WO2015109917A1 - 页岩气压裂液用稠化剂、压裂液及其制备方法与应用 - Google Patents

页岩气压裂液用稠化剂、压裂液及其制备方法与应用 Download PDF

Info

Publication number
WO2015109917A1
WO2015109917A1 PCT/CN2014/095330 CN2014095330W WO2015109917A1 WO 2015109917 A1 WO2015109917 A1 WO 2015109917A1 CN 2014095330 W CN2014095330 W CN 2014095330W WO 2015109917 A1 WO2015109917 A1 WO 2015109917A1
Authority
WO
WIPO (PCT)
Prior art keywords
fracturing fluid
fracturing
surfactant
thickener
fluid
Prior art date
Application number
PCT/CN2014/095330
Other languages
English (en)
French (fr)
Inventor
杜林麟
马利宝
杨宏松
Original Assignee
东方宝麟科技发展(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东方宝麟科技发展(北京)有限公司 filed Critical 东方宝麟科技发展(北京)有限公司
Publication of WO2015109917A1 publication Critical patent/WO2015109917A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/10Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/602Compositions for stimulating production by acting on the underground formation containing surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/882Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/30Viscoelastic surfactants [VES]

Definitions

  • the invention relates to a shale gas cracking liquid thickener, a fracturing fluid and a preparation method and application thereof, in particular, the invention relates to a reactive thickener which is particularly suitable for continuous sand fracturing of shale gas. And a preparation method of the thickening agent, a composition for a fracturing fluid comprising the thickening agent, a fracturing fluid containing the thickening agent, and a fracturing fluid for continuous sand fracturing of shale gas and A continuous sand fracturing method for shale gas.
  • fracturing fluid technology to extract such oil and gas reservoirs is of great significance.
  • the main function of fracturing fluids is to carry the palm-loading agent (quartz sand, ceramsite, etc.) with viscoelastic liquid into the fractured formation and increase the permeability to increase oil and gas production.
  • the traditional common fracturing fluid is a water-based fracturing fluid, which is mainly made up of a polymeric guar gum or a modified product thereof as a thickening agent (thickener), and a polyvalent metal salt as a crosslinking agent.
  • the jelly is formed by thorough stirring.
  • the breaker is quickly broken and glued by the breaker, and the gelled hydration fluid which becomes a clear water is discharged from the formation.
  • the amount of insoluble residue in the traditional fracturing fluid is high, and these residues can block the pores of the rock formation.
  • the swelling and emulsification of the clay caused by the incompatibility between the fracturing fluid and the rock and fluid of the formation will cause the permeability of the formation.
  • the damage seriously affects the effect of fracturing stimulation. Therefore, the lower the insoluble content in the fracturing fluid, the better.
  • the fracturing fluid and the materials in the formation should not undergo harmful physical and chemical changes, and it is easy to be discharged from the formation after fracturing. To minimize the pollution of the formation by fracturing fluid. Therefore, the cleaning fracturing fluid with low damage and low residue is the development direction.
  • the fracturing fluid prepared by the side construction cannot be continuously mixed, and only the quick dosing can be used.
  • the vehicle is prepared with different concentrations of base liquid, and is packed in different liquid tanks. The concentration is used from high to low during construction. Therefore, improving the fast-dissolving performance of the fracturing fluid thickener is also one of the key technologies for the development of fracturing fluids.
  • An object of the present invention is to provide a thickener for shale gas pressure cracking liquid, which has good fast solubility and can be used for preparing a clean fracturing fluid, and has low damage, high viscosity-increasing property, temperature resistance and salt resistance. Properties, shear resistance, low friction and other properties, and has good compatibility with other commonly used water-based fracturing fluid additives.
  • Another object of the present invention is to provide a process for the preparation of the thickener.
  • Another object of the present invention is to provide a composition for a fracturing fluid comprising the thickening agent.
  • Another object of the present invention is to provide a fracturing fluid comprising the thickening agent.
  • Another object of the present invention is to provide the use of the fracturing fluid in continuous sand fracturing of shale gas.
  • Another object of the present invention is to provide a continuous sand fracturing method for shale gas.
  • the present invention provides a thickening agent for a fracturing fluid, which is mainly composed of a viscoelastic surfactant, polyacrylamide, 2-acrylamido-methylpropanesulfonic acid. , methacryloyloxytrimethylammonium chloride, N-isopropylacrylamide, pimeloyl, flaky base, etc., 3:5-7:0.4-0.6:1-2:1.5-2.5:1.5-2.5 : a volume ratio of 0.8 to 1.2 is synthesized.
  • the thickening agent is mainly composed of a viscoelastic surfactant, polyacrylamide, 2-acrylamido-methylpropanesulfonic acid, methacryloxytrimethylammonium chloride N-isopropylacrylamide, pimeloyl, and flavonoids were synthesized in a volume ratio of 3:6:0.5:1.5:2:2:1.
  • the viscoelastic surfactant is benzalkonium chloride (benzamide) and/or benzalkonium bromide (nembam).
  • the present invention provides a method of preparing the thickening agent, comprising: mixing a viscoelastic surfactant with a polyacrylamide resin and heating to completely melt the same, and then adding 2-acrylamido-A Propanesulfonic acid, methacryloyloxytrimethylammonium chloride, N-isopropylacrylamide, pimeloyl, tablet base, The mixture is stirred at a temperature of from 120 ° C to 160 ° C for 1 hour or more, usually for 1 to 2 hours, and the obtained product is the thickener.
  • the obtained product is solid after cooling to room temperature, and can be suitably pulverized to obtain a crystal powdery thickener product which can be used for liquid thickening.
  • the present invention also provides an additive composition for a fracturing fluid, the composition comprising the thickening agent of the present invention, the thickening agent of the present invention can be used as a reactive thickening agent for formulating pressure
  • the sizing agent has good fast-dissolving properties, and at a lower concentration, the fracturing fluid has a suitable viscosity.
  • the thickening agent is added in the fracturing fluid in an amount of from 0.2% to 0.8%.
  • the additive composition for fracturing fluids of the present invention comprises, in addition to the thickening agent, a rheology aid.
  • the rheological aid is formed by physically mixing a surfactant with ethanol in a volume ratio of 1:1.5 to 2.5, preferably in a volume ratio of 1:2; preferably, the surface
  • the active agent is benzalkonium chloride (benzamide) and benzalkonium bromide (nembam); such rheological additives can be used to form an aggregate between the active molecules of the thickener to form a spatial network structure.
  • the rheological assistant is added in the fracturing fluid in an amount of from 0.2% to 0.8%.
  • the additive composition for a fracturing fluid of the present invention may further comprise a temperature stabilizer in addition to the thickening agent and the rheological assistant.
  • An additive composition comprising a temperature stabilizer is suitable for formulating a fracturing fluid having a higher formation temperature (e.g., above 120 °C).
  • the temperature stabilizer is synthesized from a surfactant and a linear alcohol material in a volume ratio of from 1 to 2:2, preferably in a volume ratio of 1.5:2.
  • the surfactant is benzalkonium chloride or benzalkonium bromide, and the alcohol is preferably ethanol.
  • Such temperature stabilizers can be used to stabilize the spatial network aggregates of the fracturing fluids of the present invention continuously chained under high temperature and ultra high temperature formation temperatures and for long periods of continuous shear conditions. More specifically, the temperature stabilizer may be formed by directly mixing a surfactant and a linear alcohol material, or may be prepared by adding an appropriate amount of water as an auxiliary material. Preferably, the temperature stabilizer is added in the fracturing fluid in an amount of 0.2% to 0.8%, preferably 0.4% to 0.6%.
  • the present invention provides a fracturing fluid based on the total weight of the fracturing fluid, the components of which include:
  • the thickening agent of the present invention is 0.2% to 0.8%;
  • the rheological additive of the present invention is 0.2% to 0.8%.
  • the fracturing fluid of the invention is used in higher temperature formations, which may further comprise the temperature stabilizer.
  • the temperature stabilizer is added in the fracturing fluid in an amount of 0.2% to 0.8%, preferably 0.4% to 0.6%.
  • the fracturing fluid of the present invention may optionally or not add other conventional additives for the fracturing fluid.
  • the balance component of the fracturing fluid is water, which may be a common fracturing fluid formulation water.
  • the fracturing fluid of the invention can be subjected to CO 2 mixed fracturing in combination with CO 2 .
  • the raw materials in the thickening agent and the fracturing fluid of the present invention are commercially available, and the properties of the raw materials of different models of different manufacturers may be different, but each raw material can be used in the present invention as long as it meets the requirements of the corresponding industry standards. It is preferred to use a material which is generally considered to be of good quality in the art.
  • the polyacrylamide described therein may be a polyacrylamide commonly used in the field of oilfield fracturing fluid additives, and may be, for example, a polyacrylamide of JHJ15 produced by Jihua Jusheng.
  • the invention also provides the use of the fracturing fluid in continuous sand fracturing of shale gas.
  • the F 2 mixed fracturing is carried out using the fracturing fluid of the present invention in combination with CO 2 .
  • the fracturing fluid of the present invention can also be used for conventional fracturing.
  • the present invention also provides a shale gas continuous sand fracturing method wherein the fracturing fluid of the present invention is used.
  • the F 2 mixed fracturing is carried out using the fracturing fluid in combination with CO 2 .
  • the shale gas continuous sand fracturing method of the present invention can be carried out with reference to conventional operations in the field.
  • the dosing equipment used mainly includes: a compound car or a liquid mixing vehicle, a liquid tank, a liquid distribution line, a jet pump and the like.
  • Liquid-dispensing step connecting the compounding vehicle or the liquid-dispensing vehicle, the liquid tank, the jet pump and the like by using the liquid distribution pipeline, and sucking the thickening agent into the liquid tank by using the mixing vehicle or the liquid-feeding vehicle jet pump (the tank content assembly liquid is used for water)
  • the liquid tank is always in a circulating state, and after the inhalation, the liquid is swollen (about 5-15 minutes, and the specific swelling time is related to the amount of the thickening agent added), and then the rheological assistant and other additives are added.
  • the dosing is completed to obtain an active fracturing fluid.
  • the active fracturing fluid system mainly utilizes the interaction between molecules in the fracturing fluid solution through non-covalent bonds (electrostatic, hydrogen bonding, hydrophobic association effect, etc.) to form an intermolecular aggregate structure.
  • This aggregate structure can become larger or smaller with the shear disturbance or even completely disassembled.
  • the aggregate is restored again, forming a kind of "reversible structure solution" which is rare in nature.
  • the reversible multi-component association between molecular chains forms a supramolecular aggregate with a spatial network structure similar to cross-linked polymer. It can have the full performance of clean fracturing fluid without cross-linking, and at the same time has low damage and high efficiency.
  • 1 is a 50 ° C shear rheological curve of a fracturing fluid in an embodiment of the present invention
  • FIG. 3 is a 120 ° C shear rheological curve of a fracturing fluid according to an embodiment of the present invention
  • Figure 5 is a 150 ° C shear rheological curve of a fracturing fluid in an embodiment of the present invention
  • FIG. 8 is a graph showing a continuous shear viscosity temperature performance of a liquid tank sampling test at 150 ° C according to an embodiment of the present invention
  • FIG. 10 is a schematic view of a segmentation completion pipe string in an embodiment of the present invention.
  • FIG. 11 is a sectional sanding fracturing construction curve according to an embodiment of the present invention
  • the left vertical coordinate data of the picture is from top to bottom: liquid total amount (m 3 ), sand discharge amount (m 3 /min), Oil pressure (MPa);
  • the ordinate data of the right side of the picture is from top to bottom: casing pressure (MPa), pump displacement (m 3 /min);
  • Figure 12 is a post-press production curve (Su 53-82-48H gas production curve) according to an embodiment of the present invention.
  • the thickening agent in this embodiment consists of a viscoelastic surfactant (benzalkonium chloride), polyacrylamide, AMPS, methacryloxytrimethylammonium chloride, N-isopropylacrylamide, pimeloyl.
  • the base is synthesized according to the volume ratio of 3:6:0.5:1.5:2:2:1.
  • the specific synthesis method is as follows:
  • the viscoelastic surfactant is mixed with the polyacrylamide resin and heated to completely melt, and then 2-acrylamido-methylpropanesulfonic acid, methacryloyloxytrimethylammonium chloride, N-isopropyl
  • the base acrylamide, pimeloyl group, and the base are stirred at 150 ° C for about 2 hours, and the obtained product is the thickening agent of the present embodiment, and after cooling to a normal temperature, it is a solid product, and is pulverized to obtain a crystal powder for liquid.
  • Thicken The thickening agent is referred to as the active thickening agent DH-DB-1.
  • the DH-DB-1 thickening agent has strong thickening ability and quick-dissolving property, and is extremely easy to be prepared on site. Without high-speed mixing, the glue does not produce fish eyes, and the dispersibility and swelling property are good.
  • the rheological assistant in the present embodiment is formed by physically mixing the surfactant benzalkonium chloride and ethanol at a normal temperature ratio of 1:2, and the liquid is used for the intermolecular association of DH-DB-1 active molecules to form aggregates.
  • the formation of a spatial network structure improves the liquid elasticity, and at the same time effectively changes the flow state of the liquid in the column and greatly reduces the construction friction.
  • the rheological additive is referred to as DH-DB-2 in the present invention.
  • the temperature stabilizer in the present embodiment is formed by mixing a surfactant, benzalkonium bromide and a linear alcohol material, at a normal temperature of 1.5:2 by volume, and is used for stabilizing the spatial network structure of the DH-DB fracturing fluid. High temperature and ultra-high temperature formation and continuous chain shearing under long-term continuous shear conditions.
  • the temperature stabilizer is referred to as DH-DB-3 in the present invention. This additive is only used when the local layer temperature exceeds 120 °C.
  • the fracturing fluid prepared by using the active thickener DH-DB-1, the rheological aid DH-DB-2, or further adding the temperature stabilizer DH-DB-3, the invention is called DH-DB active pressure Cracking fluid.
  • the thickening agent is sucked into the liquid tank (water for the tank contents assembly liquid) by using the compounding vehicle or the liquid-feeding vehicle jet pump, and at the same time, the liquid tank is kept in the circulating state, and the liquid is swollen after inhalation (about 5-15 minutes).
  • the specific swelling time is related to the amount of the thickener added) and then the rheological assistant and other additives are added. After 10-15 minutes of circulation, the dosing was completed to obtain an active fracturing fluid DH-DB.
  • the equipment used is a conventional device in the field.
  • Crosslinker type shear rate, temperature, base viscosity, oxygen content, pH value, etc. are all factors affecting the rheology of fracturing fluid.
  • the temperature-resistant thickening and shear resistance of DH-DB active fracturing fluid were mainly investigated.
  • the test was carried out using a MAS-III high temperature and high pressure rheometer.
  • the fracturing fluid is installed and the rheometer heating temperature is set, and the shear stability of the fracturing fluid is determined by the apparent viscosity versus time.
  • the shear was continuously cut at 170 s -1 until the apparent viscosity of the fracturing fluid was 50 mPa ⁇ s.
  • the shear rheological curves at different temperatures are shown in Figures 1 to 5.
  • the rheological curves of Nos. 1-5 in Table 1 correspond to Figures 1 and 5, respectively.
  • the experimental results show that after several sets of fracturing fluids at 170s -1 , the viscosity is above 50mPa.s after continuous shearing for 120min, meeting or exceeding the relevant standards of the petroleum industry.
  • the experimental results show that under the condition of stirring the DH-DB-1 thickener with a glass rod, the viscosity of the base liquid can reach more than 90% of the final viscosity after 8 minutes, and there is no fisheye; under the condition of high-speed stirring with a mixer, After 3 minutes, the viscosity of the base liquid can reach 98% of the final viscosity, indicating that the thickening agent has a fast dissolution rate, good dispersibility, fast viscosity increase, and can meet the requirements of continuous compounding.
  • the surface tension of the base liquid was tested by the surface tension meter ring method, and the interfacial tension of the base liquid was tested by the rotary tension method of the interfacial tension meter to evaluate the backflow characteristics of the fracturing fluid, and at the same time, it was a surfactant and a drainage aid.
  • the preferred reference is provided. See Table 3 for the surface and interfacial tension of different formulations of DH-DB active fracturing fluid.
  • the thickening agent as the main component of the fracturing fluid of the present invention is a low molecular active agent, which has a good effect of reducing the surface tension and interfacial tension, and the low surface tension of the surface is favorable for reducing the water lock phenomenon and accelerating the breakage.
  • the backflow of the glue It can be seen from the experiment that the drainage rate of the breaker is above 17%, which is higher than the 15% of the industry standard.
  • the DH-DB active fracturing fluid of the present invention is a fluid having viscoelastic properties, and the proppant settling is to investigate the settling rate of the proppant under experimental temperature and static conditions.
  • the settling height of the proppant has a linear relationship with the settling time, and the slope is the static settling rate of the proppant.
  • the fracturing fluid is selected from several proppant (ceramsite, quartz sand) samples with good sphericity and medium particle size. After being placed, the test is carried out at different time points and the average value is obtained.
  • the linear relationship is used to fit the relationship between settlement height and time, and the slope is the sedimentation velocity.
  • Figure 6 shows the results of the deposition rate of ceramsite and quartz sand, ceramsite and quartz sand in the DH-DB active fracturing fluid. From the test results, the sedimentation velocity of quartz sand in DH-DB active fracturing fluid is slightly lower than that of ceramsite. The linear fitting shows that the sedimentation velocity of quartz sand is 0.005 cm/s and the ceramsite is 0.0058 cm/s.
  • the performance test method cannot be completely carried out in accordance with the industry standard "water-based fracturing fluid performance test method". According to the results of the laboratory study of the present invention, the test of sand carrying performance should combine the apparent viscosity with the settling velocity.
  • the main test index of the sand-carrying performance of conventional fracturing fluid is apparent viscosity (mainly 170s -1 ). It is generally considered that when the viscosity is above 50mPa.s, it can meet the sand-bearing performance requirements.
  • the inventors of the present invention found in the study that the sedimentation rate of the DH-DB active fracturing fluid of the present invention is significantly lower at the same viscosity than the conventional guar fracturing fluid, and therefore in the active fracturing fluid In the rheological test, the test proppant (or steel ball) settling speed test is supplemented.
  • DH-DB active fracturing fluid has a good suspension capacity, of which DH-DB No.
  • the viscosity of the fracturing fluid at room temperature is 165 mPa.s, 30% sand ratio is placed under static 24 without sedimentation, and the guar fracturing fluid (0.55% hydroxypropyl guar gum HPG+
  • the viscosity of the 0.3% cross-linking agent HTC-160) is 1600 mPa.s, and the suspension capacity of the two is substantially equivalent.
  • the role of the breaker is to complete the seaming and sand-carrying of the fracturing fluid, and form a permanent sand-filling crack, so that the fracturing fluid can quickly break the glue and reduce the viscosity, and the gel-forming hydration liquid which becomes a clear water is discharged from the formation. Reducing the residence time and residue of the hydration fluid in the formation reduces the possibility of damage to the permeability of the reservoir and sand-filled fractures.
  • ammonium persulfate is used as a breaker for DH-DB active fracturing fluid, according to industry standards. In the 80-100 ° C water bath, different amounts of ammonium persulfate were tested for gel breaking performance.
  • ammonium persulfate has a good gel breaking effect on DH-DB active fracturing fluid, and the gelled water is completely broken.
  • the insoluble residue contained in the fracturing fluid can block the pores of the rock formation.
  • the expansion or emulsification of the clay caused by the incompatibility of the fracturing fluid with the rock and fluid of the formation will cause damage to the formation permeability.
  • the residue content of the DH-DB active fracturing fluid of the present invention after gel breaking was examined. See Table 5 for the results.
  • the DH-DB active fracturing fluid of the present invention has substantially no residue after breaking the gel, and the gel breaking liquid is clear and transparent, and has substantially no residue, and the residual content of the conventional guar gum and organic boron cross-linking fracturing fluid.
  • the bottom of the broken liquid has obvious flocculent sediment.
  • DH-DB active fracturing fluid has good fluid loss performance and can meet the requirements of industry standards.
  • the viscosity of the breaker is very low, although it indicates that the fracturing fluid has been cracked, but it may also cause damage to the permeability of the core.
  • the core permeability test of the DH-DB active fracturing fluid was performed to investigate the damage of the breaker to the core.
  • the natural core with hydrophilic surface is selected, and the experimental instrument is the core flow experiment instrument:
  • the damage rate of DH-DB active fracturing fluid to the core is between 5.09% and 9.4%. Compared with HPG fracturing fluid, the damage rate is reduced by about 80%; it is also significantly lower than the conventional VES fracturing fluid. .
  • the DH-DB active gel breaking solution of the present invention has the following characteristics:
  • the pH of the fracturing fluid is kept neutral, which avoids the precipitation of Ca and Mg plasma under alkaline conditions.
  • Test method Measured according to the method for measuring the performance of clay stabilizer for fracturing acidification SY/T 5762-1995. The test results are shown in Table 8.
  • the fracturing fluid of the present invention has the following main features:
  • DH-DB active fracturing fluid can form a good viscoelastic system after cross-linking, has good sand-carrying capacity; and has low apparent viscosity, which is beneficial to reduce friction and increase pump discharge during construction;
  • DH-DB-1 thickener has good dispersibility in water, fast dissolution rate, less kinds of additives, low dosage, convenient liquid distribution, and can smoothly complete the on-site preparation of fracturing fluid;
  • the main agent of the fracturing fluid is a surfactant, which has the characteristics of anti-swelling and non-deterioration; the gelatinized water is thorough, and does not cause adsorption retention or affecting the conductivity of the supporting crack; the preparation is simple, and no special equipment is needed.
  • DH-DB active fracturing fluid has the ability to continuously mix and match, which can meet the construction displacement requirements of 8-10m 3 /min.
  • a large displacement jet circulation preparation method can be adopted, which can also meet the construction displacement requirement of 8-10 m 3 /min for the sand mixing vehicle.
  • the order of additive addition is the same as for continuous compounding.
  • the test 3 well is a shut-off well, the target layer is 1 , the reservoir temperature is 90 ° C, and the fracturing section is 2622.0-2626.0 m.
  • the initial fracturing adopts HPG cross-linked jelly, the average sand ratio is 21.6%, the sand addition is 35.1 m 3 , and the pump pressure is 27 MPa.
  • the nozzles of 3.0mm, 4.0mm and 5.0mm are used to control the discharge and discharge, and the later discharge is discharged, and the fracturing fluid return rate is 72.83%.
  • DH-DB active CO 2 foam fracturing fluid construction Repeated fracturing selects DH-DB active CO 2 foam fracturing fluid construction.
  • the fracturing liquid (0.6% thickener DH-DB-1+0.4% rheological additive DH-DB-2) and CO 2 are pressed. Different ratios (CO 2 foam quality ratio less than 30%) are simultaneously injected into the formation. CO 2 can improve the return rate and contribute to further increase of production.
  • the construction curve of DH-DB active CO 2 foam fracturing fluid is shown in Figure 7. Show. A high yield of 15.0 x 10 4 m 3 /d was obtained after pressing.
  • Well Shenshen 17 is a key pre-exploration well of Sinopec.
  • the fracturing section is 4646.0-4655.5m.
  • the test reflects that the reservoir is a high-temperature and low-permeability reservoir.
  • the measured well temperature is close to 160 degrees and the formation pressure coefficient is 1.5.
  • Construction with DH-DB fracturing fluid (0.6% thickener DH-DB-1+0.4% rheological additive DH-DB-2+0.4% temperature stabilizer DH-DB-3), on-site liquid tank sampling test 150
  • the continuous shear viscosity temperature of °C is shown in Figure 8. See Figure 9 for the sand fracturing construction curve of the Yanshen 17 well.
  • the design sanding is 30m 3
  • the daily oil production is 10m 3 after pressing, and the output after pressing reaches the highest level in the same block.
  • the well of Su-53-82-48H has a drilling depth of 5303m, a horizontal section footage of 1725m, a sandstone drilling rate of 96.23%, an effective reservoir drilling rate of 65.39%, and a formation temperature of 130°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

本发明提供了一种页岩气压裂液用稠化剂、压裂液及其制备方法与应用。稠化剂是由粘弹性表面活性剂、聚丙烯酰胺、2-丙烯酰胺基-甲基丙磺酸、甲基丙烯酰氧三甲基氯化铵、N-异丙基丙烯酰胺、庚二酰、片碱按3:5~7:0.4~0.6:1~2:1.5~2.5:1.5~2.5:0.8~1.2比例合成。压裂液包括稠化剂,并包括由表面活性剂与乙醇按1:1.5~2.5混合的流变助剂,还可进一步包括温度稳定剂。本发明还提供了所述压裂液在页岩气连续加砂压裂中的应用以及页岩气连续加砂压裂方法。本发明的压裂液为清洁压裂液,具备低伤害、高效增粘、抗温、抗盐、抗剪切、低摩阻等特性,并与其它常用水基压裂液添加剂具有较好配伍性。

Description

页岩气压裂液用稠化剂、压裂液及其制备方法与应用 技术领域
本发明是关于一种页岩气压裂液用稠化剂、压裂液及其制备方法与应用,具体而言,本发明涉及一种特别适合页岩气连续加砂压裂用的活性稠化剂、该稠化剂的制备方法、包含该稠化剂的压裂液用组合物、包含该稠化剂的压裂液、压裂液在页岩气连续加砂压裂中的应用以及页岩气连续加砂压裂方法。
背景技术
我国油气田低渗透层储量丰富,但其自然产能低或根本无自然产能。应用压裂液技术开采这类油气藏意义重大,压裂液的主要功能是含粘弹性液体携支掌剂(石英砂、陶粒等)进入压开地层,增加渗透率以使油气增产。
页岩气表现出超低的渗透性,储层脆性也不相同。对于脆性页岩,需要采取滑溜水及线性胶压裂体系通过网络压裂来提高产量;对于脆性指数不高的页岩,则需要通过连续加砂压裂的方式形成足够长的单一裂缝来提高产量。由于滑溜水及线性胶携砂能力相对有限,考虑页岩储层天然裂缝发育的实际,从施工力求撑开天然裂缝角度出发,压裂液粘度要控制在20-100cp,同时天然裂缝更易受到外来流体伤害,压裂液必须具备低的伤害率。
传统的常用压裂液为水基压裂液,其主要是以高分子瓜胶聚糖类或其改性产品等为稠化剂(增稠剂),以多价金属盐为交联剂,经充分搅拌形成冻胶。在压裂液完成造缝和携砂、形成永久性的填砂裂缝后,利用破胶剂使压裂液迅速破胶降粘,变成近似清水的破胶水化液从地层排出。而传统的压裂液破胶后不溶物残渣量偏高,这些残渣可堵塞岩层孔隙,因压裂液与地层的岩石和流体不配伍而引起粘土膨胀或乳化作用等,都会造成对地层渗透率的伤害,严重影响压裂增产效果,因此要求压裂液中的不溶物含量越低越好,压裂液和地层中物质应不发生有害的物理及化学变化,压裂后易于从地层中排出,尽量减少压裂液对地层的污染。所以低伤害低残渣的清洁压裂液是发展方向。
近年来关于粘弹性表面活性剂基的清洁压裂液体系已有大量报道。这类压裂液体系其粘度是分子缔合聚集的结果,遇油后,聚集状态改变,变成球状低粘度液体,自动破胶,且由于其为小分子无残渣,对地层伤害小。但现有技术中这类 粘弹性表面活性剂压裂液随着粘度的降低,其携砂能力有所下降,在大规模应用是使用较高的浓度,相应的成本较高。
此外,目前我国大部分压裂井已可以实现压裂液基液的速配,但由于连续混配装置还不多,不能实现边施工边配制的压裂液连续混配,只能用快速配液车配制不同浓度的基液,分装在不同的液罐中,施工中按浓度由高到低使用。因此,提高压裂液稠化剂的速溶性能也是压裂液研发的关键技术之一。
综上,迫切需要研发新型的压裂液体系。
技术问题
本发明的一个目的在于提供一种页岩气压裂液用稠化剂,其具有良好的速溶性,可用于配制清洁压裂液,具备低伤害、高效增粘特性、抗温性、抗盐性、抗剪切性、低摩阻等特性,并与其它常用水基压裂液添加剂具有较好的配伍性。
本发明的另一目的在于提供所述稠化剂的制备方法。
本发明的另一目的在于提供一种包含所述稠化剂的压裂液用组合物。
本发明的另一目的在于提供一种包含所述稠化剂的压裂液。
本发明的另一目的在于提供所述的压裂液在页岩气连续加砂压裂中的应用。
本发明的另一目的在于提供一种页岩气连续加砂压裂方法。
技术解决方案
为达上述目的,一方面,本发明提供了一种压裂液用稠化剂,该稠化剂主要是由粘弹性表面活性剂、聚丙烯酰胺、2-丙烯酰胺基-甲基丙磺酸、甲基丙烯酰氧三甲基氯化铵、N-异丙基丙烯酰胺、庚二酰、片碱等按3:5~7:0.4~0.6:1~2:1.5~2.5:1.5~2.5:0.8~1.2的体积比例合成。
根据本发明的最优选实施方案,所述稠化剂主要是由粘弹性表面活性剂、聚丙烯酰胺、2-丙烯酰胺基-甲基丙磺酸、甲基丙烯酰氧三甲基氯化铵、N-异丙基丙烯酰胺、庚二酰、片碱按照3:6:0.5:1.5:2:2:1的体积比例合成。
根据本发明的具体实施方案,其中,所述粘弹性表面活性剂为苯扎氯铵(洁尔灭)和/或苯扎溴铵(新洁尔灭)。
另一方面,本发明还提供了所述稠化剂的制备方法,该方法包括:将粘弹性表面活性剂与聚丙烯酰胺树脂混合并加热使其完全熔融,然后加入2-丙烯酰胺基-甲基丙磺酸、甲基丙烯酰氧三甲基氯化铵、N-异丙基丙烯酰胺、庚二酰、片碱, 在120℃~160℃的温度下搅拌1小时以上,通常为1~2小时,所得产物即为所述的稠化剂。
按照本发明的制备方法,所得产物冷却至常温后为固体,可适当粉碎,得到一种晶体粉末状的稠化剂产品,该稠化剂产品可用于液体增稠。
另一方面,本发明还提供了一种压裂液用添加剂组合物,该组合物包括本发明所述的稠化剂,本发明的稠化剂可以作为一种活性稠化剂用于配制压裂液,该稠化剂具有良好的速溶性,且在较低的浓度下即可使压裂液具有适宜的粘度。优选地,所述稠化剂在压裂液中的添加量为0.2%~0.8%。
根据本发明的具体实施方案,本发明的压裂液用添加剂组合物中,除所述的稠化剂外,还包括流变助剂。根据本发明的具体实施方案,所述流变助剂是由表面活性剂与乙醇按1:1.5~2.5的体积比优选是按照1:2的体积比例物理混合而成;优选地,所述表面活性剂为苯扎氯铵(洁尔灭)和苯扎溴铵(新洁尔灭);此类流变助剂可以用于所述稠化剂活性分子间缔合形成聚集体,形成空间网状结构,提高压裂液液体弹性,同时有效改变液体在管柱中的流态而大幅度降低施工摩阻。优选地,所述流变助剂在压裂液中的添加量为0.2%~0.8%。
根据本发明的具体实施方案,本发明的压裂液用添加剂组合物中,除所述的稠化剂、流变助剂外,还可进一步包括温度稳定剂。包括温度稳定剂的添加剂组合物适用于配制用于地层温度较高(例如,120℃以上)的压裂液。优选地,所述的温度稳定剂是由表面活性剂和直链醇类材料按1~2:2的体积比优选是按照1.5:2的体积比例合成。表面活性剂为苯扎氯铵(洁尔灭)或苯扎溴铵,醇类优选为乙醇。此类温度稳定剂可用于稳定本发明压裂液的空间网状结构聚集体在高温超高温地层温度和长时间连续剪切条件下不断链。更具体地,所述温度稳定剂可以是由表面活性剂和直链醇类材料直接混合而成,也可以加适量水为辅料混合而成。优选地,所述温度稳定剂在压裂液中的添加量为0.2%~0.8%,优选为0.4%~0.6%。
另一方面,本发明提供了一种压裂液,以该压裂液的总重量为基准,其组分包括:
本发明所述的稠化剂0.2%~0.8%;
本发明所述的流变助剂0.2%~0.8%。
根据本发明的具体实施方案,本发明的压裂液用于温度较高的地层时,其中还可进一步包括所述温度稳定剂。优选地,所述温度稳定剂在压裂液中的添加量为0.2%~0.8%,优选为0.4%~0.6%。
除所述稠化剂、流变助剂、温度稳定剂外,本发明的压裂液中还可选择性添加或不添加其他压裂液常规助剂。此外,压裂液的余量组分为水,可以是普通的压裂液配制用水。
根据本发明的具体实施方案,本发明的压裂液可配合CO2进行CO2混合压裂。
本发明的稠化剂及压裂液中的各原料均可商购获得,不同厂家不同型号的各原料性能可能会不同,但各原料只要符合相应的行业标准要求,即均可用于本发明。优选采用本领域中普遍认为质量较好的原料。其中所述的聚丙烯酰胺可以是油田压裂液添加剂领域常用的聚丙烯酰胺,例如可以是吉化聚盛生产的型号为JHJ15的聚丙烯酰胺等。
另一方面,本发明还提供了所述的压裂液在页岩气连续加砂压裂中的应用。优选地,是使用本发明的压裂液配合CO2进行CO2混合压裂。另外,本发明的压裂液也可用于常规压裂。
另一方面,本发明还提供了一种页岩气连续加砂压裂方法,其中是使用本发明所述的压裂液。
优选地,是使用所述的压裂液配合CO2进行CO2混合压裂。具体地,本发明的页岩气连续加砂压裂方法可以参照所述领域中的常规操作进行。
具体实施时,在配制本发明的压裂液时,所用配液设备主要包括:混配车或者配液车、液罐、配液管线、射流泵等。配液步骤:利用配液管线将混配车或者配液车、液罐、射流泵等设备连接,利用混配车或者配液车射流泵将稠化剂吸入液罐(罐内容装配液用水)中,同时保证液罐一直在循环状态,吸入后待液体溶胀(约5-15分钟,具体溶胀时间与加入稠化剂的量有关)后加入流变助剂和其它添加剂。继续循环10-15分钟后配液完成,得到活性压裂液。
有益效果
本发明所提供的活性压裂液体系,主要是利用压裂液溶液中分子之间通过非共价键(静电、氢键、疏水缔合效应等)发生相互作用,形成分子间的聚集结构, 这种聚集结构可以随剪切扰动变大或变小甚至完全拆散,当剪切扰动消除后,聚集体又重新恢复,形成在自然界不多见的一种“可逆结构溶液”,从而发生较强分子链间可逆的多元缔合作用形成超分子聚集体,具有类似于交联聚合物的空间网络结构,不需要交联即可具有清洁压裂液的全部性能,同时又具备清洁低伤害、高效增粘特性、抗温性、抗盐性、抗剪切性、低摩阻等特性,具有良好的流变性和携砂效果,并与其它常用水基压裂液添加剂具有较好的配伍性。
附图说明
图1为本发明一具体实施例中压裂液的50℃剪切流变曲线;
图2为本发明一具体实施例中压裂液的100℃剪切流变曲线;
图3为本发明一具体实施例中压裂液的120℃剪切流变曲线;
图4为本发明一具体实施例中压裂液的130℃剪切流变曲线;
图5为本发明一具体实施例中压裂液的150℃剪切流变曲线;
图6为本发明一具体实施例中压裂液中石英砂与陶粒沉降速度测试曲线;
图7为本发明一具体实施例中DH-DB活性CO2泡沫压裂液施工曲线;
图8为本发明一具体实施例中现场液罐取样检测150℃连续剪切粘温性能曲线;
图9为本发明一具体实施例中濮深17井加砂压裂施工曲线;
图10为本发明一具体实施例中分段完井管柱示意图;
图11为本发明一具体实施例中分段加砂压裂施工曲线;图片左侧纵坐标数据从上到下依次为:液体总量(m3)、砂排量(m3/min)、油压(MPa);图片右侧纵坐标数据从上到下依次为:套压(MPa)、泵车排量(m3/min);
图12为本发明一具体实施例中压后生产曲线(苏53-82-48H采气曲线)。
本发明的实施方式
以下通过具体实施例并结合附图详细说明本发明的技术方案和所能产生的有益效果,旨在帮助阅读者更好地理解本发明的实质和特点,不作为对本案可实施范围的限定。
实施例1
1、压裂液关键添加剂的制备
1.1稠化剂DH-DB-1
本实施例中的稠化剂由粘弹性表面活性剂(苯扎氯铵)、聚丙烯酰胺、AMPS、甲基丙烯酰氧三甲基氯化铵、N-异丙基丙烯酰胺、庚二酰、片碱等按3:6:0.5:1.5:2:2:1的体积比例合成,具体合成方法如下:
将粘弹性表面活性剂与聚丙烯酰胺树脂混合并中加热使其完全熔融,然后加入2-丙烯酰胺基-甲基丙磺酸、甲基丙烯酰氧三甲基氯化铵、N-异丙基丙烯酰胺、庚二酰、片碱,在150℃下搅拌反应约2小时,所得产物即本实施例的稠化剂,冷却至常温后为固态产物,粉碎,即得晶体粉末,用于液体增稠。本发明称该稠化剂为活性稠化剂DH-DB-1。该DH-DB-1稠化剂增稠能力强,具有速溶性能,极其易于现场配制,在不采用高速混调情况下,胶液不产生鱼眼,分散性和溶胀性较好。
1.2流变助剂DH-DB-2
本实施例中的流变助剂由表面活性剂苯扎氯铵和乙醇按1:2的体积比例常温物理混合而成,液体,用于DH-DB-1活性分子间缔合形成聚集体,形成空间网状结构,提高液体弹性,同时有效改变液体在管柱中的流态而大幅度降低施工摩阻。本发明中称该流变助剂为DH-DB-2。
1.3温度稳定剂DH-DB-3
本实施例中的温度稳定剂由表面活性剂苯扎溴铵和直链醇类材料按1.5:2体积比例常温混合而成,用于稳定DH-DB压裂液的空间网状结构聚集体在高温超高温地层温度和长时间连续剪切条件下不断链。本发明中称该温度稳定剂为DH-DB-3。只有当地层温度超过120℃时才使用该添加剂。
1.4压裂液DH-DB
利用所述的活性稠化剂DH-DB-1、流变助剂DH-DB-2,或进一步添加温度稳定剂DH-DB-3配制的压裂液,本发明称为DH-DB活性压裂液。
具体配制时,利用混配车或者配液车射流泵将稠化剂吸入液罐(罐内容装配液用水)中,同时保证液罐一直在循环状态,吸入后待液体溶胀(约5-15分钟,具体溶胀时间与加入稠化剂的量有关)后加入流变助剂和其它添加剂。继续循环10-15分钟后配液完成,得到活性压裂液DH-DB。所用设备均为该领域常规设备。
2、DH-DB活性压裂液性能
2.1流变性能
1)基液和胶液粘度
不同配方的DH-DB活性压裂液基液和冻胶的表观粘度参见表1。
表1DH-DB活性压裂液基液和冻胶的表观粘度
Figure PCTCN2014095330-appb-000001
2)高温剪切稳定性
交联剂类型、剪切速率、温度、基液粘度、含氧量、pH值等都是影响压裂液流变性的因素。在流变性测试中,主要考察DH-DB活性压裂液的抗温增稠和抗剪切能力。
利用MAS-Ⅲ高温高压流变仪进行测试。
装好压裂液并设定流变仪加热温度,用表观粘度随时间变化趋势确定压裂液的剪切稳定性。以170s-1下连续剪切,直到压裂液的表观粘度为50mPa.s时为止。
不同温度下的剪切流变曲线请参见图1~图5所示,表一中序号1-5的流变曲线分别对应图1-图5。实验结果表明,几组压裂液170s-1下,连续剪切120min后,粘度在都在50mPa.s以上,达到或超过石油行业相关标准要求。
2.2DH-DB-1稠化剂速溶性能
为检验DH-DB-1稠化剂的速溶性能,本实施例进行了溶解性试验,量取一定量的实验用水,按0.6%和0.8%质量浓度将稠化剂缓缓倒入,边加边搅拌,放置4小时,观察粘度随时间的变化,实验结果见表2。
表2DH-DB-1稠化剂溶解速度实验
Figure PCTCN2014095330-appb-000002
Figure PCTCN2014095330-appb-000003
实验结果表明,DH-DB-1稠化剂用玻璃棒搅拌的条件下,8分钟后基液粘度能达到最终粘度的90%以上,且没有鱼眼;用混调器高速搅拌的条件下,3分钟后基液粘度能达到最终粘度的98%,说明该稠化剂溶解速度快,分散性好,增粘快,能满足连续混配的要求。
2.3表面和界面张力
采用表面张力仪圆环法测试基液的表面张力,采用界面张力仪旋转滴法测试基液的界面张力,从而对压裂液的返排特性作出评价,同时又为表面活性剂、助排剂的优选提供参考。不同配方的DH-DB活性压裂液表面和界面张力参见表3。
表3DH-DB活性压裂液表面和界面张力
Figure PCTCN2014095330-appb-000004
由测试结果可以看出,本发明的作为压裂液主剂的稠化剂属低分子活性剂,具有良好的降低表、界面张力作用,低的表界面张力有利于降低水锁现象,加速破胶液的返排。由实验可知,破胶液的助排率均在17%以上,均高于行业标准15%的指标要求。
2.4悬砂能力
本发明的DH-DB活性压裂液是一种具有粘弹特性的流体,支撑剂沉降是考察在实验温度和静态条件下,支撑剂的沉降速率。支撑剂的沉降高度与沉降时间具有线性关系,其斜率即为该支撑剂的静态沉降速率。
实验方法:
在100ml量筒中量取100ml DH-DB 5号压裂液样品(0.8%DH-DB-1+0.5%DH-DB-2+0.6%DH-DB-3);
压裂液选取圆球度较好、粒径尺寸中等的几粒支撑剂(陶粒、石英砂)样品,放入后测试各自在不同时刻的下降位置,并求取平均值;
利用线性关系拟合出沉降高度与时间的关系式,斜率为沉降速度。
图6给出了在DH-DB活性压裂液加入陶粒与石英砂,陶粒与石英砂沉降速度测试结果。从测试结果可知,在DH-DB活性压裂液中,石英砂的沉降速度稍低于陶粒,线性拟合表明:石英砂的沉降速度为0.005cm/s,陶粒为0.0058cm/s。
由于本发明的DH-DB活性压裂液是一种完全不同于常规水基压裂液的体系,其性能测试方法也不能完全按照行业标准“水基压裂液性能测试方法”进行。根据本发明的室内研究结果,携砂性能的测试应将表观粘度与沉降速度相结合。
常规压裂液的携砂性能的主要测试指标是表观粘度(以170s-1为主),通常认为粘度在50mPa.s以上时,可以满足携砂性能要求。但是本案发明人在研究中发现,与传统的瓜胶压裂液相比,在相同的粘度下,本发明的DH-DB活性压裂液的沉降速度明显偏低,因此在活性压裂液的流变性测试中,需补充测试支撑剂(或钢球)沉降速度测试。
由悬砂能力对比试验可知(在室内用静态悬砂仪测得的静态悬砂数据如下:单个石英砂,静态悬砂速度小于0.06cm/min,当砂比为35%时,静态悬砂速度小于0.40cm/min,由此数据可以看出),DH-DB活性压裂液具有良好的悬砂能力,其中5号DH-DB(0.8%DH-DB-1+0.5%DH-DB-2+0.6%DH-DB-3)压裂液在室温下的粘度为165mPa.s,30%砂比在静态下放置24没有沉降,而瓜胶压裂液(0.55%羟丙基瓜胶HPG+0.3%交联剂HTC-160)的粘度为1600mPa.s,二者的悬砂能力基本相当。
2.5破胶性能
破胶剂的作用是在压裂液完成造缝和携砂,形成永久性的填砂裂缝后,使压裂液迅速破胶降粘,变成近似清水的破胶水化液从地层排出。减少水化液在地层里的停留时间和残渣量,也就减少了储层及填砂裂缝渗透率损害的可能性。
大量的实践已经证明,压裂液破胶水化液的粘度愈低,对地层损害愈小。水化液粘度高,将增加返排过程中残液通过裂缝孔道的阻力,降低排液速度和排液量,增加滞留时间。
本实施例中,采用过硫酸铵作为DH-DB活性压裂液的破胶剂,按行业标准 的要求,在80-100℃的水浴中,对不同加量的过硫酸铵进行破胶性能测试。
测试结果参见表4。
表4DH-DB活性压裂液破胶性能
Figure PCTCN2014095330-appb-000005
实验发现,过硫酸铵对DH-DB活性压裂液具有良好的破胶效果,破胶化水彻底。
2.6残渣含量
压裂液中含有的不溶物残渣可堵塞岩层孔隙,因压裂液与地层的岩石和流体不配伍而引起粘土膨胀或乳化作用等,都会造成对地层渗透率的伤害。本实施例中,对本发明的DH-DB活性压裂液破胶后的残渣含量进行了检测。结果参见表5。
表5DH-DB活性压裂液残渣含量测试
Figure PCTCN2014095330-appb-000006
由上述实验检测结果可知,本发明的DH-DB活性压裂液破胶后基本无残渣,破胶液澄清透明,基本无残渣,而常规的瓜胶与有机硼交联压裂液的残渣含量约860mg/L,破胶液底部有明显的絮状沉淀物。
2.7高温高压静态滤失性测定
测定不含支撑剂的压裂液在高温、高压条件下通过滤纸的滤失性;测定温度:压裂液适用温度范围;测定压力:仪器规定试验压差为3.5MPa;回压按仪器要求确定。记录1,4,9,16,25,30,36min时的滤失量,用压裂液在滤纸上的滤失数据,以滤失量为纵坐标,以时间的平方根为横坐标,在直角坐标上作图。实验结果请参见表6。
表6不同温度下的滤失性能实验结果
Figure PCTCN2014095330-appb-000007
由上表可知,DH-DB活性压裂液具有良好的降滤失性能,可满足行业标准的要求。
2.8岩心伤害性能
破胶液的粘度很低虽然表明压裂液已破解,但也有可能对岩心的渗透性造成伤害。本实施例中对DH-DB活性压裂液的破胶液进行了岩心渗透性检测,以考察破胶液对岩心的伤害性。
1)实验方法
选取表面亲水的天然岩心,试验用仪器为岩心流动实验仪:
配制DH-DB活性压裂液的破胶液,收集滤液;
将岩心装入夹持器中;
正通标准盐水(40000ppm),测岩心渗透率K1
反通破胶液滤液至流量稳定;
正通标准盐水(40000ppm),测岩心渗透率K2
利用下式计算岩心伤害率:
Figure PCTCN2014095330-appb-000008
2)实验结果
实验结果参见表7。
表7岩心伤害试验结果
Figure PCTCN2014095330-appb-000009
由实验结果可知,DH-DB活性压裂液对岩心的伤害率在5.09%~9.4%之间,与HPG压裂液相比,伤害率降低80%左右;也明显低于常规VES压裂液。
通过前面的实验,本发明的DH-DB活性破胶液的伤害性还具有以下特点:
①无滤饼生成,最大限度的保持了孔隙孔喉的原始渗透性;
②基本无残渣形成,不会对孔隙壁面造成吸附;
③压裂液pH值保持在中性,避免了Ca、Mg等离子在碱性条件下生成沉淀。
2.9防膨性能
试验方法:根据压裂酸化用粘土稳定剂性能测定方法SY/T 5762-1995测定。试验结果参见表8。
表8DH-DB活性压裂液防膨性能试验结果
Figure PCTCN2014095330-appb-000010
Figure PCTCN2014095330-appb-000011
以上各项性能测试可以表面,本发明的压裂液具有以下主要特点:
1)DH-DB活性压裂液交联后可形成良好的粘弹性体系,具有良好的携砂能力;且表观粘度较低,施工过程中有利于降低摩阻和提高泵注排量;
2)DH-DB-1稠化剂在水中分散性好、溶解速度快,添加剂种类少、用量低,配液方便,可顺利完成压裂液的现场配制;
3)粘弹性强、悬浮性好,高砂比时也不易聚积沉砂,有利于提高铺砂浓度。
4)该压裂液主剂为表面活性剂,具有防膨、不易变质的特点;破胶化水彻底,不会造成吸附滞留或影响支撑裂缝导流能力;配制简单,不需增加特殊设备。
实施例2
DH-DB活性压裂液现场具备采用连续混配的施工能力,可以满足混砂车8-10m3/min的施工排量要求。
根据不同储层温度,确定各添加剂配比,按照添加剂DH-DB-1→DH-DB-2→DH-DB-3→过硫酸铵加入顺序,加入连续混配车搅拌罐,配制成液体供给混砂车。将配制好的液体通过混砂车送入井口,最终进入到地层中。
没有连续混配车的情况下,可以采取大排量射流循环的配制方法,也能满足给混砂车提供8-10m3/min的施工排量要求。添加剂加入顺序与连续混配相同。
现场应用情况
实例1:
试3井是一口关停井,目的层山1,储层温度90℃,压裂井段2622.0-2626.0m。初次压裂采用HPG交联冻胶,平均砂比21.6%,加砂量35.1m3,停泵压力27MPa。压后采用3.0mm、4.0mm、5.0mm油嘴控制放喷排液,后期敞开放喷排液,压裂液返排率为72.83%。采用一点法求产,平均稳定产气量0.6400×104m3/d,平均产水0.13m3/d,计算无阻流量为2.1533×104m3/d。压裂改造效果差。
重复压裂选择DH-DB活性CO2泡沫压裂液施工,施工时将压裂液体(0.6%稠化剂DH-DB-1+0.4%流变助剂DH-DB-2)和CO2按不同比例(CO2的泡沫质 量比小于30%)同时打入地层中,利用CO2可以提高返排率,有助于进一步增产,DH-DB活性CO2泡沫压裂液施工曲线参见图7所示。压后获得15.0×104m3/d的高产。
实例2:
濮深17井是中石化重点预探井,压裂井段4646.0-4655.5m,测试反映储层为高温低渗油藏,实测井温接近160度,地层压力系数1.5。采用DH-DB压裂液(0.6%稠化剂DH-DB-1+0.4%流变助剂DH-DB-2+0.4%温度稳定剂DH-DB-3)施工,现场液罐取样检测150℃连续剪切粘温性能参见图8所示。濮深17井加砂压裂施工曲线参见图9所示。本实例中,完成设计加砂30m3,压后日产油10m3,压后产量达到同区块产量最高水平。
实例3:
苏53-82-48H井完钻井深5303m,水平段进尺1725m,砂岩钻遇率96.23%,有效储层钻遇率65.39%,地层温度130℃。设计压裂12段,共加入陶粒474m3,用压裂液(0.6%稠化剂DH-DB-1+0.4%流变助剂DH-DB-2+0.4%温度稳定剂DH-DB-3)4070m3、液氮174m3
分段完井管柱参见图10所示意,分段加砂压裂施工曲线参见图11,压后生产曲线参见图12。

Claims (10)

  1. 一种压裂液用稠化剂,该稠化剂是由粘弹性表面活性剂、聚丙烯酰胺、2-丙烯酰胺基-甲基丙磺酸、甲基丙烯酰氧三甲基氯化铵、N-异丙基丙烯酰胺、庚二酰、片碱按3:5~7:0.4~0.6:1~2:1.5~2.5:1.5~2.5:0.8~1.2的体积比例合成。
  2. 根据权利要求1所述的稠化剂,其中,所述粘弹性表面活性剂为苯扎氯铵和/或苯扎溴铵。
  3. 权利要求1或2所述的稠化剂的制备方法,该方法包括:
    将粘弹性表面活性剂与聚丙烯酰胺树脂混合并加热使其完全熔融,然后加入2-丙烯酰胺基-甲基丙磺酸、甲基丙烯酰氧三甲基氯化铵、N-异丙基丙烯酰胺、庚二酰、片碱,在120~160℃的温度下搅拌1小时以上,所得产物即为所述的稠化剂。
  4. 一种压裂液用添加剂组合物,该组合物包括权利要求1或2所述的稠化剂。
  5. 根据权利要求4所述的组合物,该组合物还包括流变助剂,所述流变助剂是由表面活性剂与乙醇按1:1.5~2.5的体积比例物理混合而成。
  6. 根据权利要求5所述的组合物,其中,所述表面活性剂为苯扎氯铵或苯扎溴铵。
  7. 一种压裂液,以该压裂液的总重量为基准,其组分包括:
    权利要求1或2所述的稠化剂0.2%~0.8%;
    流变助剂0.2%~0.8%;
    其中所述流变助剂是由表面活性剂与乙醇按1:1.5~2.5的体积比例物理混合而成,其中,所述表面活性剂为苯扎氯铵或苯扎溴铵。
  8. 根据权利要求7所述的压裂液,其中还包括温度稳定剂,其中,所述温度稳定剂由表面活性剂和直链醇类材料按1~2:2比例合成;表面活性剂为苯扎氯铵或苯扎溴铵,醇类优选为乙醇。
  9. 权利要求7或8所述的压裂液在页岩气连续加砂压裂中的应用;优选地,是使用权利要求7或8所述的压裂液配合CO2进行CO2混合压裂。
  10. 一种页岩气连续加砂压裂方法,其中是使用权利要求7或8所述的压裂 液;优选地,是使用权利要求7或8所述的压裂液配合CO2进行CO2混合压裂。
PCT/CN2014/095330 2014-01-21 2014-12-29 页岩气压裂液用稠化剂、压裂液及其制备方法与应用 WO2015109917A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410026220.1 2014-01-21
CN201410026220.1A CN103756664B (zh) 2014-01-21 2014-01-21 页岩气压裂液用稠化剂、压裂液及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2015109917A1 true WO2015109917A1 (zh) 2015-07-30

Family

ID=50523996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095330 WO2015109917A1 (zh) 2014-01-21 2014-12-29 页岩气压裂液用稠化剂、压裂液及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN103756664B (zh)
WO (1) WO2015109917A1 (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105086986A (zh) * 2015-08-26 2015-11-25 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 一种气井耐高温可回收清洁压裂液
CN107144671A (zh) * 2017-06-23 2017-09-08 中国电建集团贵阳勘测设计研究院有限公司 一种高压条件下页岩气水锁效应评价装置及方法
CN108690064A (zh) * 2018-08-01 2018-10-23 四川省威沃敦化工有限公司 一种页岩气压裂液用常温交联铝交联剂的制备方法
CN109751025A (zh) * 2017-11-01 2019-05-14 中国石油化工股份有限公司 一种提高深层页岩气全尺度裂缝支撑体积的压裂方法
CN109838221A (zh) * 2017-11-28 2019-06-04 中国石油化工股份有限公司 一种深层页岩气高能电弧复合体积压裂方法
CN111548782A (zh) * 2020-04-30 2020-08-18 长江大学 一种纳米增强超分子清洁压裂液及其制备方法
CN111635489A (zh) * 2020-06-15 2020-09-08 中国石油化工股份有限公司 一种多功能超分子稠化剂及其制备方法
CN112410012A (zh) * 2019-08-21 2021-02-26 中国石油化工股份有限公司 改性聚丙烯酰胺在水基压裂液中的应用
CN112646559A (zh) * 2019-10-10 2021-04-13 中国石油化工股份有限公司 一种具有改善稠油流动阻力及稳定粘土作用的携砂液
CN112724316A (zh) * 2021-01-04 2021-04-30 中国石油天然气集团有限公司 耐盐耐温多用途页岩气藏体积改造用稠化剂及其制备方法
CN112922573A (zh) * 2019-12-06 2021-06-08 中国石油天然气股份有限公司 致密油藏水平井压裂方法
CN113469832A (zh) * 2021-08-09 2021-10-01 中国石油天然气股份有限公司 一种致密砂岩加砂压裂用液强度设计方法
CN114441715A (zh) * 2022-02-10 2022-05-06 西南石油大学 一种评价自生泡沫暂堵分流效果的装置及方法
CN114508323A (zh) * 2022-01-11 2022-05-17 中海油能源发展股份有限公司 一种压裂液返排速度智能控制装置与控制方法
CN114810020A (zh) * 2021-01-19 2022-07-29 中国石油化工股份有限公司 一种多簇裂缝均匀延伸的压裂方法及应用
CN115081352A (zh) * 2022-06-09 2022-09-20 中海石油(中国)有限公司 深水高温高压疏松砂岩端部脱砂工艺设计优化方法及装置
CN115109577A (zh) * 2022-07-15 2022-09-27 烟台大学 溶解快、黏度高、可自交联的稠化剂及其制备方法
CN116003701A (zh) * 2023-03-15 2023-04-25 山东科兴化工有限责任公司 一种基于二氧化硅纳米微乳压裂液及其制备方法
CN116063622A (zh) * 2021-11-01 2023-05-05 中国石油化工股份有限公司 一种压裂液增稠剂、驱油压裂液及应用
CN116066047A (zh) * 2021-10-29 2023-05-05 中国石油天然气集团有限公司 一种处理页岩近井扭曲摩阻的压裂施工方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103756664B (zh) * 2014-01-21 2017-01-25 东方宝麟科技发展(北京)有限公司 页岩气压裂液用稠化剂、压裂液及其制备方法与应用
CN106289988B (zh) * 2015-05-29 2019-09-24 中国科学院地质与地球物理研究所 超临界二氧化碳岩石压裂试验系统
CN108659810B (zh) * 2018-04-17 2021-05-04 四川申和新材料科技有限公司 弹性携砂压裂液以及用于该压裂液的稠化剂及其制备方法
CN109971454B (zh) * 2019-05-10 2020-05-15 四川洁能锐思石油技术有限公司 一种改性乙二醇基速溶压裂液体系及其制备方法和应用
CN110080751B (zh) * 2019-05-28 2024-02-02 西安石油大学 一种可视化支撑剂孔喉渗流和封堵测试装置及其使用方法
CN112111033B (zh) * 2019-06-21 2022-08-05 中国石油天然气集团有限公司 一种二氧化碳提粘降滤失共聚物及其制备方法和应用
CN111287719A (zh) * 2020-02-17 2020-06-16 西南石油大学 一体化压裂施工中稠化剂的添加方法
CN114427414B (zh) * 2020-09-16 2024-05-17 中国石油化工股份有限公司 一种提高盐间泥质白云岩油藏压裂有效期的方法及其应用
CN116396742B (zh) * 2023-06-07 2023-08-29 广饶六合化工有限公司 一种清洁压裂液用稠化剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475797A (zh) * 2008-12-25 2009-07-08 中国科学院长春应用化学研究所 一种耐温水基压裂液增稠剂及其制备方法
CN101724389A (zh) * 2008-10-22 2010-06-09 中国石油天然气股份有限公司 一种交联酸加砂压裂酸液
CN103059828A (zh) * 2012-12-25 2013-04-24 北京希涛技术开发有限公司 用于水基压裂液的稠化剂及其合成方法
CN103131404A (zh) * 2013-02-17 2013-06-05 中国石油化工股份有限公司 两性离子型聚合物水基压裂液稠化剂及其制备方法
CN103261365A (zh) * 2010-12-16 2013-08-21 阿克佐诺贝尔化学国际公司 作为水性增稠剂的粘弹性表面活性剂和疏水改性聚合物组合物
CN103756664A (zh) * 2014-01-21 2014-04-30 东方宝麟科技发展(北京)有限公司 页岩气压裂液用稠化剂、压裂液及其制备方法与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2332224B (en) * 1997-12-13 2000-01-19 Sofitech Nv Gelling composition for wellbore service fluids
GB2383355A (en) * 2001-12-22 2003-06-25 Schlumberger Holdings An aqueous viscoelastic fluid containing hydrophobically modified polymer and viscoelastic surfactant
CA2799555A1 (en) * 2010-05-18 2011-11-24 Schlumberger Canada Limited Hydraulic fracturing method
CN102115514B (zh) * 2010-10-19 2013-03-06 新疆科发环境资源股份有限公司 一种酸液稠化剂的制备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724389A (zh) * 2008-10-22 2010-06-09 中国石油天然气股份有限公司 一种交联酸加砂压裂酸液
CN101475797A (zh) * 2008-12-25 2009-07-08 中国科学院长春应用化学研究所 一种耐温水基压裂液增稠剂及其制备方法
CN103261365A (zh) * 2010-12-16 2013-08-21 阿克佐诺贝尔化学国际公司 作为水性增稠剂的粘弹性表面活性剂和疏水改性聚合物组合物
CN103059828A (zh) * 2012-12-25 2013-04-24 北京希涛技术开发有限公司 用于水基压裂液的稠化剂及其合成方法
CN103131404A (zh) * 2013-02-17 2013-06-05 中国石油化工股份有限公司 两性离子型聚合物水基压裂液稠化剂及其制备方法
CN103756664A (zh) * 2014-01-21 2014-04-30 东方宝麟科技发展(北京)有限公司 页岩气压裂液用稠化剂、压裂液及其制备方法与应用

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105086986A (zh) * 2015-08-26 2015-11-25 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 一种气井耐高温可回收清洁压裂液
CN107144671A (zh) * 2017-06-23 2017-09-08 中国电建集团贵阳勘测设计研究院有限公司 一种高压条件下页岩气水锁效应评价装置及方法
CN109751025A (zh) * 2017-11-01 2019-05-14 中国石油化工股份有限公司 一种提高深层页岩气全尺度裂缝支撑体积的压裂方法
CN109838221A (zh) * 2017-11-28 2019-06-04 中国石油化工股份有限公司 一种深层页岩气高能电弧复合体积压裂方法
CN108690064B (zh) * 2018-08-01 2021-04-02 四川省威沃敦化工有限公司 一种页岩气压裂液用常温交联铝交联剂的制备方法
CN108690064A (zh) * 2018-08-01 2018-10-23 四川省威沃敦化工有限公司 一种页岩气压裂液用常温交联铝交联剂的制备方法
CN112410012A (zh) * 2019-08-21 2021-02-26 中国石油化工股份有限公司 改性聚丙烯酰胺在水基压裂液中的应用
CN112646559A (zh) * 2019-10-10 2021-04-13 中国石油化工股份有限公司 一种具有改善稠油流动阻力及稳定粘土作用的携砂液
CN112922573A (zh) * 2019-12-06 2021-06-08 中国石油天然气股份有限公司 致密油藏水平井压裂方法
CN111548782B (zh) * 2020-04-30 2023-01-24 长江大学 一种纳米增强超分子清洁压裂液及其制备方法
CN111548782A (zh) * 2020-04-30 2020-08-18 长江大学 一种纳米增强超分子清洁压裂液及其制备方法
CN111635489A (zh) * 2020-06-15 2020-09-08 中国石油化工股份有限公司 一种多功能超分子稠化剂及其制备方法
CN111635489B (zh) * 2020-06-15 2022-10-14 中国石油化工股份有限公司 一种多功能超分子稠化剂及其制备方法
CN112724316A (zh) * 2021-01-04 2021-04-30 中国石油天然气集团有限公司 耐盐耐温多用途页岩气藏体积改造用稠化剂及其制备方法
CN114810020A (zh) * 2021-01-19 2022-07-29 中国石油化工股份有限公司 一种多簇裂缝均匀延伸的压裂方法及应用
CN113469832A (zh) * 2021-08-09 2021-10-01 中国石油天然气股份有限公司 一种致密砂岩加砂压裂用液强度设计方法
CN113469832B (zh) * 2021-08-09 2024-05-28 中国石油天然气股份有限公司 一种致密砂岩加砂压裂用液强度设计方法
CN116066047B (zh) * 2021-10-29 2024-04-26 中国石油天然气集团有限公司 一种处理页岩近井扭曲摩阻的压裂施工方法
CN116066047A (zh) * 2021-10-29 2023-05-05 中国石油天然气集团有限公司 一种处理页岩近井扭曲摩阻的压裂施工方法
CN116063622A (zh) * 2021-11-01 2023-05-05 中国石油化工股份有限公司 一种压裂液增稠剂、驱油压裂液及应用
CN114508323A (zh) * 2022-01-11 2022-05-17 中海油能源发展股份有限公司 一种压裂液返排速度智能控制装置与控制方法
CN114441715B (zh) * 2022-02-10 2023-09-01 西南石油大学 一种评价自生泡沫暂堵分流效果的装置及方法
CN114441715A (zh) * 2022-02-10 2022-05-06 西南石油大学 一种评价自生泡沫暂堵分流效果的装置及方法
CN115081352A (zh) * 2022-06-09 2022-09-20 中海石油(中国)有限公司 深水高温高压疏松砂岩端部脱砂工艺设计优化方法及装置
CN115081352B (zh) * 2022-06-09 2024-05-17 中海石油(中国)有限公司 深水高温高压疏松砂岩端部脱砂工艺设计优化方法及装置
CN115109577A (zh) * 2022-07-15 2022-09-27 烟台大学 溶解快、黏度高、可自交联的稠化剂及其制备方法
CN115109577B (zh) * 2022-07-15 2023-07-04 北京伸恒能源科技有限公司 溶解快、黏度高、可自交联的稠化剂及其制备方法
CN116003701A (zh) * 2023-03-15 2023-04-25 山东科兴化工有限责任公司 一种基于二氧化硅纳米微乳压裂液及其制备方法
CN116003701B (zh) * 2023-03-15 2023-05-30 山东科兴化工有限责任公司 一种基于二氧化硅纳米微乳压裂液及其制备方法

Also Published As

Publication number Publication date
CN103756664A (zh) 2014-04-30
CN103756664B (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2015109917A1 (zh) 页岩气压裂液用稠化剂、压裂液及其制备方法与应用
AU2007276817B2 (en) Friction loss reduction in viscoelastic surfactant fracturing fluids using low molecular weight water-soluble polymers
AU2012290709B2 (en) A method of slickwater fracturing
US4215001A (en) Methods of treating subterranean well formations
CN108559479B (zh) 一种可在线施工的反相微乳液聚合物压裂液体系
CA3055128C (en) High temperature-resistance fully-suspended low-damage fracturing fluid and preparing method thereof
CA2912418C (en) High-temperature crosslinked polymer for use in a well
CN114106810A (zh) 纳米二氧化硅、纳米复合滑溜水压裂液及制备方法与应用
WO2020051204A1 (en) High-performance treatment fluid
WO2020019593A1 (zh) 一种针对粘土矿物的溶蚀酸化液及其制备方法
CN111548782B (zh) 一种纳米增强超分子清洁压裂液及其制备方法
CN111394078A (zh) 一种泡沫均匀酸及其制备方法和使用方法
US9016375B2 (en) Breaking diutan with oxalic acid at 180° F to 220° F
Quintero et al. Enhanced proppant suspension in a fracturing fluid through capillary bridges
AU2017210060A1 (en) Spacer fluid having sized particulates and methods of using the same
CN108251096B (zh) 一种裂缝性储层无残渣压裂液降滤失剂及降滤失方法
CN112080269A (zh) 一种微泡压裂液、制备方法及应用
AU2014299302B2 (en) Inhibiting salting out of diutan or scleroglucan in well treatment
CN115746819B (zh) 适用耐盐型生物胶的智能温控交联一体化悬浮乳液体系及其制备方法
AU2012278380B2 (en) Friction loss reduction in viscoelastic surfactant fracturing fluids using low molecular weight water-soluble polymers
CN117304889A (zh) 一种分散剂、含有其的悬浊液、水基钻井液和水基压裂液
Burns Chemical Method to Improve CO {sub 2} Flooding Sweep Efficiency for Oil Recovery Using SPI-CO {sub 2} Gels
Salgaonkar et al. Breaking diutan with oxalic acid at 180 F to 220 F

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14879547

Country of ref document: EP

Kind code of ref document: A1