置とを備えるガス製造装置であって、第1/第2の電解液循環系は、陽極室/陰極室から流出した第1/第2の電解液を受け容れ貯留する第1/第2の循環タンクと、第1/第2の電解液を陽極室/陰極室に供給する第1/第2の循環ポンプとを含み、電解液交換装置は、第1の電解液循環系に存在する第1の電解液の一部を第2の電解液循環系に移送し且つ第2の電解液循環系に存在する第2の電解液の一部を第1の電解液循環系に移送する、ガス製造装置。

Description

ガス製造装置及びガス製造方法
 本発明は、アルカリ水電解法によるガス製造方法及びガス製造装置に関し、特に加圧条件下でアルカリ水の電解を行う場合に好適なガス製造方法及びガス製造装置に関する。
 水素ガスおよび酸素ガスの製造方法として、アルカリ水電解法が知られている。アルカリ水電解法においては、アルカリ金属水酸化物(例えばNaOH、KOH等。)が溶解した塩基性の水溶液(アルカリ水)を電解液として用いて水を電気分解することにより、陰極から水素ガスが発生し、陽極から酸素ガスが発生する。通常、アルカリ水電解用の電解セルは、イオン透過性の隔膜で隔てられた陽極室および陰極室を備えており、電気分解は陽極室および陰極室にそれぞれ電解液を循環させながら行われる。各極室から回収された電解液は一旦循環タンクに集められて貯留され、循環タンクに貯留された電解液が再び各極室に供給される。
特開2017-039982号公報 特許第6008482号公報 特開2017-119895号公報 特開2017-203218号公報 特開2017-179557号公報
 アルカリ水の電気分解による水素ガス及び酸素ガスの製造プロセスには、溶存ガスの問題がある。すなわち、陽極室から回収される電解液には、陽極反応で発生した酸素ガスの一部が溶存しており、陰極室から回収される電解液には、陰極反応で発生した水素ガスの一部が溶存している。陽極室から回収された電解液と、陰極室から回収された電解液とが循環タンク内で混合されるので、循環タンク内の電解液には酸素ガス及び水素ガスの両方が溶存することになる。循環タンク内の電解液中に溶存している酸素ガス及び水素ガスは徐々に気相中に放出されるので、循環タンク上部の気相部分の酸素ガス及び水素ガスの濃度が徐々に上昇する。そのため電解装置の運転を続ける間に、循環タンク上部の気相部分のガス組成が爆発限界に達するおそれがある。特に加圧条件下で電解を行う高圧タイプのアルカリ水電解装置においては、電解槽の極室内部の圧力、及び、電解槽から回収されるガス及び電解液の圧力が常圧よりも高く維持されるので、電解液中の溶存ガス量が常圧におけるよりも増大し、したがって溶存ガスの問題が顕著になる。
 水素ガスを発生する電解プロセスについて、例えば特許文献1には、陽極を収容し陽極ガスを発生する陽極室と、陰極を収容し水素ガスを発生する陰極室と、前記陽極室と前記陰極室とを区画する隔膜と、電解液を前記陽極室から排出するとともに前記陽極室に戻す陽極側循環ラインと、を備える電解装置であって、前記陽極側循環ラインが、前記電解液から前記陽極ガスを分離する陽極側気液分離手段と、前記陽極室と前記陽極側気液分離手段とを接続し、前記電解液と前記陽極ガスとを前記陽極室から排出して前記陽極側気液分離手段に送給する陽極側排出ラインと、前記陽極室と前記陽極側気液分離手段とを接続し、前記電解液を前記陽極側気液分離手段から排出して前記陽極室に送給する陽極側供給ラインと、を備え、溶存した前記水素ガスが気相として存在し、前記水素ガスと前記陽極ガスとが混合する気相領域と前記陽極側気液分離手段とを接続する陽極ガス送給ラインを有し、前記陽極ガス送給ラインが前記陽極ガスの少なくとも一部を前記気相領域に送給し、前記気相領域中の前記水素ガス濃度が爆発限界下限値未満であることを特徴とする電解装置が記載されている。特許文献1に記載の形態によれば、水素を発生する電解プロセスにおいて、微量のガスが電解液の循環ラインに漸次蓄積されて水素の爆発限界に達する可能性を確実に解消できると主張されている。
 しかしながら、引用文献1には、循環タンクの気相領域から排出されたガスを排気ガスとして系外に放出することが記載されている。引用文献1に記載の形態においては、陽極ガスを用いて循環タンクの気相領域中のガスを押し出す(パージする)ので、循環タンクの気相領域から排出されるガスには、気相領域に供給された陽極ガスに加えて、循環タンク中の電解液から気相領域に放出された陰極ガスが混入している。したがって、引用文献1に記載の形態において仮に循環タンクの気相領域から排出されるガスを回収したとしても、純度の高い陽極ガスを得ることは困難である。
 かかる問題を解決する手段としては、陽極室から回収された電解液と、陰極室から回収された電解液とを別々の循環タンクに回収および貯留することも考えられる。すなわち、陽極室から回収された電解液は陽極側循環タンクに回収及び貯留し、陽極側循環タンクに貯留された電解液を陽極室に供給するとともに、陰極室から回収された電解液は陰極側循環タンクに回収及び貯留し、陰極側循環タンクに貯留された電解液を陰極室に供給することも考えられる。しかしながら、アルカリ水の電解プロセスにおいて、陽極反応は
2OH→(1/2)O↑+HO+2e …(1)
で表され、陰極反応は
2HO+2e→H↑+2OH …(2)
で表される。したがってアルカリ水の電解プロセスにおいては、全体としては水が消費されるものの、陰極反応において水が消費されるのに対し陽極反応においては水が生成するので、電解反応の進行に伴って陽極側循環タンクと陰極側循環タンクとの間に液面差が生じてしまう。また陽極反応ではOHイオンが消費され、陰極反応ではOHイオンが生成するので、陽極室と陰極室との間で電荷中性を保つように隔膜を透過してイオンが移動するところ、陰極反応で生成したOHイオンの全てが陰極室から陽極室に移動するわけではない。すなわち、通常、陰極反応で生成したOHイオンの一部のみが隔膜を透過して陰極室から陽極室に移動し、その残部に対応する陰極室における負電荷の過剰は陽イオン(アルカリ水の溶質がNaOHならNaイオン、アルカリ水の溶質がKOHならKイオン)が隔膜を透過して陽極室から陰極室に移動することによって解消される。その結果、電解反応の進行に伴って陽極側循環タンクと陰極側循環タンクとの間で電解液の濃度差が生じてしまう。
 低圧(常圧)プロセスであれば、陽極側循環ラインと陰極側循環ラインとを分離した場合であっても、陽極側循環タンクの液相領域と陰極側循環タンクの液相領域とに連通する配管(連通管)をさらに設ければ、重力および拡散法則に従って水およびイオンが偏りを解消するように連通管を通って移動するので、陽極側循環タンクと陰極側循環タンクとの間の液面差および濃度差が自動的に解消ないし一定水準以下に緩和される。しかしながら加圧条件下で電解を行う高圧プロセスにおいては一般に重力よりも圧力差が支配的になるので、高圧プロセスにおいて上記のように陽極側循環ラインと陰極側循環ラインとを分離した上で陽極側循環タンクの液相領域と陰極側循環タンクの液相領域との間に連通管を設けた場合、陽極側循環ラインと陰極側循環ラインとの間の圧力差に起因して圧力が高い側の循環タンクから圧力が低い側の循環タンクに電解液が移動することにより両循環タンクの液面が変動し、甚だしい場合には圧力が低い側の循環タンクが電解液で溢れ、電解装置の運転を停止しなければならなくなるおそれがある。
 本発明は、加圧条件下でアルカリ水の電解を行う場合であっても、循環タンクの気相領域中のガス組成が爆発限界に達することを防止するとともに、電解液中の溶存ガスがガス純度に及ぼす悪影響を低減しながら水素ガス及び酸素ガスの両方を安定して製造することが可能な、ガス製造装置を提供することを課題とする。また、加圧条件下でアルカリ水の電解を行う場合であっても、循環タンクの気相領域中のガス組成が爆発限界に達することを防止するとともに、電解液中の溶存ガスがガス純度に及ぼす悪影響を低減しながら水素ガス及び酸素ガスの両方を安定して製造することが可能な、ガス製造方法を提供する。
 本発明は、次の[1]~[14]の形態を包含する。
[1] 陽極を収容し酸素ガスを発生する陽極室と、陰極を収容し水素ガスを発生する陰極室と、前記陽極室と前記陰極室とを区画するイオン透過性の隔膜とを備える電解槽と、
 第1の電解液循環系と、
 第2の電解液循環系と、
 電解液交換装置と
を備える、ガス製造装置であって、
 前記第1の電解液循環系は、
  前記陽極室から流出した第1の電解液を受け容れ貯留する、第1の循環タンクと、
  前記第1の循環タンクに貯留された前記第1の電解液を前記陽極室に供給する、第1の循環ポンプとを含み、
 前記第2の電解液循環系は、
  前記陰極室から流出した第2の電解液を受け容れ貯留する、第2の循環タンクと、
  前記第2の循環タンクに貯留された前記第2の電解液を前記陰極室に供給する、第2の循環ポンプとを含み、
 前記電解液交換装置は、前記第1の電解液循環系に存在する前記第1の電解液の一部を前記第2の電解液循環系に移送し、且つ、前記第2の電解液循環系に存在する前記第2の電解液の一部を前記第1の電解液循環系に移送することを特徴とする、ガス製造装置。
[2] 前記電解液交換装置が、
  前記第1の循環タンクに貯留された前記第1の電解液の一部を前記第2の循環タンクに移送する、第1の電解液移送手段と、
  前記第2の循環ポンプの出側と前記陰極室の入側とを繋ぐ配管を流れる前記第2の電解液の一部を、前記第1の循環ポンプの出側と前記陽極室の入側とを繋ぐ配管に移送する、第2の電解液移送手段とを含む、[1]に記載のガス製造装置。
[3] 前記電解液交換装置が、
  前記第2の循環タンクに貯留された前記第2の電解液の一部を前記第1の循環タンクに移送する、第1の電解液移送手段と、
  前記第1の循環ポンプの出側と前記陽極室の入側とを繋ぐ配管を流れる前記第1の電解液の一部を、前記第2の循環ポンプの出側と前記陰極室の入側とを繋ぐ配管に移送する、第2の電解液移送手段とを含む、[1]に記載のガス製造装置。
[4] 前記陽極室から流出した第1のガス流の圧力を制御する、第1の圧力制御弁と、
 前記陰極室から流出した第2のガス流の圧力を制御する、第2の圧力制御弁と、
をさらに備える、[1]~[3]のいずれかに記載のガス製造装置。
[5] 前記第1のガス流を受け容れ冷却する、第1の冷却装置と、
 前記第2のガス流を受け容れ冷却する、第2の冷却装置と、
 前記第1の冷却装置に接続され、前記第1の冷却装置によって冷却された第1のガス流を受け容れ、該第1のガス流中の液化された水分を除去する、第1のフィルタ装置と、
 前記第2の冷却装置に接続され、前記第2の冷却装置によって冷却された第2のガス流を受け容れ、該第2のガス流中の液化された水分を除去する、第2のフィルタ装置と、
をさらに備え、
 前記第1の冷却装置および前記第1のフィルタ装置は、前記第1の圧力制御弁の上流側に配置され、
 前記第2の冷却装置および前記第2のフィルタ装置は、前記第2の圧力制御弁の上流側に配置されている、[4]に記載のガス製造装置。
[6] 前記第1の圧力制御弁の上流側における前記第1のガス流の圧力と、前記第2の圧力制御弁の上流側における前記第2のガス流の圧力との差圧を所定の値に制御する、差圧制御手段をさらに備える、[4]又は[5]に記載のガス製造装置。
[7] 前記差圧制御手段が、
  前記第1の圧力制御弁の上流側における前記第1のガス流の圧力と、前記第2の圧力制御弁の上流側における前記第2のガス流の圧力との差圧を測定する、差圧検知器と、
  前記差圧検知器の測定結果に基づいて、前記第1の圧力制御弁および/または前記第2の圧力制御弁を制御する、弁制御装置とを備える、[6]に記載のガス製造装置。
[8] 陽極を収容し酸素ガスを発生する陽極室と、陰極を収容し水素ガスを発生する陰極室と、前記陽極室と前記陰極室とを区画するイオン透過性の隔膜とを備える電解槽を用いて、アルカリ水溶液である電解液を電解することにより酸素ガス及び水素ガスを製造する方法であって、
 (a)前記陽極室に第1の電解液を供給し且つ前記陰極室に第2の電解液を供給しながら前記陽極と前記陰極との間に通電することにより、前記陽極から酸素ガスを発生させ且つ前記陰極から水素ガスを発生させる工程と、
 (b)前記陽極室から、酸素ガスを含む第1のガス流、及び、前記第1の電解液を回収する工程と、
 (c)前記陰極室から、水素ガスを含む第2のガス流、及び、前記第2の電解液を回収する工程と、
 (d)前記陽極室から回収された前記第1の電解液を、第1の循環タンクに貯留する工程と、
 (e)前記陰極室から回収された前記第2の電解液を、第2の循環タンクに貯留する工程と、
 (f)前記第1の循環タンクに貯留された前記第1の電解液を、第1の循環ポンプを用いて前記陽極室に送液する工程と;
 (g)前記第2の循環タンクに貯留された前記第2の電解液を、第2の循環ポンプを用いて前記陰極室に送液する工程と;
 (h)前記第1の電解液の一部を、前記第2の電解液中に導入する工程と、
 (i)前記第2の電解液の一部を、前記第1の電解液中に導入する工程とを含む、ガス製造方法。
[9] 前記工程(h)が、前記第1の循環タンクに貯留された前記第1の電解液の一部を、前記第2の循環タンクに移送することを含み、
 前記工程(i)が、前記第2の循環ポンプから送出された前記第2の電解液の一部を、前記第1の循環ポンプから送出された前記第1の電解液に合流させることを含む、[8]に記載のガス製造方法。
[10] 前記工程(h)が、前記第1の循環ポンプから送出された前記第1の電解液の一部を、前記第2の循環ポンプから送出された前記第2の電解液に合流させることを含み、
 前記工程(i)が、前記第2の循環タンクに貯留された前記第2の電解液の一部を、前記第1の循環タンクに移送することを含む、[8]に記載のガス製造方法。
[11] (j)前記陽極室から回収された前記第1のガス流の圧力を、該第1のガス流の流路に設けられた第1の圧力制御弁を用いて制御する工程と、
 (k)前記陰極室から回収された前記第2のガス流の圧力を、該第2のガス流の流路に設けられた第2の圧力制御弁を用いて制御する工程とをさらに含む、[8]~[10]のいずれかに記載のガス製造方法。
[12] (l)前記第1のガス流を冷却する工程と、
 (m)前記第2のガス流を冷却する工程と、
 (n)前記工程(l)を経た前記第1のガス流から、前記工程(l)において凝縮した水分を除去する工程と、
 (o)前記工程(m)を経た前記第2のガス流から、前記工程(m)において凝縮した水分を除去する工程とをさらに含み、
 前記工程(j)は、前記工程(l)及び(n)を経た前記第1のガス流の圧力を、前記第1の圧力制御弁を用いて制御することにより行われ、
 前記工程(k)は、前記工程(m)及び(o)を経た前記第2のガス流の圧力を、前記第2の圧力制御弁を用いて制御することにより行われる、[11]に記載のガス製造方法。
[13] (p)前記第1の圧力制御弁の上流側における前記第1のガス流の圧力と、前記第2の圧力制御弁の上流側における前記第2のガス流の圧力との差圧を、所定の値に制御する工程をさらに含む、[11]又は[12]に記載のガス製造方法。
[14] 前記工程(p)が、
  (p1)前記第1の圧力制御弁の上流側における前記第1のガス流の圧力と、前記第2の圧力制御弁の上流側における前記第2のガス流の圧力との差圧を測定する工程と、
  (p2)前記工程(p1)の測定結果に基づいて、前記工程(j)及び(k)において前記第1の圧力制御弁および/または前記第2の圧力制御弁を制御する工程とを含む、[13]に記載のガス製造方法。
[15] 前記陰極室の内部の圧力が、大気圧に対して20kPa以上高圧に維持される、[8]~[14]のいずれかに記載のガス製造方法。
[16] 前記陽極室の内部の圧力が、大気圧に対して20kPa以上高圧に維持される、[8]~[15]のいずれかに記載のガス製造方法。
 本発明のガス製造装置は、陽極室に第1の電解液を循環供給する第1の電解液循環系と、陰極室に第2の電解液を循環供給する第2の電解液循環系とを別々に備える。したがって本発明のガス製造装置によれば、加圧条件下でアルカリ水の電解を行う場合であっても、循環タンクの気相領域中のガス組成が爆発限界に達することを防止するとともに、電解液中の溶存ガスがガス純度に及ぼす悪影響を低減しながら水素ガス及び酸素ガスの両方を製造することが可能になる。さらに本発明のガス製造装置は、第1の電解液循環系に存在する第1の電解液の一部を第2の電解液循環系に移送し且つ第2の電解液循環系に存在する第2の電解液の一部を第1の電解液循環系に移送する電解液交換装置を備えるので、第1の電解液循環系と第2の電解液循環系との間の圧力差の大小に関わらず、第1の循環タンクと第2の循環タンクとの間の液面差および濃度差を解消ないし緩和することが可能である。したがって本発明のガス製造装置によれば、加圧条件下でアルカリ水の電解を行う場合であっても、各ガスを安定して製造することが可能になる。よって本発明のガス製造装置によれば、加圧条件下でアルカリ水の電解を行う場合であっても、循環タンクの気相領域中のガス組成が爆発限界に達することを防止するとともに、電解液中の溶存ガスがガス純度に及ぼす悪影響を低減しながら水素ガス及び酸素ガスの両方を安定して製造することが可能である。
 本発明のガス製造方法は、工程(b)乃至(g)を備えるので、陽極室から回収された第1の電解液が第1の循環タンクに貯留され、第1の循環タンクに貯留された第1の電解液が第1の循環ポンプにより陽極室に供給されるとともに、陰極室から回収された第2の電解液が第2の循環タンクに貯留され、第2の循環タンクに貯留された第2の電解液が第2の循環ポンプにより陰極室に供給される。したがって本発明のガス製造方法によれば、加圧条件下でアルカリ水の電解を行う場合であっても、循環タンクの気相領域中のガス組成が爆発限界に達することを防止するとともに、電解液中の溶存ガスがガス純度に及ぼす悪影響を低減しながら水素ガス及び酸素ガスの両方を製造することが可能になる。さらに本発明のガス製造方法は工程(h)及び(i)を備えるので、陽極側の電解液循環系と陰極側の電解液循環系との圧力差の大小に関わらず、第1の循環タンクと第2の循環タンクとの間の液面差および濃度差を解消ないし緩和することが可能である。したがって本発明のガス製造方法によれば、加圧条件下でアルカリ水の電解を行う場合であっても、各ガスを安定して製造することが可能になる。よって本発明のガス製造方法によれば、加圧条件下でアルカリ水の電解を行う場合であっても、循環タンクの気相領域中のガス組成が爆発限界に達することを防止するとともに、電解液中の溶存ガスがガス純度に及ぼす悪影響を低減しながら水素ガス及び酸素ガスの両方を安定して製造することが可能である。
本発明の一の実施形態に係るガス製造装置100を模式的に説明する図である。 本発明の他の一の実施形態に係るガス製造装置200を模式的に説明する図である。 本発明の他の一の実施形態に係るガス製造装置300を模式的に説明する図である。 本発明の他の一の実施形態に係るガス製造装置400を模式的に説明する図である。 本発明の他の一の実施形態に係るガス製造装置500を模式的に説明する図である。 本発明の他の一の実施形態に係るガス製造装置600を模式的に説明する図である。 本発明の他の一の実施形態に係るガス製造装置600’を模式的に説明する図である。 本発明の他の一の実施形態に係るガス製造装置700を模式的に説明する図である。 本発明の他の一の実施形態に係るガス製造装置800を模式的に説明する図である。
 本発明の上記した作用および利得は、以下に説明する発明を実施するための形態から明らかにされる。以下、図面を参照しつつ、本発明の実施の形態について説明する。ただし、本発明はこれらの形態に限定されるものではない。なお、図面は必ずしも正確な寸法を反映したものではない。また図では、一部の符号を省略することがある。本明細書においては特に断らない限り、数値A及びBについて「A~B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。また「又は」及び「若しくは」の語は、特に断りのない限り論理和を意味するものとする。本明細書において、要素E及びEについて「E及び/又はE」という表記は「E若しくはE、又はそれらの組み合わせ」を意味するものとし、要素E、…、E(Nは3以上の整数)について「E、…、EN-1、及び/又はE」という表記は「E、…、EN-1、若しくはE、又はそれらの組み合わせ」を意味するものとする。
 <1.ガス製造装置(1)>
 図1は、本発明の一の実施形態に係るガス製造装置100を模式的に説明する図である。ガス製造装置100は、電解液としてアルカリ水を用い、アルカリ水の電気分解により酸素ガス及び水素ガスを製造する装置である。ガス製造装置100は、電解槽10と、第1の電解液循環系20と、第2の電解液循環系30と、純水供給系40と、電解液交換装置50と、第1のガス回収ライン60と、第2のガス回収ライン70とを備えている。図1中、矢印は物質の流れる向きを指している。
 電解槽10は、陽極を収容し酸素ガスを発生する陽極室11、陰極を収容し水素ガスを発生する陰極室12、及び、陽極室11と陰極室12とを区画するイオン透過性の隔膜13を備えている。電解槽10としては、アルカリ水電解装置に従来用いられている形態の電解槽を特に制限なく採用できる。
 第1の電解液循環系20は、陽極室11から流出した第1の電解液を受け容れ貯留する、第1の循環タンク21と、第1の循環タンク21に貯留された第1の電解液を陽極室11に供給する、第1の循環ポンプ22とを含む。第1の循環タンク21の内部には、貯留された第1の電解液で占められている液相領域21aと、液相領域21aの上側の空間である気相領域21bとが存在する。第1の電解液循環系20はさらに、陽極室11から流出した第1の電解液及び陽極ガスを第1の循環タンク21に導く配管23と、第1の循環タンク21の液相領域21aから第1の電解液を第1の循環ポンプ22に導く配管24と、第1の循環ポンプ22から送出された第1の電解液を陽極室11に導く第1の配管25とを備えている。
 陽極室11からは、第1の電解液と陽極室11で発生したガスとを含む第1の気液混合物が流出する。陽極室11から流出した第1の気液混合物は、配管23を通じて第1の循環タンク21に導かれ、第1の循環タンク21内部において、第1の電解液は液相領域21aに、ガス(第1のガス流)は気相領域21bに、それぞれ分離(気液分離)する。
 第2の電解液循環系30は、陰極室12から流出した第2の電解液を受け容れ貯留する、第2の循環タンク31と、第2の循環タンク31に貯留された第1の電解液を陰極室12に供給する、第2の循環ポンプ32とを含む。第2の循環タンク31の内部には、貯留された第2の電解液で占められている液相領域31aと、液相領域31aの上側の空間である気相領域31bとが存在する。第2の電解液循環系30はさらに、陰極室12から流出した第2の電解液及び陰極ガスを第2の循環タンク31に導く配管33と、第2の循環タンク31の液相領域31aから第2の電解液を第2の循環ポンプ32に導く配管34と、第2の循環ポンプ32から送出された第2の電解液を陰極室12に導く第2の配管35とを備えている。
 陰極室12からは、第2の電解液と陰極室12で発生したガスとを含む第2の気液混合物が流出する。陰極室12から流出した第2の気液混合物は、配管33を通じて第2の循環タンク31に導かれ、第2の循環タンク31内部において、第2の電解液は液相領域31aに、ガス(第2のガス流)は気相領域31bに、それぞれ分離(気液分離)する。
 純水供給系40は、純水を貯留する純水タンク41と、純水タンク41に貯留された純水を第2の循環タンク31に送液する水供給ポンプ42とを有する。水供給ポンプ42が純水タンク41から第2の循環タンク31に純水を送液することにより、電解槽10における水の電解反応によって消費された水が補充される。
 電解液交換装置50は、第1の電解液移送手段51と、第2の電解液移送手段52とを備える。第1の電解液移送手段51は、第1の循環タンク21に貯留された第1の電解液の一部を第2の循環タンク31に送液する。第2の電解液移送手段52は、第2の循環ポンプ32の出側と陰極室12の入側とを繋ぐ第2の配管35を流れる第2の電解液の一部を、第1の循環ポンプ22の出側と陽極室11の入側とを繋ぐ第1の配管25に送液する。一の実施形態において、第1の電解液移送手段51及び第2の電解液移送手段52としては、例えば容積式ポンプ及び非容積式ポンプ等の公知のポンプを用いることができる。容積式ポンプの例としては、プランジャーポンプ、ピストンポンプ、ダイヤフラムポンプ、ギヤーポンプ等を挙げることができる。非容積式ポンプの例としては、渦巻ポンプ、タービンポンプ等を挙げることができる。なお、非容積式ポンプを用いる場合であっても、非容積式ポンプと流量制御を行う制御装置とを組み合わせることにより、電解液を所定の方向に所定の流量で送液することが可能である。
 電解液交換装置50における第1の電解液移送手段51の送液量および第2の電解液移送手段52の送液量、並びに純水供給系40における純水の送液量は、第1の循環タンク21に貯留された第1の電解液の液量(液面レベル)および濃度、並びに、第2の循環タンク31に貯留された第2の電解液の液量(液面レベル)および濃度を所定の水準に維持するように調整される。
 電解液の液量および濃度について定常状態が実現される条件、すなわち第1の電解液循環系20及び第2の電解液循環系30における電解液の液量および濃度がそれぞれ一定に維持される条件は、第1の電解液循環系20及び第2の電解液循環系30における電解液の液量(体積)およびOHイオン含有量の時間微分が全て0になることであるから、次の4つの式で表される。ただし第1の電解液循環系20及び第2の電解液循環系30における電解液(アルカリ水)の濃度は十分に高いので、水の解離平衡を無視する近似を採用している。また第1の循環タンク21及び第2の循環タンク31から第1のガス回収ライン60及び第2のガス回収ライン70を通じてガス中のミスト又は水蒸気として系外に離脱する水分は無視している。
0=dV/dt=-wc1-v12+v21 …(3)
0=dV/dt=-wc2+v12-v21+ws2 …(4)
0=dN/dt=nf1+np21-v12・C+v21・C …(5)
0=dN/dt=nf2-np21+v12・C-v21・C …(6)
(式中、
 V:第1の電解液循環系20の液量[L]
 V:第2の電解液循環系30の液量[L]
 N:第1の電解液循環系20のOHイオン含有量[mol]
 N:第2の電解液循環系30のOHイオン含有量[mol]
 wc1:陽極室における単位時間毎の水消費量[L/s](水が生成する場合は負の値)
 wc2:陰極室における単位時間毎の水消費量[L/s]
 ws2:純水供給系40による第2の循環タンク31への単位時間毎の水供給量[L/s]
 nf1:陽極室における単位時間毎のOHイオン生成量[mol/s](OHイオンが消費される場合は負の値)
 nf2:陰極室における単位時間毎のOHイオン生成量[mol/s]
 np21:隔膜13を透過して陰極室12から陽極室11へ移動するOHイオンの単位時間毎の量[mol/s]
 v12:電解液交換装置50による第1の電解液循環系20から第2の電解液循環系30への単位時間毎の送液量[L/s]
 v21:電解液交換装置50による第2の電解液循環系30から第1の電解液循環系20への単位時間毎の送液量[L/s]
である。)
 なおガス製造装置100において、v12は第1の電解液移送手段51の送液量と同義であり、v21は第2の電解液移送手段52の送液量と同義である。
 式(3)~(6)を解く。まず式(3)+式(4)から
s2=wc1+wc2 …(7)
が得られる。すなわち純水供給系40による水の供給量は電解槽10における水の消費量と等しければよい。
 また式(4)-式(3)から
12-v21=-wc1 …(8)
が得られる。
 式(5)+式(6)から
f1+nf2=0 …(9)
が得られる。これは常に満たされる(上記式(1)(2)参照)。
 式(6)-式(5)から
f2-nf1-2np21+2(v12・C-v21・C)=0
が得られ、式(9)からnf1=-nf2なので
f2-np21+v12・C-v21・C=0 …(10)
となる。陰極室12で生成したOHイオンの全部が隔膜13を透過して陽極室11に移動すればnp21=nf2であるが、上記の通り実際にはそうではないので、0<np21<nf2である。したがって無次元数α(0<α<1。以下において「OH透過率α」ということがある。)を用いて
p21=α・nf2 …(11)
と表すことができ、式(10)から
(1-α)nf2+v12・C-v21・C=0 …(10’)
となる。式(8)を用いてv21を消去すると
12={(1-α)nf2-wc1・C}/(C-C) …(12)
が得られ、式(8)から
21={(1-α)nf2-wc1・C}/(C-C) …(13)
となる。
 ここで、nf2、wc1、及びwc2は、陰極反応に関与する電子の単位時間あたりの量n[mol/s]を用いて
f2=n …(14)
c1=(18/1000)×(-1/2)n=-0.009n …(15)
c2=(18/1000)×n=0.018n …(16)
と表すことができる。ただしガス製造装置100運転時の電解液温度における水の密度を1000g/Lとする近似を採用している。式(14)~(16)を式(12)(13)(7)及び(8)に代入すると
12={(1-α)n+0.009n・C}/(C-C) …(12’)
21={(1-α)n+0.009n・C}/(C-C) …(13’)
s2=0.009n …(7’)
12=v21+0.009n …(8’)
が得られる。式(12’)(13’)において左辺(v12及びv21)は正であり、右辺の分子も常に正であるから、右辺の分母においてC>Cが成り立つ。すなわち定常状態においては、第2の電解液循環系30における電解液濃度C(すなわち第2の電解液の濃度。)が、第1の電解液循環系20における全体としての電解液濃度C(すなわち第1の電解液の濃度。)よりも高く維持される。
 式(12’)(13’)から、電解液交換装置50の送液量v12、v21を増やすほど、定常状態における第1の電解液と第2の電解液との濃度差C-Cは小さくなることが理解される。すなわち、所望の濃度差C-Cの上限値に対して、第1及び第2の電解液移送手段51、52の送液量v12、v21の下限値を、それぞれ式(12’)(13’)から算出できる。具体的な数値に限定されるものではないが、単純な例として、n=1mol/s、α=0.5、C=10mol/L、C=9.9mol/Lと仮定すると、式(12’)(13’)及び(7’)からv12=5.9L/s、v21=5.891L/s、ws2=9mL/sと算出される。実際にはOH透過率αの値は隔膜のみによって定まるものではなく、電解槽の構造のほか、各極室に供給される電解液の濃度および供給量や電解電流値、電解液温度、極室間差圧等の運転条件にも依存する。送液量v12及びv21の算出に必要なOH透過率αの値は、例えば、電解槽の実機に、電解液交換装置50を作動させない以外は予定されている運転条件と同様に電解液を流通させ、陽極室11出側と陰極室12出側との間で電解液濃度の差を測定することにより推定することができる。
 また式(7’)によって算出されるws2の値は、電解反応によって消費される水のみを考慮したものである。実際には第1及び第2のガス回収ライン60、70から回収されるガス中のミスト又は水蒸気としても水が系外に離脱する。一の実施形態において、純粋供給手段40の水供給ポンプ42の送液量は、例えばそのようなガス流と共に系外に離脱する水の量をws2に加えた値としてもよい。
 陽極室11への電解液供給量v[L/s]、及び陰極室12への電解液供給量v[L/s]は、第1の循環ポンプ22の送液量vp1[L/s]、第2の循環ポンプ32の送液量vp2[L/s]、及び第2の電解液移送手段52の送液量v21[L/s]を用いて、それぞれ
=vp1+v21 …(14)
=vp2-v21 …(15)
と表される。陽極室11及び陰極室12への電解液供給量v、vは略等しいことが好ましい。具体的には、比v/vが0.80~1.20、より好ましくは0.90~1.10となるように、第1の循環ポンプ22、第2の循環ポンプ32、及び第2の電解液移送手段52の送液量vp1、vp2、及びv21が制御されることが好ましい。比v/vが上記範囲内であることにより、陽極室11と陰極室12との間での電解後の電解液濃度差が安定するので、電解槽10の電解電圧を安定化することが容易になる。
 第2の電解液移送手段52の送液量v21の、第1の循環ポンプ22の送液量vp1及び第2の循環ポンプ32の送液量vp2に対する比v21/vp1、v21/vp2は、それぞれ好ましくは0.001以上、より好ましくは0.003以上であり、また一の実施形態において0.03以下、好ましくは0.01以下である。第2の電解液移送手段52の送液量の第1の循環ポンプ22の送液量及び第2の循環ポンプ32の送液量に対する比がそれぞれ上記下限値以上であることにより、第1の電解液循環系20における電解液濃度と第2の電解液循環系30における電解液濃度との差をさらに低減できるので、陽極室11に供給される電解液および陰極室12に供給される電解液の濃度を、電力効率の高い範囲に維持することが容易になる。また第2の電解液移送手段52の送液量の第1の循環ポンプ22の送液量及び第2の循環ポンプ32の送液量に対する比がそれぞれ上記上限値以下であることにより、第1の電解液循環系20から電解液とともに第2の電解液循環系30に持ち込まれる溶存酸素ガス、及び、第2の電解液循環系30から電解液とともに第1の電解液循環系20に持ち込まれる溶存水素ガスを低減できるので、第1の循環タンク21の液相領域21aから気相領域21bに放出される水素ガスを低減し、第1のガス回収ライン60から回収される酸素ガスの純度をさらに高めることが可能になるとともに、第2の循環タンク31の液相領域31aから気相領域31bに放出される酸素ガスを低減し、第2のガス回収ライン70から回収される水素ガスの純度をさらに高めることが可能になる。
 第1の循環タンク21に貯留される第1の電解液の量は、第1の循環タンク21の総容積に対して、1~99体積%の範囲内に維持されることが好ましく、30~70体積%の範囲内に維持されることがより好ましい。同様に、第2の循環タンク31に貯留される第2の電解液の量は、第2の循環タンク31の総容積に対して、1~99体積%の範囲内に維持されることが好ましく、30~70体積%の範囲内に維持されることがより好ましい。各循環タンク21、31に貯留される電解液の量が上記範囲内であることにより、ガス製造装置100をより安定的に運転することが可能になる。
 第1のガス回収ライン60からは酸素ガスが回収される。第1のガス回収ライン60は、第1の圧力制御弁61と、陽極室11から流出した第1のガス流を第1の循環タンク21の気相領域21bから第1の圧力制御弁61の一次側(入側)に導く配管62と、配管62の途中に設けられ、配管62を流れる第1のガス流の圧力を監視する圧力計63とを備える。第1の圧力制御弁61は、第1のガス流の圧力を所定の値に制御する。すなわち、第1の圧力制御弁61は、陽極室11の出側から第1の循環タンク21を通じて第1の圧力制御弁61の一次側に至るまでの領域におけるガス圧力を所定の値に制御する。第1の圧力制御弁61としては、一次側の圧力を所定の値に制御可能な公知の制御弁を特に制限なく用いることができ、一次側の圧力を所定の値に維持する電磁弁あるいはエアー駆動弁を好ましく用いることができる。電磁弁あるいはエアー駆動弁である第1の圧力制御弁61は、一次側の圧力が設定値に達するまではガスを二次側(出側)に流出させず、気相領域21bにガスが溜まって一次側の圧力が設定値に達すると、一次側の圧力が設定値を超えないように二次側にガスを流出させる。第1のガス回収ライン60が第1の圧力制御弁61を備えることにより、陽極室11、第1の循環タンク21、第1の循環ポンプ22を含む第1の電解液循環系20の圧力が所定の値に維持される。
 第2のガス回収ライン70からは水素ガスが回収される。第2のガス回収ライン70は、第2の圧力制御弁71と、陰極室12から流出した第2のガス流を第2の循環タンク31の気相領域31bから第2の圧力制御弁71の一次側(入側)に導く配管72と、配管72の途中に設けられ、配管72を流れる第2のガス流の圧力を監視する圧力計73とを備える。第2の圧力制御弁71は、第2のガス流の圧力を所定の値に制御する。すなわち、第2の圧力制御弁71は、陰極室12の出側から第2の循環タンク31を通じて第2の圧力制御弁71の一次側に至るまでの領域におけるガス圧力を所定の値に制御する。第2の圧力制御弁71としては、一次側の圧力を所定の値に制御可能な公知の制御弁を特に制限なく用いることができ、一次側の圧力を所定の値に維持する電磁弁あるいはエアー駆動弁を好ましく用いることができる。電磁弁あるいはエアー駆動弁である第2の圧力制御弁71は、一次側の圧力が設定値に達するまではガスを二次側(出側)に流出させず、気相領域31bにガスが溜まって一次側の圧力が設定値に達すると、一次側の圧力が設定値を超えないように二次側にガスを流出させる。第2のガス回収ライン70が第2の圧力制御弁71を備えることにより、陰極室12、第2の循環タンク31、第2の循環ポンプ32を含む第2の電解液循環系30の圧力が所定の値に維持される。
 一の実施形態において、陽極室11及び陰極室12の一方又は両方の内部の圧力を、大気圧に対して20kPa以上高圧に維持することが好ましい。例えば、第1の圧力制御弁61の上流側(一次側)における第1のガス流の圧力、及び、第2の圧力制御弁71の上流側(一次側)における第2のガス流の圧力は、例えば950~200kPa、好ましくは900~400kPaに維持することができる。第1の圧力制御弁61の上流側および第2の圧力制御弁71の上流側における第1のガス流および第2のガス流の圧力が上記下限値以上に維持される場合、一般には溶存ガスの問題が顕在化しやすいので、本発明の効果が顕著になる。すなわち、本発明のガス製造装置及びガス製造方法によれば、このような加圧条件下でアルカリ水の電解を行う場合であっても、循環タンクの気相領域中のガス組成が爆発限界に達することを防止するとともに、電解液中の溶存ガスがガス純度に及ぼす悪影響を低減しながら水素ガス及び酸素ガスの両方を製造することが可能である。また第1の圧力制御弁61の上流側および第2の圧力制御弁71の上流側における第1のガス流および第2のガス流の圧力が上記上限値以下であることにより、圧力制御が容易になるほか、電解槽10を構成する部材の選定が容易になる。
 <2.ガス製造方法(1)>
 ガス製造装置100の動作、及び、ガス製造装置100を用いる形態のガス製造方法について、図1を参照しつつさらに説明する。
 電解槽10の陽極室11に第1の電解液を供給し且つ陰極室12に第2の電解液を供給しながら、陽極室11に収容された陽極と陰極室12に収容された陰極との間に通電することにより、陽極室11においては陽極から酸素ガスが発生し、陰極室12においては陰極から水素ガスが発生する(ステップ(a))。
 陽極室11からは、陽極室11で発生した酸素ガスを含む第1のガス流、及び、第1の電解液が回収される(ステップ(b))。第1のガス流および第1の電解液は気液混合物として配管23を通じて陽極室11から回収されて第1の循環タンク21に導かれ、第1の循環タンク21において気液分離される。陽極室11から第1の循環タンク21に回収され気液分離された第1の電解液は第1の循環タンク21に貯留される(ステップ(d))。第1の循環タンク21に貯留された第1の電解液は、第1の循環ポンプ22により陽極室11に送液される(ステップ(f))。
 陰極室12からは、陰極室12で発生した水素ガスを含む第2のガス流、及び、第2の電解液が回収される(ステップ(c))。第2のガス流および第2の電解液は気液混合物として配管33を通じて陰極室12から回収されて第2の循環タンク31に導かれ、第2の循環タンク31において気液分離される。陰極室12から第2の循環タンク31に回収され気液分離された第2の電解液は第2の循環タンク31に貯留される(ステップ(e))。第2の循環タンク31に貯留された第2の電解液は、第2の循環ポンプ32により陰極室12に送液される(ステップ(g))。
 第1の循環タンク21に貯留された第1の電解液の一部は、第1の電解液移送手段51により第2の循環タンク31に移送される。これにより第1の電解液の一部が第2の電解液中に導入される(ステップ(h))。また第2の循環ポンプ32から送出された第2の電解液の一部は、第2の電解液移送手段52により分岐され、第1の循環ポンプ22から送出された第1の電解液に合流する。これにより第2の電解液の一部が第1の電解液中に導入される(ステップ(i))。
 陽極室11から回収された第1のガス流は、第1の循環タンク21の気相領域21bから第1のガス回収ライン60を通じて取り出される。第1のガス流の圧力は、第1のガス流の流路(第1のガス回収ライン60)に設けられた第1の圧力制御弁61によって所定の値に制御される(ステップ(j))。また陰極室12から回収された第2のガス流は、第2の循環タンク31の気相領域31bから第2のガス回収ライン70を通じて取り出される。第2のガス流の圧力は、第2のガス流の流路(第2のガス回収ライン70)に設けられた第2の圧力制御弁71によって所定の値に制御される(ステップ(k))。
 ステップ(a)乃至(k)が同時に連続的に行われることにより、酸素ガス及び水素ガスが製造される。電解によって消費される水は純水供給系40により補充される。
 ガス製造装置100においては、陽極室11に循環供給される第1の電解液と、陰極室12に循環供給される第2の電解液とが、第1の循環タンク21及び第2の循環タンク31に別々に貯留される。そして電解液交換装置50が第1の電解液の一部と第2の第2の電解液の一部とを交換することにより、電解によって陽極側と負極側との間に生じる電解液量及び電解液濃度の不均衡が解消される。第1の電解液における溶存ガスの主成分は酸素ガスであり、第2の電解液における溶存ガスの主成分は水素ガスである。電解液交換装置50の作用により、第1の電解液の溶存酸素ガスの一部が第2の電解液中に持ち込まれるとともに、第2の電解液の溶存水素ガスの一部が第1の電解液中に持ち込まれる。しかしながら電解液交換装置50は第1の電解液および第2の電解液の一部を交換するに過ぎないので、ガス製造装置100の運転を継続しても第1の電解液における溶存ガスの主成分は酸素ガスであり続け、第2の電解液における溶存ガスの主成分は水素ガスであり続ける。したがって電解液交換装置50の作用が第1のガス回収ライン60から取り出される酸素ガス及び第2のガス回収ライン70から取り出される水素ガスの純度に及ぼす影響は軽微である。
 <3.ガス製造装置(2)>
 本発明に関する上記説明では、第1の循環タンク21に貯留された第1の電解液の一部を第2の循環タンク31に移送する第1の電解液移送手段51、及び、第2の循環ポンプ32の出側と陰極室12の入側とを繋ぐ第2の配管35を流れる第2の電解液の一部を第1の循環ポンプ22の出側と陽極室11の入側とを繋ぐ第1の配管25に移送する第2の電解液移送手段52を含む電解液交換装置50を備える形態のガス製造装置100、並びに、該ガス製造装置100を用いる形態のガス製造方法を例に挙げたが、本発明は当該形態に限定されない。例えば、第1の電解液移送手段が、第2の循環タンク31に貯留された第2の電解液の一部を第1の循環タンク21に移送し、第2の電解液移送手段が、第1の循環ポンプ22の出側と陽極室11の入側とを繋ぐ第1の配管25を流れる第1の電解液の一部を第2の循環ポンプ32の出側と陰極室12の入側とを繋ぐ第2の配管35に移送する形態の電解液交換装置を備えるガス製造装置、及び、該ガス製造装置を用いる形態のガス製造方法とすることも可能である。
 図2は、そのような他の一の実施形態に係るガス製造装置200を模式的に説明する図である。図2において、図1に既に表れた要素には図1における符号と同一の符号を付し、説明を省略することがある。ガス製造装置200は、電解液交換装置50に代えて電解液交換装置250を備える点において、ガス製造装置100と異なっている。電解液交換装置250は、第1の電解液移送手段51に代えて第1の電解液移送手段251を備え、第2の電解液移送手段52に代えて第2の電解液移送手段252を備える点において、電解液交換装置50と異なっている。第1の電解液移送手段251は、第2の循環タンク31に貯留された第2の電解液の一部を第1の循環タンク21に移送する点において、第1の電解液移送手段51と異なっている。また第2の電解液移送手段252は、第1の循環ポンプ22の出側と陽極室11の入側とを繋ぐ第1の配管25を流れる第1の電解液の一部を第2の循環ポンプ32の出側と陰極室12の入側とを繋ぐ第2の配管35に移送する点において、第2の電解液移送手段52と異なっている。一の実施形態において、第1の電解液移送手段251及び第2の電解液移送手段252としては、例えば容積式ポンプ及び非容積式ポンプ等の公知のポンプを用いることができる。容積式ポンプの例としては、プランジャーポンプ、ピストンポンプ、ダイヤフラムポンプ、ギヤーポンプ等を挙げることができる。非容積式ポンプの例としては、渦巻ポンプ、タービンポンプ等を挙げることができる。なお、非容積式ポンプを用いる場合であっても、非容積式ポンプと流量制御を行う制御装置とを組み合わせることにより、電解液を所定の方向に所定の流量で送液することが可能である。
 ガス製造装置200において電解液の液量および濃度について定常状態が実現される条件は、ガス製造装置100における場合と同様に考えることができ、式(3)~(6)で表される。
0=dV/dt=-wc1-v12+v21 …(3)
0=dV/dt=-wc2+v12-v21+ws2 …(4)
0=dN/dt=nf1+np21-v12・C+v21・C …(5)
0=dN/dt=nf2-np21+v12・C-v21・C …(6)
ガス製造装置200において、v12は第2の電解液移送手段252の送液量と同義であり、v21は第1の電解液移送手段251の送液量と同義である。式(3)~(6)は上記同様に解くことができ、上記同様に
12={(1-α)n+0.009n・C}/(C-C) …(12’)
21={(1-α)n+0.009n・C}/(C-C) …(13’)
s2=0.009n …(7’)
12=v21+0.009n …(8’)
が得られる。すなわちガス製造装置100における場合と同様に、定常状態においては、第2の電解液循環系30における電解液濃度C(すなわち第2の電解液の濃度。)が、第1の電解液循環系20における全体としての電解液濃度C(すなわち第1の電解液の濃度。)よりも高く維持される。また電解液交換装置250の送液量v12、v21を増やすほど、定常状態における第1の電解液と第2の電解液との濃度差C-Cは小さくなる。
 ガス製造装置200において、陽極室11への電解液供給量v[L/s]、及び陰極室12への電解液供給量v[L/s]は、第1の循環ポンプ22の送液量vp1[L/s]、第2の循環ポンプ32の送液量vp2[L/s]、及び第2の電解液移送手段252の送液量v12[L/s]を用いて、それぞれ
=vp1-v12 …(14’)
=vp2+v12 …(15’)
と表される。陽極室11及び陰極室12への電解液供給量v、vは略等しいことが好ましい。具体的には、比v/vが0.80~1.20、より好ましくは0.90~1.10となるように、第1の循環ポンプ22、第2の循環ポンプ32、及び第2の電解液移送手段252の送液量vp1、vp2、及びv12が制御されることが好ましい。比v/vが上記範囲内であることにより、陽極室11と陰極室12との間での電解後の電解液濃度差が安定するので、電解槽10の電解電圧を安定化することが容易になる。
 ガス製造装置200において、第2の電解液移送手段252の送液量v12の、第1の循環ポンプ22の送液量vp1及び第2の循環ポンプ32の送液量vp2に対する比v12/vp1、v12/vp2は、それぞれ好ましくは0.001以上、より好ましくは0.003以上であり、また一の実施形態において0.03以下、好ましくは0.01以下である。第2の電解液移送手段252の送液量の第1の循環ポンプ22の送液量及び第2の循環ポンプ32の送液量に対する比がそれぞれ上記下限値以上であることにより、第1の電解液循環系20における電解液濃度と第2の電解液循環系30における電解液濃度との差をさらに低減できるので、陽極室11に供給される電解液および陰極室12に供給される電解液の濃度を、電力効率の高い範囲に維持することが容易になる。また第2の電解液移送手段252の送液量の第1の循環ポンプ22の送液量及び第2の循環ポンプ32の送液量に対する比がそれぞれ上記上限値以下であることにより、第1の電解液循環系20から電解液とともに第2の電解液循環系30に持ち込まれる溶存酸素ガス、及び、第2の電解液循環系30から電解液とともに第1の電解液循環系20に持ち込まれる溶存水素ガスを低減できるので、第1の循環タンク21の液相領域21aから気相領域21bに放出される水素ガスを低減し、第1のガス回収ライン60から回収される酸素ガスの純度をさらに高めることが可能になるとともに、第2の循環タンク31の液相領域31aから気相領域31bに放出される酸素ガスを低減し、第2のガス回収ライン70から回収される水素ガスの純度をさらに高めることが可能になる。
 第1の循環タンク21に貯留される第1の電解液の量は、第1の循環タンク21の総容積に対して、1~99体積%の範囲内に維持されることが好ましく、30~70体積%の範囲内に維持されることがより好ましい。同様に、第2の循環タンク31に貯留される第2の電解液の量は、第2の循環タンク31の総容積に対して、1~99体積%の範囲内に維持されることが好ましく、30~70体積%の範囲内に維持されることがより好ましい。各循環タンク21、31に貯留される電解液の量が上記範囲内であることにより、ガス製造装置200をより安定的に運転することが可能になる。
 <4.ガス製造方法(2)>
 ガス製造装置200の動作、及び、ガス製造装置200を用いる形態のガス製造方法について、図2を参照しつつさらに説明する。
 電解槽10の陽極室11に第1の電解液を供給し且つ陰極室12に第2の電解液を供給しながら、陽極室11に収容された陽極と陰極室12に収容された陰極との間に通電することにより、陽極室11においては陽極から酸素ガスが発生し、陰極室12においては陰極から水素ガスが発生する(ステップ(a))。
 陽極室11からは、陽極室11で発生した酸素ガスを含む第1のガス流、及び、第1の電解液が回収される(ステップ(b))。第1のガス流および第1の電解液は気液混合物として配管23を通じて陽極室11から回収されて第1の循環タンク21に導かれ、第1の循環タンク21において気液分離される。陽極室11から第1の循環タンク21に回収され気液分離された第1の電解液は第1の循環タンク21に貯留される(ステップ(d))。第1の循環タンク21に貯留された第1の電解液は、第1の循環ポンプ22により陽極室11に送液される(ステップ(f))。
 陰極室12からは、陰極室12で発生した水素ガスを含む第2のガス流、及び、第2の電解液が回収される(ステップ(c))。第2のガス流および第2の電解液は気液混合物として配管33を通じて陰極室12から回収されて第2の循環タンク31に導かれ、第2の循環タンク31において気液分離される。陰極室12から第2の循環タンク31に回収され気液分離された第2の電解液は第2の循環タンク31に貯留される(ステップ(e))。第2の循環タンク31に貯留された第2の電解液は、第2の循環ポンプ32により陰極室12に送液される(ステップ(g))。
 第2の循環タンク31に貯留された第2の電解液の一部は、第1の電解液移送手段251により第1の循環タンク21に移送される。これにより第2の電解液の一部が第1の電解液中に導入される(ステップ(h))。また第1の循環ポンプ22から送出された第1の電解液の一部は、第2の電解液移送手段252により分岐され、第2の循環ポンプ32から送出された第2の電解液に合流する。これにより第1の電解液の一部が第2の電解液中に導入される(ステップ(i))。
 陽極室11から回収された第1のガス流は、第1の循環タンク21の気相領域21bから第1のガス回収ライン60を通じて取り出される。第1のガス流の圧力は、第1のガス流の流路(第1のガス回収ライン60)に設けられた第1の圧力制御弁61によって所定の値に制御される(ステップ(j))。また陰極室12から回収された第2のガス流は、第2の循環タンク31の気相領域31bから第2のガス回収ライン70を通じて取り出される。第2のガス流の圧力は、第2のガス流の流路(第2のガス回収ライン70)に設けられた第2の圧力制御弁71によって所定の値に制御される(ステップ(k))。
 ステップ(a)乃至(k)が同時に連続的に行われることにより、酸素ガス及び水素ガスが製造される。電解によって消費される水は純水供給系40により補充される。ガス製造装置200及び該ガス製造装置200を用いる形態のガス製造方法によっても、上記同様の効果を得ることが可能である。
 <5.ガス製造装置(3)>
 本発明に関する上記説明では、第2の循環タンク31に水を供給する純水供給系40を備える形態のガス製造装置100及び200、並びに、該ガス製造装置100及び200を用いる形態のガス製造方法を例に挙げたが、本発明は当該形態に限定されない。例えば、第1の循環タンク21に水を供給する純水供給系を備える形態のガス製造装置、及び、該ガス製造装置を用いる形態のガス製造方法とすることも可能である。
 図3は、そのような他の一の実施形態に係るガス製造装置300を模式的に説明する図である。図3において、図1~2に既に表れた要素には図1~2における符号と同一の符号を付し、説明を省略することがある。ガス製造装置300は、純水供給系40に代えて純水供給系340を備える点において、ガス製造装置100と異なっている。純水供給系340は、純水供給系40と同様に純水タンク41及び水供給ポンプ42を備えるが、水供給ポンプ42が純水タンク41に貯留された水を第1の循環タンク21に供給する点において、純水供給系40と異なっている。
 ガス製造装置300において電解液の液量および濃度について定常状態が実現される条件は、式(18)(19)(5)(6)で表される。
0=dV/dt=-wc1-v12+v21+ws1 …(18)
0=dV/dt=-wc2+v12-v21 …(19)
0=dN/dt=nf1+np21-v12・C+v21・C …(5)
0=dN/dt=nf2-np21+v12・C-v21・C …(6)
(式(18)及び(19)中、ws1は純水供給系40による第1の循環タンク21への単位時間毎の水供給量[L/s]を表す。)
 ガス製造装置300において、v12は第1の電解液移送手段51の送液量と同義であり、v21は第2の電解液移送手段52の送液量と同義である。式(18)(19)(5)(6)を解く。式(18)+(19)より
s1=wc1+wc2 …(20)
である。式(2)-(1)より、
c1-wc2+2(v12-v21)-ws1=0
さらに式(20)を代入して
12-v21=wc2 …(21)
が得られる。
 式(5)及び(6)より、上記同様に
f1+nf2=0 …(9)
及び
f2-np21+v12・C-v21・C=0 …(10)
が得られる。上記同様にOH透過率α(0<α<1)を用いて
p21=α・nf2 …(11)
と表すことができ、式(10)から
(1-α)nf2+v12・C-v21・C=0 …(10’)
となる。式(10’)及び(21)から
12={(1-α)nf2+wc2・C}/(C-C) …(22)
21={(1-α)nf2+wc2・C}/(C-C) …(23)
が得られる。上記同様に
f2=n …(14)
c1=(18/1000)×(-1/2)n=-0.009n …(15)
c2=(18/1000)×n=0.018n …(16)
と表せる。式(14)~(16)を式(20)~(23)に代入すると
12={(1-α)n+0.018n・C}/(C-C) …(22’)
21={(1-α)n+0.018n・C}/(C-C) …(23’)
s1=0.009n …(20’)
12=v21+0.018n …(21’)
が得られる。すなわちガス製造装置100における場合と同様に、定常状態においては、第2の電解液循環系30における電解液濃度C(すなわち第2の電解液の濃度。)が、第1の電解液循環系20における全体としての電解液濃度C(すなわち第1の電解液の濃度。)よりも高く維持される。また電解液交換装置50の送液量v12、v21を増やすほど、定常状態における第1の電解液と第2の電解液との濃度差C-Cは小さくなる。
 ガス製造装置300において、陽極室11への電解液供給量v[L/s]、及び陰極室12への電解液供給量v[L/s]は、第1の循環ポンプ22の送液量vp1[L/s]、第2の循環ポンプ32の送液量vp2[L/s]、及び第2の電解液移送手段52の送液量v21[L/s]を用いて、それぞれ
=vp1+v21 …(14)
=vp2-v21 …(15)
と表される。陽極室11及び陰極室12への電解液供給量v、vは略等しいことが好ましい。具体的には、比v/vが0.80~1.20、より好ましくは0.90~1.10となるように、第1の循環ポンプ22、第2の循環ポンプ32、及び第2の電解液移送手段52の送液量vp1、vp2、及びv21が制御されることが好ましい。比v/vが上記範囲内であることにより、陽極室11と陰極室12との間での電解後の電解液濃度差が安定するので、電解槽10の電解電圧を安定化することが容易になる。
 ガス製造装置300において、第2の電解液移送手段52の送液量v21の、第1の循環ポンプ22の送液量vp1及び第2の循環ポンプ32の送液量vp2に対する比v21/vp1、v21/vp2は、それぞれ好ましくは0.001以上、より好ましくは0.003以上であり、また一の実施形態において0.03以下、好ましくは0.01以下である。第2の電解液移送手段52の送液量の第1の循環ポンプ22の送液量及び第2の循環ポンプ32の送液量に対する比がそれぞれ上記下限値以上であることにより、第1の電解液循環系20における電解液濃度と第2の電解液循環系30における電解液濃度との差をさらに低減できるので、陽極室11に供給される電解液および陰極室12に供給される電解液の濃度を、電力効率の高い範囲に維持することが容易になる。また第2の電解液移送手段52の送液量の第1の循環ポンプ22の送液量及び第2の循環ポンプ32の送液量に対する比がそれぞれ上記上限値以下であることにより、第1の電解液循環系20から電解液とともに第2の電解液循環系30に持ち込まれる溶存酸素ガス、及び、第2の電解液循環系30から電解液とともに第1の電解液循環系20に持ち込まれる溶存水素ガスを低減できるので、第1の循環タンク21の液相領域21aから気相領域21bに放出される水素ガスを低減し、第1のガス回収ライン60から回収される酸素ガスの純度をさらに高めることが可能になるとともに、第2の循環タンク31の液相領域31aから気相領域31bに放出される酸素ガスを低減し、第2のガス回収ライン70から回収される水素ガスの純度をさらに高めることが可能になる。
 第1の循環タンク21に貯留される第1の電解液の量は、第1の循環タンク21の総容積に対して、1~99体積%の範囲内に維持されることが好ましく、30~70体積%の範囲内に維持されることがより好ましい。同様に、第2の循環タンク31に貯留される第2の電解液の量は、第2の循環タンク31の総容積に対して、1~99体積%の範囲内に維持されることが好ましく、30~70体積%の範囲内に維持されることがより好ましい。各循環タンク21、31に貯留される電解液の量が上記範囲内であることにより、ガス製造装置300をより安定的に運転することが可能になる。
 <6.ガス製造方法(3)>
 ガス製造装置300の動作、及び、ガス製造装置300を用いる形態のガス製造方法は、純水供給系40が第2の循環タンク31ではなく第1の循環タンク21に水を供給する点以外は、ガス製造装置100に関する上記説明と同様である。ガス製造装置300及び該ガス製造装置300を用いる形態のガス製造方法によっても、上記同様の効果を得ることが可能である。
 <7.ガス製造装置(4)>
 図4は、他の一の実施形態に係るガス製造装置400を模式的に説明する図である。図4において、図1~3に既に表れた要素には図1~3における符号と同一の符号を付し、説明を省略することがある。ガス製造装置400は、電解液交換装置50に代えて電解液交換装置250(図2参照)を備える点において、ガス製造装置300と異なっている。
 ガス製造装置400において電解液の液量および濃度について定常状態が実現される条件は、ガス製造装置300における場合と同様に考えることができ、式(18)(19)(5)(6)で表される。
0=dV/dt=-wc1-v12+v21+ws1 …(18)
0=dV/dt=-wc2+v12-v21 …(19)
0=dN/dt=nf1+np21-v12・C+v21・C …(5)
0=dN/dt=nf2-np21+v12・C-v21・C …(6)
ガス製造装置400において、v12は第2の電解液移送手段252の送液量と同義であり、v21は第1の電解液移送手段251の送液量と同義である。式(18)(19)(5)(6)は上記同様に解くことができ、
12={(1-α)n+0.018n・C}/(C-C) …(22’)
21={(1-α)n+0.018n・C}/(C-C) …(23’)
s1=0.009n …(20’)
12=v21+0.018n …(21’)
が得られる。すなわちガス製造装置300における場合と同様に、定常状態においては、第2の電解液循環系30における電解液濃度C(すなわち第2の電解液の濃度。)が、第1の電解液循環系20における全体としての電解液濃度C(すなわち第1の電解液の濃度。)よりも高く維持される。また電解液交換装置250の送液量v12、v21を増やすほど、定常状態における第1の電解液と第2の電解液との濃度差C-Cは小さくなる。
 ガス製造装置400において、陽極室11への電解液供給量v[L/s]、及び陰極室12への電解液供給量v[L/s]は、第1の循環ポンプ22の送液量vp1[L/s]、第2の循環ポンプ32の送液量vp2[L/s]、及び第2の電解液移送手段252の送液量v12[L/s]を用いて、それぞれ
=vp1-v12 …(14’)
=vp2+v12 …(15’)
と表される。陽極室11及び陰極室12への電解液供給量v、vは略等しいことが好ましい。具体的には、比v/vが0.80~1.20、より好ましくは0.90~1.10となるように、第1の循環ポンプ22、第2の循環ポンプ32、及び第2の電解液移送手段252の送液量vp1、vp2、及びv12が制御されることが好ましい。比v/vが上記範囲内であることにより、陽極室11と陰極室12との間での電解後の電解液濃度差が安定するので、電解槽10の電解電圧を安定化することが容易になる。
 ガス製造装置400において、第2の電解液移送手段252の送液量v12の、第1の循環ポンプ22の送液量vp1及び第2の循環ポンプ32の送液量vp2に対する比v12/vp1、v12/vp2は、それぞれ好ましくは0.001以上、より好ましくは0.003以上であり、また一の実施形態において0.03以下、好ましくは0.01以下である。第2の電解液移送手段252の送液量の第1の循環ポンプ22の送液量及び第2の循環ポンプ32の送液量に対する比がそれぞれ上記下限値以上であることにより、第1の電解液循環系20における電解液濃度と第2の電解液循環系30における電解液濃度との差をさらに低減できるので、陽極室11に供給される電解液および陰極室12に供給される電解液の濃度を、電力効率の高い範囲に維持することが容易になる。また第2の電解液移送手段252の送液量の第1の循環ポンプ22の送液量及び第2の循環ポンプ32の送液量に対する比がそれぞれ上記上限値以下であることにより、第1の電解液循環系20から電解液とともに第2の電解液循環系30に持ち込まれる溶存酸素ガス、及び、第2の電解液循環系30から電解液とともに第1の電解液循環系20に持ち込まれる溶存水素ガスを低減できるので、第1の循環タンク21の液相領域21aから気相領域21bに放出される水素ガスを低減し、第1のガス回収ライン60から回収される酸素ガスの純度をさらに高めることが可能になるとともに、第2の循環タンク31の液相領域31aから気相領域31bに放出される酸素ガスを低減し、第2のガス回収ライン70から回収される水素ガスの純度をさらに高めることが可能になる。
 第1の循環タンク21に貯留される第1の電解液の量は、第1の循環タンク21の総容積に対して、1~99体積%の範囲内に維持されることが好ましく、30~70体積%の範囲内に維持されることがより好ましい。同様に、第2の循環タンク31に貯留される第2の電解液の量は、第2の循環タンク31の総容積に対して、1~99体積%の範囲内に維持されることが好ましく、30~70体積%の範囲内に維持されることがより好ましい。各循環タンク21、31に貯留される電解液の量が上記範囲内であることにより、ガス製造装置400をより安定的に運転することが可能になる。
 <8.ガス製造方法(4)>
 ガス製造装置400の動作、及び、ガス製造装置400を用いる形態のガス製造方法は、純水供給系40が第2の循環タンク31ではなく第1の循環タンク21に水を供給する点以外は、ガス製造装置200に関する上記説明と同様である。ガス製造装置400及び該ガス製造装置400を用いる形態のガス製造方法によっても、上記同様の効果を得ることが可能である。
 <9.ガス製造装置(5)>
 図5は、他の一の実施形態に係るガス製造装置500を模式的に説明する図である。図5において、図1~4に既に表れた要素には図1~4における符号と同一の符号を付し、説明を省略することがある。ガス製造装置500は、第1の圧力制御弁61の上流側における第1のガス流の圧力と、第2の圧力制御弁71の上流側における第2のガス流の圧力との差圧を制御する差圧制御手段80をさらに備える点において、ガス製造装置100(図1参照)と異なっている。図5において、破線の矢印は情報の流れる向きを表す。
 差圧制御手段80は、差圧検知器81と、弁制御装置82とを備える。差圧検知器81は、第1の圧力制御弁61の上流側における第1のガス流の圧力と、第2の圧力制御弁71の上流側における第2のガス流の圧力との差圧を測定する。差圧検知器81としては、公知の差圧センサを用いることができる。差圧検知器81の測定結果は、弁制御装置82に入力される。弁制御装置82は、少なくとも差圧検知器81の検出信号を受け取り、第1の圧力制御弁61及び/又は第2の圧力制御弁71に弁の開度を制御する信号を送信する。一の実施形態において、弁制御装置82は、差圧検知器81の測定結果に基づいて、上記差圧が所定の上限値以下に維持されるように、第1の圧力制御弁61及び/又は第2の圧力制御弁71の開度を制御する。差圧制御手段80は、第1の圧力制御弁61の開度を固定して第2の圧力制御弁71の開度を調整することにより差圧制御を行ってもよく、第2の圧力制御弁71の開度を固定して第1の圧力制御弁61の開度を調整することにより差圧制御を行ってもよく、第1の圧力制御弁61の開度と第2の圧力制御弁71の開度との両方を調整することにより差圧制御を行ってもよい。
 なお、弁制御装置82は、差圧検知器81の検出信号に加えて、圧力計63及び/又は圧力計73の検出信号をさらに受け取ってもよい。一の実施形態において、弁制御装置82は、第1の圧力制御弁61及び/又は第2の圧力制御弁71の制御を、差圧検知器81の測定結果に加えて圧力計63及び/又は圧力計73の測定結果に基づいて行い、第1の圧力制御弁61の上流側における第1のガス流の圧力および第2の圧力制御弁71の上流側における第2のガス流の圧力が所定の範囲内に維持され且つ上記差圧が所定の上限値以下に維持されるように、第1の圧力制御弁61及び/又は第2の圧力制御弁71の開度を制御してもよい。
 弁制御装置82による第1の圧力制御弁61及び/又は第2の圧力制御弁71の制御には、例えば従来のフィードバック制御等を特に制限なく採用できる。また弁制御装置82としては、そのようなフィードバック制御を行うことのできる従来の制御装置(例えばマイクロプロセッサ及び記憶装置を備えた電子計算機、プログラマブル・ロジック・コントローラ(PLC)等。)を特に制限なく用いることができる。
 差圧制御手段80を備える形態のガス製造装置500によれば、第1の循環タンク21及び第2の循環タンク31における液面レベルの差をさらに低減することが可能になるほか、電解槽10において差圧によって一方の極室中のガスが隔膜を透過して他方の極室中に押し込まれることによるガス純度の低下を抑制することが可能になる。差圧制御手段80を備えることによる当該効果をさらに高める観点からは、差圧制御装置80は、第1の圧力制御弁61の上流側における第1のガス流の圧力と、第2の圧力制御弁71の上流側における第2のガス流の圧力との差圧を、10kPa以下に制御することが好ましく、1kPa以下に制御することがより好ましい。
 <10.ガス製造方法(5)>
 ガス製造装置500の動作、及び、ガス製造装置500を用いる形態のガス製造方法は、差圧制御手段80に関する事項以外は、ガス製造装置100に関する上記説明と同様である。ガス製造装置500においては更に、差圧制御手段80により、第1の圧力制御弁61の上流側における第1のガス流の圧力と、第2の圧力制御弁71の上流側における第2のガス流の圧力との差圧が所定の値に制御される(ステップ(p))。具体的には、差圧検知器81により、第1の圧力制御弁61の上流側における第1のガス流の圧力と、第2の圧力制御弁71の上流側における第2のガス流の圧力との差圧が測定され(ステップ(p1))、ステップ(p1)の測定結果に基づいて、上記ステップ(j)及び(k)において第1の圧力制御弁61及び/又は第2の圧力制御弁71が制御される(ステップ(p2))。ステップ(p)は、上記説明したステップ(a)乃至(k)と同時に連続的に行われる。かかる形態のガス製造方法によれば、ガス製造装置100を用いる形態のガス製造方法について上記説明した効果に加えて、第1の循環タンク21及び第2の循環タンク31における液面レベルの差をさらに低減することが可能になるほか、電解槽10において差圧によって一方の極室中のガスが隔膜を透過して他方の極室中に押し込まれることによるガス純度の低下を抑制することが可能になる。
 <11.ガス製造装置(6)>
 図6は、他の一の実施形態に係るガス製造装置600を模式的に説明する図である。図6において、図1~5に既に表れた要素には図1~5における符号と同一の符号を付し、説明を省略することがある。ガス製造装置600は、第1のガス回収ライン60に代えて第1のガス回収ライン660を備え、第2のガス回収ライン70に代えて第2のガス回収ライン670を備える点において、ガス製造装置500(図5参照)と異なっている。
 第1のガス回収ライン660は、第1の冷却装置664及び第1のフィルタ装置665を更に備える点において、第1のガス回収ライン60と異なっている。第1の冷却装置664及び第1のフィルタ装置665は、第1の圧力制御弁61の上流側に配置されている。第1の冷却装置664は、第1の循環タンク21の気相領域21bから流出した第1のガス流を受け容れ冷却する。第1のフィルタ装置665は、第1の冷却装置664の下流側に配置されており、第1の冷却装置664によって冷却された第1のガス流を受け容れ、該第1のガス流中の液化された水分を除去する。第1のガス流が第1の冷却装置664及び第1のフィルタ装置665を経ることにより、第1のガス流から電解液ミスト及び水蒸気が除去される。第1の冷却装置664及び第1のフィルタ装置665としては、従来ガス精製に用いられているガス冷却装置およびフィルタ装置を用いることができる。第1の冷却装置664及び第1のフィルタ装置665において生じるドレン水は、廃棄してもよく、電解液に戻してもよい。第1の冷却装置664及び第1のフィルタ装置665が、第1の圧力制御弁61の上流側に配置されていることにより、第1の圧力制御弁61が第1のガス流に含まれる電解液ミスト及び水蒸気の影響を受けにくくなる。
 第2のガス回収ライン670は、第2の冷却装置674及び第2のフィルタ装置675を更に備える点において、第2のガス回収ライン70と異なっている。第2の冷却装置674及び第2のフィルタ装置675は、第2の圧力制御弁71の上流側に配置されている。第2の冷却装置674は、第2の循環タンク31の気相領域31bから流出した第2のガス流を受け容れ冷却する。第2のフィルタ装置675は、第2の冷却装置674の下流側に配置されており、第2の冷却装置674によって冷却された第2のガス流を受け容れ、該第2のガス流中の液化された水分を除去する。第2のガス流が第2の冷却装置674及び第2のフィルタ装置675を経ることにより、第2のガス流から電解液ミスト及び水蒸気が除去される。第2の冷却装置674及び第2のフィルタ装置675としては、従来ガス精製に用いられているガス冷却装置およびフィルタ装置を用いることができる。第2の冷却装置674及び第2のフィルタ装置675において生じるドレン水は、廃棄してもよく、電解液に戻してもよい。第2の冷却装置674及び第1のフィルタ装置675が、第2の圧力制御弁71の上流側に配置されていることにより、第2の圧力制御弁71が第2のガス流に含まれる電解液ミスト及び水蒸気の影響を受けにくくなる。
 第1の冷却装置664及び第1のフィルタ装置665、並びに第2の冷却装置674及び第2のフィルタ装置675を更に備える形態のガス製造装置600によれば、さらに純度の高められた酸素ガス及び水素ガスを製造することが可能になる。なお第1の冷却装置664及び第1のフィルタ装置665の下流側、又は第1の圧力制御弁61の下流側に、第1のガス流から水素ガスを除去する水素ガス除去装置をさらに設けてもよく、第2の冷却装置674及び第2のフィルタ装置675の下流側、又は第2の圧力制御弁71の下流側に、第2のガス流から酸素ガスを除去する酸素ガス除去装置をさらに設けてもよい。
 <12.ガス製造方法(6)>
 ガス製造装置600の動作、及び、ガス製造装置600を用いる形態のガス製造方法については、第1の冷却装置664及び第1のフィルタ装置665、並びに第2の冷却装置674及び第2のフィルタ装置675に関する事項以外は、ガス製造装置500を用いる形態のガス製造方法に関する上記説明と同様である。
 陽極室11から回収され、第1の循環タンク21の気相領域21bから流出した第1のガス流は、第1の冷却装置664において冷却される(ステップ(l))。第1のフィルタ装置665において、ステップ(l)を経た第1のガス流から、ステップ(l)において凝縮した水分が除去される(ステップ(n))。ステップ(l)及び(n)を経た第1のガス流の圧力は、第1の圧力制御弁61により制御される(ステップ(j))。
 陰極室12から回収され、第2の循環タンク31の気相領域31bから流出した第2のガス流は、第2の冷却装置674において冷却される(ステップ(m))。第2のフィルタ装置675において、ステップ(m)を経た第2のガス流から、ステップ(m)において凝縮した水分が除去される(ステップ(o))。ステップ(m)及び(o)を経た第2のガス流の圧力は、第2の圧力制御弁71により制御される(ステップ(k))。
 ステップ(l)乃至(o)は、上記説明したステップ(a)乃至(k)及び(p)と同時に連続的に行われる。
 第1の冷却装置664及び第1のフィルタ装置665、並びに第2の冷却装置674及び第2のフィルタ装置675を更に備えるガス製造装置600を用いる形態のガス製造方法によれば、ガス製造装置500を用いる形態のガス製造方法に比較して、さらに純度の高められた酸素ガス及び水素ガスを製造することが可能になる。
 本発明に関する上記説明では、第1の冷却装置664及び第1のフィルタ装置665が第1の圧力制御弁61の上流側に配置され、第2の冷却装置674及び第2のフィルタ装置675が第2の圧力制御弁71の上流側に配置された形態のガス製造装置600、並びに、該ガス製造装置600を用いる形態のガス製造方法について説明したが、本発明は当該形態に限定されない。図7は、他の一の実施形態に係るガス製造装置600’を模式的に説明する図である。図7において、図1~6に既に表れた要素には図1~6における符号と同一の符号を付し、説明を省略することがある。ガス製造装置600’は、第1の冷却装置664及び第1のフィルタ装置665が第1の圧力制御弁61の下流側に配置され、第2の冷却装置674及び第2のフィルタ装置675が第2の圧力制御弁71の下流側に配置されている点において、上記説明したガス製造装置600(図6)と異なっている。ガス製造装置600’において、第1の冷却装置664は、第1の圧力制御弁61の二次側から流出した第1のガス流を受け容れ冷却する。第1のフィルタ装置665は、第1の冷却装置664によって冷却された第1のガス流を受け容れ、該第1のガス流中の液化された水分を除去する。第1のガス流が第1の冷却装置664及び第1のフィルタ装置665を経ることにより、第1のガス流から電解液ミスト及び水蒸気が除去される。またガス製造装置600’において、第2の冷却装置674は、第2の圧力制御弁71の二次側から流出した第2のガス流を受け容れ冷却する。第2のフィルタ装置675は、第2の冷却装置674によって冷却された第2のガス流を受け容れ、該第2のガス流中の液化された水分を除去する。第2のガス流が第2の冷却装置674及び第2のフィルタ装置675を経ることにより、第2のガス流から電解液ミスト及び水蒸気が除去される。このような形態のガス製造装置600’によっても、上記説明したガス製造装置600と同様に、純度の高められた酸素ガス及び水素ガスを製造することが可能になる。なおガス製造装置600’において、第1の冷却装置664及び第1のフィルタ装置665の下流側に、第1のガス流から水素ガスを除去する水素ガス除去装置をさらに設けてもよく、第2の冷却装置674及び第2のフィルタ装置675の下流側に、第2のガス流から酸素ガスを除去する酸素ガス除去装置をさらに設けてもよい。
 ガス製造装置600’の動作、及び、ガス製造装置600を用いる形態のガス製造方法については、第1のガス流が第1の圧力制御弁61を経た後に第1の冷却装置664及び第1のフィルタ装置665を通ること、及び、第2のガス流が第2の圧力制御弁71を経た後に第2の冷却装置674及び第2のフィルタ装置675を通ること以外は、ガス製造装置600を用いる形態のガス製造方法に関する上記説明と同様である。
 第1の圧力制御弁61を経た第1のガス流は、第1の冷却装置664において冷却される(ステップ(l))。第1のフィルタ装置665において、ステップ(l)を経た第1のガス流から、ステップ(l)において凝縮した水分が除去される(ステップ(n))。
 第2の圧力制御弁71を経た第2のガス流は、第2の冷却装置674において冷却される(ステップ(m))。第2のフィルタ装置675において、ステップ(m)を経た第2のガス流から、ステップ(m)において凝縮した水分が除去される(ステップ(o))。
 ステップ(l)乃至(o)は、上記説明したステップ(a)乃至(k)及び(p)と同時に連続的に行われる。
 ガス製造装置600’を用いる形態のガス製造方法によっても、ガス製造装置500を用いる形態のガス製造方法に比較して、さらに純度の高められた酸素ガス及び水素ガスを製造することが可能になる。
 <13.ガス製造装置(7)>
 本発明に関する上記説明では、第1の電解液移送手段51/251及び第2の電解液移送手段52/252としてそれぞれポンプを有する電解液交換装置50/250を備える形態のガス製造装置100、200、300、400、500、及び600、並びにかかる形態のガス製造装置を用いるガス製造方法を主に例に挙げたが、本発明は当該形態に限定されない。例えば、ポンプを有しない電解液交換装置を備える形態のガス製造装置、及び該ガス製造装置を用いる形態のガス製造方法とすることも可能である。
 図8は、そのような他の一の実施形態に係るガス製造装置700を模式的に説明する図である。図8において、図1~7に既に表れた要素には図1~7における符号と同一の符号を付し、説明を省略することがある。ガス製造装置700は、電解液交換装置50に代えて電解液交換装置750を有する点において、上記説明したガス製造装置100(図1)と異なっている。電解液交換装置750は、第1の電解液移送手段51に代えて第1の電解液移送手段751を有し、第2の電解液移送手段52に代えて第2の電解液移送手段752を有する点において、電解液交換装置50と異なっている。またガス製造装置700において、第1の循環ポンプ22及び第2の循環ポンプ32としては、非容積式ポンプを好ましく用いることができる。
 説明の便宜のため、第1の電解液移送手段751について説明する前に、第2の電解液移送手段752について説明する。第2の電解液移送手段752は、第1の配管25において第1の循環ポンプ22の出側に直列に設けられた第1の流量計F1及び第1の流量制御弁FCV1と;第2の配管35において第2の循環ポンプ32の出側に設けられた第2の流量計F2と;第2の配管35において第2の流量計F2の下流側に設けられた第2の流量制御弁FCV2と;第2の配管35における第2の流量計F2の下流側かつ第2の流量制御弁FCV2の上流側から、第1の配管25における第1の流量計及び第1の流量制御弁FCV1の下流側に電解液を導く、第3の配管7525と;第3の配管7525の途中に直列に設けられた第3の流量計F3及び第3の流量制御弁FCV3と、を有している。第1、第2、及び第3の流量計F1、F2、及びF3としては、面積流量計、容積流量計、コリオリ流量計、電磁流量計等、電解液の流量を測定可能な公知の流量計を特に制限なく用いることができる。また第1、第2、及び第3の流量制御弁FCV1、FCV2、及びFCV3としては、ボール弁、バタフライ弁、グローブ弁、ニードル弁等、弁開度の連続的な制御が可能な公知の制御弁を特に制限なく用いることができる。第1、第2、及び第3の流量制御弁FCV1、FCV2、及びFCV3の開度は、それぞれ第1、第2、及び第3の流量計F1、F2、及びF3の測定値が所定の値となるように制御される。
 第1の循環ポンプ22の送液量vp1[L/s]、第2の循環ポンプ32の送液量vp2[L/s]、第2の電解液移送手段752の送液量v21[L/s]、陽極室11への電解液供給量v[L/s]、及び陰極室12への電解液供給量v[L/s]は、第1の流量計F1の測定値f[L/s]、第2の流量計F2の測定値f[L/s]、及び第3の流量計F3の測定値f[L/s]を用いて、それぞれ
p1=f …(24)
p2=f …(25)
21=f …(26)
=f+f …(27)
=f-f …(28)
と表される。fの目標値は例えば上記式(13’)によりv21として求めることができる。
 ガス製造装置100に関連して上記説明したように、陽極室11及び陰極室12への電解液供給量v、vは略等しいことが好ましい。具体的には、比v/vが0.80~1.20、より好ましくは0.90~1.10となるように、第1の循環ポンプ22、第2の循環ポンプ32、及び第2の電解液移送手段752の送液量vp1、vp2、及びv21が制御されることが好ましい。比v/vが上記範囲内であることにより、陽極室11と陰極室12との間での電解後の電解液濃度差が安定するので、電解槽10の電解電圧を安定化することが容易になる。
 またガス製造装置100に関連して上記説明したように、第2の電解液移送手段752の送液量v21の、第1の循環ポンプ22の送液量vp1及び第2の循環ポンプ32の送液量vp2に対する比v21/vp1、v21/vp2は、それぞれ好ましくは0.001以上、より好ましくは0.003以上であり、また一の実施形態において0.03以下、好ましくは0.01以下である。第2の電解液移送手段752の送液量の第1の循環ポンプ22の送液量及び第2の循環ポンプ32の送液量に対する比がそれぞれ上記下限値以上であることにより、第1の電解液循環系20における電解液濃度と第2の電解液循環系30における電解液濃度との差をさらに低減できるので、陽極室11に供給される電解液および陰極室12に供給される電解液の濃度を、電力効率の高い範囲に維持することが容易になる。また第2の電解液移送手段752の送液量の第1の循環ポンプ22の送液量及び第2の循環ポンプ32の送液量に対する比がそれぞれ上記上限値以下であることにより、第1の電解液循環系20から電解液とともに第2の電解液循環系30に持ち込まれる溶存酸素ガス、及び、第2の電解液循環系30から電解液とともに第1の電解液循環系20に持ち込まれる溶存水素ガスを低減できるので、第1の循環タンク21の液相領域21aから気相領域21bに放出される水素ガスを低減し、第1のガス回収ライン60から回収される酸素ガスの純度をさらに高めることが可能になるとともに、第2の循環タンク31の液相領域31aから気相領域31bに放出される酸素ガスを低減し、第2のガス回収ライン70から回収される水素ガスの純度をさらに高めることが可能になる。
 陽極室11への電解液供給量v(=f+f:式(27))、陰極室12への電解液供給量v(=f-f:式(28))、及び第2の電解液移送手段752の送液量v21(=f:式(26))の目標値が定まったら、f及びfの目標値も、式(27)及び(28)からそれぞれ、
=v-v21 …(27’)
=v+v21 …(28’)
として定まるので、f、f、及びfの目標値が実現されるように第1~第3の流量制御弁FCV1、FCV2、及びFCV3の開度を制御することができる。第1~第3の流量制御弁FCV1、FCV2、及びFCV3の開度の制御にあたっては、フィードバック制御等の公知の制御手段を用いることができる。
 一例として、第1の流量計F1を流れる流量fと第2の流量計F2を流れる流量fとが同一に維持される場合には、第2の流量制御弁FCV2の圧力損失P FCV2が第1の流量制御弁FCV1の圧力損失P FCV1より大(すなわちP FCV2>P FCV1)となるように第1及び第2の流量制御弁FCV1、FCV2の開度を調整する(例えば第1及び第2の流量制御弁FCV1、FCV2が同一仕様の制御弁である場合には、第1の流量制御弁FCV1の開度OFCV1を第2の流量制御弁FCV2の開度OFCV2よりも大(OFCV1>OFCV2)とする)ことにより、第3の流量制御弁FCV3及び第3の流量計F3を備える第3の配管7525を通じて第2の配管35から第1の配管25に電解液を移送することができる。なお、第1の配管25の第1の流量制御弁FCV1の下流側における圧力に逆らって電解液を移送する観点からは、第3の流量制御弁FCV3の開度は、第3の流量制御弁FCV3の圧力損失P FCV3が第1の流量制御弁FCV1の圧力損失P FCV1よりも小さく(P FCV3<P FCV1)なるように制御されることが好ましい。また第3の配管7525の途中には、電解液が逆向きに(第1の配管25から第2の配管35に)流れることを防ぐための逆止弁(チェック弁)がさらに設けられていてもよい。
 第1の電解液移送手段751は、第1の循環タンク21の液相領域21aと第2の循環タンク31の液相領域31aとを接続する連通配管である(以下において第1の電解液移送手段751を「連通配管751」ということがある。)。なおガス製造装置700において、第1の循環タンク21及び第2の循環タンク31は、略同一の高さに配置されることが好ましい。上記説明したように、第2の電解液移送手段752は、第2の循環ポンプ32の出側と陰極室12の入側とを繋ぐ第2の配管35を流れる第2の電解液の一部を、第1の循環ポンプ22の出側と陽極室11の入側とを繋ぐ第1の配管25に送液するので、第1の循環タンク21に貯留される第1の電解液の液量を第2の循環タンク31に貯留される第2の電解液の液量よりも増やすように作用する。したがって第1の循環タンク21に貯留された第1の電解液の一部は、重力を駆動力として、第1の循環タンク21の液面と第2の循環タンク31の液面との間の液面差を解消するように、連通配管751を通って第2の循環タンク31に移動する。このようにして、第1の電解液移送手段751により、第1の循環タンク21に貯留された第1の電解液の一部が第2の循環タンク31に送液される。
 第1の循環タンク21に貯留される第1の電解液の量は、第1の循環タンク21の総容積に対して、1~99体積%の範囲内に維持されることが好ましく、30~70体積%の範囲内に維持されることがより好ましい。同様に、第2の循環タンク31に貯留される第2の電解液の量は、第2の循環タンク31の総容積に対して、1~99体積%の範囲内に維持されることが好ましく、30~70体積%の範囲内に維持されることがより好ましい。各循環タンク21、31に貯留される電解液の量が上記範囲内であることにより、ガス製造装置700をより安定的に運転することが可能になる。
 このように、電解液交換装置としてポンプに代えて流量制御弁(FCV1、FCV2、FCV3)と連通配管(751)との組み合わせを用いる形態のガス製造装置700によっても、上記同様の効果を得ることが可能である。またかかる形態のガス製造装置700によれば、さらに、電解液交換装置におけるエネルギー消費を低減することが可能になるほか、第1の循環タンク21と第2の循環タンク31との液面差が連通配管751により自動的に低減ないし解消されるので、第1及び第2の循環タンク21、31の液面レベルを所定の水準に維持するように第1の電解液移送手段(51、251)及び第2の電解液移送手段(52、252)の送液量を制御する処理が不要になる。したがってかかる形態のガス製造装置700によれば、設備コスト及び運転コストの削減ならびに制御の簡素化が可能になる。
 <14.ガス製造方法(7)>
 ガス製造装置700の動作、及び、ガス製造装置700を用いる形態のガス製造方法について、図8を参照しつつさらに説明する。
 ステップ(a)~(g)、(j)及び(k)については、ガス製造装置100(図1)を用いる形態のガス製造方法に関する上記説明と同様である。
 第2の循環ポンプ32から送出された第2の電解液の一部は、第2の電解液移送手段752により分岐され、第1の循環ポンプ22から送出された第1の電解液に合流する。これにより第2の電解液の一部が第1の電解液中に導入される(ステップ(i))。第1の循環タンク21に貯留された第1の電解液の一部は、第1の電解液移送手段(連通配管)751により第2の循環タンク31に移送される。これにより第1の電解液の一部が第2の電解液中に導入される(ステップ(h))。
 ステップ(a)乃至(k)が同時に連続的に行われることにより、酸素ガス及び水素ガスが製造される。電解によって消費される水は純水供給系40により補充される。
 ガス製造装置700及び該ガス製造装置700を用いる形態のガス製造方法によっても、上記同様の効果を得ることが可能である。
 <15.ガス製造装置(8)>
 本発明に関する上記説明では、第1の循環タンク21に貯留された第1の電解液の一部を第2の循環タンク31に移送する第1の電解液移送手段751、及び、第2の循環ポンプ32の出側と陰極室12の入側とを繋ぐ第2の配管35を流れる第2の電解液の一部を第1の循環ポンプ22の出側と陽極室11の入側とを繋ぐ第1の配管25に移送する第2の電解液移送手段752を含む電解液交換装置750を備える形態のガス製造装置700、並びに、該ガス製造装置700を用いる形態のガス製造方法を例に挙げたが、本発明は当該形態に限定されない。例えば、ポンプを有しない電解液交換装置を備え、第1の電解液移送手段が、第2の循環タンク31に貯留された第2の電解液の一部を第1の循環タンク21に移送し、第2の電解液移送手段が、第1の循環ポンプ22の出側と陽極室11の入側とを繋ぐ第1の配管25を流れる第1の電解液の一部を第2の循環ポンプ32の出側と陰極室12の入側とを繋ぐ第2の配管35に移送する形態の電解液交換装置を備えるガス製造装置、及び、該ガス製造装置を用いる形態のガス製造方法とすることも可能である。
 図9は、そのような他の一の実施形態に係るガス製造装置800を模式的に説明する図である。図9において、図1~8に既に表れた要素には図1~8における符号と同一の符号を付し、説明を省略することがある。ガス製造装置800は、電解液交換装置250に代えて電解液交換装置850を備える点において、ガス製造装置200(図2)と異なっている。電解液交換装置850は、第1の電解液移送手段251に代えて第1の電解液移送手段851を備え、第2の電解液移送手段252に代えて第2の電解液移送手段852を備える点において、電解液交換装置250と異なっている。またガス製造装置800において、第1の循環ポンプ22及び第2の循環ポンプ32としては、非容積式ポンプを好ましく用いることができる。
 説明の便宜のため、第1の電解液移送手段851について説明する前に、第2の電解液移送手段852について説明する。第2の電解液移送手段852は、第1の配管25において第1の循環ポンプ22の出側に設けられた第1の流量計F1と;第1の配管25において第1の流量計F1の下流側に設けられた第1の流量制御弁FCV1と;第2の配管35において第2の循環ポンプ32の出側に直列に設けられた第2の流量計F2及び第2の流量制御弁FCV2と;第1の配管25における第1の流量計F1の下流側かつ第1の流量制御弁FCV1の上流側から、第2の配管35における第2の流量計F2及び第2の流量制御弁FCV2の下流側に電解液を導く、第3の配管8525と;第3の配管8525の途中に直列に設けられた第3の流量計F3及び第3の流量制御弁FCV3と、を有している。第1、第2、及び第3の流量計F1、F2、及びF3としては、面積流量計、容積流量計、コリオリ流量計、電磁流量計等、電解液の流量を測定可能な公知の流量計を特に制限なく用いることができる。また第1、第2、及び第3の流量制御弁FCV1、FCV2、及びFCV3としては、ボール弁、バタフライ弁、グローブ弁、ニードル弁等、弁開度の連続的な制御が可能な公知の制御弁を特に制限なく用いることができる。第1、第2、及び第3の流量制御弁FCV1、FCV2、及びFCV3の開度は、それぞれ第1、第2、及び第3の流量計F1、F2、及びF3の測定値が所定の値となるように制御される。
 第1の循環ポンプ22の送液量vp1[L/s]、第2の循環ポンプ32の送液量vp2[L/s]、第2の電解液移送手段852の送液量v12[L/s]、陽極室11への電解液供給量v[L/s]、及び陰極室12への電解液供給量v[L/s]は、第1の流量計F1の測定値f[L/s]、第2の流量計F2の測定値f[L/s]、及び第3の流量計F3の測定値f[L/s]を用いて、それぞれ
p1=f …(24)
p2=f …(25)
12=f …(29)
=f-f …(30)
=f+f …(31)
と表される。fの目標値は例えば上記式(12’)によりv12として求めることができる。
 ガス製造装置200に関連して上記説明したように、陽極室11及び陰極室12への電解液供給量v、vは略等しいことが好ましい。具体的には、比v/vが0.80~1.20、より好ましくは0.90~1.10となるように、第1の循環ポンプ22、第2の循環ポンプ32、及び第2の電解液移送手段852の送液量vp1、vp2、及びv12が制御されることが好ましい。比v/vが上記範囲内であることにより、陽極室11と陰極室12との間での電解後の電解液濃度差が安定するので、電解槽10の電解電圧を安定化することが容易になる。
 またガス製造装置200に関連して上記説明したように、第2の電解液移送手段852の送液量v12の、第1の循環ポンプ22の送液量vp1及び第2の循環ポンプ32の送液量vp2に対する比v12/vp1、v12/vp2は、それぞれ好ましくは0.001以上、より好ましくは0.003以上であり、また一の実施形態において0.03以下、好ましくは0.01以下である。第2の電解液移送手段852の送液量の第1の循環ポンプ22の送液量及び第2の循環ポンプ32の送液量に対する比がそれぞれ上記下限値以上であることにより、第1の電解液循環系20における電解液濃度と第2の電解液循環系30における電解液濃度との差をさらに低減できるので、陽極室11に供給される電解液および陰極室12に供給される電解液の濃度を、電力効率の高い範囲に維持することが容易になる。また第2の電解液移送手段852の送液量の第1の循環ポンプ22の送液量及び第2の循環ポンプ32の送液量に対する比がそれぞれ上記上限値以下であることにより、第1の電解液循環系20から電解液とともに第2の電解液循環系30に持ち込まれる溶存酸素ガス、及び、第2の電解液循環系30から電解液とともに第1の電解液循環系20に持ち込まれる溶存水素ガスを低減できるので、第1の循環タンク21の液相領域21aから気相領域21bに放出される水素ガスを低減し、第1のガス回収ライン60から回収される酸素ガスの純度をさらに高めることが可能になるとともに、第2の循環タンク31の液相領域31aから気相領域31bに放出される酸素ガスを低減し、第2のガス回収ライン70から回収される水素ガスの純度をさらに高めることが可能になる。
 陽極室11への電解液供給量v(=f-f:式(30))、陰極室12への電解液供給量v(=f+f:式(31))、及び第2の電解液移送手段852の送液量v12(=f:式(29))の目標値が定まったら、f及びfの目標値も、式(30)及び(31)からそれぞれ、
=v+v12 …(30’)
=v-v12 …(31’)
として定まるので、f、f、及びfの目標値が実現されるように第1~第3の流量制御弁FCV1、FCV2、及びFCV3の開度を制御することができる。第1~第3の流量制御弁FCV1、FCV2、及びFCV3の開度の制御にあたっては、フィードバック制御等の公知の制御手段を用いることができる。
 一例として、第1の流量計F1を流れる流量fと第2の流量計F2を流れる流量fとが同一に維持される場合には、第2の流量制御弁FCV2の圧力損失P FCV2が第1の流量制御弁FCV1の圧力損失P FCV1より小(すなわちP FCV2<P FCV1)となるように第1及び第2の流量制御弁FCV1、FCV2の開度を調整する(例えば第1及び第2の流量制御弁FCV1、FCV2が同一仕様の制御弁である場合には、第1の流量制御弁FCV1の開度OFCV1を第2の流量制御弁FCV2の開度OFCV2よりも小(OFCV1<OFCV2)とする)ことにより、第3の流量制御弁FCV3及び第3の流量計F3を備える第3の配管8525を通じて第1の配管25から第2の配管35に電解液を移送することができる。なお、第2の配管35の第2の流量制御弁FCV2の下流側における圧力に逆らって電解液を移送する観点からは、第3の流量制御弁FCV3の開度は、第3の流量制御弁FCV3の圧力損失P FCV3が第2の流量制御弁FCV2の圧力損失P FCV2よりも小さく(P FCV3<P FCV2)なるように制御されることが好ましい。また第3の配管8525の途中には、電解液が逆向きに(第2の配管35から第1の配管25に)流れることを防ぐための逆止弁(チェック弁)がさらに設けられていてもよい。
 第1の電解液移送手段851は、第1の循環タンク21の液相領域21aと第2の循環タンク31の液相領域31aとを接続する連通配管である(以下において第1の電解液移送手段851を「連通配管851」ということがある。)。なおガス製造装置800において、第1の循環タンク21及び第2の循環タンク31は、略同一の高さに配置されることが好ましい。上記説明したように、第2の電解液移送手段852は、第1の循環ポンプ22の出側と陽極室11の入側とを繋ぐ第1の配管25を流れる第1の電解液の一部を、第2の循環ポンプ32の出側と陰極室12の入側とを繋ぐ第2の配管35に送液するので、第2の循環タンク31に貯留される第2の電解液の液量を第1の循環タンク21に貯留される第1の電解液の液量よりも増やすように作用する。したがって第2の循環タンク31に貯留された第2の電解液の一部は、重力を駆動力として、第1の循環タンク21の液面と第2の循環タンク31の液面との間の液面差を解消するように、連通配管851を通って第1の循環タンク21に移動する。このようにして、第1の電解液移送手段851により、第2の循環タンク31に貯留された第2の電解液の一部が第1の循環タンク21に送液される。
 第1の循環タンク21に貯留される第1の電解液の量は、第1の循環タンク21の総容積に対して、1~99体積%の範囲内に維持されることが好ましく、30~70体積%の範囲内に維持されることがより好ましい。同様に、第2の循環タンク31に貯留される第2の電解液の量は、第2の循環タンク31の総容積に対して、1~99体積%の範囲内に維持されることが好ましく、30~70体積%の範囲内に維持されることがより好ましい。各循環タンク21、31に貯留される電解液の量が上記範囲内であることにより、ガス製造装置800をより安定的に運転することが可能になる。
 このように、電解液交換装置としてポンプに代えて制御弁(FCV1~FCV3)と連通配管(851)との組み合わせを用いる形態のガス製造装置800によっても、上記同様の効果を得ることが可能である。またかかる形態のガス製造装置800によれば、さらに、電解液交換装置におけるエネルギー消費を低減することが可能になるほか、第1の循環タンク21と第2の循環タンク31との液面差が連通配管851により自動的に低減ないし解消されるので、第1及び第2の循環タンク21、31の液面レベルを所定の水準に維持するように第1の電解液移送手段(51、251)及び第2の電解液移送手段(52、252)の送液量を制御する処理が不要になる。したがってかかる形態のガス製造装置800によれば、設備コスト及び運転コストの削減ならびに制御の簡素化が可能になる。
 <16.ガス製造方法(8)>
 ガス製造装置800の動作、及び、ガス製造装置800を用いる形態のガス製造方法について、図9を参照しつつさらに説明する。
 ステップ(a)~(g)、(j)及び(k)については、ガス製造装置200(図2)を用いる形態のガス製造方法に関する上記説明と同様である。
 第1の循環ポンプ22から送出された第1の電解液の一部は、第2の電解液移送手段852により分岐され、第2の循環ポンプ32から送出された第2の電解液に合流する。これにより第1の電解液の一部が第2の電解液中に導入される(ステップ(i))。また第2の循環タンク31に貯留された第2の電解液の一部は、第1の電解液移送手段(連通配管)851により第1の循環タンク21に移送される。これにより第2の電解液の一部が第1の電解液中に導入される(ステップ(h))。
 ステップ(a)乃至(k)が同時に連続的に行われることにより、酸素ガス及び水素ガスが製造される。電解によって消費される水は純水供給系40により補充される。
 ガス製造装置800及び該ガス製造装置800を用いる形態のガス製造方法によっても、上記同様の効果を得ることが可能である。
 本発明に関する上記説明では、第1の循環タンク21又は第2の循環タンク31のいずれか一方に水を供給する純水供給系40又は340を備える形態のガス製造装置100、200、300、400、500、600、700、及び800、並びに該ガス製造装置を用いる形態のガス製造方法を例に挙げたが、本発明は当該形態に限定されない。例えば、純水供給系が第1の循環タンク及び第2の循環タンクの両方に水を供給する形態のガス製造装置、及び該ガス製造装置を用いる形態のガス製造方法とすることも可能である。
 本発明に関する上記説明では、気液分離器を備えず、第1の循環タンク21の内部で第1のガス流と第1の電解液との気液分離が行われ、第2の循環タンク31の内部で第2のガス流と第2の電解液との気液分離が行われる形態のガス製造装置100、200、300、400、500、600、700、及び800、並びに、該ガス製造装置を用いる形態のガス製造方法を例に挙げたが、本発明は当該形態に限定されない。例えば、陽極室から流出した第1のガス流と第1の電解液との気液混合物を受け容れ気液分離する第1の気液分離器と、陰極室から流出した第2のガス流と第2の電解液との気液混合物を受け容れ気液分離する第2の気液分離器とを備え、第1の気液分離器による気液分離後の第1の電解液が第1の循環タンクに貯留され、第1の気液分離器による気液分離後の第1のガス流が第1のガス回収ラインから回収され、第2の気液分離器による気液分離後の第2の電解液が第2の循環タンクに貯留され、第2の気液分離器による気液分離後の第2のガス流が第2のガス回収ラインから回収される形態のガス製造装置、及び、該ガス製造装置を用いる形態のガス製造方法とすることも可能である。そのような形態のガス製造装置およびガス製造方法によっても、本発明の上記効果を得ることが可能である。
100、200、300、400、500、600、600’、700、800 ガス製造装置
10 電解槽
11 陽極室
12 陰極室
13 (イオン透過性の)隔膜
20 第1の電解液循環系
21 第1の循環タンク
21a 液相領域
21b 気相領域
22 第1の循環ポンプ
23、24 配管
25 第1の配管
30 第2の電解液循環系
31 第2の循環タンク
31a 液相領域
31b 気相領域
32 第2の循環ポンプ
33、34 配管
35 第2の配管
40 純水供給系
41 純水タンク
42 水供給ポンプ
50、250、750、850 電解液交換装置
51、251、751、851 第1の電解液移送手段
52、252、752、852 第2の電解液移送手段
7525、8525 第3の配管
F1 第1の流量計
F2 第2の流量計
F3 第3の流量計
FCV1 第1の流量制御弁
FCV2 第2の流量制御弁
FCV3 第3の流量制御弁
60、660 第1のガス回収ライン
61 第1の圧力制御弁
62 配管
63 圧力計
664 第1の冷却装置
665 第1のフィルタ装置
70、670 第2のガス回収ライン
71 第2の圧力制御弁
72 配管
73 圧力計
674 第2の冷却装置
675 第2のフィルタ装置
80 差圧制御手段
81 差圧検知器
82 弁制御装置

Claims (16)

  1.  陽極を収容し酸素ガスを発生する陽極室と、陰極を収容し水素ガスを発生する陰極室と、前記陽極室と前記陰極室とを区画するイオン透過性の隔膜とを備える電解槽と、
     第1の電解液循環系と、
     第2の電解液循環系と、
     電解液交換装置と
    を備える、ガス製造装置であって、
     前記第1の電解液循環系は、
      前記陽極室から流出した第1の電解液を受け容れ貯留する、第1の循環タンクと、
      前記第1の循環タンクに貯留された前記第1の電解液を前記陽極室に供給する、第1の循環ポンプと
    を含み、
     前記第2の電解液循環系は、
      前記陰極室から流出した第2の電解液を受け容れ貯留する、第2の循環タンクと、
      前記第2の循環タンクに貯留された前記第2の電解液を前記陰極室に供給する、第2の循環ポンプと
    を含み、
     前記電解液交換装置は、前記第1の電解液循環系に存在する前記第1の電解液の一部を前記第2の電解液循環系に移送し、且つ、前記第2の電解液循環系に存在する前記第2の電解液の一部を前記第1の電解液循環系に移送する
    ことを特徴とする、ガス製造装置。
  2.  前記電解液交換装置が、
      前記第1の循環タンクに貯留された前記第1の電解液の一部を前記第2の循環タンクに移送する、第1の電解液移送手段と、
      前記第2の循環ポンプの出側と前記陰極室の入側とを繋ぐ配管を流れる前記第2の電解液の一部を、前記第1の循環ポンプの出側と前記陽極室の入側とを繋ぐ配管に移送する、第2の電解液移送手段と
    を含む、請求項1に記載のガス製造装置。
  3.  前記電解液交換装置が、
      前記第2の循環タンクに貯留された前記第2の電解液の一部を前記第1の循環タンクに移送する、第1の電解液移送手段と、
      前記第1の循環ポンプの出側と前記陽極室の入側とを繋ぐ配管を流れる前記第1の電解液の一部を、前記第2の循環ポンプの出側と前記陰極室の入側とを繋ぐ配管に移送する、第2の電解液移送手段と
    を含む、請求項1に記載のガス製造装置。
  4.  前記陽極室から流出した第1のガス流の圧力を制御する、第1の圧力制御弁と、
     前記陰極室から流出した第2のガス流の圧力を制御する、第2の圧力制御弁と、
    をさらに備える、請求項1~3のいずれかに記載のガス製造装置。
  5.  前記第1のガス流を受け容れ冷却する、第1の冷却装置と、
     前記第2のガス流を受け容れ冷却する、第2の冷却装置と、
     前記第1の冷却装置に接続され、前記第1の冷却装置によって冷却された第1のガス流を受け容れ、該第1のガス流中の液化された水分を除去する、第1のフィルタ装置と、
     前記第2の冷却装置に接続され、前記第2の冷却装置によって冷却された第2のガス流を受け容れ、該第2のガス流中の液化された水分を除去する、第2のフィルタ装置と、
    をさらに備え、
     前記第1の冷却装置および前記第1のフィルタ装置は、前記第1の圧力制御弁の上流側に配置され、
     前記第2の冷却装置および前記第2のフィルタ装置は、前記第2の圧力制御弁の上流側に配置されている、請求項4に記載のガス製造装置。
  6.  前記第1の圧力制御弁の上流側における前記第1のガス流の圧力と、前記第2の圧力制御弁の上流側における前記第2のガス流の圧力との差圧を所定の値に制御する、差圧制御手段をさらに備える、
    請求項4又は5に記載のガス製造装置。
  7.  前記差圧制御手段が、
      前記第1の圧力制御弁の上流側における前記第1のガス流の圧力と、前記第2の圧力制御弁の上流側における前記第2のガス流の圧力との差圧を測定する、差圧検知器と、
      前記差圧検知器の測定結果に基づいて、前記第1の圧力制御弁および/または前記第2の圧力制御弁を制御する、弁制御装置と
    を備える、
    請求項6に記載のガス製造装置。
  8.  陽極を収容し酸素ガスを発生する陽極室と、陰極を収容し水素ガスを発生する陰極室と、前記陽極室と前記陰極室とを区画するイオン透過性の隔膜とを備える電解槽を用いて、アルカリ水溶液である電解液を電解することにより酸素ガス及び水素ガスを製造する方法であって、
     (a)前記陽極室に第1の電解液を供給し且つ前記陰極室に第2の電解液を供給しながら前記陽極と前記陰極との間に通電することにより、前記陽極から酸素ガスを発生させ且つ前記陰極から水素ガスを発生させる工程と、
     (b)前記陽極室から、酸素ガスを含む第1のガス流、及び、前記第1の電解液を回収する工程と、
     (c)前記陰極室から、水素ガスを含む第2のガス流、及び、前記第2の電解液を回収する工程と、
     (d)前記陽極室から回収された前記第1の電解液を、第1の循環タンクに貯留する工程と、
     (e)前記陰極室から回収された前記第2の電解液を、第2の循環タンクに貯留する工程と、
     (f)前記第1の循環タンクに貯留された前記第1の電解液を、第1の循環ポンプを用いて前記陽極室に送液する工程と;
     (g)前記第2の循環タンクに貯留された前記第2の電解液を、第2の循環ポンプを用いて前記陰極室に送液する工程と;
     (h)前記第1の電解液の一部を、前記第2の電解液中に導入する工程と、
     (i)前記第2の電解液の一部を、前記第1の電解液中に導入する工程と、
    を含む、ガス製造方法。
  9.  前記工程(h)が、
      前記第1の循環タンクに貯留された前記第1の電解液の一部を、前記第2の循環タンクに移送すること
    を含み、
     前記工程(i)が、
      前記第2の循環ポンプから送出された前記第2の電解液の一部を、前記第1の循環ポンプから送出された前記第1の電解液に合流させること
    を含む、
    請求項8に記載のガス製造方法。
  10.  前記工程(h)が、
      前記第1の循環ポンプから送出された前記第1の電解液の一部を、前記第2の循環ポンプから送出された前記第2の電解液に合流させること
    を含み、
     前記工程(i)が、
      前記第2の循環タンクに貯留された前記第2の電解液の一部を、前記第1の循環タンクに移送すること
    を含む、
    請求項8に記載のガス製造方法。
  11.  (j)前記陽極室から回収された前記第1のガス流の圧力を、該第1のガス流の流路に設けられた第1の圧力制御弁を用いて制御する工程と、
     (k)前記陰極室から回収された前記第2のガス流の圧力を、該第2のガス流の流路に設けられた第2の圧力制御弁を用いて制御する工程と、
    をさらに含む、請求項8~10のいずれかに記載のガス製造方法。
  12.  (l)前記第1のガス流を冷却する工程と、
     (m)前記第2のガス流を冷却する工程と、
     (n)前記工程(l)を経た前記第1のガス流から、前記工程(l)において凝縮した水分を除去する工程と、
     (o)前記工程(m)を経た前記第2のガス流から、前記工程(m)において凝縮した水分を除去する工程と、
    をさらに含み、
     前記工程(j)は、前記工程(l)及び(n)を経た前記第1のガス流の圧力を、前記第1の圧力制御弁を用いて制御することにより行われ、
     前記工程(k)は、前記工程(m)及び(o)を経た前記第2のガス流の圧力を、前記第2の圧力制御弁を用いて制御することにより行われる、請求項11に記載のガス製造方法。
  13.  (p)前記第1の圧力制御弁の上流側における前記第1のガス流の圧力と、前記第2の圧力制御弁の上流側における前記第2のガス流の圧力との差圧を、所定の値に制御する工程
    をさらに含む、
    請求項11又は12に記載のガス製造方法。
  14.  前記工程(p)が、
      (p1)前記第1の圧力制御弁の上流側における前記第1のガス流の圧力と、前記第2の圧力制御弁の上流側における前記第2のガス流の圧力との差圧を測定する工程と、
      (p2)前記工程(p1)の測定結果に基づいて、前記工程(j)及び(k)において前記第1の圧力制御弁および/または前記第2の圧力制御弁を制御する工程と、
    を含む、
    請求項13に記載のガス製造方法。
  15.  前記陰極室の内部の圧力が、大気圧に対して20kPa以上高圧に維持される、
    請求項8~14のいずれかに記載のガス製造方法。
  16.  前記陽極室の内部の圧力が、大気圧に対して20kPa以上高圧に維持される、
    請求項8~15のいずれかに記載のガス製造方法。
PCT/JP2019/028326 2018-07-27 2019-07-18 ガス製造装置及びガス製造方法 WO2020022190A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP19839842.2A EP3831986A4 (en) 2018-07-27 2019-07-18 GAS PRODUCTION DEVICE AND GAS PRODUCTION PROCESS
CA3107396A CA3107396A1 (en) 2018-07-27 2019-07-18 Gas production apparatus and gas production method
JP2020532344A JP6826699B2 (ja) 2018-07-27 2019-07-18 ガス製造装置及びガス製造方法
US17/261,838 US11505872B2 (en) 2018-07-27 2019-07-18 Gas production apparatus and gas production method
KR1020207037748A KR102664170B1 (ko) 2018-07-27 2019-07-18 가스 제조 장치 및 가스 제조 방법
CN201980050273.8A CN112534087B (zh) 2018-07-27 2019-07-18 气体制造装置和气体制造方法
PH12021550131A PH12021550131A1 (en) 2018-07-27 2021-01-18 Gas production apparatus and gas production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018141668 2018-07-27
JP2018-141668 2018-07-27

Publications (1)

Publication Number Publication Date
WO2020022190A1 true WO2020022190A1 (ja) 2020-01-30

Family

ID=69182063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028326 WO2020022190A1 (ja) 2018-07-27 2019-07-18 ガス製造装置及びガス製造方法

Country Status (9)

Country Link
US (1) US11505872B2 (ja)
EP (1) EP3831986A4 (ja)
JP (1) JP6826699B2 (ja)
KR (1) KR102664170B1 (ja)
CN (1) CN112534087B (ja)
CA (1) CA3107396A1 (ja)
PH (1) PH12021550131A1 (ja)
TW (1) TWI777076B (ja)
WO (1) WO2020022190A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024816A1 (ja) * 2022-07-27 2024-02-01 三菱重工業株式会社 電解装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102434620B1 (ko) * 2020-03-23 2022-08-23 한국과학기술연구원 외부 전력 없이 독립적으로 구동되는 태양광을 이용한 수소 생산 및 저장 시스템
CN113089022B (zh) * 2021-04-29 2023-10-03 中国华能集团清洁能源技术研究院有限公司 一种碱性制氢电解槽的碱液循环系统及其工作方法
KR102580065B1 (ko) * 2021-05-06 2023-09-19 (주)이노시스 수소호흡발생기 구동 제어 시스템
DE102021208847A1 (de) 2021-08-12 2023-02-16 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben einer elektrochemische Zelleneinheit
KR102625513B1 (ko) * 2021-10-13 2024-01-16 (주)지성큐앤텍 분리형 bop 적용 수전해장치
CN114134527B (zh) * 2021-12-15 2024-03-12 考克利尔竞立(苏州)氢能科技有限公司 一种多台电解槽的电解水制氢装置及方法
AU2022421703A1 (en) * 2021-12-22 2024-05-23 Electric Hydrogen Co. Operation of an electrolytic cell or system at intermediate oxygen pressure
AU2022227148A1 (en) * 2022-01-28 2023-08-17 Kabushiki Kaisha Toshiba Electrochemical reaction device and electrochemical reaction method
EP4279635A1 (de) * 2022-05-16 2023-11-22 Friedrich Vorwerk SE & Co. KG Vorrichtung und verfahren zum elektrischen erzeugen von wasserstoff aus wasser
CN114959795B (zh) * 2022-05-23 2023-07-11 国网浙江省电力有限公司嘉兴供电公司 一种制氢系统及其控制方法
AT525914B1 (de) 2022-08-19 2023-09-15 H2i GreenHydrogen GmbH Elektrolysevorrichtung mit Naturumlauf
WO2024082031A1 (en) * 2023-03-13 2024-04-25 Hysata Pty Ltd Balance-of-plant for electro-synthetic or electro-energy liquid-gas cells or cell stacks
CN117888143A (zh) * 2024-01-12 2024-04-16 航天长征化学工程股份有限公司 一种耦合电解制氢能效控制系统及能效控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108889A (en) * 1979-07-05 1981-08-28 Creusot Loire Electrolytic apparatus
JPS608482B2 (ja) 1979-07-24 1985-03-04 住友電気工業株式会社 光ケ−ブルおよびその製造方法
JP2007100204A (ja) * 2005-10-07 2007-04-19 Mitsubishi Corp 高圧水素の製造方法および製造装置
JP2015059263A (ja) * 2013-09-20 2015-03-30 株式会社神鋼環境ソリューション 水素・酸素発生装置
JP2017039982A (ja) 2015-08-20 2017-02-23 デノラ・ペルメレック株式会社 電解装置及び電解方法
JP2017119895A (ja) 2015-12-28 2017-07-06 デノラ・ペルメレック株式会社 アルカリ水電解方法
JP2017179557A (ja) 2016-03-31 2017-10-05 株式会社東芝 水素製造システム
JP2017203218A (ja) 2017-06-20 2017-11-16 株式会社東芝 水素製造装置及び水素製造システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB362219A (en) * 1931-01-27 1931-12-03 Alfred Mentzel Means for regulating the circulation of the eectrolyte in pressure decomposers with a separate circulation of the anolyte and catholyte
FR2453222A1 (fr) * 1979-04-02 1980-10-31 Creusot Loire Installation d'electrolyse de l'eau a circuits d'electrolyte regules en pression
JPS608482U (ja) 1983-06-28 1985-01-21 三菱電機株式会社 内燃機関の点火用配電器
CN1044626C (zh) * 1995-09-30 1999-08-11 许俊明 分立式循环水电解制氢工艺和设备
JPH10330980A (ja) * 1997-05-28 1998-12-15 Japan Storage Battery Co Ltd 水電解セルを用いたガス発生装置の使用方法
JP2000054175A (ja) * 1998-07-31 2000-02-22 Mitsubishi Heavy Ind Ltd 固体高分子膜型水電解装置
DE10220850A1 (de) * 2002-05-08 2003-11-27 Forschungszentrum Juelich Gmbh Regeleinrichtung für einen alkalischen Druckelektrolyseur
JP5437968B2 (ja) * 2010-10-14 2014-03-12 本田技研工業株式会社 水電解システム
JP6008482B2 (ja) 2011-09-15 2016-10-19 株式会社バンテック 気体発生装置
WO2017056277A1 (ja) * 2015-09-30 2017-04-06 株式会社 東芝 水素製造装置及び水素製造システム
CN106119885B (zh) * 2016-07-26 2018-03-20 扬州中电制氢设备有限公司 一种碱溶液电解制氢装置及制氢方法
CA3072021C (en) * 2017-09-07 2021-10-19 De Nora Permelec Ltd Electrolytic device
EP3489389A1 (de) * 2017-11-24 2019-05-29 Siemens Aktiengesellschaft Elektrolyseeinheit und elektrolyseur

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108889A (en) * 1979-07-05 1981-08-28 Creusot Loire Electrolytic apparatus
JPS608482B2 (ja) 1979-07-24 1985-03-04 住友電気工業株式会社 光ケ−ブルおよびその製造方法
JP2007100204A (ja) * 2005-10-07 2007-04-19 Mitsubishi Corp 高圧水素の製造方法および製造装置
JP2015059263A (ja) * 2013-09-20 2015-03-30 株式会社神鋼環境ソリューション 水素・酸素発生装置
JP2017039982A (ja) 2015-08-20 2017-02-23 デノラ・ペルメレック株式会社 電解装置及び電解方法
JP2017119895A (ja) 2015-12-28 2017-07-06 デノラ・ペルメレック株式会社 アルカリ水電解方法
JP2017179557A (ja) 2016-03-31 2017-10-05 株式会社東芝 水素製造システム
JP2017203218A (ja) 2017-06-20 2017-11-16 株式会社東芝 水素製造装置及び水素製造システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3831986A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024816A1 (ja) * 2022-07-27 2024-02-01 三菱重工業株式会社 電解装置

Also Published As

Publication number Publication date
KR20210033952A (ko) 2021-03-29
US20210262101A1 (en) 2021-08-26
CN112534087B (zh) 2023-07-28
JP6826699B2 (ja) 2021-02-03
TW202010875A (zh) 2020-03-16
CN112534087A (zh) 2021-03-19
TWI777076B (zh) 2022-09-11
US11505872B2 (en) 2022-11-22
JPWO2020022190A1 (ja) 2021-02-25
EP3831986A4 (en) 2021-09-22
KR102664170B1 (ko) 2024-05-10
PH12021550131A1 (en) 2021-09-27
EP3831986A1 (en) 2021-06-09
CA3107396A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
WO2020022190A1 (ja) ガス製造装置及びガス製造方法
KR102611826B1 (ko) 알칼리수 전해 장치 및 가스 제조 방법
JP7363419B2 (ja) 水電解システム
KR20180023996A (ko) 전해 장치 및 전해 방법
JP2019178356A (ja) 水素製造装置及び水素製造方法
WO2019049265A1 (ja) 電解装置
CN107849713A (zh) 用于电化学利用二氧化碳的还原法和电解系统
JP2021080520A (ja) 水電解システム、水電解システムの制御方法、および、コンピュータプログラム
CN112292483A (zh) 通过电解提供至少一种产品流的方法和装置以及用途
JP2018135580A (ja) 水電解システム及び水電解システムの運転方法
JP2013249508A (ja) 水素酸素製造装置、及び水素酸素製造方法
JP2007284730A (ja) 水素・酸素ガス発生供給装置
KR101357752B1 (ko) 불소 가스 생성 장치
JP2000054175A (ja) 固体高分子膜型水電解装置
JP2004107775A (ja) 水電解装置とその運転方法
JP2024505276A (ja) 隔膜が備えられた電解液補正部を含む水電解装置
CN115233249A (zh) 用于碱性电解的电解装置及其方法
JP2020193390A (ja) 水素・酸素発生装置および水素ガスの製造方法
US20220325423A1 (en) Electrolysis arrangement for alkaline electrolysis
JP2019178357A (ja) 水素製造装置及び水素製造方法
KR102625513B1 (ko) 분리형 bop 적용 수전해장치
CN116590748A (zh) 气液后处理单元及水电解制氢装置
JP2003268585A (ja) 水電解装置とその運転方法
WO2011129217A1 (ja) フッ素ガス生成装置
JP2014118619A (ja) 水電解装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19839842

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020532344

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3107396

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019839842

Country of ref document: EP

Effective date: 20210301