WO2020009381A1 - 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 - Google Patents

유기 화합물 및 이를 포함하는 유기 전계 발광 소자 Download PDF

Info

Publication number
WO2020009381A1
WO2020009381A1 PCT/KR2019/007899 KR2019007899W WO2020009381A1 WO 2020009381 A1 WO2020009381 A1 WO 2020009381A1 KR 2019007899 W KR2019007899 W KR 2019007899W WO 2020009381 A1 WO2020009381 A1 WO 2020009381A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
aryl
compound
compound represented
Prior art date
Application number
PCT/KR2019/007899
Other languages
English (en)
French (fr)
Inventor
엄민식
홍진석
심재의
박정근
이용환
박우재
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Publication of WO2020009381A1 publication Critical patent/WO2020009381A1/ko

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to novel organic compounds that can be used as materials for organic electroluminescent devices and organic electroluminescent devices comprising the same.
  • the material used as the organic material layer may be classified into a light emitting material, a hole injection material, a hole transport material, an electron transport material, an electron injection material and the like according to its function.
  • the light emitting material may be classified into blue, green, and red light emitting materials, and yellow and orange light emitting materials required to realize a better natural color according to the light emitting color.
  • a host / dopant system may be used as the light emitting material in order to increase the light emission efficiency through increase in color purity and energy transfer.
  • the dopant material may be divided into a fluorescent dopant using an organic material and a phosphorescent dopant using a metal complex compound containing heavy atoms such as Ir and Pt.
  • a metal complex compound containing heavy atoms such as Ir and Pt.
  • NPB, BCP, Alq 3 and the like are widely known as hole injection layers, hole transport layers, hole blocking layers, and electron transport layer materials, and anthracene derivatives have been reported as emission layer materials.
  • phosphorescent materials having advantages in terms of efficiency improvement among the light emitting materials are blue, green, and red dopant materials, such as Firpic, Ir (ppy) 3 , and (acac) Ir (btp) 2.
  • Metal complex compounds containing Ir and the like are used.
  • 4,4-dicarbazolylbiphenyl (CBP) has shown excellent properties as a phosphorescent host material.
  • the conventional materials have advantages in terms of light emission characteristics, but since the glass transition temperature is low, the thermal stability is poor, and thus, the materials are not satisfactory in terms of lifespan of the organic EL device. Therefore, the development of a material with more excellent performance is calculated
  • An object of the present invention is to provide a novel organic compound which is excellent in thermal stability due to a high glass transition temperature and which can improve the binding force between holes and electrons.
  • an object of the present invention is to provide an organic electroluminescent device including the novel organic compound exhibiting a low driving voltage and high luminous efficiency and an improved lifetime.
  • an example of the present invention provides a compound represented by the following formula (1).
  • X 1 to X 5 are the same as or different from each other, and each independently N or CR, provided that one of X 1 to X 5 is N,
  • Plural R are each the same or different and each independently represent hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 ⁇ alkenyl group of the C 40 alkyl group, C 2 ⁇ C 40 of, C 2 ⁇ C 40 alkynyl group, C 3 to C 40 cycloalkyl group, 3 to 40 heterocycloalkyl group, C 6 ⁇ C 60 aryl group, 5 to 60 heteroaryl group, C 1 ⁇ C 40 Alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 the arylboronic group, C 6 ⁇ C 60 aryl phosphine group, and selected from the group consisting of C 6 ⁇ C 60 aryl phosphine oxide group, and a C 6 ⁇ C 60 aryl group of an
  • Ar 1 to Ar 2 are the same or different and are each independently hydrogen, deuterium, a halogen group, a cyano group, a nitro group, an amino group, an alkenyl group of C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 of, C 2 Alkynyl group of ⁇ C 40 , cycloalkyl group of C 3 ⁇ C 40 , heterocycloalkyl group of 3 to 40 nuclear atoms, aryl group of C 6 to C 60 , heteroaryl group of 5 to 60 nuclear atoms, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ aryl of C 60 boron group, C 6 ⁇ C 60 aryl phosphine group, C 6 ⁇ C aryl phosphine oxide 60
  • A is a substituent represented by the following formula (2),
  • Y is O, S or CR 3 R 4 ,
  • n and m are each an integer of 0 to 4,
  • R 1 to R 4 are the same or different and are each independently hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 ⁇ alkenyl group of the C 40 alkyl group, C 2 ⁇ C 40 of, C 2 Alkynyl group of ⁇ C 40 , cycloalkyl group of C 3 ⁇ C 40 , heterocycloalkyl group of 3 to 40 nuclear atoms, aryl group of C 6 to C 60 , heteroaryl group of 5 to 60 nuclear atoms, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ aryl of C 60 boron group, C 6 ⁇ C 60 aryl phosphine group, C 6 ⁇ C aryl phosphine oxide 60 group and a C 6
  • any one of R 1 to R 4 is a single bond, which is bonded to the formula (1),
  • the present invention includes an anode, a cathode and at least one organic layer interposed between the anode and the cathode, at least one organic layer of the organic layer comprising at least one compound represented by the formula (1) Provided is a light emitting device.
  • At least one of the one or more organic material layers including the compound represented by Formula 1 may be selected from the group consisting of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron transport auxiliary layer and an electron injection layer, It is preferable that it is a transport layer, an electron transport auxiliary layer, and / or a light emitting layer.
  • the compound represented by Formula 1 is an electron transport layer material, an electron transport auxiliary layer material and / or a light emitting layer material.
  • the compound represented by Formula 1 of the present invention may be used as an organic material layer material of the organic electroluminescent device because of excellent thermal stability, carrier transport ability, light emitting ability and the like.
  • the compound represented by Formula 1 according to an example of the present invention is used as an organic material layer material, it is possible to manufacture an organic electroluminescent device having greatly improved aspects such as excellent light emission performance, driving voltage, lifespan, efficiency, furthermore, The electroluminescent element can be effectively applied to a full color display panel and the like.
  • the novel organic compound according to the present invention has a divalent pyridine group connected between a dibenzofuran, dibenzothiophene or fluorene moiety and a triazine, which is an electron-withdrawing group (EWG). It is a compound which has a structure which has a structure as a basic skeleton, and is represented by the said General formula (1).
  • the compound represented by Formula 1 is a dibenzofuran, dibenzothiophene or fluorene moiety is introduced into the triazine moiety through a pyridine moiety.
  • dibenzofuran, dibenzothiophene or fluorene moiety is bonded at a position immediately adjacent to the nitrogen of the pyridine moiety, that is, the ortho position, the nitrogen of the pyridine group and dibenzofuran, dibenzothiol Hydrogen bonds are made between the open or fluorene moiety and between the nitrogen of the triazine and the dibenzofuran, dibenzothiophene or fluorene moiety. These hydrogen bonds make the intermolecular attraction stronger and increase the thermal stability of the molecules.
  • the compound represented by the formula (1) is connected to a triazine having an electron withdrawing characteristics of dibenzofuran, dibenzothiophene or fluorene having high hole mobility through a divalent pyridine group in one skeleton. Therefore, the intermolecular packing is better, resulting in excellent electron transport properties, high triplet energy, and high glass transition temperature.
  • the compound represented by Chemical Formula 1 has excellent electron transport ability and light emission characteristics, and thus, among the hole injection layer, the hole transport layer, the light emitting layer, the electron transport auxiliary layer, the electron transport layer, and the electron injection layer, which are the organic material layers of the organic EL device. It can be used as either material.
  • the compound represented by Formula 1 may be used as a material of any one of the electron transport auxiliary layer further stacked on the light emitting layer, the electron transport layer and the electron transport layer.
  • the compound represented by Chemical Formula 1 since the compound represented by Chemical Formula 1 has a high triplet energy, it may be used as a material of an electron transport auxiliary layer due to a TTF (triplet-triplet fusion) effect, thereby exhibiting an excellent efficiency increase.
  • the exciton generated in the light emitting layer may be prevented from being diffused into the electron transport layer or the hole transport layer adjacent to the light emitting layer.
  • the number of excitons contributing to light emission in the light emitting layer may be improved, and thus the luminous efficiency of the device may be improved, and the durability and stability of the device may be improved, and thus the life of the device may be efficiently increased.
  • the organic electroluminescent device to which the compound represented by Chemical Formula 1 is applied exhibits physical characteristics such that low voltage driving is possible and thus lifespan is improved.
  • the compound represented by Formula 1 when used in an organic electroluminescent device, it can be expected not only excellent thermal stability and carrier transport ability (especially electron transport ability) and light emitting ability, but also driving voltage, efficiency, lifespan, etc. of the device. This can be improved.
  • the compound represented by Formula 1 is very advantageous for electron transport and shows long life characteristics.
  • the excellent electron transport ability of such a compound can have high efficiency and fast mobility in the organic EL device, it is possible to easily adjust the HOMO and LUMO energy level according to the direction or position of the substituent. Therefore, high electron transport can be exhibited in the organic electroluminescent device using such a compound.
  • X 1 to X 5 is CR or N. However, one of X 1 to X 5 is N.
  • Plural R are each the same or different and each independently represent hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 ⁇ alkenyl group of the C 40 alkyl group, C 2 ⁇ C 40 of, C 2 ⁇ C 40 alkynyl group, C 3 to C 40 cycloalkyl group, 3 to 40 heterocycloalkyl group, C 6 ⁇ C 60 aryl group, 5 to 60 heteroaryl group, C 1 ⁇ C 40 Alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 the arylboronic group, C 6 ⁇ C 60 aryl phosphine group, is selected from C 6 ⁇ C 60 aryl phosphine oxide group, and the group consisting of C 6 ⁇ C 60 aryl group of an amine
  • Ar 1 and Ar 2 are the same or different, each independently represent hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 ⁇ alkenyl group of the C 40 alkyl group, C 2 ⁇ C 40 of, C to each other Alkynyl group of 2 to C 40 , a cycloalkyl group of C 3 to C 40 , a heterocycloalkyl group of 3 to 40 nuclear atoms, an aryl group of C 6 to C 60 , a heteroaryl group of 5 to 60 nuclear atoms, C 1 ⁇ C 40 alkyloxy group of, C 6 ⁇ aryloxy C 60, C 1 ⁇ C 40 alkyl silyl group, C 6 ⁇ aryl silyl group of C 60, C 1 ⁇ C 40 group of an alkyl boron, C 6 ⁇ C group 60 arylboronic of, C 6 ⁇ C 60 aryl phosphine group, C 6 ⁇ C 60 aryl phos
  • Y is O, S or CR 3 R 4 , n and m are each an integer of 0 to 4, R 1 to R 4 are the same as or different from each other, and each independently hydrogen, deuterium , Halogen group, cyano group, nitro group, amino group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, nuclear atom number 3 to 40 heterocycloalkyl groups, C 6 to C 60 aryl groups, 5 to 60 heteroaryl groups, C 1 to C 40 alkyloxy groups, C 6 to C 60 aryloxy groups, C 1 C 40 ⁇ C 40 alkyl silyl group, C 6 ⁇ C 60 aryl silyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ C 60 aryl phosphine group, C 6 ⁇
  • any one of R 1 to R 4 of the formula (2) is a single bond (direct bond), which is a site bonded to the formula (1). That is, the carbon bonded to any one of R 1 to R 4 of the formula (2) is connected to the carbon bonded to any one of the plurality of R of the formula (1), wherein the carbon of the formula (2) does not have a substituent.
  • At least one of at least one R 1 and at least one R 2 is a single bond, which is a site bonded to formula (1).
  • a represented by Chemical Formula 2 is a substituent represented by the following Chemical Formula 2a.
  • Y is O or S
  • R 1 , R 2 and m are as defined in formula (2), respectively, and n is an integer from 0 to 3.
  • R 1 when Y is CR 3 R 4 in formula (2), at least one of R 1 , at least one R 2 , R 3, and R 4 is a single bond, which is bonded to formula (1).
  • a represented by Formula 2 is a substituent represented by the following Formula 2b or Formula 2c.
  • R 1 , R 2 , R 4 , n and m are as defined in formula (2), respectively.
  • R 1 , R 2 , R 3 , R 4 and m are the same as defined in Chemical Formula 2, except that n is an integer of 0 to 3.
  • Chemical Formula 1 the compound represented by Chemical Formula 1 may be represented by the following Chemical Formula 3.
  • X 1 to X 5 , Ar 1 , Ar 2 , Y, R 1 and R 2 are the same as defined in Chemical Formula 1,
  • n and m are each an integer of 0 to 4, except that 0 ⁇ n + m ⁇ 7.
  • the dibenzofuran moiety when Y is O, may have a structure bonded to a triazine moiety through a divalent pyridine group, and when Y is S, dibenzothiophene moiety.
  • the thi may have a structure bonded to a triazine moiety through a divalent pyridine group, and when Y is CR 3 R 4 , the fluorene moiety may have a structure bonded to a triazine moiety through a divalent pyridine group.
  • Chemical Formula 1 may be embodied in any one of the following Chemical Formulas 4 to 6.
  • X 1 to X 5 , Ar 1 , Ar 2 , R 3 and R 4 are the same as defined in Chemical Formula 1, respectively.
  • the compound represented by Formula 1 includes a divalent pyridine group, wherein only one of X 1 to X 5 is N and the remainder is CR, a position immediately adjacent to nitrogen (N) of the pyridine group as a linking group, That is, it may have a structure in which the A is bonded to the ortho position.
  • Chemical Formula 1 may be represented by any one of the following Chemical Formulas 7 to 10.
  • Ar 1 , Ar 2 and A are the same as defined in Chemical Formula 1, respectively.
  • Ar 1 and Ar 2 are the same as or different from each other, and each independently may be selected from the group consisting of C 6 ⁇ C 60 aryl group and 5 to 60 heteroaryl group of nuclear atoms.
  • Ar 1 and Ar 2 may be the same as or different from each other, and each independently a substituent selected from the group consisting of the following structural formulas S1 to S8.
  • * means a site bonded to the formula (1).
  • the compound represented by Chemical Formula 1 according to an example of the present invention described above may be further embodied as a compound represented by any one of Compounds 1 to 171 illustrated below.
  • the compound represented by the formula (1) of the present invention is not limited by those illustrated below.
  • Alkyl as used herein means a monovalent substituent derived from a straight or branched chain saturated hydrocarbon of 1 to 40 carbon atoms. Examples of such alkyl include, but are not limited to, methyl, ethyl, propyl, butyl, isobutyl, sec-butyl, pentyl, isoamyl, hexyl and the like.
  • alkenyl refers to a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms having at least one carbon-carbon double bond.
  • alkenyl include, but are not limited to, vinyl, allyl, isopropenyl, 2-butenyl, and the like.
  • alkynyl refers to a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms having at least one carbon-carbon triple bond.
  • alkynyl include, but are not limited to, ethynyl, 2-propynyl, and the like.
  • cycloalkyl is meant herein monovalent substituents derived from monocyclic or polycyclic non-aromatic hydrocarbons having 3 to 40 carbon atoms.
  • examples of such cycloalkyl include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantine, and the like.
  • Heterocycloalkyl as used herein means a monovalent substituent derived from 3 to 40 non-aromatic hydrocarbons of nuclear atoms, wherein at least one carbon in the ring, preferably 1 to 3 carbons, is N, O, S Or a hetero atom such as Se.
  • heterocycloalkyl include, but are not limited to, morpholine, piperazine, and the like.
  • Aryl in the present invention means a monovalent substituent derived from an aromatic hydrocarbon having 6 to 60 carbon atoms combined with a single ring or two or more rings.
  • a form in which two or more rings are attached to each other (pendant) or condensed may also be included.
  • Examples of such aryl include, but are not limited to, phenyl, naphthyl, phenanthryl, anthryl, and the like.
  • Heteroaryl as used herein means a monovalent substituent derived from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 60 nuclear atoms. At least one carbon in the ring, preferably 1 to 3 carbons, is substituted with a heteroatom such as N, O, S or Se.
  • a form in which two or more rings are pendant or condensed with each other may be included, and may also include a form in which the two or more rings are condensed with an aryl group.
  • heteroaryl examples include 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, phenoxathienyl, indolinzinyl, indolyl ( polycyclic rings such as indolyl, purinyl, quinolyl, benzothiazole, carbazolyl and 2-furanyl, N-imidazolyl, 2-isoxazolyl , 2-pyridinyl, 2-pyrimidinyl, and the like, but are not limited thereto.
  • 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, phenoxathienyl, indolinzinyl, indolyl ( polycyclic rings such as indolyl, purinyl, quinolyl, benzothiazole, carb
  • alkyloxy is a monovalent substituent represented by R'O-, wherein R 'means alkyl having 1 to 40 carbon atoms.
  • alkyloxy may comprise a linear, branched or cyclic structure. Examples of such alkyloxy include, but are not limited to, methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy, pentoxy and the like.
  • aryloxy is a monovalent substituent represented by RO-, wherein R means aryl having 6 to 60 carbon atoms.
  • R means aryl having 6 to 60 carbon atoms. Examples of such aryloxy include, but are not limited to, phenyloxy, naphthyloxy, diphenyloxy, and the like.
  • alkylsilyl means silyl substituted with alkyl having 1 to 40 carbon atoms
  • arylsilyl means silyl substituted with aryl having 6 to 60 carbon atoms.
  • alkyl boron is boron substituted with alkyl having 1 to 40 carbon atoms
  • aryl boron means boron substituted with aryl having 6 to 60 carbon atoms.
  • arylphosphine means phosphine substituted with 6 to 60 carbon atoms
  • arylphosphine oxide group means that phosphine substituted with 6 to 60 carbon atoms includes O. do.
  • condensed ring means a condensed aliphatic ring, a condensed aromatic ring, a condensed heteroaliphatic ring, a condensed heteroaromatic ring, or a combination thereof.
  • Arylamine in the present invention means an amine substituted with aryl having 6 to 60 carbon atoms.
  • Such a compound represented by Formula 1 of the present invention can be synthesized in various ways with reference to the synthesis process of the following examples.
  • the present invention relates to an organic electroluminescent device comprising a compound represented by the above formula (1).
  • the organic electroluminescent device comprises an anode, a cathode and at least one organic layer interposed between the anode and the cathode, at least one of the at least one organic layer It includes a compound represented by the formula (1).
  • the compound may be used alone, or two or more may be used in combination.
  • the one or more organic material layers may be any one or more of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer, wherein at least one organic material layer may include a compound represented by Formula 1 above.
  • the organic material layer including the compound of Formula 1 may be a light emitting layer and / or an electron transport layer, more preferably an electron transport layer.
  • the structure of the organic electroluminescent device according to the present invention is not particularly limited, and may be, for example, a structure in which one or more organic layers are stacked between electrodes.
  • Non-limiting examples thereof include (i) an anode, a light emitting layer, a cathode; (ii) an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, a cathode; (iii) an anode, a hole injection layer, a hole transport layer, a light emitting layer, a cathode; Or (iv) an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport auxiliary layer, an electron transport layer, an electron injection layer, and a cathode.
  • the organic EL device according to the present invention may not only have a structure in which an anode, one or more organic material layers, and a cathode are sequentially stacked, but an insulating layer or an adhesive layer may be inserted at an interface between the electrode and the organic material layer.
  • the organic electroluminescent device according to the present invention is an organic material layer and an electrode using materials and methods known in the art, except that at least one or more layers of the organic material layer are formed to include the compound represented by Formula 1 of the present invention. It can be prepared by forming a.
  • the organic material layer including the compound represented by Chemical Formula 1 may be formed by a vacuum deposition method or a solution coating method.
  • the solution coating method include, but are not limited to, spin coating, dip coating, doctor blading, inkjet printing, or thermal transfer.
  • the substrate usable in the present invention is not particularly limited, and non-limiting examples include silicon wafers, quartz, glass plates, metal plates, plastic films and sheets, and the like.
  • examples of the anode material include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole or polyaniline; And carbon black, but are not limited thereto.
  • metals such as vanadium, chromium, copper, zinc and gold or alloys thereof.
  • Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb
  • Conductive polymers such as polythiophene, poly (3-methylthiophene
  • examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, or lead or alloys thereof; And multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like.
  • the hole injection layer, the hole transport layer, the light emitting layer, the electron injection layer and the electron transport layer is not particularly limited, conventional materials known in the art may be used.
  • the glass substrate coated with ITO Indium tin oxide
  • ITO Indium tin oxide
  • a solvent such as isopropyl alcohol, acetone, methanol and the like
  • UV OZONE cleaner Power sonic 405, Hwasin Tech
  • DS-205 Doosan Electronics, 80 nm
  • NPB 15 nm
  • ADN 5%
  • DS-405 Doosan Electronics, 30 nm
  • Compound 2 (30 nm) / LiF (1 nm) / Al (200 nm) was laminated in order to manufacture an organic EL device.
  • the structure of NPB and ADN used at this time is as follows.
  • a blue organic electroluminescent device was manufactured in the same manner as in Example 1, except that Alq 3 was used instead of Compound 2 used in Example 1.
  • the structure of Alq 3 used at this time is as follows.
  • a blue organic electroluminescent device was manufactured in the same manner as in Example 1, except that Compound T-1, instead of Compound 2, used in Example 1 was used.
  • the structure of T-1 used at this time is as follows.
  • a blue organic electroluminescent device was manufactured in the same manner as in Example 1, except that Compound T-2, instead of Compound 2, used in Example 1 was used.
  • the structure of T-2 used at this time is as follows.
  • Example 1 Compound 2 3.9 454 8.0 Example 2 Compound 5 3.5 456 8.9 Example 3 Compound 7 3.8 457 8.3 Example 4 Compound 8 3.7 452 8.6 Example 5 Compound 25 4.3 455 8.5 Example 6 Compound 41 3.7 452 8.3 Example 7 Compound 66 3.8 453 7.7 Example 8 Compound 68 3.9 454 7.8 Example 9 Compound 71 4.0 455 7.9 Example 10 Compound 136 4.2 456 6.0 Comparative Example 1 Alq 3 5.4 458 4.8 Comparative Example 2 T-1 5.3 459 4.9 Comparative Example 3 T-2 5.2 458 5.1
  • a blue organic electroluminescent device using the compounds synthesized in Synthesis Examples 1 to 10 (Compounds 2, 5, 7, 8, 25, 41, 66, 68, 71, and 136) as an electron transport layer material (Examples 1 to 10). 10) has a divalent pyridine group as a linking group, so that a blue organic electroluminescent device (Comparative Examples 2 and 3) using a compound containing p, p-biphenylene or m, p-biphenylene as the electron transport layer material Compared with the driving voltage, the light emission peak and the current efficiency, it was found to be excellent.
  • the glass substrate coated with ITO Indium tin oxide
  • ITO Indium tin oxide
  • a solvent such as isopropyl alcohol, acetone, methanol
  • UV OZONE cleaner Power sonic 405, Hwashin Tech
  • a blue organic electroluminescent device was manufactured in the same manner as in Example 11, except that Alq 3 was deposited at 30 nm instead of 25 nm without using the compound 2 used in Example 11.
  • a blue organic electroluminescent device was manufactured in the same manner as in Example 11, except that Compound T-1 was used instead of Compound 2 used in Example 11.
  • the structure of T-1 used at this time is as described in the comparative example 2.
  • a blue organic electroluminescent device was manufactured in the same manner as in Example 11, except that Compound T-2, instead of Compound 2, used in Example 11 was used.
  • the structure of T-2 used at this time is as described in the comparative example 3.
  • Example 11 Compound 2 4.1 452 8.0
  • Example 12 Compound 5 3.7 451 8.4
  • Example 13 Compound 7 4.1 452 7.6
  • Example 14 Compound 8 3.8 454 8.2
  • Example 15 Compound 25 3.7 451 7.3
  • Example 16 Compound 41 4.0 452 8.0
  • Example 17 Compound 66 4.2 453 7.6
  • Example 18 Compound 68 4.1 454 7.5
  • Example 19 Compound 71 3.9 455 7.4
  • Example 20 Compound 136 4.3 456 6.2 Comparative Example 4 - 5.3 458 5.3 Comparative Example 5 T-1 5.4 457 5.3 Comparative Example 6 T-2 5.2 456 5.3
  • a blue organic electroluminescent device using a compound synthesized in Synthesis Examples 1 to 10 (Compounds 2, 5, 7, 8, 25, 41, 66, 68, 71, and 136) as an electron transport auxiliary layer material (Example 11 to 20) have a divalent pyridine group as a linking group, whereby a blue organic electroluminescent device using a compound containing p, p-biphenylene or m, p-biphenylene as an electron transport auxiliary layer material (Comparative Example 5 Compared with 6 and 6), it was found to exhibit excellent performance in terms of driving voltage, light emission peak, and current efficiency.
  • the glass substrate coated with ITO Indium tin oxide
  • ITO Indium tin oxide
  • a solvent such as isopropyl alcohol, acetone, methanol, etc.
  • UV OZONE cleaner Power sonic 405, Hwasin Tech
  • M-MTDATA 60 nm) / TCTA (80 nm) / 90% of compound 2 + 10% of Ir (ppy) 3 (300 nm) / BCP (10 nm) / Alq 3 (ITO transparent electrode prepared as above) 30 nm) / LiF (1 nm) / Al (200 nm) was laminated to fabricate an organic EL device.
  • the structures of m-MTDATA, TCTA, Ir (ppy) 3 , and BCP used at this time are as follows, and the structure of Alq 3 is as described in Comparative Example 1.
  • Example 21 Except for using the compounds 5, 7, 8, 25, 41, 66, 68, 71, 136 synthesized in Synthesis Examples 2 to 10 instead of the compound used in Example 21, the same as in Example 21 The blue organic electroluminescent element was produced.
  • An organic electroluminescent device was manufactured in the same manner as in Example 21, except that CBP was used instead of Compound 2 used in Example 21.
  • the structure of the CBP used at this time is as follows.
  • An organic electroluminescent device was manufactured in the same manner as in Example 21, except that Compound T-1 was used instead of Compound 2 used in Example 21.
  • the structure of T-1 used at this time is as described in the comparative example 2.
  • An organic electroluminescent device was manufactured in the same manner as in Example 21, except that Compound T-2, instead of Compound 2, used in Example 21 was used.
  • the structure of T-2 used at this time is as described in the comparative example 3.
  • Example 21 Compound 2 6.81 518 39.7
  • Example 22 Compound 5 6.48 518 44.9
  • Example 23 Compound 7 6.66 518 41.3
  • Example 24 Compound 8 6.70 517 41.3
  • Example 25 Compound 25 6.70 515 43.1
  • Example 26 Compound 41 6.51 518 43.5
  • Example 27 Compound 66 6.77 518 41.4
  • Example 28 Compound 68 6.82 517 41.3
  • Example 29 Compound 71 6.66 515 41.3
  • Example 30 Compound 136 6.86 516 41.2 Comparative Example 7 CBP 7.59 516 26.8 Comparative Example 8 T-1 7.34 517 28.9 Comparative Example 9 T-2 7.53 517 31.1
  • the green organic electroluminescent device using the compound (Compound 2, 5, 7, 8, 25, 41, 66, 68, 71, 136) synthesized in Synthesis Examples 1 to 10 as the light emitting layer material (Examples 21 to 30) showed superior performances in terms of current efficiency and driving voltage compared to the green organic electroluminescent device (Comparative Example 7) using CBP, which is a conventional light emitting layer material.
  • a green organic electroluminescent device using the compounds synthesized in Synthesis Examples 1 to 10 (Compounds 2, 5, 7, 8, 25, 41, 66, 68, 71, and 136) as a light emitting layer material (Examples 21 to 30) )
  • Has a divalent pyridine group as a linking group whereby a blue organic electroluminescent device using a compound containing p, p-biphenylene or m, p-biphenylene as an electron transport auxiliary layer material (Comparative Examples 8 and 9) Compared with the driving voltage, the light emission peak and the current efficiency, it was found to be excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Optics & Photonics (AREA)

Abstract

본 발명은 신규한 유기 화합물 및 이를 이용한 유기 전계 발광 소자에 관한 것으로, 보다 상세하게는 발광능이 우수한 신규 화합물 및 이를 하나 이상의 유기물층에 포함함으로써 높은 발광효율, 낮은 구동전압, 긴 수명 등의 특성이 향상된 유기 전계 발광 소자에 관한 것이다.

Description

유기 화합물 및 이를 포함하는 유기 전계 발광 소자
본 발명은 유기 전계 발광 소자용 재료로서 사용될 수 있는 신규 유기 화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것이다.
1950년대 베르나소스(Bernanose)의 유기 박막 발광 관측을 시점으로 하여, 1965년 안트라센 단결정을 이용한 청색 전기발광으로 이어진 유기 전계 발광(electroluminescent, EL) 소자에 대한 연구가 이어져 오다가, 1987년 탕(Tang)에 의하여 정공층과 발광층의 기능층으로 나눈 적층 구조의 유기 전계 발광 소자가 제시되었다. 이후, 고효율, 고수명의 유기 전계 발광 소자를 만들기 위하여, 소자 내 각각의 특징적인 유기물층을 도입하는 형태로 발전하여 왔으며, 이에 사용되는 특화된 물질의 개발로 이어졌다.
유기 전계 발광 소자는 두 전극 사이에 전압을 걸어주면 양극에서는 정공이 유기물층으로 주입되고, 음극에서는 전자가 유기물층으로 주입된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다. 이때, 유기물층으로 사용되는 물질은 그 기능에 따라, 발광 물질, 정공 주입 물질, 정공 수송 물질, 전자 수송 물질, 전자 주입 물질 등으로 분류될 수 있다.
발광 물질은 발광색에 따라 청색, 녹색, 적색 발광 물질과, 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 물질로 구분될 수 있다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 물질로서 호스트/도펀트 계를 사용할 수 있다.
도펀트 물질은 유기 물질을 사용하는 형광 도펀트와 Ir, Pt 등의 중원자(heavy atoms)가 포함된 금속 착체 화합물을 사용하는 인광 도펀트로 나눌 수 있다. 이때, 인광 재료는 이론적으로 형광 재료에 비해 4배의 발광 효율을 향상시킬 수 있기 때문에, 인광 도펀트 뿐만 아니라 인광 호스트 재료들에 대한 연구도 많이 진행되고 있다.
현재까지 정공 주입층, 정공 수송층, 정공 차단층, 전자 수송층 재료로는 NPB, BCP, Alq3 등이 널리 알려져 있으며, 발광층 재료로는 안트라센 유도체들이 보고되고 있다. 특히, 발광 재료 중 효율 향상 측면에서 장점을 가지고 있는 인광 재료들은 청색(blue), 녹색(green), 적색(red) 도판트 재료로서 Firpic, Ir(ppy)3, (acac)Ir(btp)2 등의 Ir을 포함하는 금속 착체 화합물이 사용되고 있다. 현재까지는 4,4-디카바졸릴비페닐(4,4-dicarbazolylbiphenyl, CBP)이 인광 호스트 재료로서 우수한 특성을 나타내고 있다.
그러나, 기존의 재료들은 발광 특성 측면에서는 유리한 면이 있으나, 유리전이온도가 낮아 열적 안정성이 떨어지기 때문에, 유기 전계 발광 소자의 수명 측면에서 만족할 만한 수준이 되지 못하는 실정이다. 따라서, 보다 성능이 뛰어난 재료의 개발이 요구되고 있다.
본 발명은 높은 유리 전이온도로 인해 열적 안전성이 우수하면서, 정공과 전자의 결합력을 향상시킬 수 있는 신규 유기 화합물을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 신규 유기 화합물을 포함하여 낮은 구동 전압과 높은 발광 효율을 나타내며 수명이 향상된 유기 전계 발광 소자를 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위해, 본 발명의 일례는 하기 화학식 1로 표시되는 화합물을 제공한다.
Figure PCTKR2019007899-appb-C000001
상기 화학식 1에서,
X1 내지 X5는 서로 동일하거나 또는 상이하고, 각각 독립적으로 N 또는 CR이고, 다만 X1 내지 X5 중 하나는 N이고,
복수의 R은 서로 동일하거나 또는 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되며,
Ar1 내지 Ar2는 서로 동일하거나 또는 상이하며, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있으며,
A는 하기 화학식 2로 표시되는 치환체이고,
Figure PCTKR2019007899-appb-C000002
상기 화학식 2에서,
Y는 O, S 또는 CR3R4이고,
n 및 m은 각각 0 내지 4의 정수이고,
R1 내지 R4는 서로 동일하거나 또는 상이하며, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있으며,
다만 R1 내지 R4 중 어느 하나는 단일결합이고, 이는 화학식 1에 결합되며,
상기 Ar1, Ar2 및 R1 내지 R4의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴아민기는 각각 독립적으로 중수소, 할로겐, 시아노기, 니트로기, 아미노기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환되고, 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이하다.
또한, 본 발명은 양극, 음극 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하고, 상기 1층 이상의 유기물 층에서 적어도 하나는 상기 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자를 제공한다.
여기서, 상기 화학식 1로 표시되는 화합물을 포함하는 1층 이상의 유기물층 중 적어도 하나는 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자수송 보조층 및 전자 주입층으로 이루어진 군으로부터 선택될 수 있으며, 전자 수송층, 전자수송 보조층 및/또는 발광층인 것이 바람직하다. 이때 상기 화학식 1로 표시되는 화합물은 전자 수송층 재료, 전자 수송 보조층 재료 및/또는 발광층 재료이다.
본 발명의 화학식 1로 표시되는 화합물은 열적 안정성, 캐리어 수송능, 발광능 등이 우수하기 때문에 유기 전계 발광 소자의 유기물층 재료로 사용될 수 있다.
또한, 본 발명의 일례에 따른 화학식 1로 표시되는 화합물을 유기물층 재료로 사용할 경우, 우수한 발광 성능, 구동전압, 수명, 효율 등의 측면이 크게 향상된 유기 전계 발광 소자를 제조할 수 있고, 나아가 이러한 유기 전계 발광 소자는 풀 칼라 디스플레이 패널 등에 효과적으로 적용될 수 있다.
이하 본 발명을 상세히 설명한다.
1. 유기 화합물
본 발명에 따른 신규 유기 화합물은 디벤조퓨란(dibenzofuran), 디벤조싸이오펜(dibenzothiophene) 또는 플루오렌(fluorene) 모이어티와 EWG(electron-withdrawing group)인 트리아진 사이에 2가의 피리딘기가 링커기로 연결되어 있는 구조를 기본 골격으로 가지는 화합물로, 상기 화학식 1로 표시된다.
구체적으로, 상기 화학식 1로 표시되는 화합물은 디벤조퓨란, 디벤조싸이오펜 또는 플루오렌 모이어티가 피리딘 모이어티를 통해 트리아진 모이어티에 도입되어 있다. 여기서, 디벤조퓨란, 디벤조싸이오펜 또는 플루오렌 모이어티가 피리딘 모이어티의 질소에 바로 인접한 위치, 즉 오르소(ortho) 위치에 결합될 경우, 피리딘기의 질소와 디벤조퓨란, 디벤조싸이오펜 또는 플루오렌 모이어티 사이, 및 트리아진의 질소와 디벤조퓨란, 디벤조싸이오펜 또는 플루오렌 모이어티 사이에서 수소 결합이 이뤄지게 된다. 이러한 수소 결합은 분자 간 인력을 더 강하게 하여 분자의 열적 안정성을 상승시키게 된다.
또한, 상기 화학식 1로 표시되는 화합물은 정공 이동도가 높은 디벤조퓨란, 디벤조싸이오펜 또는 플루오렌이 2가의 피리딘기를 통해 전자 끄는(electron withdrawing) 특성을 갖는 트리아진과 하나의 골격으로 연결되어 있기 때문에, 분자 간 패킹이 더 잘 이루어져 전자 수송성이 우수할 뿐만 아니라, 삼중항 에너지가 높고, 또 유리전이온도가 높아 열적 안정성이 우수하다. 이로 인해, 상기 화학식 1로 표시되는 화합물은 전자 수송 능력 및 발광 특성이 우수하기 때문에, 유기 전계 발광 소자의 유기물층인 정공 주입층, 정공 수송층, 발광층, 전자 수송 보조층, 전자 수송층 및 전자 주입층 중 어느 하나의 재료로 사용될 수 있다. 바람직하게, 상기 화학식 1로 표시되는 화합물은 발광층, 전자 수송층 및 전자 수송층에 추가로 적층되는 전자수송 보조층 중 어느 하나의 재료로 사용될 수 있다.
구체적으로, 상기 화학식 1로 표시되는 화합물은 높은 삼중항 에너지를 가지므로 TTF(triplet-triplet fusion) 효과로 인해 전자수송 보조층의 재료로 사용되어 우수한 효율 상승을 나타낼 수 있다. 또한, 발광층에서 생성된 엑시톤이 발광층에 인접하는 전자수송층 또는 정공수송층으로 확산되는 것을 방지할 수 있다. 발광층 내에서 발광에 기여하는 엑시톤의 수가 증가되어 소자의 발광 효율이 개선될 수 있고, 소자의 내구성 및 안정성이 향상되어 소자의 수명이 효율적으로 증가될 수 있다. 이러한 화학식 1로 표시되는 화합물이 적용된 유기 전계 발광 소자는 저전압 구동이 가능하여 이로 인한 수명이 개선되는 물리적 특징들을 나타낸다.
따라서, 상기 화학식 1로 표시되는 화합물은 유기 전계 발광 소자에 사용할 경우, 우수한 열적 안정성 및 캐리어 수송능(특히, 전자 수송능) 및 발광능을 기대할 수 있을 뿐만 아니라 소자의 구동전압, 효율, 수명 등이 향상될 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 전자 수송에 매우 유리할 뿐만 아니라 장수명 특성을 보여준다. 이러한 화합물의 우수한 전자수송 능력은 유기 전계 발광 소자에서 높은 효율과 빠른 이동성(mobility)을 가질 수 있고, 치환기의 방향이나 위치에 따라 HOMO 및 LUMO 에너지 레벨을 용이하게 조절할 수 있다. 그러므로, 이러한 화합물을 사용한 유기 전계 발광 소자에서 높은 전자 수송성을 나타낼 수 있다.
본 발명에 따른 화학식 1로 표시되는 화합물에서, 상기 X1 내지 X5는 CR 또는 N이다. 다만, X1 내지 X5 중 하나는 N 이다.
복수의 R은 서로 동일하거나 또는 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된다.
상기 Ar1 및 Ar2는 서로 동일하거나 또는 상이하며, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있다.
상기 화학식 2에서, Y는 O, S 또는 CR3R4이고, 상기 n 및 m은 각각 0 내지 4의 정수이며, 상기 R1 내지 R4는 서로 동일하거나 또는 상이하며, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있다.
다만, 화학식 2의 R1 내지 R4 중 어느 하나는 단일결합(직접결합)이고, 이는 화학식 1에 결합되는 부위이다. 즉, 화학식 2의 R1 내지 R4 중 어느 하나와 결합된 탄소가 화학식 1의 복수 R 중 어느 하나와 결합된 탄소와 연결되고, 이때 화학식 2의 탄소에는 치환기가 존재하지 않는다.
일례에 따르면, 화학식 2에서 Y가 O 또는 S인 경우, 1개 이상의 R1 및 1개 이상의 R2 중 어느 하나가 단일결합이고, 이는 화학식 1에 결합되는 부위이다. 예컨대, 상기 화학식 2로 표시되는 A는 하기 화학식 2a로 표시되는 치환체이다.
[화학식 2a]
Figure PCTKR2019007899-appb-I000001
화학식 2a에서,
Y는 O 또는 S이고,
R1, R2 및 m은 각각 화학식 2에서 정의된 바와 같고, n은 0 내지 3의 정수이다.
다른 일례에 따르면, 화학식 2에서 Y가 CR3R4인 경우, 1개 이상의 R1, 1개 이상의 R2, R3 및 R4 중 어느 하나가 단일결합이고, 이는 화학식 1에 결합된다. 예컨대, 상기 화학식 2로 표시되는 A는 하기 화학식 2b 또는 화학식 2c로 표시되는 치환체이다.
[화학식 2b]
Figure PCTKR2019007899-appb-I000002
화학식 2b에서,
R1, R2, R4, n 및 m은 각각 화학식 2에서 정의된 바와 같다.
[화학식 2c]
Figure PCTKR2019007899-appb-I000003
화학식 2c에서,
R1, R2, R3, R4 및 m은 각각 화학식 2에서 정의된 바와 같고, 다만 n은 0 내지 3의 정수이다.
구체적으로, 상기 화학식 1로 표시되는 화합물은 하기 화학식 3으로 표시될 수 있다.
Figure PCTKR2019007899-appb-C000003
상기 화학식 3에서,
X1 내지 X5, Ar1, Ar2, Y, R1 및 R2는 각각 상기 화학식 1에서 정의한 바와 같고,
n 및 m은 각각 0 내지 4의 정수이고, 다만 0≤n+m≤7이다.
이러한 상기 화학식 3으로 표시되는 화합물에서, Y가 O일 경우에는 디벤조퓨란 모이어티가 2가의 피리딘기를 통해 트리아진 모이어티에 결합된 구조를 가질 수 있고, Y가 S인 경우에는 디벤조싸이오펜 모이어티가 2가의 피리딘기를 통해 트리아진 모이어티에 결합된 구조를 가질 수 있으며, Y가 CR3R4인 경우에는 플루오렌 모이어티가 2가의 피리딘기를 통해 트리아진 모이어티에 결합된 구조를 가질 수 있다.
구체적으로, 상기 화학식 1로 표시되는 화합물은 하기 화학식 4 내지 화학식 6 중 어느 하나로 구체화될 수 있다.
Figure PCTKR2019007899-appb-C000004
Figure PCTKR2019007899-appb-C000005
Figure PCTKR2019007899-appb-C000006
상기 화학식 4 내지 6에서,
X1 내지 X5, Ar1, Ar2, R3 및 R4는 각각 상기 화학식 1에서 정의한 바와 같다.
바람직하게는, 상기 화학식 1로 표시되는 화합물은, 상기 X1 내지 X5 중 하나만 N이고 나머지가 CR인 2가의 피리딘기를 연결기로 포함하며, 연결기인 피리딘기의 질소(N)에 바로 인접한 위치, 즉 오르소 위치에 상기 A가 결합된 구조를 가질 수 있다.
구체적으로, 상기 화학식 1로 표시되는 화합물은 하기 화학식 7 내지 화학식 10 중 어느 하나로 표시될 수 있다.
Figure PCTKR2019007899-appb-C000007
Figure PCTKR2019007899-appb-C000008
Figure PCTKR2019007899-appb-C000009
Figure PCTKR2019007899-appb-C000010
상기 화학식 7 내지 10에서,
Ar1, Ar2 및 A는 각각 상기 화학식 1에서 정의한 바와 같다.
바람직하게는, 상기 Ar1 및 Ar2는 서로 동일하거나 또는 상이하고, 각각 독립적으로 C6~C60의 아릴기 및 핵원자수 5 내지 60개의 헤테로아릴기로 구성된 군에서 선택될 수 있다.
더욱 바람직하게는, 상기 Ar1 및 Ar2는 서로 동일하거나 또는 상이하고, 각각 독립적으로 하기 구조식 S1 내지 S8로 이루어진 군에서 선택되는 치환체일 수 있다.
Figure PCTKR2019007899-appb-I000004
상기 구조식에서, *는 화학식 1에 결합되는 부위를 의미한다.
이상에서 설명한 본 발명의 일례에 따른 화학식 1로 표시되는 화합물은 하기 예시된 화합물 1 내지 171 중 어느 하나로 표시되는 화합물로 보다 구체화될 수 있다. 그러나 본 발명의 화학식 1로 표시되는 화합물이 하기 예시된 것들에 의해 한정되는 것은 아니다.
Figure PCTKR2019007899-appb-I000005
Figure PCTKR2019007899-appb-I000006
Figure PCTKR2019007899-appb-I000007
Figure PCTKR2019007899-appb-I000008
Figure PCTKR2019007899-appb-I000009
Figure PCTKR2019007899-appb-I000010
Figure PCTKR2019007899-appb-I000011
Figure PCTKR2019007899-appb-I000012
Figure PCTKR2019007899-appb-I000013
Figure PCTKR2019007899-appb-I000014
Figure PCTKR2019007899-appb-I000015
Figure PCTKR2019007899-appb-I000016
Figure PCTKR2019007899-appb-I000017
Figure PCTKR2019007899-appb-I000018
Figure PCTKR2019007899-appb-I000019
Figure PCTKR2019007899-appb-I000020
Figure PCTKR2019007899-appb-I000021
Figure PCTKR2019007899-appb-I000022
Figure PCTKR2019007899-appb-I000023
Figure PCTKR2019007899-appb-I000024
Figure PCTKR2019007899-appb-I000025
Figure PCTKR2019007899-appb-I000026
Figure PCTKR2019007899-appb-I000027
Figure PCTKR2019007899-appb-I000028
Figure PCTKR2019007899-appb-I000029
Figure PCTKR2019007899-appb-I000030
Figure PCTKR2019007899-appb-I000031
Figure PCTKR2019007899-appb-I000032
Figure PCTKR2019007899-appb-I000033
Figure PCTKR2019007899-appb-I000034
Figure PCTKR2019007899-appb-I000035
Figure PCTKR2019007899-appb-I000036
Figure PCTKR2019007899-appb-I000037
Figure PCTKR2019007899-appb-I000038
Figure PCTKR2019007899-appb-I000039
Figure PCTKR2019007899-appb-I000040
Figure PCTKR2019007899-appb-I000041
Figure PCTKR2019007899-appb-I000042
Figure PCTKR2019007899-appb-I000043
Figure PCTKR2019007899-appb-I000044
Figure PCTKR2019007899-appb-I000045
Figure PCTKR2019007899-appb-I000046
본 발명에서 "알킬"은 탄소수 1 내지 40개의 직쇄 또는 측쇄의 포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이러한 알킬의 예로는 메틸, 에틸, 프로필, 부틸, 이소부틸, sec-부틸, 펜틸, 이소아밀, 헥실 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알케닐(alkenyl)"은 탄소-탄소 이중 결합을 1개 이상 가진 탄소수 2 내지 40개의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이러한 알케닐의 예로는 비닐(vinyl), 알릴(allyl), 이소프로펜일(isopropenyl), 2-부텐일(2-butenyl) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알키닐(alkynyl)"은 탄소-탄소 삼중 결합을 1개 이상 가진 탄소수 2 내지 40개의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이러한 알키닐의 예로는 에티닐(ethynyl), 2-프로파닐(2-propynyl) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "시클로알킬"은 탄소수 3 내지 40개의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이러한 사이클로알킬의 예로는 사이클로프로필, 사이클로펜틸, 사이클로헥실, 노르보닐(norbornyl), 아다만틴(adamantine) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "헤테로시클로알킬"은 핵원자수 3 내지 40개의 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로 원자로 치환된다. 이러한 헤테로시클로알킬의 예로는 모르폴린, 피페라진 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "아릴"은 단독 고리 또는 2 이상의 고리가 조합된 탄소수 6 내지 60개의 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있다. 이러한 아릴의 예로는 페닐, 나프틸, 페난트릴, 안트릴 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "헤테로아릴"은 핵원자수 5 내지 60개의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이때, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로원자로 치환된다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있고, 나아가 아릴기와의 축합된 형태도 포함될 수 있다. 이러한 헤테로아릴의 예로는 피리딜, 피라지닐, 피리미디닐, 피리다지닐, 트리아지닐과 같은 6-원 모노사이클릭 고리, 페녹사티에닐(phenoxathienyl), 인돌리지닐(indolizinyl), 인돌릴(indolyl), 퓨리닐(purinyl), 퀴놀릴(quinolyl), 벤조티아졸(benzothiazole), 카바졸릴(carbazolyl)과 같은 폴리사이클릭 고리 및 2-퓨라닐, N-이미다졸릴, 2-이속사졸릴, 2-피리디닐, 2-피리미디닐 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알킬옥시"는 R'O-로 표시되는 1가의 치환기로, 상기 R'는 탄소수 1 내지 40개의 알킬을 의미한다. 이러한 알킬옥시는 직쇄(linear), 측쇄(branched) 또는 사이클릭(cyclic) 구조를 포함할 수 있다. 이러한 알킬옥시의 예로는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, t-부톡시, n-부톡시, 펜톡시 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "아릴옥시"는 RO-로 표시되는 1가의 치환기로, 상기 R은 탄소수 6 내지 60개의 아릴을 의미한다. 이러한 아릴옥시의 예로는 페닐옥시, 나프틸옥시, 디페닐옥시 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 "알킬실릴"은 탄소수 1 내지 40개의 알킬로 치환된 실릴이고, "아릴실릴"은 탄소수 6 내지 60개의 아릴로 치환된 실릴을 의미한다.
본 발명에서 "알킬보론"은 탄소수 1 내지 40개의 알킬로 치환된 보론이고, "아릴보론"은 탄소수 6 내지 60개의 아릴로 치환된 보론을 의미한다.
본 발명에서 "아릴포스핀"은 탄소수 6 내지 60개의 아릴로 치환된 포스핀을 의미하고, "아릴포스핀옥사이드기"는 탄소수 6 내지 60개의 아릴로 치환된 포스핀이 O를 포함하는 것을 의미한다.
본 발명에서 "축합고리"는 축합 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리, 축합 헤테로방향족 고리 또는 이들의 조합된 형태를 의미한다.
본 발명에서 "아릴아민"은 탄소수 6 내지 60개의 아릴로 치환된 아민을 의미한다.
이와 같은 본 발명의 화학식 1로 표시되는 화합물은 하기 실시예의 합성과정을 참고하여 다양하게 합성할 수 있다.
2. 유기 전계 발광 소자
본 발명은 전술한 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자에 관한 것이다.
구체적으로, 본 발명에 따른 유기 전계 발광 소자는 양극(anode), 음극(cathode) 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며, 상기 1층 이상의 유기물층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물을 포함한다. 이때, 상기 화합물은 단독으로 사용되거나, 또는 2 이상이 혼합되어 사용될 수 있다.
일례에 따르면, 상기 1층 이상의 유기물층은 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 전자 주입층 중 어느 하나 이상일 수 있고, 이중에서 적어도 하나의 유기물층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. 바람직하게는 상기 화학식 1의 화합물을 포함하는 유기물층은 발광층 및/또는 전자 수송층일 수 있으며, 보다 바람직하게는 전자 수송층일 수 있다. 아울러, 전자 수송층과 발광층 사이에, 상기 화학식 1로 표시되는 화합물로 구성되는 전자 수송 보조층을 포함하는 것도 바람직하다.
본 발명에 따른 유기 전계 발광 소자의 구조는 특별히 한정되지 않으며, 일례로 전극간에 유기물층이 1층 또는 2층 이상 적층된 구조일 수 있다. 이의 비제한적인 예를 들면 (i) 양극, 발광층, 음극; (ii) 양극, 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층, 음극; (iii) 양극, 정공주입층, 정공수송층, 발광층, 음극; 또는 (iv) 양극, 정공주입층, 정공수송층, 발광층, 전자수송 보조층, 전자수송층, 전자주입층, 음극 등의 구조를 들 수 있다.
또한, 본 발명에 따른 유기 전계 발광 소자는 전술한 바와 같이 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조뿐만 아니라, 전극과 유기물층 계면에 절연층 또는 접착층이 삽입될 수 있다.
본 발명에 따른 유기 전계 발광 소자는 유기물층 중 적어도 1층 이상을 본 발명의 화학식 1로 표시되는 화합물을 포함하도록 형성하는 것을 제외하고는, 당 기술 분야에 알려져 있는 재료 및 방법을 이용하여 유기물층 및 전극을 형성함으로써 제조될 수 있다.
상기 화학식 1로 표시되는 화합물을 포함하는 유기물층은 진공증착법이나 용액 도포법에 의하여 형성될 수 있다. 상기 용액 도포법의 예로는 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅 또는 열전사법 등이 있으나, 이들에만 한정되지 않는다.
본 발명에서 사용 가능한 기판은 특별히 한정되지 않으며, 비제한적인 예로는 실리콘 웨이퍼, 석영, 유리판, 금속판, 플라스틱 필름 및 시트 등이 있다.
또, 양극 물질의 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리싸이오펜, 폴리(3-메틸싸이오펜), 폴리[3,4-(에틸렌-1,2-디옥시)싸이오펜](PEDT), 폴리피롤 또는 폴리아닐린과 같은 전도성 고분자; 및 카본블랙 등이 있는데, 이에 한정되지는 않는다.
또, 음극 물질의 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 또는 납과 같은 금속 또는 이들의 합금; 및 LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있는데, 이에 한정되지는 않는다.
또한, 정공주입층, 정공수송층, 발광층, 전자 주입층 및 전자 수송층은 특별히 한정되는 것은 아니며, 당 업계에 알려진 통상의 물질이 사용될 수 있다.
이하, 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[ 준비예 1] Core-1의 합성
<단계 1> (3- chloro -2-( dibenzo[b,d]furan -1- yl )pyridine의 합성
Figure PCTKR2019007899-appb-I000047
2,3-Dichloropyridine (14.8 g, 100 mmol)와 dibenzo[b,d]furan-1-ylboronic acid (21 g, 100 mmol) 및 Pd(PPh3)4 (4.6 g, 4 mmol), NaOH (12 g, 300 mmol)를 500 ml THF와 200 ml H2O에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 Ethyl acetate로 추출하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 (3-chloro-2-(dibenzo[b,d]furan-1-yl)pyridine (25 g, 수율 89 %)을 얻었다.
1H-NMR: δ 7.19 (t, 1H), 7.32 (t, 1H), 7.38 (t, 1H), 7.47 (t, 1H), 7.58 (d, 1H), 7.66 (d, 1H), 7.68 (d, 1H), 7.89 (d, 1H), 8.26 (d, 1H), 8.59 (t, 1H)
<단계 2> Core-1의 합성
Figure PCTKR2019007899-appb-I000048
(3-chloro-2-(dibenzo[b,d]furan-1-yl)pyridine (25 g, 89 mmol) 및 Pd(dppf)Cl2 (2.6 g, 4 mmol), Pinacol diboron (27 g, 107 mmol), KOAc (26 g, 267 mmol)를 200 ml DMF 에 넣고 110℃에서 8시간 동안 교반하였다. 반응 종결 후 H2O를 첨가하였고, Ethyl acetate로 추출하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 Core-1 (29 g, 수율 88 %)을 얻었다.
1H-NMR: δ 1.24 (s, 12H), 7.00 (t, 1H), 7.32 (t, 1H), 7.38 (d, 2H), 7.47 (t, 1H), 7.66 (d, 1H), 7.68 (d, 1H), 7.89 (d, 1H), 8.26 (d, 1H), 8.50 (d, 1H)
[ 준비예 2] Core-2의 합성
<단계 1> (3- chloro -2-( dibenzo[b,d]furan -2- yl )pyridine의 합성
Figure PCTKR2019007899-appb-I000049
2,3-Dichloropyridine (14.8 g, 100 mmol)와 dibenzo[b,d]furan-1-ylboronic acid (21 g, 100 mmol) 및 Pd(PPh3)4 (4.6 g, 4 mmol), NaOH (12 g, 300 mmol)를 500 ml THF와 200 ml H2O에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 Ethyl acetate로 추출하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 (3-chloro-2-(dibenzo[b,d]furan-2-yl)pyridine (24 g, 수율 86 %)을 얻었다.
1H-NMR: δ 7.19 (t, 1H), 7.32 (t, 1H), 7.38 (t, 1H), 7.58 (d, 1H), 7.66 (d, 1H), 7.68 (d, 1H), 7.75 (d, 1H), 7.89 (d, 1H), 8.22 (s, 1H), 8.59 (t, 1H)
<단계 2> Core-2의 합성
Figure PCTKR2019007899-appb-I000050
(3-chloro-2-(dibenzo[b,d]furan-2-yl)pyridine (24 g, 86 mmol) 및 Pd(dppf)Cl2 (2.5 g, 3 mmol), Pinacol diboron (26 g, 103 mmol), KOAc (25 g, 257 mmol)를 200 ml DMF 에 넣고 110℃에서 8시간 동안 교반하였다. 반응 종결 후 H2O를 첨가하였고, Ethyl acetate로 추출하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 Core-2 (24 g, 수율 75 %)을 얻었다.
1H-NMR: δ 1.24 (s, 12H), 7.00 (t, 1H), 7.32 (t, 1H), 7.38 (d, 2H), 7.66 (d, 1H), 7.75 (d, 1H), 7.89 (d, 1H), 8.22 (s, 1H), 8.32 (d, 1H), 8.50 (d, 1H)
[ 준비예 3] Core-3의 합성
<단계 1> (3- chloro -2-( dibenzo [ b,d ] furan -3- yl )pyridine의 합성
Figure PCTKR2019007899-appb-I000051
2,3-Dichloropyridine (14.8 g, 100 mmol)와 dibenzo[b,d]furan-3-ylboronic acid (21 g, 100 mmol) 및 Pd(PPh3)4 (4.6 g, 4 mmol), NaOH (12 g, 300 mmol)를 500 ml THF와 200 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 Ethyl acetate로 추출하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 (3-chloro-2-(dibenzo[b,d]furan-3-yl)pyridine (25 g, 수율 89 %)을 얻었다.
1H-NMR: δ 7.19 (t, 1H), 7.32 (t, 1H), 7.38 (t, 1H), 7.58 (d, 1H), 7.66 (d, 1H), 7.89 (d, 1H), 7.98 (d, 1H), 8.15 (s, 1H), 8.26 (d, 1H), 8.59 (t, 1H)
<단계 2> Core-3의 합성
Figure PCTKR2019007899-appb-I000052
(3-chloro-2-(dibenzo[b,d]furan-3-yl)pyridine (25 g, 89 mmol) 및 Pd(dppf)Cl2 (2.6 g, 4 mmol), Pinacol diboron (27 g, 107 mmol), KOAc (26 g, 267 mmol)를 200 ml DMF 에 넣고 110℃에서 8시간 동안 교반하였다. 반응 종결 후 H2O를 첨가하였고, Ethyl acetate로 추출하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 Core-3 (29 g, 수율 88 %)을 얻었다.
1H-NMR: δ 1.24 (s, 12H), 7.00 (t, 1H), 7.32 (t, 1H), 7.38 (d, 2H), 7.66 (d, 1H), 7.89 (d, 1H), 7.98 (d, 1H), 8.15 (s, 1H), 8.26 (d, 1H), 8.50 (d, 1H)
[ 준비예 4] Core-4의 합성
<단계 1> (3- chloro -2-( dibenzo[b,d]thiophen -1- yl )pyridine의 합성
Figure PCTKR2019007899-appb-I000053
2,3-Dichloropyridine (14.8 g, 100 mmol)와 dibenzo[b,d]thiophen-1-ylboronic acid (24 g, 100 mmol) 및 Pd(PPh3)4 (4.6 g, 4 mmol), NaOH (12 g, 300 mmol)를 500 ml THF와 200 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 Ethyl acetate로 추출하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 (3-chloro-2-(dibenzo[b,d]thiophen-1-yl)pyridine (28 g, 수율 93 %)을 얻었다.
1H-NMR: δ 7.19 (t, 1H), 7.50 (t, 1H), 7.52 (t, 1H), 7.58 (d, 1H), 7.59 (t, 1H), 7.98 (d, 1H), 8.00 (d, 1H), 8.33 (d, 1H), 8.45 (d, 1H), 8.59 (d, 1H)
<단계 2> Core-4의 합성
Figure PCTKR2019007899-appb-I000054
(3-chloro-2-(dibenzo[b,d]thiophen-1-yl)pyridine (28 g, 95 mmol) 및 Pd(dppf)Cl2 (2.8 g, 4 mmol), Pinacol diboron (29 g, 114 mmol), KOAc (28 g, 283 mmol)를 200 ml DMF 에 넣고 110℃에서 8시간 동안 교반하였다. 반응 종결 후 H2O를 첨가하였고, Ethyl acetate로 추출하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 Core-4 (35 g, 수율 88 %)을 얻었다.
1H-NMR: δ 1.24 (s, 12H), 7.00 (t, 1H), 7.38 (d, 1H), 7.50 (t, 1H), 7.52 (t, 1H), 7.59 (t, 1H), 7.98 (d, 1H), 8.00 (d, 1H), 8.33 (d, 1H), 8.45 (d, 1H), 8.50 (d, 1H)
[ 준비예 5] Core-5의 합성
<단계 1> 3- chloro -2-(9,9- dimethyl -9H- fluoren -4- yl )pyridine의 합성
Figure PCTKR2019007899-appb-I000055
2,3-Dichloropyridine (14.8 g, 100 mmol)와 (9,9-dimethyl-9H-fluoren-4-yl)boronic acid (24 g, 100 mmol) 및 Pd(PPh3)4 (4.6 g, 4 mmol), NaOH (12 g, 300 mmol)를 500 ml THF와 200 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 Ethyl acetate로 추출하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 3-chloro-2-(9,9-dimethyl-9H-fluoren-4-yl)pyridine (28 g, 수율 90 %)을 얻었다.
1H-NMR: δ 1.72 (s, 6H), 7.19 (t, 1H), 7.28 (t, 1H), 7.37 (t, 1H), 7.38 (t, 1H), 7.55 (d, 1H), 7.57 (d, 1H), 7.58 (d, 1H), 7.87 (d, 1H), 8.14 (d, 1H), 8.59 (d, 1H)
<단계 2> Core-5의 합성
Figure PCTKR2019007899-appb-I000056
3-chloro-2-(9,9-dimethyl-9H-fluoren-4-yl)pyridine (28 g, 92 mmol) 및 Pd(dppf)Cl2 (2.7 g, 4 mmol), Pinacol diboron (28 g, 110 mmol), KOAc (27 g, 274 mmol)를 200 ml DMF 에 넣고 110℃에서 8시간 동안 교반하였다. 반응 종결 후 H2O를 첨가하였고, Ethyl acetate로 추출하여 유기층을 분리하고 MgSO4를 사용하여 물을 제거하였다. 물이 제거된 유기층에서 용매를 제거한 후 컬럼크로마토그래피로 정제하여 Core-5 (34 g, 수율 96 %)을 얻었다.
1H-NMR: δ 1.24 (s, 12H), 1.72 (s, 6H), 7.00 (t, 1H), 7.28 (t, 1H), 7.37 (t, 1H), 7.38 (t, 2H), 7.55 (d, 1H), 7.57 (d, 1H), 7.87 (d, 1H), 8.14 (d, 1H), 8.50 (d, 1H)
[ 합성예 1] 화합물 2의 합성
Figure PCTKR2019007899-appb-I000057
Core-1 (5.0 g, 13.5 mmol), 2-([1,1'-biphenyl]-4-yl)-4-chloro-6-phenyl-1,3,5-triazine (4.6 g, 13.5 mmol) 및 Pd(PPh3)4 (0.6 g, 0.5 mmol), NaOH (1.6 g, 40 mmol)를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 화합물 2 (5 g, 수율 67 %)를 얻었다.
[LCMS]: 552
[ 합성예 2] 화합물 5의 합성
Figure PCTKR2019007899-appb-I000058
Core-1 (5.0 g, 13.5 mmol), 2,4-di([1,1'-biphenyl]-4-yl)-6-chloro-1,3,5-triazine (5.7 g, 13.5 mmol) 및 Pd(PPh3)4 (0.6 g, 0.5 mmol), NaOH (1.6 g, 40 mmol)를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 화합물 5 (6 g, 수율 71 %)를 얻었다.
[LCMS]: 628
[ 합성예 3] 화합물 7의 합성
Figure PCTKR2019007899-appb-I000059
Core-1 (5.0 g, 13.5 mmol), 2-([1,1'-biphenyl]-4-yl)-4-chloro-6-(dibenzo[b,d]furan-3-yl)-1,3,5-triazine (5.9 g, 13.5 mmol) 및 Pd(PPh3)4 (0.6 g, 0.5 mmol), NaOH (1.6 g, 40 mmol)를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 화합물 7 (6.5 g, 수율 76 %)를 얻었다.
[LCMS]: 642
[ 합성예 4] 화합물 8의 합성
Figure PCTKR2019007899-appb-I000060
Core-1 (5.0 g, 13.5 mmol), 2-chloro-4,6-bis(dibenzo[b,d]furan-3-yl)-1,3,5-triazine (6 g, 13.5 mmol) 및 Pd(PPh3)4 (0.6 g, 0.5 mmol), NaOH (1.6 g, 40 mmol)를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 화합물 8 (7 g, 수율 79 %)를 얻었다.
[LCMS]: 656
[ 합성예 5] 화합물 25의 합성
Figure PCTKR2019007899-appb-I000061
Core-2 (5.0 g, 13.5 mmol 2-([1,1'-biphenyl]-4-yl)-4-chloro-6-(dibenzo[b,d]furan-3-yl)-1,3,5-triazine (5.9 g, 13.5 mmol) 및 Pd(PPh3)4 (0.6 g, 0.5 mmol), NaOH (1.6 g, 40 mmol)를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 화합물 25 (6.5 g, 수율 76 %)를 얻었다.
[LCMS]: 642
[ 합성예 6] 화합물 41의 합성
Figure PCTKR2019007899-appb-I000062
Core-3 (5.0 g, 13.5 mmol), 2-chloro-4-(dibenzo[b,d]furan-3-yl)-6-phenyl-1,3,5-triazine (4.8 g, 13.5 mmol) 및 Pd(PPh3)4 (0.6 g, 0.5 mmol), NaOH (1.6 g, 40 mmol)를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 화합물 41 (5.8 g, 수율 76 %)를 얻었다.
[LCMS]: 566
[ 합성예 7] 화합물 66의 합성
Figure PCTKR2019007899-appb-I000063
Core-4 (5.2 g, 13.5 mmol), 2,4-di([1,1'-biphenyl]-4-yl)-6-chloro-1,3,5-triazine (5.7 g, 13.5 mmol) 및 Pd(PPh3)4 (0.6 g, 0.5 mmol), NaOH (1.6 g, 40 mmol)를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 화합물 66 (7.5 g, 수율 86 %)를 얻었다.
[LCMS]: 644
[ 합성예 8] 화합물 68의 합성
Figure PCTKR2019007899-appb-I000064
Core-4 (5.2 g, 13.5 mmol), 2-([1,1'-biphenyl]-4-yl)-4-chloro-6-(dibenzo[b,d]furan-3-yl)-1,3,5-triazine (5.9 g, 13.5 mmol) 및 Pd(PPh3)4 (0.6 g, 0.5 mmol), NaOH (1.6 g, 40 mmol)를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 화합물 68 (7.6 g, 수율 85 %)를 얻었다.
[LCMS]: 658
[ 합성예 9] 화합물 71의 합성
Figure PCTKR2019007899-appb-I000065
Core-4 (5.2 g, 13.5 mmol), 2-([1,1'-biphenyl]-4-yl)-4-chloro-6-(dibenzo[b,d]thiophen-3-yl)-1,3,5-triazine (6.1 g, 13.5 mmol) 및 Pd(PPh3)4 (0.6 g, 0.5 mmol), NaOH (1.6 g, 40 mmol)를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 화합물 71 (8.5 g, 수율 93 %)를 얻었다.
[LCMS]: 674
[ 합성예 10] 화합물 136 의 합성
Figure PCTKR2019007899-appb-I000066
Core-5 (5.4 g, 13.5 mmol), 2-([1,1'-biphenyl]-4-yl)-4-chloro-6-phenyl-1,3,5-triazine (4.6 g, 13.5 mmol) 및 Pd(PPh3)4 (0.6 g, 0.5 mmol), NaOH (1.6 g, 40 mmol)를 50 ml THF와 20 ml H2O 에 넣고 75℃에서 8시간 동안 교반하였다. 반응 종결 후 생성된 고체는 필터 후 Toluene으로 녹여 Silica 필터하였다. 그리고 Toluene을 농축시킨 후 Toluene으로 재결정하여 화합물 136 (5.5 g, 수율 71 %)를 얻었다.
[LCMS]: 578
[실시예 1] 청색 유기 전계 발광 소자의 제작
상기 합성예 1에서 합성한 화합물 2를 통상적으로 알려진 방법으로 고순도 승화정제를 한 후 아래의 과정에 따라 청색 유기 전계 발광 소자를 제작하였다.
먼저, ITO(Indium tin oxide)가 1500 Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면, 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후, UV OZONE 세정기(Power sonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극 위에, DS-205 (㈜두산전자, 80 nm)/NPB (15 nm)/ADN + 5 % DS-405 (㈜두산전자, 30 nm)/화합물 2 (30 nm)/LiF (1 nm)/Al (200 nm) 순으로 적층하여 유기 전계 발광 소자를 제작하였다. 이때 사용된 NPB 및 ADN의 구조는 하기와 같다.
Figure PCTKR2019007899-appb-I000067
[실시예 2 내지 10] 청색 유기 전계 발광 소자의 제작
실시예 1에서 사용된 화합물 2 대신 합성예 2 내지 10에서 합성한 화합물 5, 7, 8, 25, 41, 66, 68, 71, 136을 각각 사용하는 것을 제외하고는, 실시예 1과 동일하게 수행하여 청색 유기 전계 발광 소자를 제작하였다.
[비교예 1] 청색 유기 전계 발광 소자의 제작
실시예 1에서 사용된 화합물 2 대신 Alq3를 사용하는 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 청색 유기 전계 발광 소자를 제작하였다. 이때 사용된 Alq3의 구조는 하기와 같다.
Figure PCTKR2019007899-appb-I000068
[비교예 2] 청색 유기 전계 발광 소자의 제작
실시예 1에서 사용된 화합물 2 대신 화합물 T-1를 사용하는 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 청색 유기 전계 발광 소자를 제작하였다. 이때 사용된 T-1의 구조는 하기와 같다.
Figure PCTKR2019007899-appb-I000069
[비교예 3] 청색 유기 전계 발광 소자의 제작
실시예 1에서 사용된 화합물 2 대신 화합물 T-2를 사용하는 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 청색 유기 전계 발광 소자를 제작하였다. 이때 사용된 T-2의 구조는 하기와 같다.
Figure PCTKR2019007899-appb-I000070
[평가예 1]
실시예 1 내지 10, 비교예 1 내지 3에서 제작된 각각의 청색 유기 전계 발광 소자에 대하여, 전류밀도 10 mA/㎠에서의 구동전압, 전류효율, 발광피크를 측정하였고, 그 결과를 하기 표 1에 나타내었다.
샘플 전자수송층 재료 구동전압(V) 발광피크(nm) 전류효율(cd/A)
실시예 1 화합물 2 3.9 454 8.0
실시예 2 화합물 5 3.5 456 8.9
실시예 3 화합물 7 3.8 457 8.3
실시예 4 화합물 8 3.7 452 8.6
실시예 5 화합물 25 4.3 455 8.5
실시예 6 화합물 41 3.7 452 8.3
실시예 7 화합물 66 3.8 453 7.7
실시예 8 화합물 68 3.9 454 7.8
실시예 9 화합물 71 4.0 455 7.9
실시예 10 화합물 136 4.2 456 6.0
비교예 1 Alq3 5.4 458 4.8
비교예 2 T-1 5.3 459 4.9
비교예 3 T-2 5.2 458 5.1
상기 표 1에 나타낸 바와 같이, 상기 합성예 1 내지 10에서 합성된 화합물(화합물 2, 5, 7, 8, 25, 41, 66, 68, 71, 136)을 전자수송층 재료로 사용한 청색 유기 전계 발광 소자(실시예 1 내지 10)는 종래의 전자수송층 재료인 Alq3를 사용한 청색 유기 전계 발광 소자(비교예 1)에 비해 구동전압, 발광피크 및 전류효율 면에서 우수한 성능을 나타내는 것을 알 수 있었다.
또한, 상기 합성예 1 내지 10에서 합성된 화합물(화합물 2, 5, 7, 8, 25, 41, 66, 68, 71, 136)을 전자수송층 재료로 사용한 청색 유기 전계 발광 소자(실시예 1 내지 10)는 연결기로 2가의 피리딘기를 가짐으로써, p,p-비페닐렌 또는 m,p-비페닐렌을 함유하는 화합물을 전자수송층 재료로 사용한 청색 유기 전계 발광 소자(비교예 2 및 3)에 비해 구동전압, 발광피크 및 전류효율 면에서 우수한 성능을 나타내는 것을 알 수 있었다.
[ 실시예 11] 청색 유기 전계 발광 소자의 제작
상기 합성예 1에서 합성한 화합물 2를 통상적으로 알려진 방법으로 고순도 승화정제를 한 후 아래의 과정에 따라 청색 유기 전계 발광 소자를 제작하였다.
먼저, ITO(Indium tin oxide)가 1500 Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면, 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후, UV OZONE 세정기(Power sonic 405, 화신테크)로 이송시킨 다음, UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극 위에, DS-205 (㈜두산전자, 80 nm)/NPB (15 nm)/ADN + 5 % DS-405 (㈜두산전자, 30nm)/화합물 2 (5 nm)/Alq3 (25 nm)/LiF (1 nm)/Al (200 nm) 순으로 적층하여 유기 전계 발광 소자를 제작하였다. 이때 사용된 NPB 및 ADN의 구조는 실시예 1에 기재된 바와 같고, Alq3의 구조는 비교예 1에 기재된 바와 같다.
[ 실시예 12 내지 20] 청색 유기 전계 발광 소자의 제작
실시예 11에서 사용된 화합물 2 대신 합성예 2 내지 10에서 합성한 화합물 5, 7, 8, 25, 41, 66, 68, 71, 136을 각각 사용하는 것을 제외하고는, 실시예 11과 동일하게 수행하여 청색 유기 전계 발광 소자를 제작하였다.
[ 비교예 4] 청색 유기 전계 발광 소자의 제작
실시예 11에서 사용된 화합물 2를 사용하지 않고, Alq3를 25 nm로 증착하는 대신 30 nm로 증착하는 것을 제외하고는, 상기 실시예 11과 동일하게 수행하여 청색 유기 전계 발광 소자를 제작하였다.
[ 비교예 5] 청색 유기 전계 발광 소자의 제작
실시예 11에서 사용된 화합물 2 대신 화합물 T-1를 사용하는 것을 제외하고는, 상기 실시예 11과 동일하게 수행하여 청색 유기 전계 발광 소자를 제작하였다. 이때 사용된 T-1의 구조는 비교예 2에 기재된 바와 같다.
[ 비교예 6] 청색 유기 전계 발광 소자의 제작
실시예 11에서 사용된 화합물 2 대신 화합물 T-2를 사용하는 것을 제외하고는, 상기 실시예 11과 동일하게 수행하여 청색 유기 전계 발광 소자를 제작하였다. 이때 사용된 T-2의 구조는 비교예 3에 기재된 바와 같다.
[ 평가예 2]
실시예 11 내지 20, 비교예 4 내지 6에서 제작된 각각의 청색 유기 전계 발광 소자에 대하여, 전류밀도 10 mA/㎠에서의 구동전압, 발광피크, 전류효율을 측정하였고, 그 결과를 하기 표 2에 나타내었다.
샘플 전자수송 보조층 재료 구동전압(V) 발광피크(nm) 전류효율(cd/A)
실시예 11 화합물 2 4.1 452 8.0
실시예 12 화합물 5 3.7 451 8.4
실시예 13 화합물 7 4.1 452 7.6
실시예 14 화합물 8 3.8 454 8.2
실시예 15 화합물 25 3.7 451 7.3
실시예 16 화합물 41 4.0 452 8.0
실시예 17 화합물 66 4.2 453 7.6
실시예 18 화합물 68 4.1 454 7.5
실시예 19 화합물 71 3.9 455 7.4
실시예 20 화합물 136 4.3 456 6.2
비교예 4 - 5.3 458 5.3
비교예 5 T-1 5.4 457 5.3
비교예 6 T-2 5.2 456 5.3
상기 표 2에 나타낸 바와 같이, 상기 합성예 1 내지 10에서 합성된 화합물(화합물 2, 5, 7, 8, 25, 41, 66, 68, 71, 136)을 전자수송 보조층 재료로 사용한 청색 유기 전계 발광 소자(실시예 11 내지 20)는 전자수송 보조층이 없는 청색 유기 전계 발광 소자(비교예 4)에 비해 전류 효율, 발광피크 및 구동전압 면에서 우수한 성능을 나타내는 것을 알 수 있었다.
또한, 상기 합성예 1 내지 10에서 합성된 화합물(화합물 2, 5, 7, 8, 25, 41, 66, 68, 71, 136)을 전자수송 보조층 재료로 사용한 청색 유기 전계 발광 소자(실시예 11 내지 20)는 연결기로 2가의 피리딘기를 가짐으로써, p,p-비페닐렌 또는 m,p-비페닐렌을 함유하는 화합물을 전자수송 보조층 재료로 사용한 청색 유기 전계 발광 소자(비교예 5 및 6)에 비해 구동전압, 발광피크 및 전류효율 면에서 우수한 성능을 나타내는 것을 알 수 있었다.
[실시예 21] 녹색 유기 전계 발광 소자의 제작
상기 합성예 1에서 합성된 화합물 2를 통상적으로 알려진 방법으로 고순도 승화정제를 한 후 아래의 과정에 따라 녹색 유기 전계 발광 소자를 제작하였다.
먼저, ITO(Indium tin oxide)가 1500 Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극 위에 m-MTDATA (60 nm)/TCTA (80 nm)/90%의 화합물 2 + 10%의 Ir(ppy)3 (300 nm)/BCP (10 nm)/Alq3 (30 nm)/LiF (1 nm)/Al (200 nm) 순으로 적층하여 유기 전계 발광 소자를 제작하였다. 이때 사용된 m-MTDATA, TCTA, Ir(ppy)3, 및 BCP의 구조는 하기와 같고, Alq3의 구조는 비교예 1에 기재된 바와 같다.
Figure PCTKR2019007899-appb-I000071
Figure PCTKR2019007899-appb-I000072
[실시예 22 내지 30] 녹색 유기 전계 발광 소자의 제작
실시예 21에서 사용된 화합물 대신 합성예 2 내지 10에서 합성한 화합물 5, 7, 8, 25, 41, 66, 68, 71, 136을 각각 사용하는 것을 제외하고는, 실시예 21과 동일하게 수행하여 청색 유기 전계 발광 소자를 제작하였다.
[비교예 7] 녹색 유기 전계 발광 소자의 제작
실시예 21에서 사용된 화합물 2 대신 CBP를 사용하는 것을 제외하고는, 실시예 21과 동일하게 수행하여 유기 전계 발광 소자를 제작하였다. 이때 사용된 CBP의 구조는 하기와 같다.
Figure PCTKR2019007899-appb-I000073
[비교예 8] 녹색 유기 전계 발광 소자의 제작
실시예 21에서 사용된 화합물 2 대신 화합물 T-1를 사용하는 것을 제외하고는, 실시예 21과 동일하게 수행하여 유기 전계 발광 소자를 제작하였다. 이때 사용된 T-1의 구조는 비교예 2에 기재된 바와 같다.
[비교예 9] 녹색 유기 전계 발광 소자의 제작
실시예 21에서 사용된 화합물 2 대신 화합물 T-2를 사용하는 것을 제외하고는, 실시예 21과 동일하게 수행하여 유기 전계 발광 소자를 제작하였다. 이때 사용된 T-2의 구조는 비교예 3에 기재된 바와 같다.
[ 평가예 3]
실시예 21 내지 30, 비교예 7 내지 9에서 제작된 각각의 녹색 유기 전계 발광 소자에 대하여 전류밀도 10 mA/㎠에서의 구동전압, 전류효율 및 발광피크를 측정하고, 그 결과를 하기 표 3에 나타내었다.
샘플 호스트 재료 구동전압(V) 발광 피크(nm) 전류효율(cd/A)
실시예 21 화합물 2 6.81 518 39.7
실시예 22 화합물 5 6.48 518 44.9
실시예 23 화합물 7 6.66 518 41.3
실시예 24 화합물 8 6.70 517 41.3
실시예 25 화합물 25 6.70 515 43.1
실시예 26 화합물 41 6.51 518 43.5
실시예 27 화합물 66 6.77 518 41.4
실시예 28 화합물 68 6.82 517 41.3
실시예 29 화합물 71 6.66 515 41.3
실시예 30 화합물 136 6.86 516 41.2
비교예 7 CBP 7.59 516 26.8
비교예 8 T-1 7.34 517 28.9
비교예 9 T-2 7.53 517 31.1
상기 표 3에 나타낸 바와 같이, 상기 합성예 1 내지 10에서 합성된 화합물(화합물 2, 5, 7, 8, 25, 41, 66, 68, 71, 136)을 발광층 재료로 사용한 녹색 유기 전계 발광 소자(실시예 21 내지 30)는 종래 발광층 재료인 CBP를 사용한 녹색 유기 전계 발광 소자(비교예 7)에 비해 전류효율 및 구동전압 면에서 우수한 성능을 나타내는 것을 알 수 있었다.
또한, 상기 합성예 1 내지 10에서 합성된 화합물(화합물 2, 5, 7, 8, 25, 41, 66, 68, 71, 136)을 발광층 재료로 사용한 녹색 유기 전계 발광 소자(실시예 21 내지 30)는 연결기로 2가의 피리딘기를 가짐으로써, p,p-비페닐렌 또는 m,p-비페닐렌을 함유하는 화합물을 전자수송 보조층 재료로 사용한 청색 유기 전계 발광 소자(비교예 8 및 9)에 비해 구동전압, 발광피크 및 전류효율 면에서 우수한 성능을 나타내는 것을 알 수 있었다.

Claims (11)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2019007899-appb-I000074
    상기 화학식 1에서,
    X1 내지 X5는 서로 동일하거나 또는 상이하고, 각각 독립적으로 N 또는 CR이고, 다만 X1 내지 X5 중 하나는 N 이고,
    복수의 R은 서로 동일하거나 또는 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되며,
    Ar1 및 Ar2는 서로 동일하거나 또는 상이하며, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있으며,
    A는 하기 화학식 2로 표시되는 치환체이고,
    [화학식 2]
    Figure PCTKR2019007899-appb-I000075
    상기 화학식 2에서,
    Y는 O, S 또는 CR3R4이고,
    n 및 m은 각각 0 내지 4의 정수이고,
    R1 내지 R4는 서로 동일하거나 또는 상이하며, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 이들은 인접한 기와 축합 고리를 형성할 수 있으며,
    다만 R1 내지 R4 중 어느 하나는 단일결합이고, 이는 화학식 1에 결합되며,
    상기 Ar1, Ar2, R1 내지 R4의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴아민기는 각각 독립적으로 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환되며, 이때 상기 치환기가 복수인 경우, 이들은 서로 동일하거나 상이하다.
  2. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 3으로 표시되는 화합물:
    [화학식 3]
    Figure PCTKR2019007899-appb-I000076
    상기 화학식 3에서,
    X1 내지 X5, Ar1, Ar2, Y, R1 및 R2는 각각 제1항에서 정의한 바와 같고,
    n 및 m은 각각 0 내지 4의 정수이고, 다만 0≤n+m≤7이다.
  3. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 4 내지 화학식 6 중 어느 하나로 표시되는 화합물.
    [화학식 4]
    Figure PCTKR2019007899-appb-I000077
    [화학식 5]
    Figure PCTKR2019007899-appb-I000078
    [화학식 6]
    Figure PCTKR2019007899-appb-I000079
    상기 화학식 4 내지 화학식 6에서,
    X1 내지 X5, Ar1, Ar2, R3 및 R4는 각각 제1항에서 정의한 바와 같다.
  4. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 7 내지 화학식 10 중 어느 하나로 표시되는 화합물.
    [화학식 7]
    Figure PCTKR2019007899-appb-I000080
    [화학식 8]
    Figure PCTKR2019007899-appb-I000081
    [화학식 9]
    Figure PCTKR2019007899-appb-I000082
    [화학식 10]
    Figure PCTKR2019007899-appb-I000083
    상기 화학식 7 내지 화학식 10에서,
    Ar1, Ar2 및 A는 각각 제1항에서 정의한 바와 같다.
  5. 제1항에 있어서,
    상기 Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 C6~C60의 아릴기 및 핵원자수 5 내지 60개의 헤테로아릴기로 이루어진 군에서 선택되는 화합물.
  6. 제1항에 있어서,
    상기 Ar1 및 Ar2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 구조식 S1 내지 S8로 이루어진 군에서 선택되는 치환체인 화합물:
    Figure PCTKR2019007899-appb-I000084
    상기 구조식에서,
    *는 화학식 1에 결합되는 부위를 의미한다.
  7. 제3항에 있어서,
    상기 화학식 4로 표시되는 화합물은 하기 화합물 1 내지 61로부터 선택되는 화합물:
    Figure PCTKR2019007899-appb-I000085
    Figure PCTKR2019007899-appb-I000086
    Figure PCTKR2019007899-appb-I000087
    Figure PCTKR2019007899-appb-I000088
    Figure PCTKR2019007899-appb-I000089
    Figure PCTKR2019007899-appb-I000090
    Figure PCTKR2019007899-appb-I000091
    Figure PCTKR2019007899-appb-I000092
    Figure PCTKR2019007899-appb-I000093
    Figure PCTKR2019007899-appb-I000094
    Figure PCTKR2019007899-appb-I000095
    Figure PCTKR2019007899-appb-I000096
    Figure PCTKR2019007899-appb-I000097
    Figure PCTKR2019007899-appb-I000098
    Figure PCTKR2019007899-appb-I000099
    .
  8. 제3항에 있어서,
    상기 화학식 5로 표시되는 화합물은 하기 화합물 62 내지 122로부터 선택되는 화합물:
    Figure PCTKR2019007899-appb-I000100
    Figure PCTKR2019007899-appb-I000101
    Figure PCTKR2019007899-appb-I000102
    Figure PCTKR2019007899-appb-I000103
    Figure PCTKR2019007899-appb-I000104
    Figure PCTKR2019007899-appb-I000105
    Figure PCTKR2019007899-appb-I000106
    Figure PCTKR2019007899-appb-I000107
    Figure PCTKR2019007899-appb-I000108
    Figure PCTKR2019007899-appb-I000109
    Figure PCTKR2019007899-appb-I000110
    Figure PCTKR2019007899-appb-I000111
    Figure PCTKR2019007899-appb-I000112
    Figure PCTKR2019007899-appb-I000113
    Figure PCTKR2019007899-appb-I000114
    .
  9. 제3항에 있어서,
    상기 화학식 6으로 표시되는 화합물은 하기 화합물 123 내지 171로부터 선택되는 화합물:
    Figure PCTKR2019007899-appb-I000115
    Figure PCTKR2019007899-appb-I000116
    Figure PCTKR2019007899-appb-I000117
    Figure PCTKR2019007899-appb-I000118
    Figure PCTKR2019007899-appb-I000119
    Figure PCTKR2019007899-appb-I000120
    Figure PCTKR2019007899-appb-I000121
    Figure PCTKR2019007899-appb-I000122
    Figure PCTKR2019007899-appb-I000123
    Figure PCTKR2019007899-appb-I000124
    Figure PCTKR2019007899-appb-I000125
    Figure PCTKR2019007899-appb-I000126
    .
  10. 양극, 음극 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하며,
    상기 1층 이상의 유기물층 중 적어도 하나는 제1항 내지 제9항 중 어느 한 항에 기재된 화합물을 포함하는 유기 전계 발광 소자.
  11. 제10항에 있어서,
    상기 화합물을 포함하는 유기물층은 정공 주입층, 정공 수송층, 발광보조층, 발광층, 전자수송 보조층, 전자 수송층 및 전자 주입층으로 이루어진 군에서 선택되는 것인 유기 전계 발광 소자.
PCT/KR2019/007899 2018-07-06 2019-06-28 유기 화합물 및 이를 포함하는 유기 전계 발광 소자 WO2020009381A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180078798A KR102559589B1 (ko) 2018-07-06 2018-07-06 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR10-2018-0078798 2018-07-06

Publications (1)

Publication Number Publication Date
WO2020009381A1 true WO2020009381A1 (ko) 2020-01-09

Family

ID=69060136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007899 WO2020009381A1 (ko) 2018-07-06 2019-06-28 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Country Status (2)

Country Link
KR (1) KR102559589B1 (ko)
WO (1) WO2020009381A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079915A1 (ja) * 2019-10-24 2021-04-29 東ソー株式会社 ピリジル基を有するトリアジン化合物およびピリジン化合物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033583A1 (ko) * 2021-09-02 2023-03-09 에스케이머티리얼즈제이엔씨 주식회사 화합물, 유기 전계 발광 소자 및 표시 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160026744A (ko) * 2014-08-29 2016-03-09 삼성전자주식회사 유기 발광 소자
US20160233429A1 (en) * 2015-02-06 2016-08-11 Universal Display Corporation Organic Electroluminescent Materials and Devices
KR20170057660A (ko) * 2015-11-17 2017-05-25 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 전자 소자
KR20170102000A (ko) * 2015-02-13 2017-09-06 코니카 미놀타 가부시키가이샤 방향족 복소환 유도체, 그것을 사용한 유기 일렉트로루미네센스 소자, 조명 장치 및 표시 장치

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102326217B1 (ko) * 2014-01-08 2021-11-15 스미또모 가가꾸 가부시키가이샤 금속 착체 및 그것을 사용한 발광 소자
US9997716B2 (en) * 2014-05-27 2018-06-12 Universal Display Corporation Organic electroluminescent materials and devices
JP6641948B2 (ja) 2015-12-04 2020-02-05 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
KR20170070640A (ko) * 2015-12-14 2017-06-22 주식회사 동진쎄미켐 신규한 화합물 및 이를 포함하는 유기 발광 소자
KR101959047B1 (ko) * 2016-07-15 2019-03-18 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR101885898B1 (ko) * 2016-11-16 2018-08-06 주식회사 엘지화학 유기 발광 소자
KR20180094349A (ko) * 2017-02-15 2018-08-23 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
CN106946853B (zh) 2017-05-11 2020-11-06 中节能万润股份有限公司 一种基于三嗪和苯并咪唑的有机化合物及其在有机电致发光器件上的应用
KR101959821B1 (ko) 2017-09-15 2019-03-20 엘티소재주식회사 유기 발광 소자, 이의 제조방법 및 유기 발광 소자의 유기물층용 조성물
CN107573329A (zh) * 2017-09-29 2018-01-12 江苏三月光电科技有限公司 一种基于三嗪和喹喔啉的有机化合物及其在有机电致发光器件上的应用
KR102034192B1 (ko) * 2017-11-10 2019-10-18 주식회사 진웅산업 페난트롤린-트리아진 화합물 및 이를 포함하는 유기발광소자
KR102536246B1 (ko) * 2018-03-23 2023-05-25 삼성디스플레이 주식회사 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
KR102617841B1 (ko) * 2018-05-29 2023-12-26 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160026744A (ko) * 2014-08-29 2016-03-09 삼성전자주식회사 유기 발광 소자
US20160233429A1 (en) * 2015-02-06 2016-08-11 Universal Display Corporation Organic Electroluminescent Materials and Devices
KR20170102000A (ko) * 2015-02-13 2017-09-06 코니카 미놀타 가부시키가이샤 방향족 복소환 유도체, 그것을 사용한 유기 일렉트로루미네센스 소자, 조명 장치 및 표시 장치
KR20170057660A (ko) * 2015-11-17 2017-05-25 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 전자 소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHONG, H. ET AL.: "New optoelectronic materials based on bitriazines: Synthesis and properties", ORGANIC LETTERS, vol. 10, no. 5, 2008, pages 709 - 712, XP055047366, DOI: 10.1021/ol702698r *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079915A1 (ja) * 2019-10-24 2021-04-29 東ソー株式会社 ピリジル基を有するトリアジン化合物およびピリジン化合物

Also Published As

Publication number Publication date
KR102559589B1 (ko) 2023-07-25
KR20200005272A (ko) 2020-01-15

Similar Documents

Publication Publication Date Title
WO2019004599A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2019017616A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2017095100A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016105161A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015060684A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018216921A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2018038400A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015111943A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020045822A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2013191355A1 (ko) 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017111389A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020218680A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2018212463A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2015099477A2 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2020130555A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2020009381A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020130726A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016105072A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2019203430A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2015046982A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015012528A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014081147A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017099466A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020054931A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2015084043A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19831154

Country of ref document: EP

Kind code of ref document: A1