WO2016085285A1 - 변성 스티렌-부타디엔 공중합체, 이의 제조방법 및 이를 포함하는 고무 조성물 - Google Patents

변성 스티렌-부타디엔 공중합체, 이의 제조방법 및 이를 포함하는 고무 조성물 Download PDF

Info

Publication number
WO2016085285A1
WO2016085285A1 PCT/KR2015/012821 KR2015012821W WO2016085285A1 WO 2016085285 A1 WO2016085285 A1 WO 2016085285A1 KR 2015012821 W KR2015012821 W KR 2015012821W WO 2016085285 A1 WO2016085285 A1 WO 2016085285A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
amino
propanoate
triethoxysilyl
Prior art date
Application number
PCT/KR2015/012821
Other languages
English (en)
French (fr)
Inventor
최승호
김민수
김철재
최원문
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140186009A external-priority patent/KR101814861B1/ko
Priority claimed from KR1020150166690A external-priority patent/KR101672655B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2016574228A priority Critical patent/JP6633553B2/ja
Priority to EP15864093.8A priority patent/EP3225636B1/en
Priority to US15/324,815 priority patent/US10174133B2/en
Publication of WO2016085285A1 publication Critical patent/WO2016085285A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/26Incorporating metal atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/46Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/46Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals
    • C08F4/48Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals selected from lithium, rubidium, caesium or francium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a modified styrene-butadiene copolymer of high modulus, a preparation method thereof, a rubber composition comprising the same, and a tire made from the rubber composition.
  • a method of reducing the hysteresis loss of the vulcanized rubber In order to reduce the rolling resistance of the tire, there is a method of reducing the hysteresis loss of the vulcanized rubber.
  • a repulsive elasticity of 50 ° C. to 80 ° C., tan ⁇ , Goodrich heating and the like are used as an evaluation index of the vulcanized rubber. That is, a rubber material having a high rebound elasticity at the above temperature or a small tan ⁇ or good rich heat generation is preferable.
  • conjugated diene-based (co) polymers such as styrene-butadiene rubber (hereinafter referred to as SBR) or butadiene rubber (hereinafter referred to as BR) have been produced by emulsion polymerization or solution polymerization and used as rubber for tires. .
  • SBR styrene-butadiene rubber
  • BR butadiene rubber
  • the greatest advantage of solution polymerization over emulsion polymerization is that the vinyl structure content and styrene content that define rubber properties can be arbitrarily controlled, and molecular weight and physical properties can be adjusted by coupling or modification. It can be adjusted. Therefore, it is easy to change the structure of the final manufactured SBR or BR rubber, and the movement of the chain ends can be reduced by the bonding or modification of the chain ends, and the bonding strength with fillers such as silica or carbon black can be increased. It is widely used as a rubber material for tires.
  • the vinyl content in the SBR is increased to increase the glass transition temperature of the rubber, thereby controlling tire required properties such as running resistance and braking force, and properly adjusting the glass transition temperature. By adjusting the fuel consumption can be reduced.
  • the solution polymerization SBR is prepared using an anionic polymerization initiator, and is used by binding or modifying the chain ends of the formed polymer using various modifiers.
  • carbon black and silica are used as reinforcing fillers for tire treads, and when silica is used as reinforcing fillers, low hysteresis loss and wet skid resistance are improved.
  • the hydrophilic surface silica has a disadvantage of poor dispersibility due to low affinity with rubber compared to the hydrophobic surface carbon black, so that a separate silane coupler may be used to improve dispersibility or to impart a bond between silica and rubber. It is necessary to use a ring agent.
  • the present invention has been made to solve the problems of the prior art, and an object of the present invention is to provide a modified styrene-butadiene copolymer of high modification rate.
  • Another object of the present invention is to provide a method for producing the modified styrene-butadiene copolymer.
  • Still another object of the present invention is to provide a rubber composition comprising the modified styrene-butadiene copolymer.
  • Another object of the present invention to provide a tire manufactured using the rubber composition.
  • Another object of the present invention is to provide a modifier useful for the preparation of the modified styrene-butadiene copolymer.
  • the present invention provides a modified styrene-butadiene copolymer containing a modifier-derived functional group represented by the following formula (1).
  • A is a hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group having 1 to 20 carbon atoms containing at least one hetero atom selected from the group consisting of N, S and O,
  • R 1 and R 2 are each independently unsubstituted or substituted with one or more substituents selected from the group consisting of a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 30 carbon atoms Divalent hydrocarbon group having 1 to 20 carbon atoms,
  • R 3 to R 5 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms
  • n is an integer of 1 or 2
  • n is an integer of 2
  • the present invention comprises the steps of polymerizing an aromatic vinyl monomer and conjugated diene monomer in the presence of an organometallic compound in a hydrocarbon solvent to prepare an active polymer in which the alkali metal is bound (step 1); And it provides a method for producing the modified styrene-butadiene copolymer comprising the step (step 2) of reacting the active polymer with a modifier represented by the formula (1).
  • the present invention also provides a rubber composition comprising the modified styrene-butadiene copolymer.
  • the present invention provides a tire manufactured using the rubber composition.
  • the present invention provides a denaturing agent having the structure of Chemical Formula 1.
  • the modified styrene-butadiene copolymer according to the present invention may be excellent in affinity with a filler such as silica by including a modifier-derived functional group represented by Formula 1, such as a tertiary amine group and a silica affinity group or a hexane affinity group. It can show a high denaturation rate.
  • a filler such as silica by including a modifier-derived functional group represented by Formula 1, such as a tertiary amine group and a silica affinity group or a hexane affinity group. It can show a high denaturation rate.
  • the modified styrene-butadiene copolymer according to the present invention can easily prepare a modified styrene-butadiene copolymer having a high modification rate by high solubility of the modifier by using a modifier represented by the formula (1).
  • the rubber composition according to the present invention may be excellent in workability by including a modified styrene-butadiene copolymer having excellent affinity with the filler, and as a result, the processed product (for example, a tire) manufactured using the rubber composition may be tensile. Strength, wear resistance and wet road resistance properties may be excellent.
  • the denaturant represented by Formula 1 according to the present invention has an effect of not increasing the pattern viscosity due to hydrolysis and condensation reaction by introducing a highly reactive carbonyl group at the anion terminal.
  • FIG. 1 schematically shows a modification reaction using a denaturing agent according to an embodiment of the present invention.
  • the present invention provides a modified styrene-butadiene copolymer having excellent affinity with fillers and improved processability.
  • the modified styrene-butadiene copolymer according to an embodiment of the present invention is characterized by including a modifier-derived functional group represented by the following formula (1).
  • A is a hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group having 1 to 20 carbon atoms containing at least one hetero atom selected from the group consisting of N, S and O,
  • R 1 and R 2 are each independently unsubstituted or substituted with one or more substituents selected from the group consisting of a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 30 carbon atoms Divalent hydrocarbon group having 1 to 20 carbon atoms,
  • R 3 to R 5 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms
  • n is an integer from 0 to 3
  • n is an integer of 1 or 2 provided that n is an integer of 2, if said A is a C1-C20 hydrocarbon group.
  • the modified styrene-butadiene copolymer may be prepared by reacting the active polymer to which the organic alkali metal is bound and the modifier represented by Formula 1 through the production method described below, wherein the modified styrene-butadiene copolymer is represented by Formula 1
  • a modifier-derived functional group represented by physical properties can be improved.
  • the modifying agent represented by Chemical Formula 1 is a functional functional group capable of improving physical properties of the copolymer, and includes at least one of inorganic filler affinity functional groups and inorganic filler affinity functional groups and solvent affinity functional groups. Can be.
  • the denaturant of Formula 1 may include an ester group exhibiting high reactivity with respect to the active site of the active polymer, thereby modifying the styrene-butadiene copolymer with high denaturation rate, and as a result, the functional group substituted with the modifier styrene Butadiene copolymers can be introduced in high yields.
  • the modifying agent may be a functional group capable of improving the dispersibility of the inorganic filler by preventing agglomeration between the inorganic fillers in the rubber composition, and may include an amino group, specifically, a tertiary amino group.
  • the denaturant has excellent affinity for the solvent used for the modification of the inorganic filler affinity functional group and the styrene-butadiene copolymer which can improve the abrasion resistance and processability of the rubber composition by interacting with the inorganic filler together with the amino group described above. It may contain at least one or more of the solvent-affinity functional groups exhibiting chemical compatibility.
  • the inorganic filler affinity functional group is specifically an alkoxysilyl group, which is introduced into the styrene-butadiene copolymer, and then condensation reaction of the functional group on the surface of the inorganic filler, for example, the silanol group on the silica surface when the inorganic filler is silica.
  • the wear resistance and processability of the butadiene copolymer can be improved. This improvement can be improved as the number of alkoxysilyl groups increases.
  • the solvent-affinity functional group specifically increases the solubility of the denaturant in the solvent during the modification process for the styrene-butadiene copolymer as a hydrocarbon group such as an alkyl group or an aryl group, and as a result, the modification rate of the styrene-butadiene copolymer Can be improved.
  • A may be a hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group having 1 to 20 carbon atoms including at least one hetero atom selected from the group consisting of N, S, and O.
  • A is a hydrocarbon group having 1 to 20 carbon atoms
  • it is selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an arylalkyl group having 7 to 20 carbon atoms.
  • A may be selected from the group consisting of an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an arylalkyl group having 7 to 12 carbon atoms. have.
  • A when A is a C1-C20 hydrocarbon group containing a hetero atom, it contains a hetero atom instead of one or more carbon atoms in a hydrocarbon group;
  • at least one hydrogen atom bonded to a carbon atom in a hydrocarbon group may be substituted with a hetero atom or a hetero atom-containing functional group, wherein the hetero atom may be selected from the group consisting of N, O, and S.
  • A is a C1-C20 hydrocarbon group containing a hetero atom, an alkoxy group; Phenoxy group; Carboxyl groups; Acid anhydride groups; Amino group; Amide group; Epoxy groups; Mercapto group; -[R 11 O] x R 12 (wherein R 11 is an alkylene group having 2 to 20 carbon atoms, R 12 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl having 6 to 20 carbon atoms) Group and an arylalkyl group having 7 to 20 carbon atoms, and x is an integer of 2 to 10; Hydrocarbon group having 1 to 20 carbon atoms containing at least one functional group selected from the group consisting of hydroxy group, alkoxy group, phenoxy, carboxyl group, ester group, acid anhydride group, amino group, amide group, epoxy group and mercapto group (for example, Hydroxy
  • A is an alkyl group having 1 to 20 carbon atoms including a hetero atom, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, a phenoxyalkyl group having 7 to 20 carbon atoms, and 1 to C carbon atoms 20 aminoalkyl group and-[R 11 O] x R 12 (wherein R 11 is an alkylene group having 2 to 10 carbon atoms, R12 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, and 6 carbon atoms) It may be selected from the group consisting of an aryl group of 18 to 18 and an arylalkyl group of 7 to 18 carbon atoms, x is an integer of 2 to 10).
  • R 1 and R 2 are each independently a divalent hydrocarbon group having 1 to 20 carbon atoms, specifically, an alkylene group having 1 to 10 carbon atoms such as methylene group, ethylene group or propylene group; Arylene groups having 6 to 20 carbon atoms such as a phenylene group and the like; Or an arylalkylene group having 7 to 20 carbon atoms as a combination group thereof. More specifically, R 1 and R 2 may be each independently an alkylene group having 1 to 5 carbon atoms. More specifically, R 1 may be an alkylene group having 2 or 3 carbon atoms, and R 2 may be an alkylene group having 1 to 3 carbon atoms.
  • each of R 1 and R 2 may be independently substituted with one or more substituents selected from the group consisting of a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 30 carbon atoms. It may be.
  • R 3 to R 5 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, specifically, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 18 carbon atoms, and having 6 to 18 carbon atoms. It may be selected from the group consisting of an aryl group and combinations thereof. More specifically, R 3 and R 4 are each independently an alkyl group having 1 to 5 carbon atoms, R 5 may be an alkyl group having 1 to 5 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms. More specifically, R 3 to R 5 may be each independently an alkyl group having 1 to 5 carbon atoms.
  • m is an integer of 0 to 3, more specifically may be an integer of 0 to 2.
  • n is an integer of 1 or 2, provided that n is an integer of 2 provided that A is a hydrocarbon group of 1 to 20 carbon atoms.
  • A is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, an arylalkyl group having 7 to 12 carbon atoms, and alkoxy having 2 to 10 carbon atoms.
  • Alkyl group, phenoxyalkyl group having 7 to 12 carbon atoms, aminoalkyl group having 1 to 10 carbon atoms, and-[R 11 O] x R 12 (Wherein R 11 is an alkylene group having 2 to 10 carbon atoms, R 12 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, an aryl group having 6 to 18 carbon atoms and an arylalkyl group having 7 to 18 carbon atoms) It is selected from the group consisting of, x is any one selected from the group consisting of 2 to 10, R 1 and R 2 are each independently an alkylene group having 1 or 5 carbon atoms, R 3 and R 4 are each Independently an alkyl group having 1 to 5 carbon atoms, R 5 is an alkyl group having 1 to 5 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms, m is an integer of 0 to 2 and
  • the denaturing agent is 2-methoxyethyl 3- (bis (3-triethoxysilyl) propyl) amino) propanoate (2-methoxyethyl 3- (bis (3-triethoxysilylpropyl) amino) propanoate), 2-phenoxyethyl 3- (bis (3- (triethoxysilyl) propyl) amino) propanoate, 2-methoxy Ethyl 3- (bis (3- (diethoxy (methyl) silyl) propyl) amino) propanoate, 2-methoxyethyl 3- (bis (3- (diethoxy (methyl) silyl) propyl) amino) propanoate), 2- Ethoxyethyl 3- (bis (3-diethoxy (methyl) silyl) propyl) amino) propanoate (2-ethoxyethyl 3- (bis (3- (diethoxy (methyl) silyl) propyl) amino) propanoate), ethyl 3- (bis (3-diethoxy (
  • the denaturing agent of Formula 1 is 2-phenoxyethyl 3- (cyclohexyl ((triethoxysilyl) methyl) amino) propanoate, 2-methoxyethyl 3- (cyclohexyl ((triethoxysilyl ) Methyl) amino) propanoate, 2- (dimethylamino) ethyl 3- (cyclohexyl ((triethoxysilyl) methyl) amino) propanoate, 2,5,8,11,14,17,20, 23,26-nonaoxaoctachoic acid-28-yl 3- (bis (3- (triethoxysilyl) propyl) amino) propanoate, 2- (2- (2- (2-phenoxyethoxy) Ethoxy) ethoxy) ethyl 3- (bis (3- (triethoxysilyl) propyl) amino) propanoate, 2-phenoxyethyl 3- (bis (3-triethoxysilyl)
  • the denaturant may be a solubility (solubilitity) in a non-polar solvent, such as 100 g of hexane at 25 °C, 1 atm pressure of 10 g or more.
  • solubility of the denaturant means the degree of clear dissolution without a hazy phenomenon when observed by the naked eye. By exhibiting such high solubility, it is possible to exhibit an excellent modification rate for the styrene-butadiene copolymer.
  • the denaturant according to the present invention has an optimized functional group capable of maximizing affinity for inorganic fillers and solvents, and thus is used as a modifier of styrene-butadiene copolymers to provide excellent viscoelasticity, tensile properties and Workability can be provided.
  • the modified styrene-butadiene copolymer may be a copolymer of a conjugated diene monomer and an aromatic vinyl monomer. That is, the modified styrene-butadiene copolymer may include a conjugated diene monomer derived unit and an aromatic vinyl monomer derived unit.
  • derived unit may refer to a component, a structure, or the substance itself resulting from a substance.
  • modified styrene-butadiene copolymer may be a random copolymer.
  • random copolymer may indicate that the structural units constituting the copolymer are randomly arranged.
  • the conjugated diene monomer is not particularly limited, but for example, 1,3-butadiene, 2,3-dimenyl-1,3-butadiene, piperylene, 3-butyl-1,3-octadiene, isoprene and 2- It may be one or more selected from the group consisting of phenyl-1,3-butadiene.
  • the modified styrene-butadiene copolymer may include 60% by weight or more, specifically 60% by weight to 90% by weight, more specifically 60% by weight to 85% by weight of the conjugated diene-based monomer-derived unit.
  • the aromatic vinyl monomer is not particularly limited, but for example, styrene, ⁇ -methyl styrene, 3-methyl styrene, 4-methyl styrene, 4-propyl styrene, 1-vinylnaphthalene, 4-cyclohexyl styrene, 4- (p It may be one or more selected from the group consisting of -methylphenyl) styrene and 1-vinyl-5-hexylnaphthalene.
  • the modified styrene-butadiene copolymer may include 40 wt% or less, specifically 10 wt% to 40 wt%, and more specifically 15 wt% to 40 wt% of the aromatic vinyl monomer-derived unit.
  • the modified styrene-butadiene copolymer has a number average molecular weight of 1,000 g / mol to 2,000,000 g / mol, specifically 10,000 g / mol to 2,000,000 g / mol, more specifically 100,000 g / mol to 2,000,000 g / mol Can be.
  • the modified styrene-butadiene copolymer may have a molecular weight distribution (Mw / Mn) of 1.1 to 10, specifically 1.1 to 5, more specifically 1.1 to 4.
  • Mw / Mn molecular weight distribution
  • the processability of the rubber composition including the same may be improved, and as a result, mechanical properties, low fuel consumption characteristics, and wear resistance of the manufactured molded article may be improved.
  • the modified styrene-butadiene copolymer may have a vinyl content of 5 wt%, specifically 10 wt% or more, and more specifically 14 wt% to 70 wt%. If the modified styrene-butadiene copolymer exhibits a vinyl content in the above range, the glass transition temperature may be adjusted to an appropriate range, thereby satisfying the properties required for the tire such as running resistance and braking force when applied to the tire. Rather, it reduces fuel consumption.
  • the vinyl content refers to the content of 1,2-added conjugated diene monomer, not 1,4-addition, based on 100% by weight of the styrene-butadiene copolymer composed of a monomer having a vinyl group and an aromatic vinyl monomer. .
  • the present invention provides a method for producing a modified styrene-butadiene copolymer comprising a modifier derived group represented by the formula (1).
  • the production method comprises the steps of preparing an active polymer combined with an alkali metal by polymerizing an aromatic vinyl monomer and a conjugated diene monomer in the presence of an organometallic compound in a hydrocarbon solvent (step 1); And reacting the active polymer with a denaturant represented by Formula 1 below (step 2).
  • A is a hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group having 1 to 20 carbon atoms containing at least one hetero atom selected from the group consisting of N, S and O,
  • R 1 and R 2 are each independently unsubstituted or substituted with one or more substituents selected from the group consisting of a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 30 carbon atoms Divalent hydrocarbon group having 1 to 20 carbon atoms,
  • R 3 to R 5 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms
  • n is an integer of 1 or 2
  • n is an integer of 2
  • Step 1 is a step for preparing an active polymer combined with an organic metal, it can be carried out by polymerizing a conjugated diene monomer and an aromatic vinyl monomer in the presence of an organometallic compound in a hydrocarbon solvent.
  • the active polymer may refer to a polymer in which a polymer anion and an organic metal cation are bonded.
  • conjugated diene monomer and the aromatic vinyl monomer may be as described above, and the amount of each monomer may be in the range described above for the conjugated diene monomer derived unit and the aromatic vinyl monomer derived unit in the modified styrene-butadiene copolymer. It may be used to adjust appropriately within the range adjusted to.
  • the hydrocarbon solvent is not particularly limited, but may be, for example, one or more selected from the group consisting of n-pentane, n-hexane, n-heptane, isooctane, cyclohexane, toluene, benzene and xylene.
  • the organometallic compound may be one or more selected from the group consisting of an organic alkali metal compound or an organic lithium compound, an organic sodium compound, an organic potassium compound, an organic rubidium compound, and an organic cesium compound.
  • the organometallic compound may be methyllithium, ethyllithium, propyllithium, n-butyllithium, s-butyllithium, t-butyllithium, hexyllithium, n-decyllithium, t-octylithium, phenyllithium, 1- Naphthyllithium, n-eicosilium, 4-butylphenyllithium, 4-tolyllithium, cyclohexyllithium, 3,5-di-n-heptylcyclohexyllithium, 4-cyclopentyllithium, naphthyl sodium, naphthyl It may be one or more selected from the group consisting of potassium, lithium alkoxide, sodium alkoxide, potassium alkoxide, lithium sulfonate, sodium sulfonate, potassium sulfonate, lithium amide, sodium amide, potassium amide, lithium isopropylamide.
  • the organometallic compound may be used in an amount of 0.01 mmnol to 10 mmol based on 100 g of a total monomer. Specifically, the organometallic compound may be used in an amount of 0.05 mmol to 5 mmol, more specifically 0.1 mmol to 2 mmol, and more specifically 0.1 mmol to 1 mmol based on 100 g of the total monomer.
  • the polymerization of step 1 may be carried out by further adding a polar additive as needed, the polar additive is 0.001 g to 50 g, specifically 0.001 g to 10 g, more specifically based on a total of 100 g monomer May be added at 0.005 g to 0.1 g.
  • the polar additive may be added in an amount of 0.001 g to 10 g, specifically 0.005 g to 1 g, and more specifically 0.005 g to 0.1 g based on 1 mmol of the total organometallic compound.
  • the polar additives may be salts, ethers, amines or mixtures thereof, specifically tetrahydrofuran, ditetrahydrofurylpropane, diethyl ether, cycloamal ether, dipropyl ether, ethylene dimethyl ether, ethylene dimethyl ether, di From the group consisting of ethylene glycol, dimethyl ether, tertiary butoxyethoxyethane bis (3-dimethylaminoethyl) ether, (dimethylaminoethyl) ethyl ether, trimethylamine, triethylamine, tripropylamine and tetramethylethylenediamine It may be one or more selected. More specifically, it may be ditetrahydropropylpropane, triethylamine or tetramethylethylenediamine.
  • the reaction rate may be easily compensated for by forming a random copolymer. Can be induced.
  • the polymerization of step 1 may be anionic polymerization, and specifically, may be living anionic polymerization of obtaining an active site by a growth reaction by anions.
  • the polymerization may be elevated temperature polymerization, isothermal polymerization or constant temperature polymerization (thermal insulation polymerization).
  • the constant temperature polymerization refers to a polymerization method including a step of polymerizing with self-heating reaction without adding heat after the addition of the organometallic compound
  • the temperature rising polymerization is a temperature by optionally applying heat after adding the organometallic compound
  • the isothermal polymerization refers to a polymerization method of increasing the heat by adding heat after the addition of the organometallic compound or increasing the heat or taking away the heat to maintain a constant temperature of the polymerization product.
  • the polymerization may be performed at a temperature range of -20 ° C to 200 ° C, specifically 0 ° C to 150 ° C, and more specifically 10 ° C to 120 ° C.
  • Step 2 is a step of reacting the active polymer with a modifier represented by Chemical Formula 1 to prepare a modified styrene-butadiene copolymer.
  • the modifier represented by Formula 1 may be as described above, and may be used in the reaction by mixing one or two or more kinds.
  • the modifier represented by Chemical Formula 1 may be used in an amount of 0.1 mol to 10 mol relative to 1 mol of the organometallic compound. Specifically, the modifier represented by Chemical Formula 1 may be used in an amount of 0.3 mol to 2 mol with respect to 1 mol of the organometallic compound. If the denaturant is used in an amount within the ratio range, it is possible to perform a modification reaction of optimum performance, thereby obtaining a styrene-butadiene copolymer having a high modification rate.
  • the reaction of step 2 is a modification reaction for introducing a functional group into the copolymer, it may be to perform the reaction for 1 minute to 5 hours at 0 °C to 90 °C.
  • the method for producing the modified styrene-butadiene copolymer according to an embodiment of the present invention may be carried out by a batch polymerization (batch) or a continuous polymerization method comprising one or more reactors.
  • the preparation method according to an embodiment of the present invention may further include one or more steps of recovering and drying the solvent and the unreacted monomer, if necessary after step 2 above.
  • the present invention also provides a rubber composition comprising the modified styrene-butadiene copolymer.
  • the rubber composition according to an embodiment of the present invention is to include a modified styrene-butadiene copolymer 10 wt% or more, specifically 10 wt% to 100 wt%, more specifically 20 wt% to 90 wt%. Can be. If the content of the modified styrene-butadiene copolymer is less than 10% by weight, the effect of improving the wear resistance and the crack resistance of a molded article, for example, a tire manufactured using the rubber composition may be insignificant.
  • the rubber composition may further include other rubber components as needed in addition to the modified styrene-butadiene copolymer, wherein the rubber components may be included in an amount of 90% by weight or less based on the total weight of the rubber composition. Specifically, 1 part by weight to 900 parts by weight based on 100 parts by weight of the modified styrene-butadiene copolymer may be included.
  • the rubber component may be natural rubber or synthetic rubber, for example, the rubber component may include natural rubber (NR) including cis-1,4-polyisoprene; Modified natural rubbers such as epoxidized natural rubber (ENR), deproteinized natural rubber (DPNR), and hydrogenated natural rubber obtained by modifying or refining the general natural rubber; Styrene-butadiene copolymer (SBR), polybutadiene (BR), polyisoprene (IR), butyl rubber (IIR), ethylene-propylene copolymer, polyisobutylene-co-isoprene, neoprene, poly (ethylene-co- Propylene), poly (styrene-co-butadiene), poly (styrene-co-isoprene), poly (styrene-co-isoprene-co-butadiene), poly (isoprene-co-butadiene), poly (ethylene-co-propylene Co-diene),
  • the rubber composition may include 0.1 parts by weight to 200 parts by weight of a filler based on 100 parts by weight of the modified styrene-butadiene copolymer, and specifically, may include 10 parts by weight to 120 parts by weight of a filler.
  • the filler may be a silica-based filler, and the silica-based filler is not particularly limited but may be, for example, wet silica (silicate silicate), dry silica (silicate anhydride), calcium silicate, aluminum silicate or colloidal silica. More specifically, the filler may be a wet silica having the most remarkable effect of improving the breaking property and wet grip.
  • the rubber composition according to an embodiment of the present invention may further include a carbon black filler as needed.
  • silica when silica is used as the filler, a silane coupling agent may be used together to improve reinforcement and low heat generation.
  • silane coupling agent examples include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane , 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasul Feed, 3-triethoxysilylpropyl-N, N
  • the silane coupling agent may be bis (3-triethoxysilylpropyl) polysulfide or 3-trimethoxysilylpropylbenzothiazyl tetrasulfide.
  • the compounding amount of the silane coupling agent is usually used. Can be further reduced.
  • the silane coupling agent may be used in an amount of 1 to 20 parts by weight based on 100 parts by weight of silica. When used in the above range, the gelation of the rubber component can be prevented while the effect as a coupling agent is sufficiently exhibited. More specifically, the silane coupling agent may be used in 5 parts by weight to 15 parts by weight based on 100 parts by weight of silica.
  • the rubber composition according to an embodiment of the present invention may be sulfur crosslinkable, and thus may further include a vulcanizing agent.
  • the vulcanizing agent may be specifically sulfur powder, and may be included in an amount of 0.1 parts by weight to 10 parts by weight based on 100 parts by weight of the rubber component. When included in the content range, it is possible to ensure the required elastic modulus and strength of the vulcanized rubber composition, and at the same time obtain a low fuel consumption.
  • the rubber composition according to an embodiment of the present invention in addition to the components described above, various additives commonly used in the rubber industry, specifically, vulcanization accelerators, process oils, plasticizers, anti-aging agents, anti-scoring agents, zinc white (zinc white) ), Stearic acid, a thermosetting resin, or a thermoplastic resin may be further included.
  • the said vulcanization accelerator is not specifically limited, Specifically, M (2-mercapto benzothiazole), DM (dibenzothiazyl disulfide), CZ (N-cyclohexyl-2- benzothiazyl sulfenamide), etc. Thiazole compounds, or guanidine compounds such as DPG (diphenylguanidine) can be used.
  • the vulcanization accelerator may be included in an amount of 0.1 parts by weight to 5 parts by weight based on 100 parts by weight of the rubber component.
  • the process oil acts as a softener in the rubber composition, specifically, may be a paraffinic, naphthenic, or aromatic compound, and more specifically, aromatic process oil, hysteresis loss in consideration of tensile strength and wear resistance. And naphthenic or paraffinic process oils may be used when considering low temperature properties.
  • the process oil may be included in an amount of 100 parts by weight or less with respect to 100 parts by weight of the rubber component, when included in the content, it is possible to prevent the degradation of tensile strength, low heat generation (low fuel consumption) of the vulcanized rubber.
  • the anti-aging agent specifically N-isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, 6- Methoxy-2,2,4-trimethyl-1,2-dihydroquinoline, or a high temperature condensate of diphenylamine and acetone.
  • the anti-aging agent may be used in an amount of 0.1 parts by weight to 6 parts by weight based on 100 parts by weight of the rubber component.
  • the rubber composition according to an embodiment of the present invention can be obtained by kneading using a kneading machine such as a Banbury mixer, a roll, an internal mixer, etc. by the above formulation, and also has low heat resistance and abrasion resistance by a vulcanization process after molding. This excellent rubber composition can be obtained.
  • a kneading machine such as a Banbury mixer, a roll, an internal mixer, etc.
  • the rubber composition may be used for tire members such as tire treads, under treads, sidewalls, carcass coated rubbers, belt coated rubbers, bead fillers, pancreapers, or bead coated rubbers, dustproof rubbers, belt conveyors, hoses, and the like. It may be useful for the production of various industrial rubber products.
  • the present invention provides a tire manufactured using the rubber composition.
  • the tire may include a tire or a tire tread.
  • the present invention provides a modifier useful for the modification of the modified styrene-butadiene copolymer.
  • the denaturant is as described above.
  • the denaturant represented by Chemical Formula 1 may be prepared by the reaction of the compound of Formula 2 with the compound of Formula 3.
  • R is an alkyl having 2 to 20 carbon atoms unsubstituted or substituted with one or more substituents selected from the group consisting of a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 30 carbon atoms. It may be a kenyl group.
  • R may be an alkenyl group having 2 to 10 carbon atoms, and more specifically, may be an alkenyl group having 2 to 5 carbon atoms such as an ethylene group.
  • the compound of Formula 2 may be ethylene glycol methyl ether acrylate (Ethylene glycol methyl ether acrylate), 2-phenoxyethyl acrylate (2-phenoxyethyl acrylate), ethyl acrylate (ethylacrylate) and the like.
  • the compound of Formula 3 is bis [3- (triethoxysilyl) propyl] amine (Bis [3- (triethoxysilyl) propyl] amine) or bis (methyldiethoxysilylpropyl) amine (bis (methyldiethoxysilylpropyl) amine ) And the like.
  • the compounds of Formulas 2 and 3 may be used in stoichiometric amounts, specifically, the compound of Formula 3 may be used in a molar ratio of 0.01 to 0.2 with respect to 1 mole of the compound of Formula 2, and more specifically 0.05 to It may be used at a molar ratio of 0.1, even more specifically 0.05 to 0.08 molar ratio.
  • reaction of the compound of Formula 2 and the compound of Formula 3 may be carried out in an aqueous solvent.
  • aqueous solvent include alcohols (eg, lower alcohols having 1 to 5 carbon atoms such as ethanol), and any one or a mixture of two or more thereof may be used.
  • reaction of the compound of Formula 2 and the compound of Formula 3 may be carried out in an inert gas atmosphere.
  • the inert gas include nitrogen and argon.
  • reaction of the compound of Formula 2 and the compound of Formula 3 may be carried out in a temperature range of 20 °C to 60 °C. If the temperature during the reaction is less than 20 °C reaction rate is too slow, there is a risk that the reaction efficiency is lowered, if the temperature exceeds 60 °C reaction time is too fast the reaction rate is difficult to control the reaction and there is a fear of side reactions.
  • a denaturant including a single intramolecular filler affinity functional group and a solvent affinity functional group can be easily prepared.
  • styrene Into a 20 L autoclave reactor, 270 g of styrene, 710 g of 1,3 butadiene, 5 kg of normal hexane, 0.94 g of DTP (2,2-di (2-tetrahydrofuryl) propane) were added as a polar additive. It heated up at 40 degreeC. When the temperature inside the reactor reached 40 ° C, 25.40 g (2.62 wt% in hexane, 33% activation) of n-butyllithium was added to the reactor to perform an adiabatic heating reaction. After 20 minutes, 20.0 g of 1,3-butadiene was added to cap the SSBR end with butadiene.
  • DTP 2,2-di (2-tetrahydrofuryl) propane
  • a modified conjugated diene-based copolymer was prepared in the same manner as in Example 1 except that N, N-bis (triethoxysilylpropyl) piperazine was used as the modifier.
  • the binding efficiency (%) and the pattern viscosity (MV) were measured, respectively. The results are shown in Table 1 below.
  • the weight average molecular weight (Mw), the number average molecular weight (Mn) and the maximum peak molecular weight (Mp) were measured through GPC (Gel permeation chromatohraph) analysis, molecular weight distribution (MWD, Mw / Mn) and binding efficiency (%) It calculated and obtained from each said measured molecular weight.
  • GPC Gel permeation chromatohraph analysis
  • MWD molecular weight distribution
  • Mw / Mn molecular weight distribution
  • binding efficiency (%) % It calculated and obtained from each said measured molecular weight.
  • the GPC used a combination of two PLgel Olexis (Polymer Laboratories Co.) column and one PLgel mixed-C (Polymer Laboratories Co.) column, all of the newly replaced column was a mixed bed column,
  • the GPC standard material was calculated using polystyrene (PS) when calculating the molecular weight.
  • the modified styrene-butadiene copolymers of Examples 1 and 2 prepared using the modifying agent according to the present invention are polymers compared to the modified styrene-butadiene copolymer of the comparative example prepared using the conventional modifying agent. It was confirmed that the binding efficiency of the components increased significantly.
  • the binding efficiency of the polymer component of the modified styrene-butadiene copolymer of Example 1 (62%, Mp 77X10 4 And 124 ⁇ 10 4 ) showed a 2.7-fold increase in the binding efficiency (57%, Mp 53X10 4 ) of the polymer component of the styrene-butadiene copolymer of Comparative Example, indicating high molecular weight.
  • the increase in the molecular weight indicates that the denaturant according to the present invention has increased reactivity by introducing an ester group having a high reactivity with the polymer active moiety compared to the conventional denaturant, thereby producing a high-modified polymer. Is the result.
  • Example 2 although the amount of the modifier was 77% of the amount of the modifier in the comparative example, it was confirmed that the binding efficiency of the polymer component was increased (60%) with high modification efficiency. As a result, as shown in FIG.
  • the active site (-Li + ) of the metal-bonded copolymer is bonded to oxygen in the ethylene glycol group of the denaturing agent and the reaction rate is increased by increasing the reactivity of the anion thereto.
  • the modification reaction can be more easily achieved, thereby increasing the coupling efficiency of the polymer component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 화학식 1로 표시되는 변성제 유래 작용기를 포함하는 고변성률의 변성 스티렌-부타디엔 공중합체, 이의 제조방법, 이를 포함하는 고무 조성물 및 상기 고무 조성물로부터 제조된 타이어에 관한 것이다.

Description

변성 스티렌-부타디엔 공중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
[관련출원과의 상호인용]
본 출원은 2014년 11월 28일자 한국 특허 출원 제10-2014-0168978호, 2014년 12월 4일자 한국 특허 출원 제10-2014-0172962호, 2014년 12월 22일자 한국 특허 출원 제10-2014-0186009호 및 2015년 11월 26일자 한국 특허 출원 제10-2015-0166690호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 문헌 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 고변성률의 변성 스티렌-부타디엔 공중합체, 이의 제조방법, 이를 포함하는 고무 조성물 및 상기 고무 조성물로부터 제조된 타이어에 관한 것이다.
최근 자동차에 대한 저연비화의 요구에 따라, 타이어용 고무 재료로서 구름 저항이 적고, 내마모성, 인장 특성이 우수하며, 웨트 스키드 저항으로 대표되는 조정 안정성도 겸비한 공액디엔계 중합체가 요구되고 있다.
타이어의 구름 저항을 감소시키기 위해서는 가황 고무의 히스테리시스 손실을 작게하는 방안이 있으며, 이러한 가황 고무의 평가 지표로서는 50℃ 내지 80℃의 반발탄성, tan δ, 굿리치 발열 등이 이용된다. 즉, 상기 온도에서의 반발탄성이 크거나 tan δ 또는 굿리치 발열이 작은 고무 재료가 바람직하다.
히스테리시스 손실이 작은 고무 재료로서는, 천연 고무, 폴리이소프렌고무 또는 폴리부타디엔 고무 등이 알려져 있지만, 이들은 웨트 스키드 저항성이 작은 문제가 있다. 이에 최근에는 스티렌-부타디엔 고무(이하, SBR이라함) 또는 부타디엔 고무(이하, BR 이라함)와 같은 공액디엔계 (공)중합체가 유화중합이나 용액중합에 의해 제조되어 타이어용 고무로서 이용되고 있다. 이 중, 유화중합에 비해 용액중합이 갖는 최대의 장점은 고무 물성을 규정하는 비닐 구조 함량 및 스티렌 함량을 임의로 조절할 수 있고, 커플링(coupling)이나, 변성(modification) 등에 의해 분자량 및 물성 등을 조절할 수 있다는 점이다. 따라서, 최종 제조된 SBR 이나 BR 고무의 구조 변화가 용이하고, 사슬 말단의 결합이나 변성으로 사슬 말단의 움직임을 줄이고 실리카 또는 카본블랙 등의 충전제와의 결합력을 증가시킬 수 있어 용액 중합 의한 SBR 고무가 타이어용 고무 재료로 많이 사용된다.
이러한 용액중합 SBR이 타이어용 고무 재료로 사용되는 경우 상기 SBR 내의 비닐 함량을 증가시킴으로써 고무의 유리전이온도를 상승시켜 주행저항 및 제동력과 같은 타이어 요구 물성을 조절할 수 있을 뿐만 아니라, 유리전이온도를 적절히 조절함으로서 연료소모를 줄일 수 있다.
상기 용액중합 SBR은 음이온 중합 개시제를 사용하여 제조하며, 형성된 중합체의 사슬 말단을 여러 가지 변성제를 이용하여 결합시키거나, 변성시켜 사용되고 있다.
한편, 타이어 트레드의 보강성 충전제로서 카본블랙 및 실리카 등이 사용되고 있는데, 보강성 충전제로서 실리카를 이용하는 경우 저히스테리시스 손실성 및 웨트 스키드 저항성이 향상된다는 장점이 있다. 그러나, 소수성 표면의 카본블랙 대비 친수성 표면의 실리카는 고무와의 친화성이 낮아 분산성이 나쁘다는 결점을 가지고 있어, 분산성을 개선시키거나 실리카-고무 간의 결합 부여를 행하기 위해 별도의 실란 커플링제를 사용할 필요가 있다.
이에, 고무 분자 말단부에 실리카와의 친화성이나 반응성을 갖는 관능기를 도입하는 방안이 이루어지고 있으나, 그 효과가 충분하지 않은 실정이다.
또한, 실리카에 대한 친화성만 향상시키는 경우 상대적으로 카본블랙과의 친화성은 저하되고, 이에 적용 범위에 한계가 있을 수 있다.
따라서, 실리카뿐 아니라 카본블랙과도 친화성이 높은 고무의 개발이 필요한 실정이다.
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 고변성률의 변성 스티렌-부타디엔 공중합체를 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은 상기의 변성 스티렌-부타디엔 공중합체의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기의 변성 스티렌-부타디엔 공중합체를 포함하는 고무 조성물을 제공하는 것이다.
아울러, 본 발명의 또 다른 목적은 상기 고무 조성물을 이용하여 제조된 타이어를 제공하는 것이다.
더 나아가, 본 발명의 또 다른 목적은 상기의 변성 스티렌-부타디엔 공중합체의 제조에 유용한 변성제를 제공하는 것이다.
상기의 과제를 해결하기 위하여, 본 발명은 하기 화학식 1로 표시되는 변성제 유래 작용기를 포함하는 변성 스티렌-부타디엔 공중합체를 제공한다.
[화학식 1]
Figure PCTKR2015012821-appb-I000001
상기 화학식 1에서,
A는 탄소수 1 내지 20의 탄화수소기이거나, 또는 N, S 및 O로 이루어진 군에서 선택되는 헤테로 원자를 1종 이상 포함하는 탄소수 1 내지 20의 탄화수소기이고,
R1 및 R2는 각각 독립적으로 탄소수 1 내지 20의 선형 또는 분지형 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 또는 비치환된 탄소수 1 내지 20의 2가 탄화수소기이며,
R3 내지 R5는 각각 독립적으로 탄소수 1 내지 20의 1가 탄화수소기이고,
m은 0 내지 3의 정수이고, 그리고 n은 1 또는 2의 정수이며, 단, 상기 A가 탄소수 1 내지 20의 탄화수소기이면, n은 2의 정수이다.
또한, 본 발명은 탄화수소 용매 중에서, 유기 금속 화합물 존재 하에서 방향족 비닐계 단량체 및 공액디엔계 단량체를 중합하여 알칼리 금속이 결합된 활성 중합체를 제조하는 단계(단계 1); 및 상기 활성 중합체를 상기 화학식 1로 표시되는 변성제와 반응시키는 단계(단계 2)를 포함하는 상기의 변성 스티렌-부타디엔 공중합체의 제조방법을 제공한다.
또한, 본 발명은 상기의 변성 스티렌-부타디엔 공중합체를 포함하는 고무 조성물을 제공한다.
아울러, 본 발명은 상기 고무 조성물을 이용하여 제조된 타이어를 제공한다.
더 나아가, 본 발명은 상기 화학식 1의 구조를 갖는 변성제를 제공한다.
본 발명에 따른 변성 스티렌-부타디엔 공중합체는 화학식 1로 표시되는 변성제 유래 작용기, 예컨대 3급 아민기 및 실리카 친화성기 또는 헥산 친화성기를 포함함으로써 실리카 등의 충전제와의 친화성이 우수할 수 있으며, 고변성율을 나타낼 수 있다.
또한, 본 발명에 따른 변성 스티렌-부타디엔 공중합체는 화학식 1로 표시되는 변성제를 이용함으로써 상기 변성제의 높은 용해도에 의해 고변성률을 갖는 변성 스티렌-부타디엔 공중합체를 용이하게 제조할 수 있다.
또한, 본 발명에 따른 고무 조성물은 충전제와의 친화성이 우수한 변성 스티렌-부타디엔 공중합체를 포함함으로써 가공성이 우수할 수 있으며, 결과적으로 상기 고무 조성물을 이용하여 제조된 가공품(예컨대, 타이어)은 인장강도, 내마모성 및 젖은 노면 저항성 특성이 우수할 수 있다.
아울러, 본 발명에 따른 화학식 1로 표시되는 변성제는 음이온 말단에 반응성이 높은 카보닐기가 도입되어 있음으로써 가수분해 및 축합반응에 의한 무늬점도를 상승시키지 않는 효과가 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 구체적인 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명의 일 실시예에 따른 변성제를 이용한 변성반응을 개략적으로 나타내는 것이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 충전제와 친화성이 우수하여 가공성이 개선된 변성 스티렌-부타디엔 공중합체를 제공한다.
본 발명의 일 실시예에 따른 상기 변성 스티렌-부타디엔 공중합체는 하기 화학식 1로 표시되는 변성제 유래 작용기를 포함하는 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2015012821-appb-I000002
상기 화학식 1에서,
A는 탄소수 1 내지 20의 탄화수소기이거나, 또는 N, S 및 O로 이루어진 군에서 선택되는 헤테로 원자를 1종 이상 포함하는 탄소수 1 내지 20의 탄화수소기이고,
R1 및 R2는 각각 독립적으로 탄소수 1 내지 20의 선형 또는 분지형 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 또는 비치환된 탄소수 1 내지 20의 2가 탄화수소기이며,
R3 내지 R5는 각각 독립적으로 탄소수 1 내지 20의 1가 탄화수소기이고,
m은 0 내지 3의 정수이고, 그리고
n은 1 또는 2의 정수이며, 단 상기 A가 탄소수 1 내지 20의 탄화수소기이면 n은 2의 정수이다.
상기 변성 스티렌-부타디엔 공중합체는 후술하는 제조방법을 통해 유기 알칼리 금속이 결합된 활성 중합체와 상기 화학식 1로 표시되는 변성제를 반응시킴으로써 제조되는 것일 수 있으며, 상기 변성 스티렌-부타디엔 공중합체는 상기 화학식 1로 표시되는 변성제 유래 작용기를 포함함으로써 물성적 특성이 개선될 수 있다.
상기 화학식 1로 표시되는 변성제는 상기 공중합체에 물성적 특성을 개선시킬 수 있는 관능성 작용기로서 무기 충전제 분산성 향상용 작용기, 및 무기 충전제 친화성 작용기와 용매 친화성 작용기 중 적어도 하나를 포함하는 것일 수 있다.
구체적으로, 상기 화학식 1의 변성제는 활성 중합체의 활성 부위에 대해 높은 반응성을 나타내는 에스테르기를 포함함으로써 스티렌-부타디엔 공중합체를 높은 변성율로 변성시킬 수 있으며, 그 결과 변성제에 치환된 관능성 작용기를 스티렌-부타디엔 공중합체 내에 높은 수율로 도입할 수 있다. 또 상기 변성제는 고무 조성물 내 무기 충전제 간의 응집을 막음으로써 무기 충전제의 분산성을 향상시킬 수 있는 작용기로서, 아미노기, 구체적으로는 3급 아미노기를 포함하는 것일 수 있다. 예컨대, 무기 충전제로서 실리카를 사용하는 경우 표면에 존재하는 수산화기 간의 수소결합에 의해 응집이 발생하기 쉽다. 이에 대해 상기 변성제 내 3급 아미노기가 수산화기끼리의 수소 결합을 방해함으로써 실리카의 분산성을 향상시킬 수 있다. 또한, 상기 변성제는 상기한 아미노기와 함께 무기 충전제와의 상호작용으로 고무 조성물의 내마모성 및 가공성을 향상시킬 수 있는 무기 충전제 친화성 작용기 및 스티렌-부타디엔 공중합체의 변성반응에 사용되는 용매에 대해 우수한 친화성을 나타내는 용매 친화성 작용기 중 적어도 1종 이상을 포함하는 것일 수 있다. 상기 무기 충전제 친화성 작용기는 구체적으로 알콕시실릴기로서, 스티렌-부타디엔 공중합체에 도입된 후, 무기 충전제 표면의 작용기, 예를 들어 상기 무기 충전제가 실리카일 경우 실리카 표면의 실라놀기와 축합반응하여 스티렌-부타디엔 공중합체의 내마모성 및 가공성을 향상시킬 수 있다. 이 같은 개선 효과는 알콕시실릴기의 수가 증가할 수록 향상될 수 있다. 또한, 상기 용매 친화성 작용기는 구체적으로 알킬기 또는 아릴기 등과 같은 탄화수소기로서 스티렌-부타디엔 공중합체 대한 변성 공정 시 용매에 대한 변성제의 용해도를 증가시키고, 그 결과로서 스티렌-부타디엔 공중합체의 변성율을 향상시킬 수 있다.
구체적으로, 상기 화학식 1에 있어서 A는 탄소수 1 내지 20의 탄화수소기이거나, 또는 N, S 및 O로 이루어진 군에서 선택되는 헤테로 원자를 1종 이상 포함하는 탄소수 1 내지 20의 탄화수소기일 수 있다.
또한, 상기 A가 탄소수 1 내지 20의 탄화수소기인 경우, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 6 내지 20의 아릴기, 및 탄소수 7 내지 20의 아릴알킬기로 이루어진 군에서 선택되는 것일 수 있으며, 보다 더 구체적으로는 A는 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 12의 사이클로알킬기, 탄소수 6 내지 12의 아릴기 및 탄소수 7 내지 12의 아릴알킬기로 이루어진 군에서 선택되는 것일 수 있다.
또한, 상기 A가 헤테로 원자를 포함하는 탄소수 1 내지 20의 탄화수소기일 경우, 탄화수소기내 1 이상의 탄소원자 대신에 헤테로 원자를 포함하는 것이거나; 또는 탄화수소기내 탄소원자에 결합된 1 이상의 수소 원자가 헤테로 원자, 또는 헤테로 원자 포함 작용기로 치환된 것일 수 있으며, 이때 상기 헤테로 원자는 N, O 및 S로 이루어진 군에서 선택되는 것일 수 있다. 보다 구체적으로는 상기 A가 헤테로 원자를 포함하는 탄소수 1 내지 20의 탄화수소기일 경우, 알콕시기; 페녹시기; 카르복시기; 산무수물기; 아미노기; 아미드기; 에폭시기; 머캅토기; -[R11O]xR12 (이때 R11은 탄소수 2 내지 20의 알킬렌기이고, R12는 수소원자, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 6 내지 20의 아릴기 및 탄소수 7 내지 20의 아릴알킬기로 이루어진 군에서 선택되며, x는 2 내지 10의 정수임); 히드록시기, 알콕시기, 페녹시, 카르복시기, 에스테르기, 산무수물기, 아미노기, 아미드기, 에폭시기 및 머캅토기로 이루어진 군에서 선택되는 1 이상의 작용기를 포함하는 탄소수 1 내지 20의 탄화수소기(예를 들면, 히드록시알킬기, 알콕시알킬기, 페녹시알킬기, 아미노알킬기 또는 티올알킬기 등)일 수 있다. 보다 더 구체적으로, 상기 A가 헤테로 원자를 포함하는 탄소수 1 내지 20의 알킬기일 경우, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 7 내지 20의 페녹시알킬기, 탄소수 1 내지 20의 아미노알킬기 및 -[R11O]xR12 (이때 R11은 탄소수 2 내지 10의 알킬렌기이고, R12는 수소원자, 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 12의 사이클로알킬기, 탄소수 6 내지 18의 아릴기 및 탄소수 7 내지 18의 아릴알킬기로 이루어진 군에서 선택되며, x는 2 내지 10의 정수임)로 이루어진 군에서 선택되는 것일 수 있다.
또한, 상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 20의 2가 탄화수소기이며, 구체적으로는 메틸렌기, 에틸렌기 또는 프로필렌기 등과 같은 탄소수 1 내지 10의 알킬렌기; 페닐렌기 등과 같은 탄소수 6 내지 20의 아릴렌기; 또는 이들의 조합기로서 탄소수 7 내지 20의 아릴알킬렌기일 수 있다. 보다 구체적으로, R1 및 R2는 각각 독립적으로 탄소수 1 내지 5의 알킬렌기일 수 있다. 보다 더 구체적으로는 R1은 탄소수 2 또는 3의 알킬렌기이고, R2는 탄소수 1 내지 3의 알킬렌기일 수 있다. 또, 상기 R1 및 R2는 각각 독립적으로 탄소수 1 내지 20의 선형 또는 분지형 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환될 수도 있다.
또한, 상기 화학식 1에서, R3 내지 R5는 각각 독립적으로 탄소수 1 내지 20의 1가 탄화수소기이며, 구체적으로는 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 18의 사이클로알킬기, 탄소수 6 내지 18의 아릴기 및 이들의 조합기로 이루어진 군에서 선택되는 것일 수 있다. 보다 구체적으로, R3 및 R4는 각각 독립적으로 탄소수 1 내지 5의 알킬기이고, R5는 탄소수 1 내지 5의 알킬기 또는 탄소수 3 내지 8의 사이클로알킬기일 수 있다. 보다 더 구체적으로 R3 내지 R5는 각각 독립적으로 탄소수 1 내지 5의 알킬기일 수 있다.
또한, 상기 화학식 1에서, m은 0 내지 3의 정수이고, 보다 구체적으로는 0 내지 2의 정수일 수 있다. 또 상기 n은 1 또는 2의 정수이며, 단, 상기 A가 탄소수 1 내지 20의 탄화수소기이면, n은 2의 정수이다.
보다 구체적으로, 상기 변성제는 화학식 1에서, A는 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 12의 사이클로알킬기, 탄소수 6 내지 12의 아릴기, 탄소수 7 내지 12의 아릴알킬기, 탄소수 2 내지 10의 알콕시알킬기, 탄소수 7 내지 12의 페녹시알킬기, 탄소수 1 내지 10의 아미노알킬기 및 -[R11O]xR12 (이때 R11은 탄소수 2 내지 10의 알킬렌기이고, R12는 수소원자, 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 12의 사이클로알킬기, 탄소수 6 내지 18의 아릴기 및 탄소수 7 내지 18의 아릴알킬기로 이루어진 군에서 선택되며, x는 2 내지 10의 정수임)로 이루어진 군에서 선택되는 어느 하나이고, R1 및 R2는 각각 독립적으로 탄소수 1 또는 5의 알킬렌기이며, R3 및 R4는 각각 독립적으로 탄소수 1 내지 5의 알킬기이고, R5는 탄소수 1 내지 5의 알킬기 또는 탄소수 3 내지 8의 사이클로알킬기이고, m은 0 내지 2의 정수이고 n은 1 또는 2의 정수이며, 단 상기 A가 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 6 내지 20의 아릴기, 또는 탄소수 7 내지 20의 아릴알킬기일 때, n은 2의 정수이다.
보다 더 구체적으로, 상기 변성제는 2-메톡시에틸 3-(비스(3-트리에톡시실릴)프로필)아미노)프로파노에이트(2-methoxyethyl 3-(bis(3-triethoxysilylpropyl)amino)propanoate), 2-페녹시에틸 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트(2-phenoxyethyl 3-(bis(3-(triethoxysilyl)propyl)amino)propanoate), 2-메톡시에틸 3-(비스(3-(디에톡시(메틸)실릴)프로필)아미노)프로파노에이트(2-methoxyethyl 3-(bis(3-(diethoxy(methyl)silyl)propyl)amino)propanoate), 2-에톡시에틸 3-(비스(3-디에톡시(메틸)실릴)프로필)아미노)프로파노에이트(2-ethoxyethyl 3-(bis(3-(diethoxy(methyl)silyl)propyl)amino)propanoate), 에틸 3-(비스(3-(디에톡시(메틸)실릴)프로필)아미노)프로파노에이트(ethyl 3-(bis(3-(diethoxy(methyl)silyl)propyl)amino)propanoate), 2-페녹시에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트(2-phenoxyethyl 3-(cyclohexyl((triethoxysilyl)methyl)amino)propanoate), 2-메톡시에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트(2-methoxyethyl 3-(cyclohexyl((triethoxysilyl)methyl)amino)propanoate), 2-(디메틸아미노)에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트(2-dimethylaminoethyl 3-(cyclohexyl((triethoxysilyl)methyl)amino)propanoate), 2,5,8,11,14,17,20,23,26-노나옥사옥타코산-28-일 3-(비스(3-트리에톡시실릴)프로필)아미노)프로파노에이트(2,5,8,11,14,17,20,23,26-nonaoxaoctacosan-28-yl 3-(bis(3-(triethoxysilyl)propyl)amino)propanoate), 2-(2-(2-(2-페녹시에톡시)에톡시)에톡시)에틸 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트(2-(2-(2-(2-phenoxyethoxy)ethoxy)ethoxy)ethyl 3-(bis(3-(triethoxysilyl)propyl)amino)propanoate), 2-(디메틸아미노)에틸 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트(2-(dimethylamino)ethyl 3-(bis(3-(triethoxysilyl)propyl)amino)propanoate), 2-(2-(2-(2-페녹시에톡시)에톡시)에톡시)에틸 3-(비스(3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트(2-(2-(2-(2-phenoxyethoxy)ethoxy)ethoxy)ethyl 3-(cyclohexyl((triethoxysilyl)methyl)amino)propanoate), 2-메톡시에틸 3-(비스(3-(디에톡시(메틸)실릴)프로필)아미노)프로파노에이트(2-methoxyethyl 3-(bis(3-(diethoxy(methyl)silyl)propyl)amino)propanoate) 또는 에틸 3-(비스(3-(디에톡시(메틸)실릴)프로필)아미노)프로파노에이트(ethyl 3-(bis(3-(diethoxy(methyl)silyl)propyl)amino)propanoate) 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
이중에서도, 상기 화학식 1의 변성제는 2-페녹시에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트, 2-메톡시에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트, 2-(디메틸아미노)에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트, 2,5,8,11,14,17,20,23,26-노나옥사옥타코산-28-일 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트, 2-(2-(2-(2-페녹시에톡시)에톡시)에톡시)에틸 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트, 2-페녹시에틸 3-(비스(3-트리에톡시실릴)프로필)아미노)프로파노에이트, 2-메톡시에틸 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트, 2-(디메틸아미노)에틸 3-(비스(3-트리에톡시실릴)프로필)아미노)프로파노에이트, 2-(2-(2-(2-페녹시에톡시)에톡시)에톡시)에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트, 2-메톡시에틸 3-(비스(3-(디에톡시(메틸)실릴)프로필)아미노)프로파노에이트 및 에틸 3-(비스(3-(디에톡시(메틸)실릴)프로필)아미노)프로파노에이트로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
또한, 상기 변성제는 25℃, 1기압에서 비극성 용매, 예컨대 헥산 100 g에 대한 용해도(solubilitity)가 10 g 이상인 것일 수 있다. 여기에서, 변성제의 용해도는 육안에 의한 관찰시 탁한 현상 없이 맑게 용해되는 정도를 의미하는 것이다. 이와 같이 높은 용해도를 나타냄으로써 스티렌-부타디엔 공중합체에 대한 우수한 변성율을 나타낼 수 있다.
본 발명에 따른 상기 변성제는 무기 충전제 및 용매에 대한 친화성을 최대화할 수 있는 최적화된 관능기를 가짐으로써, 스티렌-부타디엔 공중합체의 변성제로 사용되어 상기 스티렌-부타디엔 공중합체에 우수한 점탄성, 인장특성 및 가공성을 부여할 수 있다.
한편, 상기 변성 스티렌-부타디엔 공중합체는 공액디엔계 단량체 및 방향족 비닐계 단량체의 공중합체인 것일 수 있다. 즉, 상기 변성 스티렌-부타디엔 공중합체는 공액디엔계 단량체 유래단위 및 방향족 비닐계 단량체 유래단위를 포함하는 것일 수 있다.
본 발명에서 용어 “유래단위”는 어떤 물질로부터 기인한 성분, 구조 또는 그 물질 자체를 나타내는 것일 수 있다.
또한, 상기 변성 스티렌-부타디엔 공중합체는 랜덤 공중합체일 수 있다.
본 발명에서 용어 “랜덤 공중합체(random copolymer)”는 공중합체를 이루는 구성 단위가 무질서하게 배열된 것을 나타내는 것일 수 있다.
상기 공액디엔계 단량체는 특별히 제한되는 것은 아니나, 예컨대 1,3-부타디엔, 2,3-디메닐-1,3-부타디엔, 피페릴렌, 3-부틸-1,3-옥타디엔, 이소프렌 및 2-페닐-1,3-부타디엔으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 변성 스티렌-부타디엔 공중합체는 공액디엔계 단량체 유래단위를 60 중량% 이상, 구체적으로는 60 중량% 내지 90 중량%, 더 구체적으로는 60 중량% 내지 85 중량%로 포함하는 것일 수 있다.
상기 방향족 비닐계 단량체는 특별히 제한되는 것은 아니나, 예컨대 스티렌, α-메틸 스티렌, 3-메틸 스티렌, 4-메틸 스티렌, 4-프로필 스티렌, 1-비닐나프탈렌, 4-사이클로헥실스티렌, 4-(p-메틸페닐)스티렌 및 1-비닐-5-헥실나프탈렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 변성 스티렌-부타디엔 공중합체는 방향족 비닐계 단량체 유래 단위를 40 중량% 이하, 구체적으로는 10 중량% 내지 40 중량%, 더욱 구체적으로는 15 중량% 내지 40 중량%로 포함하는 것일 수 있다.
또한, 상기 변성 스티렌-부타디엔 공중합체는 수평균분자량이 1,000 g/mol 내지 2,000,000 g/mol, 구체적으로는 10,000 g/mol 내지 2,000,000 g/mol, 보다 구체적으로는 100,000 g/mol 내지 2,000,000 g/mol일 수 있다.
상기 변성 스티렌-부타디엔 공중합체는 분자량 분포(Mw/Mn)가 1.1 내지 10, 구체적으로는 1.1 내지 5, 보다 구체적으로는 1.1 내지 4일 수 있다. 상기 변성 스티렌-부타디엔 공중합체가 상기의 분자량 분포를 갖는 경우, 이를 포함하는 고무 조성물의 가공성이 개선되고 결과적으로 제조된 성형품의 기계적 특성, 저연비 특성 및 내마모성이 향상될 수 있다.
또한, 상기 변성 스티렌-부타디엔 공중합체는 비닐 함량이 5 중량%, 구체적으로는 10 중량% 이상, 보다 구체적으로는 14 중량% 내지 70 중량%일 수 있다. 만약, 상기 변성 스티렌-부타디엔 공중합체가 상기 범위의 비닐 함량을 나타내는 경우 유리전이온도가 적절한 범위로 조절될 수 있어 타이어에 적용 시 주행저항 및 제동력과 같은 타이어에 요구되는 물성을 만족시킬 수 있을 뿐만 아니라, 연료소모를 줄이는 효과가 있다.
여기에서, 상기 비닐 함량은 비닐기를 갖는 단량체와 방향족 비닐계 단량체로 이루어진 스티렌-부타디엔 공중합체 100 중량%에 대하여 1,4-첨가가 아닌 1,2-첨가된 공액디엔계 단량체의 함량을 의미한다.
또한, 본 발명은 상기 화학식 1로 표시되는 변성제 유래기를 포함하는 변성 스티렌-부타디엔 공중합체의 제조방법을 제공한다.
본 발명의 일 실시예에 따른 상기 제조방법은 탄화수소 용매 중에서, 유기 금속 화합물 존재 하에서 방향족 비닐계 단량체 및 공액디엔계 단량체를 중합하여 알칼리 금속이 결합된 활성 중합체를 제조하는 단계(단계 1); 및 상기 활성 중합체를 하기 화학식 1로 표시되는 변성제와 반응시키는 단계(단계 2)를 포함하는 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2015012821-appb-I000003
상기 화학식 1에서,
A는 탄소수 1 내지 20의 탄화수소기이거나, 또는 N, S 및 O로 이루어진 군에서 선택되는 헤테로 원자를 1종 이상 포함하는 탄소수 1 내지 20의 탄화수소기이고,
R1 및 R2는 각각 독립적으로 탄소수 1 내지 20의 선형 또는 분지형 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 또는 비치환된 탄소수 1 내지 20의 2가 탄화수소기이며,
R3 내지 R5는 각각 독립적으로 탄소수 1 내지 20의 1가 탄화수소기이고,
m은 0 내지 3의 정수이고, 그리고 n은 1 또는 2의 정수이며, 단, 상기 A가 탄소수 1 내지 20의 탄화수소기이면, n은 2의 정수이다.
상기 단계 1은 유기 금속이 결합된 활성 중합체를 제조하기 위한 단계로, 탄화수소 용매 중에서 유기 금속 화합물 존재 하 공액디엔계 단량체 및 방향족 비닐계 단량체를 중합함으로써 수행할 수 있다.
상기 활성 중합체는 중합체 음이온과 유기 금속 양이온이 결합된 중합체를 나타내는 것일 수 있다.
상기 공액디엔계 단량체 및 방향족 비닐계 단량체의 구체적인 종류는 전술한 바와 같을 수 있으며, 각 단량체의 사용량은 변성 스티렌-부타디엔 공중합체 내 공액디엔계 단량체 유래단위 및 방향족 비닐계 단량체 유래단위가 전술한 범위 내로 조절되는 범위에서 적절하게 조절하여 사용하는 것일 수 있다.
상기 탄화수소 용매는 특별히 제한되는 것은 아니나, 예컨대 n-펜탄, n-헥산, n-헵탄, 이소옥탄, 사이클로 헥산, 톨루엔, 벤젠 및 크실렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 유기 금속 화합물은 유기 알칼리금속 화합물 또는 유기 리튬 화합물, 유기 나트륨 화합물, 유기 칼륨 화합물, 유기 루비듐 화합물 및 유기 세슘 화합물로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
구체적으로, 상기 유기 금속 화합물은 메틸리튬, 에틸리튬, 프로필리튬, n-부틸리튬, s-부틸리튬, t-부틸리튬, 헥실리튬, n-데실리튬, t-옥틸리튬, 페닐리튬, 1-나프틸리튬, n-에이코실리튬, 4-부틸페닐리튬, 4-톨릴리튬, 사이클로헥실리튬, 3,5-디-n-헵틸사이클로헥실리튬, 4-사이클로펜틸리튬, 나프틸나트륨, 나프틸칼륨, 리튬 알콕사이드, 나트륨 알콕사이드, 칼륨 알콕사이드, 리튬 술포네이트, 나트륨 술포네이트, 칼륨 술포네이트, 리튬 아미드, 나트륨 아미드, 칼륨아미드, 리튬 이소프로필아미드로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 유기 금속 화합물은 단량체 총 100 g을 기준으로 0.01 mmnol 내지 10 mmol로 사용하는 것일 수 있다. 구체적으로는 상기 유기 금속 화합물은 단량체 총 100 g을 기준으로 0.05 mmol 내지 5 mmol, 더욱 구체적으로는 0.1 mmol 내지 2 mmol, 보다 더 구체적으로는 0.1 mmol 내지 1 mmol로 사용하는 것일 수 있다.
상기 단계 1의 중합은 필요에 따라 극성 첨가제를 더 첨가하여 수행하는 것일 수 있으며, 상기 극성 첨가제는 단량체 총 100 g을 기준으로 0.001 g 내지 50 g, 구체적으로는 0.001 g 내지 10 g, 더욱 구체적으로는 0.005 g 내지 0.1 g으로 첨가하는 것일 수 있다.
또한, 상기 극성 첨가제는 상기 유기 금속 화합물 총 1 mmol을 기준으로 0.001 g 내지 10 g, 구체적으로는 0.005 g 내지 1 g, 더욱 구체적으로는 0.005 g 내지 0.1 g으로 첨가하는 것일 수 있다.
상기 극성 첨가제는 염, 에테르, 아민 또는 이들 혼합물일 수 있으며, 구체적으로는 테트라하이드로퓨란, 디테트라하이드로퓨릴프로판, 디에틸에테르, 시클로아말에테르, 디프로필에테르, 에틸렌디메틸에테르, 에틸렌디메틸에테르, 디에틸렌글리콜, 디메틸에테르, 3차 부톡시에톡시에탄 비스(3-디메틸아미노에틸)에테르, (디메틸아미노에틸)에틸에테르, 트리메틸아민, 트리에틸아민, 트리프로필아민 및 테트라메틸에틸렌디아민으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다. 더욱 구체적으로는 디테트라히드로프로필프로판, 트리에틸아민 또는 테트라메틸에틸렌디아민일 수 있다.
본 발명의 일 실시예에 따른 제조방법은 상기의 극성 첨가제를 사용함으로써 공액디엔계 단량체 및 방향족 비닐계 단량체를 공중합시키는 경우 이들의 반응 속도 차이를 보완해줌으로써 랜덤 공중합체를 용이하게 형성할 수 있도록 유도할 수 있다.
상기 단계 1의 중합은 음이온 중합일 수 있고, 구체적으로는 음이온에 의한 성장반응에 의해 활성 부위를 얻는 리빙 음이온 중합일 수 있다.
또한, 상기 중합은 승온 중합, 등온 중합 또는 정온 중합(단열 중합)일 수 있다.
여기에서, 정온 중합은 유기 금속 화합물을 투입한 이후 임의로 열을 가하지 않고 자체 반응열로 중합시키는 단계를 포함하는 중합방법을 나타내는 것이고, 상기 승온 중합은 상기 유기 금속 화합물을 투입한 이후 임의로 열을 가하여 온도를 증가시키는 중합방법을 나타내는 것이며, 상기 등온 중합은 상기 유기 금속 화합물을 투입한 이후 열을 가하여 열을 증가시키거나 열을 뺏어 중합물의 온도를 일정하게 유지하는 중합방법을 나타내는 것이다.
상기 중합은 -20℃ 내지 200℃의 온도범위에서 수행하는 것일 수 있으며, 구체적으로는 0℃ 내지 150℃, 더욱 구체적으로는 10℃ 내지 120℃의 온도범위에서 수행하는 것일 수 있다.
상기 단계 2는 변성 스티렌-부타디엔 공중합체를 제조하기 위하여, 상기 활성 중합체와 상기 화학식 1로 표시되는 변성제와 반응시키는 단계이다.
상기 화학식 1로 표시되는 변성제는 전술한 바와 같을 수 있으며, 1종 또는 2종 이상을 혼합하여 상기 반응에 사용하는 것일 수 있다.
상기 화학식 1로 표시되는 변성제는 유기 금속 화합물 1몰 대비 0.1 mol 내지 10 mol로 사용하는 것일 수 있다. 구체적으로는 상기 화학식 1로 표시되는 변성제는 유기 금속 화합물 1몰 대비 0.3 mol 내지 2 mol로 사용하는 것일 수 있다. 만약, 상기 변성제를 상기의 비율범위가 되는 양으로 사용하는 경우 최적 성능의 변성반응을 수행할 수 있어, 고변성율의 스티렌-부타디엔 공중합체를 얻을 수 있다.
상기 단계 2의 반응은 공중합체에 관능기를 도입시키기 위한 변성반응으로, 0℃ 내지 90℃에서 1분 내지 5시간 동안 반응을 수행하는 것일 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 변성 스티렌-부타디엔 공중합체의 제조방법은 회분식(배치식) 또는 1종 이상의 반응기를 포함하는 연속식 중합방법에 의하여 수행하는 것일 수 있다.
본 발명의 일 실시예에 따른 제조방법은 상기 단계 2 이후에 필요에 따라 용매 및 미반응 단량체 회수 및 건조 중 1 이상의 단계를 더 포함할 수 있다.
또한, 본 발명은 상기의 변성 스티렌-부타디엔 공중합체를 포함하는 고무 조성물을 제공한다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 변성 스티렌-부타디엔 공중합체를 10 중량% 이상, 구체적으로는 10 중량% 내지 100 중량%, 더욱 구체적으로는 20 중량% 내지 90 중량%로 포함하는 것일 수 있다. 만약, 상기 변성 스티렌-부타디엔 공중합체의 함량이 10 중량% 미만인 경우 결과적으로 상기 고무 조성물을 이용하여 제조된 성형품, 예컨대 타이어의 내마모성 및 내균열성 등의 개선효과가 미미할 수 있다.
또한, 상기 고무 조성물은 상기 변성 스티렌-부타디엔 공중합체 외에 필요에 따라 다른 고무 성분을 더 포함할 수 있으며, 이때 상기 고무 성분은 고무 조성물 총 중량에 대하여 90 중량% 이하의 함량으로 포함될 수 있다. 구체적으로는 상기 변성 스티렌-부타디엔 공중합체 100 중량부에 대하여 1 중량부 내지 900 중량부로 포함되는 것일 수 있다.
상기 고무 성분은 천연고무 또는 합성고무일 수 있으며, 예컨대 상기 고무 성분은 시스-1,4-폴리이소프렌을 포함하는 천연고무(NR); 상기 일반적인 천연고무를 변성 또는 정제한, 에폭시화 천연고무(ENR), 탈단백 천연고무(DPNR), 수소화 천연고무 등의 변성 천연고무; 스티렌-부타디엔 공중합체(SBR), 폴리부타디엔(BR), 폴리이소프렌(IR), 부틸고무(IIR), 에틸렌-프로필렌 공중합체, 폴리이소부틸렌-코-이소프렌, 네오프렌, 폴리(에틸렌-코-프로필렌), 폴리(스티렌-코-부타디엔), 폴리(스티렌-코-이소프렌), 폴리(스티렌-코-이소프렌-코-부타디엔), 폴리(이소프렌-코-부타디엔), 폴리(에틸렌-코-프로필렌-코-디엔), 폴리설파이드 고무, 아크릴 고무, 우레탄 고무, 실리콘 고무, 에피클로로히드린 고무, 부틸 고무, 할로겐화 부틸 고무 등과 같은 합성고무일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 상기 고무 조성물은 변성 스티렌-부타디엔 공중합체 100 중량부에 대하여 0.1 중량부 내지 200 중량부의 충전제를 포함하는 것일 수 있으며, 구체적으로는 10 중량부 내지 120 중량부의 충전제를 포함하는 것일 수 있다.
상기 충전제는 실리카계 충전제일 수 있으며, 상기 실리카계 충전제는 특별히 제한되는 것은 아니나 예컨대, 습식 실리카(함수규산), 건식 실리카(무수규산), 규산칼슘, 규산알루미늄 또는 콜로이드 실리카 등일 수 있다. 보다 구체적으로는 상기 충전제는 파괴 특성의 개량 효과 및 웨트 그립성(wet grip)의 양립 효과가 가장 현저한 습식 실리카일 수 있다.
또한, 본 발명의 일실시예에 따른 상기 고무 조성물은 필요에 따라 카본블랙계 충전제를 더 포함할 수 있다.
한편, 상기 충전제로서 실리카가 사용될 경우 보강성 및 저발열성 개선을 위해 실란 커플링제가 함께 사용될 수 있다.
상기 실란 커플링제로는 구체적으로 비스(3-트리에톡시실릴프로필)테트라술피드, 비스(3-트리에톡시실릴프로필)트리술피드, 비스(3-트리에톡시실릴프로필)디술피드, 비스(2-트리에톡시실릴에틸)테트라술피드, 비스(3-트리메톡시실릴프로필)테트라술피드, 비스(2-트리메톡시실릴에틸)테트라술피드, 3-머캅토프로필트리메톡시실란, 3-머캅토프로필트리에톡시실란, 2-머캅토에틸트리메톡시실란, 2-머캅토에틸트리에톡시실란, 3-트리메톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 3-트리에톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 2-트리에톡시실릴에틸-N,N-디메틸티오카르바모일테트라술피드, 3-트리메톡시실릴프로필벤조티아졸릴테트라술피드, 3-트리에톡시실릴프로필벤졸릴테트라술피드, 3-트리에톡시실릴프로필메타크릴레이트모노술피드, 3-트리메톡시실릴프로필메타크릴레이트모노술피드, 비스(3-디에톡시메틸실릴프로필)테트라술피드, 3-머캅토프로필디메톡시메틸실란, 디메톡시메틸실릴프로필-N,N-디메틸티오카르바모일테트라술피드 또는 디메톡시메틸실릴프로필벤조티아졸릴테트라술피드 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로는 보강성 개선 효과를 고려할 때 상기 실란커플링제는 비스(3-트리에톡시실릴프로필)폴리술피드 또는 3-트리메톡시실릴프로필벤조티아질테트라술피드일 수 있다.
또, 본 발명에 따른 일 실시예에 따른 상기 고무 조성물에 있어서는, 고무 성분으로서 활성 부위에 실리카와의 친화성이 높은 관능기가 도입된 변성 중합체가 사용되고 있기 때문에, 실란 커플링제의 배합량은 통상의 경우보다 저감될 수 있다. 구체적으로, 상기 실란 커플링제는 실리카 100 중량부에 대하여 1 중량부 내지 20 중량부로 사용될 수 있다. 상기한 범위로 사용될 때, 커플링제로서의 효과가 충분히 발휘되면서도 고무 성분의 겔화를 방지할 수 있다. 보다 구체적으로는 상기 실란 커플링제는 실리카 100 중량부에 대하여 5 중량부 내지 15 중량부로 사용될 수 있다.
또, 본 발명에 따른 일 실시예에 따른 고무 조성물은 황 가교성일 수 있으며, 이에 따라 가황제를 더 포함할 수 있다.
상기 가황제는 구체적으로 황분말일 수 있으며, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 10 중량부로 포함될 수 있다. 상기 함량범위로 포함될 때, 가황 고무 조성물의 필요한 탄성률 및 강도를 확보할 수 있으며, 동시에 저연비성을 얻을 수 있다.
또, 본 발명에 따른 일 실시예에 따른 고무 조성물은 상기한 성분들 외에, 통상 고무 공업계에서 사용되는 각종 첨가제, 구체적으로는 가황 촉진제, 공정유, 가소제, 노화 방지제, 스코치 방지제, 아연화(zinc white), 스테아르산, 열경화성 수지, 또는 열가소성 수지 등을 더 포함할 수 있다.
상기 가황 촉진제는 특별히 한정되는 것은 아니며, 구체적으로는 M(2-머캅토벤조티아졸), DM(디벤조티아질디술피드), CZ(N-시클로헥실-2-벤조티아질술펜아미드) 등의 티아졸계 화합물, 혹은 DPG(디페닐구아니딘) 등의 구아니딘계 화합물이 사용될 수 있다. 상기 가황촉진제는 고무 성분 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 포함될 수 있다.
또, 상기 공정유는 고무 조성물내 연화제로서 작용하는 것으로, 구체적으로는 파라핀계, 나프텐계, 또는 방향족계 화합물일 수 있으며, 보다 구체적으로는 인장 강도 및 내마모성을 고려할 때 방향족계 공정유가, 히스테리시스 손실 및 저온 특성을 고려할 때 나프텐계 또는 파라핀계 공정유가 사용될 수 있다. 상기 공정유는 고무 성분 100 중량부에 대하여 100 중량부 이하의 함량으로 포함될 수 있으며, 상기 함량으로 포함될 때, 가황 고무의 인장 강도, 저발열성(저연비성)의 저하를 방지할 수 있다.
또, 상기 노화방지제로는 구체적으로 N-이소프로필-N'-페닐-p-페닐렌디아민, N-(1,3-디메틸부틸)-N'-페닐-p-페닐렌디아민, 6-에톡시-2,2,4-트리메틸-1,2-디히드로퀴놀린, 또는 디페닐아민과 아세톤의 고온 축합물 등을 들 수 있다. 상기 노화방지제는 고무 성분 100 중량부에 대하여 0.1 중량부 내지 6 중량부로 사용될 수 있다.
본 발명의 일 실시예에 따른 고무 조성물은 상기 배합 처방에 의해 밴버리 믹서, 롤, 인터널 믹서 등의 혼련기를 사용하여 혼련함으로써 수득될 수 있으며, 또 성형 가공 후 가황 공정에 의해 저발열성이며 내마모성이 우수한 고무 조성물이 수득될 수 있다.
이에 따라 상기 고무 조성물은 타이어 트레드, 언더 트레드, 사이드 월, 카카스 코팅 고무, 벨트 코팅 고무, 비드 필러, 췌이퍼, 또는 비드 코팅 고무 등의 타이어의 각 부재나, 방진고무, 벨트 컨베이어, 호스 등의 각종 공업용 고무 제품의 제조에 유용할 수 있다.
아울러, 본 발명은 상기 고무 조성물을 이용하여 제조된 타이어를 제공한다.
상기 타이어는 타이어 또는 타이어 트레드를 포함하는 것일 수 있다.
더 나아가, 본 발명은 상기 변성 스티렌-부타디엔 공중합체의 변성에 유용한 변성제를 제공한다.
상기 변성제는 전술한 바와 같다.
한편, 본 발명의 일 실시예에 따른 상기 화학식 1로 표시되는 변성제는 하기 화학식 2의 화합물과 하기 화학식 3의 화합물과의 반응에 의해 제조될 수 있다.
[화학식 2]
Figure PCTKR2015012821-appb-I000004
[화학식 3]
Figure PCTKR2015012821-appb-I000005
상기 화학식 2 및 3에서, A, R2 내지 R5, m 및 n은 앞서 설명한 바와 동일하고,
R은 탄소수 1 내지 20의 선형 또는 분지형 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 또는 비치환된 탄소수 2 내지 20의 알케닐기일 수 있다.
보다 구체적으로 상기 화학식 2에서, R은 탄소수 2 내지 10의 알케닐기일 수 있으며, 보다 구체적으로는 에틸렌기 등과 같은 탄소수 2 내지 5의 알케닐기일 수 있다.
보다 더 구체적으로, 상기 화학식 2의 화합물은 에틸렌 글리콜 메틸 에테르 아크릴레이트(Ethylene glycol methyl ether acrylate), 2-페녹시에틸아크릴레이트(2-phenoxyethyl acrylate), 에틸아크릴레이트(ethylacrylate) 등일 수 있다. 또, 상기 화학식 3의 화합물은 비스[3-(트리에톡시실릴)프로필]아민(Bis[3-(triethoxysilyl)propyl]amine), 또는 비스(메틸디에톡시실릴프로필)아민(bis(methyldiethoxysilylpropyl)amine) 등일 수 있다.
상기 화학식 2 및 3의 화합물은 화학양론적인 양으로 사용될 수 있으며, 구체적으로는 상기 화학식 2의 화합물 1몰에 대하여 상기 화학식 3의 화합물이 0.01 내지 0.2 몰비로 사용될 수 있고, 보다 구체적으로는 0.05 내지 0.1의 몰비, 보다 더 구체적으로는 0.05 내지 0.08 몰비로 사용될 수 있다.
또한, 상기 화학식 2의 화합물과 화학식 3의 화합물의 반응은 수계 용매 중에서 실시될 수 있다. 상기 수계 용매로는 구체적으로 알코올(예를 들면, 에탄올 등과 같은 탄소수 1 내지 5의 저급알코올) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 상기 화학식 2의 화합물과 화학식 3의 화합물의 반응은 비활성 기체 분위기 하에서 실시될 수 있다. 상기 비활성 기체로는 구체적으로 질소, 아르곤 등을 들 수 있다.
또한, 상기 화학식 2의 화합물과 화학식 3의 화합물의 반응은 20℃ 내지 60℃의 온도 범위 내에서 실시될 수 있다. 반응시 온도가 20℃ 미만이면 반응 속도가 지나치게 느려지고, 반응 효율이 저하될 우려가 있고, 반응시 온도가 60℃를 초과하면 반응속도가 지나치게 빨라져 반응 제어가 어려우며 부반응 발생의 우려가 있다.
상기와 같은 제조방법에 의해 단일 분자내 충전제 친화성 작용기 및 용매 친화성 작용기를 동시에 포함하는 변성제를 용이하게 제조할 수 있다.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
제조예 1: 2 - 페녹시에틸 3-( 시클로헥실((트리에톡시실릴)메틸)아미노 ) 프로파노에이트의 제조
50 ml 둥근바닥 플라스크에 (N-시클로헥실아미노메틸)트리에톡시실란(Gelest 社) 5.744 mmol에 에탄올 5 ml를 더하여 용해시킨 후, 2-페녹시에틸 아크릴레이트(TCI 社) 5.744 mmol을 더하여 상온에서 질소 조건하에 8시간 교반하였다. 반응 종료 후, 용매를 감압하여 제거한 후에 120℃에서 감압증류하여 하기 화학식(i)의 2-페녹시에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트 화합물 4.990 mmol을 얻었다(수율 91.4%). 정제된 2-페녹시에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
Figure PCTKR2015012821-appb-I000006
(i)
1H-NMR (500 MHz, CDCl3) δ 7.49-7.23(m, 2H), δ 6.97-6.86(m, 3H), δ 4.40-4.36(m, 2H), δ 4.16-34.03(m, 4H), δ 3.87-3.81(m, 3H), δ 2.78-2.75(m,2H), δ 2.50-2.41(m, 4H), δ 2.17-2.11(m, 3H), δ 1.72-1.56(m, 7H), δ1.26-1.16(m, 12H)
제조예 2: 2 - 메톡시에틸 3-( 시클로헥실((트리에톡시실릴)메틸)아미노 ) 프로파노에이트의 제조
50 ml 둥근바닥 플라스크에 (N-시클로헥실아미노메틸)트리에톡시실란(Gelest 社) 8.468 mmol에 에탄올 5 ml를 더하여 용해시킨 후, 에틸렌 글라이콜메틸 에테르 아크릴레이트(Acros 社) 8.468 mmol을 더하여 상온에서 질소 조건하에 8시간 교반하였다. 반응 종료 후, 용매를 감압하여 제거한 후에 120℃에서 감압증류하여 하기 화학식 (ii)의 2-메톡시에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트 화합물 8.19 mmol을 얻었다(수율 96.7%). 정제된 2-메톡시에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트의 1H의 핵자기공명 분광학적데이터는 아래와 같다.
Figure PCTKR2015012821-appb-I000007
(ii)
1H-NMR (500 MHz, CDCl3) δ 4.18-4.16(t, 2H), δ 3.84-3.79(m, 3H), δ3.55-3.54(t, 2H), δ 3.35(s, 3H), δ 2.76-2.73(m, 2H), δ 2.48-2.45(m, 4H), δ2.14-2.08(m, 3H), δ 1.73-1.71(m, 7H), δ 1.22-1.18(m, 13H)
제조예 3: 2 -(디메틸아미노)에틸 3-( 시클로헥실((트리에톡시실릴)메틸)아미노 )프로파노에이트의 제조
50 ml 둥근바닥 플라스크에 (N-시클로헥실아미노메틸)트리에톡시실란(Gelest 社) 6.586 mmol에 에탄올 5ml를 더하여 용해시킨 후, 2-(디메틸아미노)에틸 아크릴레이트(Sigma-Aldrich 社) 6.586 mmol을 더하여 상온에서 질소 조건하에 8시간 교반하였다. 반응 종료 후, 용매를 감압하여 제거한 후에 120℃에서 감압증류하여 하기 화학식 (iii)의 2-(디메틸아미노)에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트 화합물 6. 24 mmol을 얻었다(수율 94.8%). 정제된 2-(디메틸아미노)에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
Figure PCTKR2015012821-appb-I000008
(iii)
1H-NMR (500 MHz, CDCl3) δ 4.16-4.08(m, 3H), δ 2.76-2.73(m, 2H), δ2.53-2.50(m, 3H), δ 2.47-2.41(m, 3H), δ 2.25-2.23(m, 10H), δ 2.11-2.08(t, 2H), δ 1.73-1.72(m, 9H), δ 1.54-1.47(m, 4H), δ 1.24-1.16(m, 10H)
제조예 4: 2 ,5,8,11,14,17,20,23,26- 노나옥사옥타코산 -28-일 3-( 비스(3-(트리에톡시실릴)프로필)아미노 )프로파노에이트의 제조
50 ml 둥근바닥 플라스크에 비스(3-트리에톡시실릴프로필)아민(Gelest 社) 2.279 mmol에 에탄올 5 ml를 더하여 용해시킨 후, 폴리(에틸렌 글라이콜) 메틸 에테르 아크릴레이트(Sigma-Aldrich 社, Mn 480) 2.279 mmol을 더하여 상온에서 질소 조건하에 8시간 교반하였다. 반응 종료 후, 용매를 감압하여 제거한 후에 120℃에서 감압증류하여 하기 화학식 (iv)의 2,5,8,11,14,17,20,23,26-노나옥사옥타코산-28-일3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트 화합물 2.13 mmol을 얻었다(수율 93.5%). 정제된 2,5,8,11,14,17,20,23,26-노나옥사옥타코산-28-일 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
Figure PCTKR2015012821-appb-I000009
(iv)
1H-NMR (500 MHz, CDCl3) δ 4.17-4.15(t, 2H), δ 3.78-3.73(m, 12H), δ 3.60-3.59(m, 32H), δ 3.50-3.48(m, 2H), δ 3.32(s, 3H), δ 2.74-2.71(m, 2H), δ 2.37-2.34(t, 6H), δ 1.50-1.43(m, 4H), δ 1.19-1.15(t, 18H), δ 0.54-0.50(m, 4H)
제조예 5: 2 -(2-(2-(2- 페녹시에톡시 ) 에톡시 ) 에톡시 )에틸 3-( 비스(3-(트리에톡시실릴)프로필)아미노 )프로파노에이트의 제조
50 ml 둥근바닥 플라스크에 비스(3-트리에톡시실릴프로필)아민 2.279 mmol에 에탄올 5 ml을 더하여 용해시킨 후, 폴리(에틸렌 글라이콜) 페닐 에테르 아크릴레이트(Sigma-Aldrich, Mn 324) 2.279 mmol을 더하여 상온에서 질소조건하에 8시간 교반하였다. 반응 종료 후, 용매를 감압하여 제거한 후에 120℃에서 감압증류하여 하기 화학식 (v)의 2-(2-(2-(2-페녹시에톡시)에톡시)에톡시)에틸 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트 화합물 2.15 mmol을 얻었다(수율93.7%). 정제된 2-(2-(2-(2-페녹시에톡시)에톡시)에톡시)에틸 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트의 1H의 핵자기공명 분광학적 데이터는아래와 같다.
Figure PCTKR2015012821-appb-I000010
(v)
1H-NMR (500 MHz, CDCl3) δ 7.26-7.22(t, 2H), δ 6.92-6.87(m, 3H), δ4.20-4.17(t, 2H), δ 4.11-4.07(m, 3H), δ 3.84-3.82(m, 2H), δ 3.81-3.75(m, 10H), δ 3.71-3.60(m, 10H), δ 2.77-2.74(t, 2H), δ 2.39-2.36(t, 6H), δ1.52-1.46(m, 4H), δ 1.21-1.78(m, 18H), δ 0.57-0.53(m, 4H)
제조예 6: 2 - 페녹시에틸 3-( 비스(3-(트리에톡시실릴)프로필)아미노 ) 프로파노에이트의 제조
50 ml 둥근바닥 플라스크에 비스(3-트리에톡시실릴프로필)아민(Gelest 社) 4.557 mmol에 에탄올 5 ml를 더하여 용해시킨 후, 2-페녹시에틸 아크릴레이트(TCI 社) 4. 557 mmol을 더하여 상온에서 질소 조건하에 8시간 교반하였다. 반응 종료 후, 용매를 감압하여 제거한 후에 120℃에서 감압증류하여 하기 화학식 (vi)의 2-페녹시에틸 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트 화합물 4.17 mmol을 얻었다(수율 91.6%). 정제된 2-페녹시에틸 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트의 1H의 핵자기공명 분광학적 데이터는 아래와같다.
Figure PCTKR2015012821-appb-I000011
(vi)
1H-NMR (500 MHz, CDCl3) δ 7.26-7.23(m, 2H), δ 6.94-6.84(m, 3H), δ4.39-4.37(t, 2H), δ 4.14-4.12(t, 3H), δ 3.79-3.75(m, 12H), δ 2.78-2.75(t,2H), δ 2.46-2.43(t, 2H), δ 2.39-2.36(t, 4H), δ 1.63-1.43(m, 4H), δ 1.20-1.17(m, 18H), δ 0.56-0. 52(m, 4H)
제조예 7: 2 - 메톡시에틸 3-( 비스(3-(트리에톡시실릴)프로필)아미노 ) 프로파노 에이트의 제조
50 ml 둥근바닥 플라스크에 비스(3-트리에톡시실릴프로필)아민(Gelest 社) 4.557 mmol에 에탄올 5 ml를 더하여 용해시킨 후, 에틸렌 글라이콜 메틸 에테르 아크릴레이트(Acros 社) 4.557 mmol을 더하여 상온에서 질소 조건하에 8시간 교반하였다. 반응 종료 후, 용매를 감압하여 제거한 후에 120℃에서 감압증류하여 하기 화학식 (vii)의 2-메톡시에틸 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트 화합물 4.430 mmol을 얻었다(수율 97.3%). 정제된 2-메톡시에틸 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
Figure PCTKR2015012821-appb-I000012
(vii)
1H-NMR (500 MHz, CDCl3) δ 4.21-4.19(t, 2H), δ 3.81-3.77(m, 12H), δ 3.57-3.56(t, 2H), δ 3.36(s, 3H), δ 2.79-2.76(t, 2H), δ 2.47-2.44(t, 2H), δ 2.40-2.37(t, 4H), δ 1.54-1.47(m, 4H), δ 1.22-1.19(t, 18H), δ 0.57-0.54(t, 4H)
제조예 8: 2 -(디메틸아미노)에틸 3-( 비스(3-(트리에톡시실릴)프로필)아미노 )프로파노에이트의 제조
50 ml 둥근바닥 플라스크에 비스(3-트리에톡시실릴프로필)아민(Gelest 社) 4.5573 mmol에 에탄올 5ml를 더하여 용해시킨 후, 2-(디메틸아미노)에틸 아크릴레이트(Sigma-Aldrich 社) 4.55764 mmol을 더하여 상온에서 질소 조건하에 8시간 교반하였다. 반응 종료 후, 용매를 감압하여 제거한 후에 120℃에서 감압증류하여 하기 화학식 (viii)의 2-(디메틸아미노)에틸 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트 화합물 4.18 mmol을 얻었다(수율 91.7%). 정제된 2-(디메틸아미노)에틸 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
Figure PCTKR2015012821-appb-I000013
(viii)
1H-NMR (500 MHz, CDCl3) δ 4.12-4.09(t, 2H), δ 3.78-3.74(m, 12H), δ 2.75-2.73(t, 2H), δ 2.51-2.49(t, 3H), δ 2.42-2.40(t, 2H), δ 2.37-2.34(t, 3H), δ 2.22-2.19(m, 6H), δ 1.54-1.44(m, 4H), δ 1.18-1.15(m, 18H), δ 0.52-0. 50(m, 4H)
제조예 9: 2 -(2-(2-(2- 페녹시에톡시 ) 에톡시 ) 에톡시 )에틸 3-( 시클로헥실((트리에톡시실릴)메틸)아미노 )프로파노에이트의 제조
50 ml 둥근바닥 플라스크에 (N-시클로헥실아미노메틸)트리에톡시실란 3.449 mmol에 에탄올 50 ml를 더하여 용해시킨 후, 폴리(에틸렌 글라이콜) 페닐에테르 아크릴레이트(Sigma-Aldrich, Mn 324) 3.449 mmol을 더하여 상온에서 질소 조건하에 8시간 교반하였다. 반응 종료 후, 용매를 감압하여 제거한 후에 120℃에서 감압증류하여 하기 화학식 (ix)의 2-(2-(2-(2-페녹시에톡시)에톡시)에톡시)에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트 화합물 3.13 mmol을 얻었다(수율 91.1%). 정제된 2-(2-(2-(2-페녹시에톡시)에톡시)에톡시)에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
Figure PCTKR2015012821-appb-I000014
(ix)
1H-NMR (500 MHz, CDCl3) δ 7.26-7.24(m, 2H), δ 6.93-6.88(m, 3H), δ 4.18-4.16(m, 2H), δ 4.11-4.09(m, 3H), δ 3.85-3.80(m, 6H), δ 3.71-3.61(m, 12H), δ 2.76-2.72(m, 2H), δ 2.50-2.39(m, 3H), δ 2.10-2.09(m, 2H), δ 1.74-1.72(m, 4H), δ 1.58-1.59(m, 1H) δ 1.24-1.15(m, 12H), δ 1.03-1.00(m, 1H)
제조예 10: 2 - 메톡시에틸 3-( 비스(3-(디에톡시(메틸)실릴)프로필)아미노 ) 프로파노에이트의 제조
100 ml 둥근바닥 플라스크에 비스(메틸디에톡시실릴프로필)아민(Gelest 社) 73.03 mmol에 에탄올 20 ml를 더하여 용해시킨 후, 에틸렌 글라이콜메틸 에테르 아크릴레이트(Acros 사) 73.03 mmol을 더하여 상온에서 질소 조건하에 8시간 교반하였다. 반응 종료 후, 용매를 감압하여 제거한 후에 120℃에서 감압증류하여 하기 화학식 (x)의 2-메톡시에틸 3-(비스(3-(디에톡시(메틸)실릴)프로필)아미노)프로파노에이트 화합물 71.77 mmol을 얻었다(수율 98.327%). 정제된 2-메톡시에틸 3-(비스(3-(디에톡시(메틸)실릴)프로필)아미노)프로파노에이트의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
Figure PCTKR2015012821-appb-I000015
(x)
1H-NMR (500 MHz, CDCl3) δ 4.23-4.21(t, 2H), δ 3.78-3.74(m, 8H), δ3.60-3.58(t, 2H), δ 3.39(s, 3H), δ 2.81-2.78(t, 2H), δ 2.49-2.46(t, 2H), δ 2.42-2.39(t, 3H), δ 1.51-1.45(m, 5H), δ 1.23-1.20(t, 18H), δ 0.57-0.54(t, 4H), δ 0.12(s, 6H)
제조예 11: 에틸 3-( 비스(3-(디에톡시(메틸)실릴)프로필)아미노 ) 프로파노에이트의 제조
100 ml 둥근바닥 플라스크에 비스(메틸디에톡시실릴프로필)아민(Gelest 社) 72.99 mmol에 에탄올 20 ml를 더하여 용해시킨 후, 에틸 아크릴레이트(Sigma-Aldrich) 72.99 mmol을 더하여 상온에서 질소 조건하에 8시간 교반하였다. 반응 종료 후, 용매를 감압하여 제거한 후에 80℃에서 감압증류하여 하기 화학식 (xi)의 에틸 3-(비스(3-(디에톡시(메틸)실릴)프로필)아미노)프로파노에이트 화합물 72.18 mmol을 얻었다(수율 98.9%). 정제된 에틸 3-(비스(3-(디에톡시(메틸)실릴)프로필)아미노)프로파노에이트의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
Figure PCTKR2015012821-appb-I000016
(xi)
1H-NMR (500 MHz, CDCl3) δ 4.14-4.10(m, 2H), δ 3.78-3.74(m, 8H), δ 2.80-2.79(t, 2H), δ 2.43-2.39(m, 6H), δ 1.52-1.54(m, 4H), δ 1.27-1.20(m, 15H), δ 0.58-0.54(t, 4H), δ 0.11(s, 6H)
실시예 1: 변성 스티렌-부타디엔 공중합체
2 L 오토클레이브 반응기에 스티렌 29.7 g, 1,3 부타디엔 78.1 g 및 노말헥산 550 g, 극성첨가제로 DTP(2,2-디(2-테트라히드로퓨릴)프로판) 0.124 g을 넣은 후 반응기 내부온도를 50℃로 승온하였다. 반응기 내부 온도가 50℃에 도달했을 때, n-부틸리튬 3 mmol을 반응기에 투입하여 단열 승온 반응을 진행시켰다. 20여분 경과 후 1,3-부타디엔 2.2 g을 투입하여 SSBR 말단을 부타디엔으로 캡핑(capping)하였다. 5분 후 제조예 7에서 제조한 변성제 2-메톡시에틸 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트 0.181 g을 투입 후 15분간 반응시켰다 ([DTP]/[act. Li] = 2.3, [변성제]/[act. Li] = 1.0). 이후 에탄올을 이용하여 중합반응을 정지시키고, 산화방지제인 BHT(부틸레이티드하이드록시톨루엔)가 헥산에 0.3 중량% 녹아있는 용액 4.5ml를 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매와 물을 제거하여, 변성 공역디엔계 공중합체를 제조하였다.
실시예 2
20 L 오토클레이브 반응기에 스티렌 270 g, 1,3 부타디엔 710 g 및 노말헥산 5 kg, 극성첨가제로 DTP(2,2-디(2-테트라히드로퓨릴)프로판) 0.94 g을 넣은 후 반응기 내부온도를 40℃로 승온하였다. 반응기 내부 온도가 40℃에 도달했을 때, n-부틸리튬 25.40 g (2.62 wt% in hexane, 33% activation)을 반응기에 투입하여 단열 승온 반응을 진행시켰다. 20여분 경과 후 1,3-부타디엔 20.0 g을 투입하여 SSBR 말단을 부타디엔으로 캡핑(capping)하였다. 5분 후 제조예 11에서 제조한 변성제 에틸 3-(비스(3-(디에톡시(메틸)실릴)프로필)아미노)프로파노에이트 1.98 g을 투입 후 15분간 반응시켰다([DTP]/[act. Li] = 1.46, [변성제]/[act.Li] = 0.85). 이후 에탄올을 이용하여 중합반응을 정지시키고, 산화방지제인 Wingstay K가 헥산에 30 중량% 녹아있는 용액 33g를 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매와 물을 제거하여, 변성 공역디엔계 공중합체를 제조하였다.
비교예
변성제로 N,N-비스(트리에톡시실릴프로필)피페라진을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 변성 공역디엔계 공중합체를 제조하였다.
실험예 1
상기 실시예 1, 실시예 2 및 비교예에서 제조된 각 변성 공역디엔계 공중합체에 대하여 각각 중량평균분자량(Mw), 수평균분자량(Mn), 분자량 분포(MWD), 최대 피크 분자량(Mp)과 이때의 결합효율(%) 및 무늬 점도(MV)를 각각 측정하였다. 결과를 하기 표 1에 나타내었다.
상기 중량평균분자량(Mw), 수평균분자량(Mn) 및 최대 피크 분자량(Mp)은 GPC(Gel permeation chromatohraph) 분석을 통하여 측정하였으며, 분자량 분포(MWD, Mw/Mn) 및 결합효율(%)은 측정된 상기 각 분자량으로부터 계산하여 얻었다. 구체적으로, 상기 GPC는 PLgel Olexis(Polymer Laboratories 社) 컬럼 두 자루와 PLgel mixed-C(Polymer Laboratories 社) 컬럼 한 자루를 조합하여 사용하고, 새로 교체한 컬럼은 모두 mixed bed 타입의 컬럼을 사용하였으며, 분자량 계산시 GPC 기준물질(Standard material)은 PS(polystyrene)을 사용하여 실시하였다.
구분 GPC
Mn(g/mol, Ⅹ104) Mw(g/mol, Ⅹ104) Mp(g/mol, Ⅹ104) 결합효율(%) 분자량 분포(Mw/Mn)
실시예 1 49 120 35 38 2.4
77 28
124 34
실시예 2 27 42 30 40 1.4
64 60
비교예 34 45 25 43 1.3
53 57
상기 표 1에 나타난 바와 같이 본 발명에 따른 변성제를 이용하여 제조된 실시예 1 및 실시예 2의 변성 스티렌-부타디엔 공중합체는 종래 변성제를 이용하여 제조된 비교예의 변성 스티렌-부타디엔 공중합체에 비하여 고분자 성분의 결합효율이 현저히 증가한 것을 확인하였다.
구체적으로, 상기 실시예 1의 변성 스티렌-부타디엔 공중합체와 비교예의 변성 스티렌-부타디엔 공중합체를 비교한 결과 실시예 1의 변성 스티렌-부타디엔 공중합체의 고분자 성분의 결합효율(62%, Mp 77Ⅹ104 및 124Ⅹ104 일 때)이 비교예의 스티렌-부타디엔 공중합체의 고분자 성분의 결합효율(57%, Mp 53Ⅹ104 일 때) 보다 2.7배 증가함을 보였으며, 이에 고분자량을 나타내는 것을 확인하였다.
변성제의 트리에톡시실란(triethoxysilane)의 개수가 동일함에도 불구하고 분자량이 증가했다는 것은 종래 변성제 대비 본 발명에 따른 변성제가 중합체 활성 부분과 반응성이 큰 에스터기를 도입함으로써 반응성이 증대되어 고변성 중합체가 생성된 결과이다. 또한, 실시예 2의 경우 변성제의 사용량이 비교예의 변성제 사용량 대비 77% 수준이었는데도 높은 변성효율로 고분자 성분의 결합효율이 증가(60%)되는 것을 확인할 수 있었다. 이러한 결과는, 도 1에 나타난 바와 같이 금속 결합된 공중합체의 활성 부위(-Li+)가 변성제의 에틸렌 글리콜기에 산소와 결합하게 되고 이에 음이온의 반응성이 증가함으로서 반응속도가 빨라지게되고, 이에 의하여 변성반응을 더 용이하게 이룰 수 있어 상기와 같이 고분자 성분의 결합효율이 증가한 것이다.

Claims (26)

  1. 하기 화학식 1로 표시되는 변성제 유래 작용기를 포함하는 것인 변성 스티렌-부타디엔 공중합체:
    [화학식 1]
    Figure PCTKR2015012821-appb-I000017
    상기 화학식 1에서,
    A는 탄소수 1 내지 20의 탄화수소기이거나, 또는 N, S 및 O로 이루어진 군에서 선택되는 헤테로 원자를 1종 이상 포함하는 탄소수 1 내지 20의 탄화수소기이고,
    R1 및 R2는 각각 독립적으로 탄소수 1 내지 20의 선형 또는 분지형 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 또는 비치환된 탄소수 1 내지 20의 2가 탄화수소기이며,
    R3 내지 R5는 각각 독립적으로 탄소수 1 내지 20의 1가 탄화수소기이고,
    m은 0 내지 3의 정수이고, 그리고 n은 1 또는 2의 정수이며, 단, 상기 A가 탄소수 1 내지 20의 탄화수소기이면, n은 2의 정수이다.
  2. 청구항 1에 있어서,
    상기 화학식 1에서,
    A는 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 아릴알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 7 내지 20의 페녹시알킬기, 탄소수 1 내지 20의 아미노알킬기 및 -[R11O]xR12 (이때 R11은 탄소수 2 내지 10의 알킬렌기이고, R12는 수소원자, 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 12의 사이클로알킬기, 탄소수 6 내지 18의 아릴기 및 탄소수 7 내지 18의 아릴알킬기로 이루어진 군에서 선택되며, x는 2 내지 10의 정수임)로 이루어진 군에서 선택되는 것인 변성 스티렌-부타디엔 공중합체.
  3. 청구항 1에 있어서,
    상기 화학식 1에서,
    A는 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 12의 사이클로알킬기, 탄소수 6 내지 12의 아릴기, 탄소수 7 내지 12의 아릴알킬기, 탄소수 2 내지 10의 알콕시알킬기, 탄소수 7 내지 12의 페녹시알킬기, 탄소수 1 내지 10의 아미노알킬기 및 -[R11O]xR12 (이때 R11은 탄소수 2 내지 10의 알킬렌기이고, R12는 수소원자, 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 12의 사이클로알킬기, 탄소수 6 내지 18의 아릴기 및 탄소수 7 내지 18의 아릴알킬기로 이루어진 군에서 선택되며, x는 2 내지 10의 정수임)로 이루어진 군에서 선택되는 어느 하나이고,
    R1 및 R2는 각각 독립적으로 탄소수 1 내지 5의 알킬렌기이고,
    R3 및 R4는 각각 독립적으로 탄소수 1 내지 5의 알킬기이며,
    R5는 탄소수 1 내지 5의 알킬기 또는 탄소수 3 내지 8의 사이클로알킬기이고,
    m은 0 내지 2의 정수이며, 그리고 n은 1 또는 2의 정수이며, 단 상기 A가 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 6 내지 20의 아릴기, 또는 탄소수 7 내지 20의 아릴알킬기일 때, n은 2의 정수인 것인 변성 스티렌-부타디엔 공중합체.
  4. 청구항 1에 있어서,
    A는 탄소수 1 내지 10의 알킬기, 탄소수 2 내지 10의 알콕시알킬기 및 탄소수 7 내지 12의 페녹시알킬기로 이루어진 군에서 선택되는 어느 하나이고,
    R1 및 R2는 각각 독립적으로 탄소수 1 내지 5의 알킬렌기이며,
    R3 및 R4는 각각 독립적으로 탄소수 1 내지 5의 알킬기이고, 그리고
    m은 0 또는 1의 정수이고, n은 2의 정수인 변성 스티렌-부타디엔계 공중합체.
  5. 청구항 1에 있어서,
    상기 변성제는 2-페녹시에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트, 2-메톡시에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트, 2-(디메틸아미노)에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트, 2,5,8,11,14,17,20,23,26-노나옥사옥타코산-28-일 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트, 2-(2-(2-(2-페녹시에톡시)에톡시)에톡시)에틸 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트, 2-페녹시에틸 3-(비스(3-트리에톡시실릴)프로필)아미노)프로파노에이트, 2-메톡시에틸 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트, 2-(디메틸아미노)에틸 3-(비스(3-트리에톡시실릴)프로필)아미노)프로파노에이트, 2-(2-(2-(2-페녹시에톡시)에톡시)에톡시)에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트, 2-메톡시에틸 3-(비스(3-(디에톡시(메틸)실릴)프로필)아미노)프로파노에이트 및 에틸 3-(비스(3-(디에톡시(메틸)실릴)프로필)아미노)프로파노에이트로 이루어진 군으로부터 선택된 1종 이상인 것인 스티렌-부타디엔 공중합체.
  6. 청구항 1에 있어서,
    상기 공중합체는 방향족 비닐계 단량체 유래단위를 1 중량% 내지 60 중량%로 포함하는 것인 변성 스티렌-부타디엔 공중합체.
  7. 청구항 1에 있어서,
    상기 공중합체는 1,000 g/mol 내지 2,000,000 g/mol의 수평균분자량을 갖는 것인 변성 스티렌-부타디엔 공중합체.
  8. 청구항 1에 있어서,
    상기 공중합체는 분자량 분포(Mw/Mn)가 1.05 내지 10인 것인 변성 스티렌-부타디엔 공중합체.
  9. 청구항 1에 있어서,
    상기 공중합체는 비닐 함량이 5 중량% 이상인 것인 변성 스티렌-부타디엔 공중합체.
  10. 1) 탄화수소 용매 중에서, 유기 금속 화합물 존재 하에서 방향족 비닐계 단량체 및 공액디엔계 단량체를 중합하여 알칼리 금속이 결합된 활성 중합체를 제조하는 단계; 및
    2) 상기 활성 중합체를 하기 화학식 1로 표시되는 변성제와 반응시키는 단계를 포함하는 청구항 1의 변성 스티렌-부타디엔 공중합체의 제조방법:
    [화학식 1]
    Figure PCTKR2015012821-appb-I000018
    상기 화학식 1에서,
    A는 탄소수 1 내지 20의 탄화수소기이거나, 또는 N, S 및 O로 이루어진 군에서 선택되는 1종 이상의 헤테로 원자를 포함하는 탄소수 1 내지 20의 탄화수소기이고,
    R1 및 R2는 각각 독립적으로 탄소수 1 내지 20의 선형 또는 분지형 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 또는 비치환된 탄소수 1 내지 20의 2가 탄화수소기이며,
    R3 내지 R5는 각각 독립적으로 탄소수 1 내지 20의 1가 탄화수소기이고,
    m은 0 내지 3의 정수이고, 그리고 n은 1 또는 2의 정수이며, 단, 상기 A가 탄소수 1 내지 20의 탄화수소기이면, n은 2의 정수이다.
  11. 청구항 10에 있어서,
    상기 유기 금속 화합물은 단량체 총 100 g을 기준으로 0.01 mmnol 내지 10 mmol로 사용하는 것인 변성 스티렌-부타디엔 공중합체의 제조방법.
  12. 청구항 10에 있어서,
    상기 유기 금속 화합물은 메틸리튬, 에틸리튬, 프로필리튬, n-부틸리튬, s-부틸리튬, t-부틸리튬, 헥실리튬, n-데실리튬, t-옥틸리튬, 페닐리튬, 1-나프틸리튬, n-에이코실리튬, 4-부틸페닐리튬, 4-톨릴리튬, 사이클로헥실리튬, 3,5-디-n-헵틸사이클로헥실리튬, 4-사이클로펜틸리튬, 나프틸나트륨, 나프틸칼륨, 리튬 알콕사이드, 나트륨 알콕사이드, 칼륨 알콕사이드, 리튬 술포네이트, 나트륨 술포네이트, 칼륨 술포네이트, 리튬 아미드, 나트륨 아미드, 칼륨아미드 및 리튬 이소프로필아미드로 이루어진 군으로부터 선택된 1종 이상인 것인 변성 스티렌-부타디엔 공중합체의 제조방법.
  13. 청구항 10에 있어서,
    상기 단계 1)의 중합은 극성 첨가제를 더 첨가하여 수행하는 것인 변성 스티렌-부타디엔 공중합체의 제조방법.
  14. 청구항 13에 있어서,
    상기 극성 첨가제는 유기 금속 화합물 총 1 mmol 대비 0.001 g 내지 10 g으로 사용하는 것인 변성 스티렌-부타디엔 공중합체의 제조방법.
  15. 청구항 10에 있어서,
    상기 화학식 1로 표시되는 변성제는 2-페녹시에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트, 2-메톡시에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트, 2-(디메틸아미노)에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트, 2,5,8,11,14,17,20,23,26-노나옥사옥타코산-28-일 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트, 2-(2-(2-(2-페녹시에톡시)에톡시)에톡시)에틸 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트, 2-페녹시에틸 3-(비스(3-트리에톡시실릴)프로필)아미노)프로파노에이트, 2-메톡시에틸 3-(비스(3-(트리에톡시실릴)프로필)아미노)프로파노에이트, 2-(디메틸아미노)에틸 3-(비스(3-트리에톡시실릴)프로필)아미노)프로파노에이트, 2-(2-(2-(2-페녹시에톡시)에톡시)에톡시)에틸 3-(시클로헥실((트리에톡시실릴)메틸)아미노)프로파노에이트, 2-메톡시에틸 3-(비스(3-(디에톡시(메틸)실릴)프로필)아미노)프로파노에이트 및 에틸 3-(비스(3-(디에톡시(메틸)실릴)프로필)아미노)프로파노에이트로 이루어진 군으로부터 선택된 1종 이상 것인 변성 스티렌-부타디엔 공중합체의 제조방법.
  16. 청구항 10에 있어서,
    상기 화학식 1로 표시되는 변성제는 유기 금속 화합물 1 몰 대비 0.1 mol 내지 10 mol로 사용하는 것인 변성 스티렌-부타디엔 공중합체의 제조방법.
  17. 청구항 1의 변성 스티렌-부타디엔 공중합체를 포함하는 고무 조성물.
  18. 청구항 17에 있어서,
    상기 고무 조성물은 변성 스티렌-부타디엔 공중합체를 10 중량% 이상 포함하는 것인 고무 조성물.
  19. 청구항 17에 있어서,
    상기 고무 조성물은 중합체 100 중량부에 대하여 0.1 중량부 내지 200 중량부의 충전제를 포함하는 것인 고무 조성물.
  20. 청구항 19에 있어서,
    상기 충전제는 실리카계 충전제, 카본블랙계 충전제 또는 이들 조합인 것인 고무 조성물.
  21. 청구항 17의 고무 조성물로부터 제조된 타이어.
  22. 하기 화학식 1의 구조를 갖는 변성제:
    [화학식 1]
    Figure PCTKR2015012821-appb-I000019
    상기 화학식 1에서,
    A는 탄소수 1 내지 20의 탄화수소기이거나, 또는 N, S 및 O로 이루어진 군에서 선택되는 헤테로 원자를 1종 이상 포함하는 탄소수 1 내지 20의 탄화수소기이고,
    R1 및 R2는 각각 독립적으로 탄소수 1 내지 20의 선형 또는 분지형 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 또는 비치환된 탄소수 1 내지 20의 2가 탄화수소기이며,
    R3 내지 R5는 각각 독립적으로 탄소수 1 내지 20의 1가 탄화수소기이고,
    m은 0 내지 3의 정수이고, 그리고 n은 1 또는 2의 정수이며, 단, 상기 A가 탄소수 1 내지 20의 탄화수소기이면, n은 2의 정수이다.
  23. 청구항 22에 있어서,
    상기 화학식 1에서 A는 탄소수 1 내지 20의 알콕시기, 탄소수 1 내지 20의 알콕시알킬기, 및 탄소수 7 내지 20의 페녹시알킬기로 이루어진 군에서 선택되는 어느 하나이고,
    R1 및 R2는 각각 독립적으로 탄소수 1 내지 5의 알킬렌기이며,
    R3 내지 R5는 각각 독립적으로 탄소수 1 내지 5의 알킬기이고,
    m은 0 또는 1의 정수이고, n은 2의 정수인 변성제.
  24. 청구항 22에 있어서,
    상기 변성제는 스티렌-부타디엔 공중합체 변성용인 것인 변성제.
  25. 하기 화학식 2의 화합물과 하기 화학식 3의 화합물을 반응시키는 단계를 포함하는 청구항 22의 변성제의 제조방법:
    [화학식 2]
    Figure PCTKR2015012821-appb-I000020
    [화학식 3]
    Figure PCTKR2015012821-appb-I000021
    상기 화학식 2 및 3에서,
    A는 탄소수 1 내지 20의 탄화수소기이거나, 또는 N, S 및 O로 이루어진 군에서 선택되는 헤테로 원자를 1종 이상 포함하는 탄소수 1 내지 20의 탄화수소기이고,
    R은 탄소수 1 내지 20의 선형 또는 분지형 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 또는 비치환된 탄소수 2 내지 20의 알케닐기이며,
    R2는 탄소수 1 내지 20의 선형 또는 분지형 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 또는 비치환된 탄소수 1 내지 20의 2가 탄화수소기이며,
    R3 내지 R5는 각각 독립적으로 탄소수 1 내지 20의 1가 탄화수소기이고,
    m은 0 내지 3의 정수이고, 그리고 n은 1 또는 2의 정수이며, 단, 상기 A가 탄소수 1 내지 20의 탄화수소기이면, n은 2의 정수이다.
  26. 청구항 25에 있어서,
    상기 화학식 3의 화합물은 상기 화학식 2의 화합물 1몰에 대하여 0.01 내지 0.2몰비로 사용되는 것인 변성제의 제조방법.
PCT/KR2015/012821 2014-11-28 2015-11-27 변성 스티렌-부타디엔 공중합체, 이의 제조방법 및 이를 포함하는 고무 조성물 WO2016085285A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016574228A JP6633553B2 (ja) 2014-11-28 2015-11-27 変性スチレン−ブタジエン共重合体、この製造方法及びこれを含むゴム組成物
EP15864093.8A EP3225636B1 (en) 2014-11-28 2015-11-27 Modified styrene-butadiene copolymer, method for preparing same, and rubber composition including the same
US15/324,815 US10174133B2 (en) 2014-11-28 2015-11-27 Modified styrene-butadiene copolymer, preparation method thereof, and rubber composition including the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2014-0168978 2014-11-28
KR20140168978 2014-11-28
KR20140172962 2014-12-04
KR10-2014-0172962 2014-12-04
KR1020140186009A KR101814861B1 (ko) 2014-12-22 2014-12-22 관능기가 도입된 아미노실란계 말단변성제를 이용하는 고무 조성물의 제조방법 및 이에 따라 제조한 고무 조성물
KR10-2014-0186009 2014-12-22
KR10-2015-0166690 2015-11-26
KR1020150166690A KR101672655B1 (ko) 2014-11-28 2015-11-26 변성 스티렌-부타디엔 공중합체, 이의 제조방법 및 이를 포함하는 고무 조성물

Publications (1)

Publication Number Publication Date
WO2016085285A1 true WO2016085285A1 (ko) 2016-06-02

Family

ID=56074718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012821 WO2016085285A1 (ko) 2014-11-28 2015-11-27 변성 스티렌-부타디엔 공중합체, 이의 제조방법 및 이를 포함하는 고무 조성물

Country Status (1)

Country Link
WO (1) WO2016085285A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066943A1 (ko) * 2016-10-04 2018-04-12 주식회사 엘지화학 변성 개시제 및 이를 포함하는 변성 공액디엔계 중합체
US11248064B2 (en) * 2017-02-08 2022-02-15 Japan Elastomer Co., Ltd. Conjugated diene polymer, conjugated diene polymer composition, and tire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012106184A2 (en) * 2011-01-31 2012-08-09 3M Innovative Properties Company Vapor-deposited coating for barrier films and methods of making and using the same
JP2013060525A (ja) * 2011-09-13 2013-04-04 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体の製造方法、及び変性共役ジエン系重合体組成物
KR20130090811A (ko) * 2012-02-06 2013-08-14 주식회사 엘지화학 변성 공액 디엔계 중합체 및 이의 제조방법
JP2014177520A (ja) * 2013-03-13 2014-09-25 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体組成物、トレッド、サイドウォール及びタイヤ
JP2014177517A (ja) * 2013-03-13 2014-09-25 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体組成物、トレッド、サイドウォール及びタイヤ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012106184A2 (en) * 2011-01-31 2012-08-09 3M Innovative Properties Company Vapor-deposited coating for barrier films and methods of making and using the same
JP2013060525A (ja) * 2011-09-13 2013-04-04 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体の製造方法、及び変性共役ジエン系重合体組成物
KR20130090811A (ko) * 2012-02-06 2013-08-14 주식회사 엘지화학 변성 공액 디엔계 중합체 및 이의 제조방법
JP2014177520A (ja) * 2013-03-13 2014-09-25 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体組成物、トレッド、サイドウォール及びタイヤ
JP2014177517A (ja) * 2013-03-13 2014-09-25 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体組成物、トレッド、サイドウォール及びタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3225636A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066943A1 (ko) * 2016-10-04 2018-04-12 주식회사 엘지화학 변성 개시제 및 이를 포함하는 변성 공액디엔계 중합체
US10995157B2 (en) 2016-10-04 2021-05-04 Lg Chem, Ltd. Modification initiator and modified conjugated diene-based polymer including the same
US11773191B2 (en) 2016-10-04 2023-10-03 Lg Chem, Ltd. Modification initiator and modified conjugated diene-based polymer including the same
US11248064B2 (en) * 2017-02-08 2022-02-15 Japan Elastomer Co., Ltd. Conjugated diene polymer, conjugated diene polymer composition, and tire

Similar Documents

Publication Publication Date Title
WO2018128288A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2017217720A1 (ko) 변성 공액디엔계 중합체의 제조방법 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2018030645A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2018128290A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2020013638A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2018128285A1 (ko) 변성 공액디엔계 중합체 제조방법
WO2017105012A1 (ko) 변성 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2017078408A1 (ko) 유기 리튬 화합물, 이를 이용한 변성 공액디엔계 중합체 제조 방법 및 변성 공액디엔계 중합체
WO2017191921A1 (ko) 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2019216636A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2017111487A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2018128291A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2018105845A1 (ko) 변성제, 변성 공액디엔계 중합체 및 이들의 제조방법
WO2017188641A2 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2017150852A1 (ko) 아자실란계 변성제 및 이를 이용한 변성 공액디엔계 중합체의 제조방법
WO2016085285A1 (ko) 변성 스티렌-부타디엔 공중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2018128289A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2021107434A1 (ko) 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2021066543A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2018128330A1 (ko) 아민 화합물, 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체 및 변성 공액디엔계 중합체의 제조방법
WO2018066943A1 (ko) 변성 개시제 및 이를 포함하는 변성 공액디엔계 중합체
WO2016085102A1 (ko) 말단 기능성 공액 디엔계 중합체 및 이의 제조 방법
WO2017111499A1 (ko) 고분자 화합물, 이를 이용한 변성 공액디엔계 중합체의 제조방법 및 변성 공액디엔계 중합체
WO2017111463A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 변성제
WO2021060815A1 (ko) 변성제, 이를 포함하는 변성 공액디엔계 중합체 및 상기 중합체의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016574228

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15324815

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015864093

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE