WO2020019918A1 - 一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法 - Google Patents

一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法 Download PDF

Info

Publication number
WO2020019918A1
WO2020019918A1 PCT/CN2019/092496 CN2019092496W WO2020019918A1 WO 2020019918 A1 WO2020019918 A1 WO 2020019918A1 CN 2019092496 W CN2019092496 W CN 2019092496W WO 2020019918 A1 WO2020019918 A1 WO 2020019918A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
cobalt
manganese
solution
homogeneous
Prior art date
Application number
PCT/CN2019/092496
Other languages
English (en)
French (fr)
Inventor
马保中
王成彦
陈永强
赵林
但勇
金长浩
赵澎
Original Assignee
眉山顺应动力电池材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 眉山顺应动力电池材料有限公司 filed Critical 眉山顺应动力电池材料有限公司
Priority to CU2020000059A priority Critical patent/CU24672B1/es
Priority to AU2019310838A priority patent/AU2019310838B2/en
Publication of WO2020019918A1 publication Critical patent/WO2020019918A1/zh
Priority to PH12020551383A priority patent/PH12020551383A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese

Definitions

  • the invention relates to the technical field of comprehensive utilization of complex polymetallic resources, in particular to a method for separating nickel, cobalt and manganese from homogeneous precipitation in an acid leaching solution of laterite nickel ore.
  • Nickel is an important strategic material, mainly used in the manufacture of stainless steel, alloy steel and special alloys.
  • Nickel ore resources are divided into two categories, nickel sulfide ore and nickel oxide ore.
  • the iron oxide ore body is oxidized to red due to weathering, so it is also called laterite nickel ore.
  • the market's demand for nickel is constantly increasing, and nickel sulfide ore resources with higher nickel grades are depleting day by day. Therefore, nickel extraction from laterite nickel ore is receiving more and more attention.
  • the wet process for refining laterite nickel ore is an atmospheric pressure acid leaching process and a pressurized acid leaching process.
  • nickel is finally stored in the laterite nickel ore acid leaching solution.
  • the leaching solution is mainly enriched with nickel, cobalt and manganese valuable metals, which can be recovered by the precipitation method.
  • the existing method has a slow sedimentation filtration speed, a large water content after filtration of the sedimentation residue, and a certain amount of magnesium entrained.
  • Patent CN101525690 discloses a method for separating and recovering nickel-cobalt-magnesium-iron-silicon from laterite nickel ore. Its technical solution uses magnesite powder to precipitate nickel carbonate, and the solution is concentrated and crystallized to obtain magnesium sulfate heptahydrate after nickel precipitation. However, this method does not consider the comprehensive recovery of cobalt and manganese, which leads to a reduction in the recovery rate of valuable metals.
  • Patent CN101323908 discloses a method for recovering cobalt and nickel from manganese-cobalt slag.
  • the technical solution adopts sulfuric acid aging to treat manganese-cobalt slag to obtain a cobalt-nickel solution, and further purifies and extracts cobalt-nickel according to the traditional process.
  • the process is complicated, and the moisture content of the cobalt-nickel slag after filtration is high, and the recovery of manganese is not considered.
  • Patent CN102268537A discloses a method for extracting cobalt and nickel from laterite nickel ore. Its technical solution uses alkali neutralization to transform into nickel hydroxide and cobalt hydroxide, or uses sulfide precipitation to transform into nickel sulfide or cobalt sulfide, or The described aqueous solution is directly used in the electrolytic production of metallic nickel or metallic cobalt. This method has shortcomings, and the obtained nickel hydroxide and cobalt hydroxide will be partially mixed with magnesium hydroxide.
  • Patent CN101338374 discloses a method for extracting nickel-cobalt from laterite nickel ore. After removing iron from a laterite nickel ore acid leaching solution, a sulfide precipitating agent is added to precipitate to obtain nickel-rich cobalt sulfide, but the precipitate is still slightly soluble in the inclusions. Magnesium sulfide in water is more difficult in subsequent purification processes.
  • the present invention provides a method for homogeneous precipitation and separation of nickel, cobalt and manganese from a laterite nickel ore acid leaching solution.
  • the purpose of the present invention is to efficiently separate nickel, cobalt, and manganese from a nickel-cobalt-manganese-containing solution after deep removal of iron and aluminum from an acid leaching solution of laterite nickel ore.
  • the speed-controlled atomization of manganic acid solution—homogeneous system reaction—filtration and separation was achieved.
  • the nickel and cobalt precipitation rates were above 99%, and the manganese precipitation rates were above 85%.
  • the nickel-cobalt-manganese was well realized. Separation and recycling, and the process is simple, the production cost is low, which is convenient for industrialization promotion.
  • a method for separating nickel, cobalt and manganese from homogeneous precipitation in a laterite nickel ore acid leaching solution comprising the following steps:
  • Step 1 Preparing the precipitating agent: using calcium oxide / magnesium oxide and adding a certain proportion of water to mix and evenly prepare a slurry or a certain concentration of sodium hydroxide aqueous solution as the nickel-cobalt-manganese precipitating agent;
  • Step 2 Precipitator speed control and refinement: The precipitant is transported to the homogeneous reactor through a pipe with a speed control device, and a refiner is installed at the outlet end, so as to achieve the purpose of precipitant speed control and refinement into the reactor. ;
  • Step 3 Nitrogen-containing cobalt-manganese acid solution speed-control atomization: The nickel-containing cobalt-manganese acid solution is transported to the homogeneous reactor through a pipeline with a speed-control device, and an atomizer is installed at the outlet end to thereby nickel-cobalt-manganese solution. Add acid-controlled atomization to the reactor;
  • Step 4 Homogeneous system reaction: Steps 2 and 3 are added to the reactor, heat and stir, adjust the pH value to a constant value to form a homogeneous system, and convert nickel, cobalt and manganese into precipitates;
  • Step 5 Filtration and separation: The slurry obtained after the neutralization and precipitation in step 4 is filtered and separated to obtain a nickel-cobalt-manganese removal liquid and a sandy nickel-cobalt-manganese slag. The filtration speed is increased by 10 to 20 times compared with the conventional method.
  • the concentration of the prepared precipitant slurry CaO / MgO is 10% to 40% or the concentration of the NaOH solution is 50 to 150g / L, wherein the particle sizes of the ground calcium oxide and magnesium oxide are less than 74 ⁇ m.
  • the adding speed of the precipitating agent in step 2 is strictly controlled according to the needs of the reaction.
  • the precipitating agent is refined by installing a refiner at the outlet end.
  • the refiner is a porous spraying device with a pore diameter of 100-150 ⁇ m.
  • strict control means that the pH value of the reaction system ranges from 6.8 to 8.3, and a certain value is maintained.
  • the treated nickel-cobalt-manganese acid solution contains: Ni 2-8g / L, Co 0.3-3g / L, Mn 2-8g / L, Ca 0.5-5g / L, Mg 1-20g / L;
  • the anions in the solution are one or more of NO 3 - or Cl - or SO 4 2- .
  • the adding rate of the nickel-containing cobalt-cobalt-manganese acid solution treated in the third step is strictly controlled according to the needs of the reaction, and the liquid atomization of the laterite nickel ore after removing iron and aluminum is achieved by installing an atomizer at the outlet end.
  • the strict control means that the added acid leaching solution and the precipitant added in step 2 are exactly reacted completely.
  • the pH range is controlled from 6.8 to 8.3 and a certain value is maintained.
  • the reaction temperature is 30 to 80 ° C
  • the reaction time is 0.5 to 3 hours
  • the stirring speed is 50 ⁇ 200rpm, the temperature should be kept stable during the reaction.
  • the present invention provides a method for isolating nickel, cobalt, and manganese from a laterite nickel ore acid leaching solution by homogeneous precipitation.
  • the process is simple, the equipment investment is low, the operation is convenient, and it can be put into industrial production on a large scale.
  • the innovation of the present invention lies in strictly controlling the addition rate of the precipitant and the nickel-cobalt-manganic acid solution by controlling the reaction system to maintain a certain specific pH by means of atomization and refinement and the molar ratio of materials required for the precipitation reaction. Homogeneous reaction.
  • the method provided by the present invention for homogeneous precipitation separation of nickel, cobalt and manganese from a laterite nickel ore acid leaching solution has at least the following advantages:
  • the nickel-cobalt slag obtained by the homogeneous system precipitation method is sandy, and the nickel-cobalt slag obtained by the conventional precipitation method is colloidal. Therefore, compared with the conventional precipitation method, the filtration speed of the slurry is increased by 10-20 times, which is convenient. Industrial production.
  • FIG. 1 is a method for separating nickel, cobalt, and manganese from a homogeneous precipitate in a liquid after removing iron and aluminum from laterite nickel ore according to an embodiment of the present invention.
  • a method for separating nickel, cobalt and manganese from homogeneous precipitation in a laterite nickel ore acid leaching solution comprises the following steps: preparing 100 kg of calcium oxide, adding 400 kg of water, and stirring well to prepare calcium oxide milk as a precipitate. The concentration of slurry and precipitant is 20%. It is transported through the pipeline with speed control device and added to the homogeneous reactor through the refiner at the outlet. At the same time, the nickel-cobalt-manganese acid solution is also passed through the speed control device. The pipe of the device is transported and added to the homogeneous reactor through the atomizer at the outlet end.
  • the homogeneous system had a reaction pH of 6.8, a reaction temperature of 30 ° C, a reaction time of 3h, and stirring.
  • the rotation speed is 100 rpm, and the pH and temperature should be kept constant during the reaction. According to the needs of the reaction, the addition rate of the nickel-cobalt-manganic acid solution and the precipitant is strictly controlled to maintain a balanced and stable reaction system.
  • the reacted slurry is transported to a filter through a pipe to be filtered to obtain a nickel-cobalt-manganese removal liquid and a sandy nickel-cobalt-manganese slag.
  • the precipitation rates of nickel and cobalt were 99.6% and 99.2%, and the precipitation rates of manganese were 85.6%.
  • a method for isolating nickel, cobalt, and manganese from a laterite nickel ore acid leaching solution comprising: preparing 200 kg of calcium oxide, adding 450 kg of water, and stirring well to prepare calcium oxide milk as a precipitant, and a precipitant slurry The concentration is 30.7%. It is transported through a pipeline with a speed control device and added to the homogeneous reactor through a refiner at the outlet end. At the same time, the nickel-cobalt manganese acid solution is also transported through a pipeline with a speed control device. Add to the homogeneous reactor through the atomizer at the outlet end.
  • the homogeneous system had a reaction pH of 7.2, a reaction temperature of 50 ° C, a reaction time of 3h, and stirring.
  • the rotation speed is 120 rpm, and the pH and temperature should be kept constant during the reaction. According to the needs of the reaction, the addition rate of the nickel-cobalt-manganese acid solution and the precipitant is strictly controlled to maintain a stable and stable reaction system.
  • the reacted slurry is transported to a filter through a pipe to be filtered to obtain a nickel-cobalt-manganese removal liquid and a sandy nickel-cobalt-manganese slag.
  • the precipitation rates of nickel and cobalt were 99.2% and 99.4%, respectively, and the precipitation rates of manganese were 87.3%.
  • a method for homogeneous precipitation and separation of nickel, cobalt and manganese from a laterite nickel ore acid leaching solution comprising: preparing an 80 g / L sodium hydroxide aqueous solution as a precipitating agent, transporting it through a pipeline with a speed control device, and passing the The refiner is added to the homogeneous reactor.
  • the nickel-cobalt-manganese acid solution is also conveyed through the pipeline with a speed control device, and is added to the homogeneous reactor through the atomizer at the outlet end. Homogeneous reaction of the speed-controlled atomized nickel-cobalt-manganese acid solution and the speed-refined precipitating agent occurred in the homogeneous reactor.
  • the homogeneous system had a reaction pH of 8.0, a reaction temperature of 60 ° C, a reaction time of 2h, and stirring.
  • the rotation speed is 150 rpm, and the pH and temperature should be kept constant during the reaction.
  • the addition rate of the nickel-cobalt-manganese acid solution and the precipitant is strictly controlled to maintain a balanced and stable reaction system.
  • the reacted slurry is transported to a filter through a pipe to be filtered to obtain a nickel-cobalt-manganese removal liquid and a sandy nickel-cobalt-manganese slag.
  • the precipitation rates of nickel and cobalt were 99.2% and 99.4%, respectively, and the precipitation rates of manganese were 87.3%.
  • a method for isolating nickel, cobalt, and manganese from a laterite nickel ore acid leaching solution comprising: preparing 200 kg of magnesium oxide, adding 450 kg of water, and stirring well to prepare calcium oxide milk as a precipitant, and a precipitant slurry The concentration is 30.7%. It is transported through a pipeline with a speed control device and added to the homogeneous reactor through a refiner at the outlet end. At the same time, the nickel-cobalt manganese acid solution is also transported through a pipeline with a speed control device. Add to the homogeneous reactor through the atomizer at the outlet end.
  • Homogeneous reaction of speed-controlled atomized nickel-cobalt-manganese acid solution and speed-refined precipitating agent occurs in a homogeneous reactor.
  • the reaction temperature of the homogeneous system is 7.0, the reaction temperature is 60 ° C, and the reaction time is 2.5h.
  • the stirring speed is 50 rpm, and the pH and temperature must be kept constant during the reaction. According to the needs of the reaction, the addition rate of the nickel-cobalt-manganese acid solution and the precipitant is strictly controlled to maintain a balanced and stable reaction system.
  • the reacted slurry is transported to a filter through a pipe to be filtered to obtain a nickel-cobalt-manganese removal liquid and a sandy nickel-cobalt-manganese slag.
  • the precipitation rates of nickel and cobalt were 99.7% and 99.1%, and the precipitation rates of manganese were 85.6%.
  • a method for isolating nickel, cobalt, and manganese from a laterite nickel ore acid leaching solution comprising: preparing 100 kg of magnesium oxide, adding 300 kg of water, and stirring well to prepare calcium oxide milk as a precipitant, and a precipitant slurry The concentration is 25%. It is transported through a pipeline with a speed control device and added to the homogeneous reactor through a refiner at the outlet. At the same time, the nickel-cobalt manganese acid solution is also transported through a pipeline with a speed control device. Add to the homogeneous reactor through the atomizer at the outlet end.
  • the homogeneous system had a reaction pH of 8.3, a reaction temperature of 80 ° C, a reaction time of 3h, and stirring.
  • the rotation speed is 200 rpm, and the pH and temperature should be kept constant during the reaction. According to the needs of the reaction, the addition rate of the nickel-cobalt-manganese acid solution and the precipitant is strictly controlled to maintain a balanced and stable reaction system.
  • the reacted slurry is transported to a filter through a pipe to be filtered to obtain a nickel-cobalt-manganese removal liquid and a sandy nickel-cobalt-manganese slag.
  • the precipitation rates of nickel and cobalt were 99.4% and 99.7%, and the precipitation rates of manganese were 87.2%.
  • the present invention well realizes the precipitation and separation of nickel, cobalt and manganese in the laterite nickel ore acid leaching solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种从红土镍矿酸浸液中均相沉淀分离镍钴锰的方法,属于复杂多金属资源综合利用技术领域。包括:将氢氧化钠溶液或者细磨后氧化钙或氧化镁配成乳浆作为沉淀剂;通过带有控速装置的管道将沉淀剂输送到均相反应器并在出口端安装细化器细化沉淀剂;通过带有控速装置的管道把含镍钴锰酸溶液输送到均相反应器,并在出口端安装雾化器把酸溶液雾化:控速雾化的镍钴锰酸溶液和控速细化的沉淀剂在均相反应器中发生均相反应,得到反应后浆液;把反应后浆液过滤,即可得到沉镍钴后液和砂状镍钴锰渣。本方法工艺简单,可操作性强、成本低、便于工业化生产,可实现红土镍矿酸浸液中镍钴锰的高效分离,应用前景广阔。

Description

一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法 技术领域
本发明涉及复杂多金属资源综合利用技术领域,尤其涉及一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法。
背景技术
镍是一种重要的战略物资,主要用于制造不锈钢,合金钢和特种合金等。镍矿资源分为硫化镍矿和氧化镍矿两大类,其中氧化镍矿岩体因风化而使矿石中的铁被氧化呈红色,因此又叫红土镍矿。
如今,市场对镍的需求不断增加,而镍品位较高的硫化镍矿资源日趋枯竭,于是红土镍矿提镍越来越受到人们重视。现在对红土镍矿进行提炼的湿法工艺主要是常压酸浸工艺和加压酸浸工艺,无论哪种方法,镍最终赋存在红土镍矿酸浸液中。红土镍矿酸浸液经过除铁铝后,其浸出液中主要富集有镍、钴和锰有价金属,可通过沉淀法回收。但现有方法沉淀过滤速度慢,沉淀渣过滤后含水量较大,并且夹带一定量的镁,这些问题直接导致镍钴锰的损失率增加。
鉴于上述红土镍矿除铁铝后液沉淀分离镍、钴和锰工艺所存在的不足之处,近年来人们一直在研究适用于中和沉淀镍、钴和锰的新技术。
专利CN101525690公开了一种从红土镍矿中分离回收镍钴镁铁硅的方法,其技术方案采用菱镁矿粉沉淀碳酸镍,沉镍后液浓缩结晶得七水硫酸镁。但该方法并没有考虑钴和锰的综合回收问题,导致了有价金属回收率降低。
专利CN101323908公开了一种从锰钴渣中回收钴镍的方法,其技术方案采用硫酸熟化处理锰钴渣后得到钴镍溶液,再按传统工艺深度净化和萃取分离钴镍。其工艺复杂,且钴镍渣过滤后含水率较高,且未考虑锰的回收。
专利CN102268537A公开了一种从红土镍矿中提取钴镍的方法,其技术方案采用碱中和转化成氢氧化镍和氢氧化钴,或者用硫化物沉淀转化为硫化镍或硫化钴,或者将所述的水溶液直接用于电解生产金属镍或金属钴。其方法存在不足之处,所得到的氢氧化镍和氢氧化钴中会夹杂部分氢氧化镁。
专利CN101338374公开了一种从红土镍矿提取镍钴的方法,其红土镍矿酸浸液除铁后,加入硫化物沉淀剂,沉淀得到富镍钴硫化物,但其沉淀中仍然夹杂微溶于水的硫化镁,后续提纯工序较难。
综上可见,上述现有技术中对红土镍矿除铁铝后液提取镍钴锰工艺进行的改进仍存在工艺条件苛刻、金属回收率不高,且易夹杂金属镁,造成后续提纯工艺难等弊端,未能很好的实现红土镍矿中有价元素镍、钴和锰的分离回收。
发明内容
为了解决上述现有技术中所存在的技术问题,本发明提供了一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法。
本发明目的是从红土镍矿酸浸液深度除铁铝后的含镍钴锰酸溶液中高效分离镍、钴和锰,是通过:“沉淀剂制备—沉淀剂控速细化—含镍钴锰酸溶液控速雾化—均相体系反应—过滤分离”的技术路线实现的,其中镍、钴沉淀率均达到99%以上,锰的沉淀率大于85%,很好地实现了镍钴锰的分离回收,且工艺流程简单,生产成本低,便于工业化推广。
一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法,包括以下步骤:
步骤一、沉淀剂制备:使用氧化钙/氧化镁加入一定比例的水混合均匀配制成浆料或一定浓度的氢氧化钠水溶液作为镍钴锰沉淀剂;
步骤二、沉淀剂控速细化:将沉淀剂通过带有控速装置的管道输送到均相反应器,并在出口端安装细化器,从而达到沉淀剂控速细化加入反应器的目的;
步骤三、含镍钴锰酸溶液控速雾化:含镍钴锰酸溶液通过带有控速装置的管道输送到均相反应器,并在出口端安装雾化器,从而将含镍钴锰酸溶液控速雾化加入反应器;
步骤四、均相体系反应:步骤二和步骤三料液加入到反应器,加热搅拌,调节pH值为一恒定的值形成均相体系,使镍、钴和锰转化成沉淀;
步骤五、过滤分离:将步骤四中和沉淀后所得浆液过滤分离,得到除镍钴锰后液和砂状镍钴锰渣,过滤速度较常规方法提高10~20倍。
进一步地,配制的沉淀剂料浆浓度CaO/MgO 10%~40%或NaOH溶液浓度50~150g/L,其中氧化钙和氧化镁磨细后的粒度均小于74μm。
进一步地,步骤二中沉淀剂的加入速度根据反应需要严格控制,沉淀剂细化是通过在出口端安装细化器实现的,细化器为多孔喷洒装置,孔直径100~150μm。其中,严格控制是指使反应体系pH值范围为6.8~8.3,并维持某一个值不变。
进一步地,所处理的含镍钴锰酸溶液中含:Ni 2~8g/L,Co 0.3~3g/L,Mn 2~8g/L,Ca 0.5~5g/L,Mg 1~20g/L;溶液中阴离子为NO 3 -或Cl -或SO 4 2-的一种或几种。
进一步地,将所述步骤三处理的含镍钴锰酸溶液的加入速度根据反应需要严格控制,红土镍矿除铁铝后液雾化通过在出口端安装雾化器来实现。其中严格控制是指,使加入的酸浸液和步骤二加入的沉淀剂正好完全反应。
进一步地,步骤四中所述的均相体系反应,控制pH值范围为6.8~8.3并维持某一个值不变,此外,反应温度为30~80℃、反应时间为0.5~3h、搅拌转速为50~200rpm,反应过程中温度要保持稳定。
由上述本发明提供的技术方案可以看出,本发明所提供的一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法。采用“沉淀剂制备—沉淀剂控速细化—含镍钴锰酸溶液控速雾化—均相体系反应—过滤分离”的工艺路线,实现红土镍矿酸浸液中分离纯化镍、钴和锰的目的,工艺流程简单,设备投入低,操作方便,可大规模投入工业化生产。
本发明创新点在于通过雾化和细化的方式以及根据沉淀反应所需物料摩尔比,严格控制沉淀剂和含镍钴锰酸溶液的加入速度,控制反应体系维持某一特定pH不变,实现均相体系反应。
与现有技术相比,本发明所提供的从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法至少具有以下优势:
(1)采用均相体系沉淀法得到的镍钴渣呈砂状,而采用常规沉淀法得到的镍钴渣呈胶状,从而本技术与常规沉淀法相比矿浆过滤速度提高10~20倍,便于工业化生产。
(2)过滤后的渣含水从原来的60%左右降低到30%以下,渣中镁夹带量大幅降低。
(3)采用雾化和细化的加料方式,实现均相体系反应,可以防止反应体系局部过 碱,从而减少镁的夹带。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例提供的从红土镍矿除铁铝后液中均相沉淀分离镍、钴和锰的方法。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
为了更加清晰地展现出本发明所提供的技术方案及所产生的技术效果,下面以具体实施例对本发明所提供的方法进行详细描述。
实施例1
如图1所示,一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法,包括:配制氧化钙100kg,加入400kg水,充分搅拌均匀后制成氧化钙乳作为沉淀剂,沉淀剂料浆浓度为20%,通过带有控速装置的管道输送,并通过出口端的细化器加入到均相反应器中,同时,含镍钴锰酸溶液也通过带有控速装置的管道输送,并通过出口端的雾化器加入到均相反应器中。控速雾化的含镍钴锰酸溶液和控速细化的沉淀剂在均相反应器中发生均相反应,均相体系反应pH为6.8、反应温度为30℃、反应时间为3h、搅拌转速为100rpm,反应过程中pH和温度要保持恒定,根据反应需要,严格控制含镍钴锰酸溶液和沉淀剂的加入速度,维持反应体系均衡稳定。最后将反应后的浆液通过管道输送至过滤机过滤,得到除镍钴锰后液和砂状镍钴锰渣。镍和钴的沉淀率分别为99.6%和99.2%,锰的沉淀率85.6%。
实施例2
一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法,包括:配制氧化钙200kg,加入450kg水,充分搅拌均匀后制成氧化钙乳作为沉淀剂,沉淀剂料浆浓度为30.7%,通过带有控速装置的管道输送,并通过出口端的细化器加入到均相反应器中,同时,含镍钴锰酸溶液也通过带有控速装置的管道输送,并通过出口端的雾化器加入到均相反应器中。控速雾化的含镍钴锰酸溶液和控速细化的沉淀剂在均相反应器中发生均相反应,均相体系反应pH为7.2、反应温度为50℃、反应时间为3h、搅拌转速为120rpm,反应过程中pH和温度要保持恒定,根据反应需要,严格控制含镍钴锰酸溶液和沉淀剂的加入速度,维持反应体系均衡稳定。最后将反应后的浆液通过管道输送至过滤机过滤,得到除镍钴锰后液和砂状镍钴锰渣。镍和钴的沉淀率分别为99.2%和99.4%,锰的沉淀率87.3%。
实施例3
一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法,包括:配制80g/L氢氧 化钠水溶液作为沉淀剂,通过带有控速装置的管道输送,并通过出口端的细化器加入到均相反应器中,同时,含镍钴锰酸溶液也通过带有控速装置的管道输送,并通过出口端的雾化器加入到均相反应器中。控速雾化的含镍钴锰酸溶液和控速细化的沉淀剂在均相反应器中发生均相反应,均相体系反应pH为8.0、反应温度为60℃、反应时间为2h、搅拌转速为150rpm,反应过程中pH和温度要保持恒定,根据反应需要,严格控制含镍钴锰酸溶液和沉淀剂的加入速度,维持反应体系均衡稳定。最后将反应后的浆液通过管道输送至过滤机过滤,得到除镍钴锰后液和砂状镍钴锰渣。镍和钴的沉淀率分别为99.2%和99.4%,锰的沉淀率87.3%。
实施例4
一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法,包括:配制氧化镁200kg,加入450kg水,充分搅拌均匀后制成氧化钙乳作为沉淀剂,沉淀剂料浆浓度为30.7%,通过带有控速装置的管道输送,并通过出口端的细化器加入到均相反应器中,同时,含镍钴锰酸溶液也通过带有控速装置的管道输送,并通过出口端的雾化器加入到均相反应器中。控速雾化的含镍钴锰酸溶液和控速细化的沉淀剂在均相反应器中发生均相反应,均相体系反应pH为7.0、反应温度为60℃、反应时间为2.5h、搅拌转速为50rpm,反应过程中pH和温度要保持恒定,根据反应需要,严格控制含镍钴锰酸溶液和沉淀剂的加入速度,维持反应体系均衡稳定。最后将反应后的浆液通过管道输送至过滤机过滤,得到除镍钴锰后液和砂状镍钴锰渣。镍和钴的沉淀率分别为99.7%和99.1%,锰的沉淀率85.6%。
实施例5
一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法,包括:配制氧化镁100kg,加入300kg水,充分搅拌均匀后制成氧化钙乳作为沉淀剂,沉淀剂料浆浓度为25%,通过带有控速装置的管道输送,并通过出口端的细化器加入到均相反应器中,同时,含镍钴锰酸溶液也通过带有控速装置的管道输送,并通过出口端的雾化器加入到均相反应器中。控速雾化的含镍钴锰酸溶液和控速细化的沉淀剂在均相反应器中发生均相反应,均相体系反应pH为8.3、反应温度为80℃、反应时间为3h、搅拌转速为200rpm,反应过程中pH和温度要保持恒定,根据反应需要,严格控制含镍钴锰酸溶液和沉淀剂的加入速度,维持反应体系均衡稳定。最后将反应后的浆液通过管道输送至过滤机过滤,得到除镍钴锰后液和砂状镍钴锰渣。镍和钴的沉淀率分别为99.4%和99.7%,锰的沉淀率87.2%。
综上可见,本发明很好地实现了红土镍矿酸浸液中镍、钴和锰的沉淀分离。
以上所述,为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围以权利要求书的保护范围为准。

Claims (6)

  1. 一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法,其特征在于,包括以下步骤:
    步骤一、沉淀剂制备:使用氧化钙/氧化镁加入一定比例的水混合均匀配制成浆料或一定浓度的氢氧化钠水溶液作为镍钴锰沉淀剂;
    步骤二、沉淀剂控速细化:将沉淀剂通过带有控速装置的管道输送到均相反应器,并在出口端安装细化器,从而达到沉淀剂控速细化加入反应器的目的;
    步骤三、含镍钴锰酸溶液控速雾化:含镍钴锰酸溶液通过带有控速装置的管道输送到均相反应器,并在出口端安装雾化器,从而将含镍钴锰酸溶液控速雾化加入反应器;
    步骤四、均相体系反应:步骤二和步骤三料液加入到反应器,加热搅拌,调节pH值为一恒定的值形成均相体系,使镍、钴和锰转化成沉淀;
    步骤五、过滤分离:将步骤四中和沉淀后所得浆液过滤分离,得到除镍钴锰后液和砂状镍钴锰渣。
  2. 根据权利要求1所述的一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法,其特征在于配制的沉淀剂料浆浓度CaO/MgO 10%~40%或NaOH溶液浓度50~150g/L,其中氧化钙和氧化镁磨细后的粒度均小于74μm。
  3. 根据权利要求1所述的一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法,其特征在于步骤二中沉淀剂的加入速度根据反应需要严格控制,沉淀剂细化是通过在出口端安装细化器实现的,细化器为多孔喷洒装置,孔直径100~150μm。
  4. 根据权利要求1所述的一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法,其特征在于:所处理的含镍钴锰酸溶液中含:Ni 2~8g/L,Co 0.3~3g/L,Mn 2~8g/L,Ca 0.5~5g/L,Mg 1~20g/L;溶液中阴离子为NO 3 -或Cl -或SO 4 2-的一种或几种。
  5. 根据权利要求1所述的一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法,其特征在于:将所述步骤三处理的含镍钴锰酸溶液的加入速度根据反应需要严格控制,红土镍矿除铁铝后液雾化通过在出口端安装雾化器来实现。
  6. 根据权利要求1所述的本发明的一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法,其特征在于:步骤四中所述的均相体系反应,控制pH值范围为6.8~8.3并维持某一个值不变,此外,反应温度为30~80℃、反应时间为0.5~3h、搅拌转速为50~200rpm,反应过程中温度要保持稳定。
PCT/CN2019/092496 2018-07-24 2019-06-24 一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法 WO2020019918A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CU2020000059A CU24672B1 (es) 2018-07-24 2019-06-24 Método para la separación por precipitación homogénea de níquel, cobalto y manganeso de una solución de lixiviación de ácido de mineral de laterita-níquel
AU2019310838A AU2019310838B2 (en) 2018-07-24 2019-06-24 Method for homogeneous precipitation separation of nickel, cobalt and manganese from laterite nickel ore acid leaching solution
PH12020551383A PH12020551383A1 (en) 2018-07-24 2020-09-04 Method for homogeneous precipitation separation of nickel, cobalt and manganese from a laterite-nickel ore acid leaching solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810816383.8A CN109022823B (zh) 2018-07-24 2018-07-24 一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法
CN201810816383.8 2018-07-24

Publications (1)

Publication Number Publication Date
WO2020019918A1 true WO2020019918A1 (zh) 2020-01-30

Family

ID=64644502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092496 WO2020019918A1 (zh) 2018-07-24 2019-06-24 一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法

Country Status (5)

Country Link
CN (1) CN109022823B (zh)
AU (1) AU2019310838B2 (zh)
CU (1) CU24672B1 (zh)
PH (1) PH12020551383A1 (zh)
WO (1) WO2020019918A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115491518A (zh) * 2022-09-16 2022-12-20 内蒙古蒙能环保科技有限公司 氯化法生产硫酸镍和硫酸钴的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109022823B (zh) * 2018-07-24 2020-10-02 眉山顺应动力电池材料有限公司 一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法
CN111549238A (zh) * 2020-04-15 2020-08-18 广西赛可昱新材料科技有限公司 一种红土镍矿浸出液生产高品位氢氧化镍的方法
CN115109927A (zh) * 2021-03-17 2022-09-27 中国科学院过程工程研究所 一种红土镍矿盐酸浸出液除锰镁的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876887A (zh) * 2012-09-28 2013-01-16 广西银亿科技矿冶有限公司 一种从红土镍矿浸出液中综合回收金属的方法
CN103545504A (zh) * 2013-10-17 2014-01-29 江西赣锋锂业股份有限公司 一种三元正极材料前驱体的制备方法
CN106673025A (zh) * 2016-11-18 2017-05-17 江苏仁欣环保科技有限公司 一种利用红土镍矿湿法工艺产生含镁废液生产氢氧化镁的工艺方法
CN109022823A (zh) * 2018-07-24 2018-12-18 北京科技大学 一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1151075C (zh) * 2002-08-16 2004-05-26 中国科学院理化技术研究所 一种制备球形氢氧化亚镍的方法
WO2009114903A1 (en) * 2008-03-20 2009-09-24 Bhp Billiton Ssm Development Pty Ltd Process for the recovery of nickel and/or cobalt from high ferrous content laterite ores
CN104743616A (zh) * 2013-12-30 2015-07-01 江阴市镍网厂有限公司 球形氢氧化亚镍粉的制备装置
CN105731553A (zh) * 2016-02-03 2016-07-06 广东佳纳能源科技有限公司 一种晶簇状三元正极材料前驱体及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876887A (zh) * 2012-09-28 2013-01-16 广西银亿科技矿冶有限公司 一种从红土镍矿浸出液中综合回收金属的方法
CN103545504A (zh) * 2013-10-17 2014-01-29 江西赣锋锂业股份有限公司 一种三元正极材料前驱体的制备方法
CN106673025A (zh) * 2016-11-18 2017-05-17 江苏仁欣环保科技有限公司 一种利用红土镍矿湿法工艺产生含镁废液生产氢氧化镁的工艺方法
CN109022823A (zh) * 2018-07-24 2018-12-18 北京科技大学 一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115491518A (zh) * 2022-09-16 2022-12-20 内蒙古蒙能环保科技有限公司 氯化法生产硫酸镍和硫酸钴的方法
CN115491518B (zh) * 2022-09-16 2023-09-22 内蒙古蒙能环保科技有限公司 氯化法生产硫酸镍和硫酸钴的方法

Also Published As

Publication number Publication date
CU20200059A7 (es) 2021-04-07
PH12020551383A1 (en) 2021-07-26
AU2019310838B2 (en) 2022-03-10
CN109022823A (zh) 2018-12-18
AU2019310838A1 (en) 2020-08-13
CU24672B1 (es) 2023-08-08
CN109022823B (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
WO2020019918A1 (zh) 一种从红土镍矿酸浸液中均相沉淀分离镍、钴和锰的方法
WO2020019919A1 (zh) 一种从红土镍矿酸浸液中均相沉淀分离铁铝的方法
WO2023030165A1 (zh) 一种铜冶炼硫化砷渣与含砷烟尘协同处理的方法
CN103924102B (zh) 一种脱除难处理金矿中锑并制备立方晶型焦锑酸钠的方法
CN112662896B (zh) 一种钛矿制备富钛料的方法
CN112159897B (zh) 一种镍钴锰浸出液净化的方法
WO2022213679A1 (zh) 一种镍铁合金湿法浸出镍氨溶液的方法和应用
WO2022160493A1 (zh) 一种粗制镍铁合金的回收方法和应用
CN112795784B (zh) 一种赤泥中有价组分综合回收的方法
CN109811132A (zh) 一种从高炉瓦斯泥中综合回收利用碳、铁、铝、锌、铅的方法
CN112410555A (zh) 一种湿法炼锌酸性浸出渣浮选银精矿的综合回收方法
CN111961851A (zh) 一种含亚铁溶液针铁矿法除铁的方法
CN101250622A (zh) 蛇纹石矿的全湿法综合处理方法
WO2020181745A1 (zh) 一种粗制钴/镍盐原料高效分离钴/镍镁锰的方法
CN104032131A (zh) 高锡阳极泥的处理方法
CN110629022A (zh) 一种利用硝酸介质综合处理红土镍矿的方法
CN110911675B (zh) 一种海底多金属结核制取锂电正极材料前驱体的方法
CN105803221A (zh) 采用硫酸处理钴铜合金的方法
CN113215404B (zh) 一种从钴氨络合物溶液中制备球形四氧化三钴的方法
CN109338112A (zh) 一种五氧化二钒提纯的方法
CN114645140A (zh) 一种制取镍中间品的方法
CN114150165A (zh) 一种从含钒钢渣中富集钒同时制备纳米碳酸钙的方法
RU2141452C1 (ru) Способ получения кобальт (ii) сульфата
CN114990351B (zh) 一种锌精矿与铜白烟尘协同处理的方法
CN114934192B (zh) 一种锌精矿与硫化砷渣协同浸出的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841775

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019310838

Country of ref document: AU

Date of ref document: 20190624

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19841775

Country of ref document: EP

Kind code of ref document: A1