TWI777076B - 氣體製造裝置及氣體製造方法 - Google Patents

氣體製造裝置及氣體製造方法 Download PDF

Info

Publication number
TWI777076B
TWI777076B TW108126282A TW108126282A TWI777076B TW I777076 B TWI777076 B TW I777076B TW 108126282 A TW108126282 A TW 108126282A TW 108126282 A TW108126282 A TW 108126282A TW I777076 B TWI777076 B TW I777076B
Authority
TW
Taiwan
Prior art keywords
electrolyte
gas
electrolyte solution
circulation
gas production
Prior art date
Application number
TW108126282A
Other languages
English (en)
Other versions
TW202010875A (zh
Inventor
田中康行
兒玉芳一
松永大輔
Original Assignee
日商德山股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商德山股份有限公司 filed Critical 日商德山股份有限公司
Publication of TW202010875A publication Critical patent/TW202010875A/zh
Application granted granted Critical
Publication of TWI777076B publication Critical patent/TWI777076B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/085Removing impurities
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/087Recycling of electrolyte to electrochemical cell
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • C25B1/044Hydrogen or oxygen by electrolysis of water producing mixed hydrogen and oxygen gas, e.g. Brown's gas [HHO]
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/05Pressure cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/13Single electrolytic cells with circulation of an electrolyte
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/13Single electrolytic cells with circulation of an electrolyte
    • C25B9/15Flow-through cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/67Heating or cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

一種氣體製造裝置,係具備:電解槽、第1及第2電解液循環系統、電解液交換裝置,第1電解液循環系統包含:接收並貯留從陽極室流出的第1電解液之第1循環槽、及將第1電解液供給陽極室之第1循環泵,第2電解液循環系統包含:接收並貯留從陰極室流出的第2電解液之第2循環槽、及第2電解液供給陰極室之第2循環泵,電解液交換裝置,是將存在於第1電解液循環系統之第1電解液的一部分往第2電解液循環系統移送,且將存在於第2電解液循環系統之第2電解液的一部分往第1電解液循環系統移送。

Description

氣體製造裝置及氣體製造方法
本發明是關於利用鹼性水電解法之氣體製造方法及氣體製造裝置,特別是關於適用於在加壓條件下進行鹼性水之電解的情況之氣體製造方法及氣體製造裝置。
作為氫氣及氧氣的製造方法,鹼性水電解法是已知的。在鹼性水電解法,是使用讓鹼金屬氫氧化物(例如NaOH、KOH等)溶解後之鹼性的水溶液(鹼性水)作為電解液將水進行電解,藉此從陰極產生氫氣並從陽極產生氧氣。通常,鹼性水電解用的電解池(cell)係具備藉由離子通過性的隔膜分隔之陽極室及陰極室,一邊在陽極室及陰極室分別讓電解液循環一邊進行電解。從各極室回收之電解液,一度集中在循環槽而被貯留,貯留於循環槽之電解液再度對各極室供給。 [先前技術文獻] [專利文獻]
[專利文獻1] 日本特開2017-039982號公報 [專利文獻2] 日本特許第6008482號公報 [專利文獻3] 日本特開2017-119895號公報 [專利文獻4] 日本特開2017-203218號公報 [專利文獻5] 日本特開2017-179557號公報
[發明所欲解決之問題]
在利用鹼性水的電解之氫氣及氧氣的製造程序,存在溶解氣體的問題。亦即,陽極反應所產生之氧氣的一部分會溶解在從陽極室回收之電解液中,陰極反應所產生之氫氣的一部分會溶解在從陰極室回收之電解液中。從陽極室回收的電解液和從陰極室回收的電解液是在循環槽內混合,因此氧氣及氫氣雙方會溶解在循環槽內的電解液中。因為溶解在循環槽內的電解液中之氧氣及氫氣逐漸往氣相中釋出,循環槽上部之氣相部分的氧氣及氫氣的濃度逐漸上昇。因此在電解裝置的運轉持續的期間,循環槽上部的氣相部分之氣體組成有到達爆炸極限的疑慮。特別是在加壓條件下進行電解之高壓型的鹼性水電解裝置中,因為電解槽之極室內部的壓力、及從電解槽回收之氣體及電解液的壓力維持在比常壓更高,電解液中的溶解氣體量比常壓下更增多,因此溶解氣體的問題變得明顯。
關於產生氫氣之電解程序,例如在專利文獻1記載的電解裝置,係具備:收容陽極並產生陽極氣體的陽極室、收容陰極並產生氫氣的陰極室、劃分前述陽極室和前述陰極室之隔膜、以及將電解液從前述陽極室排出並送回前述陽極室之陽極側循環管線,其特徵在於,前述陽極側循環管線係具備:從前述電解液將前述陽極氣體分離之陽極側氣液分離手段、連接前述陽極室與前述陽極側氣液分離手段並將前述電解液和前述陽極氣體從前述陽極室排出而往前述陽極側氣液分離手段輸送之陽極側排出管線、以及連接前述陽極室與前述陽極側氣液分離手段並將前述電解液從前述陽極側氣液分離手段排出而往前述陽極室輸送之陽極側供給管線,具有連接氣相區域與前述陽極側氣液分離手段之陽極氣體輸送管線,在該氣相區域是讓溶解後的前述氫氣以氣相的形式存在並讓前述氫氣和前述陽極氣體混合,前述陽極氣體輸送管線是將前述陽極氣體的至少一部分往前述氣相區域輸送,使前述氣相區域中之前述氫氣濃度未達爆炸極限下限值。依據專利文獻1記載的形態是主張,在產生氫氣之電解程序中,可確實地排除微量氣體逐漸蓄積於電解液的循環管線而到達氫氣的爆炸極限之可能性。
然而,在引用文獻1記載著,將從循環槽的氣相區域排出之氣體以排氣氣體的形式往系統外釋出。在引用文獻1所載的形態,因為是使用陽極氣體將循環槽之氣相區域中的氣體推出(驅氣,purging),在從循環槽的氣相區域排出之氣體中,除了供給氣相區域之陽極氣體以外,從循環槽中的電解液往氣相區域釋出之陰極氣體也會混入。因此,在引用文獻1所載的形態,縱使將從循環槽的氣相區域排出之氣體回收,也難以獲得高純度的陽極氣體。
作為解決此問題的手段,將從陽極室回收的電解液和從陰極室回收的電解液在不同的循環槽進行回收及貯留也是可以考慮的。亦即可考慮,從陽極室回收的電解液在陽極側循環槽進行回收及貯留,並將貯留於陽極側循環槽之電解液供給陽極室,從陰極室回收的電解液則是在陰極側循環槽進行回收及貯留,並將貯留於陰極側循環槽之電解液供給陰極室。然而,在鹼性水的電解程序中,陽極反應是用
Figure 02_image001
表示,陰極反應則是用
Figure 02_image003
表示。因此,在鹼性水的電解程序中,整體而言水是被消耗的,在陰極反應會消耗水,但在陽極反應中會生成水,因此隨著電解反應的進展,在陽極側循環槽和陰極側循環槽之間會產生液面差。此外,因為在陽極反應會消耗OH- 離子,在陰極反應會生成OH- 離子,在陽極室和陰極室之間為了保持電荷中性而透過隔膜讓離子移動時,並非陰極反應所生成之OH- 離子全部都從陰極室往陽極室移動。亦即,通常,僅陰極反應所生成之OH- 離子的一部分透過隔膜從陰極室往陽極室移動,與剩下的OH- 離子對應之在陰極室的負電荷的過剩則是藉由讓陽離子(如果鹼性水的溶質為NaOH就是Na+ 離子,如果鹼性水的溶質為KOH就是K+ 離子)透過隔膜從陽極室往陰極室移動來消除。結果,隨著電解反應的進展,在陽極側循環槽和陰極側循環槽之間會產生電解液的濃度差。
如果是低壓(常壓)程序,縱使將陽極側循環管線和陰極側循環管線分離的情況,只要進一步設置連通於陽極側循環槽的液相區域和陰極側循環槽的液相區域之配管(連通管),依據重力及擴散定律讓水及離子以消除不均一的方式通過連通管來移動,而使陽極側循環槽和陰極側循環槽之間的液面差及濃度差自動消除或減輕到一定水準以下。然而,在加壓條件下進行電解之高壓程序中,一般而言,壓力差比起重力是佔主導地位的,當在高壓程序中如上述般將陽極側循環管線和陰極側循環管線分離且在陽極側循環槽的液相區域和陰極側循環槽的液相區域之間設置連通管的情況,起因於陽極側循環管線和陰極側循環管線之間的壓力差會使電解液從壓力高側的循環槽往壓力低側的循環槽移動,藉此使兩循環槽的液面變動,嚴重的情況會在壓力低側的循環槽讓電解液溢出,而有必須將電解裝置運轉停止的疑慮。
本發明是為了提供一種氣體製造裝置,縱使是在加壓條件下進行鹼性水的電解的情況,仍能防止循環槽的氣相區域中之氣體組成到達爆炸極限,並降低電解液中的溶解氣體對氣體純度造成的不良影響,而能穩定地製造氫氣及氧氣雙方。此外,本發明是為了提供一種氣體製造方法,縱使是在加壓條件下進行鹼性水的電解的情況,仍能防止循環槽的氣相區域中之氣體組成到達爆炸極限,並降低電解液中的溶解氣體對氣體純度造成的不良影響,而能穩定地製造氫氣及氧氣雙方。 [解決問題之技術手段]
本發明包含以下[1]~[14]的形態。 [1] 一種氣體製造裝置,係具備電解槽、第1電解液循環系統、第2電解液循環系統、及電解液交換裝置,前述電解槽具備:收容陽極且產生氧氣之陽極室、收容陰極且產生氫氣之陰極室、及劃分前述陽極室和前述陰極室之離子透過性的隔膜;其特徵在於, 前述第1電解液循環系統包含: 接收並貯留從前述陽極室流出的第1電解液之第1循環槽、及 將貯留於前述第1循環槽之前述第1電解液供給前述陽極室之第1循環泵; 前述第2電解液循環系統包含: 接收並貯留從前述陰極室流出的第2電解液之第2循環槽、及 將貯留於前述第2循環槽之前述第2電解液供給前述陰極室之第2循環泵; 前述電解液交換裝置,是將存在於前述第1電解液循環系統之前述第1電解液的一部分往前述第2電解液循環系統移送,且將存在於前述第2電解液循環系統之前述第2電解液的一部分往前述第1電解液循環系統移送。
[2] 如[1]所述之氣體製造裝置,其中, 前述電解液交換裝置包含第1電解液移送手段及第2電解液移送手段, 前述第1電解液移送手段,是將貯留於前述第1循環槽之前述第1電解液的一部分往前述第2循環槽移送; 前述第2電解液移送手段,是將流過連接前述第2循環泵的出口側與前述陰極室的入口側之配管之前述第2電解液的一部分,往連接前述第1循環泵的出口側與前述陽極室的入口側之配管移送。
[3] 如[1]所述之氣體製造裝置,其中, 前述電解液交換裝置包含第1電解液移送手段及第2電解液移送手段, 前述第1電解液移送手段,是將貯留於前述第2循環槽之前述第2電解液的一部分往前述第1循環槽移送; 前述第2電解液移送手段,是將流過連接前述第1循環泵的出口側與前述陽極室的入口側之配管之前述第1電解液的一部分,往連接前述第2循環泵的出口側與前述陰極室的入口側之配管移送。
[4] 如[1]~[3]中任一者所述之氣體製造裝置,其進一步具備: 控制從前述陽極室流出的第1氣流的壓力之第1壓力控制閥、及 控制從前述陰極室流出的第2氣流的壓力之第2壓力控制閥。
[5] 如[4]所述之氣體製造裝置, 其進一步具備第1冷卻裝置、第2冷卻裝置、第1過濾裝置及第2過濾裝置, 前述第1冷卻裝置是接收並冷卻前述第1氣流, 前述第2冷卻裝置是接收並冷卻前述第2氣流, 前述第1過濾裝置,是與前述第1冷卻裝置連接,接收藉由前述第1冷卻裝置冷卻後的第1氣流並將該第1氣流中之液化後的水分除去, 前述第2過濾裝置,是與前述第2冷卻裝置,接收藉由前述第2冷卻裝置冷卻後的第2氣流並將該第2氣流中之液化後的水分除去; 前述第1冷卻裝置及前述第1過濾裝置配置於前述第1壓力控制閥的上游側, 前述第2冷卻裝置及前述第2過濾裝置配置於前述第2壓力控制閥的上游側。
[6] 如[4]或[5]所述之氣體製造裝置,其進一步具備: 將前述第1壓力控制閥的上游側之前述第1氣流的壓力和前述第2壓力控制閥的上游側之前述第2氣流的壓力之差壓控制成既定值之差壓控制手段。
[7] 如[6]所述之氣體製造裝置,其中, 前述差壓控制手段係具備: 測定前述第1壓力控制閥的上游側之前述第1氣流的壓力和前述第2壓力控制閥的上游側之前述第2氣流的壓力之差壓之差壓偵測器、及 根據前述差壓偵測器的測定結果控制前述第1壓力控制閥及/或前述第2壓力控制閥之閥控制裝置。
[8] 一種氣體製造方法,係使用電解槽將鹼性水溶液的電解液進行電解而製造氧氣及氫氣之方法,前述電解槽具備:收容陽極且產生氧氣之陽極室、收容陰極且產生氫氣之陰極室、及劃分前述陽極室和前述陰極室之離子透過性的隔膜; 該氣體製造方法包含: (a)一邊對前述陽極室供給第1電解液且對前述陰極室供給第2電解液一邊在前述陽極和前述陰極之間通電,藉此從前述陽極讓氧氣產生且從前述陰極讓氫氣產生的工序, (b)從前述陽極室將包含氧氣之第1氣流及前述第1電解液回收的工序, (c)從前述陰極室將包含氫氣之第2氣流及前述第2電解液回收的工序, (d)將從前述陽極室回收之前述第1電解液貯留於第1循環槽的工序, (e)將從前述陰極室回收之前述第2電解液貯留於第2循環槽的工序, (f)將在前述第1循環槽貯留之前述第1電解液使用第1循環泵往前述陽極室輸送的工序, (g)將在前述第2循環槽貯留之前述第2電解液使用第2循環泵往前述陰極室輸送的工序, (h)將前述第1電解液的一部分導入前述第2電解液中的工序,及 (i)將前述第2電解液的一部分導入前述第1電解液中的工序。
[9] 如[8]所述之氣體製造方法,其中, 前述工序(h)包含:將在前述第1循環槽貯留之前述第1電解液的一部分往前述第2循環槽移送, 前述工序(i)包含:讓從前述第2循環泵送出之前述第2電解液的一部分與從前述第1循環泵送出之前述第1電解液匯合。
[10] 如[8]所述之氣體製造方法,其中, 前述工序(h)包含:讓從前述第1循環泵送出之前述第1電解液的一部分與從前述第2循環泵送出之前述第2電解液匯合, 前述工序(i)包含:將在前述第2循環槽貯留之前述第2電解液的一部分往前述第1循環槽移送。
[11] 如[8]~[10]中任一者所述之氣體製造方法,其進一步包含: (j)將從前述陽極室回收之前述第1氣流的壓力使用設置於該第1氣流的流路之第1壓力控制閥進行控制的工序,及 (k)將從前述陰極室回收之前述第2氣流的壓力使用設置於該第2氣流的流路之第2壓力控制閥進行控制的工序。
[12] 如[11]所述之氣體製造方法,其進一步包含: (l)冷卻前述第1氣流的工序, (m)冷卻前述第2氣流的工序, (n)從經過前述工序(l)之前述第1氣流將在前述工序(l)凝結後的水分除去的工序,及 (o)從經過前述工序(m)之前述第2氣流將在前述工序(m)凝結後的水分除去的工序; 前述工序(j),是藉由將經過前述工序(l)及(n)之前述第1氣流的壓力使用前述第1壓力控制閥控制來進行, 前述工序(k),是藉由將經過前述工序(m)及(o)之前述第2氣流的壓力使用前述第2壓力控制閥控制來進行。
[13] 如[11]或[12]所述之氣體製造方法,其進一步包含: (p)將前述第1壓力控制閥的上游側之前述第1氣流的壓力和前述第2壓力控制閥的上游側之前述第2氣流的壓力之差壓控制成既定值的工序。
[14] 如[13]所述之氣體製造方法,其中, 前述工序(p)包含: (p1)測定前述第1壓力控制閥的上游側之前述第1氣流的壓力和前述第2壓力控制閥的上游側之前述第2氣流的壓力之差壓的工序, (p2)根據前述工序(p1)的測定結果在前述工序(j)及(k)控制前述第1壓力控制閥及/或前述第2壓力控制閥的工序。
[15] 如[8]~[14]中任一者所述之氣體製造方法,其中, 前述陰極室之內部的壓力,維持在高於大氣壓20kPa以上的高壓。
[16] 如[8]~[15]中任一者所述之氣體製造方法,其中, 前述陽極室之內部的壓力,維持在高於大氣壓20kPa以上的高壓。 [發明之效果]
本發明的氣體製造裝置,係將對陽極室將第1電解液進行循環供給的第1電解液循環系統和對陰極室將第2電解液進行循環供給的第2電解液循環系統分開設置。因此依據本發明的氣體製造裝置,縱使在加壓條件下進行鹼性水的電解的情況,仍可防止循環槽之氣相區域中的氣體組成到達爆炸極限,並降低電解液中之溶解氣體對氣體純度造成的不良影響而製造氫氣及氧氣雙方。再者,本發明的氣體製造裝置,因為具備電解液交換裝置,該電解液交換裝置是將存在於第1電解液循環系統之第1電解液的一部分往第2電解液循環系統移送且將存在於第2電解液循環系統之第2電解液的一部分往第1電解液循環系統移送,無論第1電解液循環系統與第2電解液循環系統間之壓力差的大小如何,都能將第1循環槽與第2循環槽間之液面差及濃度差消除或減輕。因此依據本發明的氣體製造裝置,縱使在加壓條件下進行鹼性水的電解的情況,仍能穩定地製造各氣體。如此,依據本發明的氣體製造裝置,縱使在加壓條件下進行鹼性水的電解的情況,仍能防止循環槽的氣相區域中之氣體組成到達爆炸極限,並降低電解液中的溶解氣體對氣體純度造成的不良影響而能穩定地製造氫氣及氧氣雙方。
本發明的氣體製造方法,因為具備工序(b)至(g),從陽極室回收之第1電解液貯留於第1循環槽,在第1循環槽貯留之第1電解液藉由第1循環泵供給陽極室,且從陰極室回收之第2電解液貯留於第2循環槽,在第2循環槽貯留之第2電解液藉由第2循環泵供給陰極室。因此依據本發明的氣體製造方法,縱使在加壓條件下進行鹼性水的電解的情況,仍可防止循環槽之氣相區域中的氣體組成到達爆炸極限,並降低電解液中之溶解氣體對氣體純度造成的不良影響而製造氫氣及氧氣雙方。再者,因為本發明的氣體製造方法具備工序(h)及(i),無論陽極側的電解液循環系統與陰極側的電解液循環系統之壓力差的大小如何,都能將第1循環槽與第2循環槽間之液面差及濃度差消除或減輕。因此依據本發明的氣體製造方法,縱使在加壓條件下進行鹼性水的電解的情況,仍能穩定地製造各氣體。如此,依據本發明的氣體製造方法,縱使在加壓條件下進行鹼性水的電解的情況,仍能防止循環槽的氣相區域中之氣體組成到達爆炸極限,並降低電解液中的溶解氣體對氣體純度造成的不良影響而能穩定地製造氫氣及氧氣雙方。
本發明之上述作用及優點,根據以下所說明之用於實施發明的形態即可明白。以下,參照圖式說明本發明的實施形態。但本發明並不限定於該等的形態。又圖式不一定反映正確的尺寸。又圖中,會有將一部分的符號省略的情況。本說明書中,除非另有說明,關於數值A及B之「A~B」表示「A以上B以下」。又其中僅對數值B加上單位的情況,該單位也適用於數值A。又「或」及「或者」的用語,除非另有說明是指邏輯或。在本說明書中,關於要素E1 及E2 ,「E1 及/或E2 」是指「E1 或是E2 、或其等的組合」;關於要素E1 、…、EN (N為3以上的整數),「E1 、…、EN-1 、及/或EN 」是指「E1 、…、EN-1 、或是EN 、或其等的組合」。
<1.氣體製造裝置(1)> 圖1係本發明的一實施形態之氣體製造裝置100之示意說明圖。氣體製造裝置100,作為電解液是使用鹼性水,藉由鹼性水的電解來製造氧氣及氫氣。氣體製造裝置100係具備:電解槽10、第1電解液循環系統20、第2電解液循環系統30、純水供給系統40、電解液交換裝置50、第1氣體回收管線60及第2氣體回收管線70。圖1中,箭頭指物質的流動方向。
電解槽10係具備:收容陽極並產生氧氣之陽極室11、收容陰極並產生氫氣之陰極室12、及劃分陽極室11和陰極室12之離子透過性的隔膜13。作為電解槽10,沒有特別限制,可採用在鹼性水電解裝置以往使用的形態之電解槽。
第1電解液循環系統20係包含:接收並貯留從陽極室11流出的第1電解液之第1循環槽21、及將貯留於第1循環槽21之第1電解液供給陽極室11之第1循環泵22。在第1循環槽21的內部具有:由所貯留的第1電解液占據之液相區域21a、液相區域21a之上側空間之氣相區域21b。第1電解液循環系統20進一步具備:將從陽極室11流出之第1電解液及陽極氣體導入第1循環槽21之配管23、從第1循環槽21的液相區域21a將第1電解液導入第1循環泵22之配管24、將從第1循環泵22送出之第1電解液導入陽極室11之第1配管25。 從陽極室11讓包含第1電解液及在陽極室11產生的氣體之第1氣液混合物流出。從陽極室11流出之第1氣液混合物,通過配管23導入第1循環槽21,在第1循環槽21內部進行分離(氣液分離),而使第1電解液位於液相區域21a,且使氣體(第1氣流)位於氣相區域21b。
第2電解液循環系統30係包含:接收並貯留從陰極室12流出的第2電解液之第2循環槽31、及將貯留於第2循環槽31之第1電解液供給陰極室12之第2循環泵32。在第2循環槽31的內部具有:由所貯留的第2電解液占據之液相區域31a、液相區域31a的上側空間之氣相區域31b。第2電解液循環系統30進一步具備:將從陰極室12流出之第2電解液及陰極氣體導入第2循環槽31之配管33、從第2循環槽31的液相區域31a將第2電解液導入第2循環泵32之配管34、及將從第2循環泵32送出之第2電解液導入陰極室12之第2配管35。 從陰極室12,讓包含第2電解液及在陰極室12產生的氣體之第2氣液混合物流出。從陰極室12流出的第2氣液混合物,通過配管33導入第2循環槽31,在第2循環槽31內部進行分離(氣液分離),而使第2電解液位於液相區域31a,且使氣體(第2氣流)位於氣相區域31b。
純水供給系統40具有:貯留純水之純水槽41、將貯留於純水槽41之純水往第2循環槽31輸送之水供給泵42。利用水供給泵42從純水槽41往第2循環槽31輸送純水,藉此補充在電解槽10因水的電解反應而消耗掉的水。
電解液交換裝置50具備第1電解液移送手段51、第2電解液移送手段52。第1電解液移送手段51是將貯留於第1循環槽21之第1電解液的一部分往第2循環槽31輸送。第2電解液移送手段52,是將流過第2配管35之第2電解液的一部分往第1配管25輸送,第2配管35是連接第2循環泵32的出口側與陰極室12的入口側,第1配管25是連接第1循環泵22的出口側與陽極室11的入口側。在一實施形態,作為第1電解液移送手段51及第2電解液移送手段52可使用例如容積式泵及非容積式泵等之公知的泵。作為容積式泵的例子,可列舉柱塞泵、活塞泵、隔膜泵、齒輪泵等。作為非容積式泵的例子,可列舉渦卷泵、渦輪泵等。又縱使是採用非容積式泵的情況,藉由將非容積式泵和進行流量控制的控制裝置組合,仍可將電解液朝既定方向以既定流量進行輸送。
電解液交換裝置50之第1電解液移送手段51的輸送量及第2電解液移送手段52的輸送量、以及純水供給系統40之純水的輸送量,是以將貯留於第1循環槽21之第1電解液的液量(液面高度)及濃度以及貯留於第2循環槽31之第2電解液的液量(液面高度)及濃度維持於既定水準的方式進行調整。
關於電解液的液量及濃度,讓穩定狀態實現的條件、亦即使第1電解液循環系統20及第2電解液循環系統30之電解液的液量及濃度分別維持一定的條件,乃是第1電解液循環系統20及第2電解液循環系統30之電解液的液量(體積)及OH- 離子含量的時間導數皆成為0,因此能用以下4個式子表示。但因為第1電解液循環系統20及第2電解液循環系統30之電解液(鹼性水)的濃度非常高,而採用忽視水的解離平衡之近似。又從第1循環槽21及第2循環槽31通過第1氣體回收管線60及第2氣體回收管線70而以氣體中之霧氣或水蒸氣的形式往系統外脫離的水分可忽視。
Figure 02_image005
(式中, V1 :第1電解液循環系統20的液量[L] V2 :第2電解液循環系統30的液量[L] N1 :第1電解液循環系統20的OH- 離子含量[mol] N2 :第2電解液循環系統30的OH- 離子含量[mol] wc1 :陽極室之每單位時間的水消耗量[L/s](水生成的情況為負值) wc2 :陰極室之每單位時間的水消耗量[L/s] ws2 :純水供給系統40對於第2循環槽31之每單位時間的水供給量[L/s] nf1 :陽極室之每單位時間的OH- 離子生成量[mol/s] (OH- 離子消耗的情況為負值) nf2 :陰極室之每單位時間的OH- 離子生成量[mol/s] np21 :透過隔膜13而從陰極室12往陽極室11移動之OH- 離子之每單位時間的量[mol/s] v12 :藉由電解液交換裝置50從第1電解液循環系統20往第2電解液循環系統30之每單位時間的輸送量[L/s] v21 :藉由電解液交換裝置50從第2電解液循環系統30往第1電解液循環系統20之每單位時間的輸送量[L/s])。 又在氣體製造裝置100中,v12 是與第1電解液移送手段51的輸送量同義,v21 是與第2電解液移送手段52的輸送量同義。
解式(3)~(6)。首先從式(3)+式(4)得出
Figure 02_image007
。 亦即只要純水供給系統40所致之水供給量與電解槽10之水的消耗量相等即可。 又從式(4)-式(3)得出
Figure 02_image009
。 從式(5)+式(6)得出
Figure 02_image011
。 這始終得到滿足(參照上述式(1)(2))。 從式(6)-式(5)得出
Figure 02_image013
, 因為從式(9)得出nf1 =-nf2 ,變成
Figure 02_image015
。 如果在陰極室12生成之OH- 離子全部都透過隔膜13移動到陽極室11則np21 =nf2 ,但因為如上述般實際上並非如此,0<np21 <nf2 。因此使用無因次數α(0<α<1,以下也稱為「OH- 透過率α」),能用
Figure 02_image017
表示,根據式(10)成為
Figure 02_image019
。 若使用式(8)將v21 消去,則得出
Figure 02_image021
, 根據式(8)成為
Figure 02_image023
在此,nf2 、wc1 及wc2 ,使用參與陰極反應之電子的每單位時間的量ne [mol/s],能用
Figure 02_image025
表示。其是採用將氣體製造裝置100運轉時之電解液溫度下的水密度設為1000g/L的近似。將式(14)~(16)代入式(12)(13)(7)及(8)時,可得出
Figure 02_image027
在式(12’)(13’)中,左邊(v12 及v21 )為正,右邊的分子也始終為正,在右邊的分母C2 >C1 成立。亦即在穩定狀態下,第2電解液循環系統30之電解液濃度C2 (亦即第2電解液的濃度)維持比第1電解液循環系統20之全體的電解液濃度C1 (亦即第1電解液的濃度)更高。
根據式(12’)(13’)可理解,電解液交換裝置50之輸送量v12 、v21 增加地越多,穩定狀態下之第1電解液和第2電解液的濃度差C2 -C1 越小。亦即,對於所期望之濃度差C2 -C1 的上限值,可分別從式(12’)(13’)算出第1及第2電解液移送手段51、52的輸送量v12 、v21 之下限值。並不限定於具體的數值,作為單純的例子,若假定ne =1mol/s、α=0.5、C2 =10mol/L、C1 =9.9mol/L,從式(12’)(13’)及(7’)可算出v12 =5.9L/s、v21 =5.891L/s、ws2 =9mL/s。實際上,OH- 透過率α的值不僅是取決於隔膜,除電解槽的構造以外,還取決於對各極室供給之電解液的濃度及供給量、電解電流值、電解液溫度、極室間差壓等的運轉條件。為了算出輸送量v12 及v21 所需之OH- 透過率α值,例如,在電解槽的實際機器,除了不讓電解液交換裝置50作動以外與預定的運轉條件同樣地讓電解液流通,在陽極室11出口側和陰極室12出口側之間測定電解液濃度的差,可藉此推定。
又利用式(7’)算出之ws2 值,是僅考慮因電解反應所消耗的水。實際上,也會以從第1及第2氣體回收管線60、70回收之氣體中的霧氣或水蒸氣的形式使水往系統外脫離。在一實施形態中,純水供給手段40之水供給泵42的輸送量可設定成:例如在ws2 加上如此般與氣流一起往系統外脫離之水量。
往陽極室11之電解液供給量v1 [L/s]、及往陰極室12之電解液供給量v2 [L/s],是使用第1循環泵22的輸送量vp1 [L/s]、第2循環泵32的輸送量vp2 [L/s]及第2電解液移送手段52的輸送量v21 [L/s]而分別用
Figure 02_image029
表示。往陽極室11及往陰極室12之電解液供給量v1 、v2 宜為大致相等。具體而言,較佳為以v2 /v1 成為0.80~1.20、更佳為成為0.90~1.10的方式控制第1循環泵22、第2循環泵32及第2電解液移送手段52的輸送量vp1 、vp2 、及v21 。藉由使v2 /v1 在上述範圍內,使陽極室11和陰極室12間之電解後的電解液濃度差穩定,因此要將電解槽10之電解電壓穩定化變容易。
第2電解液移送手段52的輸送量v21 對於第1循環泵22的輸送量vp1 及第2循環泵32的輸送量vp2 之比v21 /vp1 、v21 /vp2 ,分別較佳為0.001以上,更佳為0.003以上,又在一實施形態中為0.03以下,較佳為0.01以下。藉由使第2電解液移送手段52的輸送量對於第1循環泵22的輸送量及第2循環泵32的輸送量之比分別為上述下限值以上,可將第1電解液循環系統20的電解液濃度和第2電解液循環系統30的電解液濃度之差進一步減少,要將對陽極室11供給之電解液及對陰極室12供給之電解液的濃度維持於高電力效率的範圍變容易。又藉由使第2電解液移送手段52的輸送量對於第1循環泵22的輸送量及第2循環泵32的輸送量之比分別為上述上限值以下,可將從第1電解液循環系統20和電解液一起帶到第2電解液循環系統30之溶氧量、及從第2電解液循環系統30和電解液一起帶到第1電解液循環系統20之溶氫量減少,可將從第1循環槽21的液相區域21a往氣相區域21b釋出之氫氣減少,而使從第1氣體回收管線60回收之氧氣純度進一步提高,並能將從第2循環槽31的液相區域31a往氣相區域31b釋出之氧氣減少,而使從第2氣體回收管線70回收之氫氣純度進一步提高。
貯留於第1循環槽21之第1電解液的量,相對於第1循環槽21的總容積,較佳為維持在1~99體積%的範圍內,更佳為維持在30~70體積%的範圍內。同樣的,貯留於第2循環槽31之第2電解液的量,相對於第2循環槽31的總容積,較佳為維持在1~99體積%的範圍內,更佳為維持在30~70體積%的範圍內。藉由使貯留於各循環槽21、31之電解液的量在上述範圍內,能讓氣體製造裝置100更穩定地運轉。
從第1氣體回收管線60將氧氣回收。第1氣體回收管線60係具備:第1壓力控制閥61、將從陽極室11流出之第1氣流從第1循環槽21的氣相區域21b導向第1壓力控制閥61的一次側(入口側)之配管62、及設置於配管62的途中且用於監視流過配管62之第1氣流的壓力之壓力計63。第1壓力控制閥61將第1氣流的壓力控制成既定值。亦即,第1壓力控制閥61,將從陽極室11的出口側通過第1循環槽21而到達第1壓力控制閥61的一次側的區域之氣體壓力控制成既定值。作為第1壓力控制閥61,沒有特別限制,可採用能將一次側的壓力控制成既定值之公知的控制閥,較佳為採用將一次側的壓力維持於既定值之電磁閥或氣動閥。採用電磁閥或氣動閥之第1壓力控制閥61,直到一次側的壓力到達設定值為止不讓氣體往二次側(出口側)流出,在氣相區域21b積聚氣體而使一次側的壓力到達設定值時,為了避免一次側的壓力超過設定值而讓氣體往二次側流出。藉由使第1氣體回收管線60具備第1壓力控制閥61,能將包含陽極室11、第1循環槽21、第1循環泵22之第1電解液循環系統20的壓力維持在既定值。
從第2氣體回收管線70將氫氣回收。第2氣體回收管線70係具備:第2壓力控制閥71、將從陰極室12流出之第2氣流從第2循環槽31的氣相區域31b導向第2壓力控制閥71的一次側(入口側)之配管72、及設置於配管72的途中且用於監視流過配管72之第2氣流的壓力之壓力計73。第2壓力控制閥71將第2氣流的壓力控制成既定值。亦即,第2壓力控制閥71,將從陰極室12的出口側通過第2循環槽31到達第2壓力控制閥71的一次側之區域的氣體壓力控制成既定值。作為第2壓力控制閥71,沒有特別限制,可採用能將一次側的壓力控制成既定值之公知的控制閥,較佳為採用將一次側的壓力維持於既定值之電磁閥或氣動閥。採用電磁閥或氣動閥之第2壓力控制閥71,直到一次側的壓力到達設定值為止不讓氣體往二次側(出口側)流出,在氣相區域31b積聚氣體而使一次側的壓力到達設定值時,為了避免一次側的壓力超過設定值而讓氣體往二次側流出。藉由使第2氣體回收管線70具備第2壓力控制閥71,能將包含陰極室12、第2循環槽31、第2循環泵32之第2電解液循環系統30的壓力維持於既定值。
在一實施形態中較佳為,將陽極室11及陰極室12之一方或雙方的內部壓力維持在高於大氣壓20kPa以上的高壓。例如,第1壓力控制閥61的上游側(一次側)之第1氣流的壓力、及第2壓力控制閥71的上游側(一次側)之第2氣流的壓力,可維持在例如950~200kPa,較佳為900~400kPa。當第1壓力控制閥61的上游側及第2壓力控制閥71的上游側之第1氣流及第2氣流的壓力維持在上述下限值以上的情況,一般而言容易讓溶解氣體的問題顯現,因此本發明的效果變顯著。亦即,依據本發明的氣體製造裝置及氣體製造方法,縱使在像這樣的加壓條件下進行鹼性水的電解的情況,仍可防止循環槽的氣相區域中之氣體組成到達爆炸極限,並降低電解液中的溶解氣體對氣體純度造成的不良影響而製造氫氣及氧氣雙方。又藉由使第1壓力控制閥61的上游側及第2壓力控制閥71的上游側之第1氣流及第2氣流的壓力在上述上限值以下,除了壓力控制變容易以外,構成電解槽10之構件的選擇也變容易
<2.氣體製造方法(1)> 針對氣體製造裝置100的動作、及使用氣體製造裝置100的形態之氣體製造方法,參照圖1進一步地說明。
一邊對電解槽10的陽極室11供給第1電解液且對陰極室12供給第2電解液,一邊在陽極室11內所收容的陽極和陰極室12內所收容的陰極之間通電,藉此,在陽極室11內,從陽極產生氧氣,且在陰極室12內,從陰極產生氫氣(步驟(a))。
從陽極室11,含有在陽極室11產生的氧氣之第1氣流及第1電解液被回收(步驟(b))。第1氣流及第1電解液是以氣液混合物的形式通過配管23從陽極室11被回收而導入第1循環槽21,在第1循環槽21進行氣液分離。從陽極室11被回收到第1循環槽21且進行氣液分離後之第1電解液,被貯留於第1循環槽21(步驟(d))。貯留於第1循環槽21之第1電解液,藉由第1循環泵22輸送到陽極室11(步驟(f))。
從陰極室12,含有在陰極室12產生的氫氣之第2氣流及第2電解液被回收(步驟(c))。第2氣流及第2電解液是以氣液混合物的形式通過配管33從陰極室12被回收而導入第2循環槽31,在第2循環槽31進行氣液分離。從陰極室12被回收到第2循環槽31且進行氣液分離後的第2電解液,被貯留於第2循環槽31(步驟(e))。貯留於第2循環槽31之第2電解液,藉由第2循環泵32輸送到陰極室12(步驟(g))。
貯留於第1循環槽21之第1電解液的一部分,藉由第1電解液移送手段51往第2循環槽31移送。藉此將第1電解液的一部分導入第2電解液中(步驟(h))。又從第2循環泵32送出之第2電解液的一部分,藉由第2電解液移送手段52分歧,與從第1循環泵22送出之第1電解液匯合。藉此,將第2電解液的一部分導入第1電解液中(步驟(i))。
從陽極室11被回收的第1氣流,是從第1循環槽21的氣相區域21b通過第1氣體回收管線60被取出。第1氣流的壓力,藉由設置在第1氣流的流路(第1氣體回收管線60)之第1壓力控制閥61控制成既定值(步驟(j))。又從陰極室12被回收的第2氣流,是從第2循環槽31的氣相區域31b通過第2氣體回收管線70被取出。第2氣流的壓力,藉由設置在第2氣流的流路(第2氣體回收管線70)之第2壓力控制閥71控制成既定值(步驟(k))。
藉由使步驟(a)至(k)同時連續地進行,製造出氧氣及氫氣。藉由電解所消耗的水,是由純水供給系統40補充。
在氣體製造裝置100中,對陽極室11進行循環供給之第1電解液和對陰極室12進行循環供給之第2電解液,分別貯留於第1循環槽21及第2循環槽31。而且利用電解液交換裝置50將第1電解液的一部分和第2電解液的一部分交換,藉此將因電解而在陽極側和負極側之間產生的電解液量及電解液濃度的不均衡消除。在第1電解液的溶解氣體之主成分為氧氣,在第2電解液之溶解氣體的主成分為氫氣。利用電解液交換裝置50的作用,第1電解液之溶氧的一部分被帶進第2電解液中,且第2電解液之溶氫的一部分被帶進第1電解液中。然而,電解液交換裝置50只不過是將第1電解液及第2電解液的一部分交換,縱使氣體製造裝置100的運轉持續,在第1電解液之溶解氣體的主成分仍繼續是氧氣,在第2電解液之溶解氣體的主成分仍繼續是氫氣。因此電解液交換裝置50的作用,對於從第1氣體回收管線60取出之氧氣及從第2氣體回收管線70取出之氫氣的純度造成的影響是輕微的。
<3.氣體製造裝置(2)> 在關於本發明的上述說明所舉例的形態之氣體製造裝置100、以及使用該氣體製造裝置100的形態之氣體製造方法,其所具備的電解液交換裝置50係包含第1電解液移送手段51及第2電解液移送手段52,第1電解液移送手段51是將貯留於第1循環槽21之第1電解液的一部分往第2循環槽31移送,第2電解液移送手段52,是將流過第2配管35之第2電解液的一部分往第1配管25移送,第2配管35是連接第2循環泵32的出口側與陰極室12的入口側,第1配管25是連接第1循環泵22的出口側與陽極室11的入口側,但本發明並不限定於該形態。例如也能採用以下形態的氣體製造裝置、及使用該氣體製造裝置的形態之氣體製造方法,其所具備的電解液交換裝置係包含第1電解液移送手段及第2電解液移送手段,第1電解液移送手段是將貯留於第2循環槽31之第2電解液的一部分往第1循環槽21移送,第2電解液移送手段,是將流過第1配管25之第1電解液的一部分往第2配管35移送,第1配管25是連接第1循環泵22的出口側與陽極室11的入口側,第2配管35是連接第2循環泵32的出口側與陰極室12的入口側。
圖2係那樣的另一實施形態的氣體製造裝置200之示意說明圖。圖2中,對於圖1所示的要素,有賦予與圖1的符號相同的符號而將說明省略的情況。氣體製造裝置200與氣體製造裝置100之不同點在於,取代電解液交換裝置50而具備電解液交換裝置250。電解液交換裝置250與電解液交換裝置50之不同點在於,取代第1電解液移送手段51而具備第1電解液移送手段251,取代第2電解液移送手段52而具備第2電解液移送手段252。第1電解液移送手段251與第1電解液移送手段51之不同點在於,將貯留於第2循環槽31之第2電解液的一部分往第1循環槽21移送。又第2電解液移送手段252與第2電解液移送手段52之不同點在於,將流過連接第1循環泵22的出口側與陽極室11的入口側之第1配管25的第1電解液之一部分往連接第2循環泵32的出口側與陰極室12的入口側之第2配管35移送。在一實施形態中,作為第1電解液移送手段251及第2電解液移送手段252,可使用例如容積式泵及非容積式泵等之公知的泵。作為容積式泵的例子,可列舉柱塞泵、活塞泵、隔膜泵、齒輪泵等。作為非容積式泵的例子,可列舉渦卷泵、渦輪泵等。又縱使是採用非容積式泵的情況,藉由將非容積式泵和進行流量控制的控制裝置組合,仍可將電解液朝既定方向以既定流量進行輸送。
在氣體製造裝置200中,關於電解液的液量及濃度讓穩定狀態實現的條件,可考慮是與氣體製造裝置100的情況相同,而用式(3)~(6)表示。
Figure 02_image031
Figure 02_image033
在氣體製造裝置200中,v12 是與第2電解液移送手段252的輸送量同義,v21 是與第1電解液移送手段251的輸送量同義。與上述同樣的解式(3)~(6),與上述同樣的得出
Figure 02_image035
亦即與氣體製造裝置100的情況同樣的,在穩定狀態下,第2電解液循環系統30之電解液濃度C2 (亦即第2電解液的濃度),是維持比第1電解液循環系統20之全體的電解液濃度C1 (亦即第1電解液的濃度)更高。又電解液交換裝置250的輸送量v12 、v21 增加地越多,穩定狀態下之第1電解液和第2電解液的濃度差C2 -C1 越小。
在氣體製造裝置200中,往陽極室11之電解液供給量v1 [L/s]及往陰極室12之電解液供給量v2 [L/s],是使用第1循環泵22的輸送量vp1 [L/s]、第2循環泵32的輸送量vp2 [L/s]及第2電解液移送手段252的輸送量v12 [L/s],而分別用
Figure 02_image037
表示。往陽極室11及往陰極室12之電解液供給量v1 、v2 宜為大致相等。具體而言,較佳為以v2 /v1 成為0.80~1.20、更佳為成為0.90~1.10的方式控制第1循環泵22、第2循環泵32及第2電解液移送手段252的輸送量vp1 、vp2 、及v12 。藉由使v2 /v1 在上述範圍內,使陽極室11和陰極室12間之電解後的電解液濃度差穩定,因此要將電解槽10之電解電壓穩定化變容易。
在氣體製造裝置200中,第2電解液移送手段252的輸送量v12 對於第1循環泵22的輸送量vp1 及第2循環泵32的輸送量vp2 之比v12 /vp1 、v12 /vp2 ,分別較佳為0.001以上,更佳為0.003以上,又在一實施形態中為0.03以下,較佳為0.01以下。藉由使第2電解液移送手段252的輸送量對於第1循環泵22的輸送量及第2循環泵32的輸送量之比分別為上述下限值以上,可將第1電解液循環系統20的電解液濃度和第2電解液循環系統30的電解液濃度之差進一步減少,要將對陽極室11供給之電解液及對陰極室12供給之電解液的濃度維持於高電力效率的範圍變容易。又藉由使第2電解液移送手段252的輸送量對於第1循環泵22的輸送量及第2循環泵32的輸送量之比分別為上述上限值以下,可將從第1電解液循環系統20和電解液一起帶到第2電解液循環系統30之溶氧量、及從第2電解液循環系統30和電解液一起帶到第1電解液循環系統20之溶氫量減少,可將從第1循環槽21的液相區域21a往氣相區域21b釋出之氫氣減少,而使從第1氣體回收管線60回收之氧氣純度進一步提高,並能將從第2循環槽31的液相區域31a往氣相區域31b釋出之氧氣減少,而使從第2氣體回收管線70回收之氫氣純度進一步提高。
貯留於第1循環槽21之第1電解液的量,相對於第1循環槽21的總容積,較佳為維持在1~99體積%的範圍內,更佳為維持在30~70體積%的範圍內。同樣的,貯留於第2循環槽31之第2電解液的量,相對於第2循環槽31的總容積,較佳為維持在1~99體積%的範圍內,更佳為維持在30~70體積%的範圍內。藉由使貯留於各循環槽21、31之電解液的量在上述範圍內,能讓氣體製造裝置200更穩定地運轉。
<4.氣體製造方法(2)> 針對氣體製造裝置200的動作、及使用氣體製造裝置200的形態之氣體製造方法,參照圖2進一步地說明。
一邊對電解槽10的陽極室11供給第1電解液且對陰極室12供給第2電解液,一邊在陽極室11內所收容的陽極和陰極室12內所收容的陰極之間通電,藉此,在陽極室11內,從陽極產生氧氣,且在陰極室12內,從陰極產生氫氣(步驟(a))。
從陽極室11,含有在陽極室11產生的氧氣之第1氣流及第1電解液被回收(步驟(b))。第1氣流及第1電解液是以氣液混合物的形式通過配管23從陽極室11被回收而導入第1循環槽21,在第1循環槽21進行氣液分離。從陽極室11被回收到第1循環槽21且進行氣液分離後之第1電解液,被貯留於第1循環槽21(步驟(d))。貯留於第1循環槽21之第1電解液,藉由第1循環泵22輸送到陽極室11(步驟(f))。
從陰極室12,含有在陰極室12產生的氫氣之第2氣流及第2電解液被回收(步驟(c))。第2氣流及第2電解液是以氣液混合物的形式通過配管33從陰極室12被回收而導入第2循環槽31,在第2循環槽31進行氣液分離。從陰極室12被回收到第2循環槽31且進行氣液分離後的第2電解液,被貯留於第2循環槽31(步驟(e))。貯留於第2循環槽31之第2電解液,藉由第2循環泵32輸送到陰極室12(步驟(g))。
貯留於第2循環槽31之第2電解液的一部分,藉由第1電解液移送手段251往第1循環槽21移送。藉此將第2電解液的一部分導入第1電解液中(步驟(h))。又從第1循環泵22送出之第1電解液的一部分,藉由第2電解液移送手段252分歧,與從第2循環泵32送出之第2電解液匯合。藉此,將第1電解液的一部分導入第2電解液中(步驟(i))。
從陽極室11被回收的第1氣流,是從第1循環槽21的氣相區域21b通過第1氣體回收管線60被取出。第1氣流的壓力,藉由設置在第1氣流的流路(第1氣體回收管線60)之第1壓力控制閥61控制成既定值(步驟(j))。又從陰極室12被回收的第2氣流,是從第2循環槽31的氣相區域31b通過第2氣體回收管線70被取出。第2氣流的壓力,藉由設置在第2氣流的流路(第2氣體回收管線70)之第2壓力控制閥71控制成既定值(步驟(k))。
藉由使步驟(a)至(k)同時連續地進行,製造出氧氣及氫氣。藉由電解所消耗的水是由純水供給系統40補充。藉由氣體製造裝置200及使用該氣體製造裝置200的形態之氣體製造方法,也能獲得與上述同樣的效果。
<5.氣體製造裝置(3)> 在關於本發明的上述說明所舉的例子,是具備對第2循環槽31供給水之純水供給系統40的形態之氣體製造裝置100及200、以及使用該氣體製造裝置100及200的形態之氣體製造方法,但本發明並不限定於該形態。例如也能採用:具備對第1循環槽21供給水之純水供給系統的形態之氣體製造裝置、及使用該氣體製造裝置的形態之氣體製造方法。
圖3係那樣的另一實施形態的氣體製造裝置300之示意說明圖。在圖3中,對圖1~2所示的要素,有賦予與圖1~2的符號相同的符號而將說明省略的情況。氣體製造裝置300與氣體製造裝置100之不同點在於,取代純水供給系統40而具備純水供給系340。純水供給系340與純水供給系統40之不同點在於,雖是與純水供給系統40同樣地具備純水槽41及水供給泵42,但水供給泵42是將貯留於純水槽41的水供給第1循環槽21。
在氣體製造裝置300中,關於電解液的液量及濃度讓穩定狀態實現的條件,是用式(18)(19)(5)(6)表示。
Figure 02_image039
(式(18)及(19)中,ws1 表示純水供給系統40往第1循環槽21之每單位時間的水供給量[L/s])。 在氣體製造裝置300中,v12 是與第1電解液移送手段51的輸送量同義,v21 是與第2電解液移送手段52的輸送量同義。解式(18)(19)(5)(6)。從式(18)+(19)得出
Figure 02_image041
從式(2)-(1)得出
Figure 02_image043
進一步將式(20)代入而得出
Figure 02_image045
從式(5)及(6),與上述同樣的得出
Figure 02_image047
Figure 02_image049
與上述同樣的使用OH- 透過率α(0<α<1),能用
Figure 02_image051
表示,從式(10)變成
Figure 02_image053
從式(10’)及(21)得出
Figure 02_image055
與上述同樣的用
Figure 02_image057
表示。將式(14)~(16)代入式(20)~(23)而得出
Figure 02_image059
亦即與氣體製造裝置100的情況同樣的,在穩定狀態下,第2電解液循環系統30之電解液濃度C2 (亦即第2電解液的濃度),是維持比第1電解液循環系統20之全體的電解液濃度C1 (亦即第1電解液的濃度)更高。又電解液交換裝置50的輸送量v12 、v21 增加地越多,穩定狀態下之第1電解液和第2電解液的濃度差C2 -C1 越小。
在氣體製造裝置300中,往陽極室11之電解液供給量v1 [L/s]及往陰極室12之電解液供給量v2 [L/s],使用第1循環泵22的輸送量vp1 [L/s]、第2循環泵32的輸送量vp2 [L/s]及第2電解液移送手段52的輸送量v21 [L/s],可分別用
Figure 02_image061
表示。往陽極室11及往陰極室12之電解液供給量v1 、v2 宜為大致相等。具體而言,較佳為以v2 /v1 成為0.80~1.20、更佳為成為0.90~1.10的方式控制第1循環泵22、第2循環泵32及第2電解液移送手段52的輸送量vp1 、vp2 、及v21 。藉由使v2 /v1 在上述範圍內,使陽極室11和陰極室12間之電解後的電解液濃度差穩定,因此要將電解槽10之電解電壓穩定化變容易。
在氣體製造裝置300中,第2電解液移送手段52的輸送量v21 對於第1循環泵22的輸送量vp1 及第2循環泵32的輸送量vp2 之比v21 /vp1 、v21 /vp2 ,分別較佳為0.001以上,更佳為0.003以上,又在一實施形態為0.03以下,較佳為0.01以下。藉由使第2電解液移送手段52的輸送量對於第1循環泵22的輸送量及第2循環泵32的輸送量之比分別為上述下限值以上,可將第1電解液循環系統20的電解液濃度和第2電解液循環系統30的電解液濃度之差進一步減少,要將對陽極室11供給之電解液及對陰極室12供給之電解液的濃度維持於高電力效率的範圍變容易。又藉由使第2電解液移送手段52的輸送量對於第1循環泵22的輸送量及第2循環泵32的輸送量之比分別為上述上限值以下,可將從第1電解液循環系統20和電解液一起帶到第2電解液循環系統30之溶氧量、及從第2電解液循環系統30和電解液一起帶到第1電解液循環系統20之溶氫量減少,可將從第1循環槽21的液相區域21a往氣相區域21b釋出之氫氣減少,而使從第1氣體回收管線60回收之氧氣純度進一步提高,並能將從第2循環槽31的液相區域31a往氣相區域31b釋出之氧氣減少,而使從第2氣體回收管線70回收之氫氣純度進一步提高。
貯留於第1循環槽21之第1電解液的量,相對於第1循環槽21的總容積,較佳為維持在1~99體積%的範圍內,更佳為維持在30~70體積%的範圍內。同樣的,貯留於第2循環槽31之第2電解液的量,相對於第2循環槽31的總容積,較佳為維持在1~99體積%的範圍內,更佳為維持在30~70體積%的範圍內。藉由使貯留於各循環槽21、31之電解液的量在上述範圍內,能讓氣體製造裝置300更穩定地運轉。
<6.氣體製造方法(3)> 氣體製造裝置300的動作、及使用氣體製造裝置300的形態之氣體製造方法,除了純水供給系統40不是對第2循環槽31而是對第1循環槽21供給水這點以外,是與關於氣體製造裝置100之上述說明相同。藉由氣體製造裝置300及使用該氣體製造裝置300的形態之氣體製造方法,也能獲得與上述同樣的效果。
<7.氣體製造裝置(4)> 圖4係另一實施形態的氣體製造裝置400之示意說明圖。在圖4中,對於圖1~3所示的要素,有賦予與圖1~3的符號相同的符號而將說明省略的情況。氣體製造裝置400與氣體製造裝置300之不同點在於,取代電解液交換裝置50而具備電解液交換裝置250(參照圖2)。
在氣體製造裝置400中,關於電解液的液量及濃度讓穩定狀態實現的條件,可考慮是與氣體製造裝置300的情況相同,而用式(18)(19)(5)(6)表示。
Figure 02_image063
在氣體製造裝置400中,v12 是與第2電解液移送手段252的輸送量同義,v21 是與第1電解液移送手段251的輸送量同義。能與上述同樣的解式(18)(19)(5)(6),而得出
Figure 02_image065
亦即與氣體製造裝置300的情況同樣的,在穩定狀態下,第2電解液循環系統30之電解液濃度C2 (亦即第2電解液的濃度),是維持比第1電解液循環系統20之全體的電解液濃度C1 (亦即第1電解液的濃度)更高。又電解液交換裝置250的輸送量v12 、v21 增加地越多,穩定狀態下之第1電解液和第2電解液的濃度差C2 -C1 越小。
在氣體製造裝置400中,往陽極室11之電解液供給量v1 [L/s]及往陰極室12之電解液供給量v2 [L/s],使用第1循環泵22的輸送量vp1 [L/s]、第2循環泵32的輸送量vp2 [L/s]及第2電解液移送手段252的輸送量v12 [L/s],可分別用
Figure 02_image067
表示。往陽極室11及往陰極室12之電解液供給量v1 、v2 宜為大致相等。具體而言,較佳為以v2 /v1 成為0.80~1.20、更佳為成為0.90~1.10的方式控制第1循環泵22、第2循環泵32及第2電解液移送手段252的輸送量vp1 、vp2 、及v12 。藉由使v2 /v1 在上述範圍內,使陽極室11和陰極室12間之電解後的電解液濃度差穩定,因此要將電解槽10之電解電壓穩定化變容易。
在氣體製造裝置400中,第2電解液移送手段252的輸送量v12 對於第1循環泵22的輸送量vp1 及第2循環泵32的輸送量vp2 之比v12 /vp1 、v12 /vp2 ,分別較佳為0.001以上、更佳為0.003以上,又在一實施形態為0.03以下,較佳為0.01以下。藉由使第2電解液移送手段252的輸送量對於第1循環泵22的輸送量及第2循環泵32的輸送量之比分別為上述下限值以上,可將第1電解液循環系統20的電解液濃度和第2電解液循環系統30的電解液濃度之差進一步減少,要將對陽極室11供給之電解液及對陰極室12供給之電解液的濃度維持於高電力效率的範圍變容易。又藉由使第2電解液移送手段252的輸送量對於第1循環泵22的輸送量及第2循環泵32的輸送量之比分別為上述上限值以下,可將從第1電解液循環系統20和電解液一起帶到第2電解液循環系統30之溶氧量、及從第2電解液循環系統30和電解液一起帶到第1電解液循環系統20之溶氫量減少,可將從第1循環槽21的液相區域21a往氣相區域21b釋出之氫氣減少,而使從第1氣體回收管線60回收之氧氣純度進一步提高,並能將從第2循環槽31的液相區域31a往氣相區域31b釋出之氧氣減少,而使從第2氣體回收管線70回收之氫氣純度進一步提高。
貯留於第1循環槽21之第1電解液的量,相對於第1循環槽21的總容積,較佳為維持在1~99體積%的範圍內,更佳為維持在30~70體積%的範圍內。同樣的,貯留於第2循環槽31之第2電解液的量,相對於第2循環槽31的總容積,較佳為維持在1~99體積%的範圍內,更佳為維持在30~70體積%的範圍內。藉由使貯留於各循環槽21、31之電解液的量在上述範圍內,能讓氣體製造裝置400更穩定地運轉。
<8.氣體製造方法(4)> 氣體製造裝置400的動作、及使用氣體製造裝置400的形態之氣體製造方法,除了純水供給系統40不是對第2循環槽31而是對第1循環槽21供給水這點以外,是與關於氣體製造裝置200之上述說明相同。藉由氣體製造裝置400及使用該氣體製造裝置400的形態之氣體製造方法,也能獲得與上述同樣的效果。
<9.氣體製造裝置(5)> 圖5係另一實施形態的氣體製造裝置500之示意說明圖。在圖5中,對圖1~4所示之要素,有賦予與圖1~4的符號相同的符號而將說明省略的情況。氣體製造裝置500與氣體製造裝置100(參照圖1)之不同點在於進一步具備:控制第1壓力控制閥61的上游側之第1氣流的壓力和第2壓力控制閥71的上游側之第2氣流的壓力之差壓的差壓控制手段80。在圖5中,虛線的箭頭表示資訊的流動方向。
差壓控制手段80具備差壓偵測器81及閥控制裝置82。差壓偵測器81,是測定第1壓力控制閥61的上游側之第1氣流的壓力和第2壓力控制閥71的上游側之第2氣流的壓力之差壓。作為差壓偵測器81,可採用公知的差壓感測器。差壓偵測器81的測定結果輸入閥控制裝置82。閥控制裝置82,至少接收差壓偵測器81的偵測信號,並對第1壓力控制閥61及/或第2壓力控制閥71發送控制閥的開度之信號。在一實施形態中,閥控制裝置82,是根據差壓偵測器81的測定結果,以使上述差壓維持在既定的上限值以下的方式控制第1壓力控制閥61及/或第2壓力控制閥71的開度。差壓控制手段80,可將第1壓力控制閥61的開度固定並調整第2壓力控制閥71的開度,藉此進行差壓控制;亦可將第2壓力控制閥71的開度固定並調整第1壓力控制閥61的開度,藉此進行差壓控制;亦可調整第1壓力控制閥61的開度和第2壓力控制閥71的開度雙方,藉此進行差壓控制。
閥控制裝置82,除了差壓偵測器81的偵測信號以外,可進一步接收壓力計63及/或壓力計73的偵測信號。在一實施形態中,閥控制裝置82,除了差壓偵測器81的測定結果,還根據壓力計63及/或壓力計73的測定結果來進行第1壓力控制閥61及/或第2壓力控制閥71的控制,以使第1壓力控制閥61的上游側之第1氣流的壓力及第2壓力控制閥71的上游側之第2氣流的壓力維持在既定範圍內且上述差壓維持在既定上限值以下的方式,控制第1壓力控制閥61及/或第2壓力控制閥71的開度。
閥控制裝置82所執行之第1壓力控制閥61及/或第2壓力控制閥71的控制,沒有特別限制,可採用例如以往的反饋控制等。又作為閥控制裝置82,沒有特別限制,可採用能進行那樣的反饋控制之以往的控制裝置(例如,具備微處理器及記憶裝置之電子計算機、可程式化邏輯控制器(PLC)等)。
依據具備差壓控制手段80的形態之氣體製造裝置500,除了能將第1循環槽21及第2循環槽31之液面高度差進一步減少,還能抑制住:在電解槽10中藉由差壓而將一極室中的氣體透過隔膜往另一極室中推入所造成之氣體純度降低。基於將具備差壓控制手段80所產生的該效果進一步提高的觀點,差壓控制裝置80較佳為將第1壓力控制閥61的上游側之第1氣流的壓力和第2壓力控制閥71的上游側之第2氣流的壓力之差壓控制在10kPa以下,更佳為控制在1kPa以下。
<10.氣體製造方法(5)> 氣體製造裝置500的動作、及使用氣體製造裝置500的形態之氣體製造方法,除了關於差壓控制手段80的事項以外,是與關於氣體製造裝置100之上述說明相同。在氣體製造裝置500中進一步具備:利用差壓控制手段80,將第1壓力控制閥61的上游側之第1氣流的壓力和第2壓力控制閥71的上游側之第2氣流的壓力之差壓控制成既定值(步驟(p))。具體而言,利用差壓偵測器81,測定第1壓力控制閥61的上游側之第1氣流的壓力和第2壓力控制閥71的上游側之第2氣流的壓力之差壓(步驟(p1)),根據步驟(p1)的測定結果,在上述步驟(j)及(k)控制第1壓力控制閥61及/或第2壓力控制閥71(步驟(p2))。步驟(p),是與上述說明的步驟(a)至(k)同時連續地進行。依據該形態的氣體製造方法,除了關於使用氣體製造裝置100的形態之氣體製造方法之上述說明的效果,可將第1循環槽21及第2循環槽31之液面高度差進一步減少,還能抑制住:在電解槽10中藉由差壓而將一極室中的氣體透過隔膜往另一極室中推入所造成之氣體純度降低。
<11.氣體製造裝置(6)> 圖6係另一實施形態的氣體製造裝置600之示意說明圖。在圖6中,對於圖1~5所示的要素,有賦予與圖1~5的符號相同的符號而將說明省略的情況。氣體製造裝置600與氣體製造裝置500(參照圖5)之不同點在於,取代第1氣體回收管線60而具備第1氣體回收管線660,取代第2氣體回收管線70而具備第2氣體回收管線670。
第1氣體回收管線660與第1氣體回收管線60之不同點在於,進一步具備第1冷卻裝置664及第1過濾裝置665。第1冷卻裝置664及第1過濾裝置665配置在第1壓力控制閥61的上游側。第1冷卻裝置664接收並冷卻從第1循環槽21的氣相區域21b流出之第1氣流。第1過濾裝置665配置在第1冷卻裝置664的下游側,用於接收藉由第1冷卻裝置664冷卻後的第1氣流,並將該第1氣流中之液化後的水分除去。藉由使第1氣流經過第1冷卻裝置664及第1過濾裝置665,可從第1氣流將電解液霧氣及水蒸氣除去。作為第1冷卻裝置664及第1過濾裝置665,可採用以往的氣體精製所使用之氣體冷卻裝置及過濾裝置。在第1冷卻裝置664及第1過濾裝置665產生之排水,可廢棄或送回電解液。第1冷卻裝置664及第1過濾裝置665,藉由配置在第1壓力控制閥61的上游側,使第1壓力控制閥61不容易受第1氣流所含之電解液霧氣及水蒸氣的影響。
第2氣體回收管線670與第2氣體回收管線70之不同點在於,進一步具備第2冷卻裝置674及第2過濾裝置675。第2冷卻裝置674及第2過濾裝置675配置在第2壓力控制閥71的上游側。第2冷卻裝置674是接收並冷卻從第2循環槽31的氣相區域31b流出之第2氣流。第2過濾裝置675配置在第2冷卻裝置674的下游側,用於接收藉由第2冷卻裝置674冷卻後的第2氣流,並將該第2氣流中之液化後的水分除去。藉由使第2氣流經由第2冷卻裝置674及第2過濾裝置675,可從第2氣流將電解液霧氣及水蒸氣除去。作為第2冷卻裝置674及第2過濾裝置675,可採用以往的氣體精製所使用之氣體冷卻裝置及過濾裝置。在第2冷卻裝置674及第2過濾裝置675產生的排水,可廢棄或送回電解液。第2冷卻裝置674及第1過濾裝置675,藉由配置在第2壓力控制閥71的上游側,使第2壓力控制閥71不容易受第2氣流所含之電解液霧氣及水蒸氣的影響。
依據進一步具備第1冷卻裝置664及第1過濾裝置665、以及第2冷卻裝置674及第2過濾裝置675的形態之氣體製造裝置600,可製造出進一步將純度提高之氧氣及氫氣。又在第1冷卻裝置664及第1過濾裝置665的下游側、或第1壓力控制閥61的下游側,可進一步設置從第1氣流將氫氣除去的氫氣除去裝置;在第2冷卻裝置674及第2過濾裝置675的下游側、或第2壓力控制閥71的下游側,可進一步設置從第2氣流將氧氣除去的氧氣除去裝置。
<12.氣體製造方法(6)> 關於氣體製造裝置600的動作、及使用氣體製造裝置600的形態之氣體製造方法,除了關於第1冷卻裝置664及第1過濾裝置665、以及第2冷卻裝置674及第2過濾裝置675的事項以外,是與關於使用氣體製造裝置500的形態之氣體製造方法的上述說明相同。
從陽極室11被回收後,從第1循環槽21的氣相區域21b流出之第1氣流,是在第1冷卻裝置664被冷卻(步驟(l))。在第1過濾裝置665中,從經過步驟(l)的第1氣流將在步驟(l)中凝結後的水分除去(步驟(n))。經過步驟(l)及(n)之第1氣流的壓力是由第1壓力控制閥61控制(步驟(j))。從陰極室12被回收後,從第2循環槽31的氣相區域31b流出之第2氣流,是在第2冷卻裝置674被冷卻(步驟(m))。在第2過濾裝置675中,從經過步驟(m)的第2氣流將在步驟(m)中凝結後的水分除去(步驟(o))。經過步驟(m)及(o)之第2氣流的壓力是由第2壓力控制閥71控制(步驟(k))。步驟(l)至(o),是與上述說明的步驟(a)至(k)及(p)同時連續地進行。
依據使用進一步具備第1冷卻裝置664及第1過濾裝置665、以及第2冷卻裝置674及第2過濾裝置675的氣體製造裝置600的形態之氣體製造方法,比起使用氣體製造裝置500的形態之氣體製造方法,可製造出進一步將純度提高之氧氣及氫氣。
在關於本發明的上述說明,雖是說明:第1冷卻裝置664及第1過濾裝置665配置在第1壓力控制閥61的上游側、第2冷卻裝置674及第2過濾裝置675配置在第2壓力控制閥71的上游側的形態之氣體製造裝置600、以及使用該氣體製造裝置600的形態之氣體製造方法,但本發明並不限定於該形態。圖7係另一實施形態的氣體製造裝置600’之示意說明圖。在圖7中,對於圖1~6所示的要素,有賦予與圖1~6的符號相同的符號而將說明省略的情況。氣體製造裝置600’與氣體製造裝置600(圖6)之不同點在於,第1冷卻裝置664及第1過濾裝置665配置在第1壓力控制閥61的下游側,第2冷卻裝置674及第2過濾裝置675配置在第2壓力控制閥71的下游側。在氣體製造裝置600’中,第1冷卻裝置664接收並冷卻從第1壓力控制閥61的二次側流出之第1氣流。第1過濾裝置665是接收藉由第1冷卻裝置664冷卻後之第1氣流,並將該第1氣流中之液化後的水分除去。藉由使第1氣流經過第1冷卻裝置664及第1過濾裝置665,而從第1氣流將電解液霧氣及水蒸氣除去。又在氣體製造裝置600’中,第2冷卻裝置674是接收並冷卻從第2壓力控制閥71的二次側流出之第2氣流。第2過濾裝置675,是接收藉由第2冷卻裝置674冷卻後的第2氣流,並將該第2氣流中之液化後的水分除去。藉由使第2氣流經過第2冷卻裝置674及第2過濾裝置675,而從第2氣流將電解液霧氣及水蒸氣除去。藉由該形態的氣體製造裝置600’,與上述說明的氣體製造裝置600同樣的,也能製造出純度提高的氧氣及氫氣。又在氣體製造裝置600’中,在第1冷卻裝置664及第1過濾裝置665的下游側可進一步設置從第1氣流將氫氣除去之氫氣除去裝置,在第2冷卻裝置674及第2過濾裝置675的下游側可進一步設置從第2氣流將氧氣除去之氧氣除去裝置。
關於氣體製造裝置600’的動作、及使用氣體製造裝置600的形態之氣體製造方法,除了使第1氣流經過第1壓力控制閥61之後通過第1冷卻裝置664及第1過濾裝置665、以及使第2氣流經過第2壓力控制閥71之後通過第2冷卻裝置674及第2過濾裝置675以外,是與關於使用氣體製造裝置600的形態之氣體製造方法的上述說明相同。
經過第1壓力控制閥61的第1氣流,在第1冷卻裝置664中被冷卻(步驟(l))。在第1過濾裝置665中,從經過步驟(l)的第1氣流將在步驟(l)中凝結後的水分除去(步驟(n))。 經過第2壓力控制閥71的第2氣流,在第2冷卻裝置674中被冷卻(步驟(m))。在第2過濾裝置675中,從經過步驟(m)之第2氣流將在步驟(m)中凝結後的水分除去(步驟(o))。 步驟(l)至(o),是與上述說明的步驟(a)至(k)及(p)同時連續地進行。
藉由使用氣體製造裝置600’的形態之氣體製造方法,比起使用氣體製造裝置500的形態之氣體製造方法,可製造出進一步將純度提高之氧氣及氫氣。
<13.氣體製造裝置(7)> 在關於本發明的上述說明所舉的例子,是具備電解液交換裝置50/250的形態之氣體製造裝置100、200、300、400、500、600、及使用該形態的氣體製造裝置之氣體製造方法,在電解液交換裝置50/250,作為第1電解液移送手段51/251及第2電解液移送手段52/252是分別具有泵,但本發明並不限定於該形態。例如,所具備的電解液交換裝置沒有泵的形態之氣體製造裝置、及使用該氣體製造裝置的形態之氣體製造方法也是可能的。
圖8係那樣的另一實施形態的氣體製造裝置700之示意說明圖。在圖8中,對於圖1~7所示的要素,有賦予與圖1~7的符號相同的符號而將說明省略的情況。氣體製造裝置700與氣體製造裝置100(圖1)之不同點在於,取代電解液交換裝置50而具有電解液交換裝置750。電解液交換裝置750與電解液交換裝置50之不同點在於,取代第1電解液移送手段51而具有第1電解液移送手段751,取代第2電解液移送手段52而具有第2電解液移送手段752。又在氣體製造裝置700中,作為第1循環泵22及第2循環泵32較佳為採用非容積式泵。
為了便於說明,在說明第1電解液移送手段751之前,先說明第2電解液移送手段752。第2電解液移送手段752係具有:在第1配管25上串列設置於第1循環泵22的出口側之第1流量計F1及第1流量控制閥FCV1、在第2配管35上設置在第2循環泵32的出口側之第2流量計F2、在第2配管35上設置在第2流量計F2的下游側之第2流量控制閥FCV2、從第2配管35上之第2流量計F2的下游側且第2流量控制閥FCV2的上游側將電解液導向第1配管25上之第1流量計及第1流量控制閥FCV1的下游側之第3配管7525、在第3配管7525的途中串列設置之第3流量計F3及第3流量控制閥FCV3。作為第1、第2、及第3流量計F1、F2、及F3,沒有特別限制,可採用面積流量計、容積流量計、柯氏質量流量計(Coriolis flow meter)、電磁流量計等之可測定電解液的流量之公知流量計。又作為第1、第2、及第3流量控制閥FCV1、FCV2、及FCV3,沒有特別限制,可採用球閥、蝶形閥、球形閥(glove valve)、針閥等之閥開度可連續控制之公知控制閥。第1、第2、第3流量控制閥FCV1、FCV2、FCV3的開度,分別被控制成使第1、第2、及第3流量計F1、F2、F3的測定值成為既定值。
第1循環泵22的輸送量vp1 [L/s]、第2循環泵32的輸送量vp2 [L/s]、第2電解液移送手段752的輸送量v21 [L/s]、往陽極室11之電解液供給量v1 [L/s]、及往陰極室12之電解液供給量v2 [L/s],使用第1流量計F1的測定值f1 [L/s]、第2流量計F2的測定值f2 [L/s]及第3流量計F3的測定值f3 [L/s],可分別用
Figure 02_image069
表示。f3 的目標值可根據例如上述式(13’)而以v21 的形式求出。
像關於氣體製造裝置100之上述說明那樣,往陽極室11及陰極室12的電解液供給量v1 、v2 宜為大致相等。具體而言,較佳為以v2 /v1 成為0.80~1.20、更佳為成為0.90~1.10的方式控制第1循環泵22、第2循環泵32及第2電解液移送手段752的輸送量vp1 、vp2 、及v21 。藉由使v2 /v1 在上述範圍內,使陽極室11和陰極室12間之電解後的電解液濃度差穩定,因此要將電解槽10之電解電壓穩定化變容易。
又像關於氣體製造裝置100之上述說明那樣,第2電解液移送手段752的輸送量v21 對於第1循環泵22的輸送量vp1 及第2循環泵32的輸送量vp2 之比v21 /vp1 、v21 /vp2 ,分別較佳為0.001以上,更佳為0.003以上,又在一實施形態中為0.03以下,較佳為0.01以下。藉由使第2電解液移送手段752的輸送量對於第1循環泵22的輸送量及第2循環泵32的輸送量之比分別為上述下限值以上,可將第1電解液循環系統20的電解液濃度和第2電解液循環系統30的電解液濃度之差進一步減少,要將對陽極室11供給之電解液及對陰極室12供給之電解液的濃度維持於高電力效率的範圍變容易。又藉由使第2電解液移送手段752的輸送量對於第1循環泵22的輸送量及第2循環泵32的輸送量之比分別為上述上限值以下,可將從第1電解液循環系統20和電解液一起帶到第2電解液循環系統30之溶氧量、及從第2電解液循環系統30和電解液一起帶到第1電解液循環系統20之溶氫量減少,可將從第1循環槽21的液相區域21a往氣相區域21b釋出之氫氣減少,而使從第1氣體回收管線60回收之氧氣純度進一步提高,並能將從第2循環槽31的液相區域31a往氣相區域31b釋出之氧氣減少,而使從第2氣體回收管線70回收之氫氣純度進一步提高。
如果往陽極室11的電解液供給量v1 (=f1 +f3 :式(27))、往陰極室12的電解液供給量v2 (=f2 -f3 :式(28))、及第2電解液移送手段752的輸送量v21 (=f3 :式(26))之目標值確定,f1 及f2 的目標值也能從式(27)及(28)而分別以
Figure 02_image071
的形式確定,因此能以讓f1 、f2 、f3 的目標值實現的方式控制第1~第3流量控制閥FCV1、FCV2、及FCV3的開度。第1~第3流量控制閥FCV1、FCV2、及FCV3之開度的控制,可採用反饋控制等之公知的控制手段。
作為一例,當流過第1流量計F1的流量f1 和流過第2流量計F2的流量f2 維持為相同的情況,以第2流量控制閥FCV2之壓力損失Pd FCV2 比第1流量控制閥FCV1之壓力損失Pd FCV1 更大(亦即Pd FCV2 >Pd FCV1 )的方式調整第1及第2流量控制閥FCV1、FCV2的開度(例如第1及第2流量控制閥FCV1、FCV2為同一規格的控制閥的情況,使第1流量控制閥FCV1的開度OFCV1 比第2流量控制閥FCV2的開度OFCV2 更大(OFCV1 >OFCV2 )),藉此可通過具備第3流量控制閥FCV3及第3流量計F3之第3配管7525從第2配管35往第1配管25移送電解液。又基於反抗第1配管25的第1流量控制閥FCV1之下游側的壓力而將電解液移送之觀點,第3流量控制閥FCV3的開度較佳為控制成,使第3流量控制閥FCV3的壓力損失Pd FCV3 比第1流量控制閥FCV1的壓力損失Pd FCV1 更小(Pd FCV3 <Pd FCV1 )。又在第3配管7525的途中可進一步設置:防止電解液朝相反方向(從第1配管25往第2配管35)流動的止回閥(check valve)。
第1電解液移送手段751,是將第1循環槽21的液相區域21a和第2循環槽31的液相區域31a連接之連通配管(以下,也將第1電解液移送手段751稱為「連通配管751」)。又在氣體製造裝置700中,第1循環槽21及第2循環槽31較佳為配置在大致同一高度。如上述說明般,第2電解液移送手段752,因為是將通過用於連接第2循環泵32的出口側與陰極室12的入口側之第2配管35之第2電解液的一部分,往連接第1循環泵22的出口側與陽極室11的入口側之第1配管25輸送,而發揮使貯留於第1循環槽21之第1電解液的液量比貯留於第2循環槽31之第2電解液的液量增加之作用。因此貯留於第1循環槽21之第1電解液的一部分,利用重力作為驅動力,以消除第1循環槽21的液面和第2循環槽31的液面間之液面差的方式通過連通配管751往第2循環槽31移動。如此般,藉由第1電解液移送手段751,將貯留於第1循環槽21之第1電解液的一部分往第2循環槽31輸送。
貯留於第1循環槽21之第1電解液的量,相對於第1循環槽21的總容積,較佳為維持在1~99體積%的範圍內,更佳為維持在30~70體積%的範圍內。同樣的,貯留於第2循環槽31之第2電解液的量,相對於第2循環槽31的總容積,較佳為維持在1~99體積%的範圍內,更佳為維持在30~70體積%的範圍內。藉由使貯留於各循環槽21、31之電解液的量在上述範圍內,能讓氣體製造裝置700更穩定地運轉。
如此般,藉由作為電解液交換裝置是取代泵而使用流量控制閥(FCV1、FCV2、FCV3)和連通配管(751)的組合形態之氣體製造裝置700,也能獲得與上述同樣的效果。又依據該形態的氣體製造裝置700,除了能減少電解液交換裝置之能量消耗以外,還能將第1循環槽21和第2循環槽31的液面差藉由連通配管751而自動減少乃至消除,因此為了將第1及第2循環槽21、31的液面高度維持於既定水準而控制第1電解液移送手段(51、251)及第2電解液移送手段(52、252)的輸送量之處理變得不需要。因此依據該形態的氣體製造裝置700,可謀求設備成本及運轉成本的降低及控制的簡化。
<14.氣體製造方法(7)> 關於氣體製造裝置700的動作、及使用氣體製造裝置700的形態之氣體製造方法,參照圖8進一步地說明。
關於步驟(a)~(g)、(j)及(k),是與關於使用氣體製造裝置100(圖1)的形態之氣體製造方法的上述說明相同。
從第2循環泵32送出之第2電解液的一部分,藉由第2電解液移送手段752分歧而與從第1循環泵22送出之第1電解液匯合。藉此將第2電解液的一部分導入第1電解液中(步驟(i))。貯留於第1循環槽21之第1電解液的一部分,是藉由第1電解液移送手段(連通配管)751往第2循環槽31移送。藉此將第1電解液的一部分導入第2電解液中(步驟(h))。
藉由使步驟(a)至(k)同時連續地進行,而製造出氧氣及氫氣。藉由電解所消耗的水是由純水供給系統40補充。
藉由氣體製造裝置700及使用該氣體製造裝置700的形態之氣體製造方法,也能獲得與上述同樣的效果。
<15.氣體製造裝置(8)> 在關於本發明的上述說明所舉例的形態之氣體製造裝置700、以及使用該氣體製造裝置700的形態之氣體製造方法,其所具備的電解液交換裝置750係包含第1電解液移送手段751及第2電解液移送手段752,第1電解液移送手段751是將貯留於第1循環槽21之第1電解液的一部分往第2循環槽31移送,第2電解液移送手段752,是將流過第2配管35之第2電解液的一部分往第1配管25移送,第2配管35是連接第2循環泵32的出口側與陰極室12的入口側,第1配管25是連接第1循環泵22的出口側與陽極室11的入口側,但本發明並不限定於該形態。例如也能採用以下形態的氣體製造裝置、及使用該氣體製造裝置的形態之氣體製造方法,其所具備的電解液交換裝置沒有泵且包含第1電解液移送手段及第2電解液移送手段,第1電解液移送手段是將貯留於第2循環槽31之第2電解液的一部分往第1循環槽21移送,第2電解液移送手段,是將流過第1配管25之第1電解液的一部分往第2配管35移送,第1配管25是連接第1循環泵22的出口側與陽極室11的入口側,第2配管35是連接第2循環泵32的出口側與陰極室12的入口側。
圖9係那樣的另一實施形態的氣體製造裝置800之示意說明圖。在圖9中,對於圖1~8所示的要素,有賦予之圖1~8的符號相同的符號而將說明省略的情況。氣體製造裝置800與氣體製造裝置200(圖2)之不同點在於,取代電解液交換裝置250而具備電解液交換裝置850。電解液交換裝置850與電解液交換裝置250之不同點在於,取代第1電解液移送手段251而具備第1電解液移送手段851,取代第2電解液移送手段252而具備第2電解液移送手段852。又在氣體製造裝置800中,作為第1循環泵22及第2循環泵32較佳為採用非容積式泵。
為了便於說明,在說明第1電解液移送手段851之前,先說明第2電解液移送手段852。第2電解液移送手段852係具有:在第1配管25上設置於第1循環泵22的出口側之第1流量計F1、在第1配管25上設置於第1流量計F1的下游側之第1流量控制閥FCV1、在第2配管35上串列設置於第2循環泵32的出口側之2流量計F2及第2流量控制閥FCV2、從第1配管25上之第1流量計F1的下游側且第1流量控制閥FCV1的上游側將解液導向第2配管35上之第2流量計F2及第2流量控制閥FCV2的下游側之第3配管8525、在第3配管8525的途中串列設置之第3流量計F3及第3流量控制閥FCV3。作為第1、第2、及第3流量計F1、F2、及F3,沒有特別限制,可採用面積流量計、容積流量計、柯氏質量流量計(Coriolis flow meter)、電磁流量計等之可測定電解液的流量之公知流量計。又作為第1、第2、及第3流量控制閥FCV1、FCV2、及FCV3,沒有特別限制,可採用球閥、蝶形閥、球形閥(glove valve)、針閥等之閥開度可連續控制之公知控制閥。第1、第2、第3流量控制閥FCV1、FCV2、FCV3的開度,分別被控制成使第1、第2、及第3流量計F1、F2、F3的測定值成為既定值。
第1循環泵22的輸送量vp1 [L/s]、第2循環泵32的輸送量vp2 [L/s]、第2電解液移送手段852的輸送量v12 [L/s]、往陽極室11之電解液供給量v1 [L/s]、及往陰極室12之電解液供給量v2 [L/s],使用第1流量計F1的測定值f1 [L/s]、第2流量計F2的測定值f2 [L/s]及第3流量計F3的測定值f3 [L/s],可分別用
Figure 02_image073
表示。f3 的目標值可例如根據上述式(12’)而以v12 的形式求出。
像關於氣體製造裝置200之上述說明那樣,往陽極室11及陰極室12的電解液供給量v1 、v2 宜為大致相等。具體而言,較佳為以v2 /v1 成為0.80~1.20、更佳為成為0.90~1.10的方式控制第1循環泵22、第2循環泵32及第2電解液移送手段852的輸送量vp1 、vp2 、及v12 。藉由使v2 /v1 在上述範圍內,使陽極室11和陰極室12間之電解後的電解液濃度差穩定,因此要將電解槽10之電解電壓穩定化變容易。
又像關於氣體製造裝置200之上述說明那樣,第2電解液移送手段852的輸送量v12 對於第1循環泵22的輸送量vp1 及第2循環泵32的輸送量vp2 之比v12 /vp1 、v12 /vp2 ,分別較佳為0.001以上,更佳為0.003以上,又在一實施形態中為0.03以下,較佳為0.01以下。藉由使第2電解液移送手段852的輸送量對於第1循環泵22的輸送量及第2循環泵32的輸送量之比分別為上述下限值以上,可將第1電解液循環系統20的電解液濃度和第2電解液循環系統30的電解液濃度之差進一步減少,要將對陽極室11供給之電解液及對陰極室12供給之電解液的濃度維持於高電力效率的範圍變容易。又藉由使第2電解液移送手段852的輸送量對於第1循環泵22的輸送量及第2循環泵32的輸送量之比分別為上述上限值以下,可將從第1電解液循環系統20和電解液一起帶到第2電解液循環系統30之溶氧量、及從第2電解液循環系統30和電解液一起帶到第1電解液循環系統20之溶氫量減少,可將從第1循環槽21的液相區域21a往氣相區域21b釋出之氫氣減少,而使從第1氣體回收管線60回收之氧氣純度進一步提高,並能將從第2循環槽31的液相區域31a往氣相區域31b釋出之氧氣減少,而使從第2氣體回收管線70回收之氫氣純度進一步提高。
如果往陽極室11之電解液供給量v1 (=f1 -f3 :式(30))、往陰極室12之電解液供給量v2 (=f2 +f3 :式(31))及第2電解液移送手段852的輸送量v12 (=f3 :式(29))的目標值確定,f1 及f2 的目標值也能從式(30)及(31)而分別以
Figure 02_image075
的形式確定,因此能以讓f1 、f2 、f3 的目標值實現的方式控制第1~第3流量控制閥FCV1、FCV2、及FCV3的開度。第1~第3流量控制閥FCV1、FCV2、及FCV3之開度的控制,可採用反饋控制等之公知的控制手段。
作為一例,當流過第1流量計F1的流量f1 和流過第2流量計F2的流量f2 維持為相同的情況,以第2流量控制閥FCV2之壓力損失Pd FCV2 比第1流量控制閥FCV1之壓力損失Pd FCV1 更小(亦即Pd FCV2 <Pd FCV1 )的方式調整第1及第2流量控制閥FCV1、FCV2的開度(例如第1及第2流量控制閥FCV1、FCV2為同一規格的控制閥的情況,使第1流量控制閥FCV1的開度OFCV1 比第2流量控制閥FCV2的開度OFCV2 更小(OFCV1 <OFCV2 )),藉此可通過具備第3流量控制閥FCV3及第3流量計F3之第3配管8525從第1配管25往第2配管35移送電解液。又基於反抗第2配管35的第2流量控制閥FCV2之下游側的壓力而將電解液移送之觀點,第3流量控制閥FCV3的開度較佳為控制成,使第3流量控制閥FCV3的壓力損失Pd FCV3 比第2流量控制閥FCV2的壓力損失Pd FCV2 更小(Pd FCV3 <Pd FCV2 )。又在第3配管8525的途中可進一步設置:防止電解液朝相反方向(從第2配管35往第1配管25)流動的止回閥(check valve)。
第1電解液移送手段851,是將第1循環槽21的液相區域21a和第2循環槽31的液相區域31a連接之連通配管(以下,也將第1電解液移送手段851稱為「連通配管851」)。又在氣體製造裝置800中,第1循環槽21及第2循環槽31較佳為配置在大致同一高度。如上述說明般,第2電解液移送手段852,因為是將流過用於連接第1循環泵22的出口側與陽極室11的入口側之第1配管25之第1電解液的一部分往連接第2循環泵32的出口側與陰極室12的入口側之第2配管35輸送,而發揮使貯留於第2循環槽31之第2電解液的液量比貯留於第1循環槽21之第1電解液的液量增加之作用。因此貯留於第2循環槽31之第2電解液的一部分,利用重力作為驅動力,以消除第1循環槽21的液面和第2循環槽31的液面間之液面差的方式通過連通配管851往第1循環槽21移動。如此般,藉由第1電解液移送手段851,將貯留於第2循環槽31之第2電解液的一部分往第1循環槽21輸送。
貯留於第1循環槽21之第1電解液的量,相對於第1循環槽21的總容積,較佳為維持在1~99體積%的範圍內,更佳為維持在30~70體積%的範圍內。同樣的,貯留於第2循環槽31之第2電解液的量,相對於第2循環槽31的總容積,較佳為維持在1~99體積%的範圍內,更佳為維持在30~70體積%的範圍內。藉由使貯留於各循環槽21、31之電解液的量在上述範圍內,能讓氣體製造裝置800更穩定地運轉。
如此般,藉由作為電解液交換裝置是取代泵而使用流量控制閥(FCV1~FCV3)和連通配管(851)的組合形態之氣體製造裝置800,也能獲得與上述同樣的效果。又依據該形態的氣體製造裝置800,除了能減少電解液交換裝置之能量消耗以外,還能將第1循環槽21和第2循環槽31的液面差藉由連通配管851而自動減少乃至消除,因此為了將第1及第2循環槽21、31的液面高度維持於既定水準而控制第1電解液移送手段(51、251)及第2電解液移送手段(52、252)的輸送量之處理變得不需要。因此依據該形態的氣體製造裝置800,可謀求設備成本及運轉成本的降低及控制的簡化。
<16.氣體製造方法(8)> 關於氣體製造裝置800的動作、及使用氣體製造裝置800的形態之氣體製造方法,參照圖9進一步地說明。
關於步驟(a)~(g)、(j)及(k),是與關於使用氣體製造裝置200(圖2)的形態之氣體製造方法的上述說明相同。
從第1循環泵22送出之第1電解液的一部分,藉由第2電解液移送手段852分歧,而與從第2循環泵32送出之第2電解液匯合。藉此將第1電解液的一部分導入第2電解液中(步驟(i))。又貯留於第2循環槽31之第2電解液的一部分,藉由第1電解液移送手段(連通配管)851往第1循環槽21移送。藉此將第2電解液的一部分導入第1電解液中(步驟(h))。
藉由使步驟(a)至(k)同時連續地進行而製造出氧氣及氫氣。藉由電解所消耗的水是由純水供給系統40補充。
藉由氣體製造裝置800及使用該氣體製造裝置800的形態之氣體製造方法,也能獲得與上述同樣的效果。
在關於本發明之上述說明所舉的例子,是具備對第1循環槽21或第2循環槽31的任一方供給水之純水供給系統40或340的形態之氣體製造裝置100、200、300、400、500、600、700、800及使用該氣體製造裝置的形態之氣體製造方法,但本發明並不限定於該形態。例如也可以採用:純水供給系統對第1循環槽及第2循環槽雙方供給水的形態之氣體製造裝置、及使用該氣體製造裝置的形態之氣體製造方法。
在關於本發明之上述說明所舉的例子,乃是不具備氣液分離器而在第1循環槽21的內部進行第1氣流和第1電解液的氣液分離且在第2循環槽31的內部進行第2氣流和第2電解液的氣液分離的形態之氣體製造裝置100、200、300、400、500、600、700、800以及使用該氣體製造裝置的形態之氣體製造方法,但本發明並不限定於該形態。例如也能採用以下形態的氣體製造裝置、及使用該氣體製造裝置的形態之氣體製造方法。該氣體製造裝置係具備:將從陽極室流出之第1氣流和第1電解液的氣液混合物收容並進行氣液分離的第1氣液分離器、及將從陰極室流出之第2氣流和第2電解液的氣液混合物收容並進行氣液分離的第2氣液分離器,藉由第1氣液分離器進行氣液分離後的第1電解液貯留於第1循環槽,藉由第1氣液分離器進行氣液分離後的第1氣流從第1氣體回收管線被回收,藉由第2氣液分離器進行氣液分離後的第2電解液貯留於第2循環槽,藉由第2氣液分離器進行氣液分離後的第2氣流從第2氣體回收管線被回收。藉由那樣的形態之氣體製造裝置及氣體製造方法,也能獲得本發明之上述效果。
100、200、300、400、500、600、600’、700、800:氣體製造裝置 10:電解槽 11:陽極室 12:陰極室 13:(離子透過性)隔膜 20:第1電解液循環系統 21:第1循環槽 21a:液相區域 21b:氣相區域 22:第1循環泵 23、24:配管 25:第1配管 30:第2電解液循環系統 31:第2循環槽 31a:液相區域 31b:氣相區域 32:第2循環泵 33、34:配管 35:第2配管 40:純水供給系 41:純水槽 42:水供給泵 50、250、750、850:電解液交換裝置 51、251、751、851:第1電解液移送手段 52、252、752、852:第2電解液移送手段 7525、8525:第3配管 F1:第1流量計 F2:第2流量計 F3:第3流量計 FCV1:第1流量控制閥 FCV2:第2流量控制閥 FCV3:第3流量控制閥 60、660:第1氣體回收管線 61:第1壓力控制閥 62:配管 63:壓力計 664:第1冷卻裝置 665:第1過濾裝置 70、670:第2氣體回收管線 71:第2壓力控制閥 72:配管 73:壓力計 674:第2冷卻裝置 675:第2過濾裝置 80:差壓控制手段 81:差壓偵測器 82:閥控制裝置
圖1係本發明的一實施形態之氣體製造裝置100之示意說明圖。 圖2係本發明的另一實施形態之氣體製造裝置200之示意說明圖。 圖3係本發明的另一實施形態之氣體製造裝置300之示意說明圖。 圖4係本發明的另一實施形態之氣體製造裝置400之示意說明圖。 圖5係本發明的另一實施形態之氣體製造裝置500之示意說明圖。 圖6係本發明的另一實施形態之氣體製造裝置600之示意說明圖。 圖7係本發明的另一實施形態之氣體製造裝置600’之示意說明圖。 圖8係本發明的另一實施形態之氣體製造裝置700之示意說明圖。 圖9係本發明的另一實施形態之氣體製造裝置800之示意說明圖。
10:電解槽
11:陽極室
12:陰極室
13:(離子透過性)隔膜
20:第1電解液循環系統
21:第1循環槽
21a:液相區域
21b:氣相區域
22:第1循環泵
23、24:配管
25:第1配管
30:第2電解液循環系統
31:第2循環槽
31a:液相區域
31b:氣相區域
32:第2循環泵
33、34:配管
35:第2配管
40:純水供給系
41:純水槽
42:水供給泵
50:電解液交換裝置
51:第1電解液移送手段
52:第2電解液移送手段
60:第1氣體回收管線
61:第1壓力控制閥
62:配管
63:壓力計
70:第2氣體回收管線
71:第2壓力控制閥
72:配管
73:壓力計
100:氣體製造裝置
O2:氧氣
H2:氫氣

Claims (16)

  1. 一種氣體製造裝置,係具備電解槽、第1電解液循環系統、第2電解液循環系統、及電解液交換裝置,前述電解槽具備:收容陽極且產生氧氣之陽極室、收容陰極且產生氫氣之陰極室、及劃分前述陽極室和前述陰極室之離子透過性的隔膜;其特徵在於,前述第1電解液循環系統包含:接收並貯留從前述陽極室流出的第1電解液之第1循環槽、及將貯留於前述第1循環槽之前述第1電解液供給前述陽極室之第1循環泵;前述第2電解液循環系統包含:接收並貯留從前述陰極室流出的第2電解液之第2循環槽、及將貯留於前述第2循環槽之前述第2電解液供給前述陰極室之第2循環泵;前述電解液交換裝置,是將存在於前述第1電解液循環系統之前述第1電解液的一部分往前述第2電解液循環系統移送,且將存在於前述第2電解液循環系統之前述第2電解液的一部分往前述第1電解液循環系統移送。
  2. 如請求項1所述之氣體製造裝置,其中,前述電解液交換裝置包含第1電解液移送手段及第2電 解液移送手段,前述第1電解液移送手段,是將貯留於前述第1循環槽之前述第1電解液的一部分往前述第2循環槽移送;前述第2電解液移送手段,是將流過連接前述第2循環泵的出口側與前述陰極室的入口側之配管之前述第2電解液的一部分,往連接前述第1循環泵的出口側與前述陽極室的入口側之配管移送。
  3. 如請求項1所述之氣體製造裝置,其中,前述電解液交換裝置包含第1電解液移送手段及第2電解液移送手段,前述第1電解液移送手段,是將貯留於前述第2循環槽之前述第2電解液的一部分往前述第1循環槽移送;前述第2電解液移送手段,是將流過連接前述第1循環泵的出口側與前述陽極室的入口側之配管之前述第1電解液的一部分,往連接前述第2循環泵的出口側與前述陰極室的入口側之配管移送。
  4. 如請求項1~3中任一項所述之氣體製造裝置,其進一步具備:控制從前述陽極室流出的第1氣流的壓力之第1壓力控制閥、及控制從前述陰極室流出的第2氣流的壓力之第2壓力控制閥。
  5. 如請求項4所述之氣體製造裝置,其進一步具備第1冷卻裝置、第2冷卻裝置、第1過濾裝置及第2過濾裝置,前述第1冷卻裝置是接收並冷卻前述第1氣流,前述第2冷卻裝置是接收並冷卻前述第2氣流,前述第1過濾裝置,是與前述第1冷卻裝置連接,接收藉由前述第1冷卻裝置冷卻後的第1氣流並將該第1氣流中之液化後的水分除去,前述第2過濾裝置,是與前述第2冷卻裝置連接,接收藉由前述第2冷卻裝置冷卻後的第2氣流並將該第2氣流中之液化後的水分除去;前述第1冷卻裝置及前述第1過濾裝置配置於前述第1壓力控制閥的上游側,前述第2冷卻裝置及前述第2過濾裝置配置於前述第2壓力控制閥的上游側。
  6. 如請求項4所述之氣體製造裝置,其進一步具備:將前述第1壓力控制閥的上游側之前述第1氣流的壓力和前述第2壓力控制閥的上游側之前述第2氣流的壓力之差壓控制成既定值之差壓控制手段。
  7. 如請求項6所述之氣體製造裝置,其中,前述差壓控制手段係具備: 測定前述第1壓力控制閥的上游側之前述第1氣流的壓力和前述第2壓力控制閥的上游側之前述第2氣流的壓力之差壓之差壓偵測器、及根據前述差壓偵測器的測定結果控制前述第1壓力控制閥及/或前述第2壓力控制閥之閥控制裝置。
  8. 一種氣體製造方法,係使用電解槽將鹼性水溶液的電解液進行電解而製造氧氣及氫氣之方法,前述電解槽具備:收容陽極且產生氧氣之陽極室、收容陰極且產生氫氣之陰極室、及劃分前述陽極室和前述陰極室之離子透過性的隔膜;該氣體製造方法包含:(a)一邊對前述陽極室供給第1電解液且對前述陰極室供給第2電解液一邊在前述陽極和前述陰極之間通電,藉此從前述陽極讓氧氣產生且從前述陰極讓氫氣產生的工序,(b)從前述陽極室將包含氧氣之第1氣流及前述第1電解液回收的工序,(c)從前述陰極室將包含氫氣之第2氣流及前述第2電解液回收的工序,(d)將從前述陽極室回收之前述第1電解液貯留於第1循環槽的工序,(e)將從前述陰極室回收之前述第2電解液貯留於第2循環槽的工序, (f)將在前述第1循環槽貯留之前述第1電解液使用第1循環泵往前述陽極室輸送的工序,(g)將在前述第2循環槽貯留之前述第2電解液使用第2循環泵往前述陰極室輸送的工序,(h)將前述第1電解液的一部分導入前述第2電解液中的工序,及(i)將前述第2電解液的一部分導入前述第1電解液中的工序。
  9. 如請求項8所述之氣體製造方法,其中,前述工序(h)包含:將在前述第1循環槽貯留之前述第1電解液的一部分往前述第2循環槽移送,前述工序(i)包含:讓從前述第2循環泵送出之前述第2電解液的一部分與從前述第1循環泵送出之前述第1電解液匯合。
  10. 如請求項8所述之氣體製造方法,其中,前述工序(h)包含:讓從前述第1循環泵送出之前述第1電解液的一部分與從前述第2循環泵送出之前述第2電解液匯合,前述工序(i)包含:將在前述第2循環槽貯留之前述第2電解液的一部分往前述第1循環槽移送。
  11. 如請求項8~10中任一項所述之氣體製造方法,其進一 步包含:(j)將從前述陽極室回收之前述第1氣流的壓力使用設置於該第1氣流的流路之第1壓力控制閥進行控制的工序,及(k)將從前述陰極室回收之前述第2氣流的壓力使用設置於該第2氣流的流路之第2壓力控制閥進行控制的工序。
  12. 如請求項11所述之氣體製造方法,其進一步包含:(l)冷卻前述第1氣流的工序,(m)冷卻前述第2氣流的工序,(n)從經過前述工序(l)之前述第1氣流將在前述工序(l)凝結後的水分除去的工序,及(o)從經過前述工序(m)之前述第2氣流將在前述工序(m)凝結後的水分除去的工序;前述工序(j),是藉由將經過前述工序(l)及(n)之前述第1氣流的壓力使用前述第1壓力控制閥控制來進行,前述工序(k),是藉由將經過前述工序(m)及(o)之前述第2氣流的壓力使用前述第2壓力控制閥控制來進行。
  13. 如請求項11所述之氣體製造方法,其進一步包含:(p)將前述第1壓力控制閥的上游側之前述第1氣流的壓力和前述第2壓力控制閥的上游側之前述第2氣流的壓力之差壓控制成既定值的工序。
  14. 如請求項13所述之氣體製造方法,其中,前述工序(p)包含:(p1)測定前述第1壓力控制閥的上游側之前述第1氣流的壓力和前述第2壓力控制閥的上游側之前述第2氣流的壓力之差壓的工序,(p2)根據前述工序(p1)的測定結果在前述工序(j)及(k)控制前述第1壓力控制閥及/或前述第2壓力控制閥的工序。
  15. 如請求項8~10中任一項所述之氣體製造方法,其中,前述陰極室之內部的壓力,維持在高於大氣壓20kPa以上的高壓。
  16. 如請求項8~10中任一項所述之氣體製造方法,其中,前述陽極室之內部的壓力,維持在高於大氣壓20kPa以上的高壓。
TW108126282A 2018-07-27 2019-07-25 氣體製造裝置及氣體製造方法 TWI777076B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-141668 2018-07-27
JP2018141668 2018-07-27

Publications (2)

Publication Number Publication Date
TW202010875A TW202010875A (zh) 2020-03-16
TWI777076B true TWI777076B (zh) 2022-09-11

Family

ID=69182063

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108126282A TWI777076B (zh) 2018-07-27 2019-07-25 氣體製造裝置及氣體製造方法

Country Status (9)

Country Link
US (1) US11505872B2 (zh)
EP (1) EP3831986A4 (zh)
JP (1) JP6826699B2 (zh)
KR (1) KR102664170B1 (zh)
CN (1) CN112534087B (zh)
CA (1) CA3107396A1 (zh)
PH (1) PH12021550131A1 (zh)
TW (1) TWI777076B (zh)
WO (1) WO2020022190A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102434620B1 (ko) * 2020-03-23 2022-08-23 한국과학기술연구원 외부 전력 없이 독립적으로 구동되는 태양광을 이용한 수소 생산 및 저장 시스템
CN113089022B (zh) * 2021-04-29 2023-10-03 中国华能集团清洁能源技术研究院有限公司 一种碱性制氢电解槽的碱液循环系统及其工作方法
KR102580065B1 (ko) * 2021-05-06 2023-09-19 (주)이노시스 수소호흡발생기 구동 제어 시스템
DE102021208847A1 (de) 2021-08-12 2023-02-16 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben einer elektrochemische Zelleneinheit
KR102625513B1 (ko) * 2021-10-13 2024-01-16 (주)지성큐앤텍 분리형 bop 적용 수전해장치
CN114134527B (zh) * 2021-12-15 2024-03-12 考克利尔竞立(苏州)氢能科技有限公司 一种多台电解槽的电解水制氢装置及方法
AU2022421703A1 (en) * 2021-12-22 2024-05-23 Electric Hydrogen Co. Operation of an electrolytic cell or system at intermediate oxygen pressure
EP4223908A1 (en) * 2022-01-28 2023-08-09 Kabushiki Kaisha Toshiba Electrochemical reaction device and electrochemical reaction method
EP4279635A1 (de) * 2022-05-16 2023-11-22 Friedrich Vorwerk SE & Co. KG Vorrichtung und verfahren zum elektrischen erzeugen von wasserstoff aus wasser
CN114959795B (zh) * 2022-05-23 2023-07-11 国网浙江省电力有限公司嘉兴供电公司 一种制氢系统及其控制方法
WO2024024816A1 (ja) * 2022-07-27 2024-02-01 三菱重工業株式会社 電解装置
AT525914B1 (de) 2022-08-19 2023-09-15 H2i GreenHydrogen GmbH Elektrolysevorrichtung mit Naturumlauf
WO2024082031A1 (en) * 2023-03-13 2024-04-25 Hysata Pty Ltd Balance-of-plant for electro-synthetic or electro-energy liquid-gas cells or cell stacks
CN117888143A (zh) * 2024-01-12 2024-04-16 航天长征化学工程股份有限公司 一种耦合电解制氢能效控制系统及能效控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294683A (en) * 1979-04-02 1981-10-13 Creusot-Loire Electrolysis unit
US4323442A (en) * 1979-07-05 1982-04-06 Creusot-Loire Electrolysis installation for the production of gas
CN1129261A (zh) * 1995-09-30 1996-08-21 许俊明 分立式循环水电解制氢工艺和设备
JP2007100204A (ja) * 2005-10-07 2007-04-19 Mitsubishi Corp 高圧水素の製造方法および製造装置
JP2015059263A (ja) * 2013-09-20 2015-03-30 株式会社神鋼環境ソリューション 水素・酸素発生装置
CN106119885A (zh) * 2016-07-26 2016-11-16 扬州中电制氢设备有限公司 一种碱溶液电解制氢装置及制氢方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB362219A (en) * 1931-01-27 1931-12-03 Alfred Mentzel Means for regulating the circulation of the eectrolyte in pressure decomposers with a separate circulation of the anolyte and catholyte
JPS608482B2 (ja) 1979-07-24 1985-03-04 住友電気工業株式会社 光ケ−ブルおよびその製造方法
JPS608482U (ja) 1983-06-28 1985-01-21 三菱電機株式会社 内燃機関の点火用配電器
JPH10330980A (ja) * 1997-05-28 1998-12-15 Japan Storage Battery Co Ltd 水電解セルを用いたガス発生装置の使用方法
JP2000054175A (ja) 1998-07-31 2000-02-22 Mitsubishi Heavy Ind Ltd 固体高分子膜型水電解装置
DE10220850A1 (de) * 2002-05-08 2003-11-27 Forschungszentrum Juelich Gmbh Regeleinrichtung für einen alkalischen Druckelektrolyseur
JP5437968B2 (ja) * 2010-10-14 2014-03-12 本田技研工業株式会社 水電解システム
JP6008482B2 (ja) 2011-09-15 2016-10-19 株式会社バンテック 気体発生装置
JP6588768B2 (ja) * 2015-08-20 2019-10-09 デノラ・ペルメレック株式会社 電解装置及び電解方法
WO2017056277A1 (ja) * 2015-09-30 2017-04-06 株式会社 東芝 水素製造装置及び水素製造システム
JP6397396B2 (ja) 2015-12-28 2018-09-26 デノラ・ペルメレック株式会社 アルカリ水電解方法
JP6937096B2 (ja) 2016-03-31 2021-09-22 株式会社東芝 水素製造システム
JP6633571B2 (ja) 2017-06-20 2020-01-22 株式会社東芝 水素製造装置及び水素製造システム
KR102279426B1 (ko) * 2017-09-07 2021-07-19 드 노라 페르멜렉 가부시키가이샤 전해 장치
EP3489389A1 (de) * 2017-11-24 2019-05-29 Siemens Aktiengesellschaft Elektrolyseeinheit und elektrolyseur

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294683A (en) * 1979-04-02 1981-10-13 Creusot-Loire Electrolysis unit
US4323442A (en) * 1979-07-05 1982-04-06 Creusot-Loire Electrolysis installation for the production of gas
CN1129261A (zh) * 1995-09-30 1996-08-21 许俊明 分立式循环水电解制氢工艺和设备
JP2007100204A (ja) * 2005-10-07 2007-04-19 Mitsubishi Corp 高圧水素の製造方法および製造装置
JP2015059263A (ja) * 2013-09-20 2015-03-30 株式会社神鋼環境ソリューション 水素・酸素発生装置
CN106119885A (zh) * 2016-07-26 2016-11-16 扬州中电制氢设备有限公司 一种碱溶液电解制氢装置及制氢方法

Also Published As

Publication number Publication date
PH12021550131A1 (en) 2021-09-27
JP6826699B2 (ja) 2021-02-03
TW202010875A (zh) 2020-03-16
US20210262101A1 (en) 2021-08-26
WO2020022190A1 (ja) 2020-01-30
EP3831986A1 (en) 2021-06-09
EP3831986A4 (en) 2021-09-22
KR102664170B1 (ko) 2024-05-10
JPWO2020022190A1 (ja) 2021-02-25
US11505872B2 (en) 2022-11-22
CN112534087B (zh) 2023-07-28
KR20210033952A (ko) 2021-03-29
CA3107396A1 (en) 2020-01-30
CN112534087A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
TWI777076B (zh) 氣體製造裝置及氣體製造方法
TWI772629B (zh) 鹼性水電解裝置及氣體製造方法
CN111094630B (zh) 电解装置
JP7363419B2 (ja) 水電解システム
JP2009024222A (ja) フッ素系ガス及び水素ガス発生装置
JP2019178356A (ja) 水素製造装置及び水素製造方法
JPH09143779A (ja) 水素・酸素発生装置
TWI308602B (en) Fluorine gas generator
EP2579361A1 (en) Device for supplying electrolyte solution
JP2013249508A (ja) 水素酸素製造装置、及び水素酸素製造方法
CN111133131A (zh) 电解槽装置
JP2007284730A (ja) 水素・酸素ガス発生供給装置
KR101357752B1 (ko) 불소 가스 생성 장치
CN207511881U (zh) 电解水生成装置
EP2415906A1 (en) Fluorine gas generation device
CN218880068U (zh) 一种自动补偿供水的pem纯水制氢系统
JP2005262195A (ja) 電解中に発生するガス抜き機構を備えた電解水生成器
WO2010113612A1 (ja) フッ素ガス生成装置
JP2003268585A (ja) 水電解装置とその運転方法
JP2021041342A (ja) ガス溶解水製造装置及び方法
CN116815243A (zh) 电解水制氢系统
JP2003293179A (ja) 水電解装置とその運転方法
EP2415907A1 (en) Fluorine gas generation device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent