WO2017056277A1 - 水素製造装置及び水素製造システム - Google Patents
水素製造装置及び水素製造システム Download PDFInfo
- Publication number
- WO2017056277A1 WO2017056277A1 PCT/JP2015/077875 JP2015077875W WO2017056277A1 WO 2017056277 A1 WO2017056277 A1 WO 2017056277A1 JP 2015077875 W JP2015077875 W JP 2015077875W WO 2017056277 A1 WO2017056277 A1 WO 2017056277A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen
- hydrogen production
- pure water
- power
- gas
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/70—Assemblies comprising two or more cells
- C25B9/73—Assemblies comprising two or more cells of the filter-press type
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M16/00—Structural combinations of different types of electrochemical generators
- H01M16/003—Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0656—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/28—Conversion of ac power input into dc power output without possibility of reversal by static converters using electrolytic rectifiers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Definitions
- an electrolyte tube 53 is connected to the lower portion, for example, the bottom surface, of the cathode gas-liquid separation chamber 23.
- the other end of the electrolyte pipe 53 is connected to the electrolyte circulation tank 25.
- one end of an electrolyte tube 54 is connected to the lower portion, for example, the bottom surface, of the anode gas gas-liquid separation chamber 24.
- the other end of the electrolyte pipe 54 is connected to the electrolyte circulation tank 25.
- the pump 32 circulates the cleaning liquid C held in the cleaning tower 31.
- the cleaning tower 31 and the pump 32 constitute a closed loop path by a cleaning liquid pipe 62.
- the buffer tank 33 holds the cleaning liquid C and supplies the cleaning liquid C to the cleaning tower 31 as necessary.
- a cleaning liquid pipe 63 is connected between the cleaning tower 31 and the buffer tank 33.
- the buffer tank 33 is also connected to the drain tank 15.
- the nitrogen pipe 72 is connected to the pure water pipe 58.
- the nitrogen pipe 72 is provided with a normally open valve 72v.
- the nitrogen tube 73 is connected to the oxygen tube 52.
- the nitrogen pipe 73 is provided with a normally open valve 73v.
- the nitrogen pipe 74 is connected to the hydrogen pipe 51.
- the nitrogen pipe 74 is provided with a normally open valve 74v.
- the nitrogen pipe 75 is connected to the hydrogen pipe 64.
- the nitrogen pipe 75 is provided with a normally open valve 75v.
- the upper part of the electrolytic cell 22, the upper part of the cathode gas gas-liquid separation chamber 23, the hydrogen pipe 51, the oxygen pipe 52, the hydrogen pipe 61, the hydrogen pipe 64, and the hydrogen pipe 65 are bypass pipes communicating with the outside of the building 10. (Not shown) is connected.
- Each bypass pipe is provided with a normally open valve.
- Each valve described above is controlled by the control device 41.
- the control device 41 is operated by the AC power P3 generated by the rectifier 21, and controls the operation of each part of the hydrogen production device 20. Specifically, switching whether to supply DC power P2 to the electrolytic cell 22, switching whether to supply AC power P3 to each of the pump 26, the air pump 27, the pump 29, and the pump 32, normally closed valve 67v, normal open valves 68v, 72v, 73v, 74v and 75v, and switching of energizing or demagnetizing each of the normal open valves provided in the bypass pipes.
- a hydroelectric power generation facility 101 attached to the water source 100 generates AC power P1.
- the hydroelectric power generation facility 101 continuously generates the AC power P1 in principle and supplies it to the rectifier 21 of the hydrogen production apparatus 20.
- the control device 41 operates the pump 26, the pump 32, the compressor 34, and the chiller 35.
- the pump 26 By operating the pump 26, the alkaline aqueous solution S held in the electrolytic solution circulation tank 25 is supplied into the electrolytic cell 22 through the electrolytic solution pipe 55.
- the cleaning liquid C circulates between the cleaning tower 31 and the pump 32, and the cleaning liquid C is injected into the gas phase in the upper part of the cleaning tower 31.
- the compressor 34 is operated, the gas flowing into the intake port of the compressor 34 is compressed and discharged from the exhaust port.
- the compressor 34 is cooled by operating the chiller 35.
- the alkaline aqueous solution S deteriorates due to the electrolysis of water, it is discharged from the electrolyte circulation tank 25 to the drain tank 15. At this time, a new alkaline aqueous solution S is carried in by a truck or the like separately from the pure water W and replenished to the electrolyte circulation tank 25.
- the pure water level of the pure water W accumulated in the pure water tank 28 becomes less than the reference value due to a change over time, the pure water W is discharged from the pure water tank 28 to the drain tank 15. Then, new pure water W is filled in the transport container 17, carried in by a truck or the like, and replenished in the pure water tank 28.
- the hydrogen production system 1 since the hydrogen production system 1 is installed in a cold region, when the air conditioner 12 stops, the temperature in the building 10 may fall below zero degrees. If it does so, the temperature in the hydrogen production apparatus 20 will all become less than zero degree. In this case, since the freezing point of the alkaline aqueous solution S is considerably lower than zero degree, the possibility that the alkaline aqueous solution S freezes is low, but since the freezing point of the pure water W is around zero degree, the pure water W is highly likely to freeze. . When the pure water W is frozen in the pure water pipe 58, the volume expands and the pure water pipe 58 may burst.
- the hydrogen gas path in the hydrogen production apparatus 20 that is, the hydrogen pipe 51, the cathode gas gas-liquid separation chamber 23, the hydrogen pipe 61, the cleaning tower 31, and the hydrogen pipe 64.
- Hydrogen gas remains in the compressor 34, the hydrogen pipe 65, the hydrogen purifier 36, the hydrogen pipe 66, and the hydrogen pipe 67. Since hydrogen gas is explosive, it is dangerous to leave it in a stopped device.
- the control device 41 When the control device 41 receives a warning signal from the power supply sensor 43, the control device 41 turns off each part of the hydrogen production device 20, that is, the electrolytic cell 22 and the pumps. Thereby, even if supply of electric power P1 is restarted later, the hydrogen production apparatus 20 will not be inadvertently restarted. Further, the control device 41 demagnetizes the normally closed valve 67v and the normally open valve 68v. As a result, the normally closed valve 67v is closed and the normally open valve 68v is opened, so that the path of the hydrogen pipe 66 is switched, the connection with the hydrogen tank 16 is cut off, and the outside communicates with the outside through the hydrogen pipe 68. Is done.
- the inside of the pure water pipe 58 is purged with nitrogen gas does not necessarily mean that all the pure water W in the pure water pipe 58 is discharged.
- the pure water pipe 58 In order to prevent the rupture of the pure water pipe 58 due to the freezing of the pure water W, the pure water pipe 58 only needs to have a gas portion that can absorb the volume expansion when the pure water W freezes. There is no problem even if pure water W remains in part. For example, if the nitrogen gas flows out from both ends of the pure water pipe 58 after opening the normal open valve 72v, it can be said that the inside of the pure water pipe 58 has been purged by the nitrogen gas.
- nitrogen gas is introduced into the hydrogen pipe 51 via the nitrogen pipes 71 and 74.
- Nitrogen gas is introduced into the hydrogen pipe 64 through the nitrogen pipes 71 and 75.
- the inside of the hydrogen gas path of the hydrogen production apparatus 20 is purged with nitrogen gas, and the hydrogen gas remaining in the hydrogen gas path is exhausted to the outside of the building 10 through the hydrogen pipe 68 and each bypass pipe.
- the “purging” in this case is sufficient if the hydrogen gas concentration in the hydrogen gas path is less than the explosion limit of 4%, and it is not necessary to replace all the hydrogen gas in the hydrogen gas path with nitrogen gas.
- the pure water W is removed from the pure water pipe 58 to prevent the pure water pipe 58 from rupturing due to the freezing of the pure water W. be able to. Further, by eliminating the hydrogen gas and the oxygen gas from the hydrogen gas production apparatus 20, danger such as an explosion can be avoided.
- each valve When the supply of power is stopped, each valve is demagnetized, the normal close valve 67v is automatically closed, and the normal open valves 68v, 72v, 73v, 74v and 75v, and the normal provided in each bypass pipe
- the open valve is automatically opened.
- the pressure of the nitrogen gas is applied by adjusting the pressure of the nitrogen gas itself enclosed in the nitrogen gas cylinder 38 by a regulator, and the pressure is applied to the hydrogen gas generated from the electrolytic cell 22.
- the pressure of pure water supplied to the electrolyte circulation tank 25 can push out pure water W and hydrogen gas from the respective pipes. For this reason, even if the control device 41 does not operate for some reason, the valves are appropriately switched to supply nitrogen gas, and the above-described purging with nitrogen gas becomes possible.
- a hydrogen leak detector 44 is provided in the hydrogen production system 1 according to the present embodiment.
- the control apparatus 41 stops the electrolytic vessel 22 and each pump, and stops the electrolysis of water.
- the inside of the pure water pipe 58, the hydrogen gas path, and the oxygen gas path are purged with nitrogen gas as in the case of the power failure described above.
- the fire detector 46 when a fire occurs in the building 10, the fire detector 46 outputs a warning signal to the control device 41. And the control apparatus 41 takes the same treatment as the case where the above-mentioned hydrogen gas leaks. At this time, by exhausting the hydrogen gas and oxygen gas in the hydrogen production apparatus 20 to the outside of the building 10, the exhausted hydrogen gas ignites in the building 10, or the exhausted oxygen gas promotes a fire. Can be prevented.
- each valve If the power supply stops, each valve is demagnetized. For this reason, even when the control device 41 is destroyed due to an earthquake or a fire, each valve is automatically switched appropriately to supply nitrogen gas, and the above-described purging with nitrogen gas becomes possible.
- the pure water W is automatically discharged from the inside of the pure water pipe 58 at the time of a power failure, so that the pure water W is frozen in the pure water pipe 58 and the pure water pipe 58 can be It can be prevented from bursting.
- the hydrogen production system 1 can be operated unattended.
- the hydrogen production system 1 according to the present embodiment is premised on installation in remote areas and cold areas that are not connected to an existing power system, but it is difficult to have workers resident on such land. is there. For this reason, if an unmanned operation of the hydrogen production system becomes possible, it becomes easy to widely deploy the hydrogen production system on land where renewable energy can be acquired. As a result, it becomes possible to increase the proportion of renewable energy in the power demand of the entire society.
- the hydrogen production apparatus 20 is automatically stopped and the hydrogen gas remaining in the hydrogen production apparatus 20 is discharged. be able to. Thereby, the explosion accident by the residual hydrogen gas can be prevented beforehand. This also facilitates unattended operation and facilitates deployment of the hydrogen production system 1.
- the alkaline electrolysis method requires a lower purity of pure water than the solid electrolyte membrane method.
- a solid electrolyte membrane containing platinum powder is necessary.
- the alkaline electrolysis method such expensive parts are unnecessary. For these reasons, the alkaline electrolysis system is less expensive than the solid electrolyte membrane system.
- pure water W is supplied to the hydrogen production system 1 from the outside using a stainless steel transport container 17.
- the transport container 17 made of stainless steel suppresses the permeation of impurities that lower the purity of pure water, such as carbon dioxide gas and oxygen gas, and has very few components dissolved in the pure water W from the transport container 17 itself. Therefore, the purity of pure water can be maintained for a long time by using the transport container 17 made of stainless steel. Thereby, for example, even if it takes more time than expected to transport pure water due to weather conditions, the purity of pure water can be maintained at a required level or higher. In this way, the degree of freedom of operation of the hydrogen production system 1 is improved.
- the hydrogen production system according to this embodiment is a system that uses wind power as renewable energy.
- FIG. 4 is a block diagram showing a hydrogen production system according to this embodiment.
- the hydrogen production system 2 according to this embodiment is supplied with AC power P ⁇ b> 4 from the wind power generation facility 102.
- the wind power generation facility 102 is installed on a windy land such as a mountainous area, and is provided with a windmill.
- the supply of AC power P4 is intermittent.
- a large storage battery 18 is provided and connected to a rectifier 21.
- capacitance of the storage battery 18 is larger than the capacity
- the present embodiment by providing the storage battery 18, even when the wind stops, power can be supplied to the rectifier 21 for a certain period of time. Thereby, it can be determined that a power failure occurs every time the wind stops and the hydrogen generator 20 is stopped to purge the inside of each pipe.
- the same operation as in the first embodiment described above is performed. The hydrogen production apparatus 20 is stopped and each pipe is purged with nitrogen gas.
- the hydrogen production system according to the present embodiment is a system that uses sunlight as renewable energy.
- FIG. 5 is a block diagram showing a hydrogen production system according to the present embodiment.
- the hydrogen production system 3 according to the present embodiment is supplied with DC power P ⁇ b> 5 from the photovoltaic power generation facility 103.
- the solar power generation facility 103 is installed on a land where sunlight is stable, such as a desert, and a solar power generation panel is provided.
- the DC power P5 is input to the DC-AC converter 104 and converted to AC power P6.
- the AC power P6 is input to the rectifier 21 of the hydrogen production system 3.
- a timer 47 connected to the control device 41 is provided.
- the control device 41 stops the operation of the hydrogen production device 20 before the sunset time, and then performs the same operation as that at the time of the power failure described above in each pipe with nitrogen gas. Purge. When the purge is completed, the normally open valves 72v, 73v, 74v and 75v are excited and closed, and the release of nitrogen gas is stopped. When the operation of the hydrogen production apparatus 20 is resumed after the sunrise time and hydrogen gas starts to be produced, the normally open valve 68v is excited and closed, and the normal close valve 67v is excited and opened to produce the produced hydrogen gas. Is accumulated in the hydrogen tank 16.
- a fixed drain tank 15a and a waste liquid transport container 15b are provided instead of the removable drain tank 15 (see FIG. 1) in the first embodiment (see FIG. 1). ing.
- the fixed drain tank 15a is fixed in the building 10 or in the vicinity of the building 10, and a waste liquid pipe 15c is connected thereto.
- the waste liquid transport container 15b can be attached to and detached from the waste liquid pipe 15c, connected to the waste liquid pipe 15c, injected with the waste liquid from the fixed drain tank 15a, removed from the waste liquid pipe 15c, and disposed of by a truck or the like. Be transported.
- the capacity of the fixed drain tank 15a is larger than the capacity of the waste liquid transport container 15b.
- the respective capacities can be set independently.
- the capacity of the fixed drain tank 15a can be determined according to the hydrogen gas production scale, the waste liquid transport frequency, and the like, and the capacity of the waste liquid transport container 15b is determined according to the size of the truck or the like used for transport. be able to.
- the waste liquid transport container 15b may be formed integrally with the truck.
- Other configurations, manufacturing methods, operations, and effects in the present embodiment are the same as those in the first embodiment or the second embodiment described above.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Sustainable Energy (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Automation & Control Theory (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Analytical Chemistry (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
先ず、第1の実施形態に係る水素製造システム及びその周辺の構成について説明する。
図1は、本実施形態に係る水素製造システムを示すブロック図である。
本実施形態に係る水素製造システムは、アルカリ電解方式により水を電気分解することにより、水素ガスを製造するシステムである。
図2は、本実施形態に係る水素製造装置を示すシステム構成図である。
図3は、本実施形態に係る水素製造装置を示す斜視図である。
なお、図2においては、図示の便宜上、電流及び信号の流れは破線で示し、気体の流れは一点鎖線で示し、液体の流れは実線で示している。また、図3には、比較的大型の構成要素のみを示しており、小型の構成要素及び配管は、図示を省略している。
<通常の発電動作>
先ず、水素製造システム1の通常の発電動作について説明する。
次に、交流電力P1の供給が停止した場合の動作について説明する。
例えば、水源100の渇水、水力発電施設101の故障、送電設備のトラブル等により交流電力P1の供給が途絶えることが想定される。この場合、水素製造システム1は既存の電力系統には接続されておらず、全ての電力を水力発電施設101に依存しているため、交流電力P1が停止すると、水素製造装置20が停止すると共に、建築物10の空調機器12も停止してしまう。このような場合であっても、蓄電池42に蓄積されている予備電力により、制御装置41は一定時間駆動させることができる。但し、蓄電池42の容量は小さいため、蓄電池42によって水の電気分解を継続することはできない。
次に、停電以外の非常事態が発生した場合の動作について説明する。
本実施形態においては、停電時に自動的に純水管58内から純水Wを排出することにより、その後、室温が低下しても、純水管58内で純水Wが凍結して純水管58が破裂することを防止できる。これにより、水素製造システム1を無人で運用することが可能となる。本実施形態に係る水素製造システム1は、既存の電力系統に接続されていない僻地且つ寒冷地に設置することを前提としているが、このような土地に作業員を常駐させておくことは困難である。このため、水素製造システムの無人運転が可能になれば、水素製造システムを再生可能エネルギーを取得できる土地に広く展開することが容易になる。この結果、社会全体の電力需要に占める再生可能エネルギーの割合を増加させることが可能となる。
次に、第2の実施形態について説明する。
本実施形態に係る水素製造システムは、再生可能エネルギーとして、風力を利用するシステムである。
図4に示すように、本実施形態に係る水素製造システム2は、風力発電施設102から交流電力P4が供給される。風力発電施設102は、例えば山間部等の風が強い土地に設置され、風車が設けられている。但し、交流電力P4の供給は断続的である。
本実施形態における上記以外の構成、製造方法、動作及び効果は、前述の第1の実施形態と同様である。
次に、第3の実施形態について説明する。
本実施形態に係る水素製造システムは、再生可能エネルギーとして、太陽光を利用するシステムである。
図5に示すように、本実施形態に係る水素製造システム3は、太陽光発電施設103から直流電力P5が供給される。太陽光発電施設103は、例えば砂漠等の太陽光が安定した土地に設置され、太陽光発電パネルが設けられている。直流電力P5は、DC-AC変換器104に入力され、交流電力P6に変換される。交流電力P6は、水素製造システム3の整流器21に入力される。また、水素製造システム3においては、制御装置41に接続されたタイマー47が設けられている。
本実施形態における上記以外の構成、製造方法、動作及び効果は、前述の第1の実施形態又は第2の実施形態と同様である。
Claims (14)
- 外部から第1電力が供給され、直流の第2電力を出力する整流器と、
前記第2電力が供給されてアルカリ性水溶液を電気分解する電解槽と、
前記アルカリ性水溶液を保持する電解液タンクと、
前記電解槽と前記電解液タンクとの間で前記アルカリ性水溶液を循環させるポンプと、
純水を保持する純水タンクと、
前記純水タンクと前記電解液タンクとの間に接続され、前記純水タンクから前記電解液タンクに前記純水を流通させる純水管と、
不活性ガスが封入された不活性ガスボンベと、
前記不活性ガスボンベと前記純水管との間に接続され、前記第1電力が供給されているときは閉じ、前記第1電力が供給されなくなったときに開く第1バルブと、
を備え、
前記第1バルブが開くことにより、前記純水管内に前記不活性ガスが導入される水素製造装置。 - 前記第1バルブは、励磁されたときは閉じ消磁されたときは開くノーマルオープンバルブである請求項1記載の水素製造装置。
- 前記第1電力が供給されなくなったときに、前記電解槽及び前記ポンプのスイッチをオフにする制御装置と、
前記制御装置に前記第2電力を供給する蓄電池と、
をさらに備えた請求項1記載の水素製造装置。 - 前記制御装置は、前記第1電力が供給されなくなったときに、前記第1バルブを開く請求項3記載の水素製造装置。
- 前記電解槽から水素ガスを取り出す水素管と、
前記不活性ガスボンベと前記水素管との間に接続され、前記第1電力が供給されているときは閉じており、前記第1電力が供給されなくなったときに開く第2バルブと、
をさらに備え、
前記第2バルブが開くことにより、前記水素管内に前記不活性ガスが導入される請求項1記載の水素製造装置。 - 前記第2バルブは、励磁されたときは閉じ消磁されたときは開くノーマルオープンバルブである請求項5記載の水素製造装置。
- 水素漏洩検知器と、
前記水素漏洩検知器が水素漏洩を検知したときに、前記電解槽及び前記ポンプを停止させると共に、前記第2バルブを開く制御装置と、
をさらに備えた請求項5または6に記載の水素製造装置。 - 地震検知器と、
前記地震検知器が地震を検知したときに、前記電解槽及び前記ポンプを停止させると共に、前記第2バルブを開く制御装置と、
をさらに備えた請求項5または6に記載の水素製造装置。 - 火災検知器と、
前記火災検知器が火災を検知したときに、前記電解槽及び前記ポンプを停止させると共に、前記第2バルブを開く制御装置と、
をさらに備えた請求項5または6に記載の水素製造装置。 - 前記第1電力は、再生可能エネルギーにより発電される請求項1~9のいずれか1つに記載の水素製造装置。
- 前記第1電力は、水力によって発電された交流電力である請求項1~10のいずれか1つに記載の水素製造装置。
- 請求項1~11のいずれか1つに記載の水素製造装置と、
前記水素製造装置を収納する建築物と、
前記整流器から供給される第3電力により前記建築物内の温度を調整する空調機器と、
前記電解槽から取り出された水素ガスを貯蔵する水素タンクと、
を備えた水素製造システム。 - 前記純水を外部から前記純水タンクに輸送する輸送容器をさらに備えた請求項12記載の水素製造システム。
- 前記輸送容器はステンレスによって形成されている請求項13記載の水素製造システム。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016513167A JP6165972B1 (ja) | 2015-09-30 | 2015-09-30 | 水素製造装置及び水素製造システム |
EP20173214.6A EP3712301A3 (en) | 2015-09-30 | 2015-09-30 | Hydrogen production apparatus and hydrogen production system |
PCT/JP2015/077875 WO2017056277A1 (ja) | 2015-09-30 | 2015-09-30 | 水素製造装置及び水素製造システム |
CA2998458A CA2998458C (en) | 2015-09-30 | 2015-09-30 | Hydrogen production apparatus and hydrogen production system |
EP15905431.1A EP3358044B1 (en) | 2015-09-30 | 2015-09-30 | Device and system for producing hydrogen |
CA3080528A CA3080528C (en) | 2015-09-30 | 2015-09-30 | Hydrogen production apparatus and hydrogen production system |
US15/922,094 US10590552B2 (en) | 2015-09-30 | 2018-03-15 | Hydrogen production apparatus and hydrogen production system |
US16/784,772 US11162181B2 (en) | 2015-09-30 | 2020-02-07 | Hydrogen production apparatus and hydrogen production system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/077875 WO2017056277A1 (ja) | 2015-09-30 | 2015-09-30 | 水素製造装置及び水素製造システム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/922,094 Continuation US10590552B2 (en) | 2015-09-30 | 2018-03-15 | Hydrogen production apparatus and hydrogen production system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017056277A1 true WO2017056277A1 (ja) | 2017-04-06 |
Family
ID=58423088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/077875 WO2017056277A1 (ja) | 2015-09-30 | 2015-09-30 | 水素製造装置及び水素製造システム |
Country Status (5)
Country | Link |
---|---|
US (2) | US10590552B2 (ja) |
EP (2) | EP3358044B1 (ja) |
JP (1) | JP6165972B1 (ja) |
CA (2) | CA2998458C (ja) |
WO (1) | WO2017056277A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018178231A (ja) * | 2017-04-20 | 2018-11-15 | 株式会社神鋼環境ソリューション | 水素・酸素発生装置 |
JP2018193573A (ja) * | 2017-05-15 | 2018-12-06 | 株式会社東芝 | 電解液タンク、電解装置、および水素製造システム |
CN109280932A (zh) * | 2017-07-19 | 2019-01-29 | 本田技研工业株式会社 | 水电解系统及其运转停止方法 |
CN111212933A (zh) * | 2017-10-11 | 2020-05-29 | 沙特基础工业全球技术公司 | 没有离子交换膜的用于氢和氧分离的水分解系统 |
JP2021004627A (ja) * | 2019-06-25 | 2021-01-14 | 株式会社フクハラ | オフサイト型水素ステーション |
JP2021109144A (ja) * | 2020-01-09 | 2021-08-02 | ヤマハファインテック株式会社 | 水素ガス混合装置 |
JP7421581B2 (ja) | 2022-03-03 | 2024-01-24 | 本田技研工業株式会社 | 水電解システム及び水電解システムの運転方法 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3358044B1 (en) | 2015-09-30 | 2020-06-17 | Kabushiki Kaisha Toshiba | Device and system for producing hydrogen |
JP6899665B2 (ja) * | 2017-02-23 | 2021-07-07 | 川崎重工業株式会社 | 水電解システム及び水電解システムの運転方法 |
JP6633571B2 (ja) * | 2017-06-20 | 2020-01-22 | 株式会社東芝 | 水素製造装置及び水素製造システム |
WO2019181662A1 (ja) * | 2018-03-22 | 2019-09-26 | 株式会社トクヤマ | アルカリ水電解装置及びガス製造方法 |
KR102664170B1 (ko) * | 2018-07-27 | 2024-05-10 | 가부시끼가이샤 도꾸야마 | 가스 제조 장치 및 가스 제조 방법 |
CN111455398A (zh) * | 2019-04-01 | 2020-07-28 | 山东黑鲨智能科技有限公司 | 一种可移动的制氢加压一体机装置 |
DE102019123858A1 (de) * | 2019-09-05 | 2021-03-11 | Thyssenkrupp Uhde Chlorine Engineers Gmbh | Kreuzflusswasserelektrolyse |
JP7440057B2 (ja) | 2020-01-09 | 2024-02-28 | ヤマハファインテック株式会社 | 水素ガス混合装置 |
US11670960B2 (en) | 2020-09-01 | 2023-06-06 | Mitsubishi Power Americas, Inc. | Integrated power production and storage systems |
EP4071354A1 (en) * | 2021-04-09 | 2022-10-12 | Siemens Gamesa Renewable Energy A/S | Safety system for a wind turbine system including hydrogen production |
WO2022232152A1 (en) * | 2021-04-27 | 2022-11-03 | Mitsubishi Power Americas, Inc. | Hydrogen production system |
CN113373459B (zh) * | 2021-07-05 | 2022-07-12 | 阳光电源股份有限公司 | 一种脉冲宽度调制整流器、制氢的装置及制氢的方法 |
EP4123170A1 (en) * | 2021-07-19 | 2023-01-25 | Siemens Gamesa Renewable Energy A/S | Wind turbine with a safety system based on purging by means of nitrogen |
EP4123165A1 (en) * | 2021-07-19 | 2023-01-25 | Siemens Gamesa Renewable Energy A/S | Wind turbine with a safety system having a plurality of gas outlets |
CN114086199B (zh) * | 2021-12-18 | 2022-11-29 | 武汉理工大学 | 一种便于检修的pem电解制氢装置 |
CN118434968A (zh) * | 2021-12-21 | 2024-08-02 | 维斯塔斯风力系统集团公司 | 带有上塔架电解系统的风力涡轮机和控制该系统的方法 |
EP4273298A1 (en) * | 2022-05-04 | 2023-11-08 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for the start-up of an electrolysis system |
EP4283118A1 (en) * | 2022-05-25 | 2023-11-29 | Siemens Gamesa Renewable Energy A/S | Hydrogen gas detection means for wind turbines |
EP4357483A1 (de) * | 2022-10-18 | 2024-04-24 | Linde GmbH | Verfahren und anlage zur herstellung eines oder mehrerer elektrolyseprodukte |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08144079A (ja) * | 1994-11-28 | 1996-06-04 | Shinko Pantec Co Ltd | 水電解セルの残留電圧除去方法及びそのための装置 |
JP2010532823A (ja) * | 2007-07-11 | 2010-10-14 | スイス・ハイドロゲン・パワー・エスエイチピー・エス アー | 高圧電解装置及びこの種の装置を不活性化するための処理 |
JP2013537260A (ja) * | 2010-09-16 | 2013-09-30 | ソルヴェイ(ソシエテ アノニム) | 地震防護対策を備えたフッ素ガスプラント |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4263112A (en) * | 1980-06-20 | 1981-04-21 | Frosch Robert A | Cell and method for electrolysis of water and anode therefor |
JPH06165972A (ja) | 1992-11-30 | 1994-06-14 | Hitachi Kyowa Kogyo Co Ltd | 洗浄装置 |
CN1330792C (zh) * | 2002-01-29 | 2007-08-08 | 三菱商事株式会社 | 高压氢气制造设备和制造方法 |
FR2927907B1 (fr) * | 2008-02-21 | 2010-09-03 | Cie Europ Des Technologies De | Installation de production d'hydrogene par electrolyse de l'eau. |
TWI586842B (zh) | 2010-09-15 | 2017-06-11 | 首威公司 | 氟之製造工廠及使用彼之方法 |
TWI525042B (zh) | 2010-09-16 | 2016-03-11 | 首威公司 | 氟化氫供應單元 |
FR2971262B1 (fr) * | 2011-02-03 | 2013-09-13 | Ceram Hyd | Electrolyseur et ensemble le comportant, notamment pour la production de h2 et de o2 |
JP6253390B2 (ja) | 2013-12-18 | 2017-12-27 | 川崎重工業株式会社 | アルカリ水電解用隔膜及びその製造方法並びにアルカリ水電解装置 |
EP3358044B1 (en) | 2015-09-30 | 2020-06-17 | Kabushiki Kaisha Toshiba | Device and system for producing hydrogen |
-
2015
- 2015-09-30 EP EP15905431.1A patent/EP3358044B1/en active Active
- 2015-09-30 CA CA2998458A patent/CA2998458C/en active Active
- 2015-09-30 JP JP2016513167A patent/JP6165972B1/ja active Active
- 2015-09-30 CA CA3080528A patent/CA3080528C/en active Active
- 2015-09-30 EP EP20173214.6A patent/EP3712301A3/en not_active Withdrawn
- 2015-09-30 WO PCT/JP2015/077875 patent/WO2017056277A1/ja active Application Filing
-
2018
- 2018-03-15 US US15/922,094 patent/US10590552B2/en active Active
-
2020
- 2020-02-07 US US16/784,772 patent/US11162181B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08144079A (ja) * | 1994-11-28 | 1996-06-04 | Shinko Pantec Co Ltd | 水電解セルの残留電圧除去方法及びそのための装置 |
JP2010532823A (ja) * | 2007-07-11 | 2010-10-14 | スイス・ハイドロゲン・パワー・エスエイチピー・エス アー | 高圧電解装置及びこの種の装置を不活性化するための処理 |
JP2013537260A (ja) * | 2010-09-16 | 2013-09-30 | ソルヴェイ(ソシエテ アノニム) | 地震防護対策を備えたフッ素ガスプラント |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018178231A (ja) * | 2017-04-20 | 2018-11-15 | 株式会社神鋼環境ソリューション | 水素・酸素発生装置 |
JP2018193573A (ja) * | 2017-05-15 | 2018-12-06 | 株式会社東芝 | 電解液タンク、電解装置、および水素製造システム |
CN109280932A (zh) * | 2017-07-19 | 2019-01-29 | 本田技研工业株式会社 | 水电解系统及其运转停止方法 |
JP2019019386A (ja) * | 2017-07-19 | 2019-02-07 | 本田技研工業株式会社 | 水電解システム及びその運転停止方法 |
US10767272B2 (en) | 2017-07-19 | 2020-09-08 | Honda Motor Co., Ltd. | Water electrolysis system and method of stopping operation thereof |
CN111212933A (zh) * | 2017-10-11 | 2020-05-29 | 沙特基础工业全球技术公司 | 没有离子交换膜的用于氢和氧分离的水分解系统 |
JP2021004627A (ja) * | 2019-06-25 | 2021-01-14 | 株式会社フクハラ | オフサイト型水素ステーション |
JP2021109144A (ja) * | 2020-01-09 | 2021-08-02 | ヤマハファインテック株式会社 | 水素ガス混合装置 |
JP7417255B2 (ja) | 2020-01-09 | 2024-01-18 | ヤマハファインテック株式会社 | 水素ガス混合装置 |
JP7417255B6 (ja) | 2020-01-09 | 2024-01-30 | ヤマハファインテック株式会社 | 水素ガス混合装置 |
JP7421581B2 (ja) | 2022-03-03 | 2024-01-24 | 本田技研工業株式会社 | 水電解システム及び水電解システムの運転方法 |
US12037692B2 (en) | 2022-03-03 | 2024-07-16 | Honda Motor Co., Ltd. | Water electrolysis system and method of operating water electrolysis system |
Also Published As
Publication number | Publication date |
---|---|
EP3358044A4 (en) | 2019-05-22 |
EP3712301A3 (en) | 2020-12-09 |
US20200173047A1 (en) | 2020-06-04 |
CA2998458A1 (en) | 2017-04-06 |
EP3712301A2 (en) | 2020-09-23 |
EP3358044A1 (en) | 2018-08-08 |
US10590552B2 (en) | 2020-03-17 |
JPWO2017056277A1 (ja) | 2017-10-05 |
US11162181B2 (en) | 2021-11-02 |
EP3358044B1 (en) | 2020-06-17 |
CA3080528C (en) | 2022-06-21 |
US20180202053A1 (en) | 2018-07-19 |
CA2998458C (en) | 2020-07-21 |
JP6165972B1 (ja) | 2017-07-19 |
CA3080528A1 (en) | 2017-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6165972B1 (ja) | 水素製造装置及び水素製造システム | |
JP6633571B2 (ja) | 水素製造装置及び水素製造システム | |
US7605326B2 (en) | Solar electrolysis power co-generation system | |
CA3117925C (en) | Method of producing hydrogen | |
JP6937096B2 (ja) | 水素製造システム | |
JP2001130901A (ja) | 水素エネルギ供給装置 | |
JP2019090087A (ja) | 電解槽及び水素製造装置 | |
WO2017081776A1 (ja) | 水素製造装置、水素製造システム及び水素製造装置の製造方法 | |
RU2371813C1 (ru) | Автономная система энергопитания и способ ее эксплуатации | |
JP2020186418A (ja) | 水素・酸素発生装置及び水素ガス製造方法 | |
JPWO2012117725A1 (ja) | 気液分離器及び燃料電池システム | |
RU2111285C1 (ru) | Устройство для получения водорода и кислорода методом электролиза | |
CN216107236U (zh) | 一种全浸式垂直单元水电解制氢系统 | |
JP6633959B2 (ja) | 水素充填装置 | |
US20210052926A1 (en) | Method for preventing fires in tank systems and tank system for methanol fuels comprising a fire protection apparatus | |
JP3169050B2 (ja) | 水素・酸素発生装置及びその運転方法 | |
KR20140046190A (ko) | 잠수함의 연료전지 시스템 및 그 연료전지 시스템의 가스 제거방법 | |
JP6051402B2 (ja) | 燃料電池システム | |
JP5685748B1 (ja) | 水素を製造可能な高圧水素タンクおよび燃料電池車両 | |
RU2597412C1 (ru) | Электрохимический генератор на основе водородно-кислородных топливных элементов | |
JP2008303769A (ja) | 浸透圧式ガス圧縮システム | |
JP2018193600A (ja) | 水素製造システム | |
CN101135412A (zh) | 气柜并联式运行的方法 | |
CN110247584A (zh) | 一种氢电能源转换系统及装置 | |
WO2007002961A1 (en) | Installation which incorporates a reversible cell for selectively producing gases and electrical power |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016513167 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15905431 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2998458 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015905431 Country of ref document: EP |