WO2020013638A1 - 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물 - Google Patents

변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물 Download PDF

Info

Publication number
WO2020013638A1
WO2020013638A1 PCT/KR2019/008584 KR2019008584W WO2020013638A1 WO 2020013638 A1 WO2020013638 A1 WO 2020013638A1 KR 2019008584 W KR2019008584 W KR 2019008584W WO 2020013638 A1 WO2020013638 A1 WO 2020013638A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
modified conjugated
based polymer
bis
polymer
Prior art date
Application number
PCT/KR2019/008584
Other languages
English (en)
French (fr)
Inventor
이로미
이태철
김노마
나육열
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=68542138&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020013638(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP19835021.7A priority Critical patent/EP3705502B1/en
Priority to CN201980006081.7A priority patent/CN111433234B/zh
Priority to BR112020012802-3A priority patent/BR112020012802B1/pt
Priority to US16/770,367 priority patent/US10995163B2/en
Priority to RU2020120560A priority patent/RU2762063C1/ru
Priority to JP2020530525A priority patent/JP7004818B2/ja
Publication of WO2020013638A1 publication Critical patent/WO2020013638A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/08Butenes
    • C08F10/10Isobutene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08L23/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a modified conjugated diene-based polymer having excellent workability while improving rolling resistance and wear characteristics, and a rubber composition comprising the same.
  • a method of reducing the hysteresis loss of the vulcanized rubber In order to reduce the rolling resistance of the tire, there is a method of reducing the hysteresis loss of the vulcanized rubber.
  • a repulsive elasticity of 50 ° C. to 80 ° C., tan ⁇ , Goodrich heat generation and the like are used as an evaluation index of the vulcanized rubber. That is, a rubber material having a high rebound elasticity at the above temperature, or a small tan ⁇ and good rich heat generation is preferable.
  • the greatest advantage of solution polymerization over emulsion polymerization is that the vinyl structure content and styrene content that define rubber properties can be arbitrarily controlled, and molecular weight and physical properties can be adjusted by coupling or modification. It can be adjusted. Therefore, it is easy to change the structure of the final manufactured SBR or BR, and can reduce the movement of the chain end by the binding or modification of the chain end and increase the bonding strength with the filler such as silica or carbon black. It is used a lot as a rubber material.
  • solution polymerization SBR When such a solution polymerization SBR is used as a rubber material for tires, by increasing the vinyl content in the SBR, the glass transition temperature of the rubber can be increased to not only control tire demand properties such as running resistance and braking force, but also increase the glass transition temperature. Proper adjustment can reduce fuel consumption.
  • the solution polymerization SBR is prepared using an anionic polymerization initiator, and is used by binding or modifying the chain ends of the formed polymer using various modifiers. For example, US Pat. No.
  • 4,397,994 discloses a technique in which the active anion at the chain end of a polymer obtained by polymerizing styrene-butadiene in a nonpolar solvent using alkyllithium, which is a monofunctional initiator, is bound using a binder such as a tin compound. It was.
  • the present invention has been made to solve the problems of the prior art, by controlling the glass transition temperature, 1,2-vinyl bond content, Mooney viscosity and degree of branching of the modified conjugated diene-based polymer, the rolling resistance and wear resistance of the final tire To provide a modified conjugated diene-based polymer that can improve the processability and improve the processability.
  • the present invention is a modified conjugated diene-based polymer that meets the conditions of i) to v), i) glass transition temperature: -90 °C to -50 °C ii) Mooney viscosity measured under ASTM D1646 conditions: 50 to 100, iii) 1,2-vinyl bond content relative to the total weight of the polymer: 30.0 wt% or less, iv) molecular weight distribution (PDI; MWD): 1.5 to 3.5, and , v) a modified conjugated diene-based polymer having a Mooney relaxation ratio measured at 110 ° C. or less: 0.7.
  • the present invention also provides a rubber composition comprising the modified conjugated diene-based polymer and a filler.
  • the modified conjugated diene-based polymer according to the present invention has a high degree of branching while satisfying a specific range of glass transition temperature and 1,2-vinyl bond content, and is excellent in rolling resistance and abrasion resistance, as well as having a high degree of branching. Nevertheless, workability can also be improved by having a Mooney viscosity controlled to an appropriate level.
  • polymer' refers to a polymer compound prepared by polymerizing monomers, whether of the same or a different kind.
  • polymer encompasses the term homopolymer and copolymer which are commonly used to refer to polymers made from only one monomer.
  • 'vinyl content' refers to butadiene contained at position 1,2 in the polymer chain based on the conjugated diene monomer (butadiene, etc.) portion (total amount of polymerized butadiene) in the polymer. It refers to the mass (or weight) percent of.
  • the term 'monovalent hydrocarbon group' refers to a monovalent atomic group in which carbon and hydrogen are bonded, such as a monovalent alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkyl group and an aryl group including one or more unsaturated bonds.
  • the minimum number of carbon atoms of the substituent represented by the monovalent hydrocarbon may be determined according to the type of each substituent.
  • the term 'bivalent hydrocarbon group' is a two-membered carbon and hydrogen, such as a divalent alkylene group, an alkenylene group, an alkynylene group, a cycloalkylene group, a cycloalkylene group including one or more unsaturated bonds, and an arylene group. It may mean a valence atom group, and the minimum number of carbon atoms of a substituent represented by a divalent hydrocarbon may be determined according to the type of each substituent.
  • the term 'alkyl group' may mean a monovalent aliphatic saturated hydrocarbon, and may be linear alkyl groups such as methyl, ethyl, propyl and butyl, and isopropyl, sec-butyl, tertiary, It may be meant to include all branched alkyl groups such as tert-butyl and neo-pentyl.
  • alkenyl group may refer to a monovalent aliphatic unsaturated hydrocarbon including one or two or more double bonds.
  • alkynyl group may refer to a monovalent aliphatic unsaturated hydrocarbon including one or two or more triple bonds.
  • alkylene group may refer to a divalent aliphatic saturated hydrocarbon such as methylene, ethylene, propylene and butylene.
  • the term 'aryl group' may mean a cyclic aromatic hydrocarbon, and also a monocyclic aromatic hydrocarbon in which one ring is formed, or a polycyclic aromatic hydrocarbon in which two or more rings are combined. hydrocarbons) can be included.
  • heterocyclic group' means that a carbon atom in a cycloalkyl group or an aryl group is substituted with one or more hetero atoms, and for example, may include both a heterocycloalkyl group or a heteroaryl group.
  • compositions claimed through the use of the term “comprising”, unless stated to the contrary, may contain any additional additives, adjuvants, or compounds, whether polymer or otherwise. It may include.
  • the term 'consisting essentially of' excludes any other component, step or procedure from the scope of any subsequent description, except that it is not essential to operability.
  • the term 'consisting of' excludes any ingredient, step or procedure not specifically described or listed.
  • 'glass transition temperature (Tg)' is a sample of a modified conjugated diene-based polymer, and in accordance with ISO 22768: 2006, using a differential scanning calorimeter (trade name "DSC3200S” manufactured by McScience Inc.) and 50 mL of helium. The DSC curve was recorded while raising the temperature from -100 ° C to 10 ° C / min under the flow of / min, and the peak top of the DSC differential curve was measured as the glass transition temperature.
  • '1,2-vinyl bond content' was measured and analyzed using Varian VNMRS 500 MHz NMR.
  • the solvent was 1,1,2,2-tetrachloroethane, and the solvent peak was Calculated from 6.0 ppm, 7.2-6.9 ppm of random styrene, 6.9-6.2 ppm of block styrene, 5.8-5.1 ppm of 1,4-vinyl and 1,2-vinyl, 5.1-4.5 ppm of 1,2-vinyl It was measured by calculating the 1,2-vinyl bond content in the whole polymer as a peak.
  • 'weight average molecular weight (Mw)', 'number average molecular weight (Mn)' and 'molecular weight distribution (MWD)' are measured through GPC (Gel permeation chromatohraph) analysis, and the molecular weight distribution curve is measured will be.
  • Molecular weight distribution (PDI, MWD, Mw / Mn) is calculated from each of the above measured molecular weights.
  • the GPC uses a combination of two PLgel Olexis (Polymer Laboratories) columns and one PLgel mixed-C (Polymer Laboratories) columns and the GPC standard material is PS (polystyrene) when calculating the molecular weight.
  • GPC measurement solvent is prepared by mixing 2 wt% of an amine compound with tetrahydrofuran.
  • MV 'Money viscosity
  • -S / R 'Money relaxation rate
  • the Mooney viscosity (MV, (ML1 + 4, @ 100 °C MU) is used MV-2000 (ALPHA Technologies, Inc.) Rotor Speed 2 ⁇ 0.02 rpm, Large Rotor at 100 °C, and the sample used was left at room temperature (23 ⁇ 3 °C) for more than 30 minutes and collected 27 ⁇ 3 g and filled into the die cavity. The platen is operated and measured for 4 minutes After the Mooney viscosity measurement, the value of the slope of the Mooney viscosity change appearing as the torque is released is measured, and the absolute value thereof is used as the Mooney relaxation rate.
  • the 'Si content' is measured using an inductively coupled plasma luminescence analyzer (ICP-OES; Optima 7300DV) as an ICP analysis method.
  • ICP-OES inductively coupled plasma luminescence analyzer
  • Optima 7300DV inductively coupled plasma luminescence analyzer
  • about 0.7 g of the sample was placed in a platinum crucible (Pt crucible), about 1 mL of concentrated sulfuric acid (98 wt%, Electronic grade) was heated at 300 ° C. for 3 hours, and the sample was After the conversation in the electric furnace (Thermo Scientific, Lindberg Blue M) in the program of steps 1 to 3,
  • step 1 initial temp 0 °C, rate (temp / hr) 180 °C / hr, temp (holdtime) 180 °C (1hr)
  • step 2 initial temp 180 °C, rate (temp / hr) 85 °C / hr, temp (holdtime) 370 °C (2hr)
  • step 3 initial temp 370 °C, rate (temp / hr) 47 °C / hr, temp (holdtime) 510 °C (3hr)
  • the 'N content' may be measured through an NSX analysis method, for example, and the NSX analysis method is measured using a trace amount nitrogen quantitative analyzer (NSX-2100H).
  • a trace amount nitrogen quantitative analyzer NSX-2100H
  • the trace nitrogen quantitative analyzer Auto sampler, horizontal furnace, PMT & Nitrogen detector
  • ozonizer 300 ml / Set the carrier gas flow rate to min, set the heater to 800 ° C and wait for about 3 hours to stabilize the analyzer.
  • a calibration curve with 5 ppm, 10 ppm, 50 ppm, 100 ppm and 500 ppm ranges was prepared using the Nitrogen standard (AccuStandard S-22750-01-5 ml) to obtain an area corresponding to each concentration. Then make a straight line using the ratio of concentration to area. Thereafter, a ceramic boat containing 20 mg of the sample is placed in an auto sampler of the analyzer, the area is obtained by measurement, and the N content is calculated using the area of the obtained sample and the calibration curve. At this time, the sample is a modified conjugated diene-based polymer in which the solvent is removed by stirring in hot water heated with steam, and residual monomers, residual denaturants and oils are removed.
  • the modified conjugated diene-based polymer according to the present invention is a modified conjugated diene-based polymer that satisfies the following conditions i) to v), these conditions i) glass transition temperature: -90 °C to -50 °C, ii) ASTM D1646 conditions Mooney viscosity measured at: 50 to 100, iii) 1,2-vinyl bond content relative to the total weight of the polymer: 30.0 wt% or less, iv) molecular weight distribution (PDI; MWD): 1.5 to 3.5, and v) at 110 ° C Mooney relaxation rate measured: Provides a modified conjugated diene-based polymer of 0.7 or less.
  • the modified conjugated diene-based polymer may include a repeating unit derived from a conjugated diene monomer and a functional group derived from a modifier.
  • the conjugated diene-based monomer-derived repeating unit may mean a repeating unit formed when the conjugated diene-based monomer is polymerized, and the modifier-derived functional group is present at one end of the active polymer through a reaction or coupling between the active polymer and the modifying agent. It can mean a functional group derived from.
  • the conjugated diene monomer is 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, piperylene, 3-butyl-1,3-octadiene, isoprene, 2 It may be at least one selected from the group consisting of -phenyl-1,3-butadiene and 2-halo-1,3-butadiene (halo means a halogen atom).
  • the modified conjugated diene-based polymer is a copolymer comprising an aromatic vinyl monomer-derived repeating unit, it may comprise at least 30% by weight, or 30 to 50% by weight of the aromatic vinyl monomer-derived repeating unit, this range The balance between rolling resistance and wet road resistance is excellent within.
  • the aromatic vinyl monomer is, for example, styrene, ⁇ -methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 1-vinylnaphthalene, 4-cyclohexylstyrene, 4- (p-methylphenyl) styrene, and 1 It may be at least one selected from the group consisting of -vinyl-5-hexyl naphthalene.
  • the modified conjugated diene-based polymer may be a copolymer further comprising a diene-based monomer derived from C 1 to 10 together with the repeating unit derived from the conjugated diene monomer.
  • the diene monomer-derived repeating unit may be a repeating unit derived from a diene monomer different from the conjugated diene monomer, and the diene monomer different from the conjugated diene monomer may be, for example, 1,2-butadiene. .
  • the modified conjugated diene-based polymer is a copolymer further comprising a diene monomer
  • the modified conjugated diene-based polymer is more than 0% to 1% by weight, greater than 0% to 0.1% by weight of the repeating unit derived from the diene monomer, It may be included in more than 0% by weight to 0.01% by weight, or more than 0% by weight to 0.001% by weight, there is an effect of preventing the gel production within this range.
  • the copolymer may be a random copolymer, in this case there is an excellent balance between the physical properties.
  • the random copolymer may mean that the repeating units constituting the copolymer are randomly arranged.
  • the modified conjugated diene-based polymer according to an embodiment of the present invention should satisfy the glass transition temperature is -90 °C to -50 °C, preferably -80 °C to -50 °C.
  • the glass transition temperature may vary depending on the content of the aromatic vinyl monomer which is the comonomer, but is not limited only by the content of the comonomer, and may be fluid depending on the polymerization method and conditions.
  • the modified conjugated diene-based polymer prepared to satisfy the above range may have excellent affinity with a filler such as silica or carbon black when blended to improve wear resistance, and when the glass transition temperature is higher than -50 ° C, wear resistance and The same tensile properties may be lowered, and if it is lower than ⁇ 90 ° C., workability may be poor, and viscoelastic properties such as rolling resistance and wet road resistance may be deteriorated, so it is preferable to satisfy the above range.
  • a filler such as silica or carbon black
  • the modified conjugated diene-based polymer according to an embodiment of the present invention should satisfy that the Mooney viscosity (Mooney viscosity) measured in the conditions of ASTM D1646 50 to 100, specifically 70 to 100, preferably 70 to 90.
  • Mooney viscosity Mooney viscosity
  • workability may be considerably excellent.
  • the degree of branching of the modified conjugated diene polymer through the control of the polymerization method and conditions It can be improved, thereby providing a modified conjugated diene-based polymer that satisfies the glass transition temperature, Mooney viscosity and Mooney relaxation rate in the above range.
  • the modified conjugated diene-based polymer according to an embodiment of the present invention needs to satisfy that the 1,2-vinyl bond content is 30 wt% or less based on the total weight of the polymer.
  • the vinyl content may refer to the weight% of the 1,2-added conjugated diene monomer instead of 1,4-addition to the conjugated diene copolymer composed of a monomer having a vinyl group and an aromatic vinyl monomer. It may be influenced by the reaction environment at the time of completion of the polymerization reaction and the time of completion of the polymerization reaction.
  • the 1,2-vinyl bond content may be 5 to 30% by weight, preferably 5 to 15% by weight, depending on the wear and rolling resistance properties according to the 1,2-vinyl bond content. If the 1,2-vinyl bond content exceeds 30% by weight, the glass transition temperature may be affected, and the wear property may be extremely poor, and thus the modified conjugated diene-based polymer may be affected. It is necessary to pay attention to the reaction conditions in the preparation of the 1,2-vinyl bond content to satisfy the above range.
  • the modified conjugated diene-based polymer according to an embodiment of the present invention has a number average molecular weight (Mn) of 1,000 g / mol to 2,000,000 g / mol and 10,000 g / as measured by gel permeation chromatography (GPC). mol to 1,000,000 g / mol, or 100,000 g / mol to 800,000 g / mol, with a weight average molecular weight (Mw) of 1,000 g / mol to 3,000,000 g / mol, 10,000 g / mol to 2,000,000 g / mol, or 100,000 It may be g / mol to 1,500,000 g / mol, there is an excellent effect of rolling resistance and wet road resistance within this range.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • the modified conjugated diene-based polymer has a molecular weight distribution (PDI; MWD; Mw / Mn) of 1.5 to 3.5, preferably, 1.5 to 3.0, or 1.7 to 3.0, or 1.7 to 2.6, Within the range, the tensile and viscoelastic properties are excellent, and the balance between the physical properties is excellent.
  • PDI molecular weight distribution
  • the modified conjugated diene-based polymer has a molecular weight distribution curve by gel permeation chromatography (GPC) may have a unimodal form or a bimodal form, the unimodal and bimodal
  • the curvilinear form of can be determined by the methodological aspect of the continuous and batch polymerization and the aspect of the modification reaction carried out by the denaturing or coupling agent.
  • the Mooney relaxation rate measured at 110 ° C. of the modified conjugated diene polymer may be an index of the degree of branching and molecular weight of the modified conjugated diene copolymer.
  • the Mooney relaxation rate at 110 ° C. of the modified conjugated diene-based polymer is 0.7 or less, preferably 0.6 or less, more preferably 0.5 or less, and most preferably 0.45 or less.
  • the Mooney relaxation rate is low, it may mean that the degree of branching is high and the molecular weight is large, and the lower limit thereof is not particularly limited, but may be preferably 0.05 or more.
  • the modified conjugated diene-based polymer according to the present invention has a Mooney relaxation ratio of 0.7 or less, thereby exhibiting the effect of the present embodiment.
  • the Mooney relaxation rate measured at 110 ° C. of the modified conjugated diene-based polymer may be an index of the branching degree and molecular weight of the modified conjugated diene-based polymer as described above, and as the Mooney relaxation rate decreases, The degree of branching and molecular weight of conjugated diene-based polymers tend to increase.
  • the Mooney relaxation rate may be related to the Mooney viscosity described above. In the case of the modified conjugated diene-based polymer having an equivalent Mooney viscosity, the more branching, the Mooney relaxation rate decreases, so the linearity at equivalent Mooney viscosity It can also be used as an indicator.
  • the Mooney viscosity of the modified conjugated diene-based polymer can be achieved by controlling the weight average molecular weight and the degree of branching of the polymer to be produced.
  • the degree of branching is increased, and when the weight average molecular weight is increased, the degree of branching may be controlled, and the degree of branching may be controlled, and the amount of the functional group of the modifier, the amount of the modifier added, or the progress of metallization may be controlled.
  • the modified conjugated diene-based polymer according to an embodiment of the present invention may have a N and Si content of 25 ppm or more, 50 ppm or more, 70 ppm to 10,000 ppm, or 100 ppm to 5,000 ppm, respectively, by weight, within this range, there is an effect excellent in mechanical properties such as tensile properties and viscoelastic properties of the rubber composition comprising the modified conjugated diene-based polymer.
  • the N content and Si content may mean each of the content of Si atoms present in the modified conjugated diene-based polymer.
  • the N atoms and Si atoms may be derived from a modifier.
  • the modified conjugated diene-based polymer according to an embodiment of the present invention may have a modification rate of 30% or more.
  • the modified conjugated diene-based polymer may have a modification rate of 50% or more.
  • the modification rate may be 30% or more, and the modification rate is N It does not change independently of the content of atoms and Si atoms, and may vary in part.
  • the content of N and Si atoms and the rate of modification may exhibit some independence, and the modification rate is 50% or more, preferably 55% or more,
  • the modification rate is 50% or more, preferably 55% or more.
  • it is necessary to reduce the amount of the polymer coupled in the modification reaction which is the amount of denaturing agent added, the amount of polar additives, the reaction time, the amount of the denaturant and the active polymer It can be controlled according to the mixing time and the mixing degree.
  • the modified conjugated diene-based polymer according to the present invention when the modified conjugated diene-based polymer according to the present invention satisfies the above-mentioned conditions, wear resistance and cloud resistance may be greatly improved when blended due to an improved affinity with a filler such as silica or carbon black. In addition to improvements, workability can also be improved. Furthermore, in the case of the modified conjugated diene-based polymer further satisfying the modification rate condition, it may be possible to improve wear resistance and rolling resistance as well as wet road resistance, thereby modifying conjugated diene which can greatly improve tensile and viscoelastic properties. System-based polymers can be provided.
  • the modifier according to the present invention may be a modifier for modifying the terminal of the conjugated diene-based polymer, and may be, for example, a silica affinity modifier.
  • the silica affinity modifier may mean a modifier containing a silica affinity functional group in a compound used as a modifier, the silica affinity functional group is excellent in affinity with the filler, in particular silica-based filler, It may mean a functional group capable of interaction between the functional group derived from the denaturant.
  • the modifier may be, for example, an alkoxy silane modifier, and specifically, may be an alkoxy silane modifier containing one or more hetero atoms such as a nitrogen atom, an oxygen atom, or a sulfur atom.
  • modification may be performed in a form in which one end of the active polymer is bonded to the silyl group through a substitution reaction between an anion active site located at one end of the active polymer and an alkoxy group of the alkoxy silane-based modifier.
  • the denaturant may be to include a compound represented by the following formula (1).
  • R 1 may be a single bond, or an alkylene group having 1 to 10 carbon atoms
  • R 2 and R 3 may each independently be an alkyl group having 1 to 10 carbon atoms
  • R 4 may be hydrogen or 1 to carbon atoms.
  • R 21 is a single bond, an alkylene group having 1 to 10 carbon atoms , Or- [R 42 O] j- , R 42 may be an alkylene group having 1 to 10 carbon atoms, a and m may be each independently an integer selected from 1 to 3, n is 0, 1, Or an integer of 2, j may be an integer selected from 1 to 30.
  • R 1 may be a single bond or an alkylene group having 1 to 5 carbon atoms
  • R 2 and R 3 may be each independently hydrogen, an alkyl group having 1 to 5 carbon atoms
  • R 4 is Hydrogen, a tetravalent alkylsilyl group substituted with an alkyl group having 1 to 5 carbon atoms, an alkyl group having 1 to 5 carbon atoms, or a heterocyclic group having 2 to 5 carbon atoms
  • R 21 is a single bond or an alkylene group having 1 to 5 carbon atoms
  • R 42 may be an alkylene group having 1 to 5 carbon atoms
  • a may be an integer of 2 or 3
  • m may be an integer selected from 1 to 3
  • the heterocyclic group when R 4 is a heterocyclic group, the heterocyclic group may be unsubstituted or substituted with a trisubstituted alkoxy silyl group, when the heterocyclic group is substituted with a trisubstituted alkoxy silyl group, the trisubstituted alkoxy silyl group It may be substituted by being connected to the heterocyclic group by an alkylene group having 1 to 10 carbon atoms, the tri-substituted alkoxy silyl group may mean an alkoxy silyl group substituted with an alkoxy group having 1 to 10 carbon atoms.
  • the compound represented by Chemical Formula 1 is N, N-bis (3- (dimethoxy (methyl) silyl) propyl) -methyl-1-amine (N, N-bis (3- (dimethoxy (methyl)) silyl) propyl) -methyl-1-amine), N, N-bis (3- (diethoxy (methyl) silyl) propyl) -methyl-1-amine (N, N-bis (3- (diethoxy (methyl)) silyl) propyl) -methyl-1-amine), N, N-bis (3- (trimethoxysilyl) propyl) -methyl-1-amine (N, N-bis (3- (trimethoxysilyl) propyl) -methyl -1-amine), N, N-bis (3- (triethoxysilyl) propyl) -methyl-1-amine (N, N-bis (3- (triethoxysilyl) propyl) -methyl-1-amine), N, N-diethyl-3- (trimethoxy
  • the denaturant may include a compound represented by Formula 2 below.
  • R 5 , R 6 and R 9 may be each independently an alkylene group having 1 to 10 carbon atoms
  • R 7 , R 8 , R 10 and R 11 are each independently an alkyl group having 1 to 10 carbon atoms.
  • R 12 may be hydrogen or an alkyl group having 1 to 10 carbon atoms
  • b and c may each independently be 0, 1, 2 or 3
  • b + c ⁇ 1 and A may be or
  • R 13 , R 14 , R 15 and R 16 may be each independently hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • the compound represented by Chemical Formula 2 may be N- (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- (3- (triethoxysilyl) propyl Propane-1-amine (N- (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- (3- (triethoxysilyl) propyl) propan-1-amine) and 3- (4 , 5-dihydro-1H-imidazol-1-yl) -N, N-bis (3- (triethoxysilyl) propyl) propan-1-amine (3- (4,5-dihydro-1H-imidazol -1-yl) -N, N-bis (3- (triethoxysilyl) propyl) propan-1-amine) may be one selected from the group consisting of.
  • the denaturant may include a compound represented by Formula 3 below.
  • a 1 and A 2 may each independently be a divalent hydrocarbon group having 1 to 20 carbon atoms, including or without an oxygen atom, and R 17 to R 20 are each independently monovalent having 1 to 20 carbon atoms. It may be a hydrocarbon group, L 1 to L 4 are each independently a divalent, trivalent or tetravalent alkylsilyl group substituted with an alkyl group having 1 to 10 carbon atoms, or a monovalent hydrocarbon group having 1 to 20 carbon atoms, or L 1 and L 2 and L 3 and L 4 may be linked to each other to form a ring having 1 to 5 carbon atoms, and when L 1 and L 2 and L 3 and L 4 are connected to each other to form a ring, the ring formed may be It may comprise one to three heteroatoms selected from the group consisting of N, O and S.
  • a 1 and A 2 may be each independently an alkylene group of 1 to 10
  • R 17 to R 20 may be each independently an alkyl group having 1 to 10 carbon atoms
  • L 1 to L 4 is independently a tetravalent alkylsilyl group substituted with an alkyl group having 1 to 5 carbon atoms, an alkyl group having 1 to 10 carbon atoms, or L 1 and L 2 and L 3 and L 4 are connected to each other to form a ring having 1 to 3 carbon atoms
  • the ring formed may include one or more heteroatoms selected from the group consisting of N, O, and S; It can contain three.
  • the compound represented by Formula 3 is 3,3 '-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl) bis (N, N-dimethylpropan-1-amine) (3,3 '-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl) bis (N, N-dimethylpropan-1-amine), 3,3'-(1,1,3,3- Tetraethoxydisiloxane-1,3-diyl) bis (N, N-dimethylpropan-1-amine) (3,3 '-(1,1,3,3-tetraethoxydisiloxane-1,3-diyl) bis ( N, N-dimethylpropan-1-amine), 3,3 '-(1,1,3,3-tetrapropoxydisiloxane-1,3-diyl) bis (N, N-dimethylpropan-1-amine) (3,3 '-(1,1,3,3-t
  • the denaturant may include a compound represented by the following Formula 4.
  • R 22 and R 23 are each independently an alkylene group having 1 to 20 carbon atoms, or -R 28 [OR 29 ] f-
  • R 24 to R 27 are each independently an alkyl group having 1 to 20 carbon atoms or It may be an aryl group having 6 to 20 carbon atoms
  • R 28 and R 29 may be each independently an alkylene group having 1 to 20 carbon atoms
  • R 47 and R 48 may be each independently a divalent hydrocarbon group having 1 to 6 carbon atoms
  • d and e are each independently 0, or an integer selected from 1 to 3
  • d + e is an integer of 1 or more
  • f may be an integer of 1 to 30.
  • R 22 and R 23 may be each independently an alkylene group having 1 to 10 carbon atoms, or -R 28 [OR 29 ] f- , and R 24 to R 27 are each independently 1 It may be an alkyl group of 10 to 10, R 28 and R 29 may be each independently an alkylene group having 1 to 10 carbon atoms, d and e are each independently 0, or an integer selected from 1 to 3, d + e is It may be an integer of 1 or more, f may be an integer selected from 1 to 30.
  • the compound represented by Chemical Formula 4 may be a compound represented by Chemical Formula 4a, Chemical Formula 4b, or Chemical Formula 4c.
  • R 22 to R 27 , d, and e are as described above.
  • the compound represented by Chemical Formula 4 may be selected from 1,4-bis (3- (3- (triethoxysilyl) propoxy) propyl) piperazine (1,4-bis (3- (3- (triethoxysilyl) propoxy) propyl) piperazine, 1,4-bis (3- (triethoxysilyl) propyl) piperazine (1,4-bis (3- (triethoxysilyl) propyl) piperazine), 1,4-bis (3- (Trimethoxysilyl) propyl) piperazine (1,4-bis (3- (trimethoxysilyl) propyl) piperazine), 1,4-bis (3- (dimethoxymethylsilyl) propyl) piperazine (1,4- bis (3- (dimethoxymethylsilyl) propyl) piperazine), 1- (3- (ethoxydimethylsilyl) propyl) -4- (3- (triethoxysilyl) propyl) piperazine (1- (3- (ethoxy
  • the denaturant may include a compound represented by the following Formula 5.
  • R 30 may be a monovalent hydrocarbon group having 1 to 30 carbon atoms
  • R 31 to R 33 may each independently be an alkylene group having 1 to 10 carbon atoms
  • R 34 to R 37 may each independently be carbon atoms. It may be an alkyl group of 1 to 10, g and h are each independently 0, or an integer selected from 1 to 3, g + h may be an integer of 1 or more.
  • the denaturant may include a compound represented by the following Formula 6.
  • a 3 and A 4 may each independently be an alkylene group having 1 to 10
  • R 38 to R 41 may be each independently an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
  • i may be an integer selected from 1 to 30.
  • the denaturing agent is 3,4-bis (2-methoxydeoxy) -N- (4- (triethoxysilyl) butyl) aniline (3,4-bis (2-methoxyethoxy) -N- ( 4- (trimethylsilyl) butyl) aniline), N, N-diethyl-3- (7-methyl-3,6,8,11-tetraoxa-7-silatridecan-7-yl) propan-1-amine (N, N-diethyl-3- (7-methyl-3,6,8,11-tetraoxa-7-silatridecan-7-yl) propan-1-amine), 2,4-bis (2-methoxy Methoxy) -6-((trimethylsilyl) methyl) -1,3,5-triazine (2,4-bis (2-methoxyethoxy) -6-((trimethylsilyl) methyl) -1,3,5-triazine) And 3,14-dimethoxy-3,8,8,13-
  • the denaturant may include a compound represented by the following Formula 7.
  • R 43 , R 45, and R 46 may be each independently an alkyl group having 1 to 10 carbon atoms, R 44 may be an alkylene group having 1 to 10 carbon atoms, and k may be an integer selected from 1 to 4 have.
  • the compound represented by Chemical Formula 7 is 8,8-dibutyl-3,13-dimethoxy-3,13-dimethyl-2,14-dioxa-7,9-dithia-3,13- Disila-8-stanpentadecane (8,8-dibutyl-3,13-dimethoxy-3,13-dimethyl-2,14-dioxa-7,9-dithia-3,13-disila-8-stannapentadecane), 8,8-dimethyl-3,13-dimethoxy-3,13-dimethyl-2,14-dioxa-7,9-dithia-3,13-disila-8-stanpentadecane (8,8- dimetyl-3,13-dimethoxy-3,13-dimethyl-2,14-dioxa-7,9-dithia-3,13-disila-8-stanpentadecane (8,8- dimetyl-3,13-dimethoxy-3
  • the present invention provides a method for producing a modified conjugated diene-based polymer in order to produce the modified conjugated diene-based polymer.
  • the modified conjugated diene-based polymer manufacturing method comprises the steps of polymerizing a conjugated diene-based monomer in the presence of an organometallic compound in a hydrocarbon solvent to prepare an active polymer to which the organic metal is bonded (S1); And a step (S2) of reacting the active polymer prepared in the step (S1) with the denaturant, and the polymerization reaction (S1) and the modification reaction (S2) may be performed continuously or batchwise.
  • the hydrocarbon solvent is not particularly limited, but may be, for example, one or more selected from the group consisting of n-pentane, n-hexane, n-heptane, isooctane, cyclo hexane, toluene, benzene, and xylene.
  • the organometallic compound is 0.01 mmol to 10 mmol, 0.05 mmol to 5 mmol, 0.1 mmol to 2 mmol, 0.1 mmol to 1 mmol, or 0.15 to 0.8 mmol based on 100 g of the total monomers
  • the organometallic compound include methyllithium, ethyllithium, propyllithium, isopropyllithium, n-butyllithium, s-butyllithium, t-butyllithium, hexyllithium, n-decyllithium, t-octylithium and phenyllithium.
  • the polymerization of the step (S1) may be, for example, anionic polymerization, and specifically, may be living anion polymerization having an anion active site at the end of the polymerization by a growth polymerization reaction by anion.
  • the polymerization of the step (S1) may be a temperature increase polymerization, isothermal polymerization or constant temperature polymerization (thermal insulation polymerization)
  • the constant temperature polymerization may include the step of polymerization by the heat of reaction without the addition of heat after the addition of the organometallic compound optionally
  • the temperature polymerization may mean a polymerization method in which the temperature is increased by optionally adding heat after the organometallic compound is added, and the isothermal polymerization is heat after adding the organometallic compound. By adding to increase the heat or take the heat may mean a polymerization method for maintaining a constant temperature of the polymer.
  • the polymerization in the step (S1) may be carried out by further comprising a diene-based compound having 1 to 10 carbon atoms in addition to the conjugated diene-based monomer, in this case, gel on the reactor wall surface for a long time operation It is effective to prevent this from being formed.
  • the diene compound may be, for example, 1,2-butadiene.
  • the polymerization of the step (S1) may be carried out in a temperature range of 100 ° C or less, 50 ° C to 100 ° C, or 50 ° C to 80 ° C, for example, within this range to increase the conversion of the polymerization reaction, While controlling the molecular weight distribution, it is possible to satisfy the glass transition temperature, Mooney viscosity and 1,2-vinyl bond content in the above-described range, there is an excellent effect on improving physical properties.
  • the active polymer prepared by the step (S1) may refer to a polymer in which a polymer anion and an organic metal cation are combined.
  • the active polymer prepared by the polymerization of the step (S1) may be a random copolymer, in this case, the balance between the physical properties is excellent effect.
  • the random copolymer may mean that the repeating units constituting the copolymer are randomly arranged.
  • the term 'polymer' is carried out in each reactor during the step (S1), before the step (S1) or (S2) is completed to obtain an active polymer or a modified conjugated diene-based polymer. It can mean an intermediate in the form of the polymer being, and may mean a polymer having a polymerization conversion of less than 90% in which the polymerization is carried out in the reactor.
  • the polymerization of the step (S1) may be carried out including a polar additive
  • the polar additive may be added in a ratio of 0.001 g to 50 g, or 0.002 g to 0.1 g based on a total of 100 g of the monomer.
  • the polar additive may be added in a ratio of more than 0 g to 1 g, 0.01 g to 1 g or 0.1 g to 0.9 g based on a total of 100 g of the organometallic compound.
  • the polar additive is, for example, tetrahydrofuran, ditetrahydrofurylpropane, diethyl ether, cyclopentyl ether, dipropyl ether, ethylene methyl ether, ethylene dimethyl ether, diethyl glycol, dimethyl ether, tert-butoxyethoxyethane , Bis (3-dimethylaminoethyl) ether, (dimethylaminoethyl) ethyl ether, trimethylamine, triethylamine, tripropylamine and tetramethylethylenediamine, and may be one or more selected from the group consisting of triethylamine.
  • It may be an amine or tetramethylethylenediamine, and when the polar additive is included in the copolymer of conjugated diene-based monomers, or conjugated diene-based monomers and aromatic vinyl-based monomers to facilitate the random copolymer by compensating for the difference in their reaction rate. It is effective to induce it to form.
  • the denaturant in the reaction of the step (S2), may be used in an amount of 0.01 mmol to 10 mmol based on a total of 100 g of monomers.
  • the denaturant may be used in a molar ratio of 1: 0.1 to 10, 1: 0.1 to 5, or 1: 0.1 to 1: 3, based on 1 mole of the organometallic compound of step (S1).
  • the molar ratio of the modifier and the organometallic compound and the amount of the modifier to the monomer may substantially affect the glass transition temperature, the Mooney viscosity and the Mooney relaxation rate of the polymer to be prepared, so select an appropriate ratio within the above range if possible. It is desirable to.
  • the denaturant may be added to the modification reactor, the step (S2) may be carried out in the modification reactor.
  • the denaturant may be added to the transfer unit for transferring the active polymer prepared in the step (S1) to the modification reactor for performing the step (S2), and the mixture of the active polymer and the modifier in the transfer unit
  • the reaction may proceed, wherein the reaction may be a modification reaction in which the denaturant is simply bound to the active polymer, or a coupling reaction in which the active polymer is linked to the modification agent, and the modification reaction and the coupling reaction as described above.
  • the ratio of to needs to be controlled, which can affect the Mooney viscosity, Mooney relaxation rate, and glass transition temperature.
  • the type and amount of the organometallic compound, the type and amount of the polar additive, the type and amount of the modifier prepared according to the temperature and time of the polymerization reaction and the modification reaction It may affect the glass transition temperature, Mooney viscosity, Mooney relaxation rate, 1,2-vinyl bond content control of the modified conjugated diene-based polymer, and thus the preparation method according to the present invention is presented in the present invention within the above conditions
  • the preparation method according to the present invention may be to perform the reaction by appropriately organically controlled with each other.
  • a rubber composition comprising the modified conjugated diene-based polymer.
  • the rubber composition may include the modified conjugated diene-based polymer in an amount of 10 wt% or more, 10 wt% to 100 wt%, or 20 wt% to 90 wt%, and within this range, tensile strength, wear resistance, and the like. It is excellent in the mechanical properties of and excellent in the balance between each physical property.
  • the rubber composition may further include other rubber components as needed in addition to the modified conjugated diene-based polymer, wherein the rubber components may be included in an amount of 90% by weight or less based on the total weight of the rubber composition.
  • the other rubber component may be included in an amount of 1 part by weight to 900 parts by weight based on 100 parts by weight of the modified conjugated diene-based polymer.
  • the rubber component may be, for example, natural rubber or synthetic rubber, and specific examples include natural rubber (NR) including cis-1,4-polyisoprene; Modified natural rubbers such as epoxidized natural rubber (ENR), deproteinized natural rubber (DPNR), and hydrogenated natural rubber obtained by modifying or refining the general natural rubber; Styrene-butadiene copolymer (SBR), polybutadiene (BR), polyisoprene (IR), butyl rubber (IIR), ethylene-propylene copolymer, polyisobutylene-co-isoprene, neoprene, poly (ethylene-co- Propylene), poly (styrene-co-butadiene), poly (styrene-co-isoprene), poly (styrene-co-isoprene-co-butadiene), poly (isoprene-co-butadiene), poly (ethylene-co-propylene -Co-d
  • the rubber composition may include, for example, 0.1 part by weight to 200 parts by weight, or 10 parts by weight to 120 parts by weight of a filler based on 100 parts by weight of the modified conjugated diene polymer of the present invention.
  • the filler may be, for example, a silica-based filler, and specific examples may be wet silica (silicate silicate), dry silica (silicate anhydrous), calcium silicate, aluminum silicate, colloidal silica, and the like.
  • the wet silica may be the most compatible of the grip (wet grip).
  • the rubber composition may further include a carbon-based filler as needed.
  • silica when silica is used as the filler, a silane coupling agent for improving reinforcement and low heat generation may be used together.
  • the silane coupling agent may include bis (3-triethoxysilylpropyl) tetrasulfide.
  • the compounding amount of the silane coupling agent is conventional.
  • the silane coupling agent may be used in an amount of 1 part by weight to 20 parts by weight, or 5 parts by weight to 15 parts by weight with respect to 100 parts by weight of silica, and the effect as a coupling agent is within this range. While sufficiently exhibiting, there is an effect of preventing gelation of the rubber component.
  • the rubber composition according to an embodiment of the present invention may be sulfur crosslinkable, and may further include a vulcanizing agent.
  • the vulcanizing agent may be specifically sulfur powder, and may be included in an amount of 0.1 parts by weight to 10 parts by weight with respect to 100 parts by weight of the rubber component, while ensuring the required elastic modulus and strength of the vulcanized rubber composition within this range and at the same time low fuel efficiency. Excellent effect.
  • the rubber composition according to an embodiment of the present invention in addition to the above components, various additives commonly used in the rubber industry, specifically, vulcanization accelerators, process oils, plasticizers, anti-aging agents, anti-scoring agents, zinc white, Stearic acid, a thermosetting resin, or a thermoplastic resin may be further included.
  • the vulcanization accelerator is, for example, a thiazole-based compound such as M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide), CZ (N-cyclohexyl-2-benzothiazylsulfenamide), or DPG.
  • a thiazole-based compound such as M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide), CZ (N-cyclohexyl-2-benzothiazylsulfenamide), or DPG.
  • Guanidine-based compounds such as (diphenylguanidine) may be used, and may be included in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the rubber component.
  • the process oil acts as a softener in the rubber composition, and may be, for example, a paraffinic, naphthenic, or aromatic compound, and when considering the tensile strength and abrasion resistance, when the aromatic process oil, hysteresis loss and low temperature characteristics are considered.
  • Naphthenic or paraffinic process oils may be used.
  • the process oil may be included in an amount of 100 parts by weight or less based on 100 parts by weight of the rubber component, and there is an effect of preventing a decrease in tensile strength and low heat generation (low fuel efficiency) of the vulcanized rubber within this range.
  • the anti-aging agent is for example N-isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, 6-ethoxy-2 , 2,4-trimethyl-1,2-dihydroquinoline, or a high temperature condensate of diphenylamine and acetone, and the like, and may be used in an amount of 0.1 to 6 parts by weight based on 100 parts by weight of the rubber component.
  • the rubber composition according to an embodiment of the present invention may be obtained by kneading using a kneading machine such as a Banbury mixer, a roll, an internal mixer, etc. by the formulation, and has low heat resistance and abrasion resistance by a vulcanization process after molding. This excellent rubber composition can be obtained.
  • a kneading machine such as a Banbury mixer, a roll, an internal mixer, etc.
  • the rubber composition may be used for tire members such as tire treads, under treads, sidewalls, carcass coated rubbers, belt coated rubbers, bead fillers, pancreapers, or bead coated rubbers, dustproof rubbers, belt conveyors, hoses, and the like. It may be useful for the production of various industrial rubber products.
  • the present invention provides a tire manufactured using the rubber composition.
  • the tire may include a tire or a tire tread.
  • the resulting polymer in the second stage reactor was continuously fed to the top of the third stage reactor and 20% by weight of N, N-bis (3- (dimethoxy (methyl) silyl) propyl) -methyl-1-amine as the modifier
  • the solution containing 30 weight% of antioxidant (wingstay-K) of the resultant three-phase reactor was added at a rate of 16 g / h to terminate the polymerization reaction, thereby obtaining a polymer.
  • the obtained polymer was put in hot water heated with steam, stirred to remove the solvent, and then dried by roll to remove residual solvent and water to prepare a modified conjugated diene-based polymer.
  • the analysis results for the modified conjugated diene-based polymer thus prepared are shown in Table 1 below.
  • Example 1 tri (3- (trimethoxysilyl) propyl) amine was used instead of N, N-bis (3- (dimethoxy (methyl) silyl) propyl) -methyl-1-amine as a modifier. Except for producing a modified conjugated diene-based polymer in the same manner as in Example 1. The analysis results of the modified conjugated diene-based polymer thus prepared are shown in Table 1 below.
  • Example 2 a solution in which tetramethylethylenediamine (TMEDA) was dissolved in n-hexane at 10% by weight instead of ditetrahydrofurylpropane as a polar additive was supplied at 1 g / hr, and the temperature inside the reactor was changed to 1 g / hr.
  • TEDA tetramethylethylenediamine
  • a modified conjugated diene-based polymer was prepared in the same manner as in Example 2, except that it was adjusted to 75 ° C.
  • Table 1 The analysis results of the modified conjugated diene-based polymer thus prepared are shown in Table 1 below.
  • Example 3 N- (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl)-in place of tri (3- (trimethoxysilyl) propyl) amine as a modifier
  • a modified conjugated diene-based polymer was prepared in the same manner as in Example 3, except that N- (3- (trimethoxysilyl) propylpropan-1-amine was used.
  • the analytical results are shown in Table 1 below.
  • Example 3 3,3 '-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl) bis (instead of tri (3- (trimethoxysilyl) propyl) amine as a modifier, A modified conjugated diene-based polymer was prepared in the same manner as in Example 3, except that N, N-dimethylpropan-1-amine) was used. The analysis results of the modified conjugated diene-based polymer thus prepared are shown in Table 1 below.
  • Example 3 except that 1,4-bis (3- (trimethoxysilyl) propyl) piperazine was used instead of tri (3- (trimethoxysilyl) propyl) amine prepared as a modifier.
  • a modified conjugated diene-based polymer was prepared in the same manner as in Example 3. The analysis results of the modified conjugated diene-based polymer thus prepared are shown in Table 1 below.
  • Example 3 1,1,3,3-tetramethoxy-1,3-bis (3- (4-methylpiperazin-) instead of tri (3- (trimethoxysilyl) propyl) amine as a modifier
  • a modified conjugated diene-based polymer was prepared in the same manner as in Example 3, except that 1-yl) propyl) disiloxane was used.
  • the analysis results of the modified conjugated diene-based polymer thus prepared are shown in Table 1 below.
  • Example 1 a modified conjugate was prepared in the same manner as in Example 1, except that ditetrahydrofurylpropane was dissolved in 10% by weight of n-hexane as a polar additive at 2 g / hr.
  • the diene polymer was prepared.
  • the analysis results of the modified conjugated diene-based polymer thus prepared are shown in Table 1 below.
  • Example 1 the modified conjugated diene-based polymer in the same manner as in Example 1 except that the initiator solution in which n-butyllithium was dissolved in 10% by weight in n-hexane was continuously added at 7.2 g / hr. was prepared.
  • the analysis results of the modified conjugated diene-based polymer thus prepared are shown in Table 1 below.
  • Example 1 the polarity in which the initiator solution in which n-butyllithium was dissolved in 10% by weight in n-hexane was 4.7 g / hr and the polar additive in which ditetrahydrofurylpropane was dissolved in 10% by weight in n-hexane.
  • the additive solution was continuously added at 0.4 g / hr, and N, N-diethyl-3- instead of N, N-bis (3- (dimethoxy (methyl) silyl) propyl) -methyl-1-amine as a modifier.
  • styrene 180 g of styrene, 760 g of 1,3-butadiene, 5000 g of n-hexane, and 3.0 g of tetramethylethylenediamine (TMEDA) were added to a 20 L autoclave reactor, and the temperature inside the reactor was raised to 70 ° C.
  • TMEDA tetramethylethylenediamine
  • 0.6 g of n-butyllithium was added as a polymerization initiator to proceed the adiabatic heating reaction, and the temperature inside the reactor was raised to 90 ° C by exothermic heat of the polymer.
  • the resulting polymer was placed in hot water heated with steam, stirred to remove the solvent, and then dried in rolls to remove residual solvent and water to prepare a modified conjugated diene-based polymer.
  • the analysis results of the modified conjugated diene-based polymer thus prepared are shown in Table 1 below.
  • the glass transition temperature, 1,2-vinyl bond content, weight average molecular weight (Mw, X10 3 g / mol), number average in the polymer, respectively Molecular weight (Mn, X10 3 g / mol), molecular weight distribution (PDI, MWD), Mooney viscosity (MV), Mooney relaxation rate (-S / R) and the content of N and Si atoms were measured, respectively. 1 is shown.
  • a modified conjugated diene-based polymer was used as a sample, and a differential scanning calorimeter (trade name "DSC3200S” manufactured by McScience Inc.) was used in accordance with ISO 22768: 2006, and was flowed from -100 ° C to 10 ° C under a circulation of 50 mL / min of helium.
  • the DSC curve was recorded while the temperature was raised at / min, and the peak top (Inflection point) of the DSC differential curve was defined as the glass transition temperature.
  • the vinyl content in each polymer was measured and analyzed using Varian VNMRS 500 MHz NMR.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured by gel permeation chromatohraph (GPC) analysis, and the molecular weight distribution (PDI, MWD, Mw / Mn) was calculated from the respective measured molecular weights.
  • GPC gel permeation chromatohraph
  • the GPC is used by combining two PLgel Olexis (Polymer Laboratories) columns and one PLgel mixed-C (Polymer Laboratories) columns, and the GPC standard material is PS (polystyrene) when calculating the molecular weight. It was carried out using.
  • GPC measurement solvent was prepared by mixing 2 wt% of an amine compound with tetrahydrofuran.
  • the Mooney viscosity (MV, (ML1 + 4, @ 100 °C MU) was measured using a Rotor Speed 2 ⁇ 0.02 rpm, Large Rotor at 100 °C using MV-2000 (ALPHA Technologies, Inc.), the sample used was measured at room temperature (at 23 ⁇ 3 °C for more than 30 minutes, and then collected 27 ⁇ 3 g, filled inside the die cavity, and operated for 4 minutes by platen operation.
  • the Mooney relaxation rate was obtained by measuring the slope value of.
  • the Si content was measured using an inductively coupled plasma luminescence analyzer (ICP-OES; Optima 7300DV) as an ICP analysis method.
  • ICP-OES inductively coupled plasma luminescence analyzer
  • about 0.7 g of the sample was placed in a platinum crucible (Pt crucible), about 1 mL of concentrated sulfuric acid (98 wt%, Electronic grade) was heated at 300 ° C. for 3 hours, and the sample was After the conversation in the electric furnace (Thermo Scientific, Lindberg Blue M) in the program of steps 1 to 3,
  • step 1 initial temp 0 °C, rate (temp / hr) 180 °C / hr, temp (holdtime) 180 °C (1hr)
  • step 2 initial temp 180 °C, rate (temp / hr) 85 °C / hr, temp (holdtime) 370 °C (2hr)
  • step 3 initial temp 370 °C, rate (temp / hr) 47 °C / hr, temp (holdtime) 510 °C (3hr)
  • the nitrogen atom content was set to a carrier gas flow rate at 250 ml / min for Ar, 350 ml / min for O 2 and 300 ml / min for ozonizer by turning on a trace nitrogen quantitative analyzer (Auto sampler, Horizontal furnace, PMT & Nitrogen detector). After setting the heater to 800 ° C., the analyzer was stabilized by waiting for about 3 hours. After the analyzer was stabilized, a calibration curve with 5 ppm, 10 ppm, 50 ppm, 100 ppm and 500 ppm ranges was prepared using the Nitrogen standard (AccuStandard S-22750-01-5 ml) to obtain an area corresponding to each concentration. A straight line was then created using the ratio of concentration to area. Thereafter, a ceramic boat containing 20 mg of the sample was placed in an auto sampler of the analyzer and measured to obtain an area. The N content was calculated using the area of the obtained sample and the calibration curve.
  • a trace nitrogen quantitative analyzer Auto sampler, Horizontal furnace, PMT
  • Each modified conjugated diene-based polymer of Examples and Comparative Examples was blended under the blending conditions shown in Table 3 below as a raw material rubber.
  • the raw materials in Table 3 are each parts by weight based on 100 parts by weight of the raw rubber.
  • the rubber specimen is kneaded through the first stage kneading and the second stage kneading.
  • a half-barrier mixer equipped with a temperature control device is used to prepare raw rubber, silica (filler), organosilane coupling agent (X50S, Evonik), process oil (TDAE oil), galvanizing agent (ZnO) and stearic acid.
  • TMQ Antioxidant
  • RD (2,2,4-trimethyl-1,2-dihydroquinoline polymer)
  • antioxidant (6PPD ((dimethylbutyl) -N-phenyl-phenylenediamine)
  • wax Merocrystaline Wax
  • the primary blend, sulfur, rubber accelerator (DPD (diphenylguanine)) and vulcanization accelerator (CZ (N-cyclohexyl-2-benzothiazylsulfenamide)) were added to the kneader, and the temperature was 100 ° C. or lower.
  • the second blend was obtained by mixing in. Then, rubber specimens were prepared through a curing process at 160 ° C. for 20 minutes.
  • Tensile properties were prepared in accordance with the tensile test method of ASTM 412 and measured the tensile strength at the cutting of the test piece and the tensile stress at 300% elongation (300% modulus). Specifically, the tensile properties were measured at a rate of 50 cm / min at room temperature using a Universal Test Machin 4204 (Instron) tensile tester.
  • Viscoelastic properties were determined by measuring the viscoelastic behavior for dynamic deformation at 10 Hz frequency and each measurement temperature (-60 °C ⁇ 60 °C) in the film tension mode using a dynamic mechanical analyzer (GABO).
  • GBO dynamic mechanical analyzer
  • each secondary blend was left at room temperature (23 ⁇ 3 °C) for 30 minutes or more 27 ⁇ 3 g was taken and filled into the die cavity and platen operated for 4 minutes.
  • DIN abrasion test was conducted according to ASTM D5963 and expressed as DIN wt loss index (loss volume index: ARIA (Abration resistance index, Method A). Indicates.
  • Examples 1 to 8 according to an embodiment of the present invention was confirmed to improve all the tensile properties, viscoelastic properties, wear resistance and workability compared to Comparative Examples 1 to 4.
  • Comparative Example 1 has viscoelastic properties, wear resistance and workability
  • Comparative Example 2 has tensile strength and wear resistance
  • Comparative Example 3 has workability
  • Comparative Example 4 has high wear resistance and workability. Degraded.
  • Comparative Example 1 is the glass transition temperature and 1,2-vinyl bond content of the polymer is out of the range suggested by the present invention
  • Comparative Examples 2 and 3 have a Mooney viscosity and Mooney relaxation rate
  • Comparative Examples 4 Mooney relaxation rate was outside the range suggested by the present invention.
  • the modified conjugated diene-based polymer of the present invention has a glass transition temperature, 1,2-vinyl bond content adjusted to a specific range and at the same time have a Mooney viscosity and a Mooney relaxation rate adjusted to a specific range tensile properties, It means that the viscoelastic properties and wear resistance can be excellent while at the same time significantly improved the workability.

Abstract

본 발명은 변성 공액디엔계 중합체에 관한 것으로, 보다 상세하게는 하기 i) 내지 v)의 조건으로서, i) 유리전이온도: -90℃ 내지 -50℃, ii) ASTM D1646 조건에서 측정한 무니 점도: 50 내지 100, iii) 중합체 총 중량 대비 1,2-비닐 결합 함량: 30.0 중량% 이하, iv) 분자량 분포(PDI; MWD): 1.5 내지 3.5, 그리고 v) 110℃에서 측정되는 무니 완화율: 0.7 이하인 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물을 제공한다.

Description

변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
[관련출원과의 상호인용]
본 출원은 2018.07.11자 한국 특허 출원 제10-2018-0080581호 및 2019.07.09자 한국 특허 출원 제10-2019-0082689호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 구름저항 특성과 마모 특성이 개선되면서도 가공성이 우수한 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물에 관한 것이다.
최근 자동차에 대한 저연비화의 요구에 따라, 타이어용 고무 재료로서 구름 저항이 적고, 내마모성, 인장 특성이 우수하며, 젖은 노면 저항성으로 대표되는 조정 안정성도 겸비한 공액디엔계 중합체가 요구되고 있다.
타이어의 구름 저항을 감소시키기 위해서는 가황 고무의 히스테리시스 손실을 작게 하는 방안이 있으며, 이러한 가황 고무의 평가 지표로서는 50℃ 내지 80℃의 반발탄성, tan δ, 굿리치 발열 등이 이용된다. 즉, 상기 온도에서의 반발탄성이 크거나 tan δ, 굿리치 발열이 작은 고무 재료가 바람직하다.
히스테리시스 손실이 작은 고무 재료로서는, 천연 고무, 폴리이소프렌 고무 또는 폴리부타디엔 고무 등이 알려져 있지만, 이들은 젖은 노면 저항성이 작은 문제가 있다. 이에 최근에는 스티렌-부타디엔 고무(이하, SBR 이라 함) 또는 부타디엔 고무(이하, BR 이라 함)와 같은 공액디엔계 중합체 또는 공중합체가 유화중합이나 용액중합에 의해 제조되어 타이어용 고무로서 이용되고 있다. 이 중, 유화중합에 비해 용액중합이 갖는 최대의 장점은 고무 물성을 규정하는 비닐 구조 함량 및 스티렌 함량을 임의로 조절할 수 있고, 커플링(coupling)이나, 변성(modification) 등에 의해 분자량 및 물성 등을 조절할 수 있다는 점이다. 따라서, 최종 제조된 SBR 이나 BR의 구조 변화가 용이하고, 사슬 말단의 결합이나 변성으로 사슬 말단의 움직임을 줄이고 실리카 또는 카본블랙 등의 충진제와의 결합력을 증가시킬 수 있어 용액중합에 의한 SBR이 타이어용 고무 재료로 많이 사용된다.
이러한 용액중합 SBR이 타이어용 고무 재료로 사용되는 경우, 상기 SBR 내의 비닐 함량을 증가시킴으로써 고무의 유리전이온도를 상승시켜 주행저항 및 제동력과 같은 타이어 요구 물성을 조절할 수 있을 뿐만 아니라, 유리전이온도를 적절히 조절함으로써 연료소모를 줄일 수 있다. 상기 용액중합 SBR은 음이온 중합 개시제를 사용하여 제조하며, 형성된 중합체의 사슬 말단을 여러 가지 변성제를 이용하여 결합시키거나, 변성시켜 사용되고 있다. 예를 들어, 미국특허 제4,397,994호에는 일관능성 개시제인 알킬리튬을 이용하여 비극성 용매 하에서 스티렌-부타디엔을 중합하여 얻어진 중합체의 사슬 말단의 활성 음이온을 주석화합물과 같은 결합제를 사용하여 결합시킨 기술을 제시하였다.
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 변성 공액디엔계 중합체의 유리전이온도, 1,2-비닐 결합 함량, 무니 점도 및 분지화도를 제어함으로써, 최종 타이어의 구름 저항성과 내마모성을 개선하고 배합시 가공성을 개선할 수 있는 변성 공액디엔계 중합체를 제공하고자 한다.
상기의 과제를 해결하기 위한 본 발명의 일 실시예에 따르면, 본 발명은 하기 i) 내지 v)의 조건을 충족하는 변성 공액디엔계 중합체로서, i) 유리전이온도: -90℃ 내지 -50℃, ii) ASTM D1646 조건에서 측정한 무니 점도: 50 내지 100, iii) 중합체 총 중량 대비 1,2-비닐 결합 함량: 30.0 중량% 이하, iv) 분자량 분포(PDI; MWD): 1.5 내지 3.5, 그리고, v) 110℃에서 측정되는 무니 완화율: 0.7 이하인 변성 공액디엔계 중합체를 제공한다.
또한, 본 발명은 상기 변성 공액디엔계 중합체 및 충진제를 포함하는 고무 조성물을 제공한다.
본 발명에 따른 변성 공액디엔계 중합체는, 특정 범위의 유리전이온도, 1,2-비닐 결합 함량을 만족하면서 높은 분지화도를 가짐으로써 구름 저항성과 내마모성이 우수하고, 뿐만 아니라 높은 분지화도를 가짐에도 불구하고 적정 수준으로 제어된 무니 점도를 가짐으로써 가공성 또한 개선될 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
정의
본 명세서에서 이용되는 바와 같은 '중합체'란 용어는, 동일 혹은 상이한 종류이든지 간에, 단량체들을 중합함으로써 제조된 중합체 화합물을 지칭한다. 이와 같이 해서 일반 용어 중합체는, 단지 1종의 단량체로부터 제조된 중합체를 지칭하는데 통상 이용되는 단독중합체란 용어 및 공중합체란 용어를 망라한다.
본 명세서에서 이용되는 바와 같은 '비닐 함량'이란 용어는, 상기 중합체 중의 공액디엔 단량체(부타디엔 등) 부분(중합된 부타디엔의 총량)에 의거한, 상기 중합체 사슬 내의 1,2번 위치에 내포되는 부타디엔의 질량(혹은 중량) 퍼센트를 지칭한다.
본 발명에서 용어 '1가 탄화수소기'는 1가의 알킬기, 알케닐기, 알카이닐기, 시클로알킬기, 불포화 결합을 1 이상 포함하는 시클로알킬기 및 아릴기 등의 탄소와 수소가 결합된 1가의 원자단을 의미할 수 있고, 1가 탄화수소로 표시되는 치환기의 최소 탄소 원자수는 각 치환기의 종류에 따라 결정될 수 있다.
본 발명에서 용어 '2가 탄화수소기'는 2가의 알킬렌기, 알케닐렌기, 알카이닐렌기, 시클로알킬렌기, 불포화 결합을 1 이상 포함하는 시클로알킬렌기 및 아릴렌기 등의 탄소와 수소가 결합된 2가의 원자단을 의미할 수 있고, 2가 탄화수소로 표시되는 치환기의 최소 탄소 원자수는 각 치환기의 종류에 따라 결정될 수 있다.
본 발명에서 용어 '알킬기(alkyl group)'는 1가의 지방족 포화 탄화수소를 의미할 수 있고, 메틸, 에틸, 프로필 및 부틸 등의 선형 알킬기 및 이소프로필(isopropyl), 세크부틸(sec-butyl), 터셔리부틸(tert-butyl) 및 네오펜틸(neo-pentyl) 등의 분지형 알킬기를 모두 포함하는 의미일 수 있다.
본 발명에서 용어 '알케닐기(alkenyl group)'는 이중 결합을 1개 또는 2개 이상 포함하는 1가의 지방족 불포화 탄화수소를 의미할 수 있다.
본 발명에서 용어 '알카이닐기(alkynyl group)'는 삼중 결합을 1개 또는 2개 이상 포함하는 1가의 지방족 불포화 탄화수소를 의미할 수 있다.
본 발명에서 용어 '알킬렌기(alkylene group)'는 메틸렌, 에틸렌, 프로필렌 및 부틸렌 등과 같은 2가의 지방족 포화 탄화수소를 의미할 수 있다.
본 발명에서 용어 '아릴기(aryl group)'은 환형의 방향족 탄화수소를 의미할 수 있고, 또한 1개의 환이 형성된 단환 방향족 탄화수소(monocyclic aromatic hydrocarbon), 또는 2개 이상의 환이 결합된 다환 방향족 탄화수소(polycyclic aromatic hydrocarbon)을 모두 포함하는 의미일 수 있다.
본 발명에서 용어 '헤테로고리기(heterocyclic group)'는 시클로알킬기 또는 아릴기 내의 탄소 원자가 1개 이상의 헤테로 원자로 치환된 것으로, 예컨대 헤테로시클로알킬기 또는 헤테로아릴기를 모두 포함하는 의미일 수 있다.
본 발명에서 용어'포함하는', '가지는'이란 용어 및 이들의 파생어는, 이들이 구체적으로 개시되어 있든지 그렇치 않든지 간에, 임의의 추가의 성분, 단계 혹은 절차의 존재를 배제하도록 의도된 것은 아니다. 어떠한 불확실함도 피하기 위하여, "포함하는"이란 용어의 사용을 통해 청구된 모든 조성물은, 반대로 기술되지 않는 한, 중합체든지 혹은 그 밖의 다른 것이든지 간에, 임의의 추가의 첨가제, 보조제, 혹은 화합물을 포함할 수 있다. 이와 대조적으로, '로 본질적으로 구성되는'이란 용어는, 조작성에 필수적이지 않은 것을 제외하고, 임의의 기타 성분, 단계 혹은 절차를 임의의 연속하는 설명의 범위로부터 배제한다. '로 구성되는'이란 용어는 구체적으로 기술되거나 열거되지 않은 임의의 성분, 단계 혹은 절차를 배제한다.
측정방법 및 조건
본 명세서에서 '유리전이온도(Tg)'는 변성 공액 디엔계 중합체를 시료로 하고, ISO 22768:2006에 준거하여, 시차 주사 열량계(맥사이언스사 제조의 상품명 「DSC3200S」)를 사용하고, 헬륨 50mL/분의 유통하에, -100℃에서부터 10℃/분으로 승온시키면서 DSC 곡선을 기록하여, DSC 미분 곡선의 피크 톱(Inflection point)을 유리 전이 온도로 하여 측정한 것이다.
본 명세서에서 '1,2-비닐 결합 함량'은 Varian VNMRS 500 MHz NMR을 이용하여 측정 및 분석한 것으로, NMR 측정 시 용매는 1,1,2,2-테트라클로로에탄을 사용하였으며, solvent peak는 6.0 ppm으로 계산하고, 7.2~6.9 ppm은 랜덤 스티렌, 6.9~6.2 ppm은 블록 스티렌, 5.8~5.1 ppm은 1,4-비닐 및 1,2-비닐, 5.1~4.5 ppm은 1,2-비닐의 피크로 하여 전체 중합체 내의 1,2-비닐 결합 함량을 계산하여 측정한 것이다.
본 명세서에서 '중량평균분자량(Mw)', '수평균분자량(Mn)' 및 '분자량 분포(MWD)'는 GPC(Gel permeation chromatohraph) 분석을 통하여 측정하며, 분자량 분포 곡선을 확인하는 것으로 측정한 것이다. 분자량 분포(PDI, MWD, Mw/Mn)는 측정된 상기 각 분자량으로부터 계산한다. 구체적으로, 상기 GPC는 PLgel Olexis(Polymer Laboratories 社) 컬럼 두 자루와 PLgel mixed-C(Polymer Laboratories 社) 컬럼 한 자루를 조합하여 사용하고 분자량 계산시 GPC 기준물질 (Standard material)은 PS(polystyrene)을 사용하여 실시하며, GPC 측정 용매는 테트라하이드로퓨란에 2 wt%의 아민 화합물을 섞어서 제조한다.
본 명세서에서 '무니점도(MV)' 및 '무니 완화율(-S/R)'은 상기 무니점도(MV, (ML1+4, @100℃ MU)는 MV-2000(ALPHA Technologies 社)를 이용하여 100℃에서 Rotor Speed 2±0.02 rpm, Large Rotor를 사용하여 측정하며, 이때 사용된 시료는 실온(23±3℃)에서 30분 이상 방치한 후 27±3 g을 채취하여 다이 캐비티 내부에 채워 놓고 Platen을 작동시켜 4분 동안 측정한다. 무니 점도 측정 후, 토크가 풀리면서 나타나는 무니 점도 변화의 기울기 값을 측정하여 이의 절댓값을 무니 완화율로 한다.
본 명세서에서 'Si 함량'은 ICP 분석 방법으로서 유도 결합 플라즈마 발광 분석기(ICP-OES; Optima 7300DV)를 이용하여 측정된다. 상기 유도 결합 플라즈마 발광 분석기를 이용하는 경우, 시료 약 0.7 g을 백금 도가니(Pt crucible)에 넣고, 진한 황산(98 중량%, Electronic grade) 약 1 mL를 넣어, 300℃에서 3시간 동안 가열하고, 시료를 전기로(Thermo Scientific, Lindberg Blue M)에서, 하기 스텝(step) 1 내지 3의 프로그램으로 회화를 진행한 후,
1) step 1: initial temp 0℃, rate (temp/hr) 180 ℃/hr, temp(holdtime) 180℃ (1hr)
2) step 2: initial temp 180℃, rate (temp/hr) 85 ℃/hr, temp(holdtime) 370℃ (2hr)
3) step 3: initial temp 370℃, rate (temp/hr) 47 ℃/hr, temp(holdtime) 510℃ (3hr)
잔류물에 진한 질산(48 중량%) 1 mL, 진한 불산(50 중량%) 20 ㎕를 가하고, 백금 도가니를 밀봉하여 30분 이상 흔들어(shaking)준 후, 시료에 붕산(boric acid) 1 mL를 넣고 0℃에서 2시간 이상 보관한 후, 초순수(ultrapure water) 30 mL에 희석하여, 회화를 진행하여 측정한다.
본 명세서에서 'N 함량'은 일례로 NSX 분석 방법을 통해 측정된 것일 수 있고, 상기 NSX 분석 방법은 극미량 질소 정량분석기 (NSX-2100H)를 이용하여 측정된다. 예시적으로, 상기 극미량 질소 정량분석기를 이용하는 경우, 극미량 질소 정량분석기(Auto sampler, Horizontal furnace, PMT & Nitrogen detector)를 켜고 Ar을 250 ml/min, O2를 350 ml/min, ozonizer 300 ml/min으로 캐리어 가스 유량을 설정하고, heater를 800℃로 설정한 후 약 3시간 동안 대기하여 분석기를 안정화시킨다. 분석기가 안정화된 후 Nitrogen standard(AccuStandard S-22750-01-5 ml)를 이용하여 검량선 범위 5 ppm, 10 ppm, 50 ppm, 100 ppm 및 500 ppm의 검량선을 작성하고 각 농도에 해당하는 Area를 얻은 후 농도 대 Area의 비율을 이용하여 직선을 작성한다. 이후, 시료 20 mg가 담긴 세라믹 보트를 상기 분석기의 Auto sampler에 놓고 측정하여 area를 얻고, 얻어진 시료의 area와 상기 검량선을 이용하여 N함량을 계산한다. 이때, 시료는 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 변성 공액디엔계 중합체로, 잔류 단량체, 잔류 변성제 및 오일이 제거된 것이다.
변성 공액디엔계 중합체
본 발명에 따른 변성 공액디엔계 중합체는 하기 i) 내지 v)의 조건을 충족하는 변성 공액디엔계 중합체이며, 이 조건들은 i) 유리전이온도: -90℃ 내지 -50℃, ii) ASTM D1646 조건에서 측정한 무니 점도: 50 내지 100, iii) 중합체 총 중량 대비 1,2-비닐 결합 함량: 30.0 중량% 이하, iv) 분자량 분포(PDI; MWD): 1.5 내지 3.5, 그리고, v) 110℃에서 측정되는 무니 완화율: 0.7 이하인 변성 공액디엔계 중합체를 제공한다.
본 발명의 일 실시예에 따르면, 상기 변성 공액디엔계 중합체는 공액디엔계 단량체 유래 반복 단위 및 변성제 유래 작용기를 포함할 수 있다. 상기 공액디엔계 단량체 유래 반복 단위는 공액디엔계 단량체가 중합 시 이루는 반복 단위를 의미할 수 있고, 상기 변성제 유래 작용기는 활성 중합체와 변성제 간의 반응 또는 커플링을 통해 활성 중합체의 일측 말단에 존재하는 변성제로부터 유래된 작용기를 의미할 수 있다.
본 발명의 일 실시예에 따르면, 상기 공액디엔계 단량체는 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 피페릴렌, 3-부틸-1,3-옥타디엔, 이소프렌, 2-페닐-1,3-부타디엔 및 2-할로-1,3-부타디엔(할로는 할로겐 원자를 의미한다.)으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
한편, 상기 변성 공액디엔계 중합체는 방향족 비닐 단량체 유래 반복 단위를 포함하는 공중합체로서, 방향족 비닐 단량체 유래 반복 단위를 30 중량% 이상, 또는 30 중량% 내지 50 중량%로 포함할 수 있고, 이 범위 내에서 구름 저항 및 젖은 노면 저항성 간의 밸런스가 뛰어난 효과가 있다.
상기 방향족 비닐 단량체는 일례로 스티렌, α-메틸스티렌, 3-메틸스티렌, 4-메틸스티렌, 4-프로필스티렌, 1-비닐나프탈렌, 4-시클로헥실스티렌, 4-(p-메틸페닐)스티렌 및 1-비닐-5-헥실나프탈렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
또 다른 예로, 상기 변성 공액디엔계 중합체는, 상기 공액디엔계 단량체 유래 반복 단위와 함께 탄소수 1 내지 10의 디엔계 단량체 유래 반복 단위를 더 포함하는 공중합체일 수 있다. 상기 디엔계 단량체 유래 반복 단위는 상기 공액디엔계 단량체와는 상이한 디엔계 단량체로부터 유래된 반복 단위일 수 있고, 상기 공액디엔계 단량체와는 상이한 디엔계 단량체는 일례로 1,2-부타디엔일 수 있다. 상기 변성 공액디엔계 중합체가 디엔계 단량체를 더 포함하는 공중합체인 경우, 상기 변성 공액디엔계 중합체는 디엔계 단량체 유래 반복 단위를 0 초과 중량% 내지 1 중량%, 0 초과 중량% 내지 0.1 중량%, 0 초과 중량% 내지 0.01 중량%, 또는 0 초과 중량% 내지 0.001 중량%로 포함할 수 있고, 이 범위 내에서 겔 생성을 방지하는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 공중합체는 랜덤 공중합체일 수 있고, 이 경우 각 물성 간의 밸런스가 우수한 효과가 있다. 상기 랜덤 공중합체는 공중합체를 이루는 반복 단위가 무질서하게 배열된 것을 의미할 수 있다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 유리전이온도가 -90℃ 내지 -50℃인 것을 만족하여야 하며, 바람직하게는 -80℃ 내지 -50℃일 수 있다. 상기 유리전이온도는 상기 공단량체인 방향족 비닐 단량체의 함량에 의존적으로 변화될 수 있지만, 이 공단량체의 함량 하나에 의해서만 결정되는 것은 아니며, 중합 방법 및 조건에 따라서 유동적일 수 있다. 즉, 상기 범위를 만족하도록 제조된 변성 공액디엔계 중합체는 배합시 실리카 또는 카본블랙과 같은 충진제와의 친화력이 우수하여 내마모성이 향상될 수 있으며, 상기 유리전이온도가 -50℃보다 높은 경우 내마모성과 같은 인장 특성이 저하될 수 있고, -90℃보다 낮은 경우 가공성이 열악할 수 있으며, 구름 저항성 및 젖은 노면 저항성과 같은 점탄성 특성이 열악해질 우려가 있으므로, 위 범위를 만족하는 것이 바람직하다.
또한, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 ASTM D1646 조건에서 측정한 무니 점도(Mooney viscosity)가 50 내지 100인 것을 만족하여야 하며, 구체적으로 70 내지 100일 수 있고, 바람직하게 70 내지 90일 수 있다. 가공성을 평가하는 척도는 여러 가지가 될 수 있으나, 무니 점도가 상기 범위를 만족하는 경우에는 가공성이 상당히 우수할 수 있다.
한편, 종래에는 유리전이온도가 -90℃ 내지 -50℃인 범위에서는 무니 점도가 상기 범위를 만족하기 어려웠으나, 본 발명에 따르면, 중합 방법 및 조건의 제어를 통해서 변성 공액디엔계 중합체의 분지화도를 개선시킬 수 있고, 이에 따라 상기와 같은 범위의 유리전이온도, 무니 점도 및 무니 완화율을 충족하는 변성 공액디엔계 중합체를 제공할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 중합체 총 중량 대비 1,2-비닐 결합 함량이 30 중량% 이하인 것을 만족할 필요가 있다. 상기 비닐 함량은 비닐기를 갖는 단량체와 방향족 비닐계 단량체로 이루어진 공액디엔계 공중합체에 대하여 1,4-첨가가 아닌 1,2-첨가된 공액디엔계 단량체의 중량%를 의미할 수 있으며, 중합시 중합 반응이 종료되는 시점과 중합 반응이 종료되는 시점의 반응 환경 등에 의하여 영향을 받을 수 있다.
구체적으로, 상기 1,2-비닐 결합 함량은 5 내지 30 중량%일 수 있고, 바람직하게는 5 내지 15 중량%일 수 있으며, 이 1,2-비닐 결합 함량에 따라 마모 특성과 구름저항 특성에 영향을 줄 수 있으며, 1,2-비닐 결합 함량이 30 중량%를 초과하는 경우에는 이와 함께 유리전이온도가 영향을 받을 수 있으며, 이에 마모 특성이 극히 열악해질 우려가 있으므로, 변성 공액디엔계 중합체를 제조할 때 1,2-비닐 결합 함량이 상기 범위를 만족할 수 있도록 반응 조건에 유의할 필요가 있다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의하여 측정된 수평균 분자량(Mn)이 1,000 g/mol 내지 2,000,000 g/mol, 10,000 g/mol 내지 1,000,000 g/mol, 또는 100,000 g/mol 내지 800,000 g/mol일 수 있고, 중량평균 분자량(Mw)이 1,000 g/mol 내지 3,000,000 g/mol, 10,000 g/mol 내지 2,000,000 g/mol, 또는 100,000 g/mol 내지 1,500,000 g/mol일 수 있으며, 이 범위 내에서 구름 저항 및 젖은 노면 저항성이 우수한 효과가 있다.
또 다른 예로, 상기 변성 공액디엔계 중합체는 분자량 분포(PDI; MWD; Mw/Mn)가 1.5 내지 3.5인 것이고, 바람직하게, 1.5 내지 3.0, 또는 1.7 내지 3.0, 또는 1.7 내지 2.6일 수 있고, 이 범위 내에서 인장특성 및 점탄성 특성이 우수하고, 각 물성 간의 밸런스가 뛰어난 효과가 있다.
그리고, 상기 변성 공액디엔계 중합체는 겔 투과 크로마토그래피(GPC, Gel permeation chromatography)에 의한 분자량 분포 곡선이 유니모달(unimodal) 형태 또는 바이모달(bimodal) 형태를 가질 수 있으며, 상기 유니모달 및 바이모달의 곡선 형태는 연속식 및 회분식 중합의 방법적인 측면과, 변성제 또는 커플링제에 의해 수행되는 변성 반응의 측면에 의하여 결정될 수 있다.
상기 변성 공액디엔계 중합체의 110℃에 있어서 측정되는 무니 완화율은, 해당 변성 공액 디엔계 공중합체의 분지화도와 분자량의 지표가 될 수 있다. 변성 공액 디엔계 중합체의 110℃에 있어서의 무니 완화율은 0.7 이하이고, 0.6 이하인 것이 바람직하고, 0.5 이하인 것이 보다 바람직하며, 가장 바람직하게는 0.45 이하일 수 있다. 또한, 무니 완화율은 낮을수록 분지화도가 높고 분자량이 큰 것을 의미할 수 있으며, 이에 하한이 특별히 한정되지 않지만, 0.05 이상인 것이 바람직할 수 있다. 본 발명에 따른 변성 공액디엔계 중합체는 무니 완화율이 0.7 이하인 것으로써, 본 실시 형태의 효과가 발현된다.
상기 변성 공액디엔계 중합체의 110℃에 있어서 측정되는 무니 완화율은, 전술한 것과 같이 그 변성 공액디엔계 중합체의 분지화도와 분자량의 지표가 될 수 있으며, 상기 무니 완화율이 감소함에 따라서, 변성 공액디엔계 중합체의 분지화도와 및 분자량이 증가하는 경향이 있다. 다만, 일반적으로는 상기 무니 완화율은 전술한 무니 점도와 연관된 것일 수 있는데, 동등한 수준의 무니 점도를 갖는 변성 공액디엔계 중합체의 경우, 분지가 많을수록 무니 완화율이 작아지기 때문에 동등 무니 점도에서는 선형성의 지표로도 활용될 수 있다.
상기 무니 완화율을 0.7 이하로 하기 위해서는, 예를 들어 변성 공액디엔계 중합체의 무니 점도가 70 내지 100인 범위에서 중량평균 분자량과 제조되는 중합체의 분지화도를 제어함으로써 달성할 수 있는데, 중량평균 분자량이 작아지면 분지화도를 높이고, 중량평균 분자량이 커지는 경우에는 분지화도를 낮추는 방향으로 제어하는 것일 수 있으며, 변성제의 관능기수, 변성제의 첨가량, 또는 메탈레이션의 진행도에 의해 제어할 수 있다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 N 및 Si 함량이 중량을 기준으로, 각각 25 ppm 이상, 50 ppm 이상, 70 ppm 내지 10,000 ppm, 또는 100 ppm 내지 5,000 ppm일 수 있고, 이 범위 내에서 변성 공액디엔계 중합체를 포함하는 고무 조성물의 인장 특성 및 점탄성 특성 등의 기계적 물성이 뛰어난 효과가 있다. 상기 N 함량과 Si 함량은 상기 변성 공액디엔계 중합체 내에 존재하는 Si 원자의 함량 각각을 의미할 수 있다. 한편, 상기 N 원자와 Si 원자는 변성제로부터 유래된 것일 수 있다.
한편, 본 발명의 일 실시예에 따른 변성 공액디엔계 중합체는 변성률이 30% 이상인 것일 수 있다.
또, 상기 변성 공액디엔계 중합체는 변성률이 50% 이상일 수 있는데, 상기 N 원자 및 Si 원자의 함량이 25 ppm (중량 기준) 이상인 경우는 변성률이 30% 이상일 수 있으며, 이 변성률은 N 원자 및 Si 원자의 함량과 독립적으로 변화하지는 않으며, 일정 부분 의존적으로 변화할 수 있다.
그러나, 변성 반응에 있어서, 변성제에 의하여 커플링이 어느 정도 일어나는지에 따라 N 원자 및 Si 원자의 함량과 변성률은 일부 독립성을 나타낼 수도 있으며, 변성률을 50% 이상, 바람직하게는 55% 이상, 또는 60% 이상, 최적으로 70% 이상의 고변성률을 달성하기 위해서는 변성 반응시 커플링되는 중합체의 양을 저감할 필요가 있으며, 이는 투입하는 변성제량, 극성 첨가제량, 반응 시간, 변성제와 활성 중합체의 혼합 시간 및 혼합 정도 등에 따라 제어될 수 있다.
상기와 같이 본 발명에 따른 변성 공액디엔계 중합체가 전술한 조건들을 충족하는 경우에는 실리카 또는 카본블랙과 같은 충진제와의 친화력 향상 등의 이유로 배합시 내마모성과 구름 저항성이 대폭 개선될 수 있으며, 이러한 물성 개선과 더불어 가공성 또한 향상시킬 수 있다. 나아가, 상기 변성률 조건을 추가로 충족하는 변성 공액디엔계 중합체의 경우, 내마모성 및 구름 저항성과 더불어 젖은 노면 저항성까지도 개선이 가능할 수 있고, 이에 인장 특성과 점탄성 특성을 크게 개선할 수 있는 변성 공액디엔계 중합체를 제공할 수 있다.
본 발명에 따른 상기 변성제는 공액디엔계 중합체의 말단을 변성시키기 위한 변성제일 수 있고, 구체적인 예로 실리카 친화성 변성제일 수 있다. 상기 실리카 친화성 변성제는 변성제로 이용되는 화합물 내에 실리카 친화성 작용기를 함유하는 변성제를 의미하는 것일 수 있고, 상기 실리카 친화성 작용기는 충진제, 특히 실리카계 충진제와 친화성이 우수하여, 실리카계 충진제와 변성제 유래 작용기 간의 상호작용이 가능한 작용기를 의미하는 것일 수 있다.
상기 변성제는 일례로 알콕시 실란계 변성제일 수 있고, 구체적인 예로 질소 원자, 산소 원자, 또는 황 원자 등의 헤테로 원자를 1개 이상 함유하는 알콕시 실란계 변성제일 수 있다. 상기 알콕시 실란계 변성제를 이용하는 경우, 활성 중합체의 일측 말단에 위치한 음이온 활성 부위와, 알콕시 실란계 변성제의 알콕시기 간의 치환 반응을 통해, 활성 중합체의 일측 말단이 실릴기와 결합한 형태로 변성이 실시될 수 있고, 이에 따라 변성 공액디엔계 중합체의 일측 말단에 존재하는 상기 변성제 유래 작용기로부터 무기 충진제 등과의 친화성이 향상되어 변성 공액디엔계 중합체를 포함하는 고무 조성물의 기계적 물성이 향상되는 효과가 있다. 아울러, 상기 알콕시 실란계 변성제가 질소 원자를 함유하는 경우에는, 상기 실릴기로부터 유래되는 효과 이외에도, 질소 원자로부터 유래되는 부가적인 물성 상승 효과를 기대할 수 있다.
본 발명의 일 실시예에 따르면, 상기 변성제는 하기 화학식 1로 표시되는 화합물을 포함하는 것일 수 있다.
[화학식 1]
Figure PCTKR2019008584-appb-I000001
상기 화학식 1에서, R1은 단일 결합, 또는 탄소수 1 내지 10의 알킬렌기일 수 있고, R2 및 R3은 각각 독립적으로 탄소수 1 내지 10의 알킬기일 수 있으며, R4는 수소, 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알킬기로 치환된 2가, 3가 또는 4가의 알킬실릴기, 또는 탄소수 2 내지 10의 헤테로 고리기일 수 있고, R21은 단일 결합, 탄소수 1 내지 10의 알킬렌기, 또는 -[R42O]j-일 수 있으며, R42는 탄소수 1 내지 10의 알킬렌기일 수 있고, a 및 m은 각각 독립적으로 1 내지 3에서 선택된 정수일 수 있으며, n은 0, 1, 또는 2의 정수일 수 있고, j는 1 내지 30에서 선택된 정수일 수 있다.
구체적인 예로, 상기 화학식 1에서, R1은 단일 결합, 또는 탄소수 1 내지 5의 알킬렌기일 수 있고, R2 및 R3은 각각 독립적으로 수소, 탄소수 1 내지 5의 알킬기일 수 있고, R4는 수소, 탄소수 1 내지 5의 알킬기, 탄소수 1 내지 5의 알킬기로 치환된 4가의 알킬실릴기, 또는 탄소수 2 내지 5의 헤테로 고리기일 수 있으며, R21은 단일 결합, 또는 탄소수 1 내지 5의 알킬렌기, 또는 -[R42O]j-일 수 있으며, R42는 탄소수 1 내지 5의 알킬렌기일 수 있고, a는 2 또는 3의 정수일 수 있고, m은 1 내지 3에서 선택된 정수일 수 있으며, n은 0, 1, 또는 2의 정수일 수 있으며, 이 때, m+n=3일 수 있고, j는 1 내지 10에서 선택된 정수일 수 있다.
상기 화학식 1에서, R4가 헤테로 고리기인 경우, 상기 헤테로 고리기는 3치환 알콕시 실릴기로 치환 또는 비치환된 것일 수 있고, 상기 헤테로 고리기가 3치환 알콕시 실릴기로 치환된 경우, 상기 3치환 알콕시 실릴기는 탄소수 1 내지 10의 알킬렌기에 의해 상기 헤테로 고리기에 연결되어 치환된 것일 수 있으며, 상기 3치환 알콕시 실릴기는 탄소수 1 내지 10의 알콕시기로 치환된 알콕시 실릴기를 의미할 수 있다.
보다 구체적인 예로, 상기 화학식 1로 표시되는 화합물은 N,N-비스(3-(디메톡시(메틸)실릴)프로필) -메틸-1-아민(N,N-bis(3-(dimethoxy(methyl)silyl)propyl)-methyl-1-amine), N,N-비스(3-(디에톡시(메틸)실릴)프로필)- 메틸-1-아민(N,N-bis(3-(diethoxy(methyl)silyl)propyl)-methyl-1-amine), N,N-비스(3-(트리메톡시실릴)프로필)-메틸-1-아민(N,N-bis(3-(trimethoxysilyl)propyl)-methyl-1-amine), N,N-비스(3-(트리에톡시실릴)프로필)-메틸-1-아민(N,N-bis(3-(triethoxysilyl)propyl)-methyl-1-amine), N,N-디에틸-3-(트리메톡시실릴)프로판-1-아민(N,N-diethyl-3-(trimethoxysilyl)propan-1-amine), N,N-디에틸-3-(트리에톡시실릴)프로판-1-아민(N,N-diethyl-3-(triethoxysilyl)propan-1-amine), 트리(트리메톡시실릴)아민(tri(trimethoxysilyl)amine), 트리(3-(트리메톡시실릴)프로필)아민(tri-(3-(trimethoxysilyl)propyl)amine), N,N-비스(3-(디에톡시(메틸)실릴)프로필)-1,1,1-트리메틸실란아민(N,N-bis(3-(diethoxy(methyl)silyl)propyl)-1,1,1-trimethlysilanamine), N,N-비스(3-(1H-이미다졸-1-일)프로필)-(트리에톡시실릴)메탄-1-아민(N,N-bis(3-(1H-imidazol-1-yl)propyl)-(triethoxysilyl)methan-1-amine), N-(3-(1H-1,2,4-트리아졸-1-일)프로필)-3-(트리메톡시실릴)-N-(3-(트리메톡시실릴)프로필)프로판-1-아민(N-(3-(1H-1,2,4-triazole-1-yl)propyl)-3-(trimethoxysilyl)-N-(trimethoxysilyl)propyl)propan-1-amine), 3-(트리메톡시실릴)-N-(3-트리메톡시실릴)프로필)-N-(3-(1-(3-(트리메톡시실릴)프로필)-1H-1,2,4-트리아졸-3-일)프로필)프로판-1-아민(3-(trimethoxysilyl)-N-(3-(trimethoxysilyl)propyl)-N-(3-(1-(3-(trimehtoxysilyl)propyl)-1H-1,2,4-triazol-3-yl)propyl)propan-1-amine), N,N-비스(2-(2-메톡시에톡시)에틸)-3-(트리에톡시실릴)프로판-1-아민(N,N-bis(2-(2-methoxyethoxy)ethyl)-3-(triethoxysilyl)propna-1-amine), N,N-비스(3-(트리에톡시실릴)프로필)-2,5,8,11,14-펜타옥사헥사데칸-16-아민(N,N-bis(3-(triethoxysilyl)propyl)-2,5,8,11,14-pentaoxahexadecan-16-amine), N-(2,5,8,11,14-펜타옥사헥사데칸-16-일)-N-(3-(트리에톡시실릴)프로필)-2,5,8,11,14-펜타옥사헥사데칸-16-아민(N-(2,5,8,11,14-pentaoxahexadecan-16-yl)-N-(3-(triethoxysilyl)propyl)-2,5,8,11,14-pentaoxahexadecan-16-amine) 및 N-(3,6,9,12-테트라옥사헥사데실)-N-(3-(트리에톡시실릴)프로필)-3,6,9,12-테트라옥사헥사데칸-1-아민(N-(3,6,9,12-tetraoxahexadecyl)-N-(3-(triethoxysilyl)propyl)-3,6,9,12-tetraoxahexadecan-1-amine)로 이루어진 군으로부터 선택된 1종일 수 있다.
또 다른 예로, 상기 변성제는 하기 화학식 2로 표시되는 화합물을 포함하는 것일 수 있다.
[화학식 2]
Figure PCTKR2019008584-appb-I000002
상기 화학식 2에서, R5, R6 및 R9는 각각 독립적으로 탄소수 1 내지 10의 알킬렌기일 수 있고, R7, R8, R10 및 R11은 각각 독립적으로 탄소수 1 내지 10의 알킬기일 수 있으며, R12는 수소 또는 탄소수 1 내지 10의 알킬기일 수 있고, b 및 c는 각각 독립적으로 0, 1, 2 또는 3이고, b+c≥1일 수 있으며, A는
Figure PCTKR2019008584-appb-I000003
또는
Figure PCTKR2019008584-appb-I000004
일 수 있으며, 이 때, R13, R14, R15 및 R16은 각각 독립적으로 수소, 또는 탄소수 1 내지 10의 알킬기일 수 있다.
구체적인 예로, 상기 화학식 2로 표시되는 화합물은 N-(3-(1H-이미다졸-1-일)프로필)-3-(트리에톡시실릴)-N-(3-(트리에톡시실릴)프로필프로판-1-아민(N-(3-(1H-imidazol-1-yl)propyl)-3-(triethoxysilyl)-N-(3-(triethoxysilyl)propyl)propan-1-amine) 및 3-(4,5-디하이드로-1H-이미다졸-1-일)-N,N-비스(3-(트리에톡시실릴)프로필)프로판-1-아민(3-(4,5-dihydro-1H-imidazol-1-yl)-N,N-bis(3-(triethoxysilyl)propyl)propan-1-amine)로 이루어진 군으로부터 선택된 1종일 수 있다.
또 다른 예로, 상기 변성제는 하기 화학식 3으로 표시되는 화합물을 포함하는 것일 수 있다.
[화학식 3]
Figure PCTKR2019008584-appb-I000005
상기 화학식 3에서, A1 및 A2는 각각 독립적으로 산소원자를 포함하거나 포함하지 않는 탄소수 1 내지 20의 2가 탄화수소기일 수 있고, R17 내지 R20은 각각 독립적으로 탄소수 1 내지 20의 1가 탄화수소기일 수 있으며, L1 내지 L4는 각각 독립적으로 탄소수 1 내지 10의 알킬기로 치환된 2가, 3가 또는 4가의 알킬실릴기, 또는 탄소수 1 내지 20의 1가 탄화수소기이거나, L1 및 L2와, L3 및 L4는 서로 연결되어 탄소수 1 내지 5의 고리를 형성할 수 있고, L1 및 L2와, L3 및 L4가 서로 연결되어 고리를 형성하는 경우, 형성된 고리는 N, O 및 S로 이루어진 군으로부터 선택된 1종 이상의 헤테로 원자를 1개 내지 3개 포함할 수 있다.
구체적인 예로, 상기 화학식 3에서, A1 및 A2는 각각 독립적으로 1 내지 10의 알킬렌기일 수 있고, R17 내지 R20은 각각 독립적으로 탄소수 1 내지 10의 알킬기일 수 있으며, L1 내지 L4는 각각 독립적으로 탄소수 1 내지 5의 알킬기로 치환된 4가의 알킬실릴기, 탄소수 1 내지 10의 알킬기이거나, L1 및 L2와, L3 및 L4는 서로 연결되어 탄소수 1 내지 3의 고리를 형성할 수 있고, L1 및 L2와, L3 및 L4가 서로 연결되어 고리를 형성하는 경우, 형성된 고리는 N, O 및 S로 이루어진 군으로부터 선택된 1종 이상의 헤테로 원자를 1개 내지 3개 포함할 수 있다.
보다 구체적인 예로, 상기 화학식 3으로 표시되는 화합물은 3,3'-(1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(N,N-디메틸프로판-1-아민)(3,3'-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl)bis(N,N-dimethylpropan-1-amine), 3,3'-(1,1,3,3-테트라에톡시디실록산-1,3-디일)비스(N,N-디메틸프로판-1-아민)(3,3'-(1,1,3,3-tetraethoxydisiloxane-1,3-diyl)bis(N,N-dimethylpropan-1-amine), 3,3'-(1,1,3,3-테트라프로폭시디실록산-1,3-디일)비스(N,N-디메틸프로판-1-아민)(3,3'-(1,1,3,3-tetrapropoxydisiloxane-1,3-diyl)bis(N,N-dimethylpropan-1-amine), 3,3'-(1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(N,N-디에틸프로판-1-아민)(3,3'-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl)bis(N,N-diethylpropan-1-amine), 3,3'-(1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(N,N-디프로필프로판-1-아민)(3,3'-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl)bis(N,N-dimpropylpropan-1-amine), 3,3'-(1,1,3,3-테트라에톡시디실록산-1,3-디일)비스(N,N-디에틸프로판-1-아민)(3,3'-(1,1,3,3-tetraethoxydisiloxane-1,3-diyl)bis(N,N-diethylpropan-1-amine), 3,3'-(1,1,3,3-테트라프로폭시디실록산-1,3-디일)비스(N,N-디에틸프로판-1-아민)(3,3'-(1,1,3,3-tetrapropoxydisiloxane-1,3-diyl)bis(N,N-diethylpropan-1-amine), 3,3'-(1,1,3,3-테트라에톡시디실록산-1,3-디일)비스(N,N-디프로필프로판-1-아민)(3,3'-(1,1,3,3-tetraethoxydisiloxane-1,3-diyl)bis(N,N-dipropylpropan-1-amine), 3,3'-(1,1,3,3-테트라프로폭시디실록산-1,3-디일)비스(N,N-디프로필프로판-1-아민)(3,3'-(1,1,3,3-tetrapropoxydisiloxane-1,3-diyl)bis(N,N-dipropylpropan-1-amine), 3,3'-(1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(N,N-디에틸메탄-1-아민)(3,3'-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl)bis(N,N-diethylmethan-1-amine), 3,3'-(1,1,3,3-테트라에톡시디실록산-1,3-디일)비스(N,N-디에틸메탄-1-아민)(3,3'-(1,1,3,3-tetraethoxydisiloxane-1,3-diyl)bis(N,N-diethylmethan-1-amine), 3,3'-(1,1,3,3-테트라프로폭시디실록산-1,3-디일)비스(N,N-디에틸메탄-1-아민)(3,3'-(1,1,3,3-tetrapropoxydisiloxane-1,3-diyl)bis(N,N-diethylmethan-1-amine), 3,3'-(1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(N,N-디메틸메탄-1-아민)(3,3'-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl)bis(N,N-dimethylmethan-1-amine), 3,3'-(1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(N,N-디프로필메탄-1-아민)(3,3'-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl)bis(N,N-dipropylmethan-1-amine), 3,3'-(1,1,3,3-테트라프로폭시디실록산-1,3-디일)비스(N,N-디메틸메탄-1-아민)(3,3'-(1,1,3,3-tetrapropoxydisiloxane-1,3-diyl)bis(N,N-dimethylmethan-1-amine), 3,3'-(1,1,3,3-테트라프로폭시디실록산-1,3-디일)비스(N,N-디프로필메탄-1-아민)(3,3'-(1,1,3,3-tetrapropoxydisiloxane-1,3-diyl)bis(N,N-dipropylmethan-1-amine), 3,3'-(1,1,3,3-테트라에톡시디실록산-1,3-디일)비스(N,N-디메틸메탄-1-아민)(3,3'-(1,1,3,3-tetraethoxydisiloxane-1,3-diyl)bis(N,N-dimethylmethan-1-amine), 3,3'-(1,1,3,3-테트라에톡시디실록산-1,3-디일)비스(N,N-디프로필메탄-1-아민)(3,3'-(1,1,3,3-tetraethoxydisiloxane-1,3-diyl)bis(N,N-dipropylmethan-1-amine), N,N'-((1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(프로판-3,1-디일))비스(1,1,1-트리메틸-N-(트리메틸실릴)실란아민(N,N'-((1,1,3,3-tetramethoxydisiloxane-1,3-diyl)bis(propan-3,1-diyl))bis(1,1,1-trimethyl-N-(trimethylsilyl)silanamine), N,N'-((1,1,3,3-테트라에톡시디실록산-1,3-디일)비스(프로판-3,1-디일))비스(1,1,1-트리메틸-N-(트리메틸실릴)실란아민(N,N'-((1,1,3,3-tetraethoxydisiloxane-1,3-diyl)bis(propan-3,1-diyl))bis(1,1,1-trimethyl-N-(trimethylsilyl)silanamine), N,N'-((1,1,3,3-테트라프로톡시디실록산-1,3-디일)비스(프로판-3,1-디일))비스(1,1,1-트리메틸-N-(트리메틸실릴)실란아민(N,N'-((1,1,3,3-tetrapropoxydisiloxane-1,3-diyl)bis(propan-3,1-diyl))bis(1,1,1-trimethyl-N-(trimethylsilyl)silanamine), N,N'-((1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(프로판-3,1-디일))비스(1,1,1-트리메틸-N-페닐실란아민(N,N'-((1,1,3,3-tetramethoxydisiloxane-1,3-diyl)bis(propan-3,1-diyl))bis(1,1,1-trimethyl-N-phenylsilanamine), N,N'-((1,1,3,3-테트라에톡시디실록산-1,3-디일)비스(프로판-3,1-디일))비스(1,1,1-트리메틸-N-페닐실란아민(N,N'-((1,1,3,3-tetraethoxydisiloxane-1,3-diyl)bis(propan-3,1-diyl))bis(1,1,1-trimethyl-N-phenylsilanamine), N,N'-((1,1,3,3-테트라프로폭시디실록산-1,3-디일)비스(프로판-3,1-디일))비스(1,1,1-트리메틸-N-페닐실란아민(N,N'-((1,1,3,3-tetrapropoxydisiloxane-1,3-diyl)bis(propan-3,1-diyl))bis(1,1,1-trimethyl-N-phenylsilanamine), 1,3-비스(3-(1H-이미다졸-1-일)프로필)1,1,3,3-테트라메톡시디실록산(1,3-bis(3-(1H-imidazol-1-yl)propyl)-1,1,3,3-tetramethoxydisiloxane), 1,3-비스(3-(1H-이미다졸-1-일)프로필)1,1,3,3-테트라에톡시디실록산(1,3-bis(3-(1H-imidazol-1-yl)propyl)-1,1,3,3-tetraethoxydisiloxane), 및 1,3-비스(3-(1H-이미다졸-1-일)프로필)1,1,3,3-테트라프로폭시디실록산(1,3-bis(3-(1H-imidazol-1-yl)propyl)-1,1,3,3-tetrapropoxydisiloxane)로 이루어진 군으로부터 선택된 1종일 수 있다.
또 다른 예로, 상기 변성제는 하기 화학식 4로 표시되는 화합물을 포함하는 것일 수 있다.
[화학식 4]
Figure PCTKR2019008584-appb-I000006
상기 화학식 4에서, R22 및 R23은 각각 독립적으로 탄소수 1 내지 20의 알킬렌기, 또는 -R28[OR29]f-이고, R24 내지 R27은 각각 독립적으로 탄소수 1 내지 20의 알킬기 또는 탄소수 6 내지 20의 아릴기일 수 있고, R28 및 R29는 각각 독립적으로 탄소수 1 내지 20의 알킬렌기일 수 있고, R47 및 R48는 각각 독립적으로 탄소수 1 내지 6의 2가 탄화수소기일 수 있으며, d 및 e는 각각 독립적으로 0, 또는 1 내지 3에서 선택된 정수이되, d+e는 1 이상의 정수이고, f는 1 내지 30의 정수일 수 있다.
구체적으로, 상기 화학식 4에서, R22 및 R23은 각각 독립적으로 탄소수 1 내지 10의 알킬렌기, 또는 -R28[OR29]f-일 수 있고, R24 내지 R27은 각각 독립적으로 탄소수 1 내지 10의 알킬기일 수 있으며, R28 및 R29는 각각 독립적으로 탄소수 1 내지 10의 알킬렌기일 수 있고, d 및 e는 각각 독립적으로 0, 또는 1 내지 3에서 선택된 정수이되, d+e는 1 이상의 정수일 수 있으며, f는 1 내지 30에서 선택된 정수일 수 있다.
보다 구체적으로, 상기 화학식 4로 표시되는 화합물은 하기 화학식 4a, 화학식 4b 또는 화학식 4c로 표시되는 화합물일 수 있다.
[화학식 4a]
Figure PCTKR2019008584-appb-I000007
[화학식 4b]
Figure PCTKR2019008584-appb-I000008
[화학식 4c]
Figure PCTKR2019008584-appb-I000009
상기 화학식 4a, 화학식 4b 및 화학식 4c에서 R22 내지 R27, d 및 e는 전술한 바와 같다.
보다 구체적인 예로, 상기 화학식 4로 표시되는 화합물은 1,4-비스(3-(3-(트리에톡시실릴)프로폭시)프로필)피페라진(1,4-bis(3-(3-(triethoxysilyl)propoxy)propyl)piperazine, 1,4-비스(3-(트리에톡시실릴)프로필)피페라진(1,4-bis(3-(triethoxysilyl)propyl)piperazine), 1,4-비스(3-(트리메톡시실릴)프로필)피페라진(1,4-bis(3-(trimethoxysilyl)propyl)piperazine), 1,4-비스(3-(디메톡시메틸실릴)프로필)피페라진(1,4-bis(3-(dimethoxymethylsilyl)propyl)piperazine), 1-(3-(에톡시디메틸실릴)프로필)-4-(3-(트리에톡시실릴)프로필)피페라진(1-(3-(ethoxydimethlylsilyl)propyl)-4-(3-(triethoxysilyl)propyl)piperazine), 1-(3-(에톡시디메틸)프로필)-4-(3-(트리에톡시실릴)메틸)피페라진(1-(3-(ethoxydimethyl)propyl)-4-(3-(triethoxysilyl)methyl)piperazine), 1-(3-(에톡시디메틸)메틸)-4-(3-(트리에톡시실릴)프로필)피페라진(1-(3-(ethoxydimethyl)methyl)-4-(3-(triethoxysilyl)propyl)piperazine), 1,3-비스(3-(트리에톡시실릴)프로필)이미다졸리딘(1,3-bis(3-(triethoxysilyl)propyl)imidazolidine), 1,3-비스(3-(디메톡시에틸실릴)프로필)이미다졸리딘(1,3-비스(3-(dimethoxyethylsilyl)propyl)imidazolidine), 1,3-비스(3-(트리메톡시실릴)프로필)헥사히드로피리미딘(1,3-bis(3-(trimethoxysilyl)propyl)hexahydropyrimidine), 1,3-비스(3-(트리에톡시실릴)프로필)헥사히드로피리미딘(1,3-bis(3-(triethoxysilyl)propyl)hexahydropyrimidine) 및 1,3-비스(3-(트리부톡시실릴)프로필)-1,2,3,4-테트라히드로피리미딘(1,3-bis(3-(tributoxysilyl)propyl)-1,2,3,4-tetrahydropyrimidine)로 이루어진 군으로부터 선택된 1종일 수 있다.
또 다른 예로, 상기 변성제는 하기 화학식 5로 표시되는 화합물을 포함하는 것일 수 있다.
[화학식 5]
Figure PCTKR2019008584-appb-I000010
상기 화학식 5에서, R30은 탄소수 1 내지 30의 1가 탄화수소기일 수 있고, R31 내지 R33은 각각 독립적으로 탄소수 1 내지 10의 알킬렌기일 수 있으며, R34 내지 R37은 각각 독립적으로 탄소수 1 내지 10의 알킬기일 수 있고, g 및 h는 각각 독립적으로 0, 또는 1 내지 3에서 선택된 정수이되, g+h는 1 이상의 정수일 수 있다.
또 다른 예로, 상기 변성제는 하기 화학식 6으로 표시되는 화합물을 포함하는 것일 수 있다.
[화학식 6]
Figure PCTKR2019008584-appb-I000011
상기 화학식 6에서, A3 및 A4는 각각 독립적으로 1 내지 10의 알킬렌기일 수 있고, R38 내지 R41은 각각 독립적으로 탄소수 1 내지 10의 알킬기, 또는 탄소수 1 내지 10의 알콕시기일 수 있으며, i는 1 내지 30에서 선택된 정수일 수 있다.
또 다른 예로, 상기 변성제는 3,4-비스(2-메톡시데톡시)-N-(4-(트리에톡시실릴)부틸)아닐린(3,4-bis(2-methoxyethoxy)-N-(4-(trimethylsilyl)butyl)aniline), N,N-디에틸-3-(7-메틸-3,6,8,11-테트라옥사-7-실라트리데칸-7-일)프로판-1-아민(N,N-diethyl-3-(7-methyl-3,6,8,11-tetraoxa-7-silatridecan-7-yl)propan-1-amine), 2,4-비스(2-메톡시에톡시)-6-((트리메틸실릴)메틸)-1,3,5-트리아진(2,4-bis(2-methoxyethoxy)-6-((trimethylsilyl)methyl)-1,3,5-triazine) 및 3,14-디메톡시-3,8,8,13-테트라메틸-2,14-디옥사-7,9-디티아-3,8,13-트리실라펜타데칸(3,14-dimtehosy-3,8,8,13-tetramethyl-2,14-dioxa-7,9-dithia-3,8,13-trisilapentadecane)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.
또 다른 예로, 상기 변성제는 하기 화학식 7로 표시되는 화합물을 포함하는 것일 수 있다.
[화학식 7]
Figure PCTKR2019008584-appb-I000012
상기 화학식 7에서, R43, R45 및 R46은 각각 독립적으로 탄소수 1 내지 10의 알킬기일 수 있고, R44는 탄소수 1 내지 10의 알킬렌기일 수 있으며, k는 1 내지 4에서 선택된 정수일 수 있다.
보다 구체적인 예로, 상기 화학식 7로 표시되는 화합물은 8,8-디부틸-3,13-디메톡시-3,13-디메틸-2,14-디옥사-7,9-디티아-3,13-디실라-8-스탄펜타데칸(8,8-dibutyl-3,13-dimethoxy-3,13-dimethyl-2,14-dioxa-7,9-dithia-3,13-disila-8-stannapentadecane), 8,8-디메틸-3,13-디메톡시-3,13-디메틸-2,14-디옥사-7,9-디티아-3,13-디실라-8-스탄펜타데칸(8,8-dimetyl-3,13-dimethoxy-3,13-dimethyl-2,14-dioxa-7,9-dithia-3,13-disila-8-stannapentadecane), 8,8-디부틸-3,3,13,13-테트라메톡시-2,14-디옥사-7,9-디티아-3,13-디실라-8-스탄펜타데칸(8,8-dibutyl-3,3,13,13-tetramethoxy-2,14-dioxa-7,9-dithia-3,13-disila-8-stannapentadecane) 및 8-부틸-3,3,13,13-테트라메톡시-8-((3-(트리메톡시실릴)프로필)티오)-2,14-디옥사-7,9-디티아-3,13-디실라-8-스탄펜타데칸(8-butyl-3,3,13,13-tetramethoxy-8-((3-(trimehtoxysilyl)propyl)thio)-2,14-dioxa-7,9-dithia-3,13-disila-8-stannapentadecane)로 이루어진 군으로부터 선택된 1종일 수 있다.
변성 공액디엔계 중합체의 제조방법
본 발명은 상기 변성 공액디엔계 중합체를 제조하기 위해, 변성 공액디엔계 중합체 제조방법을 제공한다. 상기 변성 공액디엔계 중합체 제조방법은 탄화수소 용매 중에서, 유기 금속 화합물의 존재 하에, 공액디엔계 단량체를 중합하여 유기 금속이 결합된 활성 중합체를 제조하는 단계(S1); 및 상기 (S1) 단계에서 제조된 활성 중합체와 변성제를 반응시키는 단계(S2)를 포함하고, 중합 반응(S1) 및 변성 반응(S2)은 연속식 또는 회분식으로 수행되는 것일 수 있다.
이하에서, 제조된 변성 공액디엔계 중합체와, 반응에 사용되는 변성제에 관한 특징은 전술한 것과 중복되므로, 그 기재를 생략한다.
상기 탄화수소 용매는 특별히 제한되는 것은 아니나, 예컨대 n-펜탄, n-헥산, n-헵탄, 이소옥탄, 시클로 헥산, 톨루엔, 벤젠 및 크실렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 유기 금속 화합물은 단량체 총 100 g을 기준으로 0.01 mmol 내지 10 mmol, 0.05 mmol 내지 5 mmol, 0.1 mmol 내지 2 mmol, 0.1 mmol 내지 1 mmol, 또는 0.15 내지 0.8 mmol로 사용할 수 있다. 상기 유기 금속 화합물은 일례로 메틸리튬, 에틸리튬, 프로필리튬, 이소프로필리튬, n-부틸리튬, s-부틸리튬, t-부틸리튬, 헥실리튬, n-데실리튬, t-옥틸리튬, 페닐리튬, 1-나프틸리튬, n-에이코실리튬, 4-부틸페닐리튬, 4-톨릴리튬, 시클로헥실리튬, 3,5-디-n-헵틸시클로헥실리튬, 4-시클로펜틸리튬, 나프틸나트륨, 나프틸칼륨, 리튬 알콕사이드, 나트륨 알콕사이드, 칼륨 알콕사이드, 리튬 술포네이트, 나트륨 술포네이트, 칼륨 술포네이트, 리튬 아미드, 나트륨 아미드, 칼륨아미드 및 리튬 이소프로필아미드로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 (S1) 단계의 중합은 일례로 음이온 중합일 수 있고, 구체적인 예로 음이온에 의한 성장 중합 반응에 의해 중합 말단에 음이온 활성 부위를 갖는 리빙 음이온 중합일 수 있다. 또한, 상기 (S1) 단계의 중합은 승온 중합, 등온 중합 또는 정온 중합(단열 중합)일 수 있고, 상기 정온 중합은 유기 금속 화합물을 투입한 이후 임의로 열을 가하지 않고 자체 반응열로 중합시키는 단계를 포함하는 중합방법을 의미할 수 있고, 상기 승온 중합은 상기 유기 금속 화합물을 투입한 이후 임의로 열을 가하여 온도를 증가시키는 중합방법을 의미할 수 있으며, 상기 등온 중합은 상기 유기 금속 화합물을 투입한 이후 열을 가하여 열을 증가시키거나 열을 뺏어 중합물의 온도를 일정하게 유지하는 중합방법을 의미할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 (S1) 단계의 중합은 상기 공액디엔계 단량체 이외에 탄소수 1 내지 10의 디엔계 화합물 더 포함하여 실시될 수 있고, 이 경우 장시간 운전 시 반응기 벽면에 겔이 형성되는 것을 방지하는 효과가 있다. 상기 디엔계 화합물은 일례로 1,2-부타디엔일 수 있다.
상기 (S1) 단계의 중합은 일례로 100℃ 이하, 50℃ 내지 100℃, 또는 50℃ 내지 80℃의 온도범위에서 실시될 수 있고, 이 범위 내에서 중합반응의 전환율을 높일 수 있고, 중합체의 분자량 분포를 조절하면서 전술한 범위의 유리전이온도, 무니 점도 및 1,2-비닐 결합 함량을 만족하게 할 수 있어, 물성 개선이 뛰어난 효과가 있다.
상기 (S1) 단계에 의해 제조된 활성 중합체는 중합체 음이온과 유기 금속 양이온이 결합된 중합체를 의미할 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S1) 단계의 중합에 의해 제조되는 활성 중합체는 랜덤 공중합체일 수 있고, 이 경우 각 물성 간의 밸런가 우수한 효과가 있다. 상기 랜덤 공중합체는 공중합체를 이루는 반복 단위가 무질서하게 배열된 것을 의미할 수 있다.
본 발명에서 용어 '중합물'은 (S1) 단계 또는 (S2) 단계가 완료되어, 활성 중합체, 또는 변성 공액디엔계 중합체를 수득하기에 앞서, (S1) 단계 실시 중, 각 반응기 내에서 중합이 실시되고 있는 중합체 형태의 중간체를 의미할 수 있고, 반응기 내에서 중합이 실시되고 있는 중합 전환율 90% 미만의 중합체를 의미할 수 있다.
한편, 상기 (S1) 단계의 중합은 극성 첨가제를 포함하여 실시될 수 있고, 상기 극성 첨가제는 단량체 총 100 g을 기준으로 0.001 g 내지 50 g, 또는 0.002 g 내지 0.1 g의 비율로 첨가할 수 있다. 또 다른 예로, 상기 극성첨가제는 유기 금속 화합물 총 100 g을 기준으로 0 g 초과 내지 1 g, 0.01 g 내지 1 g 또는 0.1 g 내지 0.9 g의 비율로 첨가할 수 있다. 상기와 같은 범위로 극성 첨가제를 투여하는 경우에는, 전술한 범위의 유리전이온도, 무니 점도 및 1,2-비닐 결합 함량을 만족하게 할 수 있다.
상기 극성 첨가제는 일례로 테트라하이드로퓨란, 디테트라하이드로퓨릴프로판, 디에틸에테르, 시클로펜틸에테르, 디프로필에테르, 에틸렌메틸에테르, 에틸렌디메틸에테르, 디에틸글리콜, 디메틸에테르, 3차 부톡시에톡시에탄, 비스(3-디메틸아미노에틸)에테르, (디메틸아미노에틸)에틸에테르, 트리메틸아민, 트리에틸아민, 트리프로필아민 및 테트라메틸에틸렌디아민으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 트리에틸아민 또는 테트라메틸에틸렌디아민일 수 있으며, 상기 극성 첨가제를 포함하는 경우 공액디엔계 단량체, 또는 공액디엔계 단량체 및 방향족 비닐계 단량체를 공중합시키는 경우 이들의 반응 속도 차이를 보완해줌으로써 랜덤 공중합체를 용이하게 형성할 수 있도록 유도하는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 (S2) 단계의 반응에서, 상기 변성제는 단량체 총 100g을 기준으로 0.01 mmol 내지 10 mmol의 양으로 사용할 수 있다. 또 다른 예로, 상기 변성제는 상기 (S1) 단계의 유기 금속 화합물 1몰을 기준으로, 1:0.1 내지 10, 1:0.1 내지 5, 또는 1:0.1 내지 1:3의 몰비로 사용할 수 있다. 상기 변성제와 유기 금속 화합물의 몰비율, 단량체 대비 변성제의 투입량은 실질적으로 제조되는 중합체의 유리전이온도, 무니 점도 및 무니 완화율에 영향이 있을 수 있으므로, 가급적 위 범위 내에서 적절한 비율을 선택하여 적용하는 것이 바람직하다.
또한, 본 발명의 일 실시예에 따르면, 상기 변성제는 변성 반응기에 투입될 수 있고, 상기 (S2) 단계는 변성 반응기에서 실시될 수 있다. 또 다른 예로, 상기 변성제는 상기 (S1) 단계에서 제조된 활성 중합체를 (S2) 단계를 실시하기 위한 변성 반응기로 이송하기 위한 이송부에 투입될 수 있고, 상기 이송부 내에서 활성 중합체와 변성제의 혼합에 의해 반응이 진행될 수 있으며, 이 때 상기 반응은 변성제가 활성 중합체에 단순 결합되는 변성 반응이거나, 변성제를 기준으로 활성 중합체가 연결되는 커플링 반응일 수 있으며, 전술한 것과 같이 변성 반응과 커플링 반응의 비율은 제어할 필요가 있으며, 이는 무니 점도와 무니 완화율, 그리고 유리전이온도에 영향을 미칠 수 있다.
한편, 본 발명의 일 실시예에 따른 상기 제조방법에 있어서, 유기 금속 화합물의 종류 및 사용량, 극성 첨가제의 종류 및 사용량, 변성제의 종류 및 사용량, 중합반응 및 변성반응의 온도 및 시간에 따라 제조되는 변성 공액디엔계 중합체의 유리전이온도, 무니 점도, 무니 완화율, 1,2-비닐 결합 함량 조절에 영향을 미칠 수 있으며, 따라서 본 발명에 따른 상기 제조방법은 전술한 조건 내에서 본 발명에서 제시하는 변성 공액디엔계 중합체의 조건을 만족하도록 서로 유기적으로 적절하게 제어하여 반응을 수행하는 것일 수 있다.
본 발명에 따르면 상기의 변성 공액디엔계 중합체를 포함하는 고무 조성물이 제공된다.
상기 고무 조성물은 상기 변성 공액디엔계 중합체를 10 중량% 이상, 10 중량% 내지 100 중량%, 또는 20 중량% 내지 90 중량%의 양으로 포함하는 것일 수 있고, 이 범위 내에서 인장 강도, 내마모성 등의 기계적 물성이 우수하고, 각 물성 간의 밸런스가 뛰어난 효과가 있다.
또한, 상기 고무 조성물은 상기 변성 공액디엔계 중합체 외에 필요에 따라 다른 고무 성분을 더 포함할 수 있고, 이 때 상기 고무 성분은 고무 조성물 총 중량에 대하여 90 중량% 이하의 함량으로 포함될 수 있다. 구체적인 예로 상기 다른 고무 성분은 상기 변성 공액디엔계 중합체 100 중량부에 대하여 1 중량부 내지 900 중량부로 포함되는 것일 수 있다.
상기 고무 성분은 일례로 천연고무 또는 합성고무일 수 있으며, 구체적인 예로 시스-1,4-폴리이소프렌을 포함하는 천연고무(NR); 상기 일반적인 천연고무를 변성 또는 정제한, 에폭시화 천연고무(ENR), 탈단백 천연고무(DPNR), 수소화 천연고무 등의 변성 천연고무; 스티렌-부타디엔 공중합체(SBR), 폴리부타디엔(BR), 폴리이소프렌(IR), 부틸고무(IIR), 에틸렌-프로필렌 공중합체, 폴리이소부틸렌-코-이소프렌, 네오프렌, 폴리(에틸렌-코-프로필렌), 폴리(스티렌-코-부타디엔), 폴리(스티렌-코-이소프렌), 폴리(스티렌-코-이소프렌-코-부타디엔), 폴리(이소프렌-코-부타디엔), 폴리(에틸렌-코-프로필렌-코-디엔), 폴리설파이드 고무, 아크릴 고무, 우레탄 고무, 실리콘 고무, 에피클로로히드린 고무, 할로겐화 부틸 고무 등과 같은 합성고무일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 고무 조성물은 일례로 본 발명의 변성 공액디엔계 중합체 100 중량부에 대하여 0.1 중량부 내지 200 중량부, 또는 10 중량부 내지 120 중량부의 충진제를 포함하는 것일 수 있다. 상기 충진제는 일례로 실리카계 충진제일 수 있고, 구체적인 예로 습식 실리카(함수규산), 건식 실리카(무수규산), 규산칼슘, 규산알루미늄 또는 콜로이드 실리카 등일 수 있으며, 바람직하게는 파괴 특성의 개량 효과 및 웨트 그립성(wet grip)의 양립 효과가 가장 뛰어난 습식 실리카일 수 있다. 또한, 상기 고무 조성물은 필요에 따라 카본계 충진제를 더 포함할 수 있다.
또 다른 예로, 상기 충전제로 실리카가 사용되는 경우 보강성 및 저발열성 개선을 위한 실란 커플링제가 함께 사용될 수 있고, 구체적인 예로 상기 실란 커플링제는 비스(3-트리에톡시실릴프로필)테트라술피드, 비스(3-트리에톡시실릴프로필)트리술피드, 비스(3-트리에톡시실릴프로필)디술피드, 비스(2-트리에톡시실릴에틸)테트라술피드, 비스(3-트리메톡시실릴프로필)테트라술피드, 비스(2-트리메톡시실릴에틸)테트라술피드, 3-머캅토프로필트리메톡시실란, 3-머캅토프로필트리에톡시실란, 2-머캅토에틸트리메톡시실란, 2-머캅토에틸트리에톡시실란, 3-트리메톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 3-트리에톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 2-트리에톡시실릴에틸-N,N-디메틸티오카르바모일테트라술피드, 3-트리메톡시실릴프로필벤조티아졸릴테트라술피드, 3-트리에톡시실릴프로필벤졸릴테트라술피드, 3-트리에톡시실릴프로필메타크릴레이트모노술피드, 3-트리메톡시실릴프로필메타크릴레이트모노술피드, 비스(3-디에톡시메틸실릴프로필)테트라술피드, 3-머캅토프로필디메톡시메틸실란, 디메톡시메틸실릴프로필-N,N-디메틸티오카르바모일테트라술피드 또는 디메톡시메틸실릴프로필벤조티아졸릴테트라술피드 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 바람직하게는 보강성 개선 효과를 고려할 때 비스(3-트리에톡시실릴프로필)폴리술피드 또는 3-트리메톡시실릴프로필벤조티아질테트라술피드일 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 고무 조성물은, 고무 성분으로서 활성 부위에 실리카와의 친화성이 높은 작용기가 도입된 변성 공액디엔계 중합체가 사용되고 있기 때문에, 실란 커플링제의 배합량은 통상의 경우보다 저감될 수 있고, 이에 따라, 상기 실란 커플링제는 실리카 100 중량부에 대하여 1 중량부 내지 20 중량부, 또는 5 중량부 내지 15 중량부로 사용될 수 있으며, 이 범위 내에서 커플링제로서의 효과가 충분히 발휘되면서도 고무 성분의 겔화를 방지하는 효과가 있다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 황 가교성일 수 있고, 가황제를 더 포함할 수 있다. 상기 가황제는 구체적으로 황 분말일 수 있고, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 10 중량부로 포함될 수 있으며, 이 범위 내에서 가황 고무 조성물의 필요한 탄성률 및 강도를 확보함과 동시에 저연비성이 뛰어난 효과가 있다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 상기한 성분들 외에, 통상 고무 공업계에서 사용되는 각종 첨가제, 구체적으로는 가황 촉진제, 공정유, 가소제, 노화 방지제, 스코치 방지제, 아연화(zinc white), 스테아르산, 열경화성 수지, 또는 열가소성 수지 등을 더 포함할 수 있다.
상기 가황 촉진제는 일례로 M(2-머캅토벤조티아졸), DM(디벤조티아질디술피드), CZ(N-시클로헥실-2-벤조티아질술펜아미드) 등의 티아졸계 화합물, 혹은 DPG(디페닐구아니딘) 등의 구아니딘계 화합물이 사용될 수 있고, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 포함될 수 있다.
상기 공정유는 고무 조성물 내에서 연화제로서 작용하는 것으로, 일례로 파라핀계, 나프텐계, 또는 방향족계 화합물일 수 있고, 인장 강도 및 내마모성을 고려할 때 방향족계 공정유가, 히스테리시스 손실 및 저온 특성을 고려할 때 나프텐계 또는 파라핀계 공정유가 사용될 수 있다. 상기 공정유는 일례로 고무 성분 100 중량부에 대하여 100 중량부 이하의 함량으로 포함될 수 있고, 이 범위 내에서 가황 고무의 인장 강도, 저발열성(저연비성)의 저하를 방지하는 효과가 있다.
상기 노화방지제는 일례로 N-이소프로필-N'-페닐-p-페닐렌디아민, N-(1,3-디메틸부틸)-N'-페닐-p-페닐렌디아민, 6-에톡시-2,2,4-트리메틸-1,2-디히드로퀴놀린, 또는 디페닐아민과 아세톤의 고온 축합물 등일 수 있고, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 6 중량부로 사용될 수 있다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 상기 배합 처방에 의해 밴버리 믹서, 롤, 인터널 믹서 등의 혼련기를 사용하여 혼련함으로써 수득될 수 있고, 성형 가공 후 가황 공정에 의해 저발열성이며 내마모성이 우수한 고무 조성물이 수득될 수 있다.
이에 따라 상기 고무 조성물은 타이어 트레드, 언더 트레드, 사이드 월, 카카스 코팅 고무, 벨트 코팅 고무, 비드 필러, 췌이퍼, 또는 비드 코팅 고무 등의 타이어의 각 부재나, 방진고무, 벨트 컨베이어, 호스 등의 각종 공업용 고무 제품의 제조에 유용할 수 있다.
아울러, 본 발명은 상기 고무 조성물을 이용하여 제조된 타이어를 제공한다.
상기 타이어는 타이어 또는 타이어 트레드를 포함하는 것일 수 있다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
3개의 연속교반 액상 반응기(CSTR) 중 1기 반응기에, n-헥산 4 kg/hr, n-헥산 에 단량체 혼합물(부타디엔 80 중량% 및 스티렌 20 중량%)이 60 중량%로 용해된 단량체 용액을 1.6 kg/hr, n-헥산에 n-부틸리튬이 10 중량%로 용해된 개시제 용액을 6 g/hr, 극성첨가제로 n-헥산에 디테트라하이드로퓨릴프로판이 10 중량%로 용해된 극성첨가제 용액을 0.5 g/hr, n-헥산에 1,2-부타디엔이 15 중량%로 용해된 용액을 1 g/hr의 흐름속도로 연속적으로 투입하였다. 반응기 내부 온도가 70℃가 되도록 조절하고, 40분 동안 체류시켰다. 이 후, 얻어진 상기 1기 반응기의 중합물을 2기 반응기의 상부로 연속적으로 공급하고, 반응기 내부 온도를 70℃가 되도록 조절하여, 60분 동안 체류시켜 중합 전환율이 90%가 되도록 하였다. 그 결과 얻어진 2기 반응기의 중합물을 3기 반응기의 상부로 연속적으로 공급하고, 변성제로 N,N-비스(3-(디메톡시(메틸)실릴)프로필)-메틸-1-아민이 20 중량%로 용해된 용액을 연속적으로 공급하여 변성 반응을 진행하였다(n-부틸리튬:변성제=1:0.5 몰비). 그 결과 얻어진 3기 반응기의 30중량%의 산화방지제(윙스테이-K)가 포함되어 있는 용액을 16 g/h의 속도로 투입하여 중합반응 정지시켜, 중합물을 수득하였다. 수득한 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 후, 롤 건조하여 잔량의 용매와 물을 제거하여, 변성 공액디엔계 중합체를 제조하였다. 이렇게 제조된 변성 공액디엔계 중합체에 대한 분석 결과는 하기 표 1에 나타내었다.
실시예 2
실시예 1에 있어서, 변성제로 N,N-비스(3-(디메톡시(메틸)실릴)프로필)-메틸-1-아민 대신에 트리(3-(트리메톡시실릴)프로필)아민을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 변성 공액디엔계 중합체를 제조하였다. 이렇게 제조된 변성 공액디엔계 중합체에 대한 분석 결과는 하기 표 1에 나타내었다.
실시예 3
실시예 2에 있어서, 극성첨가제로 디테트라하이드로퓨릴프로판 대신에 테트라메틸에틸렌디아민(TMEDA)이 n-헥산에 10 중량%로 용해된 용액을 1 g/hr로 공급하고, 1기 반응기 내부 온도를 75℃로 조절한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 변성 공액디엔계 중합체를 제조하였다. 이렇게 제조된 변성 공액디엔계 중합체에 대한 분석 결과는 하기 표 1에 나타내었다.
실시예 4
실시예 3에 있어서, 변성제로 트리(3-(트리메톡시실릴)프로필)아민 대신에 N-(3-(1H-이미다졸-1-일)프로필)-3-(트리에톡시실릴)-N-(3-(트리메톡시실릴)프로필프로판-1-아민을 사용한 것을 제외하고는 상기 실시예 3과 동일한 방법으로 변성 공액디엔계 중합체를 제조하였다. 이렇게 제조된 변성 공액디엔계 중합체에 대한 분석 결과는 하기 표 1에 나타내었다.
실시예 5
실시예 3에 있어서, 변성제로 트리(3-(트리메톡시실릴)프로필)아민 대신에 3,3'-(1,1,3,3-테트라메톡시디실록산-1,3-디일)비스(N,N-디메틸프로판-1-아민)을 사용한 것을 제외하고는 상기 실시예 3과 동일한 방법으로 변성 공액디엔계 중합체를 제조하였다. 이렇게 제조된 변성 공액디엔계 중합체에 대한 분석 결과는 하기 표 1에 나타내었다.
실시예 6
실시예 3에 있어서, 변성제로 제조된 트리(3-(트리메톡시실릴)프로필)아민 대신에 1,4-비스(3-(트리메톡시실릴)프로필)피페라진을 사용한 것을 제외하고는 상기 실시예 3과 동일한 방법으로 변성 공액디엔계 중합체를 제조하였다. 이렇게 제조된 변성 공액디엔계 중합체에 대한 분석 결과는 하기 표 1에 나타내었다.
실시예 7
실시예 3에 있어서, 변성제로 트리(3-(트리메톡시실릴)프로필)아민 대신에 1,1,3,3-테트라메톡시-1,3-비스(3-(4-메틸피페라진-1-일)프로필)디실록산을 사용한 것을 제외하고는 상기 실시예 3과 동일한 방법으로 변성 공액디엔계 중합체를 제조하였다. 이렇게 제조된 변성 공액디엔계 중합체에 대한 분석 결과는 하기 표 1에 나타내었다.
실시예 8
실시예 7에 있어서, 극성첨가제로 테트라메틸에틸렌디아민(TMEDA)이 n-헥산에 10 중량%로 용해된 용액을 2 g/hr로 공급한 것을 제외하고는 상기 실시예 7과 동일한 방법으로 변성 공액디엔계 중합체를 제조하였다. 이렇게 제조된 변성 공액디엔계 중합체에 대한 분석 결과는 하기 표 1에 나타내었다.
비교예 1
실시예 1에 있어서, 극성 첨가제로 디테트라하이드로퓨릴프로판이 n-헥산에 10 중량%로 용해된 용액을 2 g/hr로 연속적으로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 변성 공액디엔계 중합체를 제조하였다. 이렇게 제조된 변성 공액디엔계 중합체에 대한 분석 결과는 하기 표 1에 나타내었다.
비교예 2
실시예 1에 있어서, n-헥산에 n-부틸리튬이 10 중량%로 용해된 개시제 용액을 7.2 g/hr로 연속적으로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 변성 공액디엔계 중합체를 제조하였다. 이렇게 제조된 변성 공액디엔계 중합체에 대한 분석 결과는 하기 표 1에 나타내었다.
비교예 3
실시예 1에 있어서, n-헥산에 n-부틸리튬이 10 중량%로 용해된 개시제 용액을 4.7 g/hr로, 극성 첨가제로 n-헥산에 디테트라하이드로퓨릴프로판이 10 중량%로 용해된 극성 첨가제 용액을 0.4 g/hr로 연속적으로 투입하고, 변성제로 N,N-비스(3-(디메톡시(메틸)실릴)프로필)-메틸-1-아민 대신에 N,N-디에틸-3-(트리메톡시실릴)프로판-1-아민(N,N-diethyl-3-(trimethoxysilyl)propan-1-amione)이 n-헥산에 20 중량%로 용해된 용액을 연속적으로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 변성 공액디엔계 중합체를 제조하였다(n-부틸리튬:변성제=1:0.5 몰비). 이렇게 제조된 변성 공액디엔계 중합체에 대한 분석 결과는 하기 표 1에 나타내었다.
비교예 4
20L 오토클레이브 반응기에 스티렌 180g, 1,3-부타디엔 760g, n-헥산 5000 g 및 극성첨가제로 테트라메틸에틸렌디아민(TMEDA) 3.0g을 넣은 후 반응기 내부 온도를 70℃로 승온하였다. 반응기 내부 온도가 70℃에 도달했을 때, 중합개시제로 n-부틸리튬 0.6 g을 투입하여 단열 승온 반응을 진행시켰으며, 이 때 반응기 내부 온도는 중합체의 의한 발열로 90℃까지 승온되었다. 단열 승온 반응이 끝난 다음 15 여분 경과 후 1,3-부타디엔 60g을 투입하고 15분 후, 변성 반응을 위한 변성제로 N,N-디에틸-3-(트리메톡시실릴)프로판-1-아민을 투입하고 30분 간 반응시켰다(n-부틸리튬:변성제=1:0.3 몰비). 이후 메탄올 30g을 투입하여 중합반응을 정지시키고, 산화방지제인 BHT(부틸레이티드하이드록시톨루엔)가 헥산에 0.3 중량% 녹아있는 용액 45 ml를 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매 와 물을 제거하여, 변성 공액디엔계 중합체를 제조하였다. 이렇게 제조된 변성 공액디엔계 중합체에 대한 분석 결과는 하기 표 1에 나타내었다.
실험예
실험예 1
상기 실시예 및 비교예에서 제조된 각 변성 또는 미변성 공액디엔계 중합체에 대하여 각각 중합체 내 유리전이온도, 1,2-비닐 결합 함량, 중량평균분자량(Mw, X103g/mol), 수평균분자량(Mn, X103 g/mol), 분자량 분포(PDI, MWD), 무니점도(MV), 무니완화율(-S/R) 및 N 원자와 Si 원자의 함량을 각각 측정하였고, 이를 하기 표 1에 나타내었다.
1) 유리전이온도(Tg)
변성 공액 디엔계 중합체를 시료로 하고, ISO 22768:2006에 준거하여, 시차 주사 열량계(맥사이언스사 제조의 상품명 「DSC3200S」)를 사용하고, 헬륨 50mL/분의 유통하에, -100℃에서부터 10℃/분으로 승온시키면서 DSC 곡선을 기록하여, DSC 미분 곡선의 피크 톱(Inflection point)을 유리 전이 온도로 하였다.
2) 1,2-비닐 결합 함량
상기 각 중합체 내 비닐(Vinyl) 함량은 Varian VNMRS 500 MHz NMR을 이용하여 측정 및 분석하였다.
NMR 측정 시 용매는 1,1,2,2-테트라클로로에탄을 사용하였으며, solvent peak는 5.97 ppm으로 계산하고, 7.2~6.9 ppm은 랜덤 스티렌, 6.9~6.2 ppm은 블록 스티렌, 5.8~5.1 ppm은 1,4-비닐, 5.1~4.5 ppm은 1,2-비닐의 피크로 하여 1,2-비닐 결합 함량(중량%)을 계산하였다.
3) 중량평균분자량(Mw), 수평균분자량(Mn) 및 분자량 분포(MWD)
상기 중량평균분자량(Mw), 수평균분자량(Mn)은 GPC(Gel permeation chromatohraph) 분석을 통하여 측정하였으며, 분자량 분포(PDI, MWD, Mw/Mn)는 측정된 상기 각 분자량으로부터 계산하여 얻었다. 구체적으로, 상기 GPC는 PLgel Olexis(Polymer Laboratories 社) 컬럼 두 자루와 PLgel mixed-C(Polymer Laboratories 社) 컬럼 한 자루를 조합하여 사용하고 분자량 계산시 GPC 기준물질 (Standard material)은 PS(polystyrene)을 사용하여 실시하였다. GPC 측정 용매는 테트라하이드로퓨란에 2 wt%의 아민 화합물을 섞어서 제조하였다.
4) 무니점도(MV) 및 무니 완화율(-S/R)
상기 무니점도(MV, (ML1+4, @100℃ MU)는 MV-2000(ALPHA Technologies 社)를 이용하여 100℃에서 Rotor Speed 2±0.02 rpm, Large Rotor를 사용하여 측정하였으며, 이때 사용된 시료는 실온(23±3℃에서 30분 이상 방치한 후 27±3 g을 채취하여 다이 캐비티 내부에 채워 놓고 Platen을 작동시켜 4분 동안 측정하였다. 무니 점도 측정 후, 토크가 풀리면서 나타나는 무니 점도 변화의 기울기 값을 측정하여 무니 완화율을 얻었다.
5) N 원자 및 Si 원자의 함량
상기 Si 함량은 ICP 분석 방법으로서 유도 결합 플라즈마 발광 분석기(ICP-OES; Optima 7300DV)를 이용하여 측정되었다. 상기 유도 결합 플라즈마 발광 분석기를 이용하는 경우, 시료 약 0.7 g을 백금 도가니(Pt crucible)에 넣고, 진한 황산(98 중량%, Electronic grade) 약 1 mL를 넣어, 300℃에서 3시간 동안 가열하고, 시료를 전기로(Thermo Scientific, Lindberg Blue M)에서, 하기 스텝(step) 1 내지 3의 프로그램으로 회화를 진행한 후,
1) step 1: initial temp 0℃, rate (temp/hr) 180 ℃/hr, temp(holdtime) 180℃ (1hr)
2) step 2: initial temp 180℃, rate (temp/hr) 85 ℃/hr, temp(holdtime) 370℃ (2hr)
3) step 3: initial temp 370℃, rate (temp/hr) 47 ℃/hr, temp(holdtime) 510℃ (3hr)
잔류물에 진한 질산(48 중량%) 1 mL, 진한 불산(50 중량%) 20 ㎕를 가하고, 백금 도가니를 밀봉하여 30분 이상 흔들어(shaking)준 후, 시료에 붕산(boric acid) 1 mL를 넣고 0℃에서 2시간 이상 보관한 후, 초순수(ultrapure water) 30 mL에 희석하여, 회화를 진행하여 측정하였다.
상기 질소 원자 함량은 극미량 질소 정량분석기(Auto sampler, Horizontal furnace, PMT & Nitrogen detector)를 켜고 Ar을 250 ml/min, O2를 350 ml/min, ozonizer 300 ml/min으로 캐리어 가스 유량을 설정하고, heater를 800℃로 설정한 후 약 3시간 동안 대기하여 분석기를 안정화시켰다. 분석기가 안정화된 후 Nitrogen standard(AccuStandard S-22750-01-5 ml)를 이용하여 검량선 범위 5 ppm, 10 ppm, 50 ppm, 100 ppm 및 500 ppm의 검량선을 작성하고 각 농도에 해당하는 Area를 얻은 후 농도 대 Area의 비율을 이용하여 직선을 작성하였다. 이후, 시료 20 mg가 담긴 세라믹 보트를 상기 분석기의 Auto sampler에 놓고 측정하여 area를 얻었다. 얻어진 시료의 area와 상기 검량선을 이용하여 N함량을 계산하였다.
Figure PCTKR2019008584-appb-T000001
실험예 2
상기 실시예 및 비교예에서 제조된 각 변성 공액디엔계 공중합체를 포함하는 고무 조성물 및 이로부터 제조된 성형품의 물성을 비교분석하기 위하여, 인장 특성, 점탄성 특성 및 가공성 특성을 각각 측정하여 그 결과를 하기 표 3에 나타내었다.
1) 고무 시편의 제조
실시예 및 비교예의 각 변성 공액디엔계 중합체를 원료 고무로 하여 하기 표 3에 나타낸 배합 조건으로 배합하였다. 표 3 내의 원료는 원료 고무 100 중량부 기준에 대한 각 중량부이다.
Figure PCTKR2019008584-appb-T000002
구체적으로 상기 고무시편은 제1단 혼련 및 제2단 혼련을 통해 혼련된다. 제1단 혼련에서는 온도제어장치를 부속한 반바리 믹서를 사용하여 원료 고무, 실리카(충진제), 유기실란 커플링제(X50S, Evonik), 공정유(TDAE oil), 아연화제(ZnO), 스테아르산, 산화 방지제(TMQ(RD)(2,2,4-트리메틸-1,2-디하이드로퀴놀린 폴리머), 노화 방지제(6PPD((디메틸부틸)-N-페닐-페닐렌디아민) 및 왁스(Microcrystaline Wax)를 혼련하였다. 이때, 혼련기의 초기 온도를 70℃로 제어하고, 배합 완료 후 145℃ 내지 155℃의 배출온도에서 1차 배합물을 얻었다. 제2단 혼련에서는 상기 1차 배합물을 실온까지 냉각한 후, 혼련기에 1차 배합물, 황, 고무촉진제(DPD(디페닐구아닌)) 및 가황촉진제(CZ(N-시틀로헥실-2-벤조티아질술펜아미드))를 가하고, 100℃ 이하의 온도에서 믹싱하여 2차 배합물을 얻었다. 이후, 160℃에서 20분간 큐어링 공정을 거쳐 고무시편을 제조하였다.
2) 인장 특성
인장특성은 ASTM 412의 인장 시험법에 준하여 각 시험편을 제조하고 상기 시험편의 절단시의 인장강도 및 300% 신장시의 인장응력(300% 모듈러스)를 측정하였다. 구체적으로, 인장특성은 Universal Test Machin 4204(Instron 社) 인장 시험기를 이용하여 실온에서 50 cm/min의 속도로 측정하였다.
3) 점탄성 특성
점탄성 특성은 동적 기계 분석기(GABO 社)를 이용하여 Film Tension 모드로 주파수 10 Hz, 각 측정온도(-60℃~60℃)에서 동적 변형에 대한 점탄성 거동을 측정하여 tan δ값을 확인하였다. 이때, 저온 0℃ tan 값이 높은 것일 수록 젖은 노면저항성이 우수하고, 고온 60℃ tan δ 값이 높은 것일 수록 히스테리시스 손실이 적고, 저주행저항성(연비성) 이 우수함을 나타내는 것이나, 하기 표 3에서 결과값은 비교예 1의 측정 결과값을 기준으로 지수화하여 나타내었으므로, 수치가 높을수록 우수함을 나타낸다.
4) 가공성 특성
상기 1) 고무 시편 제조 시 얻어진 2차 배합물의 무니 점도(MV, (ML1+4, @100℃) MU)를 측정하여 각 중합체의 가공성 특성을 비교분석하였으며, 이때 무니점도 측정값이 낮은 것일수록 가공성 특성이 우수함을 나타낸다.
구체적으로, MV-2000(ALPHA Technologies 社)를 이용하여 100℃에서 Rotor Speed 2±0.02 rpm, Large Rotor를 사용하여, 각 2차 배합물은 실온(23±3℃)에서 30분 이상 방치한 후 27±3 g을 채취하여 다이 캐비티 내부에 채워 놓고 Platen을 작동시켜 4분 동안 측정하였다.
5) 내마모성(DIN 마모시험)
각 고무 시편에 대하여, ASTM D5963에 준하여 DIN 마모시험을 진행하고, DIN wt loss index(손실부피지수(loss volume index): ARIA(Abration resistance index, Method A)로 나타내었다. 수치가 높을수록 우수함을 나타낸다.
Figure PCTKR2019008584-appb-T000003
상기 표 3에 나타난 바와 같이, 본 발명의 일 실시예에 따른 실시예 1 내지 8은 비교예 1 내지 4와 비교하여 인장특성, 점탄성 특성, 내마모성 및 가공성이 모두 향상된 것을 확인하였다.
관련하여, 실시예 1 내지 8과 비교하여 비교예 1은 점탄성 특성, 내마모성 및 가공성이, 비교예 2는 인장강도 및 내마모성이, 비교예 3은 가공성이, 그리고 비교예 4는 내마모성 및 가공성이 크게 저하되었다. 이때, 비교예 1은 중합체의 유리전이온도와 1,2-비닐 결합 함량이 본 발명에서 제시하는 범위를 벗어났으며, 비교예 2 및 비교예 3은 무니점도와 무니완화율이, 그리고 비교예 4는 무니 완화율이 본 발명에서 제시하는 범위를 벗어난 것이었다.
상기의 결과는, 본 발명 변성 공액디엔계 중합체는 특정 범위로 조절된 유리전이온도, 1,2-비닐 결합 함량을 가지면서 동시에 특정범위로 조절된 무니점도와 무니 완화율을 가짐으로써 인장특성, 점탄성 특성 및 내마모성이 우수하면서도 동시에 가공성에서도 현저히 개선된 효과를 나타낼 수 있는 것임을 의미하는 것이다.

Claims (12)

  1. 하기 i) 내지 v)의 조건을 충족하는 변성 공액디엔계 중합체:
    i) 유리전이온도: -90℃ 내지 -50℃,
    ii) ASTM D1646 조건에서 측정한 무니 점도: 50 내지 100,
    iii) 중합체 총 중량 대비 1,2-비닐 결합 함량: 30.0 중량% 이하,
    iv) 분자량 분포(PDI; MWD): 1.5 내지 3.5, 그리고
    v) 110℃에서 측정되는 무니 완화율: 0.7 이하.
  2. 제1항에 있어서,
    유리전이온도가 -80℃ 내지 -50℃인 것인 변성 공액디엔계 중합체.
  3. 제1항에 있어서,
    ASTM D1646 조건에서 측정한 무니 점도가 70 내지 100인 것인 변성 공액디엔계 중합체.
  4. 제1항에 있어서,
    중합체 내 1,2-비닐 결합 함량이 5 중량% 내지 30 중량%인 것인 변성 공액디엔계 중합체.
  5. 제1항에 있어서,
    분자량 분포가 1.7 내지 2.6인 것인 변성 공액디엔계 중합체.
  6. 제1항에 있어서,
    110℃에서 측정되는 무늬 완화율이 0.45 이하인 것인 변성 공액디엔계 중합체.
  7. 제1항에 있어서,
    상기 변성 공액디엔계 중합체는 수평균 분자량(Mn)이 1,000 g/mol 내지 2,000,000 g/mol이고, 중량평균 분자량(Mw)이 1,000 g/mol 내지 3,000,000 g/mol인 변성 공액디엔계 중합체.
  8. 제1항에 있어서,
    상기 변성 공액디엔계 중합체는 N 원자를 가지며, 상기 N 원자의 함유량이 상기 중합체 총 중량에 대하여 50ppm 이상인 것인 변성 공액디엔계 중합체.
  9. 제1항에 있어서,
    상기 변성 공액디엔계 중합체는 Si 원자를 가지며, 상기 Si 원자의 함유량이 상기 중합체 총 중량에 대하여 50ppm 이상인 것인 변성 공액디엔계 중합체.
  10. 제1항에 따른 변성 공액디엔계 중합체 및 충진제를 포함하는 고무 조성물.
  11. 제10항에 있어서,
    상기 고무 조성물은 상기 변성 공액디엔계 중합체 100 중량부에 대하여, 0.1 중량부 내지 200 중량부의 충진제를 포함하는 것인 고무 조성물.
  12. 제10항에 있어서,
    상기 충진제는 실리카계 충진제 또는 카본블랙계 충진제인 고무 조성물.
PCT/KR2019/008584 2018-07-11 2019-07-11 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물 WO2020013638A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19835021.7A EP3705502B1 (en) 2018-07-11 2019-07-11 Modified conjugated diene-based polymer and rubber composition comprising same
CN201980006081.7A CN111433234B (zh) 2018-07-11 2019-07-11 改性共轭二烯类聚合物和包含该改性共轭二烯类聚合物的橡胶组合物
BR112020012802-3A BR112020012802B1 (pt) 2018-07-11 2019-07-11 Polímero à base de dieno conjugado modificado e composição de borracha que inclui o mesmo
US16/770,367 US10995163B2 (en) 2018-07-11 2019-07-11 Modified conjugated diene-based polymer and rubber composition including the same
RU2020120560A RU2762063C1 (ru) 2018-07-11 2019-07-11 Модифицированный полимер на основе сопряженного диена и каучуковая композиция, содержащая его
JP2020530525A JP7004818B2 (ja) 2018-07-11 2019-07-11 変性共役ジエン系重合体およびそれを含むゴム組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180080581 2018-07-11
KR10-2018-0080581 2018-07-11
KR1020190082689A KR102035177B1 (ko) 2018-07-11 2019-07-09 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR10-2019-0082689 2019-07-09

Publications (1)

Publication Number Publication Date
WO2020013638A1 true WO2020013638A1 (ko) 2020-01-16

Family

ID=68542138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008584 WO2020013638A1 (ko) 2018-07-11 2019-07-11 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물

Country Status (8)

Country Link
US (1) US10995163B2 (ko)
EP (1) EP3705502B1 (ko)
JP (1) JP7004818B2 (ko)
KR (1) KR102035177B1 (ko)
CN (1) CN111433234B (ko)
RU (1) RU2762063C1 (ko)
TW (1) TWI753275B (ko)
WO (1) WO2020013638A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230145924A (ko) 2022-04-11 2023-10-18 아사히 가세이 가부시키가이샤 변성 공액 디엔계 중합체 및 변성 공액 디엔계 중합체의 제조 방법, 그리고 변성 공액 디엔계 중합체 조성물 및 고무 조성물

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102288852B1 (ko) * 2018-05-25 2021-08-12 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
US20220348700A1 (en) * 2020-01-20 2022-11-03 Lg Chem, Ltd. Modified Conjugated Diene-Based Polymer, Method for Preparing the Same, and Rubber Composition Including the Same
US10968041B1 (en) * 2020-06-19 2021-04-06 Contitech Transportbandsysteme Gmbh High cut/gouge and abrasion resistance conveyor belt cover
KR20220066817A (ko) * 2020-11-16 2022-05-24 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
US20230146440A1 (en) * 2020-11-16 2023-05-11 Lg Chem, Ltd. Oil-Extended Conjugated Diene-Based Polymer and Rubber Composition Comprising the Same
TW202229367A (zh) * 2020-11-16 2022-08-01 南韓商Lg化學股份有限公司 改質之共軛二烯系聚合物及包含彼之橡膠組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397994A (en) 1980-09-20 1983-08-09 Japan Synthetic Rubber Co., Ltd. High vinyl polybutadiene or styrene-butadiene copolymer
KR20130096333A (ko) * 2009-04-07 2013-08-29 아사히 가세이 케미칼즈 가부시키가이샤 분지상 공액 디엔-방향족 비닐 공중합체, 및 그의 제조 방법
US20140309332A1 (en) * 2011-11-03 2014-10-16 Lanxess Deutschland Gmbh Ndbr wet masterbatch
US20180037674A1 (en) * 2015-02-19 2018-02-08 Asahi Kasei Kabushiki Kaisha Modified Conjugated Diene-Based Polymer and Method for Producing the Same, and Modified Conjugated Diene-Based Polymer Composition
KR20180054412A (ko) * 2016-11-14 2018-05-24 주식회사 엘지화학 변성 단량체, 이를 포함하는 변성 공액디엔계 중합체 및 이의 제조방법
KR20180065931A (ko) * 2016-12-07 2018-06-18 아사히 가세이 가부시키가이샤 변성 공액 디엔계 중합체, 변성 공액 디엔계 중합체 조성물, 및 타이어

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110880A (en) * 1997-06-24 2000-08-29 Exxon Chemical Patents Inc Polyolefin block copolymer viscosity modifier
US6184298B1 (en) * 1998-06-19 2001-02-06 E. I. Du Pont De Nemours And Company Adhesive compositions based on blends of grafted polyethylenes and non-grafted polyethylenes and styrene container rubber
US7084228B2 (en) * 2002-07-29 2006-08-01 Michelin Recherche Et Technique S.A. Rubber composition for a tire tread
JP5194846B2 (ja) 2008-01-31 2013-05-08 日本ゼオン株式会社 ベーストレッド用ゴム組成物
RU2475368C2 (ru) * 2008-04-30 2013-02-20 Бриджстоун Корпорейшн Покрышка, изготовленная с использованием каучуковой композиции, содержащей модифицированный полимер
SG174596A1 (en) * 2009-05-13 2011-10-28 Asahi Kasei Chemicals Corp Method for producing branched conjugated diene-based polymer
JP2013515871A (ja) * 2009-12-23 2013-05-09 インビスタ テクノロジーズ エス エイ アール エル 抗粘着添加剤を含む弾性繊維
KR101432412B1 (ko) 2010-04-16 2014-08-20 아사히 가세이 케미칼즈 가부시키가이샤 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체 및 변성 공액 디엔계 중합체 조성물
JP5845883B2 (ja) 2010-12-28 2016-01-20 日本ゼオン株式会社 変性共役ジエン系ゴム組成物の製造方法、ゴム組成物の製造方法、ゴム架橋物の製造方法及びタイヤの製造方法
JP6032882B2 (ja) 2011-10-19 2016-11-30 旭化成株式会社 サイドウォール用ゴム組成物
WO2013066329A1 (en) * 2011-11-03 2013-05-10 Lanxess Deutschland Gmbh NdBR WET MASTERBATCH
EP2676968A1 (de) * 2012-06-18 2013-12-25 LANXESS Deutschland GmbH Hoch Mooney NdBR mit Mooneysprung
KR101534101B1 (ko) * 2013-10-17 2015-07-07 주식회사 엘지화학 변성 공액 디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물
EP3080205A1 (en) * 2013-12-09 2016-10-19 Trinseo Europe GmbH Silane modified elastomeric polymers
JP6278691B2 (ja) 2013-12-20 2018-02-14 旭化成株式会社 変性共役ジエン系重合体組成物
TWI653245B (zh) * 2013-12-30 2019-03-11 Arlanxeo Deutschland Gmbh 含有苯酚之氫化腈橡膠
JP6609987B2 (ja) 2015-05-15 2019-11-27 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
FR3042193A1 (fr) * 2015-10-08 2017-04-14 Michelin & Cie Elastomere dienique possedant une fonction en milieu de chaine et composition de caoutchouc le contenant
FR3042194A1 (fr) * 2015-10-08 2017-04-14 Michelin & Cie Composition de caoutchouc contenant un elastomere dienique possedant une fonction en milieu de chaine
JP6227843B1 (ja) * 2016-03-31 2017-11-08 バンドー化学株式会社 伝動ベルト
KR102099923B1 (ko) * 2016-08-12 2020-04-10 주식회사 엘지화학 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
KR102354835B1 (ko) * 2017-01-03 2022-01-25 주식회사 엘지화학 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
CN108646450A (zh) * 2018-04-23 2018-10-12 深圳市华星光电半导体显示技术有限公司 一种显示面板的加热系统及加热方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397994A (en) 1980-09-20 1983-08-09 Japan Synthetic Rubber Co., Ltd. High vinyl polybutadiene or styrene-butadiene copolymer
KR20130096333A (ko) * 2009-04-07 2013-08-29 아사히 가세이 케미칼즈 가부시키가이샤 분지상 공액 디엔-방향족 비닐 공중합체, 및 그의 제조 방법
US20140309332A1 (en) * 2011-11-03 2014-10-16 Lanxess Deutschland Gmbh Ndbr wet masterbatch
US20180037674A1 (en) * 2015-02-19 2018-02-08 Asahi Kasei Kabushiki Kaisha Modified Conjugated Diene-Based Polymer and Method for Producing the Same, and Modified Conjugated Diene-Based Polymer Composition
KR20180054412A (ko) * 2016-11-14 2018-05-24 주식회사 엘지화학 변성 단량체, 이를 포함하는 변성 공액디엔계 중합체 및 이의 제조방법
KR20180065931A (ko) * 2016-12-07 2018-06-18 아사히 가세이 가부시키가이샤 변성 공액 디엔계 중합체, 변성 공액 디엔계 중합체 조성물, 및 타이어

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3705502A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230145924A (ko) 2022-04-11 2023-10-18 아사히 가세이 가부시키가이샤 변성 공액 디엔계 중합체 및 변성 공액 디엔계 중합체의 제조 방법, 그리고 변성 공액 디엔계 중합체 조성물 및 고무 조성물

Also Published As

Publication number Publication date
TWI753275B (zh) 2022-01-21
KR102035177B1 (ko) 2019-11-08
CN111433234A (zh) 2020-07-17
BR112020012802A2 (pt) 2020-11-24
RU2762063C1 (ru) 2021-12-15
EP3705502B1 (en) 2023-05-17
CN111433234B (zh) 2021-05-11
JP2021505717A (ja) 2021-02-18
EP3705502A1 (en) 2020-09-09
EP3705502A4 (en) 2020-11-25
US10995163B2 (en) 2021-05-04
JP7004818B2 (ja) 2022-01-21
TW202005997A (zh) 2020-02-01
US20210009722A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
WO2018128288A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2020013638A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2018128285A1 (ko) 변성 공액디엔계 중합체 제조방법
WO2019112260A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2018128290A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2017217720A1 (ko) 변성 공액디엔계 중합체의 제조방법 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2019216645A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2019216636A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2017078408A1 (ko) 유기 리튬 화합물, 이를 이용한 변성 공액디엔계 중합체 제조 방법 및 변성 공액디엔계 중합체
WO2017191921A1 (ko) 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2017105012A1 (ko) 변성 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2017188641A2 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2018128291A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2018105845A1 (ko) 변성제, 변성 공액디엔계 중합체 및 이들의 제조방법
WO2017150852A1 (ko) 아자실란계 변성제 및 이를 이용한 변성 공액디엔계 중합체의 제조방법
WO2017061831A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2021066543A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2021107434A1 (ko) 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2018128330A1 (ko) 아민 화합물, 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체 및 변성 공액디엔계 중합체의 제조방법
WO2018128289A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2016085102A1 (ko) 말단 기능성 공액 디엔계 중합체 및 이의 제조 방법
WO2017111499A1 (ko) 고분자 화합물, 이를 이용한 변성 공액디엔계 중합체의 제조방법 및 변성 공액디엔계 중합체
WO2019225824A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2017111463A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 변성제
WO2016085285A1 (ko) 변성 스티렌-부타디엔 공중합체, 이의 제조방법 및 이를 포함하는 고무 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19835021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530525

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019835021

Country of ref document: EP

Effective date: 20200602

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020012802

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020012802

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200623

NENP Non-entry into the national phase

Ref country code: DE