WO2020019593A1 - 一种针对粘土矿物的溶蚀酸化液及其制备方法 - Google Patents

一种针对粘土矿物的溶蚀酸化液及其制备方法 Download PDF

Info

Publication number
WO2020019593A1
WO2020019593A1 PCT/CN2018/116353 CN2018116353W WO2020019593A1 WO 2020019593 A1 WO2020019593 A1 WO 2020019593A1 CN 2018116353 W CN2018116353 W CN 2018116353W WO 2020019593 A1 WO2020019593 A1 WO 2020019593A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
ammonium chloride
solution
reservoir
imidazoline
Prior art date
Application number
PCT/CN2018/116353
Other languages
English (en)
French (fr)
Inventor
曲希玉
陈思芮
董晓芳
邱隆伟
王冠民
张洋晨
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Priority to US16/619,661 priority Critical patent/US10961441B2/en
Publication of WO2020019593A1 publication Critical patent/WO2020019593A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/72Eroding chemicals, e.g. acids
    • C09K8/725Compositions containing polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/72Eroding chemicals, e.g. acids
    • C09K8/74Eroding chemicals, e.g. acids combined with additives added for specific purposes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/27Methods for stimulating production by forming crevices or fractures by use of eroding chemicals, e.g. acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/12Swell inhibition, i.e. using additives to drilling or well treatment fluids for inhibiting clay or shale swelling or disintegrating

Definitions

  • the invention belongs to the field of petroleum engineering, and particularly relates to an erosion and acidification solution for clay minerals and a preparation method thereof.
  • Low-permeability oil and gas reservoirs have high percolation resistance, large energy consumption during fluid migration, low formation pressure and flow pressure, and poor productivity. At present, many fracturing processes are used, and high yields are obtained in the early stage, but the output is decreasing rapidly and the capacity to stabilize production is poor. With the deepening of the understanding of formation characteristics and damage causes of low-permeability reservoirs, more and more mixed acid solutions and additives and acidification processes have appeared and started to be applied.
  • Mud shale reservoirs have extremely low matrix porosity and permeability and require large-scale fracturing to form industrial production capacity.
  • the shale mineral components are mainly quartz minerals, clay minerals (aluminosilicate minerals) and carbonate minerals, among which the clay content is relatively high.
  • reservoir fracturing and reforming technology Prior to the development of mud shale reservoirs, reservoir fracturing and reforming technology was applied, but due to the compactness of mud shale reservoir rocks, the fracturing construction pressure was too high.
  • an acidified fluid needs to be pumped to contact the damage caused to the reservoir during the drilling process, such as collapsing the borehole wall during drilling, and reducing the fracturing construction pressure by dissolving minerals near the wellbore, which is a later stage of fracturing.
  • Liquid injection provides protection.
  • mud shale reservoir pores and fractures are storage spaces and migration channels for underground fluids.
  • the fractures are usually filled with fillers and have a certain cementing strength.
  • the acid liquid mainly reacts with the mineral components and cements in the rock to reduce the rock's fracture pressure and crack cementation strength, which causes the occurrence of multiple cracks.
  • the acid liquid system for clay minerals includes conventional hydrochloric acid acidification and earth acid acidification. In recent years, phosphoric acid, sulfuric acid, nitric acid, and organic acids have also been successively applied.
  • Clay minerals tend to swell and transfer when they encounter water, blocking the throat and pores of the reservoir. At 135 ° C, most clays will be transformed into silica gel polymers by soaking in hydrochloric acid, which will cause scaling and blockage, and reduce the success rate of acidification transformation.
  • Chinese patent CN201410211586.6 discloses a composite acid solution before shale gas reservoir fracturing. For reservoirs with a clay mineral content greater than 40%, hydrochloric acid and fluoboric acid are selected. Fluoboric acid slowly releases hydrofluoric acid to dissolve silicon through hydrolysis. Quality mineral, which has a good stabilizing effect on clay, has a wide applicable temperature range, and is a deep penetration slow acid.
  • the shale layer is rich in clay minerals, clastic minerals, and authigenic minerals, it also contains a large amount of organic matter, and clay minerals have the largest retention of organic matter.
  • dissolution pores and fissures may be generated, which in turn alters the characteristics of shale adsorption, desorption and percolation, resulting in poor compatibility between new acid solutions and additives and low-permeability reservoirs, which will cause secondary damage to the reservoirs.
  • deep and ultra-deep low-permeability shale reservoirs have large differences in sedimentary and diagenesis, the types of cements are complex.
  • the compatibility of new acid solutions and additives with low-permeability clay mineral-rich shale reservoirs is even worse.
  • Cross-researches on petrology and oil layer acidification transformation technology are needed, and repeated optimization and screening by laboratories are needed to achieve reservoir modification. The purpose restricts the current construction success rate of reservoir acidification.
  • the object of the present invention is to provide an erosion and acidification solution for clay minerals and a preparation method thereof.
  • An erosion acidifying solution for clay minerals comprising the following components:
  • Hydrochloric acid fluoboric acid, acetic acid, trifluoroacetic acid, hydrogen peroxide, ammonium chloride, and
  • the mass concentration of each substance in the above acidifying solution is: 10-15% hydrochloric acid, 5-15% fluoboric acid, 0-3% acetic acid, 4-9% trifluoroacetic acid, 15-25% hydrogen peroxide, and ammonium chloride 5 %, Dimethylaminomethylbenzotriazole 2%, alkyl ammonium chloride 0.5-2%, polypotassium methacrylate 0.2-1%, and the rest is water.
  • the alkyl ammonium chloride is at least one of N-octadecyl propylene diamine diammonium chloride and 3-chloro-2-hydroxypropyl trimethyl ammonium chloride.
  • the above specific gravity is also called relative density, and the specific gravity of solid and liquid is the ratio of the density of the substance in a completely dense state to the density (999.972 kg / m 3 ) of pure H 2 O at standard atmospheric pressure at 3.98 ° C.
  • the concentration of each acid in the composite acid solution is the concentration of the pure acid described above.
  • the present invention also provides a method for preparing the above acidified solution, which specifically includes the following steps:
  • the invention also provides the application of the above-mentioned acidified liquid in mud shale reservoir dissolution.
  • the above acidification fluid is applied to reservoirs with a mass content of clay minerals higher than 30%.
  • the mass concentration of trifluoroacetic acid in the above acidified solution is 7-9% and hydrogen peroxide is 20-25%.
  • the imidazoline condensate is added to the above acidified solution, and the mass concentration of the imidazoline condensate in the mixed acid solution is 4%.
  • the above-mentioned imidazoline condensate is a condensation product obtained by synthesizing an imidazoline compound with a fatty acid and a derivative thereof.
  • the imidazoline compound has a five-membered heterocyclic ring of imidazoline.
  • Reactive groups such as amide functions, amine functions, hydrophilic branching of hydroxyl groups, and hydrophobic branching of alkyl groups containing different carbon chains.
  • trifluoroacetic acid was used as one of the acidifying agents.
  • trifluoroacetic acid was thermally cracked to produce carbon monoxide, carbon dioxide and hydrofluoric acid.
  • a small part of the gas was dissolved to Most of the fluid in the fluid is dispersed in the residual acid solution, which helps to remove the residual acid solution from the oil and gas layer.
  • thermal cracking gradually progresses, the concentration of hydrofluoric acid produced is low, the F / Al ratio is reduced, the balance of fluorosilicon and fluoroaluminum complexes is maintained, the secondary acidification damage caused is reduced, and deep penetration and slow reaction dissolution formation is achieved.
  • potassium polymethacrylate can suppress the dispersal of mud shale, as well as reduce water loss, improve flow patterns, and increase lubrication. It can effectively inhibit formation slurry formation and can be compatible with a variety of processing agents; and its polymeric anion can effectively chelate a large number of metal ions dissolved in the residual acid, avoiding the precipitation of inorganic salts to block the pores in the reservoir and the sediment on the pipeline And equipment causing injury;
  • N-octadecyl propylene diamine diammonium chloride, 3-chloro-2-hydroxypropyl trimethyl ammonium chloride, and polypotassium methacrylate are used as additives, which are compatible with acids. Mix evenly, effectively inhibit the hydration, expansion and dispersion of clay particles;
  • Applicable temperature exceeds 160 °C, suitable for high temperature deep wells. Using conventional chemicals and industrial products, it is easy to prepare and use on site, and it is safe and reliable.
  • HTC-15 was purchased from Changchun Huatai Petroleum Technology Development Co., Ltd. It uses imidazoline condensate as the main component and is compounded with other organic solvents.
  • a method for preparing an acidifying solution is as follows:
  • the present invention selects test core sample 1.
  • the mineral composition is mainly feldspar, clay minerals and calcite, dolomite, and the type of organic matter is dense continuous organic matter.
  • the total amount of feldspar and clay is generally 40% -50%, and the average value of brittle minerals is 30%. , Organic content of 10%.
  • the mineral composition is mainly calcite, dolomite, clay minerals, and quartz.
  • the type of organic matter is dense continuous organic matter.
  • the total amount of feldspar and clay is 30% -40%.
  • the average brittle mineral content is 40%.
  • the anti-swelling rate is determined by the "Method for measuring the properties of clay stabilizers for fracturing and acidification" SY / T5762-1995; 2012.
  • the composition of the acidifying solution is 10% hydrochloric acid, 10% fluoroboric acid, 2% acetic acid, 7% trifluoroacetic acid, 5% ammonium chloride, and the rest is water.
  • the composition of the acidifying solution is 10% hydrochloric acid, 10% fluoroboric acid, 2% acetic acid, 20% hydrogen peroxide, 5% ammonium chloride, and the rest is water.
  • the composition of the acidifying solution is 10% hydrochloric acid, 10% fluoroboric acid, 2% acetic acid, 9% trifluoroacetic acid, 25% hydrogen peroxide, 5% ammonium chloride, and the rest is water.
  • composition of acidifying solution is hydrochloric acid 10%, fluoboric acid 10%, acetic acid 2%, trifluoroacetic acid 9%, hydrogen peroxide 20%, ammonium chloride 5%, dimethylaminomethylbenzotriazole, 2%, N- Octadecyl propylene diamine diammonium chloride 2%, polypotassium methacrylate 1%, and the rest was water.
  • composition of acidifying solution is hydrochloric acid 10%, fluoboric acid 10%, acetic acid 2%, trifluoroacetic acid 9%, hydrogen peroxide 20%, ammonium chloride 5%, dimethylaminomethylbenzotriazole, 2%, N- Octadecyl propylene diamine diammonium chloride 2%, polypotassium methacrylate 1%, and the rest was water.
  • composition of acidifying solution is hydrochloric acid 10%, fluoboric acid 10%, acetic acid 2%, trifluoroacetic acid 7%, hydrogen peroxide 25%, ammonium chloride 5%, imidazoline condensate HTC-15 4%, N-octadecane Propylidene diamine diammonium chloride 2%, polypotassium methacrylate 1%, and the rest was water.
  • composition of acidifying solution is hydrochloric acid 10%, fluoboric acid 10%, acetic acid 2%, trifluoroacetic acid 9%, hydrogen peroxide 25%, ammonium chloride 5%, dimethylaminomethylbenzotriazole 2%, 3- Chloro-2-hydroxypropyltrimethylammonium chloride 2%, the rest was water.
  • the acidifying solution of the present invention can effectively dissolve formation minerals and block organic matter without damaging the skeleton of the rock formation.
  • Table 1 is an experimental data table of the dissolution effect of the core sample by the acidification solution of Examples 1-7.
  • the dissolution temperature used in Examples 1-4 is 100 ° C
  • the dissolution temperature used in Examples 5-7 is 160 ° C.
  • the acidification solution prepared by the present invention is suitable for the temperature range of 100-160 ° C.
  • the acidification solution prepared in Example 4 has the highest corrosion rate on the core of the reservoir at 100 ° C, and the fracture rate of the sample skeleton is low as in Examples 1-3.
  • the acidified solution prepared in Example 5 did not cause excessive dissolution of the core of the reservoir at 160 ° C., and the framework fracture rates of the two samples were lower than those of Examples 6 and 7.
  • the acidification liquid of the present invention can avoid secondary precipitation of sensitive minerals during the acidification process, effectively prevent clay minerals from hydration and swelling, and particle migration, enhance the wettability of the mineral surface of the reservoir, and improve the acidification effect.
  • the corrosion rate test of the acidified solution of Example 5-7 on the N80 steel sheet was performed at a test temperature of 140 ° C., a test pressure of 16 MPa, a rotation speed of 200 r / min, and a reaction time of 2 h.
  • Table 2 is a comprehensive performance table of the acidified solution prepared by the formulations of Examples 1-3 and 5-7.
  • the acidifying solution of Examples 5 and 6 can slow down the corrosion rate of the steel pipe by the acidifying solution, the ability of stabilizing the trivalent iron ion is significantly better than other acidifying solutions, and significantly inhibit the secondary precipitation generated during the acidification process.
  • the acidified liquids of Example 5, Example 6, and Example 7 can effectively suppress the hydration expansion, dispersion and transfer of clay particles.
  • test temperature used in Examples 1-4 is 100 ° C
  • test temperature used in Examples 5-7 is 160 ° C.
  • the acidification transformation of the reservoir can obviously improve the core permeability for two samples with different clay mineral contents.

Abstract

本发明提供一种针对粘土矿物的溶蚀酸化液及其制备方法。该酸化液包括组分盐酸、氟硼酸、乙酸、三氟乙酸、过氧化氢、氯化铵,以及二甲氨基甲基苯并三氮唑、烷基氯化铵、聚甲基丙烯酸钾。本发明提供的酸化液能有效溶蚀160℃以上高温油气储层中的粘土矿物、胶结物等有机质,在酸化过程中抑制粘土颗粒的水化膨胀和运移,避免对储层形成二次沉淀,提高储层的渗透能力。该溶蚀酸化液现场配制和使用方便,安全可靠。

Description

一种针对粘土矿物的溶蚀酸化液及其制备方法 技术领域
本发明属于石油工程领域,具体涉及一种针对粘土矿物的溶蚀酸化液及其制备方法。
背景技术
低渗透油气层由于渗流阻力大,流体运移过程中能量消耗多,地层压力和流动压力低,生产能力差。目前多采用压裂工艺,初期获得高产,但产量递减快,稳产能力较差。随着对低渗储层地层特征和伤害原因认识的不断深入,越来越多的复配酸液和添加剂及酸化工艺相继出现并开始应用。
泥页岩储层具有极低的基质孔隙度和渗透率,需要大规模压裂才能形成工业产能。页岩矿物组分主要以石英矿物、粘土矿物(铝硅酸盐矿物)及碳酸盐岩矿物为主,其中粘土含量较高。对泥页岩储层开发前进行储层压裂改造技术,但是由于泥页岩储层岩石致密,导致压裂施工压力过高。在压裂前需要泵入酸化液,接触钻井过程中对储层造成的伤害,例如在钻井过程中使井壁坍塌,并通过溶解靠近井筒矿物而降低压裂的施工压力,为后期的压裂液注入提供保障。
同时,泥页岩储层孔隙和裂缝是地下流体的储集空间和运移通道,裂缝中通常由填充物填充,并具有一定的胶结强度。酸液主要通过与岩石中的矿物成分以及胶结物发生反应,降低岩石的破裂压力和裂缝胶结强度,引起多裂缝的产生。对粘土矿物的酸液体系包括常规盐酸酸化、土酸酸化,近年来磷酸、硫酸、硝酸、有机酸也相继被应用。
由于粘土矿物遇水易膨胀转移,堵塞储层的喉道和孔隙。在135℃下,大多数粘土经盐酸浸泡会转变为硅胶聚合物,导致出现结垢和堵塞,降低酸化改造成功率。中国专利CN201410211586.6公开了一种页岩气藏压裂前复合酸液,对粘土矿物质量含量高于40%的储层,选用盐酸和氟硼酸,氟硼酸通过水解缓慢释放氢氟酸溶解硅质矿物,对粘土稳定效果好,适用温度范围较宽,为深穿透缓速酸。但是该方法导致残酸中流动阻力变大,不利于返排和地层流体的渗流,并且忽略了页岩流体通道具有多尺度性,使得缝网密度不能满足页岩油气高效开发的需求。
由于页岩层富含粘土矿物、碎屑矿物和自生矿物之外,还含有大量的有机质,而粘土矿物对有机质持留量最大。在酸化改造过程中可能产生溶蚀孔隙和裂隙,进而改变页岩吸附、解吸和渗流特性,导致新型酸液和添加剂与低渗透储层匹配性不好,会造成对储层的二次伤害。因为深层乃至超深层低渗透泥页岩储层沉积、成岩作用差异大,胶结物类型复杂。新型酸液和添加剂与低渗透富含粘土矿物的页岩储层的配伍性更差,需要进行岩石矿物学和油层酸化改造技术交叉研究,需要实验室反复优化筛选,才能达到对储层改造的目的,制约了目 前储层酸化改造的施工成功率。
因此,本着改善孔喉半径,增大酸化半径内储层的渗透率,并有效防止垮塌的原则和目标,规避对低渗储层的二次伤害,最大限度的提高储层的渗透能力。需要制定针对性强的酸化施工方案。
发明内容
针对现有技术中存在的问题,本发明的目的在于提供一种针对粘土矿物的溶蚀酸化液及其制备方法。
为了实现上述目的,本发明采用如下技术方案:
一种针对粘土矿物的溶蚀酸化液,包括以下组分:
盐酸、氟硼酸、乙酸、三氟乙酸、过氧化氢、氯化铵,以及
二甲氨基甲基苯并三氮唑、烷基氯化铵、聚甲基丙烯酸钾。
上述酸化液中各物质的质量浓度为:盐酸10-15%、氟硼酸5-15%、乙酸0-3%、三氟乙酸4-9%、过氧化氢15-25%、氯化铵5%、二甲氨基甲基苯并三氮唑2%、烷基氯化铵0.5-2%、聚甲基丙烯酸钾0.2-1%,其余为水。
上述烷基氯化铵为N-十八烷基亚丙基二胺双氯化铵、3-氯-2-羟基丙基三甲基氯化铵中至少一种。
上述比重也称相对密度,固体和液体的比重是该物质在完全密实状态的密度与在标准大气压,3.98℃时纯H 2O下的密度(999.972kg/m 3)的比值。各酸在复合酸液中的浓度即为上述纯酸的浓度。
本发明还提供了上述酸化液的制备方法,具体包括以下步骤:
在搅拌条件下,向水中加入二甲氨基甲基苯并三氮唑,然后缓慢加入盐酸、氟硼酸、乙酸、三氟乙酸和氯化铵,再加入过氧化氢,混合均匀,最后加入烷基氯化铵、聚甲基丙烯酸钾。
本发明还提供了上述酸化液在泥页岩储层溶蚀中的应用。
上述酸化液应用于粘土矿物质量含量高于30%的储层。
对于温度高于160℃的高温储层,上述酸化液中三氟乙酸的质量浓度为7-9%、过氧化氢20-25%。
上述酸化液中加入咪唑啉缩合物,制得复配酸液中咪唑啉缩合物的质量浓度为4%。
上述咪唑啉缩合物以咪唑啉类化合物与脂肪酸及其衍生物经合成所得缩合产物,所述咪唑啉类化合物为具有一个咪唑啉五元杂环,杂化上与N成键的一个含有具有不同活性基团如酰胺官能团、胺基官能团、羟基的亲水支链和一个含有不同碳链的烷基疏水支链。
本发明所述的针对粘土矿物的溶蚀酸化液:
(1)首次采用三氟乙酸(TFA)作为酸化试剂之一,在地层高温环境中三氟乙酸发生热裂解,生产一氧化碳、二氧化碳和氢氟酸,气体在储藏压力和温度下,小部分溶解到流体中,大部分以流离状态的微小气泡,分散在残酸溶液中,有助于残酸溶液从油气层中排除。随渗透距离长,热裂解逐渐进行,产生的氢氟酸浓度低,降低F/Al比值,维持氟硅、氟铝配合物平衡,减小造成的酸化二次伤害,达到深渗透慢反应溶解地层孔隙中粘土的目的;避免氟硅酸与铝硅酸盐的二次反应在粘土矿物表面形成硅凝胶沉淀,保护储层不受伤害;
(2)选择过氧化氢可以有效氧化页岩中的有机质,包括粘土矿物吸附的有机质,产生有机酸,可以在高温条件下形成溶蚀增孔,提高渗流能力,且不会改变页岩结构的完整性。
(3)为了稳定低渗透地层的高温深井,并有效支撑天然缝隙和溶蚀缝隙,利用聚甲基丙烯酸钾,抑制泥页岩分散作用,兼有降失水、改善流型和增加润滑等性能,并可以有效抑制地层造浆并能与多种处理剂配伍;并且其聚合阴离子可以有效螯合残酸中溶蚀的大量金属离子,避免无机盐沉淀析出堵塞储层中的孔隙以及沉淀物对管路和设备造成伤害;
(4)以N-十八烷基亚丙基二胺双氯化铵、3-氯-2-羟基丙基三甲基氯化铵、聚甲基丙烯酸钾为添加剂,与酸配伍性好,混合均匀,有效抑制粘土颗粒的水化膨胀和分散转移;
(5)适用温度超过160℃,适用于高温深井。使用常规化学剂和工业品,现场配制和使用方便,安全可靠。
具体实施方式
通过以下实施例提供的具体实施方案,对本发明的上述内容进行进一步详细说明,对于本研究领域的技术人员而言,不应将此理解为本发明上述主题的范围仅限于以下实例;凡基于本发明上述内容所实现的技术均属于本发明的范围。
下面实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料、仪器等,如无特殊说明,均可从商业途径得到。
HTC-15购自长春华泰石油科技开发有限公司,以咪唑啉缩合物为主要成分,复合其他有机溶剂。
在本发明的具体实施例中,酸化液的制备方法如下:
按重量份取各原料;在搅拌条件下,将二甲氨基甲基苯并三氮唑加入配液罐,充分搅拌5-10min;然后缓慢加入盐酸、氟硼酸、乙酸、三氟乙酸和氯化铵,在20-30℃的温度下充分搅拌10-20min;再加入过氧化氢,混合均匀,最后加入N-十八烷基亚丙基二胺双氯化铵、3-氯-2-羟基丙基三甲基氯化铵中至少一种,以及聚甲基丙烯酸钾,室温搅拌10-20min得到酸化液。
一、本发明实施例中岩心溶蚀率试验的测试方法及所用设备
(1)用粉碎机将储层岩芯粉碎,过200目筛,直至95%以上岩心粉都过筛;
(2)将已过筛的岩芯粉烘干,称重已干燥的岩芯粉2g左右,记录准确重量;
(3)配制酸化液100mL,将已称重的岩芯粉和酸化液放入哈式合金反应釜中密闭,置于已设定好实验温度的马弗炉内中,反应5小时;
(4)将反应后的岩心粉过滤烘干,并称重;
(5)根据岩芯在酸化液处理前后的失重,计算得到酸液对储层岩芯的溶蚀率。
二、本发明实施例中抑制氟硅酸盐、氟铝酸盐沉淀率的检测方法
(1)取酸化液于20mL于试管中,并分别加入20mL盐溶液(2%KCl、2%NaHCO 3、1%AlCl 3溶液);
(2)向各试管中逐渐加入配置好的20mL硅酸钠溶液,置于室温中观察沉淀产生情况;
(3)称量沉淀物,测定残酸中各粒子的浓度,计算沉淀抑制率。
三、本发明实施例中选取泥页岩储层样品
本发明选用试验岩心样本1,矿物组成主要为长石、粘土矿物和方解石、白云石,有机质类型为密集连续有机质,长石与粘土总量一般在40%-50%,脆性矿物平均为30%,有机质含量10%。试验岩芯样本2,矿物组成主要为方解石、白云石、粘土矿物、石英,有机质类型为密集连续有机质,长石与粘土总量在30%-40%,脆性矿物含量平均值40%,有机质含量8%。
四、本发明实施例中制备酸化液的溶蚀性质测试方法
实施例中防膨率采用《压裂酸化用粘土稳定剂性能测定方法》SY/T5762-1995中膨胀仪法测定;铁离子稳定能力采用《酸化用铁离子稳定剂性能评价方法》SY/T6571-2012。
实施例1
酸化液组成为盐酸10%、氟硼酸10%、乙酸2%、三氟乙酸7%、氯化铵5%,其余为水。
实施例2
酸化液组成为盐酸10%、氟硼酸10%、乙酸2%、过氧化氢20%、氯化铵5%,其余为水。
实施例3
酸化液组成为盐酸10%、氟硼酸10%、乙酸2%、三氟乙酸9%、过氧化氢25%、氯化铵5%,其余为水。
实施例4
酸化液组成为盐酸10%、氟硼酸10%、乙酸2%、三氟乙酸9%、过氧化氢20%、氯化铵5%、二甲氨基甲基苯并三氮唑2%、N-十八烷基亚丙基二胺双氯化铵2%、聚甲基丙烯酸钾 1%,其余为水。
实施例5
酸化液组成为盐酸10%、氟硼酸10%、乙酸2%、三氟乙酸9%、过氧化氢20%、氯化铵5%、二甲氨基甲基苯并三氮唑2%、N-十八烷基亚丙基二胺双氯化铵2%、聚甲基丙烯酸钾1%,其余为水。
实施例6
酸化液组成为盐酸10%、氟硼酸10%、乙酸2%、三氟乙酸7%、过氧化氢25%、氯化铵5%、咪唑啉缩合物HTC-15 4%、N-十八烷基亚丙基二胺双氯化铵2%、聚甲基丙烯酸钾1%,其余为水。
实施例7
酸化液组成为盐酸10%、氟硼酸10%、乙酸2%、三氟乙酸9%、过氧化氢25%、氯化铵5%、二甲氨基甲基苯并三氮唑2%、3-氯-2-羟基丙基三甲基氯化铵2%,其余为水。
以上实施例酸溶液性能评价:
1、本发明的酸化液能够有效溶蚀地层矿物和堵塞有机质,又不破坏岩层的骨架。表1为实施例1-7的酸化液测试岩芯样品溶蚀效果的实验数据表。
表1.岩心溶蚀试验数据表
Figure PCTCN2018116353-appb-000001
注:实施例1-4所用溶蚀温度为100℃,实施例5-7所用溶蚀温度为160℃。
本发明制备酸化液适用于100-160℃温度范围,实施例4制备酸化液在100℃下对储层岩心的溶蚀率最高,且样品骨架的破碎率低与实施例1-3。实施例5制备酸化液在160℃下没有对储层岩心产生过度溶蚀,且两种样品的骨架破碎率低于实施例6和实施例7。
2、本发明的酸化液能够避免敏感矿物在酸化过程中出现的二次沉淀,有效阻止粘土矿物水化膨胀,以及颗粒运移,增强储层矿物表面的润湿性,提高酸化效果。
在常温下,各实施例酸液体系中均有氟硅酸盐和氟铝酸盐沉淀生成。
实施例5-7的酸化液对N80钢片的腐蚀速率测试,试验温度140℃,试验压力为16MPa,转速为200r/min,反应时间2h测试结果。
表2为实施例1-3、5-7的配方制备的酸化液的综合性能表。
表2.酸化液综合性能表
Figure PCTCN2018116353-appb-000002
实施例5和实施例6的酸化液能够减缓酸化液对钢质管材的腐蚀速率,稳定三价铁离子能力明显优于其他酸化液,并显著抑制酸化过程中产生的二次沉淀。实施例5、实施例6和实施例7的酸化液可以有效抑制粘土颗粒的水化膨胀和分散转移。
3、岩芯驱替试验表明,能够有效提高岩心渗透率,可以满足不同矿物成分储层酸化施工需要,并且残酸清澈。表3为实施例1-7的酸化液对岩芯样品的驱替试验数据。
表3.岩芯驱替试验数据
Figure PCTCN2018116353-appb-000003
Figure PCTCN2018116353-appb-000004
注:实施例1-4所用试验温度100℃,实施例5-7所用试验温度160℃。
本发明实施例对储层的酸化改造,对两种不同粘土矿物含量的样品,都可以明显提高岩芯渗透率。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (9)

  1. 一种针对粘土矿物的溶蚀酸化液,其特征在于:包括以下组分:
    盐酸、氟硼酸、乙酸、三氟乙酸、过氧化氢、氯化铵,以及
    二甲氨基甲基苯并三氮唑、烷基氯化铵、聚甲基丙烯酸钾。
  2. 根据权利要求1所述的溶蚀酸化液,其特征在于:所述酸化液中各物质的质量浓度为:盐酸10-15%、氟硼酸5-15%、乙酸0-3%、三氟乙酸4-9%、过氧化氢15-25%、氯化铵5%、二甲氨基甲基苯并三氮唑1.5-2%、烷基氯化铵0.5-2%、聚甲基丙烯酸钾0.2-1%,其余为水。
  3. 根据权利要求2所述的溶蚀酸化液,其特征在于:所述烷基氯化铵为N-十八烷基亚丙基二胺双氯化铵、3-氯-2-羟基丙基三甲基氯化铵中至少一种。
  4. 根据权利要求1-3任一项所述的溶蚀酸化液的制备方法,其特征在于:在搅拌条件下,向水中加入二甲氨基甲基苯并三氮唑,然后缓慢加入盐酸、氟硼酸、乙酸、三氟乙酸和氯化铵,再加入过氧化氢,混合均匀,最后加入烷基氯化铵、聚甲基丙烯酸钾。
  5. 根据权利要求1-3任一项所述的酸化液在泥页岩储层溶蚀中的应用。
  6. 根据权利要求5所述的应用,其特征在于:所述酸化液应用于粘土矿物质量含量高于30%的储层。
  7. 根据权利要求5所述的应用,其特征在于:对于温度高于160℃的高温储层,所述酸化液中三氟乙酸的质量浓度为7-9%、过氧化氢20-25%。
  8. 根据权利要求5所述的应用,其特征在于:所述酸化液中加入咪唑啉缩合物,制得复配酸液中咪唑啉缩合物的质量浓度为4%。
  9. 根据权利要求8所述的应用,其特征在于:所述咪唑啉缩合物以咪唑啉类化合物与脂肪酸及其衍生物经合成所得缩合产物,所述咪唑啉类化合物为具有一个咪唑啉五元杂环,杂化上与N成键的一个含有具有不同活性基团如酰胺官能团、胺基官能团、羟基的亲水支链和一个含有不同碳链的烷基疏水支链。
PCT/CN2018/116353 2018-07-23 2018-11-20 一种针对粘土矿物的溶蚀酸化液及其制备方法 WO2020019593A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/619,661 US10961441B2 (en) 2018-07-23 2018-11-20 Acidizing solution for dissolution of clay mineral and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810813693.4A CN108690599B (zh) 2018-07-23 2018-07-23 一种针对粘土矿物的溶蚀酸化液及其制备方法
CN201810813693.4 2018-07-23

Publications (1)

Publication Number Publication Date
WO2020019593A1 true WO2020019593A1 (zh) 2020-01-30

Family

ID=63850677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116353 WO2020019593A1 (zh) 2018-07-23 2018-11-20 一种针对粘土矿物的溶蚀酸化液及其制备方法

Country Status (3)

Country Link
US (1) US10961441B2 (zh)
CN (1) CN108690599B (zh)
WO (1) WO2020019593A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108690599B (zh) 2018-07-23 2020-03-24 中国石油大学(华东) 一种针对粘土矿物的溶蚀酸化液及其制备方法
CN115246648A (zh) * 2022-01-20 2022-10-28 重庆三峡学院 一种页岩中粘土矿物提取方法
CN114591721A (zh) * 2022-03-08 2022-06-07 中海油能源发展股份有限公司 一种疏松砂岩储层增渗稳砂酸化复合工作液及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436247A (zh) * 2013-08-23 2013-12-11 中国石油大学(华东) 一种缓速酸酸化液
CN104109528A (zh) * 2013-08-13 2014-10-22 中国石油化工股份有限公司 一种稳砂解堵酸化液及其制备方法
CN105969329A (zh) * 2016-04-22 2016-09-28 宁夏朔光石油科技有限公司 一种低渗储层人工裂缝高渗极差低指进无残留酸化液及其制备方法
CN108690599A (zh) * 2018-07-23 2018-10-23 中国石油大学(华东) 一种针对粘土矿物的溶蚀酸化液及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522785A (en) * 1982-11-04 1985-06-11 The Sherwin-Williams Company Dialkylaminomethyl aromatic triazoles as corrosion inhibitors
US4934457A (en) * 1989-07-18 1990-06-19 Wallender Kenneth D Composition and method for stimulating wells
US20060264335A1 (en) * 2005-05-17 2006-11-23 Bj Services Company Corrosion inhibitor intensifier and method of using the same
US8727002B2 (en) * 2010-12-14 2014-05-20 Halliburton Energy Services, Inc. Acidic treatment fluids containing non-polymeric silica scale control additives and methods related thereto
US10563484B2 (en) * 2015-03-11 2020-02-18 Halliburton Energy Services, Inc. Methods and systems utilizing a boron-containing corrosion inhibitor for protection of titanium surfaces
CN106281294A (zh) * 2015-06-04 2017-01-04 中国石油化工股份有限公司 一种油气井酸化用低伤害酸液剂及其制备方法
US10738237B2 (en) * 2015-09-30 2020-08-11 Halliburton Energy Services, Inc. Methods, treatment fluids and systems for differential acidizing of a siliceous material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109528A (zh) * 2013-08-13 2014-10-22 中国石油化工股份有限公司 一种稳砂解堵酸化液及其制备方法
CN103436247A (zh) * 2013-08-23 2013-12-11 中国石油大学(华东) 一种缓速酸酸化液
CN105969329A (zh) * 2016-04-22 2016-09-28 宁夏朔光石油科技有限公司 一种低渗储层人工裂缝高渗极差低指进无残留酸化液及其制备方法
CN108690599A (zh) * 2018-07-23 2018-10-23 中国石油大学(华东) 一种针对粘土矿物的溶蚀酸化液及其制备方法

Also Published As

Publication number Publication date
CN108690599A (zh) 2018-10-23
US10961441B2 (en) 2021-03-30
CN108690599B (zh) 2020-03-24
US20210054261A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
US10590324B2 (en) Fiber suspending agent for lost-circulation materials
EP0007013B1 (en) Gelled compositions and process for treating subterranean formations
JP5826858B2 (ja) 流体損失用薬剤を含む掘削孔補修用組成物並びにそれを調製及び使用する方法
WO2015109917A1 (zh) 页岩气压裂液用稠化剂、压裂液及其制备方法与应用
CN102796498A (zh) 泡沫钻井液
WO2020019593A1 (zh) 一种针对粘土矿物的溶蚀酸化液及其制备方法
BRPI1007996B1 (pt) Método para tratar formações subterrâneas
US20210253932A1 (en) Geopolymer cement for use in subterranean operations
CN110079286B (zh) 一种堵漏用延迟交联凝胶组合物及其制备方法
CN106883357A (zh) 一种预交联凝胶缓膨微球调剖剂及其制备方法和用途
US9494026B2 (en) Methods and compositions of treating subterranean formations with a novel resin system
EP3569674B1 (en) Treatment fluid comprising a thermally-activated, high temperature particulate suspending agent
NO338260B1 (no) Fremgangsmåte for sementering av borehull
CN111876138B (zh) 碳基增粘剂及其制备方法和应用
CN107474809B (zh) 一种酸溶性水泥类暂堵剂及其制备方法
CN112920785B (zh) 咪唑物增强型抗超高温液体胶塞及其成胶测试改进方法
CN116063993B (zh) 一种复配抗温堵漏浆料及其制备方法和应用
US20230019738A1 (en) Viscoelastic surfactant-based treatment fluids for use with metal oxide-based cements
CN114426836A (zh) 一种改善高温砂岩油藏渗透率用近中性工作液及制备方法
WO2023009115A1 (en) Methods of making and using a wellbore servicing fluid for iron mitigation
US20220002611A1 (en) Accelerated cement compositions and methods for treating lost circulation zones
US20140378353A1 (en) Inhibiting Salting Out of Diutan or Scleroglucan in Well Treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927510

Country of ref document: EP

Kind code of ref document: A1